No empty .Rs/.Re
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / combine.c
blob7a732657fedbc840aab6aabc89965f08ea71cfdd
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "coretypes.h"
80 #include "tm.h"
81 #include "rtl.h"
82 #include "tree.h"
83 #include "tm_p.h"
84 #include "flags.h"
85 #include "regs.h"
86 #include "hard-reg-set.h"
87 #include "basic-block.h"
88 #include "insn-config.h"
89 #include "function.h"
90 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
91 #include "expr.h"
92 #include "insn-attr.h"
93 #include "recog.h"
94 #include "real.h"
95 #include "toplev.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
106 /* Number of attempts to combine instructions in this function. */
108 static int combine_attempts;
110 /* Number of attempts that got as far as substitution in this function. */
112 static int combine_merges;
114 /* Number of instructions combined with added SETs in this function. */
116 static int combine_extras;
118 /* Number of instructions combined in this function. */
120 static int combine_successes;
122 /* Totals over entire compilation. */
124 static int total_attempts, total_merges, total_extras, total_successes;
126 /* combine_instructions may try to replace the right hand side of the
127 second instruction with the value of an associated REG_EQUAL note
128 before throwing it at try_combine. That is problematic when there
129 is a REG_DEAD note for a register used in the old right hand side
130 and can cause distribute_notes to do wrong things. This is the
131 second instruction if it has been so modified, null otherwise. */
133 static rtx i2mod;
135 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
137 static rtx i2mod_old_rhs;
139 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
141 static rtx i2mod_new_rhs;
143 /* Vector mapping INSN_UIDs to cuids.
144 The cuids are like uids but increase monotonically always.
145 Combine always uses cuids so that it can compare them.
146 But actually renumbering the uids, which we used to do,
147 proves to be a bad idea because it makes it hard to compare
148 the dumps produced by earlier passes with those from later passes. */
150 static int *uid_cuid;
151 static int max_uid_cuid;
153 /* Get the cuid of an insn. */
155 #define INSN_CUID(INSN) \
156 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
158 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
159 BITS_PER_WORD would invoke undefined behavior. Work around it. */
161 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
162 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
164 /* Maximum register number, which is the size of the tables below. */
166 static unsigned int combine_max_regno;
168 struct reg_stat {
169 /* Record last point of death of (hard or pseudo) register n. */
170 rtx last_death;
172 /* Record last point of modification of (hard or pseudo) register n. */
173 rtx last_set;
175 /* The next group of fields allows the recording of the last value assigned
176 to (hard or pseudo) register n. We use this information to see if an
177 operation being processed is redundant given a prior operation performed
178 on the register. For example, an `and' with a constant is redundant if
179 all the zero bits are already known to be turned off.
181 We use an approach similar to that used by cse, but change it in the
182 following ways:
184 (1) We do not want to reinitialize at each label.
185 (2) It is useful, but not critical, to know the actual value assigned
186 to a register. Often just its form is helpful.
188 Therefore, we maintain the following fields:
190 last_set_value the last value assigned
191 last_set_label records the value of label_tick when the
192 register was assigned
193 last_set_table_tick records the value of label_tick when a
194 value using the register is assigned
195 last_set_invalid set to nonzero when it is not valid
196 to use the value of this register in some
197 register's value
199 To understand the usage of these tables, it is important to understand
200 the distinction between the value in last_set_value being valid and
201 the register being validly contained in some other expression in the
202 table.
204 (The next two parameters are out of date).
206 reg_stat[i].last_set_value is valid if it is nonzero, and either
207 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
209 Register I may validly appear in any expression returned for the value
210 of another register if reg_n_sets[i] is 1. It may also appear in the
211 value for register J if reg_stat[j].last_set_invalid is zero, or
212 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
214 If an expression is found in the table containing a register which may
215 not validly appear in an expression, the register is replaced by
216 something that won't match, (clobber (const_int 0)). */
218 /* Record last value assigned to (hard or pseudo) register n. */
220 rtx last_set_value;
222 /* Record the value of label_tick when an expression involving register n
223 is placed in last_set_value. */
225 int last_set_table_tick;
227 /* Record the value of label_tick when the value for register n is placed in
228 last_set_value. */
230 int last_set_label;
232 /* These fields are maintained in parallel with last_set_value and are
233 used to store the mode in which the register was last set, the bits
234 that were known to be zero when it was last set, and the number of
235 sign bits copies it was known to have when it was last set. */
237 unsigned HOST_WIDE_INT last_set_nonzero_bits;
238 char last_set_sign_bit_copies;
239 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
241 /* Set nonzero if references to register n in expressions should not be
242 used. last_set_invalid is set nonzero when this register is being
243 assigned to and last_set_table_tick == label_tick. */
245 char last_set_invalid;
247 /* Some registers that are set more than once and used in more than one
248 basic block are nevertheless always set in similar ways. For example,
249 a QImode register may be loaded from memory in two places on a machine
250 where byte loads zero extend.
252 We record in the following fields if a register has some leading bits
253 that are always equal to the sign bit, and what we know about the
254 nonzero bits of a register, specifically which bits are known to be
255 zero.
257 If an entry is zero, it means that we don't know anything special. */
259 unsigned char sign_bit_copies;
261 unsigned HOST_WIDE_INT nonzero_bits;
264 static struct reg_stat *reg_stat;
266 /* Record the cuid of the last insn that invalidated memory
267 (anything that writes memory, and subroutine calls, but not pushes). */
269 static int mem_last_set;
271 /* Record the cuid of the last CALL_INSN
272 so we can tell whether a potential combination crosses any calls. */
274 static int last_call_cuid;
276 /* When `subst' is called, this is the insn that is being modified
277 (by combining in a previous insn). The PATTERN of this insn
278 is still the old pattern partially modified and it should not be
279 looked at, but this may be used to examine the successors of the insn
280 to judge whether a simplification is valid. */
282 static rtx subst_insn;
284 /* This is the lowest CUID that `subst' is currently dealing with.
285 get_last_value will not return a value if the register was set at or
286 after this CUID. If not for this mechanism, we could get confused if
287 I2 or I1 in try_combine were an insn that used the old value of a register
288 to obtain a new value. In that case, we might erroneously get the
289 new value of the register when we wanted the old one. */
291 static int subst_low_cuid;
293 /* This contains any hard registers that are used in newpat; reg_dead_at_p
294 must consider all these registers to be always live. */
296 static HARD_REG_SET newpat_used_regs;
298 /* This is an insn to which a LOG_LINKS entry has been added. If this
299 insn is the earlier than I2 or I3, combine should rescan starting at
300 that location. */
302 static rtx added_links_insn;
304 /* Basic block in which we are performing combines. */
305 static basic_block this_basic_block;
307 /* A bitmap indicating which blocks had registers go dead at entry.
308 After combine, we'll need to re-do global life analysis with
309 those blocks as starting points. */
310 static sbitmap refresh_blocks;
312 /* The following array records the insn_rtx_cost for every insn
313 in the instruction stream. */
315 static int *uid_insn_cost;
317 /* Length of the currently allocated uid_insn_cost array. */
319 static int last_insn_cost;
321 /* Incremented for each label. */
323 static int label_tick;
325 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
326 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
328 static enum machine_mode nonzero_bits_mode;
330 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
331 be safely used. It is zero while computing them and after combine has
332 completed. This former test prevents propagating values based on
333 previously set values, which can be incorrect if a variable is modified
334 in a loop. */
336 static int nonzero_sign_valid;
339 /* Record one modification to rtl structure
340 to be undone by storing old_contents into *where.
341 is_int is 1 if the contents are an int. */
343 struct undo
345 struct undo *next;
346 int is_int;
347 union {rtx r; int i;} old_contents;
348 union {rtx *r; int *i;} where;
351 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
352 num_undo says how many are currently recorded.
354 other_insn is nonzero if we have modified some other insn in the process
355 of working on subst_insn. It must be verified too. */
357 struct undobuf
359 struct undo *undos;
360 struct undo *frees;
361 rtx other_insn;
364 static struct undobuf undobuf;
366 /* Number of times the pseudo being substituted for
367 was found and replaced. */
369 static int n_occurrences;
371 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
372 enum machine_mode,
373 unsigned HOST_WIDE_INT,
374 unsigned HOST_WIDE_INT *);
375 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
376 enum machine_mode,
377 unsigned int, unsigned int *);
378 static void do_SUBST (rtx *, rtx);
379 static void do_SUBST_INT (int *, int);
380 static void init_reg_last (void);
381 static void setup_incoming_promotions (void);
382 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
383 static int cant_combine_insn_p (rtx);
384 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
385 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
386 static int contains_muldiv (rtx);
387 static rtx try_combine (rtx, rtx, rtx, int *);
388 static void undo_all (void);
389 static void undo_commit (void);
390 static rtx *find_split_point (rtx *, rtx);
391 static rtx subst (rtx, rtx, rtx, int, int);
392 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
393 static rtx simplify_if_then_else (rtx);
394 static rtx simplify_set (rtx);
395 static rtx simplify_logical (rtx);
396 static rtx expand_compound_operation (rtx);
397 static rtx expand_field_assignment (rtx);
398 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
399 rtx, unsigned HOST_WIDE_INT, int, int, int);
400 static rtx extract_left_shift (rtx, int);
401 static rtx make_compound_operation (rtx, enum rtx_code);
402 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
403 unsigned HOST_WIDE_INT *);
404 static rtx force_to_mode (rtx, enum machine_mode,
405 unsigned HOST_WIDE_INT, rtx, int);
406 static rtx if_then_else_cond (rtx, rtx *, rtx *);
407 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
408 static int rtx_equal_for_field_assignment_p (rtx, rtx);
409 static rtx make_field_assignment (rtx);
410 static rtx apply_distributive_law (rtx);
411 static rtx distribute_and_simplify_rtx (rtx, int);
412 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
413 unsigned HOST_WIDE_INT);
414 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
415 HOST_WIDE_INT, enum machine_mode, int *);
416 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
417 int);
418 static int recog_for_combine (rtx *, rtx, rtx *);
419 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
420 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
421 static void update_table_tick (rtx);
422 static void record_value_for_reg (rtx, rtx, rtx);
423 static void check_promoted_subreg (rtx, rtx);
424 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
425 static void record_dead_and_set_regs (rtx);
426 static int get_last_value_validate (rtx *, rtx, int, int);
427 static rtx get_last_value (rtx);
428 static int use_crosses_set_p (rtx, int);
429 static void reg_dead_at_p_1 (rtx, rtx, void *);
430 static int reg_dead_at_p (rtx, rtx);
431 static void move_deaths (rtx, rtx, int, rtx, rtx *);
432 static int reg_bitfield_target_p (rtx, rtx);
433 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
434 static void distribute_links (rtx);
435 static void mark_used_regs_combine (rtx);
436 static int insn_cuid (rtx);
437 static void record_promoted_value (rtx, rtx);
438 static int unmentioned_reg_p_1 (rtx *, void *);
439 static bool unmentioned_reg_p (rtx, rtx);
442 /* It is not safe to use ordinary gen_lowpart in combine.
443 See comments in gen_lowpart_for_combine. */
444 #undef RTL_HOOKS_GEN_LOWPART
445 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
447 /* Our implementation of gen_lowpart never emits a new pseudo. */
448 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
449 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
451 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
452 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
454 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
455 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
457 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
460 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
461 insn. The substitution can be undone by undo_all. If INTO is already
462 set to NEWVAL, do not record this change. Because computing NEWVAL might
463 also call SUBST, we have to compute it before we put anything into
464 the undo table. */
466 static void
467 do_SUBST (rtx *into, rtx newval)
469 struct undo *buf;
470 rtx oldval = *into;
472 if (oldval == newval)
473 return;
475 /* We'd like to catch as many invalid transformations here as
476 possible. Unfortunately, there are way too many mode changes
477 that are perfectly valid, so we'd waste too much effort for
478 little gain doing the checks here. Focus on catching invalid
479 transformations involving integer constants. */
480 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
481 && GET_CODE (newval) == CONST_INT)
483 /* Sanity check that we're replacing oldval with a CONST_INT
484 that is a valid sign-extension for the original mode. */
485 gcc_assert (INTVAL (newval)
486 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
488 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
489 CONST_INT is not valid, because after the replacement, the
490 original mode would be gone. Unfortunately, we can't tell
491 when do_SUBST is called to replace the operand thereof, so we
492 perform this test on oldval instead, checking whether an
493 invalid replacement took place before we got here. */
494 gcc_assert (!(GET_CODE (oldval) == SUBREG
495 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
496 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
497 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
500 if (undobuf.frees)
501 buf = undobuf.frees, undobuf.frees = buf->next;
502 else
503 buf = xmalloc (sizeof (struct undo));
505 buf->is_int = 0;
506 buf->where.r = into;
507 buf->old_contents.r = oldval;
508 *into = newval;
510 buf->next = undobuf.undos, undobuf.undos = buf;
513 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
515 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
516 for the value of a HOST_WIDE_INT value (including CONST_INT) is
517 not safe. */
519 static void
520 do_SUBST_INT (int *into, int newval)
522 struct undo *buf;
523 int oldval = *into;
525 if (oldval == newval)
526 return;
528 if (undobuf.frees)
529 buf = undobuf.frees, undobuf.frees = buf->next;
530 else
531 buf = xmalloc (sizeof (struct undo));
533 buf->is_int = 1;
534 buf->where.i = into;
535 buf->old_contents.i = oldval;
536 *into = newval;
538 buf->next = undobuf.undos, undobuf.undos = buf;
541 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
543 /* Subroutine of try_combine. Determine whether the combine replacement
544 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
545 that the original instruction sequence I1, I2 and I3. Note that I1
546 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
547 costs of all instructions can be estimated, and the replacements are
548 more expensive than the original sequence. */
550 static bool
551 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
553 int i1_cost, i2_cost, i3_cost;
554 int new_i2_cost, new_i3_cost;
555 int old_cost, new_cost;
557 /* Lookup the original insn_rtx_costs. */
558 i2_cost = INSN_UID (i2) <= last_insn_cost
559 ? uid_insn_cost[INSN_UID (i2)] : 0;
560 i3_cost = INSN_UID (i3) <= last_insn_cost
561 ? uid_insn_cost[INSN_UID (i3)] : 0;
563 if (i1)
565 i1_cost = INSN_UID (i1) <= last_insn_cost
566 ? uid_insn_cost[INSN_UID (i1)] : 0;
567 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
568 ? i1_cost + i2_cost + i3_cost : 0;
570 else
572 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
573 i1_cost = 0;
576 /* Calculate the replacement insn_rtx_costs. */
577 new_i3_cost = insn_rtx_cost (newpat);
578 if (newi2pat)
580 new_i2_cost = insn_rtx_cost (newi2pat);
581 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
582 ? new_i2_cost + new_i3_cost : 0;
584 else
586 new_cost = new_i3_cost;
587 new_i2_cost = 0;
590 if (undobuf.other_insn)
592 int old_other_cost, new_other_cost;
594 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
595 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
596 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
597 if (old_other_cost > 0 && new_other_cost > 0)
599 old_cost += old_other_cost;
600 new_cost += new_other_cost;
602 else
603 old_cost = 0;
606 /* Disallow this recombination if both new_cost and old_cost are
607 greater than zero, and new_cost is greater than old cost. */
608 if (old_cost > 0
609 && new_cost > old_cost)
611 if (dump_file)
613 if (i1)
615 fprintf (dump_file,
616 "rejecting combination of insns %d, %d and %d\n",
617 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
618 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
619 i1_cost, i2_cost, i3_cost, old_cost);
621 else
623 fprintf (dump_file,
624 "rejecting combination of insns %d and %d\n",
625 INSN_UID (i2), INSN_UID (i3));
626 fprintf (dump_file, "original costs %d + %d = %d\n",
627 i2_cost, i3_cost, old_cost);
630 if (newi2pat)
632 fprintf (dump_file, "replacement costs %d + %d = %d\n",
633 new_i2_cost, new_i3_cost, new_cost);
635 else
636 fprintf (dump_file, "replacement cost %d\n", new_cost);
639 return false;
642 /* Update the uid_insn_cost array with the replacement costs. */
643 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
644 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
645 if (i1)
646 uid_insn_cost[INSN_UID (i1)] = 0;
648 return true;
651 /* Main entry point for combiner. F is the first insn of the function.
652 NREGS is the first unused pseudo-reg number.
654 Return nonzero if the combiner has turned an indirect jump
655 instruction into a direct jump. */
657 combine_instructions (rtx f, unsigned int nregs)
659 rtx insn, next;
660 #ifdef HAVE_cc0
661 rtx prev;
662 #endif
663 int i;
664 unsigned int j = 0;
665 rtx links, nextlinks;
666 sbitmap_iterator sbi;
668 int new_direct_jump_p = 0;
670 combine_attempts = 0;
671 combine_merges = 0;
672 combine_extras = 0;
673 combine_successes = 0;
675 combine_max_regno = nregs;
677 rtl_hooks = combine_rtl_hooks;
679 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
681 init_recog_no_volatile ();
683 /* Compute maximum uid value so uid_cuid can be allocated. */
685 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
686 if (INSN_UID (insn) > i)
687 i = INSN_UID (insn);
689 uid_cuid = xmalloc ((i + 1) * sizeof (int));
690 max_uid_cuid = i;
692 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
694 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
695 problems when, for example, we have j <<= 1 in a loop. */
697 nonzero_sign_valid = 0;
699 /* Compute the mapping from uids to cuids.
700 Cuids are numbers assigned to insns, like uids,
701 except that cuids increase monotonically through the code.
703 Scan all SETs and see if we can deduce anything about what
704 bits are known to be zero for some registers and how many copies
705 of the sign bit are known to exist for those registers.
707 Also set any known values so that we can use it while searching
708 for what bits are known to be set. */
710 label_tick = 1;
712 setup_incoming_promotions ();
714 refresh_blocks = sbitmap_alloc (last_basic_block);
715 sbitmap_zero (refresh_blocks);
717 /* Allocate array of current insn_rtx_costs. */
718 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
719 last_insn_cost = max_uid_cuid;
721 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
723 uid_cuid[INSN_UID (insn)] = ++i;
724 subst_low_cuid = i;
725 subst_insn = insn;
727 if (INSN_P (insn))
729 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
730 NULL);
731 record_dead_and_set_regs (insn);
733 #ifdef AUTO_INC_DEC
734 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
735 if (REG_NOTE_KIND (links) == REG_INC)
736 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
737 NULL);
738 #endif
740 /* Record the current insn_rtx_cost of this instruction. */
741 if (NONJUMP_INSN_P (insn))
742 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
743 if (dump_file)
744 fprintf(dump_file, "insn_cost %d: %d\n",
745 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
748 if (LABEL_P (insn))
749 label_tick++;
752 nonzero_sign_valid = 1;
754 /* Now scan all the insns in forward order. */
756 label_tick = 1;
757 last_call_cuid = 0;
758 mem_last_set = 0;
759 init_reg_last ();
760 setup_incoming_promotions ();
762 FOR_EACH_BB (this_basic_block)
764 for (insn = BB_HEAD (this_basic_block);
765 insn != NEXT_INSN (BB_END (this_basic_block));
766 insn = next ? next : NEXT_INSN (insn))
768 next = 0;
770 if (LABEL_P (insn))
771 label_tick++;
773 else if (INSN_P (insn))
775 /* See if we know about function return values before this
776 insn based upon SUBREG flags. */
777 check_promoted_subreg (insn, PATTERN (insn));
779 /* Try this insn with each insn it links back to. */
781 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
782 if ((next = try_combine (insn, XEXP (links, 0),
783 NULL_RTX, &new_direct_jump_p)) != 0)
784 goto retry;
786 /* Try each sequence of three linked insns ending with this one. */
788 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
790 rtx link = XEXP (links, 0);
792 /* If the linked insn has been replaced by a note, then there
793 is no point in pursuing this chain any further. */
794 if (NOTE_P (link))
795 continue;
797 for (nextlinks = LOG_LINKS (link);
798 nextlinks;
799 nextlinks = XEXP (nextlinks, 1))
800 if ((next = try_combine (insn, link,
801 XEXP (nextlinks, 0),
802 &new_direct_jump_p)) != 0)
803 goto retry;
806 #ifdef HAVE_cc0
807 /* Try to combine a jump insn that uses CC0
808 with a preceding insn that sets CC0, and maybe with its
809 logical predecessor as well.
810 This is how we make decrement-and-branch insns.
811 We need this special code because data flow connections
812 via CC0 do not get entered in LOG_LINKS. */
814 if (JUMP_P (insn)
815 && (prev = prev_nonnote_insn (insn)) != 0
816 && NONJUMP_INSN_P (prev)
817 && sets_cc0_p (PATTERN (prev)))
819 if ((next = try_combine (insn, prev,
820 NULL_RTX, &new_direct_jump_p)) != 0)
821 goto retry;
823 for (nextlinks = LOG_LINKS (prev); nextlinks;
824 nextlinks = XEXP (nextlinks, 1))
825 if ((next = try_combine (insn, prev,
826 XEXP (nextlinks, 0),
827 &new_direct_jump_p)) != 0)
828 goto retry;
831 /* Do the same for an insn that explicitly references CC0. */
832 if (NONJUMP_INSN_P (insn)
833 && (prev = prev_nonnote_insn (insn)) != 0
834 && NONJUMP_INSN_P (prev)
835 && sets_cc0_p (PATTERN (prev))
836 && GET_CODE (PATTERN (insn)) == SET
837 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
839 if ((next = try_combine (insn, prev,
840 NULL_RTX, &new_direct_jump_p)) != 0)
841 goto retry;
843 for (nextlinks = LOG_LINKS (prev); nextlinks;
844 nextlinks = XEXP (nextlinks, 1))
845 if ((next = try_combine (insn, prev,
846 XEXP (nextlinks, 0),
847 &new_direct_jump_p)) != 0)
848 goto retry;
851 /* Finally, see if any of the insns that this insn links to
852 explicitly references CC0. If so, try this insn, that insn,
853 and its predecessor if it sets CC0. */
854 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
855 if (NONJUMP_INSN_P (XEXP (links, 0))
856 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
857 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
858 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
859 && NONJUMP_INSN_P (prev)
860 && sets_cc0_p (PATTERN (prev))
861 && (next = try_combine (insn, XEXP (links, 0),
862 prev, &new_direct_jump_p)) != 0)
863 goto retry;
864 #endif
866 /* Try combining an insn with two different insns whose results it
867 uses. */
868 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
869 for (nextlinks = XEXP (links, 1); nextlinks;
870 nextlinks = XEXP (nextlinks, 1))
871 if ((next = try_combine (insn, XEXP (links, 0),
872 XEXP (nextlinks, 0),
873 &new_direct_jump_p)) != 0)
874 goto retry;
876 /* Try this insn with each REG_EQUAL note it links back to. */
877 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
879 rtx set, note;
880 rtx temp = XEXP (links, 0);
881 if ((set = single_set (temp)) != 0
882 && (note = find_reg_equal_equiv_note (temp)) != 0
883 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
884 /* Avoid using a register that may already been marked
885 dead by an earlier instruction. */
886 && ! unmentioned_reg_p (note, SET_SRC (set))
887 && (GET_MODE (note) == VOIDmode
888 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
889 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
891 /* Temporarily replace the set's source with the
892 contents of the REG_EQUAL note. The insn will
893 be deleted or recognized by try_combine. */
894 rtx orig = SET_SRC (set);
895 SET_SRC (set) = note;
896 i2mod = temp;
897 i2mod_old_rhs = copy_rtx (orig);
898 i2mod_new_rhs = copy_rtx (note);
899 next = try_combine (insn, i2mod, NULL_RTX,
900 &new_direct_jump_p);
901 i2mod = NULL_RTX;
902 if (next)
903 goto retry;
904 SET_SRC (set) = orig;
908 if (!NOTE_P (insn))
909 record_dead_and_set_regs (insn);
911 retry:
916 clear_bb_flags ();
918 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, j, sbi)
919 BASIC_BLOCK (j)->flags |= BB_DIRTY;
920 new_direct_jump_p |= purge_all_dead_edges ();
921 delete_noop_moves ();
923 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
924 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
925 | PROP_KILL_DEAD_CODE);
927 /* Clean up. */
928 sbitmap_free (refresh_blocks);
929 free (uid_insn_cost);
930 free (reg_stat);
931 free (uid_cuid);
934 struct undo *undo, *next;
935 for (undo = undobuf.frees; undo; undo = next)
937 next = undo->next;
938 free (undo);
940 undobuf.frees = 0;
943 total_attempts += combine_attempts;
944 total_merges += combine_merges;
945 total_extras += combine_extras;
946 total_successes += combine_successes;
948 nonzero_sign_valid = 0;
949 rtl_hooks = general_rtl_hooks;
951 /* Make recognizer allow volatile MEMs again. */
952 init_recog ();
954 return new_direct_jump_p;
957 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
959 static void
960 init_reg_last (void)
962 unsigned int i;
963 for (i = 0; i < combine_max_regno; i++)
964 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
967 /* Set up any promoted values for incoming argument registers. */
969 static void
970 setup_incoming_promotions (void)
972 unsigned int regno;
973 rtx reg;
974 enum machine_mode mode;
975 int unsignedp;
976 rtx first = get_insns ();
978 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
980 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
981 /* Check whether this register can hold an incoming pointer
982 argument. FUNCTION_ARG_REGNO_P tests outgoing register
983 numbers, so translate if necessary due to register windows. */
984 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
985 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
987 record_value_for_reg
988 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
989 : SIGN_EXTEND),
990 GET_MODE (reg),
991 gen_rtx_CLOBBER (mode, const0_rtx)));
996 /* Called via note_stores. If X is a pseudo that is narrower than
997 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
999 If we are setting only a portion of X and we can't figure out what
1000 portion, assume all bits will be used since we don't know what will
1001 be happening.
1003 Similarly, set how many bits of X are known to be copies of the sign bit
1004 at all locations in the function. This is the smallest number implied
1005 by any set of X. */
1007 static void
1008 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
1009 void *data ATTRIBUTE_UNUSED)
1011 unsigned int num;
1013 if (REG_P (x)
1014 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1015 /* If this register is undefined at the start of the file, we can't
1016 say what its contents were. */
1017 && ! REGNO_REG_SET_P
1018 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start, REGNO (x))
1019 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1021 if (set == 0 || GET_CODE (set) == CLOBBER)
1023 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1024 reg_stat[REGNO (x)].sign_bit_copies = 1;
1025 return;
1028 /* If this is a complex assignment, see if we can convert it into a
1029 simple assignment. */
1030 set = expand_field_assignment (set);
1032 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1033 set what we know about X. */
1035 if (SET_DEST (set) == x
1036 || (GET_CODE (SET_DEST (set)) == SUBREG
1037 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1038 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1039 && SUBREG_REG (SET_DEST (set)) == x))
1041 rtx src = SET_SRC (set);
1043 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1044 /* If X is narrower than a word and SRC is a non-negative
1045 constant that would appear negative in the mode of X,
1046 sign-extend it for use in reg_stat[].nonzero_bits because some
1047 machines (maybe most) will actually do the sign-extension
1048 and this is the conservative approach.
1050 ??? For 2.5, try to tighten up the MD files in this regard
1051 instead of this kludge. */
1053 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1054 && GET_CODE (src) == CONST_INT
1055 && INTVAL (src) > 0
1056 && 0 != (INTVAL (src)
1057 & ((HOST_WIDE_INT) 1
1058 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1059 src = GEN_INT (INTVAL (src)
1060 | ((HOST_WIDE_INT) (-1)
1061 << GET_MODE_BITSIZE (GET_MODE (x))));
1062 #endif
1064 /* Don't call nonzero_bits if it cannot change anything. */
1065 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1066 reg_stat[REGNO (x)].nonzero_bits
1067 |= nonzero_bits (src, nonzero_bits_mode);
1068 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1069 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1070 || reg_stat[REGNO (x)].sign_bit_copies > num)
1071 reg_stat[REGNO (x)].sign_bit_copies = num;
1073 else
1075 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1076 reg_stat[REGNO (x)].sign_bit_copies = 1;
1081 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1082 insns that were previously combined into I3 or that will be combined
1083 into the merger of INSN and I3.
1085 Return 0 if the combination is not allowed for any reason.
1087 If the combination is allowed, *PDEST will be set to the single
1088 destination of INSN and *PSRC to the single source, and this function
1089 will return 1. */
1091 static int
1092 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1093 rtx *pdest, rtx *psrc)
1095 int i;
1096 rtx set = 0, src, dest;
1097 rtx p;
1098 #ifdef AUTO_INC_DEC
1099 rtx link;
1100 #endif
1101 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1102 && next_active_insn (succ) == i3)
1103 : next_active_insn (insn) == i3);
1105 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1106 or a PARALLEL consisting of such a SET and CLOBBERs.
1108 If INSN has CLOBBER parallel parts, ignore them for our processing.
1109 By definition, these happen during the execution of the insn. When it
1110 is merged with another insn, all bets are off. If they are, in fact,
1111 needed and aren't also supplied in I3, they may be added by
1112 recog_for_combine. Otherwise, it won't match.
1114 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1115 note.
1117 Get the source and destination of INSN. If more than one, can't
1118 combine. */
1120 if (GET_CODE (PATTERN (insn)) == SET)
1121 set = PATTERN (insn);
1122 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1123 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1125 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1127 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1128 rtx note;
1130 switch (GET_CODE (elt))
1132 /* This is important to combine floating point insns
1133 for the SH4 port. */
1134 case USE:
1135 /* Combining an isolated USE doesn't make sense.
1136 We depend here on combinable_i3pat to reject them. */
1137 /* The code below this loop only verifies that the inputs of
1138 the SET in INSN do not change. We call reg_set_between_p
1139 to verify that the REG in the USE does not change between
1140 I3 and INSN.
1141 If the USE in INSN was for a pseudo register, the matching
1142 insn pattern will likely match any register; combining this
1143 with any other USE would only be safe if we knew that the
1144 used registers have identical values, or if there was
1145 something to tell them apart, e.g. different modes. For
1146 now, we forgo such complicated tests and simply disallow
1147 combining of USES of pseudo registers with any other USE. */
1148 if (REG_P (XEXP (elt, 0))
1149 && GET_CODE (PATTERN (i3)) == PARALLEL)
1151 rtx i3pat = PATTERN (i3);
1152 int i = XVECLEN (i3pat, 0) - 1;
1153 unsigned int regno = REGNO (XEXP (elt, 0));
1157 rtx i3elt = XVECEXP (i3pat, 0, i);
1159 if (GET_CODE (i3elt) == USE
1160 && REG_P (XEXP (i3elt, 0))
1161 && (REGNO (XEXP (i3elt, 0)) == regno
1162 ? reg_set_between_p (XEXP (elt, 0),
1163 PREV_INSN (insn), i3)
1164 : regno >= FIRST_PSEUDO_REGISTER))
1165 return 0;
1167 while (--i >= 0);
1169 break;
1171 /* We can ignore CLOBBERs. */
1172 case CLOBBER:
1173 break;
1175 case SET:
1176 /* Ignore SETs whose result isn't used but not those that
1177 have side-effects. */
1178 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1179 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1180 || INTVAL (XEXP (note, 0)) <= 0)
1181 && ! side_effects_p (elt))
1182 break;
1184 /* If we have already found a SET, this is a second one and
1185 so we cannot combine with this insn. */
1186 if (set)
1187 return 0;
1189 set = elt;
1190 break;
1192 default:
1193 /* Anything else means we can't combine. */
1194 return 0;
1198 if (set == 0
1199 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1200 so don't do anything with it. */
1201 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1202 return 0;
1204 else
1205 return 0;
1207 if (set == 0)
1208 return 0;
1210 set = expand_field_assignment (set);
1211 src = SET_SRC (set), dest = SET_DEST (set);
1213 /* Don't eliminate a store in the stack pointer. */
1214 if (dest == stack_pointer_rtx
1215 /* Don't combine with an insn that sets a register to itself if it has
1216 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1217 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1218 /* Can't merge an ASM_OPERANDS. */
1219 || GET_CODE (src) == ASM_OPERANDS
1220 /* Can't merge a function call. */
1221 || GET_CODE (src) == CALL
1222 /* Don't eliminate a function call argument. */
1223 || (CALL_P (i3)
1224 && (find_reg_fusage (i3, USE, dest)
1225 || (REG_P (dest)
1226 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1227 && global_regs[REGNO (dest)])))
1228 /* Don't substitute into an incremented register. */
1229 || FIND_REG_INC_NOTE (i3, dest)
1230 || (succ && FIND_REG_INC_NOTE (succ, dest))
1231 /* Don't substitute into a non-local goto, this confuses CFG. */
1232 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1233 #if 0
1234 /* Don't combine the end of a libcall into anything. */
1235 /* ??? This gives worse code, and appears to be unnecessary, since no
1236 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1237 use REG_RETVAL notes for noconflict blocks, but other code here
1238 makes sure that those insns don't disappear. */
1239 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1240 #endif
1241 /* Make sure that DEST is not used after SUCC but before I3. */
1242 || (succ && ! all_adjacent
1243 && reg_used_between_p (dest, succ, i3))
1244 /* Make sure that the value that is to be substituted for the register
1245 does not use any registers whose values alter in between. However,
1246 If the insns are adjacent, a use can't cross a set even though we
1247 think it might (this can happen for a sequence of insns each setting
1248 the same destination; last_set of that register might point to
1249 a NOTE). If INSN has a REG_EQUIV note, the register is always
1250 equivalent to the memory so the substitution is valid even if there
1251 are intervening stores. Also, don't move a volatile asm or
1252 UNSPEC_VOLATILE across any other insns. */
1253 || (! all_adjacent
1254 && (((!MEM_P (src)
1255 || ! find_reg_note (insn, REG_EQUIV, src))
1256 && use_crosses_set_p (src, INSN_CUID (insn)))
1257 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1258 || GET_CODE (src) == UNSPEC_VOLATILE))
1259 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1260 better register allocation by not doing the combine. */
1261 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1262 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1263 /* Don't combine across a CALL_INSN, because that would possibly
1264 change whether the life span of some REGs crosses calls or not,
1265 and it is a pain to update that information.
1266 Exception: if source is a constant, moving it later can't hurt.
1267 Accept that special case, because it helps -fforce-addr a lot. */
1268 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1269 return 0;
1271 /* DEST must either be a REG or CC0. */
1272 if (REG_P (dest))
1274 /* If register alignment is being enforced for multi-word items in all
1275 cases except for parameters, it is possible to have a register copy
1276 insn referencing a hard register that is not allowed to contain the
1277 mode being copied and which would not be valid as an operand of most
1278 insns. Eliminate this problem by not combining with such an insn.
1280 Also, on some machines we don't want to extend the life of a hard
1281 register. */
1283 if (REG_P (src)
1284 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1285 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1286 /* Don't extend the life of a hard register unless it is
1287 user variable (if we have few registers) or it can't
1288 fit into the desired register (meaning something special
1289 is going on).
1290 Also avoid substituting a return register into I3, because
1291 reload can't handle a conflict with constraints of other
1292 inputs. */
1293 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1294 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1295 return 0;
1297 else if (GET_CODE (dest) != CC0)
1298 return 0;
1301 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1302 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1303 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1305 /* Don't substitute for a register intended as a clobberable
1306 operand. */
1307 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1308 if (rtx_equal_p (reg, dest))
1309 return 0;
1311 /* If the clobber represents an earlyclobber operand, we must not
1312 substitute an expression containing the clobbered register.
1313 As we do not analyze the constraint strings here, we have to
1314 make the conservative assumption. However, if the register is
1315 a fixed hard reg, the clobber cannot represent any operand;
1316 we leave it up to the machine description to either accept or
1317 reject use-and-clobber patterns. */
1318 if (!REG_P (reg)
1319 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1320 || !fixed_regs[REGNO (reg)])
1321 if (reg_overlap_mentioned_p (reg, src))
1322 return 0;
1325 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1326 or not), reject, unless nothing volatile comes between it and I3 */
1328 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1330 /* Make sure succ doesn't contain a volatile reference. */
1331 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1332 return 0;
1334 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1335 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1336 return 0;
1339 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1340 to be an explicit register variable, and was chosen for a reason. */
1342 if (GET_CODE (src) == ASM_OPERANDS
1343 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1344 return 0;
1346 /* If there are any volatile insns between INSN and I3, reject, because
1347 they might affect machine state. */
1349 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1350 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1351 return 0;
1353 /* If INSN contains an autoincrement or autodecrement, make sure that
1354 register is not used between there and I3, and not already used in
1355 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1356 Also insist that I3 not be a jump; if it were one
1357 and the incremented register were spilled, we would lose. */
1359 #ifdef AUTO_INC_DEC
1360 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1361 if (REG_NOTE_KIND (link) == REG_INC
1362 && (JUMP_P (i3)
1363 || reg_used_between_p (XEXP (link, 0), insn, i3)
1364 || (pred != NULL_RTX
1365 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1366 || (succ != NULL_RTX
1367 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1368 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1369 return 0;
1370 #endif
1372 #ifdef HAVE_cc0
1373 /* Don't combine an insn that follows a CC0-setting insn.
1374 An insn that uses CC0 must not be separated from the one that sets it.
1375 We do, however, allow I2 to follow a CC0-setting insn if that insn
1376 is passed as I1; in that case it will be deleted also.
1377 We also allow combining in this case if all the insns are adjacent
1378 because that would leave the two CC0 insns adjacent as well.
1379 It would be more logical to test whether CC0 occurs inside I1 or I2,
1380 but that would be much slower, and this ought to be equivalent. */
1382 p = prev_nonnote_insn (insn);
1383 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1384 && ! all_adjacent)
1385 return 0;
1386 #endif
1388 /* If we get here, we have passed all the tests and the combination is
1389 to be allowed. */
1391 *pdest = dest;
1392 *psrc = src;
1394 return 1;
1397 /* LOC is the location within I3 that contains its pattern or the component
1398 of a PARALLEL of the pattern. We validate that it is valid for combining.
1400 One problem is if I3 modifies its output, as opposed to replacing it
1401 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1402 so would produce an insn that is not equivalent to the original insns.
1404 Consider:
1406 (set (reg:DI 101) (reg:DI 100))
1407 (set (subreg:SI (reg:DI 101) 0) <foo>)
1409 This is NOT equivalent to:
1411 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1412 (set (reg:DI 101) (reg:DI 100))])
1414 Not only does this modify 100 (in which case it might still be valid
1415 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1417 We can also run into a problem if I2 sets a register that I1
1418 uses and I1 gets directly substituted into I3 (not via I2). In that
1419 case, we would be getting the wrong value of I2DEST into I3, so we
1420 must reject the combination. This case occurs when I2 and I1 both
1421 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1422 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1423 of a SET must prevent combination from occurring.
1425 Before doing the above check, we first try to expand a field assignment
1426 into a set of logical operations.
1428 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1429 we place a register that is both set and used within I3. If more than one
1430 such register is detected, we fail.
1432 Return 1 if the combination is valid, zero otherwise. */
1434 static int
1435 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1436 int i1_not_in_src, rtx *pi3dest_killed)
1438 rtx x = *loc;
1440 if (GET_CODE (x) == SET)
1442 rtx set = x ;
1443 rtx dest = SET_DEST (set);
1444 rtx src = SET_SRC (set);
1445 rtx inner_dest = dest;
1446 rtx subdest;
1448 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1449 || GET_CODE (inner_dest) == SUBREG
1450 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1451 inner_dest = XEXP (inner_dest, 0);
1453 /* Check for the case where I3 modifies its output, as discussed
1454 above. We don't want to prevent pseudos from being combined
1455 into the address of a MEM, so only prevent the combination if
1456 i1 or i2 set the same MEM. */
1457 if ((inner_dest != dest &&
1458 (!MEM_P (inner_dest)
1459 || rtx_equal_p (i2dest, inner_dest)
1460 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1461 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1462 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1464 /* This is the same test done in can_combine_p except we can't test
1465 all_adjacent; we don't have to, since this instruction will stay
1466 in place, thus we are not considering increasing the lifetime of
1467 INNER_DEST.
1469 Also, if this insn sets a function argument, combining it with
1470 something that might need a spill could clobber a previous
1471 function argument; the all_adjacent test in can_combine_p also
1472 checks this; here, we do a more specific test for this case. */
1474 || (REG_P (inner_dest)
1475 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1476 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1477 GET_MODE (inner_dest))))
1478 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1479 return 0;
1481 /* If DEST is used in I3, it is being killed in this insn, so
1482 record that for later. We have to consider paradoxical
1483 subregs here, since they kill the whole register, but we
1484 ignore partial subregs, STRICT_LOW_PART, etc.
1485 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1486 STACK_POINTER_REGNUM, since these are always considered to be
1487 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1488 subdest = dest;
1489 if (GET_CODE (subdest) == SUBREG
1490 && (GET_MODE_SIZE (GET_MODE (subdest))
1491 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1492 subdest = SUBREG_REG (subdest);
1493 if (pi3dest_killed
1494 && REG_P (subdest)
1495 && reg_referenced_p (subdest, PATTERN (i3))
1496 && REGNO (subdest) != FRAME_POINTER_REGNUM
1497 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1498 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1499 #endif
1500 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1501 && (REGNO (subdest) != ARG_POINTER_REGNUM
1502 || ! fixed_regs [REGNO (subdest)])
1503 #endif
1504 && REGNO (subdest) != STACK_POINTER_REGNUM)
1506 if (*pi3dest_killed)
1507 return 0;
1509 *pi3dest_killed = subdest;
1513 else if (GET_CODE (x) == PARALLEL)
1515 int i;
1517 for (i = 0; i < XVECLEN (x, 0); i++)
1518 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1519 i1_not_in_src, pi3dest_killed))
1520 return 0;
1523 return 1;
1526 /* Return 1 if X is an arithmetic expression that contains a multiplication
1527 and division. We don't count multiplications by powers of two here. */
1529 static int
1530 contains_muldiv (rtx x)
1532 switch (GET_CODE (x))
1534 case MOD: case DIV: case UMOD: case UDIV:
1535 return 1;
1537 case MULT:
1538 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1539 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1540 default:
1541 if (BINARY_P (x))
1542 return contains_muldiv (XEXP (x, 0))
1543 || contains_muldiv (XEXP (x, 1));
1545 if (UNARY_P (x))
1546 return contains_muldiv (XEXP (x, 0));
1548 return 0;
1552 /* Determine whether INSN can be used in a combination. Return nonzero if
1553 not. This is used in try_combine to detect early some cases where we
1554 can't perform combinations. */
1556 static int
1557 cant_combine_insn_p (rtx insn)
1559 rtx set;
1560 rtx src, dest;
1562 /* If this isn't really an insn, we can't do anything.
1563 This can occur when flow deletes an insn that it has merged into an
1564 auto-increment address. */
1565 if (! INSN_P (insn))
1566 return 1;
1568 /* Never combine loads and stores involving hard regs that are likely
1569 to be spilled. The register allocator can usually handle such
1570 reg-reg moves by tying. If we allow the combiner to make
1571 substitutions of likely-spilled regs, reload might die.
1572 As an exception, we allow combinations involving fixed regs; these are
1573 not available to the register allocator so there's no risk involved. */
1575 set = single_set (insn);
1576 if (! set)
1577 return 0;
1578 src = SET_SRC (set);
1579 dest = SET_DEST (set);
1580 if (GET_CODE (src) == SUBREG)
1581 src = SUBREG_REG (src);
1582 if (GET_CODE (dest) == SUBREG)
1583 dest = SUBREG_REG (dest);
1584 if (REG_P (src) && REG_P (dest)
1585 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1586 && ! fixed_regs[REGNO (src)]
1587 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1588 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1589 && ! fixed_regs[REGNO (dest)]
1590 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1591 return 1;
1593 return 0;
1596 struct likely_spilled_retval_info
1598 unsigned regno, nregs;
1599 unsigned mask;
1602 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
1603 hard registers that are known to be written to / clobbered in full. */
1604 static void
1605 likely_spilled_retval_1 (rtx x, rtx set, void *data)
1607 struct likely_spilled_retval_info *info = data;
1608 unsigned regno, nregs;
1609 unsigned new_mask;
1611 if (!REG_P (XEXP (set, 0)))
1612 return;
1613 regno = REGNO (x);
1614 if (regno >= info->regno + info->nregs)
1615 return;
1616 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1617 if (regno + nregs <= info->regno)
1618 return;
1619 new_mask = (2U << (nregs - 1)) - 1;
1620 if (regno < info->regno)
1621 new_mask >>= info->regno - regno;
1622 else
1623 new_mask <<= regno - info->regno;
1624 info->mask &= new_mask;
1627 /* Return nonzero iff part of the return value is live during INSN, and
1628 it is likely spilled. This can happen when more than one insn is needed
1629 to copy the return value, e.g. when we consider to combine into the
1630 second copy insn for a complex value. */
1632 static int
1633 likely_spilled_retval_p (rtx insn)
1635 rtx use = BB_END (this_basic_block);
1636 rtx reg, p;
1637 unsigned regno, nregs;
1638 /* We assume here that no machine mode needs more than
1639 32 hard registers when the value overlaps with a register
1640 for which FUNCTION_VALUE_REGNO_P is true. */
1641 unsigned mask;
1642 struct likely_spilled_retval_info info;
1644 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
1645 return 0;
1646 reg = XEXP (PATTERN (use), 0);
1647 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
1648 return 0;
1649 regno = REGNO (reg);
1650 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1651 if (nregs == 1)
1652 return 0;
1653 mask = (2U << (nregs - 1)) - 1;
1655 /* Disregard parts of the return value that are set later. */
1656 info.regno = regno;
1657 info.nregs = nregs;
1658 info.mask = mask;
1659 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
1660 note_stores (PATTERN (insn), likely_spilled_retval_1, &info);
1661 mask = info.mask;
1663 /* Check if any of the (probably) live return value registers is
1664 likely spilled. */
1665 nregs --;
1668 if ((mask & 1 << nregs)
1669 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
1670 return 1;
1671 } while (nregs--);
1672 return 0;
1675 /* Adjust INSN after we made a change to its destination.
1677 Changing the destination can invalidate notes that say something about
1678 the results of the insn and a LOG_LINK pointing to the insn. */
1680 static void
1681 adjust_for_new_dest (rtx insn)
1683 rtx *loc;
1685 /* For notes, be conservative and simply remove them. */
1686 loc = &REG_NOTES (insn);
1687 while (*loc)
1689 enum reg_note kind = REG_NOTE_KIND (*loc);
1690 if (kind == REG_EQUAL || kind == REG_EQUIV)
1691 *loc = XEXP (*loc, 1);
1692 else
1693 loc = &XEXP (*loc, 1);
1696 /* The new insn will have a destination that was previously the destination
1697 of an insn just above it. Call distribute_links to make a LOG_LINK from
1698 the next use of that destination. */
1699 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1702 /* Return TRUE if combine can reuse reg X in mode MODE.
1703 ADDED_SETS is nonzero if the original set is still required. */
1704 static bool
1705 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
1707 unsigned int regno;
1709 if (!REG_P(x))
1710 return false;
1712 regno = REGNO (x);
1713 /* Allow hard registers if the new mode is legal, and occupies no more
1714 registers than the old mode. */
1715 if (regno < FIRST_PSEUDO_REGISTER)
1716 return (HARD_REGNO_MODE_OK (regno, mode)
1717 && (hard_regno_nregs[regno][GET_MODE (x)]
1718 >= hard_regno_nregs[regno][mode]));
1720 /* Or a pseudo that is only used once. */
1721 return (REG_N_SETS (regno) == 1 && !added_sets
1722 && !REG_USERVAR_P (x));
1725 /* Try to combine the insns I1 and I2 into I3.
1726 Here I1 and I2 appear earlier than I3.
1727 I1 can be zero; then we combine just I2 into I3.
1729 If we are combining three insns and the resulting insn is not recognized,
1730 try splitting it into two insns. If that happens, I2 and I3 are retained
1731 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1732 are pseudo-deleted.
1734 Return 0 if the combination does not work. Then nothing is changed.
1735 If we did the combination, return the insn at which combine should
1736 resume scanning.
1738 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1739 new direct jump instruction. */
1741 static rtx
1742 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1744 /* New patterns for I3 and I2, respectively. */
1745 rtx newpat, newi2pat = 0;
1746 rtvec newpat_vec_with_clobbers = 0;
1747 int substed_i2 = 0, substed_i1 = 0;
1748 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1749 int added_sets_1, added_sets_2;
1750 /* Total number of SETs to put into I3. */
1751 int total_sets;
1752 /* Nonzero if I2's body now appears in I3. */
1753 int i2_is_used;
1754 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1755 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1756 /* Contains I3 if the destination of I3 is used in its source, which means
1757 that the old life of I3 is being killed. If that usage is placed into
1758 I2 and not in I3, a REG_DEAD note must be made. */
1759 rtx i3dest_killed = 0;
1760 /* SET_DEST and SET_SRC of I2 and I1. */
1761 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1762 /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases. */
1763 rtx i1pat = 0, i2pat = 0;
1764 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1765 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1766 int i2dest_killed = 0, i1dest_killed = 0;
1767 int i1_feeds_i3 = 0;
1768 /* Notes that must be added to REG_NOTES in I3 and I2. */
1769 rtx new_i3_notes, new_i2_notes;
1770 /* Notes that we substituted I3 into I2 instead of the normal case. */
1771 int i3_subst_into_i2 = 0;
1772 /* Notes that I1, I2 or I3 is a MULT operation. */
1773 int have_mult = 0;
1774 int swap_i2i3 = 0;
1776 int maxreg;
1777 rtx temp;
1778 rtx link;
1779 int i;
1781 /* Exit early if one of the insns involved can't be used for
1782 combinations. */
1783 if (cant_combine_insn_p (i3)
1784 || cant_combine_insn_p (i2)
1785 || (i1 && cant_combine_insn_p (i1))
1786 || likely_spilled_retval_p (i3)
1787 /* We also can't do anything if I3 has a
1788 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1789 libcall. */
1790 #if 0
1791 /* ??? This gives worse code, and appears to be unnecessary, since no
1792 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1793 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1794 #endif
1796 return 0;
1798 combine_attempts++;
1799 undobuf.other_insn = 0;
1801 /* Reset the hard register usage information. */
1802 CLEAR_HARD_REG_SET (newpat_used_regs);
1804 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1805 code below, set I1 to be the earlier of the two insns. */
1806 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1807 temp = i1, i1 = i2, i2 = temp;
1809 added_links_insn = 0;
1811 /* First check for one important special-case that the code below will
1812 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1813 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1814 we may be able to replace that destination with the destination of I3.
1815 This occurs in the common code where we compute both a quotient and
1816 remainder into a structure, in which case we want to do the computation
1817 directly into the structure to avoid register-register copies.
1819 Note that this case handles both multiple sets in I2 and also
1820 cases where I2 has a number of CLOBBER or PARALLELs.
1822 We make very conservative checks below and only try to handle the
1823 most common cases of this. For example, we only handle the case
1824 where I2 and I3 are adjacent to avoid making difficult register
1825 usage tests. */
1827 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1828 && REG_P (SET_SRC (PATTERN (i3)))
1829 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1830 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1831 && GET_CODE (PATTERN (i2)) == PARALLEL
1832 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1833 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1834 below would need to check what is inside (and reg_overlap_mentioned_p
1835 doesn't support those codes anyway). Don't allow those destinations;
1836 the resulting insn isn't likely to be recognized anyway. */
1837 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1838 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1839 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1840 SET_DEST (PATTERN (i3)))
1841 && next_real_insn (i2) == i3)
1843 rtx p2 = PATTERN (i2);
1845 /* Make sure that the destination of I3,
1846 which we are going to substitute into one output of I2,
1847 is not used within another output of I2. We must avoid making this:
1848 (parallel [(set (mem (reg 69)) ...)
1849 (set (reg 69) ...)])
1850 which is not well-defined as to order of actions.
1851 (Besides, reload can't handle output reloads for this.)
1853 The problem can also happen if the dest of I3 is a memory ref,
1854 if another dest in I2 is an indirect memory ref. */
1855 for (i = 0; i < XVECLEN (p2, 0); i++)
1856 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1857 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1858 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1859 SET_DEST (XVECEXP (p2, 0, i))))
1860 break;
1862 if (i == XVECLEN (p2, 0))
1863 for (i = 0; i < XVECLEN (p2, 0); i++)
1864 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1865 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1866 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1868 combine_merges++;
1870 subst_insn = i3;
1871 subst_low_cuid = INSN_CUID (i2);
1873 added_sets_2 = added_sets_1 = 0;
1874 i2dest = SET_SRC (PATTERN (i3));
1875 i2dest_killed = dead_or_set_p (i2, i2dest);
1877 /* Replace the dest in I2 with our dest and make the resulting
1878 insn the new pattern for I3. Then skip to where we
1879 validate the pattern. Everything was set up above. */
1880 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1881 SET_DEST (PATTERN (i3)));
1883 newpat = p2;
1884 i3_subst_into_i2 = 1;
1885 goto validate_replacement;
1889 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1890 one of those words to another constant, merge them by making a new
1891 constant. */
1892 if (i1 == 0
1893 && (temp = single_set (i2)) != 0
1894 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1895 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1896 && REG_P (SET_DEST (temp))
1897 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1898 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1899 && GET_CODE (PATTERN (i3)) == SET
1900 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1901 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1902 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1903 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1904 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1906 HOST_WIDE_INT lo, hi;
1908 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1909 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1910 else
1912 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1913 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1916 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1918 /* We don't handle the case of the target word being wider
1919 than a host wide int. */
1920 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1922 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1923 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1924 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1926 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1927 hi = INTVAL (SET_SRC (PATTERN (i3)));
1928 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1930 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1931 >> (HOST_BITS_PER_WIDE_INT - 1));
1933 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1934 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1935 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1936 (INTVAL (SET_SRC (PATTERN (i3)))));
1937 if (hi == sign)
1938 hi = lo < 0 ? -1 : 0;
1940 else
1941 /* We don't handle the case of the higher word not fitting
1942 entirely in either hi or lo. */
1943 gcc_unreachable ();
1945 combine_merges++;
1946 subst_insn = i3;
1947 subst_low_cuid = INSN_CUID (i2);
1948 added_sets_2 = added_sets_1 = 0;
1949 i2dest = SET_DEST (temp);
1950 i2dest_killed = dead_or_set_p (i2, i2dest);
1952 SUBST (SET_SRC (temp),
1953 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1955 newpat = PATTERN (i2);
1956 goto validate_replacement;
1959 #ifndef HAVE_cc0
1960 /* If we have no I1 and I2 looks like:
1961 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1962 (set Y OP)])
1963 make up a dummy I1 that is
1964 (set Y OP)
1965 and change I2 to be
1966 (set (reg:CC X) (compare:CC Y (const_int 0)))
1968 (We can ignore any trailing CLOBBERs.)
1970 This undoes a previous combination and allows us to match a branch-and-
1971 decrement insn. */
1973 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1974 && XVECLEN (PATTERN (i2), 0) >= 2
1975 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1976 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1977 == MODE_CC)
1978 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1979 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1980 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1981 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1982 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1983 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1985 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1986 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1987 break;
1989 if (i == 1)
1991 /* We make I1 with the same INSN_UID as I2. This gives it
1992 the same INSN_CUID for value tracking. Our fake I1 will
1993 never appear in the insn stream so giving it the same INSN_UID
1994 as I2 will not cause a problem. */
1996 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1997 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1998 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1999 NULL_RTX);
2001 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2002 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2003 SET_DEST (PATTERN (i1)));
2006 #endif
2008 /* Verify that I2 and I1 are valid for combining. */
2009 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2010 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2012 undo_all ();
2013 return 0;
2016 /* Record whether I2DEST is used in I2SRC and similarly for the other
2017 cases. Knowing this will help in register status updating below. */
2018 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2019 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2020 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2021 i2dest_killed = dead_or_set_p (i2, i2dest);
2022 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2024 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2025 in I2SRC. */
2026 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2028 /* Ensure that I3's pattern can be the destination of combines. */
2029 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2030 i1 && i2dest_in_i1src && i1_feeds_i3,
2031 &i3dest_killed))
2033 undo_all ();
2034 return 0;
2037 /* See if any of the insns is a MULT operation. Unless one is, we will
2038 reject a combination that is, since it must be slower. Be conservative
2039 here. */
2040 if (GET_CODE (i2src) == MULT
2041 || (i1 != 0 && GET_CODE (i1src) == MULT)
2042 || (GET_CODE (PATTERN (i3)) == SET
2043 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2044 have_mult = 1;
2046 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2047 We used to do this EXCEPT in one case: I3 has a post-inc in an
2048 output operand. However, that exception can give rise to insns like
2049 mov r3,(r3)+
2050 which is a famous insn on the PDP-11 where the value of r3 used as the
2051 source was model-dependent. Avoid this sort of thing. */
2053 #if 0
2054 if (!(GET_CODE (PATTERN (i3)) == SET
2055 && REG_P (SET_SRC (PATTERN (i3)))
2056 && MEM_P (SET_DEST (PATTERN (i3)))
2057 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2058 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2059 /* It's not the exception. */
2060 #endif
2061 #ifdef AUTO_INC_DEC
2062 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2063 if (REG_NOTE_KIND (link) == REG_INC
2064 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2065 || (i1 != 0
2066 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2068 undo_all ();
2069 return 0;
2071 #endif
2073 /* See if the SETs in I1 or I2 need to be kept around in the merged
2074 instruction: whenever the value set there is still needed past I3.
2075 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2077 For the SET in I1, we have two cases: If I1 and I2 independently
2078 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2079 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2080 in I1 needs to be kept around unless I1DEST dies or is set in either
2081 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2082 I1DEST. If so, we know I1 feeds into I2. */
2084 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2086 added_sets_1
2087 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2088 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2090 /* If the set in I2 needs to be kept around, we must make a copy of
2091 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2092 PATTERN (I2), we are only substituting for the original I1DEST, not into
2093 an already-substituted copy. This also prevents making self-referential
2094 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2095 I2DEST. */
2097 if (added_sets_2)
2099 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2100 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2101 else
2102 i2pat = copy_rtx (PATTERN (i2));
2105 if (added_sets_1)
2107 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2108 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2109 else
2110 i1pat = copy_rtx (PATTERN (i1));
2113 combine_merges++;
2115 /* Substitute in the latest insn for the regs set by the earlier ones. */
2117 maxreg = max_reg_num ();
2119 subst_insn = i3;
2121 /* It is possible that the source of I2 or I1 may be performing an
2122 unneeded operation, such as a ZERO_EXTEND of something that is known
2123 to have the high part zero. Handle that case by letting subst look at
2124 the innermost one of them.
2126 Another way to do this would be to have a function that tries to
2127 simplify a single insn instead of merging two or more insns. We don't
2128 do this because of the potential of infinite loops and because
2129 of the potential extra memory required. However, doing it the way
2130 we are is a bit of a kludge and doesn't catch all cases.
2132 But only do this if -fexpensive-optimizations since it slows things down
2133 and doesn't usually win. */
2135 if (flag_expensive_optimizations)
2137 /* Pass pc_rtx so no substitutions are done, just simplifications. */
2138 if (i1)
2140 subst_low_cuid = INSN_CUID (i1);
2141 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2143 else
2145 subst_low_cuid = INSN_CUID (i2);
2146 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2150 #ifndef HAVE_cc0
2151 /* Many machines that don't use CC0 have insns that can both perform an
2152 arithmetic operation and set the condition code. These operations will
2153 be represented as a PARALLEL with the first element of the vector
2154 being a COMPARE of an arithmetic operation with the constant zero.
2155 The second element of the vector will set some pseudo to the result
2156 of the same arithmetic operation. If we simplify the COMPARE, we won't
2157 match such a pattern and so will generate an extra insn. Here we test
2158 for this case, where both the comparison and the operation result are
2159 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2160 I2SRC. Later we will make the PARALLEL that contains I2. */
2162 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2163 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2164 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2165 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2167 #ifdef SELECT_CC_MODE
2168 rtx *cc_use;
2169 enum machine_mode compare_mode;
2170 #endif
2172 newpat = PATTERN (i3);
2173 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2175 i2_is_used = 1;
2177 #ifdef SELECT_CC_MODE
2178 /* See if a COMPARE with the operand we substituted in should be done
2179 with the mode that is currently being used. If not, do the same
2180 processing we do in `subst' for a SET; namely, if the destination
2181 is used only once, try to replace it with a register of the proper
2182 mode and also replace the COMPARE. */
2183 if (undobuf.other_insn == 0
2184 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2185 &undobuf.other_insn))
2186 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2187 i2src, const0_rtx))
2188 != GET_MODE (SET_DEST (newpat))))
2190 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2191 compare_mode))
2193 unsigned int regno = REGNO (SET_DEST (newpat));
2194 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2196 if (regno >= FIRST_PSEUDO_REGISTER)
2197 SUBST (regno_reg_rtx[regno], new_dest);
2199 SUBST (SET_DEST (newpat), new_dest);
2200 SUBST (XEXP (*cc_use, 0), new_dest);
2201 SUBST (SET_SRC (newpat),
2202 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2204 else
2205 undobuf.other_insn = 0;
2207 #endif
2209 else
2210 #endif
2212 n_occurrences = 0; /* `subst' counts here */
2214 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2215 need to make a unique copy of I2SRC each time we substitute it
2216 to avoid self-referential rtl. */
2218 subst_low_cuid = INSN_CUID (i2);
2219 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2220 ! i1_feeds_i3 && i1dest_in_i1src);
2221 substed_i2 = 1;
2223 /* Record whether i2's body now appears within i3's body. */
2224 i2_is_used = n_occurrences;
2227 /* If we already got a failure, don't try to do more. Otherwise,
2228 try to substitute in I1 if we have it. */
2230 if (i1 && GET_CODE (newpat) != CLOBBER)
2232 /* Before we can do this substitution, we must redo the test done
2233 above (see detailed comments there) that ensures that I1DEST
2234 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2236 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2237 0, (rtx*) 0))
2239 undo_all ();
2240 return 0;
2243 n_occurrences = 0;
2244 subst_low_cuid = INSN_CUID (i1);
2245 newpat = subst (newpat, i1dest, i1src, 0, 0);
2246 substed_i1 = 1;
2249 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2250 to count all the ways that I2SRC and I1SRC can be used. */
2251 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2252 && i2_is_used + added_sets_2 > 1)
2253 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2254 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2255 > 1))
2256 /* Fail if we tried to make a new register. */
2257 || max_reg_num () != maxreg
2258 /* Fail if we couldn't do something and have a CLOBBER. */
2259 || GET_CODE (newpat) == CLOBBER
2260 /* Fail if this new pattern is a MULT and we didn't have one before
2261 at the outer level. */
2262 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2263 && ! have_mult))
2265 undo_all ();
2266 return 0;
2269 /* If the actions of the earlier insns must be kept
2270 in addition to substituting them into the latest one,
2271 we must make a new PARALLEL for the latest insn
2272 to hold additional the SETs. */
2274 if (added_sets_1 || added_sets_2)
2276 combine_extras++;
2278 if (GET_CODE (newpat) == PARALLEL)
2280 rtvec old = XVEC (newpat, 0);
2281 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2282 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2283 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2284 sizeof (old->elem[0]) * old->num_elem);
2286 else
2288 rtx old = newpat;
2289 total_sets = 1 + added_sets_1 + added_sets_2;
2290 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2291 XVECEXP (newpat, 0, 0) = old;
2294 if (added_sets_1)
2295 XVECEXP (newpat, 0, --total_sets) = i1pat;
2297 if (added_sets_2)
2299 /* If there is no I1, use I2's body as is. We used to also not do
2300 the subst call below if I2 was substituted into I3,
2301 but that could lose a simplification. */
2302 if (i1 == 0)
2303 XVECEXP (newpat, 0, --total_sets) = i2pat;
2304 else
2305 /* See comment where i2pat is assigned. */
2306 XVECEXP (newpat, 0, --total_sets)
2307 = subst (i2pat, i1dest, i1src, 0, 0);
2311 /* We come here when we are replacing a destination in I2 with the
2312 destination of I3. */
2313 validate_replacement:
2315 /* Note which hard regs this insn has as inputs. */
2316 mark_used_regs_combine (newpat);
2318 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2319 consider splitting this pattern, we might need these clobbers. */
2320 if (i1 && GET_CODE (newpat) == PARALLEL
2321 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2323 int len = XVECLEN (newpat, 0);
2325 newpat_vec_with_clobbers = rtvec_alloc (len);
2326 for (i = 0; i < len; i++)
2327 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2330 /* Is the result of combination a valid instruction? */
2331 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2333 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2334 the second SET's destination is a register that is unused and isn't
2335 marked as an instruction that might trap in an EH region. In that case,
2336 we just need the first SET. This can occur when simplifying a divmod
2337 insn. We *must* test for this case here because the code below that
2338 splits two independent SETs doesn't handle this case correctly when it
2339 updates the register status.
2341 It's pointless doing this if we originally had two sets, one from
2342 i3, and one from i2. Combining then splitting the parallel results
2343 in the original i2 again plus an invalid insn (which we delete).
2344 The net effect is only to move instructions around, which makes
2345 debug info less accurate.
2347 Also check the case where the first SET's destination is unused.
2348 That would not cause incorrect code, but does cause an unneeded
2349 insn to remain. */
2351 if (insn_code_number < 0
2352 && !(added_sets_2 && i1 == 0)
2353 && GET_CODE (newpat) == PARALLEL
2354 && XVECLEN (newpat, 0) == 2
2355 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2356 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2357 && asm_noperands (newpat) < 0)
2359 rtx set0 = XVECEXP (newpat, 0, 0);
2360 rtx set1 = XVECEXP (newpat, 0, 1);
2361 rtx note;
2363 if (((REG_P (SET_DEST (set1))
2364 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2365 || (GET_CODE (SET_DEST (set1)) == SUBREG
2366 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2367 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2368 || INTVAL (XEXP (note, 0)) <= 0)
2369 && ! side_effects_p (SET_SRC (set1)))
2371 newpat = set0;
2372 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2375 else if (((REG_P (SET_DEST (set0))
2376 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2377 || (GET_CODE (SET_DEST (set0)) == SUBREG
2378 && find_reg_note (i3, REG_UNUSED,
2379 SUBREG_REG (SET_DEST (set0)))))
2380 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2381 || INTVAL (XEXP (note, 0)) <= 0)
2382 && ! side_effects_p (SET_SRC (set0)))
2384 newpat = set1;
2385 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2387 if (insn_code_number >= 0)
2389 /* If we will be able to accept this, we have made a
2390 change to the destination of I3. This requires us to
2391 do a few adjustments. */
2393 PATTERN (i3) = newpat;
2394 adjust_for_new_dest (i3);
2399 /* If we were combining three insns and the result is a simple SET
2400 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2401 insns. There are two ways to do this. It can be split using a
2402 machine-specific method (like when you have an addition of a large
2403 constant) or by combine in the function find_split_point. */
2405 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2406 && asm_noperands (newpat) < 0)
2408 rtx m_split, *split;
2409 rtx ni2dest = i2dest;
2411 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2412 use I2DEST as a scratch register will help. In the latter case,
2413 convert I2DEST to the mode of the source of NEWPAT if we can. */
2415 m_split = split_insns (newpat, i3);
2417 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2418 inputs of NEWPAT. */
2420 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2421 possible to try that as a scratch reg. This would require adding
2422 more code to make it work though. */
2424 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2426 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2427 /* If I2DEST is a hard register or the only use of a pseudo,
2428 we can change its mode. */
2429 if (new_mode != GET_MODE (i2dest)
2430 && new_mode != VOIDmode
2431 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2432 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2433 REGNO (i2dest));
2435 m_split = split_insns (gen_rtx_PARALLEL
2436 (VOIDmode,
2437 gen_rtvec (2, newpat,
2438 gen_rtx_CLOBBER (VOIDmode,
2439 ni2dest))),
2440 i3);
2441 /* If the split with the mode-changed register didn't work, try
2442 the original register. */
2443 if (! m_split && ni2dest != i2dest)
2445 ni2dest = i2dest;
2446 m_split = split_insns (gen_rtx_PARALLEL
2447 (VOIDmode,
2448 gen_rtvec (2, newpat,
2449 gen_rtx_CLOBBER (VOIDmode,
2450 i2dest))),
2451 i3);
2455 /* If recog_for_combine has discarded clobbers, try to use them
2456 again for the split. */
2457 if (m_split == 0 && newpat_vec_with_clobbers)
2458 m_split
2459 = split_insns (gen_rtx_PARALLEL (VOIDmode,
2460 newpat_vec_with_clobbers), i3);
2462 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2464 m_split = PATTERN (m_split);
2465 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2466 if (insn_code_number >= 0)
2467 newpat = m_split;
2469 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2470 && (next_real_insn (i2) == i3
2471 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2473 rtx i2set, i3set;
2474 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2475 newi2pat = PATTERN (m_split);
2477 i3set = single_set (NEXT_INSN (m_split));
2478 i2set = single_set (m_split);
2480 /* In case we changed the mode of I2DEST, replace it in the
2481 pseudo-register table here. We can't do it above in case this
2482 code doesn't get executed and we do a split the other way. */
2484 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2485 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2487 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2489 /* If I2 or I3 has multiple SETs, we won't know how to track
2490 register status, so don't use these insns. If I2's destination
2491 is used between I2 and I3, we also can't use these insns. */
2493 if (i2_code_number >= 0 && i2set && i3set
2494 && (next_real_insn (i2) == i3
2495 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2496 insn_code_number = recog_for_combine (&newi3pat, i3,
2497 &new_i3_notes);
2498 if (insn_code_number >= 0)
2499 newpat = newi3pat;
2501 /* It is possible that both insns now set the destination of I3.
2502 If so, we must show an extra use of it. */
2504 if (insn_code_number >= 0)
2506 rtx new_i3_dest = SET_DEST (i3set);
2507 rtx new_i2_dest = SET_DEST (i2set);
2509 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2510 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2511 || GET_CODE (new_i3_dest) == SUBREG)
2512 new_i3_dest = XEXP (new_i3_dest, 0);
2514 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2515 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2516 || GET_CODE (new_i2_dest) == SUBREG)
2517 new_i2_dest = XEXP (new_i2_dest, 0);
2519 if (REG_P (new_i3_dest)
2520 && REG_P (new_i2_dest)
2521 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2522 REG_N_SETS (REGNO (new_i2_dest))++;
2526 /* If we can split it and use I2DEST, go ahead and see if that
2527 helps things be recognized. Verify that none of the registers
2528 are set between I2 and I3. */
2529 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2530 #ifdef HAVE_cc0
2531 && REG_P (i2dest)
2532 #endif
2533 /* We need I2DEST in the proper mode. If it is a hard register
2534 or the only use of a pseudo, we can change its mode.
2535 Make sure we don't change a hard register to have a mode that
2536 isn't valid for it, or change the number of registers. */
2537 && (GET_MODE (*split) == GET_MODE (i2dest)
2538 || GET_MODE (*split) == VOIDmode
2539 || can_change_dest_mode (i2dest, added_sets_2,
2540 GET_MODE (*split)))
2541 && (next_real_insn (i2) == i3
2542 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2543 /* We can't overwrite I2DEST if its value is still used by
2544 NEWPAT. */
2545 && ! reg_referenced_p (i2dest, newpat))
2547 rtx newdest = i2dest;
2548 enum rtx_code split_code = GET_CODE (*split);
2549 enum machine_mode split_mode = GET_MODE (*split);
2551 /* Get NEWDEST as a register in the proper mode. We have already
2552 validated that we can do this. */
2553 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2555 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2557 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2558 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2561 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2562 an ASHIFT. This can occur if it was inside a PLUS and hence
2563 appeared to be a memory address. This is a kludge. */
2564 if (split_code == MULT
2565 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2566 && INTVAL (XEXP (*split, 1)) > 0
2567 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2569 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2570 XEXP (*split, 0), GEN_INT (i)));
2571 /* Update split_code because we may not have a multiply
2572 anymore. */
2573 split_code = GET_CODE (*split);
2576 #ifdef INSN_SCHEDULING
2577 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2578 be written as a ZERO_EXTEND. */
2579 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2581 #ifdef LOAD_EXTEND_OP
2582 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2583 what it really is. */
2584 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2585 == SIGN_EXTEND)
2586 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2587 SUBREG_REG (*split)));
2588 else
2589 #endif
2590 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2591 SUBREG_REG (*split)));
2593 #endif
2595 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2596 SUBST (*split, newdest);
2597 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2599 /* recog_for_combine might have added CLOBBERs to newi2pat.
2600 Make sure NEWPAT does not depend on the clobbered regs. */
2601 if (GET_CODE (newi2pat) == PARALLEL)
2602 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2603 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2605 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2606 if (reg_overlap_mentioned_p (reg, newpat))
2608 undo_all ();
2609 return 0;
2613 /* If the split point was a MULT and we didn't have one before,
2614 don't use one now. */
2615 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2616 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2620 /* Check for a case where we loaded from memory in a narrow mode and
2621 then sign extended it, but we need both registers. In that case,
2622 we have a PARALLEL with both loads from the same memory location.
2623 We can split this into a load from memory followed by a register-register
2624 copy. This saves at least one insn, more if register allocation can
2625 eliminate the copy.
2627 We cannot do this if the destination of the first assignment is a
2628 condition code register or cc0. We eliminate this case by making sure
2629 the SET_DEST and SET_SRC have the same mode.
2631 We cannot do this if the destination of the second assignment is
2632 a register that we have already assumed is zero-extended. Similarly
2633 for a SUBREG of such a register. */
2635 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2636 && GET_CODE (newpat) == PARALLEL
2637 && XVECLEN (newpat, 0) == 2
2638 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2639 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2640 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2641 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2642 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2643 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2644 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2645 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2646 INSN_CUID (i2))
2647 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2648 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2649 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2650 (REG_P (temp)
2651 && reg_stat[REGNO (temp)].nonzero_bits != 0
2652 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2653 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2654 && (reg_stat[REGNO (temp)].nonzero_bits
2655 != GET_MODE_MASK (word_mode))))
2656 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2657 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2658 (REG_P (temp)
2659 && reg_stat[REGNO (temp)].nonzero_bits != 0
2660 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2661 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2662 && (reg_stat[REGNO (temp)].nonzero_bits
2663 != GET_MODE_MASK (word_mode)))))
2664 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2665 SET_SRC (XVECEXP (newpat, 0, 1)))
2666 && ! find_reg_note (i3, REG_UNUSED,
2667 SET_DEST (XVECEXP (newpat, 0, 0))))
2669 rtx ni2dest;
2671 newi2pat = XVECEXP (newpat, 0, 0);
2672 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2673 newpat = XVECEXP (newpat, 0, 1);
2674 SUBST (SET_SRC (newpat),
2675 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2676 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2678 if (i2_code_number >= 0)
2679 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2681 if (insn_code_number >= 0)
2682 swap_i2i3 = 1;
2685 /* Similarly, check for a case where we have a PARALLEL of two independent
2686 SETs but we started with three insns. In this case, we can do the sets
2687 as two separate insns. This case occurs when some SET allows two
2688 other insns to combine, but the destination of that SET is still live. */
2690 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2691 && GET_CODE (newpat) == PARALLEL
2692 && XVECLEN (newpat, 0) == 2
2693 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2694 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2695 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2696 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2697 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2698 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2699 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2700 INSN_CUID (i2))
2701 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2702 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2703 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2704 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2705 XVECEXP (newpat, 0, 0))
2706 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2707 XVECEXP (newpat, 0, 1))
2708 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2709 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2711 /* Normally, it doesn't matter which of the two is done first,
2712 but it does if one references cc0. In that case, it has to
2713 be first. */
2714 #ifdef HAVE_cc0
2715 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2717 newi2pat = XVECEXP (newpat, 0, 0);
2718 newpat = XVECEXP (newpat, 0, 1);
2720 else
2721 #endif
2723 newi2pat = XVECEXP (newpat, 0, 1);
2724 newpat = XVECEXP (newpat, 0, 0);
2727 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2729 if (i2_code_number >= 0)
2730 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2733 /* If it still isn't recognized, fail and change things back the way they
2734 were. */
2735 if ((insn_code_number < 0
2736 /* Is the result a reasonable ASM_OPERANDS? */
2737 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2739 undo_all ();
2740 return 0;
2743 /* If we had to change another insn, make sure it is valid also. */
2744 if (undobuf.other_insn)
2746 rtx other_pat = PATTERN (undobuf.other_insn);
2747 rtx new_other_notes;
2748 rtx note, next;
2750 CLEAR_HARD_REG_SET (newpat_used_regs);
2752 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2753 &new_other_notes);
2755 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2757 undo_all ();
2758 return 0;
2761 PATTERN (undobuf.other_insn) = other_pat;
2763 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2764 are still valid. Then add any non-duplicate notes added by
2765 recog_for_combine. */
2766 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2768 next = XEXP (note, 1);
2770 if (REG_NOTE_KIND (note) == REG_UNUSED
2771 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2773 if (REG_P (XEXP (note, 0)))
2774 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2776 remove_note (undobuf.other_insn, note);
2780 for (note = new_other_notes; note; note = XEXP (note, 1))
2781 if (REG_P (XEXP (note, 0)))
2782 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2784 distribute_notes (new_other_notes, undobuf.other_insn,
2785 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2787 #ifdef HAVE_cc0
2788 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2789 they are adjacent to each other or not. */
2791 rtx p = prev_nonnote_insn (i3);
2792 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2793 && sets_cc0_p (newi2pat))
2795 undo_all ();
2796 return 0;
2799 #endif
2801 /* Only allow this combination if insn_rtx_costs reports that the
2802 replacement instructions are cheaper than the originals. */
2803 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2805 undo_all ();
2806 return 0;
2809 /* We now know that we can do this combination. Merge the insns and
2810 update the status of registers and LOG_LINKS. */
2812 if (swap_i2i3)
2814 rtx insn;
2815 rtx link;
2816 rtx ni2dest;
2818 /* I3 now uses what used to be its destination and which is now
2819 I2's destination. This requires us to do a few adjustments. */
2820 PATTERN (i3) = newpat;
2821 adjust_for_new_dest (i3);
2823 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2824 so we still will.
2826 However, some later insn might be using I2's dest and have
2827 a LOG_LINK pointing at I3. We must remove this link.
2828 The simplest way to remove the link is to point it at I1,
2829 which we know will be a NOTE. */
2831 /* newi2pat is usually a SET here; however, recog_for_combine might
2832 have added some clobbers. */
2833 if (GET_CODE (newi2pat) == PARALLEL)
2834 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2835 else
2836 ni2dest = SET_DEST (newi2pat);
2838 for (insn = NEXT_INSN (i3);
2839 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2840 || insn != BB_HEAD (this_basic_block->next_bb));
2841 insn = NEXT_INSN (insn))
2843 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2845 for (link = LOG_LINKS (insn); link;
2846 link = XEXP (link, 1))
2847 if (XEXP (link, 0) == i3)
2848 XEXP (link, 0) = i1;
2850 break;
2856 rtx i3notes, i2notes, i1notes = 0;
2857 rtx i3links, i2links, i1links = 0;
2858 rtx midnotes = 0;
2859 unsigned int regno;
2860 /* Compute which registers we expect to eliminate. newi2pat may be setting
2861 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2862 same as i3dest, in which case newi2pat may be setting i1dest. */
2863 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2864 || i2dest_in_i2src || i2dest_in_i1src
2865 || !i2dest_killed
2866 ? 0 : i2dest);
2867 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2868 || (newi2pat && reg_set_p (i1dest, newi2pat))
2869 || !i1dest_killed
2870 ? 0 : i1dest);
2872 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2873 clear them. */
2874 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2875 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2876 if (i1)
2877 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2879 /* Ensure that we do not have something that should not be shared but
2880 occurs multiple times in the new insns. Check this by first
2881 resetting all the `used' flags and then copying anything is shared. */
2883 reset_used_flags (i3notes);
2884 reset_used_flags (i2notes);
2885 reset_used_flags (i1notes);
2886 reset_used_flags (newpat);
2887 reset_used_flags (newi2pat);
2888 if (undobuf.other_insn)
2889 reset_used_flags (PATTERN (undobuf.other_insn));
2891 i3notes = copy_rtx_if_shared (i3notes);
2892 i2notes = copy_rtx_if_shared (i2notes);
2893 i1notes = copy_rtx_if_shared (i1notes);
2894 newpat = copy_rtx_if_shared (newpat);
2895 newi2pat = copy_rtx_if_shared (newi2pat);
2896 if (undobuf.other_insn)
2897 reset_used_flags (PATTERN (undobuf.other_insn));
2899 INSN_CODE (i3) = insn_code_number;
2900 PATTERN (i3) = newpat;
2902 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2904 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2906 reset_used_flags (call_usage);
2907 call_usage = copy_rtx (call_usage);
2909 if (substed_i2)
2910 replace_rtx (call_usage, i2dest, i2src);
2912 if (substed_i1)
2913 replace_rtx (call_usage, i1dest, i1src);
2915 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2918 if (undobuf.other_insn)
2919 INSN_CODE (undobuf.other_insn) = other_code_number;
2921 /* We had one special case above where I2 had more than one set and
2922 we replaced a destination of one of those sets with the destination
2923 of I3. In that case, we have to update LOG_LINKS of insns later
2924 in this basic block. Note that this (expensive) case is rare.
2926 Also, in this case, we must pretend that all REG_NOTEs for I2
2927 actually came from I3, so that REG_UNUSED notes from I2 will be
2928 properly handled. */
2930 if (i3_subst_into_i2)
2932 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2933 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2934 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2935 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2936 && ! find_reg_note (i2, REG_UNUSED,
2937 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2938 for (temp = NEXT_INSN (i2);
2939 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2940 || BB_HEAD (this_basic_block) != temp);
2941 temp = NEXT_INSN (temp))
2942 if (temp != i3 && INSN_P (temp))
2943 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2944 if (XEXP (link, 0) == i2)
2945 XEXP (link, 0) = i3;
2947 if (i3notes)
2949 rtx link = i3notes;
2950 while (XEXP (link, 1))
2951 link = XEXP (link, 1);
2952 XEXP (link, 1) = i2notes;
2954 else
2955 i3notes = i2notes;
2956 i2notes = 0;
2959 LOG_LINKS (i3) = 0;
2960 REG_NOTES (i3) = 0;
2961 LOG_LINKS (i2) = 0;
2962 REG_NOTES (i2) = 0;
2964 if (newi2pat)
2966 INSN_CODE (i2) = i2_code_number;
2967 PATTERN (i2) = newi2pat;
2969 else
2970 SET_INSN_DELETED (i2);
2972 if (i1)
2974 LOG_LINKS (i1) = 0;
2975 REG_NOTES (i1) = 0;
2976 SET_INSN_DELETED (i1);
2979 /* Get death notes for everything that is now used in either I3 or
2980 I2 and used to die in a previous insn. If we built two new
2981 patterns, move from I1 to I2 then I2 to I3 so that we get the
2982 proper movement on registers that I2 modifies. */
2984 if (newi2pat)
2986 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2987 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2989 else
2990 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2991 i3, &midnotes);
2993 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2994 if (i3notes)
2995 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2996 elim_i2, elim_i1);
2997 if (i2notes)
2998 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2999 elim_i2, elim_i1);
3000 if (i1notes)
3001 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3002 elim_i2, elim_i1);
3003 if (midnotes)
3004 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3005 elim_i2, elim_i1);
3007 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3008 know these are REG_UNUSED and want them to go to the desired insn,
3009 so we always pass it as i3. We have not counted the notes in
3010 reg_n_deaths yet, so we need to do so now. */
3012 if (newi2pat && new_i2_notes)
3014 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
3015 if (REG_P (XEXP (temp, 0)))
3016 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
3018 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3021 if (new_i3_notes)
3023 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
3024 if (REG_P (XEXP (temp, 0)))
3025 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
3027 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3030 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3031 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3032 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3033 in that case, it might delete I2. Similarly for I2 and I1.
3034 Show an additional death due to the REG_DEAD note we make here. If
3035 we discard it in distribute_notes, we will decrement it again. */
3037 if (i3dest_killed)
3039 if (REG_P (i3dest_killed))
3040 REG_N_DEATHS (REGNO (i3dest_killed))++;
3042 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3043 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3044 NULL_RTX),
3045 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3046 else
3047 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3048 NULL_RTX),
3049 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3050 elim_i2, elim_i1);
3053 if (i2dest_in_i2src)
3055 if (REG_P (i2dest))
3056 REG_N_DEATHS (REGNO (i2dest))++;
3058 if (newi2pat && reg_set_p (i2dest, newi2pat))
3059 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3060 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3061 else
3062 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3063 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3064 NULL_RTX, NULL_RTX);
3067 if (i1dest_in_i1src)
3069 if (REG_P (i1dest))
3070 REG_N_DEATHS (REGNO (i1dest))++;
3072 if (newi2pat && reg_set_p (i1dest, newi2pat))
3073 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3074 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3075 else
3076 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3077 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3078 NULL_RTX, NULL_RTX);
3081 distribute_links (i3links);
3082 distribute_links (i2links);
3083 distribute_links (i1links);
3085 if (REG_P (i2dest))
3087 rtx link;
3088 rtx i2_insn = 0, i2_val = 0, set;
3090 /* The insn that used to set this register doesn't exist, and
3091 this life of the register may not exist either. See if one of
3092 I3's links points to an insn that sets I2DEST. If it does,
3093 that is now the last known value for I2DEST. If we don't update
3094 this and I2 set the register to a value that depended on its old
3095 contents, we will get confused. If this insn is used, thing
3096 will be set correctly in combine_instructions. */
3098 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3099 if ((set = single_set (XEXP (link, 0))) != 0
3100 && rtx_equal_p (i2dest, SET_DEST (set)))
3101 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3103 record_value_for_reg (i2dest, i2_insn, i2_val);
3105 /* If the reg formerly set in I2 died only once and that was in I3,
3106 zero its use count so it won't make `reload' do any work. */
3107 if (! added_sets_2
3108 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3109 && ! i2dest_in_i2src)
3111 regno = REGNO (i2dest);
3112 REG_N_SETS (regno)--;
3116 if (i1 && REG_P (i1dest))
3118 rtx link;
3119 rtx i1_insn = 0, i1_val = 0, set;
3121 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3122 if ((set = single_set (XEXP (link, 0))) != 0
3123 && rtx_equal_p (i1dest, SET_DEST (set)))
3124 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3126 record_value_for_reg (i1dest, i1_insn, i1_val);
3128 regno = REGNO (i1dest);
3129 if (! added_sets_1 && ! i1dest_in_i1src)
3130 REG_N_SETS (regno)--;
3133 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3134 been made to this insn. The order of
3135 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3136 can affect nonzero_bits of newpat */
3137 if (newi2pat)
3138 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3139 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3141 /* Set new_direct_jump_p if a new return or simple jump instruction
3142 has been created.
3144 If I3 is now an unconditional jump, ensure that it has a
3145 BARRIER following it since it may have initially been a
3146 conditional jump. It may also be the last nonnote insn. */
3148 if (returnjump_p (i3) || any_uncondjump_p (i3))
3150 *new_direct_jump_p = 1;
3151 mark_jump_label (PATTERN (i3), i3, 0);
3153 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3154 || !BARRIER_P (temp))
3155 emit_barrier_after (i3);
3158 if (undobuf.other_insn != NULL_RTX
3159 && (returnjump_p (undobuf.other_insn)
3160 || any_uncondjump_p (undobuf.other_insn)))
3162 *new_direct_jump_p = 1;
3164 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3165 || !BARRIER_P (temp))
3166 emit_barrier_after (undobuf.other_insn);
3169 /* An NOOP jump does not need barrier, but it does need cleaning up
3170 of CFG. */
3171 if (GET_CODE (newpat) == SET
3172 && SET_SRC (newpat) == pc_rtx
3173 && SET_DEST (newpat) == pc_rtx)
3174 *new_direct_jump_p = 1;
3177 combine_successes++;
3178 undo_commit ();
3180 if (added_links_insn
3181 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3182 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3183 return added_links_insn;
3184 else
3185 return newi2pat ? i2 : i3;
3188 /* Undo all the modifications recorded in undobuf. */
3190 static void
3191 undo_all (void)
3193 struct undo *undo, *next;
3195 for (undo = undobuf.undos; undo; undo = next)
3197 next = undo->next;
3198 if (undo->is_int)
3199 *undo->where.i = undo->old_contents.i;
3200 else
3201 *undo->where.r = undo->old_contents.r;
3203 undo->next = undobuf.frees;
3204 undobuf.frees = undo;
3207 undobuf.undos = 0;
3210 /* We've committed to accepting the changes we made. Move all
3211 of the undos to the free list. */
3213 static void
3214 undo_commit (void)
3216 struct undo *undo, *next;
3218 for (undo = undobuf.undos; undo; undo = next)
3220 next = undo->next;
3221 undo->next = undobuf.frees;
3222 undobuf.frees = undo;
3224 undobuf.undos = 0;
3228 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3229 where we have an arithmetic expression and return that point. LOC will
3230 be inside INSN.
3232 try_combine will call this function to see if an insn can be split into
3233 two insns. */
3235 static rtx *
3236 find_split_point (rtx *loc, rtx insn)
3238 rtx x = *loc;
3239 enum rtx_code code = GET_CODE (x);
3240 rtx *split;
3241 unsigned HOST_WIDE_INT len = 0;
3242 HOST_WIDE_INT pos = 0;
3243 int unsignedp = 0;
3244 rtx inner = NULL_RTX;
3246 /* First special-case some codes. */
3247 switch (code)
3249 case SUBREG:
3250 #ifdef INSN_SCHEDULING
3251 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3252 point. */
3253 if (MEM_P (SUBREG_REG (x)))
3254 return loc;
3255 #endif
3256 return find_split_point (&SUBREG_REG (x), insn);
3258 case MEM:
3259 #ifdef HAVE_lo_sum
3260 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3261 using LO_SUM and HIGH. */
3262 if (GET_CODE (XEXP (x, 0)) == CONST
3263 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3265 SUBST (XEXP (x, 0),
3266 gen_rtx_LO_SUM (Pmode,
3267 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3268 XEXP (x, 0)));
3269 return &XEXP (XEXP (x, 0), 0);
3271 #endif
3273 /* If we have a PLUS whose second operand is a constant and the
3274 address is not valid, perhaps will can split it up using
3275 the machine-specific way to split large constants. We use
3276 the first pseudo-reg (one of the virtual regs) as a placeholder;
3277 it will not remain in the result. */
3278 if (GET_CODE (XEXP (x, 0)) == PLUS
3279 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3280 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3282 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3283 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3284 subst_insn);
3286 /* This should have produced two insns, each of which sets our
3287 placeholder. If the source of the second is a valid address,
3288 we can make put both sources together and make a split point
3289 in the middle. */
3291 if (seq
3292 && NEXT_INSN (seq) != NULL_RTX
3293 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3294 && NONJUMP_INSN_P (seq)
3295 && GET_CODE (PATTERN (seq)) == SET
3296 && SET_DEST (PATTERN (seq)) == reg
3297 && ! reg_mentioned_p (reg,
3298 SET_SRC (PATTERN (seq)))
3299 && NONJUMP_INSN_P (NEXT_INSN (seq))
3300 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3301 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3302 && memory_address_p (GET_MODE (x),
3303 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3305 rtx src1 = SET_SRC (PATTERN (seq));
3306 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3308 /* Replace the placeholder in SRC2 with SRC1. If we can
3309 find where in SRC2 it was placed, that can become our
3310 split point and we can replace this address with SRC2.
3311 Just try two obvious places. */
3313 src2 = replace_rtx (src2, reg, src1);
3314 split = 0;
3315 if (XEXP (src2, 0) == src1)
3316 split = &XEXP (src2, 0);
3317 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3318 && XEXP (XEXP (src2, 0), 0) == src1)
3319 split = &XEXP (XEXP (src2, 0), 0);
3321 if (split)
3323 SUBST (XEXP (x, 0), src2);
3324 return split;
3328 /* If that didn't work, perhaps the first operand is complex and
3329 needs to be computed separately, so make a split point there.
3330 This will occur on machines that just support REG + CONST
3331 and have a constant moved through some previous computation. */
3333 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3334 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3335 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3336 return &XEXP (XEXP (x, 0), 0);
3338 break;
3340 case SET:
3341 #ifdef HAVE_cc0
3342 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3343 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3344 we need to put the operand into a register. So split at that
3345 point. */
3347 if (SET_DEST (x) == cc0_rtx
3348 && GET_CODE (SET_SRC (x)) != COMPARE
3349 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3350 && !OBJECT_P (SET_SRC (x))
3351 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3352 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3353 return &SET_SRC (x);
3354 #endif
3356 /* See if we can split SET_SRC as it stands. */
3357 split = find_split_point (&SET_SRC (x), insn);
3358 if (split && split != &SET_SRC (x))
3359 return split;
3361 /* See if we can split SET_DEST as it stands. */
3362 split = find_split_point (&SET_DEST (x), insn);
3363 if (split && split != &SET_DEST (x))
3364 return split;
3366 /* See if this is a bitfield assignment with everything constant. If
3367 so, this is an IOR of an AND, so split it into that. */
3368 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3369 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3370 <= HOST_BITS_PER_WIDE_INT)
3371 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3372 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3373 && GET_CODE (SET_SRC (x)) == CONST_INT
3374 && ((INTVAL (XEXP (SET_DEST (x), 1))
3375 + INTVAL (XEXP (SET_DEST (x), 2)))
3376 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3377 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3379 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3380 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3381 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3382 rtx dest = XEXP (SET_DEST (x), 0);
3383 enum machine_mode mode = GET_MODE (dest);
3384 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3385 rtx or_mask;
3387 if (BITS_BIG_ENDIAN)
3388 pos = GET_MODE_BITSIZE (mode) - len - pos;
3390 or_mask = gen_int_mode (src << pos, mode);
3391 if (src == mask)
3392 SUBST (SET_SRC (x),
3393 simplify_gen_binary (IOR, mode, dest, or_mask));
3394 else
3396 rtx negmask = gen_int_mode (~(mask << pos), mode);
3397 SUBST (SET_SRC (x),
3398 simplify_gen_binary (IOR, mode,
3399 simplify_gen_binary (AND, mode,
3400 dest, negmask),
3401 or_mask));
3404 SUBST (SET_DEST (x), dest);
3406 split = find_split_point (&SET_SRC (x), insn);
3407 if (split && split != &SET_SRC (x))
3408 return split;
3411 /* Otherwise, see if this is an operation that we can split into two.
3412 If so, try to split that. */
3413 code = GET_CODE (SET_SRC (x));
3415 switch (code)
3417 case AND:
3418 /* If we are AND'ing with a large constant that is only a single
3419 bit and the result is only being used in a context where we
3420 need to know if it is zero or nonzero, replace it with a bit
3421 extraction. This will avoid the large constant, which might
3422 have taken more than one insn to make. If the constant were
3423 not a valid argument to the AND but took only one insn to make,
3424 this is no worse, but if it took more than one insn, it will
3425 be better. */
3427 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3428 && REG_P (XEXP (SET_SRC (x), 0))
3429 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3430 && REG_P (SET_DEST (x))
3431 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3432 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3433 && XEXP (*split, 0) == SET_DEST (x)
3434 && XEXP (*split, 1) == const0_rtx)
3436 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3437 XEXP (SET_SRC (x), 0),
3438 pos, NULL_RTX, 1, 1, 0, 0);
3439 if (extraction != 0)
3441 SUBST (SET_SRC (x), extraction);
3442 return find_split_point (loc, insn);
3445 break;
3447 case NE:
3448 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3449 is known to be on, this can be converted into a NEG of a shift. */
3450 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3451 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3452 && 1 <= (pos = exact_log2
3453 (nonzero_bits (XEXP (SET_SRC (x), 0),
3454 GET_MODE (XEXP (SET_SRC (x), 0))))))
3456 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3458 SUBST (SET_SRC (x),
3459 gen_rtx_NEG (mode,
3460 gen_rtx_LSHIFTRT (mode,
3461 XEXP (SET_SRC (x), 0),
3462 GEN_INT (pos))));
3464 split = find_split_point (&SET_SRC (x), insn);
3465 if (split && split != &SET_SRC (x))
3466 return split;
3468 break;
3470 case SIGN_EXTEND:
3471 inner = XEXP (SET_SRC (x), 0);
3473 /* We can't optimize if either mode is a partial integer
3474 mode as we don't know how many bits are significant
3475 in those modes. */
3476 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3477 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3478 break;
3480 pos = 0;
3481 len = GET_MODE_BITSIZE (GET_MODE (inner));
3482 unsignedp = 0;
3483 break;
3485 case SIGN_EXTRACT:
3486 case ZERO_EXTRACT:
3487 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3488 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3490 inner = XEXP (SET_SRC (x), 0);
3491 len = INTVAL (XEXP (SET_SRC (x), 1));
3492 pos = INTVAL (XEXP (SET_SRC (x), 2));
3494 if (BITS_BIG_ENDIAN)
3495 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3496 unsignedp = (code == ZERO_EXTRACT);
3498 break;
3500 default:
3501 break;
3504 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3506 enum machine_mode mode = GET_MODE (SET_SRC (x));
3508 /* For unsigned, we have a choice of a shift followed by an
3509 AND or two shifts. Use two shifts for field sizes where the
3510 constant might be too large. We assume here that we can
3511 always at least get 8-bit constants in an AND insn, which is
3512 true for every current RISC. */
3514 if (unsignedp && len <= 8)
3516 SUBST (SET_SRC (x),
3517 gen_rtx_AND (mode,
3518 gen_rtx_LSHIFTRT
3519 (mode, gen_lowpart (mode, inner),
3520 GEN_INT (pos)),
3521 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3523 split = find_split_point (&SET_SRC (x), insn);
3524 if (split && split != &SET_SRC (x))
3525 return split;
3527 else
3529 SUBST (SET_SRC (x),
3530 gen_rtx_fmt_ee
3531 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3532 gen_rtx_ASHIFT (mode,
3533 gen_lowpart (mode, inner),
3534 GEN_INT (GET_MODE_BITSIZE (mode)
3535 - len - pos)),
3536 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3538 split = find_split_point (&SET_SRC (x), insn);
3539 if (split && split != &SET_SRC (x))
3540 return split;
3544 /* See if this is a simple operation with a constant as the second
3545 operand. It might be that this constant is out of range and hence
3546 could be used as a split point. */
3547 if (BINARY_P (SET_SRC (x))
3548 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3549 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3550 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3551 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3552 return &XEXP (SET_SRC (x), 1);
3554 /* Finally, see if this is a simple operation with its first operand
3555 not in a register. The operation might require this operand in a
3556 register, so return it as a split point. We can always do this
3557 because if the first operand were another operation, we would have
3558 already found it as a split point. */
3559 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3560 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3561 return &XEXP (SET_SRC (x), 0);
3563 return 0;
3565 case AND:
3566 case IOR:
3567 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3568 it is better to write this as (not (ior A B)) so we can split it.
3569 Similarly for IOR. */
3570 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3572 SUBST (*loc,
3573 gen_rtx_NOT (GET_MODE (x),
3574 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3575 GET_MODE (x),
3576 XEXP (XEXP (x, 0), 0),
3577 XEXP (XEXP (x, 1), 0))));
3578 return find_split_point (loc, insn);
3581 /* Many RISC machines have a large set of logical insns. If the
3582 second operand is a NOT, put it first so we will try to split the
3583 other operand first. */
3584 if (GET_CODE (XEXP (x, 1)) == NOT)
3586 rtx tem = XEXP (x, 0);
3587 SUBST (XEXP (x, 0), XEXP (x, 1));
3588 SUBST (XEXP (x, 1), tem);
3590 break;
3592 default:
3593 break;
3596 /* Otherwise, select our actions depending on our rtx class. */
3597 switch (GET_RTX_CLASS (code))
3599 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3600 case RTX_TERNARY:
3601 split = find_split_point (&XEXP (x, 2), insn);
3602 if (split)
3603 return split;
3604 /* ... fall through ... */
3605 case RTX_BIN_ARITH:
3606 case RTX_COMM_ARITH:
3607 case RTX_COMPARE:
3608 case RTX_COMM_COMPARE:
3609 split = find_split_point (&XEXP (x, 1), insn);
3610 if (split)
3611 return split;
3612 /* ... fall through ... */
3613 case RTX_UNARY:
3614 /* Some machines have (and (shift ...) ...) insns. If X is not
3615 an AND, but XEXP (X, 0) is, use it as our split point. */
3616 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3617 return &XEXP (x, 0);
3619 split = find_split_point (&XEXP (x, 0), insn);
3620 if (split)
3621 return split;
3622 return loc;
3624 default:
3625 /* Otherwise, we don't have a split point. */
3626 return 0;
3630 /* Throughout X, replace FROM with TO, and return the result.
3631 The result is TO if X is FROM;
3632 otherwise the result is X, but its contents may have been modified.
3633 If they were modified, a record was made in undobuf so that
3634 undo_all will (among other things) return X to its original state.
3636 If the number of changes necessary is too much to record to undo,
3637 the excess changes are not made, so the result is invalid.
3638 The changes already made can still be undone.
3639 undobuf.num_undo is incremented for such changes, so by testing that
3640 the caller can tell whether the result is valid.
3642 `n_occurrences' is incremented each time FROM is replaced.
3644 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3646 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3647 by copying if `n_occurrences' is nonzero. */
3649 static rtx
3650 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3652 enum rtx_code code = GET_CODE (x);
3653 enum machine_mode op0_mode = VOIDmode;
3654 const char *fmt;
3655 int len, i;
3656 rtx new;
3658 /* Two expressions are equal if they are identical copies of a shared
3659 RTX or if they are both registers with the same register number
3660 and mode. */
3662 #define COMBINE_RTX_EQUAL_P(X,Y) \
3663 ((X) == (Y) \
3664 || (REG_P (X) && REG_P (Y) \
3665 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3667 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3669 n_occurrences++;
3670 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3673 /* If X and FROM are the same register but different modes, they will
3674 not have been seen as equal above. However, flow.c will make a
3675 LOG_LINKS entry for that case. If we do nothing, we will try to
3676 rerecognize our original insn and, when it succeeds, we will
3677 delete the feeding insn, which is incorrect.
3679 So force this insn not to match in this (rare) case. */
3680 if (! in_dest && code == REG && REG_P (from)
3681 && REGNO (x) == REGNO (from))
3682 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3684 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3685 of which may contain things that can be combined. */
3686 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3687 return x;
3689 /* It is possible to have a subexpression appear twice in the insn.
3690 Suppose that FROM is a register that appears within TO.
3691 Then, after that subexpression has been scanned once by `subst',
3692 the second time it is scanned, TO may be found. If we were
3693 to scan TO here, we would find FROM within it and create a
3694 self-referent rtl structure which is completely wrong. */
3695 if (COMBINE_RTX_EQUAL_P (x, to))
3696 return to;
3698 /* Parallel asm_operands need special attention because all of the
3699 inputs are shared across the arms. Furthermore, unsharing the
3700 rtl results in recognition failures. Failure to handle this case
3701 specially can result in circular rtl.
3703 Solve this by doing a normal pass across the first entry of the
3704 parallel, and only processing the SET_DESTs of the subsequent
3705 entries. Ug. */
3707 if (code == PARALLEL
3708 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3709 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3711 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3713 /* If this substitution failed, this whole thing fails. */
3714 if (GET_CODE (new) == CLOBBER
3715 && XEXP (new, 0) == const0_rtx)
3716 return new;
3718 SUBST (XVECEXP (x, 0, 0), new);
3720 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3722 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3724 if (!REG_P (dest)
3725 && GET_CODE (dest) != CC0
3726 && GET_CODE (dest) != PC)
3728 new = subst (dest, from, to, 0, unique_copy);
3730 /* If this substitution failed, this whole thing fails. */
3731 if (GET_CODE (new) == CLOBBER
3732 && XEXP (new, 0) == const0_rtx)
3733 return new;
3735 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3739 else
3741 len = GET_RTX_LENGTH (code);
3742 fmt = GET_RTX_FORMAT (code);
3744 /* We don't need to process a SET_DEST that is a register, CC0,
3745 or PC, so set up to skip this common case. All other cases
3746 where we want to suppress replacing something inside a
3747 SET_SRC are handled via the IN_DEST operand. */
3748 if (code == SET
3749 && (REG_P (SET_DEST (x))
3750 || GET_CODE (SET_DEST (x)) == CC0
3751 || GET_CODE (SET_DEST (x)) == PC))
3752 fmt = "ie";
3754 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3755 constant. */
3756 if (fmt[0] == 'e')
3757 op0_mode = GET_MODE (XEXP (x, 0));
3759 for (i = 0; i < len; i++)
3761 if (fmt[i] == 'E')
3763 int j;
3764 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3766 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3768 new = (unique_copy && n_occurrences
3769 ? copy_rtx (to) : to);
3770 n_occurrences++;
3772 else
3774 new = subst (XVECEXP (x, i, j), from, to, 0,
3775 unique_copy);
3777 /* If this substitution failed, this whole thing
3778 fails. */
3779 if (GET_CODE (new) == CLOBBER
3780 && XEXP (new, 0) == const0_rtx)
3781 return new;
3784 SUBST (XVECEXP (x, i, j), new);
3787 else if (fmt[i] == 'e')
3789 /* If this is a register being set, ignore it. */
3790 new = XEXP (x, i);
3791 if (in_dest
3792 && i == 0
3793 && (((code == SUBREG || code == ZERO_EXTRACT)
3794 && REG_P (new))
3795 || code == STRICT_LOW_PART))
3798 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3800 /* In general, don't install a subreg involving two
3801 modes not tieable. It can worsen register
3802 allocation, and can even make invalid reload
3803 insns, since the reg inside may need to be copied
3804 from in the outside mode, and that may be invalid
3805 if it is an fp reg copied in integer mode.
3807 We allow two exceptions to this: It is valid if
3808 it is inside another SUBREG and the mode of that
3809 SUBREG and the mode of the inside of TO is
3810 tieable and it is valid if X is a SET that copies
3811 FROM to CC0. */
3813 if (GET_CODE (to) == SUBREG
3814 && ! MODES_TIEABLE_P (GET_MODE (to),
3815 GET_MODE (SUBREG_REG (to)))
3816 && ! (code == SUBREG
3817 && MODES_TIEABLE_P (GET_MODE (x),
3818 GET_MODE (SUBREG_REG (to))))
3819 #ifdef HAVE_cc0
3820 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3821 #endif
3823 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3825 #ifdef CANNOT_CHANGE_MODE_CLASS
3826 if (code == SUBREG
3827 && REG_P (to)
3828 && REGNO (to) < FIRST_PSEUDO_REGISTER
3829 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3830 GET_MODE (to),
3831 GET_MODE (x)))
3832 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3833 #endif
3835 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3836 n_occurrences++;
3838 else
3839 /* If we are in a SET_DEST, suppress most cases unless we
3840 have gone inside a MEM, in which case we want to
3841 simplify the address. We assume here that things that
3842 are actually part of the destination have their inner
3843 parts in the first expression. This is true for SUBREG,
3844 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3845 things aside from REG and MEM that should appear in a
3846 SET_DEST. */
3847 new = subst (XEXP (x, i), from, to,
3848 (((in_dest
3849 && (code == SUBREG || code == STRICT_LOW_PART
3850 || code == ZERO_EXTRACT))
3851 || code == SET)
3852 && i == 0), unique_copy);
3854 /* If we found that we will have to reject this combination,
3855 indicate that by returning the CLOBBER ourselves, rather than
3856 an expression containing it. This will speed things up as
3857 well as prevent accidents where two CLOBBERs are considered
3858 to be equal, thus producing an incorrect simplification. */
3860 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3861 return new;
3863 if (GET_CODE (x) == SUBREG
3864 && (GET_CODE (new) == CONST_INT
3865 || GET_CODE (new) == CONST_DOUBLE))
3867 enum machine_mode mode = GET_MODE (x);
3869 x = simplify_subreg (GET_MODE (x), new,
3870 GET_MODE (SUBREG_REG (x)),
3871 SUBREG_BYTE (x));
3872 if (! x)
3873 x = gen_rtx_CLOBBER (mode, const0_rtx);
3875 else if (GET_CODE (new) == CONST_INT
3876 && GET_CODE (x) == ZERO_EXTEND)
3878 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3879 new, GET_MODE (XEXP (x, 0)));
3880 gcc_assert (x);
3882 else
3883 SUBST (XEXP (x, i), new);
3888 /* Try to simplify X. If the simplification changed the code, it is likely
3889 that further simplification will help, so loop, but limit the number
3890 of repetitions that will be performed. */
3892 for (i = 0; i < 4; i++)
3894 /* If X is sufficiently simple, don't bother trying to do anything
3895 with it. */
3896 if (code != CONST_INT && code != REG && code != CLOBBER)
3897 x = combine_simplify_rtx (x, op0_mode, in_dest);
3899 if (GET_CODE (x) == code)
3900 break;
3902 code = GET_CODE (x);
3904 /* We no longer know the original mode of operand 0 since we
3905 have changed the form of X) */
3906 op0_mode = VOIDmode;
3909 return x;
3912 /* Simplify X, a piece of RTL. We just operate on the expression at the
3913 outer level; call `subst' to simplify recursively. Return the new
3914 expression.
3916 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3917 if we are inside a SET_DEST. */
3919 static rtx
3920 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3922 enum rtx_code code = GET_CODE (x);
3923 enum machine_mode mode = GET_MODE (x);
3924 rtx temp;
3925 rtx reversed;
3926 int i;
3928 /* If this is a commutative operation, put a constant last and a complex
3929 expression first. We don't need to do this for comparisons here. */
3930 if (COMMUTATIVE_ARITH_P (x)
3931 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3933 temp = XEXP (x, 0);
3934 SUBST (XEXP (x, 0), XEXP (x, 1));
3935 SUBST (XEXP (x, 1), temp);
3938 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3939 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3940 things. Check for cases where both arms are testing the same
3941 condition.
3943 Don't do anything if all operands are very simple. */
3945 if ((BINARY_P (x)
3946 && ((!OBJECT_P (XEXP (x, 0))
3947 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3948 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3949 || (!OBJECT_P (XEXP (x, 1))
3950 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3951 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3952 || (UNARY_P (x)
3953 && (!OBJECT_P (XEXP (x, 0))
3954 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3955 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3957 rtx cond, true_rtx, false_rtx;
3959 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3960 if (cond != 0
3961 /* If everything is a comparison, what we have is highly unlikely
3962 to be simpler, so don't use it. */
3963 && ! (COMPARISON_P (x)
3964 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3966 rtx cop1 = const0_rtx;
3967 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3969 if (cond_code == NE && COMPARISON_P (cond))
3970 return x;
3972 /* Simplify the alternative arms; this may collapse the true and
3973 false arms to store-flag values. Be careful to use copy_rtx
3974 here since true_rtx or false_rtx might share RTL with x as a
3975 result of the if_then_else_cond call above. */
3976 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3977 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3979 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3980 is unlikely to be simpler. */
3981 if (general_operand (true_rtx, VOIDmode)
3982 && general_operand (false_rtx, VOIDmode))
3984 enum rtx_code reversed;
3986 /* Restarting if we generate a store-flag expression will cause
3987 us to loop. Just drop through in this case. */
3989 /* If the result values are STORE_FLAG_VALUE and zero, we can
3990 just make the comparison operation. */
3991 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3992 x = simplify_gen_relational (cond_code, mode, VOIDmode,
3993 cond, cop1);
3994 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3995 && ((reversed = reversed_comparison_code_parts
3996 (cond_code, cond, cop1, NULL))
3997 != UNKNOWN))
3998 x = simplify_gen_relational (reversed, mode, VOIDmode,
3999 cond, cop1);
4001 /* Likewise, we can make the negate of a comparison operation
4002 if the result values are - STORE_FLAG_VALUE and zero. */
4003 else if (GET_CODE (true_rtx) == CONST_INT
4004 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4005 && false_rtx == const0_rtx)
4006 x = simplify_gen_unary (NEG, mode,
4007 simplify_gen_relational (cond_code,
4008 mode, VOIDmode,
4009 cond, cop1),
4010 mode);
4011 else if (GET_CODE (false_rtx) == CONST_INT
4012 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4013 && true_rtx == const0_rtx
4014 && ((reversed = reversed_comparison_code_parts
4015 (cond_code, cond, cop1, NULL))
4016 != UNKNOWN))
4017 x = simplify_gen_unary (NEG, mode,
4018 simplify_gen_relational (reversed,
4019 mode, VOIDmode,
4020 cond, cop1),
4021 mode);
4022 else
4023 return gen_rtx_IF_THEN_ELSE (mode,
4024 simplify_gen_relational (cond_code,
4025 mode,
4026 VOIDmode,
4027 cond,
4028 cop1),
4029 true_rtx, false_rtx);
4031 code = GET_CODE (x);
4032 op0_mode = VOIDmode;
4037 /* Try to fold this expression in case we have constants that weren't
4038 present before. */
4039 temp = 0;
4040 switch (GET_RTX_CLASS (code))
4042 case RTX_UNARY:
4043 if (op0_mode == VOIDmode)
4044 op0_mode = GET_MODE (XEXP (x, 0));
4045 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4046 break;
4047 case RTX_COMPARE:
4048 case RTX_COMM_COMPARE:
4050 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4051 if (cmp_mode == VOIDmode)
4053 cmp_mode = GET_MODE (XEXP (x, 1));
4054 if (cmp_mode == VOIDmode)
4055 cmp_mode = op0_mode;
4057 temp = simplify_relational_operation (code, mode, cmp_mode,
4058 XEXP (x, 0), XEXP (x, 1));
4060 break;
4061 case RTX_COMM_ARITH:
4062 case RTX_BIN_ARITH:
4063 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4064 break;
4065 case RTX_BITFIELD_OPS:
4066 case RTX_TERNARY:
4067 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4068 XEXP (x, 1), XEXP (x, 2));
4069 break;
4070 default:
4071 break;
4074 if (temp)
4076 x = temp;
4077 code = GET_CODE (temp);
4078 op0_mode = VOIDmode;
4079 mode = GET_MODE (temp);
4082 /* First see if we can apply the inverse distributive law. */
4083 if (code == PLUS || code == MINUS
4084 || code == AND || code == IOR || code == XOR)
4086 x = apply_distributive_law (x);
4087 code = GET_CODE (x);
4088 op0_mode = VOIDmode;
4091 /* If CODE is an associative operation not otherwise handled, see if we
4092 can associate some operands. This can win if they are constants or
4093 if they are logically related (i.e. (a & b) & a). */
4094 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4095 || code == AND || code == IOR || code == XOR
4096 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4097 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4098 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
4100 if (GET_CODE (XEXP (x, 0)) == code)
4102 rtx other = XEXP (XEXP (x, 0), 0);
4103 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4104 rtx inner_op1 = XEXP (x, 1);
4105 rtx inner;
4107 /* Make sure we pass the constant operand if any as the second
4108 one if this is a commutative operation. */
4109 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4111 rtx tem = inner_op0;
4112 inner_op0 = inner_op1;
4113 inner_op1 = tem;
4115 inner = simplify_binary_operation (code == MINUS ? PLUS
4116 : code == DIV ? MULT
4117 : code,
4118 mode, inner_op0, inner_op1);
4120 /* For commutative operations, try the other pair if that one
4121 didn't simplify. */
4122 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4124 other = XEXP (XEXP (x, 0), 1);
4125 inner = simplify_binary_operation (code, mode,
4126 XEXP (XEXP (x, 0), 0),
4127 XEXP (x, 1));
4130 if (inner)
4131 return simplify_gen_binary (code, mode, other, inner);
4135 /* A little bit of algebraic simplification here. */
4136 switch (code)
4138 case MEM:
4139 /* Ensure that our address has any ASHIFTs converted to MULT in case
4140 address-recognizing predicates are called later. */
4141 temp = make_compound_operation (XEXP (x, 0), MEM);
4142 SUBST (XEXP (x, 0), temp);
4143 break;
4145 case SUBREG:
4146 if (op0_mode == VOIDmode)
4147 op0_mode = GET_MODE (SUBREG_REG (x));
4149 /* See if this can be moved to simplify_subreg. */
4150 if (CONSTANT_P (SUBREG_REG (x))
4151 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4152 /* Don't call gen_lowpart if the inner mode
4153 is VOIDmode and we cannot simplify it, as SUBREG without
4154 inner mode is invalid. */
4155 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4156 || gen_lowpart_common (mode, SUBREG_REG (x))))
4157 return gen_lowpart (mode, SUBREG_REG (x));
4159 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4160 break;
4162 rtx temp;
4163 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4164 SUBREG_BYTE (x));
4165 if (temp)
4166 return temp;
4169 /* Don't change the mode of the MEM if that would change the meaning
4170 of the address. */
4171 if (MEM_P (SUBREG_REG (x))
4172 && (MEM_VOLATILE_P (SUBREG_REG (x))
4173 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4174 return gen_rtx_CLOBBER (mode, const0_rtx);
4176 /* Note that we cannot do any narrowing for non-constants since
4177 we might have been counting on using the fact that some bits were
4178 zero. We now do this in the SET. */
4180 break;
4182 case NOT:
4183 if (GET_CODE (XEXP (x, 0)) == SUBREG
4184 && subreg_lowpart_p (XEXP (x, 0))
4185 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
4186 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
4187 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
4188 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
4190 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
4192 x = gen_rtx_ROTATE (inner_mode,
4193 simplify_gen_unary (NOT, inner_mode, const1_rtx,
4194 inner_mode),
4195 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
4196 return gen_lowpart (mode, x);
4199 /* Apply De Morgan's laws to reduce number of patterns for machines
4200 with negating logical insns (and-not, nand, etc.). If result has
4201 only one NOT, put it first, since that is how the patterns are
4202 coded. */
4204 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4206 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4207 enum machine_mode op_mode;
4209 op_mode = GET_MODE (in1);
4210 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4212 op_mode = GET_MODE (in2);
4213 if (op_mode == VOIDmode)
4214 op_mode = mode;
4215 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4217 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4219 rtx tem = in2;
4220 in2 = in1; in1 = tem;
4223 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4224 mode, in1, in2);
4226 break;
4228 case NEG:
4229 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4230 if (GET_CODE (XEXP (x, 0)) == XOR
4231 && XEXP (XEXP (x, 0), 1) == const1_rtx
4232 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4233 return simplify_gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4234 constm1_rtx);
4236 temp = expand_compound_operation (XEXP (x, 0));
4238 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4239 replaced by (lshiftrt X C). This will convert
4240 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4242 if (GET_CODE (temp) == ASHIFTRT
4243 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4244 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4245 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4246 INTVAL (XEXP (temp, 1)));
4248 /* If X has only a single bit that might be nonzero, say, bit I, convert
4249 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4250 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4251 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4252 or a SUBREG of one since we'd be making the expression more
4253 complex if it was just a register. */
4255 if (!REG_P (temp)
4256 && ! (GET_CODE (temp) == SUBREG
4257 && REG_P (SUBREG_REG (temp)))
4258 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4260 rtx temp1 = simplify_shift_const
4261 (NULL_RTX, ASHIFTRT, mode,
4262 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4263 GET_MODE_BITSIZE (mode) - 1 - i),
4264 GET_MODE_BITSIZE (mode) - 1 - i);
4266 /* If all we did was surround TEMP with the two shifts, we
4267 haven't improved anything, so don't use it. Otherwise,
4268 we are better off with TEMP1. */
4269 if (GET_CODE (temp1) != ASHIFTRT
4270 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4271 || XEXP (XEXP (temp1, 0), 0) != temp)
4272 return temp1;
4274 break;
4276 case TRUNCATE:
4277 /* We can't handle truncation to a partial integer mode here
4278 because we don't know the real bitsize of the partial
4279 integer mode. */
4280 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4281 break;
4283 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4284 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4285 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4286 SUBST (XEXP (x, 0),
4287 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4288 GET_MODE_MASK (mode), NULL_RTX, 0));
4290 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4291 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4292 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4293 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4294 return XEXP (XEXP (x, 0), 0);
4296 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4297 (OP:SI foo:SI) if OP is NEG or ABS. */
4298 if ((GET_CODE (XEXP (x, 0)) == ABS
4299 || GET_CODE (XEXP (x, 0)) == NEG)
4300 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4301 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4302 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4303 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4304 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4306 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4307 (truncate:SI x). */
4308 if (GET_CODE (XEXP (x, 0)) == SUBREG
4309 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4310 && subreg_lowpart_p (XEXP (x, 0)))
4311 return SUBREG_REG (XEXP (x, 0));
4313 /* If we know that the value is already truncated, we can
4314 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4315 is nonzero for the corresponding modes. But don't do this
4316 for an (LSHIFTRT (MULT ...)) since this will cause problems
4317 with the umulXi3_highpart patterns. */
4318 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4319 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4320 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4321 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4322 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4323 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4324 return gen_lowpart (mode, XEXP (x, 0));
4326 /* A truncate of a comparison can be replaced with a subreg if
4327 STORE_FLAG_VALUE permits. This is like the previous test,
4328 but it works even if the comparison is done in a mode larger
4329 than HOST_BITS_PER_WIDE_INT. */
4330 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4331 && COMPARISON_P (XEXP (x, 0))
4332 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4333 return gen_lowpart (mode, XEXP (x, 0));
4335 /* Similarly, a truncate of a register whose value is a
4336 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4337 permits. */
4338 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4339 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4340 && (temp = get_last_value (XEXP (x, 0)))
4341 && COMPARISON_P (temp))
4342 return gen_lowpart (mode, XEXP (x, 0));
4344 break;
4346 case FLOAT_TRUNCATE:
4347 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4348 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4349 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4350 return XEXP (XEXP (x, 0), 0);
4352 /* (float_truncate:SF (float_truncate:DF foo:XF))
4353 = (float_truncate:SF foo:XF).
4354 This may eliminate double rounding, so it is unsafe.
4356 (float_truncate:SF (float_extend:XF foo:DF))
4357 = (float_truncate:SF foo:DF).
4359 (float_truncate:DF (float_extend:XF foo:SF))
4360 = (float_extend:SF foo:DF). */
4361 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4362 && flag_unsafe_math_optimizations)
4363 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4364 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4365 0)))
4366 > GET_MODE_SIZE (mode)
4367 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4368 mode,
4369 XEXP (XEXP (x, 0), 0), mode);
4371 /* (float_truncate (float x)) is (float x) */
4372 if (GET_CODE (XEXP (x, 0)) == FLOAT
4373 && (flag_unsafe_math_optimizations
4374 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4375 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4376 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4377 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4378 return simplify_gen_unary (FLOAT, mode,
4379 XEXP (XEXP (x, 0), 0),
4380 GET_MODE (XEXP (XEXP (x, 0), 0)));
4382 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4383 (OP:SF foo:SF) if OP is NEG or ABS. */
4384 if ((GET_CODE (XEXP (x, 0)) == ABS
4385 || GET_CODE (XEXP (x, 0)) == NEG)
4386 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4387 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4388 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4389 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4391 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4392 is (float_truncate:SF x). */
4393 if (GET_CODE (XEXP (x, 0)) == SUBREG
4394 && subreg_lowpart_p (XEXP (x, 0))
4395 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4396 return SUBREG_REG (XEXP (x, 0));
4397 break;
4398 case FLOAT_EXTEND:
4399 /* (float_extend (float_extend x)) is (float_extend x)
4401 (float_extend (float x)) is (float x) assuming that double
4402 rounding can't happen.
4404 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4405 || (GET_CODE (XEXP (x, 0)) == FLOAT
4406 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4407 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4408 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4409 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4410 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4411 XEXP (XEXP (x, 0), 0),
4412 GET_MODE (XEXP (XEXP (x, 0), 0)));
4414 break;
4415 #ifdef HAVE_cc0
4416 case COMPARE:
4417 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4418 using cc0, in which case we want to leave it as a COMPARE
4419 so we can distinguish it from a register-register-copy. */
4420 if (XEXP (x, 1) == const0_rtx)
4421 return XEXP (x, 0);
4423 /* x - 0 is the same as x unless x's mode has signed zeros and
4424 allows rounding towards -infinity. Under those conditions,
4425 0 - 0 is -0. */
4426 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4427 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4428 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4429 return XEXP (x, 0);
4430 break;
4431 #endif
4433 case CONST:
4434 /* (const (const X)) can become (const X). Do it this way rather than
4435 returning the inner CONST since CONST can be shared with a
4436 REG_EQUAL note. */
4437 if (GET_CODE (XEXP (x, 0)) == CONST)
4438 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4439 break;
4441 #ifdef HAVE_lo_sum
4442 case LO_SUM:
4443 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4444 can add in an offset. find_split_point will split this address up
4445 again if it doesn't match. */
4446 if (GET_CODE (XEXP (x, 0)) == HIGH
4447 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4448 return XEXP (x, 1);
4449 break;
4450 #endif
4452 case PLUS:
4453 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4455 if (GET_CODE (XEXP (x, 0)) == MULT
4456 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4458 rtx in1, in2;
4460 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4461 in2 = XEXP (XEXP (x, 0), 1);
4462 return simplify_gen_binary (MINUS, mode, XEXP (x, 1),
4463 simplify_gen_binary (MULT, mode,
4464 in1, in2));
4467 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4468 outermost. That's because that's the way indexed addresses are
4469 supposed to appear. This code used to check many more cases, but
4470 they are now checked elsewhere. */
4471 if (GET_CODE (XEXP (x, 0)) == PLUS
4472 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4473 return simplify_gen_binary (PLUS, mode,
4474 simplify_gen_binary (PLUS, mode,
4475 XEXP (XEXP (x, 0), 0),
4476 XEXP (x, 1)),
4477 XEXP (XEXP (x, 0), 1));
4479 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4480 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4481 bit-field and can be replaced by either a sign_extend or a
4482 sign_extract. The `and' may be a zero_extend and the two
4483 <c>, -<c> constants may be reversed. */
4484 if (GET_CODE (XEXP (x, 0)) == XOR
4485 && GET_CODE (XEXP (x, 1)) == CONST_INT
4486 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4487 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4488 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4489 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4490 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4491 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4492 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4493 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4494 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4495 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4496 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4497 == (unsigned int) i + 1))))
4498 return simplify_shift_const
4499 (NULL_RTX, ASHIFTRT, mode,
4500 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4501 XEXP (XEXP (XEXP (x, 0), 0), 0),
4502 GET_MODE_BITSIZE (mode) - (i + 1)),
4503 GET_MODE_BITSIZE (mode) - (i + 1));
4505 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4506 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4507 is 1. This produces better code than the alternative immediately
4508 below. */
4509 if (COMPARISON_P (XEXP (x, 0))
4510 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4511 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4512 && (reversed = reversed_comparison (XEXP (x, 0), mode)))
4513 return
4514 simplify_gen_unary (NEG, mode, reversed, mode);
4516 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4517 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4518 the bitsize of the mode - 1. This allows simplification of
4519 "a = (b & 8) == 0;" */
4520 if (XEXP (x, 1) == constm1_rtx
4521 && !REG_P (XEXP (x, 0))
4522 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4523 && REG_P (SUBREG_REG (XEXP (x, 0))))
4524 && nonzero_bits (XEXP (x, 0), mode) == 1)
4525 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4526 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4527 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4528 GET_MODE_BITSIZE (mode) - 1),
4529 GET_MODE_BITSIZE (mode) - 1);
4531 /* If we are adding two things that have no bits in common, convert
4532 the addition into an IOR. This will often be further simplified,
4533 for example in cases like ((a & 1) + (a & 2)), which can
4534 become a & 3. */
4536 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4537 && (nonzero_bits (XEXP (x, 0), mode)
4538 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4540 /* Try to simplify the expression further. */
4541 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4542 temp = combine_simplify_rtx (tor, mode, in_dest);
4544 /* If we could, great. If not, do not go ahead with the IOR
4545 replacement, since PLUS appears in many special purpose
4546 address arithmetic instructions. */
4547 if (GET_CODE (temp) != CLOBBER && temp != tor)
4548 return temp;
4550 break;
4552 case MINUS:
4553 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4554 by reversing the comparison code if valid. */
4555 if (STORE_FLAG_VALUE == 1
4556 && XEXP (x, 0) == const1_rtx
4557 && COMPARISON_P (XEXP (x, 1))
4558 && (reversed = reversed_comparison (XEXP (x, 1), mode)))
4559 return reversed;
4561 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4562 (and <foo> (const_int pow2-1)) */
4563 if (GET_CODE (XEXP (x, 1)) == AND
4564 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4565 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4566 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4567 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4568 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4570 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4572 if (GET_CODE (XEXP (x, 1)) == MULT
4573 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4575 rtx in1, in2;
4577 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4578 in2 = XEXP (XEXP (x, 1), 1);
4579 return simplify_gen_binary (PLUS, mode,
4580 simplify_gen_binary (MULT, mode,
4581 in1, in2),
4582 XEXP (x, 0));
4585 /* Canonicalize (minus (neg A) (mult B C)) to
4586 (minus (mult (neg B) C) A). */
4587 if (GET_CODE (XEXP (x, 1)) == MULT
4588 && GET_CODE (XEXP (x, 0)) == NEG)
4590 rtx in1, in2;
4592 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4593 in2 = XEXP (XEXP (x, 1), 1);
4594 return simplify_gen_binary (MINUS, mode,
4595 simplify_gen_binary (MULT, mode,
4596 in1, in2),
4597 XEXP (XEXP (x, 0), 0));
4600 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4601 integers. */
4602 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4603 return simplify_gen_binary (MINUS, mode,
4604 simplify_gen_binary (MINUS, mode,
4605 XEXP (x, 0),
4606 XEXP (XEXP (x, 1), 0)),
4607 XEXP (XEXP (x, 1), 1));
4608 break;
4610 case MULT:
4611 /* If we have (mult (plus A B) C), apply the distributive law and then
4612 the inverse distributive law to see if things simplify. This
4613 occurs mostly in addresses, often when unrolling loops. */
4615 if (GET_CODE (XEXP (x, 0)) == PLUS)
4617 rtx result = distribute_and_simplify_rtx (x, 0);
4618 if (result)
4619 return result;
4622 /* Try simplify a*(b/c) as (a*b)/c. */
4623 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4624 && GET_CODE (XEXP (x, 0)) == DIV)
4626 rtx tem = simplify_binary_operation (MULT, mode,
4627 XEXP (XEXP (x, 0), 0),
4628 XEXP (x, 1));
4629 if (tem)
4630 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4632 break;
4634 case UDIV:
4635 /* If this is a divide by a power of two, treat it as a shift if
4636 its first operand is a shift. */
4637 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4638 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4639 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4640 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4641 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4642 || GET_CODE (XEXP (x, 0)) == ROTATE
4643 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4644 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4645 break;
4647 case EQ: case NE:
4648 case GT: case GTU: case GE: case GEU:
4649 case LT: case LTU: case LE: case LEU:
4650 case UNEQ: case LTGT:
4651 case UNGT: case UNGE:
4652 case UNLT: case UNLE:
4653 case UNORDERED: case ORDERED:
4654 /* If the first operand is a condition code, we can't do anything
4655 with it. */
4656 if (GET_CODE (XEXP (x, 0)) == COMPARE
4657 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4658 && ! CC0_P (XEXP (x, 0))))
4660 rtx op0 = XEXP (x, 0);
4661 rtx op1 = XEXP (x, 1);
4662 enum rtx_code new_code;
4664 if (GET_CODE (op0) == COMPARE)
4665 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4667 /* Simplify our comparison, if possible. */
4668 new_code = simplify_comparison (code, &op0, &op1);
4670 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4671 if only the low-order bit is possibly nonzero in X (such as when
4672 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4673 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4674 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4675 (plus X 1).
4677 Remove any ZERO_EXTRACT we made when thinking this was a
4678 comparison. It may now be simpler to use, e.g., an AND. If a
4679 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4680 the call to make_compound_operation in the SET case. */
4682 if (STORE_FLAG_VALUE == 1
4683 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4684 && op1 == const0_rtx
4685 && mode == GET_MODE (op0)
4686 && nonzero_bits (op0, mode) == 1)
4687 return gen_lowpart (mode,
4688 expand_compound_operation (op0));
4690 else if (STORE_FLAG_VALUE == 1
4691 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4692 && op1 == const0_rtx
4693 && mode == GET_MODE (op0)
4694 && (num_sign_bit_copies (op0, mode)
4695 == GET_MODE_BITSIZE (mode)))
4697 op0 = expand_compound_operation (op0);
4698 return simplify_gen_unary (NEG, mode,
4699 gen_lowpart (mode, op0),
4700 mode);
4703 else if (STORE_FLAG_VALUE == 1
4704 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4705 && op1 == const0_rtx
4706 && mode == GET_MODE (op0)
4707 && nonzero_bits (op0, mode) == 1)
4709 op0 = expand_compound_operation (op0);
4710 return simplify_gen_binary (XOR, mode,
4711 gen_lowpart (mode, op0),
4712 const1_rtx);
4715 else if (STORE_FLAG_VALUE == 1
4716 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4717 && op1 == const0_rtx
4718 && mode == GET_MODE (op0)
4719 && (num_sign_bit_copies (op0, mode)
4720 == GET_MODE_BITSIZE (mode)))
4722 op0 = expand_compound_operation (op0);
4723 return plus_constant (gen_lowpart (mode, op0), 1);
4726 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4727 those above. */
4728 if (STORE_FLAG_VALUE == -1
4729 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4730 && op1 == const0_rtx
4731 && (num_sign_bit_copies (op0, mode)
4732 == GET_MODE_BITSIZE (mode)))
4733 return gen_lowpart (mode,
4734 expand_compound_operation (op0));
4736 else if (STORE_FLAG_VALUE == -1
4737 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4738 && op1 == const0_rtx
4739 && mode == GET_MODE (op0)
4740 && nonzero_bits (op0, mode) == 1)
4742 op0 = expand_compound_operation (op0);
4743 return simplify_gen_unary (NEG, mode,
4744 gen_lowpart (mode, op0),
4745 mode);
4748 else if (STORE_FLAG_VALUE == -1
4749 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4750 && op1 == const0_rtx
4751 && mode == GET_MODE (op0)
4752 && (num_sign_bit_copies (op0, mode)
4753 == GET_MODE_BITSIZE (mode)))
4755 op0 = expand_compound_operation (op0);
4756 return simplify_gen_unary (NOT, mode,
4757 gen_lowpart (mode, op0),
4758 mode);
4761 /* If X is 0/1, (eq X 0) is X-1. */
4762 else if (STORE_FLAG_VALUE == -1
4763 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4764 && op1 == const0_rtx
4765 && mode == GET_MODE (op0)
4766 && nonzero_bits (op0, mode) == 1)
4768 op0 = expand_compound_operation (op0);
4769 return plus_constant (gen_lowpart (mode, op0), -1);
4772 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4773 one bit that might be nonzero, we can convert (ne x 0) to
4774 (ashift x c) where C puts the bit in the sign bit. Remove any
4775 AND with STORE_FLAG_VALUE when we are done, since we are only
4776 going to test the sign bit. */
4777 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4778 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4779 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4780 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4781 && op1 == const0_rtx
4782 && mode == GET_MODE (op0)
4783 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4785 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4786 expand_compound_operation (op0),
4787 GET_MODE_BITSIZE (mode) - 1 - i);
4788 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4789 return XEXP (x, 0);
4790 else
4791 return x;
4794 /* If the code changed, return a whole new comparison. */
4795 if (new_code != code)
4796 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4798 /* Otherwise, keep this operation, but maybe change its operands.
4799 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4800 SUBST (XEXP (x, 0), op0);
4801 SUBST (XEXP (x, 1), op1);
4803 break;
4805 case IF_THEN_ELSE:
4806 return simplify_if_then_else (x);
4808 case ZERO_EXTRACT:
4809 case SIGN_EXTRACT:
4810 case ZERO_EXTEND:
4811 case SIGN_EXTEND:
4812 /* If we are processing SET_DEST, we are done. */
4813 if (in_dest)
4814 return x;
4816 return expand_compound_operation (x);
4818 case SET:
4819 return simplify_set (x);
4821 case AND:
4822 case IOR:
4823 case XOR:
4824 return simplify_logical (x);
4826 case ABS:
4827 /* (abs (neg <foo>)) -> (abs <foo>) */
4828 if (GET_CODE (XEXP (x, 0)) == NEG)
4829 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4831 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4832 do nothing. */
4833 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4834 break;
4836 /* If operand is something known to be positive, ignore the ABS. */
4837 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4838 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4839 <= HOST_BITS_PER_WIDE_INT)
4840 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4841 & ((HOST_WIDE_INT) 1
4842 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4843 == 0)))
4844 return XEXP (x, 0);
4846 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4847 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4848 return gen_rtx_NEG (mode, XEXP (x, 0));
4850 break;
4852 case FFS:
4853 /* (ffs (*_extend <X>)) = (ffs <X>) */
4854 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4855 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4856 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4857 break;
4859 case POPCOUNT:
4860 case PARITY:
4861 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4862 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4863 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4864 break;
4866 case FLOAT:
4867 /* (float (sign_extend <X>)) = (float <X>). */
4868 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4869 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4870 break;
4872 case ASHIFT:
4873 case LSHIFTRT:
4874 case ASHIFTRT:
4875 case ROTATE:
4876 case ROTATERT:
4877 /* If this is a shift by a constant amount, simplify it. */
4878 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4879 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4880 INTVAL (XEXP (x, 1)));
4882 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4883 SUBST (XEXP (x, 1),
4884 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4885 ((HOST_WIDE_INT) 1
4886 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4887 - 1,
4888 NULL_RTX, 0));
4889 break;
4891 case VEC_SELECT:
4893 rtx op0 = XEXP (x, 0);
4894 rtx op1 = XEXP (x, 1);
4895 int len;
4897 gcc_assert (GET_CODE (op1) == PARALLEL);
4898 len = XVECLEN (op1, 0);
4899 if (len == 1
4900 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4901 && GET_CODE (op0) == VEC_CONCAT)
4903 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4905 /* Try to find the element in the VEC_CONCAT. */
4906 for (;;)
4908 if (GET_MODE (op0) == GET_MODE (x))
4909 return op0;
4910 if (GET_CODE (op0) == VEC_CONCAT)
4912 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4913 if (offset < op0_size)
4914 op0 = XEXP (op0, 0);
4915 else
4917 offset -= op0_size;
4918 op0 = XEXP (op0, 1);
4921 else
4922 break;
4927 break;
4929 default:
4930 break;
4933 return x;
4936 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4938 static rtx
4939 simplify_if_then_else (rtx x)
4941 enum machine_mode mode = GET_MODE (x);
4942 rtx cond = XEXP (x, 0);
4943 rtx true_rtx = XEXP (x, 1);
4944 rtx false_rtx = XEXP (x, 2);
4945 enum rtx_code true_code = GET_CODE (cond);
4946 int comparison_p = COMPARISON_P (cond);
4947 rtx temp;
4948 int i;
4949 enum rtx_code false_code;
4950 rtx reversed;
4952 /* Simplify storing of the truth value. */
4953 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4954 return simplify_gen_relational (true_code, mode, VOIDmode,
4955 XEXP (cond, 0), XEXP (cond, 1));
4957 /* Also when the truth value has to be reversed. */
4958 if (comparison_p
4959 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4960 && (reversed = reversed_comparison (cond, mode)))
4961 return reversed;
4963 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4964 in it is being compared against certain values. Get the true and false
4965 comparisons and see if that says anything about the value of each arm. */
4967 if (comparison_p
4968 && ((false_code = reversed_comparison_code (cond, NULL))
4969 != UNKNOWN)
4970 && REG_P (XEXP (cond, 0)))
4972 HOST_WIDE_INT nzb;
4973 rtx from = XEXP (cond, 0);
4974 rtx true_val = XEXP (cond, 1);
4975 rtx false_val = true_val;
4976 int swapped = 0;
4978 /* If FALSE_CODE is EQ, swap the codes and arms. */
4980 if (false_code == EQ)
4982 swapped = 1, true_code = EQ, false_code = NE;
4983 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4986 /* If we are comparing against zero and the expression being tested has
4987 only a single bit that might be nonzero, that is its value when it is
4988 not equal to zero. Similarly if it is known to be -1 or 0. */
4990 if (true_code == EQ && true_val == const0_rtx
4991 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4992 false_code = EQ, false_val = GEN_INT (nzb);
4993 else if (true_code == EQ && true_val == const0_rtx
4994 && (num_sign_bit_copies (from, GET_MODE (from))
4995 == GET_MODE_BITSIZE (GET_MODE (from))))
4996 false_code = EQ, false_val = constm1_rtx;
4998 /* Now simplify an arm if we know the value of the register in the
4999 branch and it is used in the arm. Be careful due to the potential
5000 of locally-shared RTL. */
5002 if (reg_mentioned_p (from, true_rtx))
5003 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5004 from, true_val),
5005 pc_rtx, pc_rtx, 0, 0);
5006 if (reg_mentioned_p (from, false_rtx))
5007 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5008 from, false_val),
5009 pc_rtx, pc_rtx, 0, 0);
5011 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5012 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5014 true_rtx = XEXP (x, 1);
5015 false_rtx = XEXP (x, 2);
5016 true_code = GET_CODE (cond);
5019 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5020 reversed, do so to avoid needing two sets of patterns for
5021 subtract-and-branch insns. Similarly if we have a constant in the true
5022 arm, the false arm is the same as the first operand of the comparison, or
5023 the false arm is more complicated than the true arm. */
5025 if (comparison_p
5026 && reversed_comparison_code (cond, NULL) != UNKNOWN
5027 && (true_rtx == pc_rtx
5028 || (CONSTANT_P (true_rtx)
5029 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
5030 || true_rtx == const0_rtx
5031 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5032 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5033 && !OBJECT_P (false_rtx))
5034 || reg_mentioned_p (true_rtx, false_rtx)
5035 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5037 true_code = reversed_comparison_code (cond, NULL);
5038 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5039 SUBST (XEXP (x, 1), false_rtx);
5040 SUBST (XEXP (x, 2), true_rtx);
5042 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5043 cond = XEXP (x, 0);
5045 /* It is possible that the conditional has been simplified out. */
5046 true_code = GET_CODE (cond);
5047 comparison_p = COMPARISON_P (cond);
5050 /* If the two arms are identical, we don't need the comparison. */
5052 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5053 return true_rtx;
5055 /* Convert a == b ? b : a to "a". */
5056 if (true_code == EQ && ! side_effects_p (cond)
5057 && !HONOR_NANS (mode)
5058 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5059 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5060 return false_rtx;
5061 else if (true_code == NE && ! side_effects_p (cond)
5062 && !HONOR_NANS (mode)
5063 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5064 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5065 return true_rtx;
5067 /* Look for cases where we have (abs x) or (neg (abs X)). */
5069 if (GET_MODE_CLASS (mode) == MODE_INT
5070 && comparison_p
5071 && XEXP (cond, 1) == const0_rtx
5072 && GET_CODE (false_rtx) == NEG
5073 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5074 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5075 && ! side_effects_p (true_rtx))
5076 switch (true_code)
5078 case GT:
5079 case GE:
5080 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5081 case LT:
5082 case LE:
5083 return
5084 simplify_gen_unary (NEG, mode,
5085 simplify_gen_unary (ABS, mode, true_rtx, mode),
5086 mode);
5087 default:
5088 break;
5091 /* Look for MIN or MAX. */
5093 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5094 && comparison_p
5095 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5096 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5097 && ! side_effects_p (cond))
5098 switch (true_code)
5100 case GE:
5101 case GT:
5102 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5103 case LE:
5104 case LT:
5105 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5106 case GEU:
5107 case GTU:
5108 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5109 case LEU:
5110 case LTU:
5111 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5112 default:
5113 break;
5116 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5117 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5118 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5119 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5120 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5121 neither 1 or -1, but it isn't worth checking for. */
5123 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5124 && comparison_p
5125 && GET_MODE_CLASS (mode) == MODE_INT
5126 && ! side_effects_p (x))
5128 rtx t = make_compound_operation (true_rtx, SET);
5129 rtx f = make_compound_operation (false_rtx, SET);
5130 rtx cond_op0 = XEXP (cond, 0);
5131 rtx cond_op1 = XEXP (cond, 1);
5132 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5133 enum machine_mode m = mode;
5134 rtx z = 0, c1 = NULL_RTX;
5136 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5137 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5138 || GET_CODE (t) == ASHIFT
5139 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5140 && rtx_equal_p (XEXP (t, 0), f))
5141 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5143 /* If an identity-zero op is commutative, check whether there
5144 would be a match if we swapped the operands. */
5145 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5146 || GET_CODE (t) == XOR)
5147 && rtx_equal_p (XEXP (t, 1), f))
5148 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5149 else if (GET_CODE (t) == SIGN_EXTEND
5150 && (GET_CODE (XEXP (t, 0)) == PLUS
5151 || GET_CODE (XEXP (t, 0)) == MINUS
5152 || GET_CODE (XEXP (t, 0)) == IOR
5153 || GET_CODE (XEXP (t, 0)) == XOR
5154 || GET_CODE (XEXP (t, 0)) == ASHIFT
5155 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5156 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5157 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5158 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5159 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5160 && (num_sign_bit_copies (f, GET_MODE (f))
5161 > (unsigned int)
5162 (GET_MODE_BITSIZE (mode)
5163 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5165 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5166 extend_op = SIGN_EXTEND;
5167 m = GET_MODE (XEXP (t, 0));
5169 else if (GET_CODE (t) == SIGN_EXTEND
5170 && (GET_CODE (XEXP (t, 0)) == PLUS
5171 || GET_CODE (XEXP (t, 0)) == IOR
5172 || GET_CODE (XEXP (t, 0)) == XOR)
5173 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5174 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5175 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5176 && (num_sign_bit_copies (f, GET_MODE (f))
5177 > (unsigned int)
5178 (GET_MODE_BITSIZE (mode)
5179 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5181 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5182 extend_op = SIGN_EXTEND;
5183 m = GET_MODE (XEXP (t, 0));
5185 else if (GET_CODE (t) == ZERO_EXTEND
5186 && (GET_CODE (XEXP (t, 0)) == PLUS
5187 || GET_CODE (XEXP (t, 0)) == MINUS
5188 || GET_CODE (XEXP (t, 0)) == IOR
5189 || GET_CODE (XEXP (t, 0)) == XOR
5190 || GET_CODE (XEXP (t, 0)) == ASHIFT
5191 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5192 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5193 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5194 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5195 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5196 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5197 && ((nonzero_bits (f, GET_MODE (f))
5198 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5199 == 0))
5201 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5202 extend_op = ZERO_EXTEND;
5203 m = GET_MODE (XEXP (t, 0));
5205 else if (GET_CODE (t) == ZERO_EXTEND
5206 && (GET_CODE (XEXP (t, 0)) == PLUS
5207 || GET_CODE (XEXP (t, 0)) == IOR
5208 || GET_CODE (XEXP (t, 0)) == XOR)
5209 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5210 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5211 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5212 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5213 && ((nonzero_bits (f, GET_MODE (f))
5214 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5215 == 0))
5217 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5218 extend_op = ZERO_EXTEND;
5219 m = GET_MODE (XEXP (t, 0));
5222 if (z)
5224 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5225 cond_op0, cond_op1),
5226 pc_rtx, pc_rtx, 0, 0);
5227 temp = simplify_gen_binary (MULT, m, temp,
5228 simplify_gen_binary (MULT, m, c1,
5229 const_true_rtx));
5230 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5231 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5233 if (extend_op != UNKNOWN)
5234 temp = simplify_gen_unary (extend_op, mode, temp, m);
5236 return temp;
5240 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5241 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5242 negation of a single bit, we can convert this operation to a shift. We
5243 can actually do this more generally, but it doesn't seem worth it. */
5245 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5246 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5247 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5248 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5249 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5250 == GET_MODE_BITSIZE (mode))
5251 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5252 return
5253 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5254 gen_lowpart (mode, XEXP (cond, 0)), i);
5256 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5257 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5258 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5259 && GET_MODE (XEXP (cond, 0)) == mode
5260 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5261 == nonzero_bits (XEXP (cond, 0), mode)
5262 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5263 return XEXP (cond, 0);
5265 return x;
5268 /* Simplify X, a SET expression. Return the new expression. */
5270 static rtx
5271 simplify_set (rtx x)
5273 rtx src = SET_SRC (x);
5274 rtx dest = SET_DEST (x);
5275 enum machine_mode mode
5276 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5277 rtx other_insn;
5278 rtx *cc_use;
5280 /* (set (pc) (return)) gets written as (return). */
5281 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5282 return src;
5284 /* Now that we know for sure which bits of SRC we are using, see if we can
5285 simplify the expression for the object knowing that we only need the
5286 low-order bits. */
5288 if (GET_MODE_CLASS (mode) == MODE_INT
5289 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5291 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5292 SUBST (SET_SRC (x), src);
5295 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5296 the comparison result and try to simplify it unless we already have used
5297 undobuf.other_insn. */
5298 if ((GET_MODE_CLASS (mode) == MODE_CC
5299 || GET_CODE (src) == COMPARE
5300 || CC0_P (dest))
5301 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5302 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5303 && COMPARISON_P (*cc_use)
5304 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5306 enum rtx_code old_code = GET_CODE (*cc_use);
5307 enum rtx_code new_code;
5308 rtx op0, op1, tmp;
5309 int other_changed = 0;
5310 enum machine_mode compare_mode = GET_MODE (dest);
5312 if (GET_CODE (src) == COMPARE)
5313 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5314 else
5315 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5317 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5318 op0, op1);
5319 if (!tmp)
5320 new_code = old_code;
5321 else if (!CONSTANT_P (tmp))
5323 new_code = GET_CODE (tmp);
5324 op0 = XEXP (tmp, 0);
5325 op1 = XEXP (tmp, 1);
5327 else
5329 rtx pat = PATTERN (other_insn);
5330 undobuf.other_insn = other_insn;
5331 SUBST (*cc_use, tmp);
5333 /* Attempt to simplify CC user. */
5334 if (GET_CODE (pat) == SET)
5336 rtx new = simplify_rtx (SET_SRC (pat));
5337 if (new != NULL_RTX)
5338 SUBST (SET_SRC (pat), new);
5341 /* Convert X into a no-op move. */
5342 SUBST (SET_DEST (x), pc_rtx);
5343 SUBST (SET_SRC (x), pc_rtx);
5344 return x;
5347 /* Simplify our comparison, if possible. */
5348 new_code = simplify_comparison (new_code, &op0, &op1);
5350 #ifdef SELECT_CC_MODE
5351 /* If this machine has CC modes other than CCmode, check to see if we
5352 need to use a different CC mode here. */
5353 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5354 compare_mode = GET_MODE (op0);
5355 else
5356 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5358 #ifndef HAVE_cc0
5359 /* If the mode changed, we have to change SET_DEST, the mode in the
5360 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5361 a hard register, just build new versions with the proper mode. If it
5362 is a pseudo, we lose unless it is only time we set the pseudo, in
5363 which case we can safely change its mode. */
5364 if (compare_mode != GET_MODE (dest))
5366 if (can_change_dest_mode (dest, 0, compare_mode))
5368 unsigned int regno = REGNO (dest);
5369 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5371 if (regno >= FIRST_PSEUDO_REGISTER)
5372 SUBST (regno_reg_rtx[regno], new_dest);
5374 SUBST (SET_DEST (x), new_dest);
5375 SUBST (XEXP (*cc_use, 0), new_dest);
5376 other_changed = 1;
5378 dest = new_dest;
5381 #endif /* cc0 */
5382 #endif /* SELECT_CC_MODE */
5384 /* If the code changed, we have to build a new comparison in
5385 undobuf.other_insn. */
5386 if (new_code != old_code)
5388 int other_changed_previously = other_changed;
5389 unsigned HOST_WIDE_INT mask;
5391 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5392 dest, const0_rtx));
5393 other_changed = 1;
5395 /* If the only change we made was to change an EQ into an NE or
5396 vice versa, OP0 has only one bit that might be nonzero, and OP1
5397 is zero, check if changing the user of the condition code will
5398 produce a valid insn. If it won't, we can keep the original code
5399 in that insn by surrounding our operation with an XOR. */
5401 if (((old_code == NE && new_code == EQ)
5402 || (old_code == EQ && new_code == NE))
5403 && ! other_changed_previously && op1 == const0_rtx
5404 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5405 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5407 rtx pat = PATTERN (other_insn), note = 0;
5409 if ((recog_for_combine (&pat, other_insn, &note) < 0
5410 && ! check_asm_operands (pat)))
5412 PUT_CODE (*cc_use, old_code);
5413 other_changed = 0;
5415 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5416 op0, GEN_INT (mask));
5421 if (other_changed)
5422 undobuf.other_insn = other_insn;
5424 #ifdef HAVE_cc0
5425 /* If we are now comparing against zero, change our source if
5426 needed. If we do not use cc0, we always have a COMPARE. */
5427 if (op1 == const0_rtx && dest == cc0_rtx)
5429 SUBST (SET_SRC (x), op0);
5430 src = op0;
5432 else
5433 #endif
5435 /* Otherwise, if we didn't previously have a COMPARE in the
5436 correct mode, we need one. */
5437 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5439 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5440 src = SET_SRC (x);
5442 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5444 SUBST (SET_SRC (x), op0);
5445 src = SET_SRC (x);
5447 /* Otherwise, update the COMPARE if needed. */
5448 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
5450 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5451 src = SET_SRC (x);
5454 else
5456 /* Get SET_SRC in a form where we have placed back any
5457 compound expressions. Then do the checks below. */
5458 src = make_compound_operation (src, SET);
5459 SUBST (SET_SRC (x), src);
5462 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5463 and X being a REG or (subreg (reg)), we may be able to convert this to
5464 (set (subreg:m2 x) (op)).
5466 We can always do this if M1 is narrower than M2 because that means that
5467 we only care about the low bits of the result.
5469 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5470 perform a narrower operation than requested since the high-order bits will
5471 be undefined. On machine where it is defined, this transformation is safe
5472 as long as M1 and M2 have the same number of words. */
5474 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5475 && !OBJECT_P (SUBREG_REG (src))
5476 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5477 / UNITS_PER_WORD)
5478 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5479 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5480 #ifndef WORD_REGISTER_OPERATIONS
5481 && (GET_MODE_SIZE (GET_MODE (src))
5482 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5483 #endif
5484 #ifdef CANNOT_CHANGE_MODE_CLASS
5485 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5486 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5487 GET_MODE (SUBREG_REG (src)),
5488 GET_MODE (src)))
5489 #endif
5490 && (REG_P (dest)
5491 || (GET_CODE (dest) == SUBREG
5492 && REG_P (SUBREG_REG (dest)))))
5494 SUBST (SET_DEST (x),
5495 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5496 dest));
5497 SUBST (SET_SRC (x), SUBREG_REG (src));
5499 src = SET_SRC (x), dest = SET_DEST (x);
5502 #ifdef HAVE_cc0
5503 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5504 in SRC. */
5505 if (dest == cc0_rtx
5506 && GET_CODE (src) == SUBREG
5507 && subreg_lowpart_p (src)
5508 && (GET_MODE_BITSIZE (GET_MODE (src))
5509 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5511 rtx inner = SUBREG_REG (src);
5512 enum machine_mode inner_mode = GET_MODE (inner);
5514 /* Here we make sure that we don't have a sign bit on. */
5515 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5516 && (nonzero_bits (inner, inner_mode)
5517 < ((unsigned HOST_WIDE_INT) 1
5518 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5520 SUBST (SET_SRC (x), inner);
5521 src = SET_SRC (x);
5524 #endif
5526 #ifdef LOAD_EXTEND_OP
5527 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5528 would require a paradoxical subreg. Replace the subreg with a
5529 zero_extend to avoid the reload that would otherwise be required. */
5531 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5532 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5533 && SUBREG_BYTE (src) == 0
5534 && (GET_MODE_SIZE (GET_MODE (src))
5535 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5536 && MEM_P (SUBREG_REG (src)))
5538 SUBST (SET_SRC (x),
5539 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5540 GET_MODE (src), SUBREG_REG (src)));
5542 src = SET_SRC (x);
5544 #endif
5546 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5547 are comparing an item known to be 0 or -1 against 0, use a logical
5548 operation instead. Check for one of the arms being an IOR of the other
5549 arm with some value. We compute three terms to be IOR'ed together. In
5550 practice, at most two will be nonzero. Then we do the IOR's. */
5552 if (GET_CODE (dest) != PC
5553 && GET_CODE (src) == IF_THEN_ELSE
5554 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5555 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5556 && XEXP (XEXP (src, 0), 1) == const0_rtx
5557 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5558 #ifdef HAVE_conditional_move
5559 && ! can_conditionally_move_p (GET_MODE (src))
5560 #endif
5561 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5562 GET_MODE (XEXP (XEXP (src, 0), 0)))
5563 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5564 && ! side_effects_p (src))
5566 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5567 ? XEXP (src, 1) : XEXP (src, 2));
5568 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5569 ? XEXP (src, 2) : XEXP (src, 1));
5570 rtx term1 = const0_rtx, term2, term3;
5572 if (GET_CODE (true_rtx) == IOR
5573 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5574 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5575 else if (GET_CODE (true_rtx) == IOR
5576 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5577 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5578 else if (GET_CODE (false_rtx) == IOR
5579 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5580 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5581 else if (GET_CODE (false_rtx) == IOR
5582 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5583 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5585 term2 = simplify_gen_binary (AND, GET_MODE (src),
5586 XEXP (XEXP (src, 0), 0), true_rtx);
5587 term3 = simplify_gen_binary (AND, GET_MODE (src),
5588 simplify_gen_unary (NOT, GET_MODE (src),
5589 XEXP (XEXP (src, 0), 0),
5590 GET_MODE (src)),
5591 false_rtx);
5593 SUBST (SET_SRC (x),
5594 simplify_gen_binary (IOR, GET_MODE (src),
5595 simplify_gen_binary (IOR, GET_MODE (src),
5596 term1, term2),
5597 term3));
5599 src = SET_SRC (x);
5602 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5603 whole thing fail. */
5604 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5605 return src;
5606 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5607 return dest;
5608 else
5609 /* Convert this into a field assignment operation, if possible. */
5610 return make_field_assignment (x);
5613 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5614 result. */
5616 static rtx
5617 simplify_logical (rtx x)
5619 enum machine_mode mode = GET_MODE (x);
5620 rtx op0 = XEXP (x, 0);
5621 rtx op1 = XEXP (x, 1);
5622 rtx reversed;
5624 switch (GET_CODE (x))
5626 case AND:
5627 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5628 insn (and may simplify more). */
5629 if (GET_CODE (op0) == XOR
5630 && rtx_equal_p (XEXP (op0, 0), op1)
5631 && ! side_effects_p (op1))
5632 x = simplify_gen_binary (AND, mode,
5633 simplify_gen_unary (NOT, mode,
5634 XEXP (op0, 1), mode),
5635 op1);
5637 if (GET_CODE (op0) == XOR
5638 && rtx_equal_p (XEXP (op0, 1), op1)
5639 && ! side_effects_p (op1))
5640 x = simplify_gen_binary (AND, mode,
5641 simplify_gen_unary (NOT, mode,
5642 XEXP (op0, 0), mode),
5643 op1);
5645 /* Similarly for (~(A ^ B)) & A. */
5646 if (GET_CODE (op0) == NOT
5647 && GET_CODE (XEXP (op0, 0)) == XOR
5648 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5649 && ! side_effects_p (op1))
5650 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5652 if (GET_CODE (op0) == NOT
5653 && GET_CODE (XEXP (op0, 0)) == XOR
5654 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5655 && ! side_effects_p (op1))
5656 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5658 /* We can call simplify_and_const_int only if we don't lose
5659 any (sign) bits when converting INTVAL (op1) to
5660 "unsigned HOST_WIDE_INT". */
5661 if (GET_CODE (op1) == CONST_INT
5662 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5663 || INTVAL (op1) > 0))
5665 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5667 /* If we have (ior (and (X C1) C2)) and the next restart would be
5668 the last, simplify this by making C1 as small as possible
5669 and then exit. Only do this if C1 actually changes: for now
5670 this only saves memory but, should this transformation be
5671 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5672 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5673 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5674 && GET_CODE (op1) == CONST_INT
5675 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5676 return simplify_gen_binary (IOR, mode,
5677 simplify_gen_binary
5678 (AND, mode, XEXP (op0, 0),
5679 GEN_INT (INTVAL (XEXP (op0, 1))
5680 & ~INTVAL (op1))), op1);
5682 if (GET_CODE (x) != AND)
5683 return x;
5685 op0 = XEXP (x, 0);
5686 op1 = XEXP (x, 1);
5689 /* Convert (A | B) & A to A. */
5690 if (GET_CODE (op0) == IOR
5691 && (rtx_equal_p (XEXP (op0, 0), op1)
5692 || rtx_equal_p (XEXP (op0, 1), op1))
5693 && ! side_effects_p (XEXP (op0, 0))
5694 && ! side_effects_p (XEXP (op0, 1)))
5695 return op1;
5697 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5698 apply the distributive law and then the inverse distributive
5699 law to see if things simplify. */
5700 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5702 rtx result = distribute_and_simplify_rtx (x, 0);
5703 if (result)
5704 return result;
5706 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5708 rtx result = distribute_and_simplify_rtx (x, 1);
5709 if (result)
5710 return result;
5712 break;
5714 case IOR:
5715 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5716 if (GET_CODE (op1) == CONST_INT
5717 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5718 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5719 return op1;
5721 /* Convert (A & B) | A to A. */
5722 if (GET_CODE (op0) == AND
5723 && (rtx_equal_p (XEXP (op0, 0), op1)
5724 || rtx_equal_p (XEXP (op0, 1), op1))
5725 && ! side_effects_p (XEXP (op0, 0))
5726 && ! side_effects_p (XEXP (op0, 1)))
5727 return op1;
5729 /* If we have (ior (and A B) C), apply the distributive law and then
5730 the inverse distributive law to see if things simplify. */
5732 if (GET_CODE (op0) == AND)
5734 rtx result = distribute_and_simplify_rtx (x, 0);
5735 if (result)
5736 return result;
5739 if (GET_CODE (op1) == AND)
5741 rtx result = distribute_and_simplify_rtx (x, 1);
5742 if (result)
5743 return result;
5746 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5747 mode size to (rotate A CX). */
5749 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5750 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5751 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5752 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5753 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5754 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5755 == GET_MODE_BITSIZE (mode)))
5756 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5757 (GET_CODE (op0) == ASHIFT
5758 ? XEXP (op0, 1) : XEXP (op1, 1)));
5760 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5761 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5762 does not affect any of the bits in OP1, it can really be done
5763 as a PLUS and we can associate. We do this by seeing if OP1
5764 can be safely shifted left C bits. */
5765 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5766 && GET_CODE (XEXP (op0, 0)) == PLUS
5767 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5768 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5769 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5771 int count = INTVAL (XEXP (op0, 1));
5772 HOST_WIDE_INT mask = INTVAL (op1) << count;
5774 if (mask >> count == INTVAL (op1)
5775 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5777 SUBST (XEXP (XEXP (op0, 0), 1),
5778 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5779 return op0;
5782 break;
5784 case XOR:
5785 /* If we are XORing two things that have no bits in common,
5786 convert them into an IOR. This helps to detect rotation encoded
5787 using those methods and possibly other simplifications. */
5789 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5790 && (nonzero_bits (op0, mode)
5791 & nonzero_bits (op1, mode)) == 0)
5792 return (simplify_gen_binary (IOR, mode, op0, op1));
5794 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5795 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5796 (NOT y). */
5798 int num_negated = 0;
5800 if (GET_CODE (op0) == NOT)
5801 num_negated++, op0 = XEXP (op0, 0);
5802 if (GET_CODE (op1) == NOT)
5803 num_negated++, op1 = XEXP (op1, 0);
5805 if (num_negated == 2)
5807 SUBST (XEXP (x, 0), op0);
5808 SUBST (XEXP (x, 1), op1);
5810 else if (num_negated == 1)
5811 return
5812 simplify_gen_unary (NOT, mode,
5813 simplify_gen_binary (XOR, mode, op0, op1),
5814 mode);
5817 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5818 correspond to a machine insn or result in further simplifications
5819 if B is a constant. */
5821 if (GET_CODE (op0) == AND
5822 && rtx_equal_p (XEXP (op0, 1), op1)
5823 && ! side_effects_p (op1))
5824 return simplify_gen_binary (AND, mode,
5825 simplify_gen_unary (NOT, mode,
5826 XEXP (op0, 0), mode),
5827 op1);
5829 else if (GET_CODE (op0) == AND
5830 && rtx_equal_p (XEXP (op0, 0), op1)
5831 && ! side_effects_p (op1))
5832 return simplify_gen_binary (AND, mode,
5833 simplify_gen_unary (NOT, mode,
5834 XEXP (op0, 1), mode),
5835 op1);
5837 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5838 comparison if STORE_FLAG_VALUE is 1. */
5839 if (STORE_FLAG_VALUE == 1
5840 && op1 == const1_rtx
5841 && COMPARISON_P (op0)
5842 && (reversed = reversed_comparison (op0, mode)))
5843 return reversed;
5845 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5846 is (lt foo (const_int 0)), so we can perform the above
5847 simplification if STORE_FLAG_VALUE is 1. */
5849 if (STORE_FLAG_VALUE == 1
5850 && op1 == const1_rtx
5851 && GET_CODE (op0) == LSHIFTRT
5852 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5853 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5854 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5856 /* (xor (comparison foo bar) (const_int sign-bit))
5857 when STORE_FLAG_VALUE is the sign bit. */
5858 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5859 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5860 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5861 && op1 == const_true_rtx
5862 && COMPARISON_P (op0)
5863 && (reversed = reversed_comparison (op0, mode)))
5864 return reversed;
5866 break;
5868 default:
5869 gcc_unreachable ();
5872 return x;
5875 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5876 operations" because they can be replaced with two more basic operations.
5877 ZERO_EXTEND is also considered "compound" because it can be replaced with
5878 an AND operation, which is simpler, though only one operation.
5880 The function expand_compound_operation is called with an rtx expression
5881 and will convert it to the appropriate shifts and AND operations,
5882 simplifying at each stage.
5884 The function make_compound_operation is called to convert an expression
5885 consisting of shifts and ANDs into the equivalent compound expression.
5886 It is the inverse of this function, loosely speaking. */
5888 static rtx
5889 expand_compound_operation (rtx x)
5891 unsigned HOST_WIDE_INT pos = 0, len;
5892 int unsignedp = 0;
5893 unsigned int modewidth;
5894 rtx tem;
5896 switch (GET_CODE (x))
5898 case ZERO_EXTEND:
5899 unsignedp = 1;
5900 case SIGN_EXTEND:
5901 /* We can't necessarily use a const_int for a multiword mode;
5902 it depends on implicitly extending the value.
5903 Since we don't know the right way to extend it,
5904 we can't tell whether the implicit way is right.
5906 Even for a mode that is no wider than a const_int,
5907 we can't win, because we need to sign extend one of its bits through
5908 the rest of it, and we don't know which bit. */
5909 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5910 return x;
5912 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5913 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5914 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5915 reloaded. If not for that, MEM's would very rarely be safe.
5917 Reject MODEs bigger than a word, because we might not be able
5918 to reference a two-register group starting with an arbitrary register
5919 (and currently gen_lowpart might crash for a SUBREG). */
5921 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5922 return x;
5924 /* Reject MODEs that aren't scalar integers because turning vector
5925 or complex modes into shifts causes problems. */
5927 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5928 return x;
5930 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5931 /* If the inner object has VOIDmode (the only way this can happen
5932 is if it is an ASM_OPERANDS), we can't do anything since we don't
5933 know how much masking to do. */
5934 if (len == 0)
5935 return x;
5937 break;
5939 case ZERO_EXTRACT:
5940 unsignedp = 1;
5942 /* ... fall through ... */
5944 case SIGN_EXTRACT:
5945 /* If the operand is a CLOBBER, just return it. */
5946 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5947 return XEXP (x, 0);
5949 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5950 || GET_CODE (XEXP (x, 2)) != CONST_INT
5951 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5952 return x;
5954 /* Reject MODEs that aren't scalar integers because turning vector
5955 or complex modes into shifts causes problems. */
5957 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5958 return x;
5960 len = INTVAL (XEXP (x, 1));
5961 pos = INTVAL (XEXP (x, 2));
5963 /* If this goes outside the object being extracted, replace the object
5964 with a (use (mem ...)) construct that only combine understands
5965 and is used only for this purpose. */
5966 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5967 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5969 if (BITS_BIG_ENDIAN)
5970 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5972 break;
5974 default:
5975 return x;
5977 /* Convert sign extension to zero extension, if we know that the high
5978 bit is not set, as this is easier to optimize. It will be converted
5979 back to cheaper alternative in make_extraction. */
5980 if (GET_CODE (x) == SIGN_EXTEND
5981 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5982 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5983 & ~(((unsigned HOST_WIDE_INT)
5984 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5985 >> 1))
5986 == 0)))
5988 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5989 rtx temp2 = expand_compound_operation (temp);
5991 /* Make sure this is a profitable operation. */
5992 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5993 return temp2;
5994 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5995 return temp;
5996 else
5997 return x;
6000 /* We can optimize some special cases of ZERO_EXTEND. */
6001 if (GET_CODE (x) == ZERO_EXTEND)
6003 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6004 know that the last value didn't have any inappropriate bits
6005 set. */
6006 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6007 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6008 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6009 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6010 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6011 return XEXP (XEXP (x, 0), 0);
6013 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6014 if (GET_CODE (XEXP (x, 0)) == SUBREG
6015 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6016 && subreg_lowpart_p (XEXP (x, 0))
6017 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6018 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6019 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6020 return SUBREG_REG (XEXP (x, 0));
6022 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6023 is a comparison and STORE_FLAG_VALUE permits. This is like
6024 the first case, but it works even when GET_MODE (x) is larger
6025 than HOST_WIDE_INT. */
6026 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6027 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6028 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6029 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6030 <= HOST_BITS_PER_WIDE_INT)
6031 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6032 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6033 return XEXP (XEXP (x, 0), 0);
6035 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6036 if (GET_CODE (XEXP (x, 0)) == SUBREG
6037 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6038 && subreg_lowpart_p (XEXP (x, 0))
6039 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6040 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6041 <= HOST_BITS_PER_WIDE_INT)
6042 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6043 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6044 return SUBREG_REG (XEXP (x, 0));
6048 /* If we reach here, we want to return a pair of shifts. The inner
6049 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6050 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6051 logical depending on the value of UNSIGNEDP.
6053 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6054 converted into an AND of a shift.
6056 We must check for the case where the left shift would have a negative
6057 count. This can happen in a case like (x >> 31) & 255 on machines
6058 that can't shift by a constant. On those machines, we would first
6059 combine the shift with the AND to produce a variable-position
6060 extraction. Then the constant of 31 would be substituted in to produce
6061 a such a position. */
6063 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6064 if (modewidth + len >= pos)
6065 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6066 GET_MODE (x),
6067 simplify_shift_const (NULL_RTX, ASHIFT,
6068 GET_MODE (x),
6069 XEXP (x, 0),
6070 modewidth - pos - len),
6071 modewidth - len);
6073 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6074 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6075 simplify_shift_const (NULL_RTX, LSHIFTRT,
6076 GET_MODE (x),
6077 XEXP (x, 0), pos),
6078 ((HOST_WIDE_INT) 1 << len) - 1);
6079 else
6080 /* Any other cases we can't handle. */
6081 return x;
6083 /* If we couldn't do this for some reason, return the original
6084 expression. */
6085 if (GET_CODE (tem) == CLOBBER)
6086 return x;
6088 return tem;
6091 /* X is a SET which contains an assignment of one object into
6092 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6093 or certain SUBREGS). If possible, convert it into a series of
6094 logical operations.
6096 We half-heartedly support variable positions, but do not at all
6097 support variable lengths. */
6099 static rtx
6100 expand_field_assignment (rtx x)
6102 rtx inner;
6103 rtx pos; /* Always counts from low bit. */
6104 int len;
6105 rtx mask, cleared, masked;
6106 enum machine_mode compute_mode;
6108 /* Loop until we find something we can't simplify. */
6109 while (1)
6111 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6112 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6114 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6115 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6116 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6118 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6119 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
6121 inner = XEXP (SET_DEST (x), 0);
6122 len = INTVAL (XEXP (SET_DEST (x), 1));
6123 pos = XEXP (SET_DEST (x), 2);
6125 /* If the position is constant and spans the width of INNER,
6126 surround INNER with a USE to indicate this. */
6127 if (GET_CODE (pos) == CONST_INT
6128 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6129 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
6131 if (BITS_BIG_ENDIAN)
6133 if (GET_CODE (pos) == CONST_INT)
6134 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6135 - INTVAL (pos));
6136 else if (GET_CODE (pos) == MINUS
6137 && GET_CODE (XEXP (pos, 1)) == CONST_INT
6138 && (INTVAL (XEXP (pos, 1))
6139 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6140 /* If position is ADJUST - X, new position is X. */
6141 pos = XEXP (pos, 0);
6142 else
6143 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6144 GEN_INT (GET_MODE_BITSIZE (
6145 GET_MODE (inner))
6146 - len),
6147 pos);
6151 /* A SUBREG between two modes that occupy the same numbers of words
6152 can be done by moving the SUBREG to the source. */
6153 else if (GET_CODE (SET_DEST (x)) == SUBREG
6154 /* We need SUBREGs to compute nonzero_bits properly. */
6155 && nonzero_sign_valid
6156 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6157 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6158 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6159 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6161 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6162 gen_lowpart
6163 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6164 SET_SRC (x)));
6165 continue;
6167 else
6168 break;
6170 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6171 inner = SUBREG_REG (inner);
6173 compute_mode = GET_MODE (inner);
6175 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6176 if (! SCALAR_INT_MODE_P (compute_mode))
6178 enum machine_mode imode;
6180 /* Don't do anything for vector or complex integral types. */
6181 if (! FLOAT_MODE_P (compute_mode))
6182 break;
6184 /* Try to find an integral mode to pun with. */
6185 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6186 if (imode == BLKmode)
6187 break;
6189 compute_mode = imode;
6190 inner = gen_lowpart (imode, inner);
6193 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6194 if (len >= HOST_BITS_PER_WIDE_INT)
6195 break;
6197 /* Now compute the equivalent expression. Make a copy of INNER
6198 for the SET_DEST in case it is a MEM into which we will substitute;
6199 we don't want shared RTL in that case. */
6200 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6201 cleared = simplify_gen_binary (AND, compute_mode,
6202 simplify_gen_unary (NOT, compute_mode,
6203 simplify_gen_binary (ASHIFT,
6204 compute_mode,
6205 mask, pos),
6206 compute_mode),
6207 inner);
6208 masked = simplify_gen_binary (ASHIFT, compute_mode,
6209 simplify_gen_binary (
6210 AND, compute_mode,
6211 gen_lowpart (compute_mode, SET_SRC (x)),
6212 mask),
6213 pos);
6215 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6216 simplify_gen_binary (IOR, compute_mode,
6217 cleared, masked));
6220 return x;
6223 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6224 it is an RTX that represents a variable starting position; otherwise,
6225 POS is the (constant) starting bit position (counted from the LSB).
6227 INNER may be a USE. This will occur when we started with a bitfield
6228 that went outside the boundary of the object in memory, which is
6229 allowed on most machines. To isolate this case, we produce a USE
6230 whose mode is wide enough and surround the MEM with it. The only
6231 code that understands the USE is this routine. If it is not removed,
6232 it will cause the resulting insn not to match.
6234 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6235 signed reference.
6237 IN_DEST is nonzero if this is a reference in the destination of a
6238 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6239 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6240 be used.
6242 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6243 ZERO_EXTRACT should be built even for bits starting at bit 0.
6245 MODE is the desired mode of the result (if IN_DEST == 0).
6247 The result is an RTX for the extraction or NULL_RTX if the target
6248 can't handle it. */
6250 static rtx
6251 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6252 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6253 int in_dest, int in_compare)
6255 /* This mode describes the size of the storage area
6256 to fetch the overall value from. Within that, we
6257 ignore the POS lowest bits, etc. */
6258 enum machine_mode is_mode = GET_MODE (inner);
6259 enum machine_mode inner_mode;
6260 enum machine_mode wanted_inner_mode = byte_mode;
6261 enum machine_mode wanted_inner_reg_mode = word_mode;
6262 enum machine_mode pos_mode = word_mode;
6263 enum machine_mode extraction_mode = word_mode;
6264 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6265 int spans_byte = 0;
6266 rtx new = 0;
6267 rtx orig_pos_rtx = pos_rtx;
6268 HOST_WIDE_INT orig_pos;
6270 /* Get some information about INNER and get the innermost object. */
6271 if (GET_CODE (inner) == USE)
6272 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6273 /* We don't need to adjust the position because we set up the USE
6274 to pretend that it was a full-word object. */
6275 spans_byte = 1, inner = XEXP (inner, 0);
6276 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6278 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6279 consider just the QI as the memory to extract from.
6280 The subreg adds or removes high bits; its mode is
6281 irrelevant to the meaning of this extraction,
6282 since POS and LEN count from the lsb. */
6283 if (MEM_P (SUBREG_REG (inner)))
6284 is_mode = GET_MODE (SUBREG_REG (inner));
6285 inner = SUBREG_REG (inner);
6287 else if (GET_CODE (inner) == ASHIFT
6288 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6289 && pos_rtx == 0 && pos == 0
6290 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6292 /* We're extracting the least significant bits of an rtx
6293 (ashift X (const_int C)), where LEN > C. Extract the
6294 least significant (LEN - C) bits of X, giving an rtx
6295 whose mode is MODE, then shift it left C times. */
6296 new = make_extraction (mode, XEXP (inner, 0),
6297 0, 0, len - INTVAL (XEXP (inner, 1)),
6298 unsignedp, in_dest, in_compare);
6299 if (new != 0)
6300 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6303 inner_mode = GET_MODE (inner);
6305 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6306 pos = INTVAL (pos_rtx), pos_rtx = 0;
6308 /* See if this can be done without an extraction. We never can if the
6309 width of the field is not the same as that of some integer mode. For
6310 registers, we can only avoid the extraction if the position is at the
6311 low-order bit and this is either not in the destination or we have the
6312 appropriate STRICT_LOW_PART operation available.
6314 For MEM, we can avoid an extract if the field starts on an appropriate
6315 boundary and we can change the mode of the memory reference. However,
6316 we cannot directly access the MEM if we have a USE and the underlying
6317 MEM is not TMODE. This combination means that MEM was being used in a
6318 context where bits outside its mode were being referenced; that is only
6319 valid in bit-field insns. */
6321 if (tmode != BLKmode
6322 && ! (spans_byte && inner_mode != tmode)
6323 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6324 && !MEM_P (inner)
6325 && (! in_dest
6326 || (REG_P (inner)
6327 && have_insn_for (STRICT_LOW_PART, tmode))))
6328 || (MEM_P (inner) && pos_rtx == 0
6329 && (pos
6330 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6331 : BITS_PER_UNIT)) == 0
6332 /* We can't do this if we are widening INNER_MODE (it
6333 may not be aligned, for one thing). */
6334 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6335 && (inner_mode == tmode
6336 || (! mode_dependent_address_p (XEXP (inner, 0))
6337 && ! MEM_VOLATILE_P (inner))))))
6339 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6340 field. If the original and current mode are the same, we need not
6341 adjust the offset. Otherwise, we do if bytes big endian.
6343 If INNER is not a MEM, get a piece consisting of just the field
6344 of interest (in this case POS % BITS_PER_WORD must be 0). */
6346 if (MEM_P (inner))
6348 HOST_WIDE_INT offset;
6350 /* POS counts from lsb, but make OFFSET count in memory order. */
6351 if (BYTES_BIG_ENDIAN)
6352 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6353 else
6354 offset = pos / BITS_PER_UNIT;
6356 new = adjust_address_nv (inner, tmode, offset);
6358 else if (REG_P (inner))
6360 if (tmode != inner_mode)
6362 /* We can't call gen_lowpart in a DEST since we
6363 always want a SUBREG (see below) and it would sometimes
6364 return a new hard register. */
6365 if (pos || in_dest)
6367 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6369 if (WORDS_BIG_ENDIAN
6370 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6371 final_word = ((GET_MODE_SIZE (inner_mode)
6372 - GET_MODE_SIZE (tmode))
6373 / UNITS_PER_WORD) - final_word;
6375 final_word *= UNITS_PER_WORD;
6376 if (BYTES_BIG_ENDIAN &&
6377 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6378 final_word += (GET_MODE_SIZE (inner_mode)
6379 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6381 /* Avoid creating invalid subregs, for example when
6382 simplifying (x>>32)&255. */
6383 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6384 return NULL_RTX;
6386 new = gen_rtx_SUBREG (tmode, inner, final_word);
6388 else
6389 new = gen_lowpart (tmode, inner);
6391 else
6392 new = inner;
6394 else
6395 new = force_to_mode (inner, tmode,
6396 len >= HOST_BITS_PER_WIDE_INT
6397 ? ~(unsigned HOST_WIDE_INT) 0
6398 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6399 NULL_RTX, 0);
6401 /* If this extraction is going into the destination of a SET,
6402 make a STRICT_LOW_PART unless we made a MEM. */
6404 if (in_dest)
6405 return (MEM_P (new) ? new
6406 : (GET_CODE (new) != SUBREG
6407 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6408 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6410 if (mode == tmode)
6411 return new;
6413 if (GET_CODE (new) == CONST_INT)
6414 return gen_int_mode (INTVAL (new), mode);
6416 /* If we know that no extraneous bits are set, and that the high
6417 bit is not set, convert the extraction to the cheaper of
6418 sign and zero extension, that are equivalent in these cases. */
6419 if (flag_expensive_optimizations
6420 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6421 && ((nonzero_bits (new, tmode)
6422 & ~(((unsigned HOST_WIDE_INT)
6423 GET_MODE_MASK (tmode))
6424 >> 1))
6425 == 0)))
6427 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6428 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6430 /* Prefer ZERO_EXTENSION, since it gives more information to
6431 backends. */
6432 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6433 return temp;
6434 return temp1;
6437 /* Otherwise, sign- or zero-extend unless we already are in the
6438 proper mode. */
6440 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6441 mode, new));
6444 /* Unless this is a COMPARE or we have a funny memory reference,
6445 don't do anything with zero-extending field extracts starting at
6446 the low-order bit since they are simple AND operations. */
6447 if (pos_rtx == 0 && pos == 0 && ! in_dest
6448 && ! in_compare && ! spans_byte && unsignedp)
6449 return 0;
6451 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6452 we would be spanning bytes or if the position is not a constant and the
6453 length is not 1. In all other cases, we would only be going outside
6454 our object in cases when an original shift would have been
6455 undefined. */
6456 if (! spans_byte && MEM_P (inner)
6457 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6458 || (pos_rtx != 0 && len != 1)))
6459 return 0;
6461 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6462 and the mode for the result. */
6463 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6465 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6466 pos_mode = mode_for_extraction (EP_insv, 2);
6467 extraction_mode = mode_for_extraction (EP_insv, 3);
6470 if (! in_dest && unsignedp
6471 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6473 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6474 pos_mode = mode_for_extraction (EP_extzv, 3);
6475 extraction_mode = mode_for_extraction (EP_extzv, 0);
6478 if (! in_dest && ! unsignedp
6479 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6481 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6482 pos_mode = mode_for_extraction (EP_extv, 3);
6483 extraction_mode = mode_for_extraction (EP_extv, 0);
6486 /* Never narrow an object, since that might not be safe. */
6488 if (mode != VOIDmode
6489 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6490 extraction_mode = mode;
6492 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6493 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6494 pos_mode = GET_MODE (pos_rtx);
6496 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6497 if we have to change the mode of memory and cannot, the desired mode is
6498 EXTRACTION_MODE. */
6499 if (!MEM_P (inner))
6500 wanted_inner_mode = wanted_inner_reg_mode;
6501 else if (inner_mode != wanted_inner_mode
6502 && (mode_dependent_address_p (XEXP (inner, 0))
6503 || MEM_VOLATILE_P (inner)))
6504 wanted_inner_mode = extraction_mode;
6506 orig_pos = pos;
6508 if (BITS_BIG_ENDIAN)
6510 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6511 BITS_BIG_ENDIAN style. If position is constant, compute new
6512 position. Otherwise, build subtraction.
6513 Note that POS is relative to the mode of the original argument.
6514 If it's a MEM we need to recompute POS relative to that.
6515 However, if we're extracting from (or inserting into) a register,
6516 we want to recompute POS relative to wanted_inner_mode. */
6517 int width = (MEM_P (inner)
6518 ? GET_MODE_BITSIZE (is_mode)
6519 : GET_MODE_BITSIZE (wanted_inner_mode));
6521 if (pos_rtx == 0)
6522 pos = width - len - pos;
6523 else
6524 pos_rtx
6525 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6526 /* POS may be less than 0 now, but we check for that below.
6527 Note that it can only be less than 0 if !MEM_P (inner). */
6530 /* If INNER has a wider mode, make it smaller. If this is a constant
6531 extract, try to adjust the byte to point to the byte containing
6532 the value. */
6533 if (wanted_inner_mode != VOIDmode
6534 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6535 && ((MEM_P (inner)
6536 && (inner_mode == wanted_inner_mode
6537 || (! mode_dependent_address_p (XEXP (inner, 0))
6538 && ! MEM_VOLATILE_P (inner))))))
6540 int offset = 0;
6542 /* The computations below will be correct if the machine is big
6543 endian in both bits and bytes or little endian in bits and bytes.
6544 If it is mixed, we must adjust. */
6546 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6547 adjust OFFSET to compensate. */
6548 if (BYTES_BIG_ENDIAN
6549 && ! spans_byte
6550 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6551 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6553 /* If this is a constant position, we can move to the desired byte.
6554 Be careful not to go beyond the original object and maintain the
6555 natural alignment of the memory. */
6556 if (pos_rtx == 0)
6558 enum machine_mode bfmode = smallest_mode_for_size (len, MODE_INT);
6559 offset += (pos / GET_MODE_BITSIZE (bfmode)) * GET_MODE_SIZE (bfmode);
6560 pos %= GET_MODE_BITSIZE (bfmode);
6563 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6564 && ! spans_byte
6565 && is_mode != wanted_inner_mode)
6566 offset = (GET_MODE_SIZE (is_mode)
6567 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6569 if (offset != 0 || inner_mode != wanted_inner_mode)
6570 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6573 /* If INNER is not memory, we can always get it into the proper mode. If we
6574 are changing its mode, POS must be a constant and smaller than the size
6575 of the new mode. */
6576 else if (!MEM_P (inner))
6578 if (GET_MODE (inner) != wanted_inner_mode
6579 && (pos_rtx != 0
6580 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6581 return 0;
6583 if (orig_pos < 0)
6584 return 0;
6586 inner = force_to_mode (inner, wanted_inner_mode,
6587 pos_rtx
6588 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6589 ? ~(unsigned HOST_WIDE_INT) 0
6590 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6591 << orig_pos),
6592 NULL_RTX, 0);
6595 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6596 have to zero extend. Otherwise, we can just use a SUBREG. */
6597 if (pos_rtx != 0
6598 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6600 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6602 /* If we know that no extraneous bits are set, and that the high
6603 bit is not set, convert extraction to cheaper one - either
6604 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6605 cases. */
6606 if (flag_expensive_optimizations
6607 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6608 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6609 & ~(((unsigned HOST_WIDE_INT)
6610 GET_MODE_MASK (GET_MODE (pos_rtx)))
6611 >> 1))
6612 == 0)))
6614 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6616 /* Prefer ZERO_EXTENSION, since it gives more information to
6617 backends. */
6618 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6619 temp = temp1;
6621 pos_rtx = temp;
6623 else if (pos_rtx != 0
6624 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6625 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6627 /* Make POS_RTX unless we already have it and it is correct. If we don't
6628 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6629 be a CONST_INT. */
6630 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6631 pos_rtx = orig_pos_rtx;
6633 else if (pos_rtx == 0)
6634 pos_rtx = GEN_INT (pos);
6636 /* Make the required operation. See if we can use existing rtx. */
6637 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6638 extraction_mode, inner, GEN_INT (len), pos_rtx);
6639 if (! in_dest)
6640 new = gen_lowpart (mode, new);
6642 return new;
6645 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6646 with any other operations in X. Return X without that shift if so. */
6648 static rtx
6649 extract_left_shift (rtx x, int count)
6651 enum rtx_code code = GET_CODE (x);
6652 enum machine_mode mode = GET_MODE (x);
6653 rtx tem;
6655 switch (code)
6657 case ASHIFT:
6658 /* This is the shift itself. If it is wide enough, we will return
6659 either the value being shifted if the shift count is equal to
6660 COUNT or a shift for the difference. */
6661 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6662 && INTVAL (XEXP (x, 1)) >= count)
6663 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6664 INTVAL (XEXP (x, 1)) - count);
6665 break;
6667 case NEG: case NOT:
6668 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6669 return simplify_gen_unary (code, mode, tem, mode);
6671 break;
6673 case PLUS: case IOR: case XOR: case AND:
6674 /* If we can safely shift this constant and we find the inner shift,
6675 make a new operation. */
6676 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6677 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6678 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6679 return simplify_gen_binary (code, mode, tem,
6680 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6682 break;
6684 default:
6685 break;
6688 return 0;
6691 /* Look at the expression rooted at X. Look for expressions
6692 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6693 Form these expressions.
6695 Return the new rtx, usually just X.
6697 Also, for machines like the VAX that don't have logical shift insns,
6698 try to convert logical to arithmetic shift operations in cases where
6699 they are equivalent. This undoes the canonicalizations to logical
6700 shifts done elsewhere.
6702 We try, as much as possible, to re-use rtl expressions to save memory.
6704 IN_CODE says what kind of expression we are processing. Normally, it is
6705 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6706 being kludges), it is MEM. When processing the arguments of a comparison
6707 or a COMPARE against zero, it is COMPARE. */
6709 static rtx
6710 make_compound_operation (rtx x, enum rtx_code in_code)
6712 enum rtx_code code = GET_CODE (x);
6713 enum machine_mode mode = GET_MODE (x);
6714 int mode_width = GET_MODE_BITSIZE (mode);
6715 rtx rhs, lhs;
6716 enum rtx_code next_code;
6717 int i;
6718 rtx new = 0;
6719 rtx tem;
6720 const char *fmt;
6722 /* Select the code to be used in recursive calls. Once we are inside an
6723 address, we stay there. If we have a comparison, set to COMPARE,
6724 but once inside, go back to our default of SET. */
6726 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6727 : ((code == COMPARE || COMPARISON_P (x))
6728 && XEXP (x, 1) == const0_rtx) ? COMPARE
6729 : in_code == COMPARE ? SET : in_code);
6731 /* Process depending on the code of this operation. If NEW is set
6732 nonzero, it will be returned. */
6734 switch (code)
6736 case ASHIFT:
6737 /* Convert shifts by constants into multiplications if inside
6738 an address. */
6739 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6740 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6741 && INTVAL (XEXP (x, 1)) >= 0)
6743 new = make_compound_operation (XEXP (x, 0), next_code);
6744 new = gen_rtx_MULT (mode, new,
6745 GEN_INT ((HOST_WIDE_INT) 1
6746 << INTVAL (XEXP (x, 1))));
6748 break;
6750 case AND:
6751 /* If the second operand is not a constant, we can't do anything
6752 with it. */
6753 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6754 break;
6756 /* If the constant is a power of two minus one and the first operand
6757 is a logical right shift, make an extraction. */
6758 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6759 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6761 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6762 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6763 0, in_code == COMPARE);
6766 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6767 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6768 && subreg_lowpart_p (XEXP (x, 0))
6769 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6770 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6772 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6773 next_code);
6774 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6775 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6776 0, in_code == COMPARE);
6778 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6779 else if ((GET_CODE (XEXP (x, 0)) == XOR
6780 || GET_CODE (XEXP (x, 0)) == IOR)
6781 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6782 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6783 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6785 /* Apply the distributive law, and then try to make extractions. */
6786 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6787 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6788 XEXP (x, 1)),
6789 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6790 XEXP (x, 1)));
6791 new = make_compound_operation (new, in_code);
6794 /* If we are have (and (rotate X C) M) and C is larger than the number
6795 of bits in M, this is an extraction. */
6797 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6798 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6799 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6800 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6802 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6803 new = make_extraction (mode, new,
6804 (GET_MODE_BITSIZE (mode)
6805 - INTVAL (XEXP (XEXP (x, 0), 1))),
6806 NULL_RTX, i, 1, 0, in_code == COMPARE);
6809 /* On machines without logical shifts, if the operand of the AND is
6810 a logical shift and our mask turns off all the propagated sign
6811 bits, we can replace the logical shift with an arithmetic shift. */
6812 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6813 && !have_insn_for (LSHIFTRT, mode)
6814 && have_insn_for (ASHIFTRT, mode)
6815 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6816 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6817 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6818 && mode_width <= HOST_BITS_PER_WIDE_INT)
6820 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6822 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6823 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6824 SUBST (XEXP (x, 0),
6825 gen_rtx_ASHIFTRT (mode,
6826 make_compound_operation
6827 (XEXP (XEXP (x, 0), 0), next_code),
6828 XEXP (XEXP (x, 0), 1)));
6831 /* If the constant is one less than a power of two, this might be
6832 representable by an extraction even if no shift is present.
6833 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6834 we are in a COMPARE. */
6835 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6836 new = make_extraction (mode,
6837 make_compound_operation (XEXP (x, 0),
6838 next_code),
6839 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6841 /* If we are in a comparison and this is an AND with a power of two,
6842 convert this into the appropriate bit extract. */
6843 else if (in_code == COMPARE
6844 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6845 new = make_extraction (mode,
6846 make_compound_operation (XEXP (x, 0),
6847 next_code),
6848 i, NULL_RTX, 1, 1, 0, 1);
6850 break;
6852 case LSHIFTRT:
6853 /* If the sign bit is known to be zero, replace this with an
6854 arithmetic shift. */
6855 if (have_insn_for (ASHIFTRT, mode)
6856 && ! have_insn_for (LSHIFTRT, mode)
6857 && mode_width <= HOST_BITS_PER_WIDE_INT
6858 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6860 new = gen_rtx_ASHIFTRT (mode,
6861 make_compound_operation (XEXP (x, 0),
6862 next_code),
6863 XEXP (x, 1));
6864 break;
6867 /* ... fall through ... */
6869 case ASHIFTRT:
6870 lhs = XEXP (x, 0);
6871 rhs = XEXP (x, 1);
6873 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6874 this is a SIGN_EXTRACT. */
6875 if (GET_CODE (rhs) == CONST_INT
6876 && GET_CODE (lhs) == ASHIFT
6877 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6878 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6880 new = make_compound_operation (XEXP (lhs, 0), next_code);
6881 new = make_extraction (mode, new,
6882 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6883 NULL_RTX, mode_width - INTVAL (rhs),
6884 code == LSHIFTRT, 0, in_code == COMPARE);
6885 break;
6888 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6889 If so, try to merge the shifts into a SIGN_EXTEND. We could
6890 also do this for some cases of SIGN_EXTRACT, but it doesn't
6891 seem worth the effort; the case checked for occurs on Alpha. */
6893 if (!OBJECT_P (lhs)
6894 && ! (GET_CODE (lhs) == SUBREG
6895 && (OBJECT_P (SUBREG_REG (lhs))))
6896 && GET_CODE (rhs) == CONST_INT
6897 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6898 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6899 new = make_extraction (mode, make_compound_operation (new, next_code),
6900 0, NULL_RTX, mode_width - INTVAL (rhs),
6901 code == LSHIFTRT, 0, in_code == COMPARE);
6903 break;
6905 case SUBREG:
6906 /* Call ourselves recursively on the inner expression. If we are
6907 narrowing the object and it has a different RTL code from
6908 what it originally did, do this SUBREG as a force_to_mode. */
6910 tem = make_compound_operation (SUBREG_REG (x), in_code);
6913 rtx simplified;
6914 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
6915 SUBREG_BYTE (x));
6917 if (simplified)
6918 tem = simplified;
6920 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6921 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6922 && subreg_lowpart_p (x))
6924 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6925 NULL_RTX, 0);
6927 /* If we have something other than a SUBREG, we might have
6928 done an expansion, so rerun ourselves. */
6929 if (GET_CODE (newer) != SUBREG)
6930 newer = make_compound_operation (newer, in_code);
6932 return newer;
6935 if (simplified)
6936 return tem;
6938 break;
6940 default:
6941 break;
6944 if (new)
6946 x = gen_lowpart (mode, new);
6947 code = GET_CODE (x);
6950 /* Now recursively process each operand of this operation. */
6951 fmt = GET_RTX_FORMAT (code);
6952 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6953 if (fmt[i] == 'e')
6955 new = make_compound_operation (XEXP (x, i), next_code);
6956 SUBST (XEXP (x, i), new);
6959 return x;
6962 /* Given M see if it is a value that would select a field of bits
6963 within an item, but not the entire word. Return -1 if not.
6964 Otherwise, return the starting position of the field, where 0 is the
6965 low-order bit.
6967 *PLEN is set to the length of the field. */
6969 static int
6970 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6972 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6973 int pos = exact_log2 (m & -m);
6974 int len = 0;
6976 if (pos >= 0)
6977 /* Now shift off the low-order zero bits and see if we have a
6978 power of two minus 1. */
6979 len = exact_log2 ((m >> pos) + 1);
6981 if (len <= 0)
6982 pos = -1;
6984 *plen = len;
6985 return pos;
6988 /* See if X can be simplified knowing that we will only refer to it in
6989 MODE and will only refer to those bits that are nonzero in MASK.
6990 If other bits are being computed or if masking operations are done
6991 that select a superset of the bits in MASK, they can sometimes be
6992 ignored.
6994 Return a possibly simplified expression, but always convert X to
6995 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6997 Also, if REG is nonzero and X is a register equal in value to REG,
6998 replace X with REG.
7000 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7001 are all off in X. This is used when X will be complemented, by either
7002 NOT, NEG, or XOR. */
7004 static rtx
7005 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7006 rtx reg, int just_select)
7008 enum rtx_code code = GET_CODE (x);
7009 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7010 enum machine_mode op_mode;
7011 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7012 rtx op0, op1, temp;
7014 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7015 code below will do the wrong thing since the mode of such an
7016 expression is VOIDmode.
7018 Also do nothing if X is a CLOBBER; this can happen if X was
7019 the return value from a call to gen_lowpart. */
7020 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7021 return x;
7023 /* We want to perform the operation is its present mode unless we know
7024 that the operation is valid in MODE, in which case we do the operation
7025 in MODE. */
7026 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7027 && have_insn_for (code, mode))
7028 ? mode : GET_MODE (x));
7030 /* It is not valid to do a right-shift in a narrower mode
7031 than the one it came in with. */
7032 if ((code == LSHIFTRT || code == ASHIFTRT)
7033 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7034 op_mode = GET_MODE (x);
7036 /* Truncate MASK to fit OP_MODE. */
7037 if (op_mode)
7038 mask &= GET_MODE_MASK (op_mode);
7040 /* When we have an arithmetic operation, or a shift whose count we
7041 do not know, we need to assume that all bits up to the highest-order
7042 bit in MASK will be needed. This is how we form such a mask. */
7043 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7044 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7045 else
7046 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7047 - 1);
7049 /* Determine what bits of X are guaranteed to be (non)zero. */
7050 nonzero = nonzero_bits (x, mode);
7052 /* If none of the bits in X are needed, return a zero. */
7053 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
7054 x = const0_rtx;
7056 /* If X is a CONST_INT, return a new one. Do this here since the
7057 test below will fail. */
7058 if (GET_CODE (x) == CONST_INT)
7060 if (SCALAR_INT_MODE_P (mode))
7061 return gen_int_mode (INTVAL (x) & mask, mode);
7062 else
7064 x = GEN_INT (INTVAL (x) & mask);
7065 return gen_lowpart_common (mode, x);
7069 /* If X is narrower than MODE and we want all the bits in X's mode, just
7070 get X in the proper mode. */
7071 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7072 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7073 return gen_lowpart (mode, x);
7075 switch (code)
7077 case CLOBBER:
7078 /* If X is a (clobber (const_int)), return it since we know we are
7079 generating something that won't match. */
7080 return x;
7082 case USE:
7083 /* X is a (use (mem ..)) that was made from a bit-field extraction that
7084 spanned the boundary of the MEM. If we are now masking so it is
7085 within that boundary, we don't need the USE any more. */
7086 if (! BITS_BIG_ENDIAN
7087 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7088 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7089 break;
7091 case SIGN_EXTEND:
7092 case ZERO_EXTEND:
7093 case ZERO_EXTRACT:
7094 case SIGN_EXTRACT:
7095 x = expand_compound_operation (x);
7096 if (GET_CODE (x) != code)
7097 return force_to_mode (x, mode, mask, reg, next_select);
7098 break;
7100 case REG:
7101 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
7102 || rtx_equal_p (reg, get_last_value (x))))
7103 x = reg;
7104 break;
7106 case SUBREG:
7107 if (subreg_lowpart_p (x)
7108 /* We can ignore the effect of this SUBREG if it narrows the mode or
7109 if the constant masks to zero all the bits the mode doesn't
7110 have. */
7111 && ((GET_MODE_SIZE (GET_MODE (x))
7112 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7113 || (0 == (mask
7114 & GET_MODE_MASK (GET_MODE (x))
7115 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7116 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
7117 break;
7119 case AND:
7120 /* If this is an AND with a constant, convert it into an AND
7121 whose constant is the AND of that constant with MASK. If it
7122 remains an AND of MASK, delete it since it is redundant. */
7124 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7126 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7127 mask & INTVAL (XEXP (x, 1)));
7129 /* If X is still an AND, see if it is an AND with a mask that
7130 is just some low-order bits. If so, and it is MASK, we don't
7131 need it. */
7133 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7134 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7135 == mask))
7136 x = XEXP (x, 0);
7138 /* If it remains an AND, try making another AND with the bits
7139 in the mode mask that aren't in MASK turned on. If the
7140 constant in the AND is wide enough, this might make a
7141 cheaper constant. */
7143 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7144 && GET_MODE_MASK (GET_MODE (x)) != mask
7145 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7147 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7148 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7149 int width = GET_MODE_BITSIZE (GET_MODE (x));
7150 rtx y;
7152 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7153 number, sign extend it. */
7154 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7155 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7156 cval |= (HOST_WIDE_INT) -1 << width;
7158 y = simplify_gen_binary (AND, GET_MODE (x),
7159 XEXP (x, 0), GEN_INT (cval));
7160 if (rtx_cost (y, SET) < rtx_cost (x, SET))
7161 x = y;
7164 break;
7167 goto binop;
7169 case PLUS:
7170 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7171 low-order bits (as in an alignment operation) and FOO is already
7172 aligned to that boundary, mask C1 to that boundary as well.
7173 This may eliminate that PLUS and, later, the AND. */
7176 unsigned int width = GET_MODE_BITSIZE (mode);
7177 unsigned HOST_WIDE_INT smask = mask;
7179 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7180 number, sign extend it. */
7182 if (width < HOST_BITS_PER_WIDE_INT
7183 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7184 smask |= (HOST_WIDE_INT) -1 << width;
7186 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7187 && exact_log2 (- smask) >= 0
7188 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7189 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7190 return force_to_mode (plus_constant (XEXP (x, 0),
7191 (INTVAL (XEXP (x, 1)) & smask)),
7192 mode, smask, reg, next_select);
7195 /* ... fall through ... */
7197 case MULT:
7198 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7199 most significant bit in MASK since carries from those bits will
7200 affect the bits we are interested in. */
7201 mask = fuller_mask;
7202 goto binop;
7204 case MINUS:
7205 /* If X is (minus C Y) where C's least set bit is larger than any bit
7206 in the mask, then we may replace with (neg Y). */
7207 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7208 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7209 & -INTVAL (XEXP (x, 0))))
7210 > mask))
7212 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7213 GET_MODE (x));
7214 return force_to_mode (x, mode, mask, reg, next_select);
7217 /* Similarly, if C contains every bit in the fuller_mask, then we may
7218 replace with (not Y). */
7219 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7220 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7221 == INTVAL (XEXP (x, 0))))
7223 x = simplify_gen_unary (NOT, GET_MODE (x),
7224 XEXP (x, 1), GET_MODE (x));
7225 return force_to_mode (x, mode, mask, reg, next_select);
7228 mask = fuller_mask;
7229 goto binop;
7231 case IOR:
7232 case XOR:
7233 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7234 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7235 operation which may be a bitfield extraction. Ensure that the
7236 constant we form is not wider than the mode of X. */
7238 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7239 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7240 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7241 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7242 && GET_CODE (XEXP (x, 1)) == CONST_INT
7243 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7244 + floor_log2 (INTVAL (XEXP (x, 1))))
7245 < GET_MODE_BITSIZE (GET_MODE (x)))
7246 && (INTVAL (XEXP (x, 1))
7247 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7249 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7250 << INTVAL (XEXP (XEXP (x, 0), 1)));
7251 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7252 XEXP (XEXP (x, 0), 0), temp);
7253 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7254 XEXP (XEXP (x, 0), 1));
7255 return force_to_mode (x, mode, mask, reg, next_select);
7258 binop:
7259 /* For most binary operations, just propagate into the operation and
7260 change the mode if we have an operation of that mode. */
7262 op0 = gen_lowpart (op_mode,
7263 force_to_mode (XEXP (x, 0), mode, mask,
7264 reg, next_select));
7265 op1 = gen_lowpart (op_mode,
7266 force_to_mode (XEXP (x, 1), mode, mask,
7267 reg, next_select));
7269 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7270 x = simplify_gen_binary (code, op_mode, op0, op1);
7271 break;
7273 case ASHIFT:
7274 /* For left shifts, do the same, but just for the first operand.
7275 However, we cannot do anything with shifts where we cannot
7276 guarantee that the counts are smaller than the size of the mode
7277 because such a count will have a different meaning in a
7278 wider mode. */
7280 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7281 && INTVAL (XEXP (x, 1)) >= 0
7282 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7283 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7284 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7285 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7286 break;
7288 /* If the shift count is a constant and we can do arithmetic in
7289 the mode of the shift, refine which bits we need. Otherwise, use the
7290 conservative form of the mask. */
7291 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7292 && INTVAL (XEXP (x, 1)) >= 0
7293 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7294 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7295 mask >>= INTVAL (XEXP (x, 1));
7296 else
7297 mask = fuller_mask;
7299 op0 = gen_lowpart (op_mode,
7300 force_to_mode (XEXP (x, 0), op_mode,
7301 mask, reg, next_select));
7303 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7304 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7305 break;
7307 case LSHIFTRT:
7308 /* Here we can only do something if the shift count is a constant,
7309 this shift constant is valid for the host, and we can do arithmetic
7310 in OP_MODE. */
7312 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7313 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7314 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7316 rtx inner = XEXP (x, 0);
7317 unsigned HOST_WIDE_INT inner_mask;
7319 /* Select the mask of the bits we need for the shift operand. */
7320 inner_mask = mask << INTVAL (XEXP (x, 1));
7322 /* We can only change the mode of the shift if we can do arithmetic
7323 in the mode of the shift and INNER_MASK is no wider than the
7324 width of X's mode. */
7325 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7326 op_mode = GET_MODE (x);
7328 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7330 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7331 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7334 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7335 shift and AND produces only copies of the sign bit (C2 is one less
7336 than a power of two), we can do this with just a shift. */
7338 if (GET_CODE (x) == LSHIFTRT
7339 && GET_CODE (XEXP (x, 1)) == CONST_INT
7340 /* The shift puts one of the sign bit copies in the least significant
7341 bit. */
7342 && ((INTVAL (XEXP (x, 1))
7343 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7344 >= GET_MODE_BITSIZE (GET_MODE (x)))
7345 && exact_log2 (mask + 1) >= 0
7346 /* Number of bits left after the shift must be more than the mask
7347 needs. */
7348 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7349 <= GET_MODE_BITSIZE (GET_MODE (x)))
7350 /* Must be more sign bit copies than the mask needs. */
7351 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7352 >= exact_log2 (mask + 1)))
7353 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7354 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7355 - exact_log2 (mask + 1)));
7357 goto shiftrt;
7359 case ASHIFTRT:
7360 /* If we are just looking for the sign bit, we don't need this shift at
7361 all, even if it has a variable count. */
7362 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7363 && (mask == ((unsigned HOST_WIDE_INT) 1
7364 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7365 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7367 /* If this is a shift by a constant, get a mask that contains those bits
7368 that are not copies of the sign bit. We then have two cases: If
7369 MASK only includes those bits, this can be a logical shift, which may
7370 allow simplifications. If MASK is a single-bit field not within
7371 those bits, we are requesting a copy of the sign bit and hence can
7372 shift the sign bit to the appropriate location. */
7374 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7375 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7377 int i = -1;
7379 /* If the considered data is wider than HOST_WIDE_INT, we can't
7380 represent a mask for all its bits in a single scalar.
7381 But we only care about the lower bits, so calculate these. */
7383 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7385 nonzero = ~(HOST_WIDE_INT) 0;
7387 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7388 is the number of bits a full-width mask would have set.
7389 We need only shift if these are fewer than nonzero can
7390 hold. If not, we must keep all bits set in nonzero. */
7392 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7393 < HOST_BITS_PER_WIDE_INT)
7394 nonzero >>= INTVAL (XEXP (x, 1))
7395 + HOST_BITS_PER_WIDE_INT
7396 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7398 else
7400 nonzero = GET_MODE_MASK (GET_MODE (x));
7401 nonzero >>= INTVAL (XEXP (x, 1));
7404 if ((mask & ~nonzero) == 0
7405 || (i = exact_log2 (mask)) >= 0)
7407 x = simplify_shift_const
7408 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7409 i < 0 ? INTVAL (XEXP (x, 1))
7410 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7412 if (GET_CODE (x) != ASHIFTRT)
7413 return force_to_mode (x, mode, mask, reg, next_select);
7417 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7418 even if the shift count isn't a constant. */
7419 if (mask == 1)
7420 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7421 XEXP (x, 0), XEXP (x, 1));
7423 shiftrt:
7425 /* If this is a zero- or sign-extension operation that just affects bits
7426 we don't care about, remove it. Be sure the call above returned
7427 something that is still a shift. */
7429 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7430 && GET_CODE (XEXP (x, 1)) == CONST_INT
7431 && INTVAL (XEXP (x, 1)) >= 0
7432 && (INTVAL (XEXP (x, 1))
7433 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7434 && GET_CODE (XEXP (x, 0)) == ASHIFT
7435 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7436 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7437 reg, next_select);
7439 break;
7441 case ROTATE:
7442 case ROTATERT:
7443 /* If the shift count is constant and we can do computations
7444 in the mode of X, compute where the bits we care about are.
7445 Otherwise, we can't do anything. Don't change the mode of
7446 the shift or propagate MODE into the shift, though. */
7447 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7448 && INTVAL (XEXP (x, 1)) >= 0)
7450 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7451 GET_MODE (x), GEN_INT (mask),
7452 XEXP (x, 1));
7453 if (temp && GET_CODE (temp) == CONST_INT)
7454 SUBST (XEXP (x, 0),
7455 force_to_mode (XEXP (x, 0), GET_MODE (x),
7456 INTVAL (temp), reg, next_select));
7458 break;
7460 case NEG:
7461 /* If we just want the low-order bit, the NEG isn't needed since it
7462 won't change the low-order bit. */
7463 if (mask == 1)
7464 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7466 /* We need any bits less significant than the most significant bit in
7467 MASK since carries from those bits will affect the bits we are
7468 interested in. */
7469 mask = fuller_mask;
7470 goto unop;
7472 case NOT:
7473 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7474 same as the XOR case above. Ensure that the constant we form is not
7475 wider than the mode of X. */
7477 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7478 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7479 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7480 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7481 < GET_MODE_BITSIZE (GET_MODE (x)))
7482 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7484 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7485 GET_MODE (x));
7486 temp = simplify_gen_binary (XOR, GET_MODE (x),
7487 XEXP (XEXP (x, 0), 0), temp);
7488 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7489 temp, XEXP (XEXP (x, 0), 1));
7491 return force_to_mode (x, mode, mask, reg, next_select);
7494 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7495 use the full mask inside the NOT. */
7496 mask = fuller_mask;
7498 unop:
7499 op0 = gen_lowpart (op_mode,
7500 force_to_mode (XEXP (x, 0), mode, mask,
7501 reg, next_select));
7502 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7503 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7504 break;
7506 case NE:
7507 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7508 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7509 which is equal to STORE_FLAG_VALUE. */
7510 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7511 && GET_MODE (XEXP (x, 0)) == mode
7512 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7513 && (nonzero_bits (XEXP (x, 0), mode)
7514 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7515 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7517 break;
7519 case IF_THEN_ELSE:
7520 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7521 written in a narrower mode. We play it safe and do not do so. */
7523 SUBST (XEXP (x, 1),
7524 gen_lowpart (GET_MODE (x),
7525 force_to_mode (XEXP (x, 1), mode,
7526 mask, reg, next_select)));
7527 SUBST (XEXP (x, 2),
7528 gen_lowpart (GET_MODE (x),
7529 force_to_mode (XEXP (x, 2), mode,
7530 mask, reg, next_select)));
7531 break;
7533 default:
7534 break;
7537 /* Ensure we return a value of the proper mode. */
7538 return gen_lowpart (mode, x);
7541 /* Return nonzero if X is an expression that has one of two values depending on
7542 whether some other value is zero or nonzero. In that case, we return the
7543 value that is being tested, *PTRUE is set to the value if the rtx being
7544 returned has a nonzero value, and *PFALSE is set to the other alternative.
7546 If we return zero, we set *PTRUE and *PFALSE to X. */
7548 static rtx
7549 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7551 enum machine_mode mode = GET_MODE (x);
7552 enum rtx_code code = GET_CODE (x);
7553 rtx cond0, cond1, true0, true1, false0, false1;
7554 unsigned HOST_WIDE_INT nz;
7556 /* If we are comparing a value against zero, we are done. */
7557 if ((code == NE || code == EQ)
7558 && XEXP (x, 1) == const0_rtx)
7560 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7561 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7562 return XEXP (x, 0);
7565 /* If this is a unary operation whose operand has one of two values, apply
7566 our opcode to compute those values. */
7567 else if (UNARY_P (x)
7568 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7570 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7571 *pfalse = simplify_gen_unary (code, mode, false0,
7572 GET_MODE (XEXP (x, 0)));
7573 return cond0;
7576 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7577 make can't possibly match and would suppress other optimizations. */
7578 else if (code == COMPARE)
7581 /* If this is a binary operation, see if either side has only one of two
7582 values. If either one does or if both do and they are conditional on
7583 the same value, compute the new true and false values. */
7584 else if (BINARY_P (x))
7586 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7587 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7589 if ((cond0 != 0 || cond1 != 0)
7590 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7592 /* If if_then_else_cond returned zero, then true/false are the
7593 same rtl. We must copy one of them to prevent invalid rtl
7594 sharing. */
7595 if (cond0 == 0)
7596 true0 = copy_rtx (true0);
7597 else if (cond1 == 0)
7598 true1 = copy_rtx (true1);
7600 if (COMPARISON_P (x))
7602 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7603 true0, true1);
7604 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7605 false0, false1);
7607 else
7609 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7610 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7613 return cond0 ? cond0 : cond1;
7616 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7617 operands is zero when the other is nonzero, and vice-versa,
7618 and STORE_FLAG_VALUE is 1 or -1. */
7620 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7621 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7622 || code == UMAX)
7623 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7625 rtx op0 = XEXP (XEXP (x, 0), 1);
7626 rtx op1 = XEXP (XEXP (x, 1), 1);
7628 cond0 = XEXP (XEXP (x, 0), 0);
7629 cond1 = XEXP (XEXP (x, 1), 0);
7631 if (COMPARISON_P (cond0)
7632 && COMPARISON_P (cond1)
7633 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7634 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7635 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7636 || ((swap_condition (GET_CODE (cond0))
7637 == reversed_comparison_code (cond1, NULL))
7638 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7639 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7640 && ! side_effects_p (x))
7642 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7643 *pfalse = simplify_gen_binary (MULT, mode,
7644 (code == MINUS
7645 ? simplify_gen_unary (NEG, mode,
7646 op1, mode)
7647 : op1),
7648 const_true_rtx);
7649 return cond0;
7653 /* Similarly for MULT, AND and UMIN, except that for these the result
7654 is always zero. */
7655 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7656 && (code == MULT || code == AND || code == UMIN)
7657 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7659 cond0 = XEXP (XEXP (x, 0), 0);
7660 cond1 = XEXP (XEXP (x, 1), 0);
7662 if (COMPARISON_P (cond0)
7663 && COMPARISON_P (cond1)
7664 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7665 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7666 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7667 || ((swap_condition (GET_CODE (cond0))
7668 == reversed_comparison_code (cond1, NULL))
7669 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7670 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7671 && ! side_effects_p (x))
7673 *ptrue = *pfalse = const0_rtx;
7674 return cond0;
7679 else if (code == IF_THEN_ELSE)
7681 /* If we have IF_THEN_ELSE already, extract the condition and
7682 canonicalize it if it is NE or EQ. */
7683 cond0 = XEXP (x, 0);
7684 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7685 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7686 return XEXP (cond0, 0);
7687 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7689 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7690 return XEXP (cond0, 0);
7692 else
7693 return cond0;
7696 /* If X is a SUBREG, we can narrow both the true and false values
7697 if the inner expression, if there is a condition. */
7698 else if (code == SUBREG
7699 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7700 &true0, &false0)))
7702 true0 = simplify_gen_subreg (mode, true0,
7703 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7704 false0 = simplify_gen_subreg (mode, false0,
7705 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7706 if (true0 && false0)
7708 *ptrue = true0;
7709 *pfalse = false0;
7710 return cond0;
7714 /* If X is a constant, this isn't special and will cause confusions
7715 if we treat it as such. Likewise if it is equivalent to a constant. */
7716 else if (CONSTANT_P (x)
7717 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7720 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7721 will be least confusing to the rest of the compiler. */
7722 else if (mode == BImode)
7724 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7725 return x;
7728 /* If X is known to be either 0 or -1, those are the true and
7729 false values when testing X. */
7730 else if (x == constm1_rtx || x == const0_rtx
7731 || (mode != VOIDmode
7732 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7734 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7735 return x;
7738 /* Likewise for 0 or a single bit. */
7739 else if (SCALAR_INT_MODE_P (mode)
7740 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7741 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7743 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7744 return x;
7747 /* Otherwise fail; show no condition with true and false values the same. */
7748 *ptrue = *pfalse = x;
7749 return 0;
7752 /* Return the value of expression X given the fact that condition COND
7753 is known to be true when applied to REG as its first operand and VAL
7754 as its second. X is known to not be shared and so can be modified in
7755 place.
7757 We only handle the simplest cases, and specifically those cases that
7758 arise with IF_THEN_ELSE expressions. */
7760 static rtx
7761 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7763 enum rtx_code code = GET_CODE (x);
7764 rtx temp;
7765 const char *fmt;
7766 int i, j;
7768 if (side_effects_p (x))
7769 return x;
7771 /* If either operand of the condition is a floating point value,
7772 then we have to avoid collapsing an EQ comparison. */
7773 if (cond == EQ
7774 && rtx_equal_p (x, reg)
7775 && ! FLOAT_MODE_P (GET_MODE (x))
7776 && ! FLOAT_MODE_P (GET_MODE (val)))
7777 return val;
7779 if (cond == UNEQ && rtx_equal_p (x, reg))
7780 return val;
7782 /* If X is (abs REG) and we know something about REG's relationship
7783 with zero, we may be able to simplify this. */
7785 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7786 switch (cond)
7788 case GE: case GT: case EQ:
7789 return XEXP (x, 0);
7790 case LT: case LE:
7791 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7792 XEXP (x, 0),
7793 GET_MODE (XEXP (x, 0)));
7794 default:
7795 break;
7798 /* The only other cases we handle are MIN, MAX, and comparisons if the
7799 operands are the same as REG and VAL. */
7801 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7803 if (rtx_equal_p (XEXP (x, 0), val))
7804 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7806 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7808 if (COMPARISON_P (x))
7810 if (comparison_dominates_p (cond, code))
7811 return const_true_rtx;
7813 code = reversed_comparison_code (x, NULL);
7814 if (code != UNKNOWN
7815 && comparison_dominates_p (cond, code))
7816 return const0_rtx;
7817 else
7818 return x;
7820 else if (code == SMAX || code == SMIN
7821 || code == UMIN || code == UMAX)
7823 int unsignedp = (code == UMIN || code == UMAX);
7825 /* Do not reverse the condition when it is NE or EQ.
7826 This is because we cannot conclude anything about
7827 the value of 'SMAX (x, y)' when x is not equal to y,
7828 but we can when x equals y. */
7829 if ((code == SMAX || code == UMAX)
7830 && ! (cond == EQ || cond == NE))
7831 cond = reverse_condition (cond);
7833 switch (cond)
7835 case GE: case GT:
7836 return unsignedp ? x : XEXP (x, 1);
7837 case LE: case LT:
7838 return unsignedp ? x : XEXP (x, 0);
7839 case GEU: case GTU:
7840 return unsignedp ? XEXP (x, 1) : x;
7841 case LEU: case LTU:
7842 return unsignedp ? XEXP (x, 0) : x;
7843 default:
7844 break;
7849 else if (code == SUBREG)
7851 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7852 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7854 if (SUBREG_REG (x) != r)
7856 /* We must simplify subreg here, before we lose track of the
7857 original inner_mode. */
7858 new = simplify_subreg (GET_MODE (x), r,
7859 inner_mode, SUBREG_BYTE (x));
7860 if (new)
7861 return new;
7862 else
7863 SUBST (SUBREG_REG (x), r);
7866 return x;
7868 /* We don't have to handle SIGN_EXTEND here, because even in the
7869 case of replacing something with a modeless CONST_INT, a
7870 CONST_INT is already (supposed to be) a valid sign extension for
7871 its narrower mode, which implies it's already properly
7872 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7873 story is different. */
7874 else if (code == ZERO_EXTEND)
7876 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7877 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7879 if (XEXP (x, 0) != r)
7881 /* We must simplify the zero_extend here, before we lose
7882 track of the original inner_mode. */
7883 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7884 r, inner_mode);
7885 if (new)
7886 return new;
7887 else
7888 SUBST (XEXP (x, 0), r);
7891 return x;
7894 fmt = GET_RTX_FORMAT (code);
7895 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7897 if (fmt[i] == 'e')
7898 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7899 else if (fmt[i] == 'E')
7900 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7901 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7902 cond, reg, val));
7905 return x;
7908 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7909 assignment as a field assignment. */
7911 static int
7912 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7914 if (x == y || rtx_equal_p (x, y))
7915 return 1;
7917 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7918 return 0;
7920 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7921 Note that all SUBREGs of MEM are paradoxical; otherwise they
7922 would have been rewritten. */
7923 if (MEM_P (x) && GET_CODE (y) == SUBREG
7924 && MEM_P (SUBREG_REG (y))
7925 && rtx_equal_p (SUBREG_REG (y),
7926 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7927 return 1;
7929 if (MEM_P (y) && GET_CODE (x) == SUBREG
7930 && MEM_P (SUBREG_REG (x))
7931 && rtx_equal_p (SUBREG_REG (x),
7932 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7933 return 1;
7935 /* We used to see if get_last_value of X and Y were the same but that's
7936 not correct. In one direction, we'll cause the assignment to have
7937 the wrong destination and in the case, we'll import a register into this
7938 insn that might have already have been dead. So fail if none of the
7939 above cases are true. */
7940 return 0;
7943 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7944 Return that assignment if so.
7946 We only handle the most common cases. */
7948 static rtx
7949 make_field_assignment (rtx x)
7951 rtx dest = SET_DEST (x);
7952 rtx src = SET_SRC (x);
7953 rtx assign;
7954 rtx rhs, lhs;
7955 HOST_WIDE_INT c1;
7956 HOST_WIDE_INT pos;
7957 unsigned HOST_WIDE_INT len;
7958 rtx other;
7959 enum machine_mode mode;
7961 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7962 a clear of a one-bit field. We will have changed it to
7963 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7964 for a SUBREG. */
7966 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7967 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7968 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7969 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7971 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7972 1, 1, 1, 0);
7973 if (assign != 0)
7974 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7975 return x;
7978 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7979 && subreg_lowpart_p (XEXP (src, 0))
7980 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7981 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7982 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7983 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7984 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7985 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7987 assign = make_extraction (VOIDmode, dest, 0,
7988 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7989 1, 1, 1, 0);
7990 if (assign != 0)
7991 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7992 return x;
7995 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7996 one-bit field. */
7997 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7998 && XEXP (XEXP (src, 0), 0) == const1_rtx
7999 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8001 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8002 1, 1, 1, 0);
8003 if (assign != 0)
8004 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8005 return x;
8008 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8009 SRC is an AND with all bits of that field set, then we can discard
8010 the AND. */
8011 if (GET_CODE (dest) == ZERO_EXTRACT
8012 && GET_CODE (XEXP (dest, 1)) == CONST_INT
8013 && GET_CODE (src) == AND
8014 && GET_CODE (XEXP (src, 1)) == CONST_INT)
8016 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8017 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8018 unsigned HOST_WIDE_INT ze_mask;
8020 if (width >= HOST_BITS_PER_WIDE_INT)
8021 ze_mask = -1;
8022 else
8023 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8025 /* Complete overlap. We can remove the source AND. */
8026 if ((and_mask & ze_mask) == ze_mask)
8027 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8029 /* Partial overlap. We can reduce the source AND. */
8030 if ((and_mask & ze_mask) != and_mask)
8032 mode = GET_MODE (src);
8033 src = gen_rtx_AND (mode, XEXP (src, 0),
8034 gen_int_mode (and_mask & ze_mask, mode));
8035 return gen_rtx_SET (VOIDmode, dest, src);
8039 /* The other case we handle is assignments into a constant-position
8040 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8041 a mask that has all one bits except for a group of zero bits and
8042 OTHER is known to have zeros where C1 has ones, this is such an
8043 assignment. Compute the position and length from C1. Shift OTHER
8044 to the appropriate position, force it to the required mode, and
8045 make the extraction. Check for the AND in both operands. */
8047 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8048 return x;
8050 rhs = expand_compound_operation (XEXP (src, 0));
8051 lhs = expand_compound_operation (XEXP (src, 1));
8053 if (GET_CODE (rhs) == AND
8054 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
8055 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8056 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8057 else if (GET_CODE (lhs) == AND
8058 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
8059 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8060 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8061 else
8062 return x;
8064 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8065 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8066 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8067 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8068 return x;
8070 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8071 if (assign == 0)
8072 return x;
8074 /* The mode to use for the source is the mode of the assignment, or of
8075 what is inside a possible STRICT_LOW_PART. */
8076 mode = (GET_CODE (assign) == STRICT_LOW_PART
8077 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8079 /* Shift OTHER right POS places and make it the source, restricting it
8080 to the proper length and mode. */
8082 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
8083 GET_MODE (src), other, pos),
8084 mode,
8085 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8086 ? ~(unsigned HOST_WIDE_INT) 0
8087 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8088 dest, 0);
8090 /* If SRC is masked by an AND that does not make a difference in
8091 the value being stored, strip it. */
8092 if (GET_CODE (assign) == ZERO_EXTRACT
8093 && GET_CODE (XEXP (assign, 1)) == CONST_INT
8094 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8095 && GET_CODE (src) == AND
8096 && GET_CODE (XEXP (src, 1)) == CONST_INT
8097 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8098 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8099 src = XEXP (src, 0);
8101 return gen_rtx_SET (VOIDmode, assign, src);
8104 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8105 if so. */
8107 static rtx
8108 apply_distributive_law (rtx x)
8110 enum rtx_code code = GET_CODE (x);
8111 enum rtx_code inner_code;
8112 rtx lhs, rhs, other;
8113 rtx tem;
8115 /* Distributivity is not true for floating point as it can change the
8116 value. So we don't do it unless -funsafe-math-optimizations. */
8117 if (FLOAT_MODE_P (GET_MODE (x))
8118 && ! flag_unsafe_math_optimizations)
8119 return x;
8121 /* The outer operation can only be one of the following: */
8122 if (code != IOR && code != AND && code != XOR
8123 && code != PLUS && code != MINUS)
8124 return x;
8126 lhs = XEXP (x, 0);
8127 rhs = XEXP (x, 1);
8129 /* If either operand is a primitive we can't do anything, so get out
8130 fast. */
8131 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8132 return x;
8134 lhs = expand_compound_operation (lhs);
8135 rhs = expand_compound_operation (rhs);
8136 inner_code = GET_CODE (lhs);
8137 if (inner_code != GET_CODE (rhs))
8138 return x;
8140 /* See if the inner and outer operations distribute. */
8141 switch (inner_code)
8143 case LSHIFTRT:
8144 case ASHIFTRT:
8145 case AND:
8146 case IOR:
8147 /* These all distribute except over PLUS. */
8148 if (code == PLUS || code == MINUS)
8149 return x;
8150 break;
8152 case MULT:
8153 if (code != PLUS && code != MINUS)
8154 return x;
8155 break;
8157 case ASHIFT:
8158 /* This is also a multiply, so it distributes over everything. */
8159 break;
8161 case SUBREG:
8162 /* Non-paradoxical SUBREGs distributes over all operations,
8163 provided the inner modes and byte offsets are the same, this
8164 is an extraction of a low-order part, we don't convert an fp
8165 operation to int or vice versa, this is not a vector mode,
8166 and we would not be converting a single-word operation into a
8167 multi-word operation. The latter test is not required, but
8168 it prevents generating unneeded multi-word operations. Some
8169 of the previous tests are redundant given the latter test,
8170 but are retained because they are required for correctness.
8172 We produce the result slightly differently in this case. */
8174 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8175 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8176 || ! subreg_lowpart_p (lhs)
8177 || (GET_MODE_CLASS (GET_MODE (lhs))
8178 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8179 || (GET_MODE_SIZE (GET_MODE (lhs))
8180 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8181 || VECTOR_MODE_P (GET_MODE (lhs))
8182 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
8183 return x;
8185 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8186 SUBREG_REG (lhs), SUBREG_REG (rhs));
8187 return gen_lowpart (GET_MODE (x), tem);
8189 default:
8190 return x;
8193 /* Set LHS and RHS to the inner operands (A and B in the example
8194 above) and set OTHER to the common operand (C in the example).
8195 There is only one way to do this unless the inner operation is
8196 commutative. */
8197 if (COMMUTATIVE_ARITH_P (lhs)
8198 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8199 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8200 else if (COMMUTATIVE_ARITH_P (lhs)
8201 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8202 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8203 else if (COMMUTATIVE_ARITH_P (lhs)
8204 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8205 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8206 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8207 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8208 else
8209 return x;
8211 /* Form the new inner operation, seeing if it simplifies first. */
8212 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8214 /* There is one exception to the general way of distributing:
8215 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8216 if (code == XOR && inner_code == IOR)
8218 inner_code = AND;
8219 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8222 /* We may be able to continuing distributing the result, so call
8223 ourselves recursively on the inner operation before forming the
8224 outer operation, which we return. */
8225 return simplify_gen_binary (inner_code, GET_MODE (x),
8226 apply_distributive_law (tem), other);
8229 /* See if X is of the form (* (+ A B) C), and if so convert to
8230 (+ (* A C) (* B C)) and try to simplify.
8232 Most of the time, this results in no change. However, if some of
8233 the operands are the same or inverses of each other, simplifications
8234 will result.
8236 For example, (and (ior A B) (not B)) can occur as the result of
8237 expanding a bit field assignment. When we apply the distributive
8238 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8239 which then simplifies to (and (A (not B))).
8241 Note that no checks happen on the validity of applying the inverse
8242 distributive law. This is pointless since we can do it in the
8243 few places where this routine is called.
8245 N is the index of the term that is decomposed (the arithmetic operation,
8246 i.e. (+ A B) in the first example above). !N is the index of the term that
8247 is distributed, i.e. of C in the first example above. */
8248 static rtx
8249 distribute_and_simplify_rtx (rtx x, int n)
8251 enum machine_mode mode;
8252 enum rtx_code outer_code, inner_code;
8253 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8255 decomposed = XEXP (x, n);
8256 if (!ARITHMETIC_P (decomposed))
8257 return NULL_RTX;
8259 mode = GET_MODE (x);
8260 outer_code = GET_CODE (x);
8261 distributed = XEXP (x, !n);
8263 inner_code = GET_CODE (decomposed);
8264 inner_op0 = XEXP (decomposed, 0);
8265 inner_op1 = XEXP (decomposed, 1);
8267 /* Special case (and (xor B C) (not A)), which is equivalent to
8268 (xor (ior A B) (ior A C)) */
8269 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8271 distributed = XEXP (distributed, 0);
8272 outer_code = IOR;
8275 if (n == 0)
8277 /* Distribute the second term. */
8278 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8279 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8281 else
8283 /* Distribute the first term. */
8284 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8285 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8288 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8289 new_op0, new_op1));
8290 if (GET_CODE (tmp) != outer_code
8291 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8292 return tmp;
8294 return NULL_RTX;
8297 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8298 in MODE.
8300 Return an equivalent form, if different from X. Otherwise, return X. If
8301 X is zero, we are to always construct the equivalent form. */
8303 static rtx
8304 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8305 unsigned HOST_WIDE_INT constop)
8307 unsigned HOST_WIDE_INT nonzero;
8308 int i;
8310 /* Simplify VAROP knowing that we will be only looking at some of the
8311 bits in it.
8313 Note by passing in CONSTOP, we guarantee that the bits not set in
8314 CONSTOP are not significant and will never be examined. We must
8315 ensure that is the case by explicitly masking out those bits
8316 before returning. */
8317 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8319 /* If VAROP is a CLOBBER, we will fail so return it. */
8320 if (GET_CODE (varop) == CLOBBER)
8321 return varop;
8323 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8324 to VAROP and return the new constant. */
8325 if (GET_CODE (varop) == CONST_INT)
8326 return gen_int_mode (INTVAL (varop) & constop, mode);
8328 /* See what bits may be nonzero in VAROP. Unlike the general case of
8329 a call to nonzero_bits, here we don't care about bits outside
8330 MODE. */
8332 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8334 /* Turn off all bits in the constant that are known to already be zero.
8335 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8336 which is tested below. */
8338 constop &= nonzero;
8340 /* If we don't have any bits left, return zero. */
8341 if (constop == 0)
8342 return const0_rtx;
8344 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8345 a power of two, we can replace this with an ASHIFT. */
8346 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8347 && (i = exact_log2 (constop)) >= 0)
8348 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8350 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8351 or XOR, then try to apply the distributive law. This may eliminate
8352 operations if either branch can be simplified because of the AND.
8353 It may also make some cases more complex, but those cases probably
8354 won't match a pattern either with or without this. */
8356 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8357 return
8358 gen_lowpart
8359 (mode,
8360 apply_distributive_law
8361 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8362 simplify_and_const_int (NULL_RTX,
8363 GET_MODE (varop),
8364 XEXP (varop, 0),
8365 constop),
8366 simplify_and_const_int (NULL_RTX,
8367 GET_MODE (varop),
8368 XEXP (varop, 1),
8369 constop))));
8371 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8372 the AND and see if one of the operands simplifies to zero. If so, we
8373 may eliminate it. */
8375 if (GET_CODE (varop) == PLUS
8376 && exact_log2 (constop + 1) >= 0)
8378 rtx o0, o1;
8380 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8381 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8382 if (o0 == const0_rtx)
8383 return o1;
8384 if (o1 == const0_rtx)
8385 return o0;
8388 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8389 if we already had one (just check for the simplest cases). */
8390 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8391 && GET_MODE (XEXP (x, 0)) == mode
8392 && SUBREG_REG (XEXP (x, 0)) == varop)
8393 varop = XEXP (x, 0);
8394 else
8395 varop = gen_lowpart (mode, varop);
8397 /* If we can't make the SUBREG, try to return what we were given. */
8398 if (GET_CODE (varop) == CLOBBER)
8399 return x ? x : varop;
8401 /* If we are only masking insignificant bits, return VAROP. */
8402 if (constop == nonzero)
8403 x = varop;
8404 else
8406 /* Otherwise, return an AND. */
8407 constop = trunc_int_for_mode (constop, mode);
8408 /* See how much, if any, of X we can use. */
8409 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8410 x = simplify_gen_binary (AND, mode, varop, GEN_INT (constop));
8412 else
8414 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8415 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8416 SUBST (XEXP (x, 1), GEN_INT (constop));
8418 SUBST (XEXP (x, 0), varop);
8422 return x;
8425 /* Given a REG, X, compute which bits in X can be nonzero.
8426 We don't care about bits outside of those defined in MODE.
8428 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8429 a shift, AND, or zero_extract, we can do better. */
8431 static rtx
8432 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8433 rtx known_x ATTRIBUTE_UNUSED,
8434 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8435 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8436 unsigned HOST_WIDE_INT *nonzero)
8438 rtx tem;
8440 /* If X is a register whose nonzero bits value is current, use it.
8441 Otherwise, if X is a register whose value we can find, use that
8442 value. Otherwise, use the previously-computed global nonzero bits
8443 for this register. */
8445 if (reg_stat[REGNO (x)].last_set_value != 0
8446 && (reg_stat[REGNO (x)].last_set_mode == mode
8447 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8448 && GET_MODE_CLASS (mode) == MODE_INT))
8449 && (reg_stat[REGNO (x)].last_set_label == label_tick
8450 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8451 && REG_N_SETS (REGNO (x)) == 1
8452 && ! REGNO_REG_SET_P
8453 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8454 REGNO (x))))
8455 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8457 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8458 return NULL;
8461 tem = get_last_value (x);
8463 if (tem)
8465 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8466 /* If X is narrower than MODE and TEM is a non-negative
8467 constant that would appear negative in the mode of X,
8468 sign-extend it for use in reg_nonzero_bits because some
8469 machines (maybe most) will actually do the sign-extension
8470 and this is the conservative approach.
8472 ??? For 2.5, try to tighten up the MD files in this regard
8473 instead of this kludge. */
8475 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8476 && GET_CODE (tem) == CONST_INT
8477 && INTVAL (tem) > 0
8478 && 0 != (INTVAL (tem)
8479 & ((HOST_WIDE_INT) 1
8480 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8481 tem = GEN_INT (INTVAL (tem)
8482 | ((HOST_WIDE_INT) (-1)
8483 << GET_MODE_BITSIZE (GET_MODE (x))));
8484 #endif
8485 return tem;
8487 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8489 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8491 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8492 /* We don't know anything about the upper bits. */
8493 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8494 *nonzero &= mask;
8497 return NULL;
8500 /* Return the number of bits at the high-order end of X that are known to
8501 be equal to the sign bit. X will be used in mode MODE; if MODE is
8502 VOIDmode, X will be used in its own mode. The returned value will always
8503 be between 1 and the number of bits in MODE. */
8505 static rtx
8506 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8507 rtx known_x ATTRIBUTE_UNUSED,
8508 enum machine_mode known_mode
8509 ATTRIBUTE_UNUSED,
8510 unsigned int known_ret ATTRIBUTE_UNUSED,
8511 unsigned int *result)
8513 rtx tem;
8515 if (reg_stat[REGNO (x)].last_set_value != 0
8516 && reg_stat[REGNO (x)].last_set_mode == mode
8517 && (reg_stat[REGNO (x)].last_set_label == label_tick
8518 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8519 && REG_N_SETS (REGNO (x)) == 1
8520 && ! REGNO_REG_SET_P
8521 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8522 REGNO (x))))
8523 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8525 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8526 return NULL;
8529 tem = get_last_value (x);
8530 if (tem != 0)
8531 return tem;
8533 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8534 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8535 *result = reg_stat[REGNO (x)].sign_bit_copies;
8537 return NULL;
8540 /* Return the number of "extended" bits there are in X, when interpreted
8541 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8542 unsigned quantities, this is the number of high-order zero bits.
8543 For signed quantities, this is the number of copies of the sign bit
8544 minus 1. In both case, this function returns the number of "spare"
8545 bits. For example, if two quantities for which this function returns
8546 at least 1 are added, the addition is known not to overflow.
8548 This function will always return 0 unless called during combine, which
8549 implies that it must be called from a define_split. */
8551 unsigned int
8552 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8554 if (nonzero_sign_valid == 0)
8555 return 0;
8557 return (unsignedp
8558 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8559 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8560 - floor_log2 (nonzero_bits (x, mode)))
8561 : 0)
8562 : num_sign_bit_copies (x, mode) - 1);
8565 /* This function is called from `simplify_shift_const' to merge two
8566 outer operations. Specifically, we have already found that we need
8567 to perform operation *POP0 with constant *PCONST0 at the outermost
8568 position. We would now like to also perform OP1 with constant CONST1
8569 (with *POP0 being done last).
8571 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8572 the resulting operation. *PCOMP_P is set to 1 if we would need to
8573 complement the innermost operand, otherwise it is unchanged.
8575 MODE is the mode in which the operation will be done. No bits outside
8576 the width of this mode matter. It is assumed that the width of this mode
8577 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8579 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8580 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8581 result is simply *PCONST0.
8583 If the resulting operation cannot be expressed as one operation, we
8584 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8586 static int
8587 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8589 enum rtx_code op0 = *pop0;
8590 HOST_WIDE_INT const0 = *pconst0;
8592 const0 &= GET_MODE_MASK (mode);
8593 const1 &= GET_MODE_MASK (mode);
8595 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8596 if (op0 == AND)
8597 const1 &= const0;
8599 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8600 if OP0 is SET. */
8602 if (op1 == UNKNOWN || op0 == SET)
8603 return 1;
8605 else if (op0 == UNKNOWN)
8606 op0 = op1, const0 = const1;
8608 else if (op0 == op1)
8610 switch (op0)
8612 case AND:
8613 const0 &= const1;
8614 break;
8615 case IOR:
8616 const0 |= const1;
8617 break;
8618 case XOR:
8619 const0 ^= const1;
8620 break;
8621 case PLUS:
8622 const0 += const1;
8623 break;
8624 case NEG:
8625 op0 = UNKNOWN;
8626 break;
8627 default:
8628 break;
8632 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8633 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8634 return 0;
8636 /* If the two constants aren't the same, we can't do anything. The
8637 remaining six cases can all be done. */
8638 else if (const0 != const1)
8639 return 0;
8641 else
8642 switch (op0)
8644 case IOR:
8645 if (op1 == AND)
8646 /* (a & b) | b == b */
8647 op0 = SET;
8648 else /* op1 == XOR */
8649 /* (a ^ b) | b == a | b */
8651 break;
8653 case XOR:
8654 if (op1 == AND)
8655 /* (a & b) ^ b == (~a) & b */
8656 op0 = AND, *pcomp_p = 1;
8657 else /* op1 == IOR */
8658 /* (a | b) ^ b == a & ~b */
8659 op0 = AND, const0 = ~const0;
8660 break;
8662 case AND:
8663 if (op1 == IOR)
8664 /* (a | b) & b == b */
8665 op0 = SET;
8666 else /* op1 == XOR */
8667 /* (a ^ b) & b) == (~a) & b */
8668 *pcomp_p = 1;
8669 break;
8670 default:
8671 break;
8674 /* Check for NO-OP cases. */
8675 const0 &= GET_MODE_MASK (mode);
8676 if (const0 == 0
8677 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8678 op0 = UNKNOWN;
8679 else if (const0 == 0 && op0 == AND)
8680 op0 = SET;
8681 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8682 && op0 == AND)
8683 op0 = UNKNOWN;
8685 /* ??? Slightly redundant with the above mask, but not entirely.
8686 Moving this above means we'd have to sign-extend the mode mask
8687 for the final test. */
8688 const0 = trunc_int_for_mode (const0, mode);
8690 *pop0 = op0;
8691 *pconst0 = const0;
8693 return 1;
8696 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8697 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8698 that we started with.
8700 The shift is normally computed in the widest mode we find in VAROP, as
8701 long as it isn't a different number of words than RESULT_MODE. Exceptions
8702 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8704 static rtx
8705 simplify_shift_const (rtx x, enum rtx_code code,
8706 enum machine_mode result_mode, rtx varop,
8707 int orig_count)
8709 enum rtx_code orig_code = code;
8710 unsigned int count;
8711 int signed_count;
8712 enum machine_mode mode = result_mode;
8713 enum machine_mode shift_mode, tmode;
8714 unsigned int mode_words
8715 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8716 /* We form (outer_op (code varop count) (outer_const)). */
8717 enum rtx_code outer_op = UNKNOWN;
8718 HOST_WIDE_INT outer_const = 0;
8719 rtx const_rtx;
8720 int complement_p = 0;
8721 rtx new;
8723 /* Make sure and truncate the "natural" shift on the way in. We don't
8724 want to do this inside the loop as it makes it more difficult to
8725 combine shifts. */
8726 if (SHIFT_COUNT_TRUNCATED)
8727 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8729 /* If we were given an invalid count, don't do anything except exactly
8730 what was requested. */
8732 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8734 if (x)
8735 return x;
8737 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8740 count = orig_count;
8742 /* Unless one of the branches of the `if' in this loop does a `continue',
8743 we will `break' the loop after the `if'. */
8745 while (count != 0)
8747 /* If we have an operand of (clobber (const_int 0)), just return that
8748 value. */
8749 if (GET_CODE (varop) == CLOBBER)
8750 return varop;
8752 /* If we discovered we had to complement VAROP, leave. Making a NOT
8753 here would cause an infinite loop. */
8754 if (complement_p)
8755 break;
8757 /* Convert ROTATERT to ROTATE. */
8758 if (code == ROTATERT)
8760 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8761 code = ROTATE;
8762 if (VECTOR_MODE_P (result_mode))
8763 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8764 else
8765 count = bitsize - count;
8768 /* We need to determine what mode we will do the shift in. If the
8769 shift is a right shift or a ROTATE, we must always do it in the mode
8770 it was originally done in. Otherwise, we can do it in MODE, the
8771 widest mode encountered. */
8772 shift_mode
8773 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8774 ? result_mode : mode);
8776 /* Handle cases where the count is greater than the size of the mode
8777 minus 1. For ASHIFT, use the size minus one as the count (this can
8778 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8779 take the count modulo the size. For other shifts, the result is
8780 zero.
8782 Since these shifts are being produced by the compiler by combining
8783 multiple operations, each of which are defined, we know what the
8784 result is supposed to be. */
8786 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8788 if (code == ASHIFTRT)
8789 count = GET_MODE_BITSIZE (shift_mode) - 1;
8790 else if (code == ROTATE || code == ROTATERT)
8791 count %= GET_MODE_BITSIZE (shift_mode);
8792 else
8794 /* We can't simply return zero because there may be an
8795 outer op. */
8796 varop = const0_rtx;
8797 count = 0;
8798 break;
8802 /* An arithmetic right shift of a quantity known to be -1 or 0
8803 is a no-op. */
8804 if (code == ASHIFTRT
8805 && (num_sign_bit_copies (varop, shift_mode)
8806 == GET_MODE_BITSIZE (shift_mode)))
8808 count = 0;
8809 break;
8812 /* If we are doing an arithmetic right shift and discarding all but
8813 the sign bit copies, this is equivalent to doing a shift by the
8814 bitsize minus one. Convert it into that shift because it will often
8815 allow other simplifications. */
8817 if (code == ASHIFTRT
8818 && (count + num_sign_bit_copies (varop, shift_mode)
8819 >= GET_MODE_BITSIZE (shift_mode)))
8820 count = GET_MODE_BITSIZE (shift_mode) - 1;
8822 /* We simplify the tests below and elsewhere by converting
8823 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8824 `make_compound_operation' will convert it to an ASHIFTRT for
8825 those machines (such as VAX) that don't have an LSHIFTRT. */
8826 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8827 && code == ASHIFTRT
8828 && ((nonzero_bits (varop, shift_mode)
8829 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8830 == 0))
8831 code = LSHIFTRT;
8833 if (((code == LSHIFTRT
8834 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8835 && !(nonzero_bits (varop, shift_mode) >> count))
8836 || (code == ASHIFT
8837 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8838 && !((nonzero_bits (varop, shift_mode) << count)
8839 & GET_MODE_MASK (shift_mode))))
8840 && !side_effects_p (varop))
8841 varop = const0_rtx;
8843 switch (GET_CODE (varop))
8845 case SIGN_EXTEND:
8846 case ZERO_EXTEND:
8847 case SIGN_EXTRACT:
8848 case ZERO_EXTRACT:
8849 new = expand_compound_operation (varop);
8850 if (new != varop)
8852 varop = new;
8853 continue;
8855 break;
8857 case MEM:
8858 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8859 minus the width of a smaller mode, we can do this with a
8860 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8861 if ((code == ASHIFTRT || code == LSHIFTRT)
8862 && ! mode_dependent_address_p (XEXP (varop, 0))
8863 && ! MEM_VOLATILE_P (varop)
8864 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8865 MODE_INT, 1)) != BLKmode)
8867 new = adjust_address_nv (varop, tmode,
8868 BYTES_BIG_ENDIAN ? 0
8869 : count / BITS_PER_UNIT);
8871 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8872 : ZERO_EXTEND, mode, new);
8873 count = 0;
8874 continue;
8876 break;
8878 case USE:
8879 /* Similar to the case above, except that we can only do this if
8880 the resulting mode is the same as that of the underlying
8881 MEM and adjust the address depending on the *bits* endianness
8882 because of the way that bit-field extract insns are defined. */
8883 if ((code == ASHIFTRT || code == LSHIFTRT)
8884 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8885 MODE_INT, 1)) != BLKmode
8886 && tmode == GET_MODE (XEXP (varop, 0)))
8888 if (BITS_BIG_ENDIAN)
8889 new = XEXP (varop, 0);
8890 else
8892 new = copy_rtx (XEXP (varop, 0));
8893 SUBST (XEXP (new, 0),
8894 plus_constant (XEXP (new, 0),
8895 count / BITS_PER_UNIT));
8898 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8899 : ZERO_EXTEND, mode, new);
8900 count = 0;
8901 continue;
8903 break;
8905 case SUBREG:
8906 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8907 the same number of words as what we've seen so far. Then store
8908 the widest mode in MODE. */
8909 if (subreg_lowpart_p (varop)
8910 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8911 > GET_MODE_SIZE (GET_MODE (varop)))
8912 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8913 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8914 == mode_words)
8916 varop = SUBREG_REG (varop);
8917 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8918 mode = GET_MODE (varop);
8919 continue;
8921 break;
8923 case MULT:
8924 /* Some machines use MULT instead of ASHIFT because MULT
8925 is cheaper. But it is still better on those machines to
8926 merge two shifts into one. */
8927 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8928 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8930 varop
8931 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
8932 XEXP (varop, 0),
8933 GEN_INT (exact_log2 (
8934 INTVAL (XEXP (varop, 1)))));
8935 continue;
8937 break;
8939 case UDIV:
8940 /* Similar, for when divides are cheaper. */
8941 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8942 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8944 varop
8945 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8946 XEXP (varop, 0),
8947 GEN_INT (exact_log2 (
8948 INTVAL (XEXP (varop, 1)))));
8949 continue;
8951 break;
8953 case ASHIFTRT:
8954 /* If we are extracting just the sign bit of an arithmetic
8955 right shift, that shift is not needed. However, the sign
8956 bit of a wider mode may be different from what would be
8957 interpreted as the sign bit in a narrower mode, so, if
8958 the result is narrower, don't discard the shift. */
8959 if (code == LSHIFTRT
8960 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8961 && (GET_MODE_BITSIZE (result_mode)
8962 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8964 varop = XEXP (varop, 0);
8965 continue;
8968 /* ... fall through ... */
8970 case LSHIFTRT:
8971 case ASHIFT:
8972 case ROTATE:
8973 /* Here we have two nested shifts. The result is usually the
8974 AND of a new shift with a mask. We compute the result below. */
8975 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8976 && INTVAL (XEXP (varop, 1)) >= 0
8977 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8978 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8979 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8980 && !VECTOR_MODE_P (result_mode))
8982 enum rtx_code first_code = GET_CODE (varop);
8983 unsigned int first_count = INTVAL (XEXP (varop, 1));
8984 unsigned HOST_WIDE_INT mask;
8985 rtx mask_rtx;
8987 /* We have one common special case. We can't do any merging if
8988 the inner code is an ASHIFTRT of a smaller mode. However, if
8989 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8990 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8991 we can convert it to
8992 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8993 This simplifies certain SIGN_EXTEND operations. */
8994 if (code == ASHIFT && first_code == ASHIFTRT
8995 && count == (unsigned int)
8996 (GET_MODE_BITSIZE (result_mode)
8997 - GET_MODE_BITSIZE (GET_MODE (varop))))
8999 /* C3 has the low-order C1 bits zero. */
9001 mask = (GET_MODE_MASK (mode)
9002 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9004 varop = simplify_and_const_int (NULL_RTX, result_mode,
9005 XEXP (varop, 0), mask);
9006 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9007 varop, count);
9008 count = first_count;
9009 code = ASHIFTRT;
9010 continue;
9013 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9014 than C1 high-order bits equal to the sign bit, we can convert
9015 this to either an ASHIFT or an ASHIFTRT depending on the
9016 two counts.
9018 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9020 if (code == ASHIFTRT && first_code == ASHIFT
9021 && GET_MODE (varop) == shift_mode
9022 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9023 > first_count))
9025 varop = XEXP (varop, 0);
9027 signed_count = count - first_count;
9028 if (signed_count < 0)
9029 count = -signed_count, code = ASHIFT;
9030 else
9031 count = signed_count;
9033 continue;
9036 /* There are some cases we can't do. If CODE is ASHIFTRT,
9037 we can only do this if FIRST_CODE is also ASHIFTRT.
9039 We can't do the case when CODE is ROTATE and FIRST_CODE is
9040 ASHIFTRT.
9042 If the mode of this shift is not the mode of the outer shift,
9043 we can't do this if either shift is a right shift or ROTATE.
9045 Finally, we can't do any of these if the mode is too wide
9046 unless the codes are the same.
9048 Handle the case where the shift codes are the same
9049 first. */
9051 if (code == first_code)
9053 if (GET_MODE (varop) != result_mode
9054 && (code == ASHIFTRT || code == LSHIFTRT
9055 || code == ROTATE))
9056 break;
9058 count += first_count;
9059 varop = XEXP (varop, 0);
9060 continue;
9063 if (code == ASHIFTRT
9064 || (code == ROTATE && first_code == ASHIFTRT)
9065 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9066 || (GET_MODE (varop) != result_mode
9067 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9068 || first_code == ROTATE
9069 || code == ROTATE)))
9070 break;
9072 /* To compute the mask to apply after the shift, shift the
9073 nonzero bits of the inner shift the same way the
9074 outer shift will. */
9076 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9078 mask_rtx
9079 = simplify_binary_operation (code, result_mode, mask_rtx,
9080 GEN_INT (count));
9082 /* Give up if we can't compute an outer operation to use. */
9083 if (mask_rtx == 0
9084 || GET_CODE (mask_rtx) != CONST_INT
9085 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9086 INTVAL (mask_rtx),
9087 result_mode, &complement_p))
9088 break;
9090 /* If the shifts are in the same direction, we add the
9091 counts. Otherwise, we subtract them. */
9092 signed_count = count;
9093 if ((code == ASHIFTRT || code == LSHIFTRT)
9094 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9095 signed_count += first_count;
9096 else
9097 signed_count -= first_count;
9099 /* If COUNT is positive, the new shift is usually CODE,
9100 except for the two exceptions below, in which case it is
9101 FIRST_CODE. If the count is negative, FIRST_CODE should
9102 always be used */
9103 if (signed_count > 0
9104 && ((first_code == ROTATE && code == ASHIFT)
9105 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9106 code = first_code, count = signed_count;
9107 else if (signed_count < 0)
9108 code = first_code, count = -signed_count;
9109 else
9110 count = signed_count;
9112 varop = XEXP (varop, 0);
9113 continue;
9116 /* If we have (A << B << C) for any shift, we can convert this to
9117 (A << C << B). This wins if A is a constant. Only try this if
9118 B is not a constant. */
9120 else if (GET_CODE (varop) == code
9121 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9122 && 0 != (new
9123 = simplify_binary_operation (code, mode,
9124 XEXP (varop, 0),
9125 GEN_INT (count))))
9127 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9128 count = 0;
9129 continue;
9131 break;
9133 case NOT:
9134 /* Make this fit the case below. */
9135 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9136 GEN_INT (GET_MODE_MASK (mode)));
9137 continue;
9139 case IOR:
9140 case AND:
9141 case XOR:
9142 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9143 with C the size of VAROP - 1 and the shift is logical if
9144 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9145 we have an (le X 0) operation. If we have an arithmetic shift
9146 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9147 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9149 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9150 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9151 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9152 && (code == LSHIFTRT || code == ASHIFTRT)
9153 && count == (unsigned int)
9154 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9155 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9157 count = 0;
9158 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9159 const0_rtx);
9161 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9162 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9164 continue;
9167 /* If we have (shift (logical)), move the logical to the outside
9168 to allow it to possibly combine with another logical and the
9169 shift to combine with another shift. This also canonicalizes to
9170 what a ZERO_EXTRACT looks like. Also, some machines have
9171 (and (shift)) insns. */
9173 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9174 /* We can't do this if we have (ashiftrt (xor)) and the
9175 constant has its sign bit set in shift_mode. */
9176 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9177 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9178 shift_mode))
9179 && (new = simplify_binary_operation (code, result_mode,
9180 XEXP (varop, 1),
9181 GEN_INT (count))) != 0
9182 && GET_CODE (new) == CONST_INT
9183 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9184 INTVAL (new), result_mode, &complement_p))
9186 varop = XEXP (varop, 0);
9187 continue;
9190 /* If we can't do that, try to simplify the shift in each arm of the
9191 logical expression, make a new logical expression, and apply
9192 the inverse distributive law. This also can't be done
9193 for some (ashiftrt (xor)). */
9194 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9195 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9196 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9197 shift_mode)))
9199 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9200 XEXP (varop, 0), count);
9201 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9202 XEXP (varop, 1), count);
9204 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9205 lhs, rhs);
9206 varop = apply_distributive_law (varop);
9208 count = 0;
9209 continue;
9211 break;
9213 case EQ:
9214 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9215 says that the sign bit can be tested, FOO has mode MODE, C is
9216 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9217 that may be nonzero. */
9218 if (code == LSHIFTRT
9219 && XEXP (varop, 1) == const0_rtx
9220 && GET_MODE (XEXP (varop, 0)) == result_mode
9221 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9222 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9223 && ((STORE_FLAG_VALUE
9224 & ((HOST_WIDE_INT) 1
9225 < (GET_MODE_BITSIZE (result_mode) - 1))))
9226 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9227 && merge_outer_ops (&outer_op, &outer_const, XOR,
9228 (HOST_WIDE_INT) 1, result_mode,
9229 &complement_p))
9231 varop = XEXP (varop, 0);
9232 count = 0;
9233 continue;
9235 break;
9237 case NEG:
9238 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9239 than the number of bits in the mode is equivalent to A. */
9240 if (code == LSHIFTRT
9241 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9242 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9244 varop = XEXP (varop, 0);
9245 count = 0;
9246 continue;
9249 /* NEG commutes with ASHIFT since it is multiplication. Move the
9250 NEG outside to allow shifts to combine. */
9251 if (code == ASHIFT
9252 && merge_outer_ops (&outer_op, &outer_const, NEG,
9253 (HOST_WIDE_INT) 0, result_mode,
9254 &complement_p))
9256 varop = XEXP (varop, 0);
9257 continue;
9259 break;
9261 case PLUS:
9262 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9263 is one less than the number of bits in the mode is
9264 equivalent to (xor A 1). */
9265 if (code == LSHIFTRT
9266 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9267 && XEXP (varop, 1) == constm1_rtx
9268 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9269 && merge_outer_ops (&outer_op, &outer_const, XOR,
9270 (HOST_WIDE_INT) 1, result_mode,
9271 &complement_p))
9273 count = 0;
9274 varop = XEXP (varop, 0);
9275 continue;
9278 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9279 that might be nonzero in BAR are those being shifted out and those
9280 bits are known zero in FOO, we can replace the PLUS with FOO.
9281 Similarly in the other operand order. This code occurs when
9282 we are computing the size of a variable-size array. */
9284 if ((code == ASHIFTRT || code == LSHIFTRT)
9285 && count < HOST_BITS_PER_WIDE_INT
9286 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9287 && (nonzero_bits (XEXP (varop, 1), result_mode)
9288 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9290 varop = XEXP (varop, 0);
9291 continue;
9293 else if ((code == ASHIFTRT || code == LSHIFTRT)
9294 && count < HOST_BITS_PER_WIDE_INT
9295 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9296 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9297 >> count)
9298 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9299 & nonzero_bits (XEXP (varop, 1),
9300 result_mode)))
9302 varop = XEXP (varop, 1);
9303 continue;
9306 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9307 if (code == ASHIFT
9308 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9309 && (new = simplify_binary_operation (ASHIFT, result_mode,
9310 XEXP (varop, 1),
9311 GEN_INT (count))) != 0
9312 && GET_CODE (new) == CONST_INT
9313 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9314 INTVAL (new), result_mode, &complement_p))
9316 varop = XEXP (varop, 0);
9317 continue;
9320 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9321 signbit', and attempt to change the PLUS to an XOR and move it to
9322 the outer operation as is done above in the AND/IOR/XOR case
9323 leg for shift(logical). See details in logical handling above
9324 for reasoning in doing so. */
9325 if (code == LSHIFTRT
9326 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9327 && mode_signbit_p (result_mode, XEXP (varop, 1))
9328 && (new = simplify_binary_operation (code, result_mode,
9329 XEXP (varop, 1),
9330 GEN_INT (count))) != 0
9331 && GET_CODE (new) == CONST_INT
9332 && merge_outer_ops (&outer_op, &outer_const, XOR,
9333 INTVAL (new), result_mode, &complement_p))
9335 varop = XEXP (varop, 0);
9336 continue;
9339 break;
9341 case MINUS:
9342 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9343 with C the size of VAROP - 1 and the shift is logical if
9344 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9345 we have a (gt X 0) operation. If the shift is arithmetic with
9346 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9347 we have a (neg (gt X 0)) operation. */
9349 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9350 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9351 && count == (unsigned int)
9352 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9353 && (code == LSHIFTRT || code == ASHIFTRT)
9354 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9355 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9356 == count
9357 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9359 count = 0;
9360 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9361 const0_rtx);
9363 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9364 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9366 continue;
9368 break;
9370 case TRUNCATE:
9371 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9372 if the truncate does not affect the value. */
9373 if (code == LSHIFTRT
9374 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9375 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9376 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9377 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9378 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9380 rtx varop_inner = XEXP (varop, 0);
9382 varop_inner
9383 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9384 XEXP (varop_inner, 0),
9385 GEN_INT
9386 (count + INTVAL (XEXP (varop_inner, 1))));
9387 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9388 count = 0;
9389 continue;
9391 break;
9393 default:
9394 break;
9397 break;
9400 /* We need to determine what mode to do the shift in. If the shift is
9401 a right shift or ROTATE, we must always do it in the mode it was
9402 originally done in. Otherwise, we can do it in MODE, the widest mode
9403 encountered. The code we care about is that of the shift that will
9404 actually be done, not the shift that was originally requested. */
9405 shift_mode
9406 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9407 ? result_mode : mode);
9409 /* We have now finished analyzing the shift. The result should be
9410 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9411 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9412 to the result of the shift. OUTER_CONST is the relevant constant,
9413 but we must turn off all bits turned off in the shift.
9415 If we were passed a value for X, see if we can use any pieces of
9416 it. If not, make new rtx. */
9418 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9419 && GET_CODE (XEXP (x, 1)) == CONST_INT
9420 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9421 const_rtx = XEXP (x, 1);
9422 else
9423 const_rtx = GEN_INT (count);
9425 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9426 && GET_MODE (XEXP (x, 0)) == shift_mode
9427 && SUBREG_REG (XEXP (x, 0)) == varop)
9428 varop = XEXP (x, 0);
9429 else if (GET_MODE (varop) != shift_mode)
9430 varop = gen_lowpart (shift_mode, varop);
9432 /* If we can't make the SUBREG, try to return what we were given. */
9433 if (GET_CODE (varop) == CLOBBER)
9434 return x ? x : varop;
9436 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9437 if (new != 0)
9438 x = new;
9439 else
9440 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9442 /* If we have an outer operation and we just made a shift, it is
9443 possible that we could have simplified the shift were it not
9444 for the outer operation. So try to do the simplification
9445 recursively. */
9447 if (outer_op != UNKNOWN && GET_CODE (x) == code
9448 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9449 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9450 INTVAL (XEXP (x, 1)));
9452 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9453 turn off all the bits that the shift would have turned off. */
9454 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9455 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9456 GET_MODE_MASK (result_mode) >> orig_count);
9458 /* Do the remainder of the processing in RESULT_MODE. */
9459 x = gen_lowpart (result_mode, x);
9461 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9462 operation. */
9463 if (complement_p)
9464 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9466 if (outer_op != UNKNOWN)
9468 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9469 outer_const = trunc_int_for_mode (outer_const, result_mode);
9471 if (outer_op == AND)
9472 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9473 else if (outer_op == SET)
9475 /* This means that we have determined that the result is
9476 equivalent to a constant. This should be rare. */
9477 if (!side_effects_p (x))
9478 x = GEN_INT (outer_const);
9480 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9481 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9482 else
9483 x = simplify_gen_binary (outer_op, result_mode, x,
9484 GEN_INT (outer_const));
9487 return x;
9490 /* Like recog, but we receive the address of a pointer to a new pattern.
9491 We try to match the rtx that the pointer points to.
9492 If that fails, we may try to modify or replace the pattern,
9493 storing the replacement into the same pointer object.
9495 Modifications include deletion or addition of CLOBBERs.
9497 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9498 the CLOBBERs are placed.
9500 The value is the final insn code from the pattern ultimately matched,
9501 or -1. */
9503 static int
9504 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9506 rtx pat = *pnewpat;
9507 int insn_code_number;
9508 int num_clobbers_to_add = 0;
9509 int i;
9510 rtx notes = 0;
9511 rtx old_notes, old_pat;
9513 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9514 we use to indicate that something didn't match. If we find such a
9515 thing, force rejection. */
9516 if (GET_CODE (pat) == PARALLEL)
9517 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9518 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9519 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9520 return -1;
9522 old_pat = PATTERN (insn);
9523 old_notes = REG_NOTES (insn);
9524 PATTERN (insn) = pat;
9525 REG_NOTES (insn) = 0;
9527 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9529 /* If it isn't, there is the possibility that we previously had an insn
9530 that clobbered some register as a side effect, but the combined
9531 insn doesn't need to do that. So try once more without the clobbers
9532 unless this represents an ASM insn. */
9534 if (insn_code_number < 0 && ! check_asm_operands (pat)
9535 && GET_CODE (pat) == PARALLEL)
9537 int pos;
9539 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9540 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9542 if (i != pos)
9543 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9544 pos++;
9547 SUBST_INT (XVECLEN (pat, 0), pos);
9549 if (pos == 1)
9550 pat = XVECEXP (pat, 0, 0);
9552 PATTERN (insn) = pat;
9553 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9555 PATTERN (insn) = old_pat;
9556 REG_NOTES (insn) = old_notes;
9558 /* Recognize all noop sets, these will be killed by followup pass. */
9559 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9560 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9562 /* If we had any clobbers to add, make a new pattern than contains
9563 them. Then check to make sure that all of them are dead. */
9564 if (num_clobbers_to_add)
9566 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9567 rtvec_alloc (GET_CODE (pat) == PARALLEL
9568 ? (XVECLEN (pat, 0)
9569 + num_clobbers_to_add)
9570 : num_clobbers_to_add + 1));
9572 if (GET_CODE (pat) == PARALLEL)
9573 for (i = 0; i < XVECLEN (pat, 0); i++)
9574 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9575 else
9576 XVECEXP (newpat, 0, 0) = pat;
9578 add_clobbers (newpat, insn_code_number);
9580 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9581 i < XVECLEN (newpat, 0); i++)
9583 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9584 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9585 return -1;
9586 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9587 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9589 pat = newpat;
9592 *pnewpat = pat;
9593 *pnotes = notes;
9595 return insn_code_number;
9598 /* Like gen_lowpart_general but for use by combine. In combine it
9599 is not possible to create any new pseudoregs. However, it is
9600 safe to create invalid memory addresses, because combine will
9601 try to recognize them and all they will do is make the combine
9602 attempt fail.
9604 If for some reason this cannot do its job, an rtx
9605 (clobber (const_int 0)) is returned.
9606 An insn containing that will not be recognized. */
9608 static rtx
9609 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9611 enum machine_mode imode = GET_MODE (x);
9612 unsigned int osize = GET_MODE_SIZE (omode);
9613 unsigned int isize = GET_MODE_SIZE (imode);
9614 rtx result;
9616 if (omode == imode)
9617 return x;
9619 /* Return identity if this is a CONST or symbolic reference. */
9620 if (omode == Pmode
9621 && (GET_CODE (x) == CONST
9622 || GET_CODE (x) == SYMBOL_REF
9623 || GET_CODE (x) == LABEL_REF))
9624 return x;
9626 /* We can only support MODE being wider than a word if X is a
9627 constant integer or has a mode the same size. */
9628 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9629 && ! ((imode == VOIDmode
9630 && (GET_CODE (x) == CONST_INT
9631 || GET_CODE (x) == CONST_DOUBLE))
9632 || isize == osize))
9633 goto fail;
9635 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9636 won't know what to do. So we will strip off the SUBREG here and
9637 process normally. */
9638 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9640 x = SUBREG_REG (x);
9642 /* For use in case we fall down into the address adjustments
9643 further below, we need to adjust the known mode and size of
9644 x; imode and isize, since we just adjusted x. */
9645 imode = GET_MODE (x);
9647 if (imode == omode)
9648 return x;
9650 isize = GET_MODE_SIZE (imode);
9653 result = gen_lowpart_common (omode, x);
9655 #ifdef CANNOT_CHANGE_MODE_CLASS
9656 if (result != 0 && GET_CODE (result) == SUBREG)
9657 record_subregs_of_mode (result);
9658 #endif
9660 if (result)
9661 return result;
9663 if (MEM_P (x))
9665 int offset = 0;
9667 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9668 address. */
9669 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9670 goto fail;
9672 /* If we want to refer to something bigger than the original memref,
9673 generate a paradoxical subreg instead. That will force a reload
9674 of the original memref X. */
9675 if (isize < osize)
9676 return gen_rtx_SUBREG (omode, x, 0);
9678 if (WORDS_BIG_ENDIAN)
9679 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9681 /* Adjust the address so that the address-after-the-data is
9682 unchanged. */
9683 if (BYTES_BIG_ENDIAN)
9684 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9686 return adjust_address_nv (x, omode, offset);
9689 /* If X is a comparison operator, rewrite it in a new mode. This
9690 probably won't match, but may allow further simplifications. */
9691 else if (COMPARISON_P (x))
9692 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9694 /* If we couldn't simplify X any other way, just enclose it in a
9695 SUBREG. Normally, this SUBREG won't match, but some patterns may
9696 include an explicit SUBREG or we may simplify it further in combine. */
9697 else
9699 int offset = 0;
9700 rtx res;
9702 offset = subreg_lowpart_offset (omode, imode);
9703 if (imode == VOIDmode)
9705 imode = int_mode_for_mode (omode);
9706 x = gen_lowpart_common (imode, x);
9707 if (x == NULL)
9708 goto fail;
9710 res = simplify_gen_subreg (omode, x, imode, offset);
9711 if (res)
9712 return res;
9715 fail:
9716 return gen_rtx_CLOBBER (imode, const0_rtx);
9719 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9720 comparison code that will be tested.
9722 The result is a possibly different comparison code to use. *POP0 and
9723 *POP1 may be updated.
9725 It is possible that we might detect that a comparison is either always
9726 true or always false. However, we do not perform general constant
9727 folding in combine, so this knowledge isn't useful. Such tautologies
9728 should have been detected earlier. Hence we ignore all such cases. */
9730 static enum rtx_code
9731 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9733 rtx op0 = *pop0;
9734 rtx op1 = *pop1;
9735 rtx tem, tem1;
9736 int i;
9737 enum machine_mode mode, tmode;
9739 /* Try a few ways of applying the same transformation to both operands. */
9740 while (1)
9742 #ifndef WORD_REGISTER_OPERATIONS
9743 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9744 so check specially. */
9745 if (code != GTU && code != GEU && code != LTU && code != LEU
9746 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9747 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9748 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9749 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9750 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9751 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9752 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9753 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9754 && XEXP (op0, 1) == XEXP (op1, 1)
9755 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9756 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9757 && (INTVAL (XEXP (op0, 1))
9758 == (GET_MODE_BITSIZE (GET_MODE (op0))
9759 - (GET_MODE_BITSIZE
9760 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9762 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9763 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9765 #endif
9767 /* If both operands are the same constant shift, see if we can ignore the
9768 shift. We can if the shift is a rotate or if the bits shifted out of
9769 this shift are known to be zero for both inputs and if the type of
9770 comparison is compatible with the shift. */
9771 if (GET_CODE (op0) == GET_CODE (op1)
9772 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9773 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9774 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9775 && (code != GT && code != LT && code != GE && code != LE))
9776 || (GET_CODE (op0) == ASHIFTRT
9777 && (code != GTU && code != LTU
9778 && code != GEU && code != LEU)))
9779 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9780 && INTVAL (XEXP (op0, 1)) >= 0
9781 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9782 && XEXP (op0, 1) == XEXP (op1, 1))
9784 enum machine_mode mode = GET_MODE (op0);
9785 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9786 int shift_count = INTVAL (XEXP (op0, 1));
9788 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9789 mask &= (mask >> shift_count) << shift_count;
9790 else if (GET_CODE (op0) == ASHIFT)
9791 mask = (mask & (mask << shift_count)) >> shift_count;
9793 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9794 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9795 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9796 else
9797 break;
9800 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9801 SUBREGs are of the same mode, and, in both cases, the AND would
9802 be redundant if the comparison was done in the narrower mode,
9803 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9804 and the operand's possibly nonzero bits are 0xffffff01; in that case
9805 if we only care about QImode, we don't need the AND). This case
9806 occurs if the output mode of an scc insn is not SImode and
9807 STORE_FLAG_VALUE == 1 (e.g., the 386).
9809 Similarly, check for a case where the AND's are ZERO_EXTEND
9810 operations from some narrower mode even though a SUBREG is not
9811 present. */
9813 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9814 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9815 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9817 rtx inner_op0 = XEXP (op0, 0);
9818 rtx inner_op1 = XEXP (op1, 0);
9819 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9820 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9821 int changed = 0;
9823 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9824 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9825 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9826 && (GET_MODE (SUBREG_REG (inner_op0))
9827 == GET_MODE (SUBREG_REG (inner_op1)))
9828 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9829 <= HOST_BITS_PER_WIDE_INT)
9830 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9831 GET_MODE (SUBREG_REG (inner_op0)))))
9832 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9833 GET_MODE (SUBREG_REG (inner_op1))))))
9835 op0 = SUBREG_REG (inner_op0);
9836 op1 = SUBREG_REG (inner_op1);
9838 /* The resulting comparison is always unsigned since we masked
9839 off the original sign bit. */
9840 code = unsigned_condition (code);
9842 changed = 1;
9845 else if (c0 == c1)
9846 for (tmode = GET_CLASS_NARROWEST_MODE
9847 (GET_MODE_CLASS (GET_MODE (op0)));
9848 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9849 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9851 op0 = gen_lowpart (tmode, inner_op0);
9852 op1 = gen_lowpart (tmode, inner_op1);
9853 code = unsigned_condition (code);
9854 changed = 1;
9855 break;
9858 if (! changed)
9859 break;
9862 /* If both operands are NOT, we can strip off the outer operation
9863 and adjust the comparison code for swapped operands; similarly for
9864 NEG, except that this must be an equality comparison. */
9865 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9866 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9867 && (code == EQ || code == NE)))
9868 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9870 else
9871 break;
9874 /* If the first operand is a constant, swap the operands and adjust the
9875 comparison code appropriately, but don't do this if the second operand
9876 is already a constant integer. */
9877 if (swap_commutative_operands_p (op0, op1))
9879 tem = op0, op0 = op1, op1 = tem;
9880 code = swap_condition (code);
9883 /* We now enter a loop during which we will try to simplify the comparison.
9884 For the most part, we only are concerned with comparisons with zero,
9885 but some things may really be comparisons with zero but not start
9886 out looking that way. */
9888 while (GET_CODE (op1) == CONST_INT)
9890 enum machine_mode mode = GET_MODE (op0);
9891 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9892 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9893 int equality_comparison_p;
9894 int sign_bit_comparison_p;
9895 int unsigned_comparison_p;
9896 HOST_WIDE_INT const_op;
9898 /* We only want to handle integral modes. This catches VOIDmode,
9899 CCmode, and the floating-point modes. An exception is that we
9900 can handle VOIDmode if OP0 is a COMPARE or a comparison
9901 operation. */
9903 if (GET_MODE_CLASS (mode) != MODE_INT
9904 && ! (mode == VOIDmode
9905 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9906 break;
9908 /* Get the constant we are comparing against and turn off all bits
9909 not on in our mode. */
9910 const_op = INTVAL (op1);
9911 if (mode != VOIDmode)
9912 const_op = trunc_int_for_mode (const_op, mode);
9913 op1 = GEN_INT (const_op);
9915 /* If we are comparing against a constant power of two and the value
9916 being compared can only have that single bit nonzero (e.g., it was
9917 `and'ed with that bit), we can replace this with a comparison
9918 with zero. */
9919 if (const_op
9920 && (code == EQ || code == NE || code == GE || code == GEU
9921 || code == LT || code == LTU)
9922 && mode_width <= HOST_BITS_PER_WIDE_INT
9923 && exact_log2 (const_op) >= 0
9924 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9926 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9927 op1 = const0_rtx, const_op = 0;
9930 /* Similarly, if we are comparing a value known to be either -1 or
9931 0 with -1, change it to the opposite comparison against zero. */
9933 if (const_op == -1
9934 && (code == EQ || code == NE || code == GT || code == LE
9935 || code == GEU || code == LTU)
9936 && num_sign_bit_copies (op0, mode) == mode_width)
9938 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9939 op1 = const0_rtx, const_op = 0;
9942 /* Do some canonicalizations based on the comparison code. We prefer
9943 comparisons against zero and then prefer equality comparisons.
9944 If we can reduce the size of a constant, we will do that too. */
9946 switch (code)
9948 case LT:
9949 /* < C is equivalent to <= (C - 1) */
9950 if (const_op > 0)
9952 const_op -= 1;
9953 op1 = GEN_INT (const_op);
9954 code = LE;
9955 /* ... fall through to LE case below. */
9957 else
9958 break;
9960 case LE:
9961 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9962 if (const_op < 0)
9964 const_op += 1;
9965 op1 = GEN_INT (const_op);
9966 code = LT;
9969 /* If we are doing a <= 0 comparison on a value known to have
9970 a zero sign bit, we can replace this with == 0. */
9971 else if (const_op == 0
9972 && mode_width <= HOST_BITS_PER_WIDE_INT
9973 && (nonzero_bits (op0, mode)
9974 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9975 code = EQ;
9976 break;
9978 case GE:
9979 /* >= C is equivalent to > (C - 1). */
9980 if (const_op > 0)
9982 const_op -= 1;
9983 op1 = GEN_INT (const_op);
9984 code = GT;
9985 /* ... fall through to GT below. */
9987 else
9988 break;
9990 case GT:
9991 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9992 if (const_op < 0)
9994 const_op += 1;
9995 op1 = GEN_INT (const_op);
9996 code = GE;
9999 /* If we are doing a > 0 comparison on a value known to have
10000 a zero sign bit, we can replace this with != 0. */
10001 else if (const_op == 0
10002 && mode_width <= HOST_BITS_PER_WIDE_INT
10003 && (nonzero_bits (op0, mode)
10004 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10005 code = NE;
10006 break;
10008 case LTU:
10009 /* < C is equivalent to <= (C - 1). */
10010 if (const_op > 0)
10012 const_op -= 1;
10013 op1 = GEN_INT (const_op);
10014 code = LEU;
10015 /* ... fall through ... */
10018 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10019 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10020 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10022 const_op = 0, op1 = const0_rtx;
10023 code = GE;
10024 break;
10026 else
10027 break;
10029 case LEU:
10030 /* unsigned <= 0 is equivalent to == 0 */
10031 if (const_op == 0)
10032 code = EQ;
10034 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10035 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10036 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10038 const_op = 0, op1 = const0_rtx;
10039 code = GE;
10041 break;
10043 case GEU:
10044 /* >= C is equivalent to > (C - 1). */
10045 if (const_op > 1)
10047 const_op -= 1;
10048 op1 = GEN_INT (const_op);
10049 code = GTU;
10050 /* ... fall through ... */
10053 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10054 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10055 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10057 const_op = 0, op1 = const0_rtx;
10058 code = LT;
10059 break;
10061 else
10062 break;
10064 case GTU:
10065 /* unsigned > 0 is equivalent to != 0 */
10066 if (const_op == 0)
10067 code = NE;
10069 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10070 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10071 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10073 const_op = 0, op1 = const0_rtx;
10074 code = LT;
10076 break;
10078 default:
10079 break;
10082 /* Compute some predicates to simplify code below. */
10084 equality_comparison_p = (code == EQ || code == NE);
10085 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10086 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10087 || code == GEU);
10089 /* If this is a sign bit comparison and we can do arithmetic in
10090 MODE, say that we will only be needing the sign bit of OP0. */
10091 if (sign_bit_comparison_p
10092 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10093 op0 = force_to_mode (op0, mode,
10094 ((HOST_WIDE_INT) 1
10095 << (GET_MODE_BITSIZE (mode) - 1)),
10096 NULL_RTX, 0);
10098 /* Now try cases based on the opcode of OP0. If none of the cases
10099 does a "continue", we exit this loop immediately after the
10100 switch. */
10102 switch (GET_CODE (op0))
10104 case ZERO_EXTRACT:
10105 /* If we are extracting a single bit from a variable position in
10106 a constant that has only a single bit set and are comparing it
10107 with zero, we can convert this into an equality comparison
10108 between the position and the location of the single bit. */
10109 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10110 have already reduced the shift count modulo the word size. */
10111 if (!SHIFT_COUNT_TRUNCATED
10112 && GET_CODE (XEXP (op0, 0)) == CONST_INT
10113 && XEXP (op0, 1) == const1_rtx
10114 && equality_comparison_p && const_op == 0
10115 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10117 if (BITS_BIG_ENDIAN)
10119 enum machine_mode new_mode
10120 = mode_for_extraction (EP_extzv, 1);
10121 if (new_mode == MAX_MACHINE_MODE)
10122 i = BITS_PER_WORD - 1 - i;
10123 else
10125 mode = new_mode;
10126 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10130 op0 = XEXP (op0, 2);
10131 op1 = GEN_INT (i);
10132 const_op = i;
10134 /* Result is nonzero iff shift count is equal to I. */
10135 code = reverse_condition (code);
10136 continue;
10139 /* ... fall through ... */
10141 case SIGN_EXTRACT:
10142 tem = expand_compound_operation (op0);
10143 if (tem != op0)
10145 op0 = tem;
10146 continue;
10148 break;
10150 case NOT:
10151 /* If testing for equality, we can take the NOT of the constant. */
10152 if (equality_comparison_p
10153 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10155 op0 = XEXP (op0, 0);
10156 op1 = tem;
10157 continue;
10160 /* If just looking at the sign bit, reverse the sense of the
10161 comparison. */
10162 if (sign_bit_comparison_p)
10164 op0 = XEXP (op0, 0);
10165 code = (code == GE ? LT : GE);
10166 continue;
10168 break;
10170 case NEG:
10171 /* If testing for equality, we can take the NEG of the constant. */
10172 if (equality_comparison_p
10173 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10175 op0 = XEXP (op0, 0);
10176 op1 = tem;
10177 continue;
10180 /* The remaining cases only apply to comparisons with zero. */
10181 if (const_op != 0)
10182 break;
10184 /* When X is ABS or is known positive,
10185 (neg X) is < 0 if and only if X != 0. */
10187 if (sign_bit_comparison_p
10188 && (GET_CODE (XEXP (op0, 0)) == ABS
10189 || (mode_width <= HOST_BITS_PER_WIDE_INT
10190 && (nonzero_bits (XEXP (op0, 0), mode)
10191 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10193 op0 = XEXP (op0, 0);
10194 code = (code == LT ? NE : EQ);
10195 continue;
10198 /* If we have NEG of something whose two high-order bits are the
10199 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10200 if (num_sign_bit_copies (op0, mode) >= 2)
10202 op0 = XEXP (op0, 0);
10203 code = swap_condition (code);
10204 continue;
10206 break;
10208 case ROTATE:
10209 /* If we are testing equality and our count is a constant, we
10210 can perform the inverse operation on our RHS. */
10211 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10212 && (tem = simplify_binary_operation (ROTATERT, mode,
10213 op1, XEXP (op0, 1))) != 0)
10215 op0 = XEXP (op0, 0);
10216 op1 = tem;
10217 continue;
10220 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10221 a particular bit. Convert it to an AND of a constant of that
10222 bit. This will be converted into a ZERO_EXTRACT. */
10223 if (const_op == 0 && sign_bit_comparison_p
10224 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10225 && mode_width <= HOST_BITS_PER_WIDE_INT)
10227 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10228 ((HOST_WIDE_INT) 1
10229 << (mode_width - 1
10230 - INTVAL (XEXP (op0, 1)))));
10231 code = (code == LT ? NE : EQ);
10232 continue;
10235 /* Fall through. */
10237 case ABS:
10238 /* ABS is ignorable inside an equality comparison with zero. */
10239 if (const_op == 0 && equality_comparison_p)
10241 op0 = XEXP (op0, 0);
10242 continue;
10244 break;
10246 case SIGN_EXTEND:
10247 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10248 (compare FOO CONST) if CONST fits in FOO's mode and we
10249 are either testing inequality or have an unsigned
10250 comparison with ZERO_EXTEND or a signed comparison with
10251 SIGN_EXTEND. But don't do it if we don't have a compare
10252 insn of the given mode, since we'd have to revert it
10253 later on, and then we wouldn't know whether to sign- or
10254 zero-extend. */
10255 mode = GET_MODE (XEXP (op0, 0));
10256 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10257 && ! unsigned_comparison_p
10258 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10259 && ((unsigned HOST_WIDE_INT) const_op
10260 < (((unsigned HOST_WIDE_INT) 1
10261 << (GET_MODE_BITSIZE (mode) - 1))))
10262 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10264 op0 = XEXP (op0, 0);
10265 continue;
10267 break;
10269 case SUBREG:
10270 /* Check for the case where we are comparing A - C1 with C2, that is
10272 (subreg:MODE (plus (A) (-C1))) op (C2)
10274 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10275 comparison in the wider mode. One of the following two conditions
10276 must be true in order for this to be valid:
10278 1. The mode extension results in the same bit pattern being added
10279 on both sides and the comparison is equality or unsigned. As
10280 C2 has been truncated to fit in MODE, the pattern can only be
10281 all 0s or all 1s.
10283 2. The mode extension results in the sign bit being copied on
10284 each side.
10286 The difficulty here is that we have predicates for A but not for
10287 (A - C1) so we need to check that C1 is within proper bounds so
10288 as to perturbate A as little as possible. */
10290 if (mode_width <= HOST_BITS_PER_WIDE_INT
10291 && subreg_lowpart_p (op0)
10292 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10293 && GET_CODE (SUBREG_REG (op0)) == PLUS
10294 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10296 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10297 rtx a = XEXP (SUBREG_REG (op0), 0);
10298 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10300 if ((c1 > 0
10301 && (unsigned HOST_WIDE_INT) c1
10302 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10303 && (equality_comparison_p || unsigned_comparison_p)
10304 /* (A - C1) zero-extends if it is positive and sign-extends
10305 if it is negative, C2 both zero- and sign-extends. */
10306 && ((0 == (nonzero_bits (a, inner_mode)
10307 & ~GET_MODE_MASK (mode))
10308 && const_op >= 0)
10309 /* (A - C1) sign-extends if it is positive and 1-extends
10310 if it is negative, C2 both sign- and 1-extends. */
10311 || (num_sign_bit_copies (a, inner_mode)
10312 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10313 - mode_width)
10314 && const_op < 0)))
10315 || ((unsigned HOST_WIDE_INT) c1
10316 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10317 /* (A - C1) always sign-extends, like C2. */
10318 && num_sign_bit_copies (a, inner_mode)
10319 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10320 - (mode_width - 1))))
10322 op0 = SUBREG_REG (op0);
10323 continue;
10327 /* If the inner mode is narrower and we are extracting the low part,
10328 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10329 if (subreg_lowpart_p (op0)
10330 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10331 /* Fall through */ ;
10332 else
10333 break;
10335 /* ... fall through ... */
10337 case ZERO_EXTEND:
10338 mode = GET_MODE (XEXP (op0, 0));
10339 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10340 && (unsigned_comparison_p || equality_comparison_p)
10341 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10342 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10343 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10345 op0 = XEXP (op0, 0);
10346 continue;
10348 break;
10350 case PLUS:
10351 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10352 this for equality comparisons due to pathological cases involving
10353 overflows. */
10354 if (equality_comparison_p
10355 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10356 op1, XEXP (op0, 1))))
10358 op0 = XEXP (op0, 0);
10359 op1 = tem;
10360 continue;
10363 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10364 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10365 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10367 op0 = XEXP (XEXP (op0, 0), 0);
10368 code = (code == LT ? EQ : NE);
10369 continue;
10371 break;
10373 case MINUS:
10374 /* We used to optimize signed comparisons against zero, but that
10375 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10376 arrive here as equality comparisons, or (GEU, LTU) are
10377 optimized away. No need to special-case them. */
10379 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10380 (eq B (minus A C)), whichever simplifies. We can only do
10381 this for equality comparisons due to pathological cases involving
10382 overflows. */
10383 if (equality_comparison_p
10384 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10385 XEXP (op0, 1), op1)))
10387 op0 = XEXP (op0, 0);
10388 op1 = tem;
10389 continue;
10392 if (equality_comparison_p
10393 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10394 XEXP (op0, 0), op1)))
10396 op0 = XEXP (op0, 1);
10397 op1 = tem;
10398 continue;
10401 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10402 of bits in X minus 1, is one iff X > 0. */
10403 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10404 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10405 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10406 == mode_width - 1
10407 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10409 op0 = XEXP (op0, 1);
10410 code = (code == GE ? LE : GT);
10411 continue;
10413 break;
10415 case XOR:
10416 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10417 if C is zero or B is a constant. */
10418 if (equality_comparison_p
10419 && 0 != (tem = simplify_binary_operation (XOR, mode,
10420 XEXP (op0, 1), op1)))
10422 op0 = XEXP (op0, 0);
10423 op1 = tem;
10424 continue;
10426 break;
10428 case EQ: case NE:
10429 case UNEQ: case LTGT:
10430 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10431 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10432 case UNORDERED: case ORDERED:
10433 /* We can't do anything if OP0 is a condition code value, rather
10434 than an actual data value. */
10435 if (const_op != 0
10436 || CC0_P (XEXP (op0, 0))
10437 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10438 break;
10440 /* Get the two operands being compared. */
10441 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10442 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10443 else
10444 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10446 /* Check for the cases where we simply want the result of the
10447 earlier test or the opposite of that result. */
10448 if (code == NE || code == EQ
10449 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10450 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10451 && (STORE_FLAG_VALUE
10452 & (((HOST_WIDE_INT) 1
10453 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10454 && (code == LT || code == GE)))
10456 enum rtx_code new_code;
10457 if (code == LT || code == NE)
10458 new_code = GET_CODE (op0);
10459 else
10460 new_code = reversed_comparison_code (op0, NULL);
10462 if (new_code != UNKNOWN)
10464 code = new_code;
10465 op0 = tem;
10466 op1 = tem1;
10467 continue;
10470 break;
10472 case IOR:
10473 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10474 iff X <= 0. */
10475 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10476 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10477 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10479 op0 = XEXP (op0, 1);
10480 code = (code == GE ? GT : LE);
10481 continue;
10483 break;
10485 case AND:
10486 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10487 will be converted to a ZERO_EXTRACT later. */
10488 if (const_op == 0 && equality_comparison_p
10489 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10490 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10492 op0 = simplify_and_const_int
10493 (op0, mode, gen_rtx_LSHIFTRT (mode,
10494 XEXP (op0, 1),
10495 XEXP (XEXP (op0, 0), 1)),
10496 (HOST_WIDE_INT) 1);
10497 continue;
10500 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10501 zero and X is a comparison and C1 and C2 describe only bits set
10502 in STORE_FLAG_VALUE, we can compare with X. */
10503 if (const_op == 0 && equality_comparison_p
10504 && mode_width <= HOST_BITS_PER_WIDE_INT
10505 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10506 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10507 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10508 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10509 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10511 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10512 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10513 if ((~STORE_FLAG_VALUE & mask) == 0
10514 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10515 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10516 && COMPARISON_P (tem))))
10518 op0 = XEXP (XEXP (op0, 0), 0);
10519 continue;
10523 /* If we are doing an equality comparison of an AND of a bit equal
10524 to the sign bit, replace this with a LT or GE comparison of
10525 the underlying value. */
10526 if (equality_comparison_p
10527 && const_op == 0
10528 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10529 && mode_width <= HOST_BITS_PER_WIDE_INT
10530 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10531 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10533 op0 = XEXP (op0, 0);
10534 code = (code == EQ ? GE : LT);
10535 continue;
10538 /* If this AND operation is really a ZERO_EXTEND from a narrower
10539 mode, the constant fits within that mode, and this is either an
10540 equality or unsigned comparison, try to do this comparison in
10541 the narrower mode. */
10542 if ((equality_comparison_p || unsigned_comparison_p)
10543 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10544 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10545 & GET_MODE_MASK (mode))
10546 + 1)) >= 0
10547 && const_op >> i == 0
10548 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10550 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10551 continue;
10554 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10555 fits in both M1 and M2 and the SUBREG is either paradoxical
10556 or represents the low part, permute the SUBREG and the AND
10557 and try again. */
10558 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10560 unsigned HOST_WIDE_INT c1;
10561 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10562 /* Require an integral mode, to avoid creating something like
10563 (AND:SF ...). */
10564 if (SCALAR_INT_MODE_P (tmode)
10565 /* It is unsafe to commute the AND into the SUBREG if the
10566 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10567 not defined. As originally written the upper bits
10568 have a defined value due to the AND operation.
10569 However, if we commute the AND inside the SUBREG then
10570 they no longer have defined values and the meaning of
10571 the code has been changed. */
10572 && (0
10573 #ifdef WORD_REGISTER_OPERATIONS
10574 || (mode_width > GET_MODE_BITSIZE (tmode)
10575 && mode_width <= BITS_PER_WORD)
10576 #endif
10577 || (mode_width <= GET_MODE_BITSIZE (tmode)
10578 && subreg_lowpart_p (XEXP (op0, 0))))
10579 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10580 && mode_width <= HOST_BITS_PER_WIDE_INT
10581 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10582 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10583 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10584 && c1 != mask
10585 && c1 != GET_MODE_MASK (tmode))
10587 op0 = simplify_gen_binary (AND, tmode,
10588 SUBREG_REG (XEXP (op0, 0)),
10589 gen_int_mode (c1, tmode));
10590 op0 = gen_lowpart (mode, op0);
10591 continue;
10595 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10596 if (const_op == 0 && equality_comparison_p
10597 && XEXP (op0, 1) == const1_rtx
10598 && GET_CODE (XEXP (op0, 0)) == NOT)
10600 op0 = simplify_and_const_int
10601 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10602 code = (code == NE ? EQ : NE);
10603 continue;
10606 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10607 (eq (and (lshiftrt X) 1) 0).
10608 Also handle the case where (not X) is expressed using xor. */
10609 if (const_op == 0 && equality_comparison_p
10610 && XEXP (op0, 1) == const1_rtx
10611 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10613 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10614 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10616 if (GET_CODE (shift_op) == NOT
10617 || (GET_CODE (shift_op) == XOR
10618 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10619 && GET_CODE (shift_count) == CONST_INT
10620 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10621 && (INTVAL (XEXP (shift_op, 1))
10622 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10624 op0 = simplify_and_const_int
10625 (NULL_RTX, mode,
10626 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10627 (HOST_WIDE_INT) 1);
10628 code = (code == NE ? EQ : NE);
10629 continue;
10632 break;
10634 case ASHIFT:
10635 /* If we have (compare (ashift FOO N) (const_int C)) and
10636 the high order N bits of FOO (N+1 if an inequality comparison)
10637 are known to be zero, we can do this by comparing FOO with C
10638 shifted right N bits so long as the low-order N bits of C are
10639 zero. */
10640 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10641 && INTVAL (XEXP (op0, 1)) >= 0
10642 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10643 < HOST_BITS_PER_WIDE_INT)
10644 && ((const_op
10645 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10646 && mode_width <= HOST_BITS_PER_WIDE_INT
10647 && (nonzero_bits (XEXP (op0, 0), mode)
10648 & ~(mask >> (INTVAL (XEXP (op0, 1))
10649 + ! equality_comparison_p))) == 0)
10651 /* We must perform a logical shift, not an arithmetic one,
10652 as we want the top N bits of C to be zero. */
10653 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10655 temp >>= INTVAL (XEXP (op0, 1));
10656 op1 = gen_int_mode (temp, mode);
10657 op0 = XEXP (op0, 0);
10658 continue;
10661 /* If we are doing a sign bit comparison, it means we are testing
10662 a particular bit. Convert it to the appropriate AND. */
10663 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10664 && mode_width <= HOST_BITS_PER_WIDE_INT)
10666 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10667 ((HOST_WIDE_INT) 1
10668 << (mode_width - 1
10669 - INTVAL (XEXP (op0, 1)))));
10670 code = (code == LT ? NE : EQ);
10671 continue;
10674 /* If this an equality comparison with zero and we are shifting
10675 the low bit to the sign bit, we can convert this to an AND of the
10676 low-order bit. */
10677 if (const_op == 0 && equality_comparison_p
10678 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10679 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10680 == mode_width - 1)
10682 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10683 (HOST_WIDE_INT) 1);
10684 continue;
10686 break;
10688 case ASHIFTRT:
10689 /* If this is an equality comparison with zero, we can do this
10690 as a logical shift, which might be much simpler. */
10691 if (equality_comparison_p && const_op == 0
10692 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10694 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10695 XEXP (op0, 0),
10696 INTVAL (XEXP (op0, 1)));
10697 continue;
10700 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10701 do the comparison in a narrower mode. */
10702 if (! unsigned_comparison_p
10703 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10704 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10705 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10706 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10707 MODE_INT, 1)) != BLKmode
10708 && (((unsigned HOST_WIDE_INT) const_op
10709 + (GET_MODE_MASK (tmode) >> 1) + 1)
10710 <= GET_MODE_MASK (tmode)))
10712 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10713 continue;
10716 /* Likewise if OP0 is a PLUS of a sign extension with a
10717 constant, which is usually represented with the PLUS
10718 between the shifts. */
10719 if (! unsigned_comparison_p
10720 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10721 && GET_CODE (XEXP (op0, 0)) == PLUS
10722 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10723 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10724 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10725 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10726 MODE_INT, 1)) != BLKmode
10727 && (((unsigned HOST_WIDE_INT) const_op
10728 + (GET_MODE_MASK (tmode) >> 1) + 1)
10729 <= GET_MODE_MASK (tmode)))
10731 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10732 rtx add_const = XEXP (XEXP (op0, 0), 1);
10733 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10734 add_const, XEXP (op0, 1));
10736 op0 = simplify_gen_binary (PLUS, tmode,
10737 gen_lowpart (tmode, inner),
10738 new_const);
10739 continue;
10742 /* ... fall through ... */
10743 case LSHIFTRT:
10744 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10745 the low order N bits of FOO are known to be zero, we can do this
10746 by comparing FOO with C shifted left N bits so long as no
10747 overflow occurs. */
10748 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10749 && INTVAL (XEXP (op0, 1)) >= 0
10750 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10751 && mode_width <= HOST_BITS_PER_WIDE_INT
10752 && (nonzero_bits (XEXP (op0, 0), mode)
10753 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10754 && (((unsigned HOST_WIDE_INT) const_op
10755 + (GET_CODE (op0) != LSHIFTRT
10756 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10757 + 1)
10758 : 0))
10759 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10761 /* If the shift was logical, then we must make the condition
10762 unsigned. */
10763 if (GET_CODE (op0) == LSHIFTRT)
10764 code = unsigned_condition (code);
10766 const_op <<= INTVAL (XEXP (op0, 1));
10767 op1 = GEN_INT (const_op);
10768 op0 = XEXP (op0, 0);
10769 continue;
10772 /* If we are using this shift to extract just the sign bit, we
10773 can replace this with an LT or GE comparison. */
10774 if (const_op == 0
10775 && (equality_comparison_p || sign_bit_comparison_p)
10776 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10777 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10778 == mode_width - 1)
10780 op0 = XEXP (op0, 0);
10781 code = (code == NE || code == GT ? LT : GE);
10782 continue;
10784 break;
10786 default:
10787 break;
10790 break;
10793 /* Now make any compound operations involved in this comparison. Then,
10794 check for an outmost SUBREG on OP0 that is not doing anything or is
10795 paradoxical. The latter transformation must only be performed when
10796 it is known that the "extra" bits will be the same in op0 and op1 or
10797 that they don't matter. There are three cases to consider:
10799 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10800 care bits and we can assume they have any convenient value. So
10801 making the transformation is safe.
10803 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10804 In this case the upper bits of op0 are undefined. We should not make
10805 the simplification in that case as we do not know the contents of
10806 those bits.
10808 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10809 UNKNOWN. In that case we know those bits are zeros or ones. We must
10810 also be sure that they are the same as the upper bits of op1.
10812 We can never remove a SUBREG for a non-equality comparison because
10813 the sign bit is in a different place in the underlying object. */
10815 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10816 op1 = make_compound_operation (op1, SET);
10818 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10819 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10820 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10821 && (code == NE || code == EQ))
10823 if (GET_MODE_SIZE (GET_MODE (op0))
10824 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10826 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10827 implemented. */
10828 if (REG_P (SUBREG_REG (op0)))
10830 op0 = SUBREG_REG (op0);
10831 op1 = gen_lowpart (GET_MODE (op0), op1);
10834 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10835 <= HOST_BITS_PER_WIDE_INT)
10836 && (nonzero_bits (SUBREG_REG (op0),
10837 GET_MODE (SUBREG_REG (op0)))
10838 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10840 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10842 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10843 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10844 op0 = SUBREG_REG (op0), op1 = tem;
10848 /* We now do the opposite procedure: Some machines don't have compare
10849 insns in all modes. If OP0's mode is an integer mode smaller than a
10850 word and we can't do a compare in that mode, see if there is a larger
10851 mode for which we can do the compare. There are a number of cases in
10852 which we can use the wider mode. */
10854 mode = GET_MODE (op0);
10855 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10856 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10857 && ! have_insn_for (COMPARE, mode))
10858 for (tmode = GET_MODE_WIDER_MODE (mode);
10859 (tmode != VOIDmode
10860 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10861 tmode = GET_MODE_WIDER_MODE (tmode))
10862 if (have_insn_for (COMPARE, tmode))
10864 int zero_extended;
10866 /* If the only nonzero bits in OP0 and OP1 are those in the
10867 narrower mode and this is an equality or unsigned comparison,
10868 we can use the wider mode. Similarly for sign-extended
10869 values, in which case it is true for all comparisons. */
10870 zero_extended = ((code == EQ || code == NE
10871 || code == GEU || code == GTU
10872 || code == LEU || code == LTU)
10873 && (nonzero_bits (op0, tmode)
10874 & ~GET_MODE_MASK (mode)) == 0
10875 && ((GET_CODE (op1) == CONST_INT
10876 || (nonzero_bits (op1, tmode)
10877 & ~GET_MODE_MASK (mode)) == 0)));
10879 if (zero_extended
10880 || ((num_sign_bit_copies (op0, tmode)
10881 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10882 - GET_MODE_BITSIZE (mode)))
10883 && (num_sign_bit_copies (op1, tmode)
10884 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10885 - GET_MODE_BITSIZE (mode)))))
10887 /* If OP0 is an AND and we don't have an AND in MODE either,
10888 make a new AND in the proper mode. */
10889 if (GET_CODE (op0) == AND
10890 && !have_insn_for (AND, mode))
10891 op0 = simplify_gen_binary (AND, tmode,
10892 gen_lowpart (tmode,
10893 XEXP (op0, 0)),
10894 gen_lowpart (tmode,
10895 XEXP (op0, 1)));
10897 op0 = gen_lowpart (tmode, op0);
10898 if (zero_extended && GET_CODE (op1) == CONST_INT)
10899 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10900 op1 = gen_lowpart (tmode, op1);
10901 break;
10904 /* If this is a test for negative, we can make an explicit
10905 test of the sign bit. */
10907 if (op1 == const0_rtx && (code == LT || code == GE)
10908 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10910 op0 = simplify_gen_binary (AND, tmode,
10911 gen_lowpart (tmode, op0),
10912 GEN_INT ((HOST_WIDE_INT) 1
10913 << (GET_MODE_BITSIZE (mode)
10914 - 1)));
10915 code = (code == LT) ? NE : EQ;
10916 break;
10920 #ifdef CANONICALIZE_COMPARISON
10921 /* If this machine only supports a subset of valid comparisons, see if we
10922 can convert an unsupported one into a supported one. */
10923 CANONICALIZE_COMPARISON (code, op0, op1);
10924 #endif
10926 *pop0 = op0;
10927 *pop1 = op1;
10929 return code;
10932 /* Utility function for record_value_for_reg. Count number of
10933 rtxs in X. */
10934 static int
10935 count_rtxs (rtx x)
10937 enum rtx_code code = GET_CODE (x);
10938 const char *fmt;
10939 int i, ret = 1;
10941 if (GET_RTX_CLASS (code) == '2'
10942 || GET_RTX_CLASS (code) == 'c')
10944 rtx x0 = XEXP (x, 0);
10945 rtx x1 = XEXP (x, 1);
10947 if (x0 == x1)
10948 return 1 + 2 * count_rtxs (x0);
10950 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10951 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10952 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10953 return 2 + 2 * count_rtxs (x0)
10954 + count_rtxs (x == XEXP (x1, 0)
10955 ? XEXP (x1, 1) : XEXP (x1, 0));
10957 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10958 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10959 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10960 return 2 + 2 * count_rtxs (x1)
10961 + count_rtxs (x == XEXP (x0, 0)
10962 ? XEXP (x0, 1) : XEXP (x0, 0));
10965 fmt = GET_RTX_FORMAT (code);
10966 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10967 if (fmt[i] == 'e')
10968 ret += count_rtxs (XEXP (x, i));
10970 return ret;
10973 /* Utility function for following routine. Called when X is part of a value
10974 being stored into last_set_value. Sets last_set_table_tick
10975 for each register mentioned. Similar to mention_regs in cse.c */
10977 static void
10978 update_table_tick (rtx x)
10980 enum rtx_code code = GET_CODE (x);
10981 const char *fmt = GET_RTX_FORMAT (code);
10982 int i;
10984 if (code == REG)
10986 unsigned int regno = REGNO (x);
10987 unsigned int endregno
10988 = regno + (regno < FIRST_PSEUDO_REGISTER
10989 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10990 unsigned int r;
10992 for (r = regno; r < endregno; r++)
10993 reg_stat[r].last_set_table_tick = label_tick;
10995 return;
10998 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10999 /* Note that we can't have an "E" in values stored; see
11000 get_last_value_validate. */
11001 if (fmt[i] == 'e')
11003 /* Check for identical subexpressions. If x contains
11004 identical subexpression we only have to traverse one of
11005 them. */
11006 if (i == 0 && ARITHMETIC_P (x))
11008 /* Note that at this point x1 has already been
11009 processed. */
11010 rtx x0 = XEXP (x, 0);
11011 rtx x1 = XEXP (x, 1);
11013 /* If x0 and x1 are identical then there is no need to
11014 process x0. */
11015 if (x0 == x1)
11016 break;
11018 /* If x0 is identical to a subexpression of x1 then while
11019 processing x1, x0 has already been processed. Thus we
11020 are done with x. */
11021 if (ARITHMETIC_P (x1)
11022 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11023 break;
11025 /* If x1 is identical to a subexpression of x0 then we
11026 still have to process the rest of x0. */
11027 if (ARITHMETIC_P (x0)
11028 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11030 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11031 break;
11035 update_table_tick (XEXP (x, i));
11039 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11040 are saying that the register is clobbered and we no longer know its
11041 value. If INSN is zero, don't update reg_stat[].last_set; this is
11042 only permitted with VALUE also zero and is used to invalidate the
11043 register. */
11045 static void
11046 record_value_for_reg (rtx reg, rtx insn, rtx value)
11048 unsigned int regno = REGNO (reg);
11049 unsigned int endregno
11050 = regno + (regno < FIRST_PSEUDO_REGISTER
11051 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
11052 unsigned int i;
11054 /* If VALUE contains REG and we have a previous value for REG, substitute
11055 the previous value. */
11056 if (value && insn && reg_overlap_mentioned_p (reg, value))
11058 rtx tem;
11060 /* Set things up so get_last_value is allowed to see anything set up to
11061 our insn. */
11062 subst_low_cuid = INSN_CUID (insn);
11063 tem = get_last_value (reg);
11065 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11066 it isn't going to be useful and will take a lot of time to process,
11067 so just use the CLOBBER. */
11069 if (tem)
11071 if (ARITHMETIC_P (tem)
11072 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11073 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11074 tem = XEXP (tem, 0);
11075 else if (count_occurrences (value, reg, 1) >= 2)
11077 /* If there are two or more occurrences of REG in VALUE,
11078 prevent the value from growing too much. */
11079 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11080 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11083 value = replace_rtx (copy_rtx (value), reg, tem);
11087 /* For each register modified, show we don't know its value, that
11088 we don't know about its bitwise content, that its value has been
11089 updated, and that we don't know the location of the death of the
11090 register. */
11091 for (i = regno; i < endregno; i++)
11093 if (insn)
11094 reg_stat[i].last_set = insn;
11096 reg_stat[i].last_set_value = 0;
11097 reg_stat[i].last_set_mode = 0;
11098 reg_stat[i].last_set_nonzero_bits = 0;
11099 reg_stat[i].last_set_sign_bit_copies = 0;
11100 reg_stat[i].last_death = 0;
11103 /* Mark registers that are being referenced in this value. */
11104 if (value)
11105 update_table_tick (value);
11107 /* Now update the status of each register being set.
11108 If someone is using this register in this block, set this register
11109 to invalid since we will get confused between the two lives in this
11110 basic block. This makes using this register always invalid. In cse, we
11111 scan the table to invalidate all entries using this register, but this
11112 is too much work for us. */
11114 for (i = regno; i < endregno; i++)
11116 reg_stat[i].last_set_label = label_tick;
11117 if (value && reg_stat[i].last_set_table_tick == label_tick)
11118 reg_stat[i].last_set_invalid = 1;
11119 else
11120 reg_stat[i].last_set_invalid = 0;
11123 /* The value being assigned might refer to X (like in "x++;"). In that
11124 case, we must replace it with (clobber (const_int 0)) to prevent
11125 infinite loops. */
11126 if (value && ! get_last_value_validate (&value, insn,
11127 reg_stat[regno].last_set_label, 0))
11129 value = copy_rtx (value);
11130 if (! get_last_value_validate (&value, insn,
11131 reg_stat[regno].last_set_label, 1))
11132 value = 0;
11135 /* For the main register being modified, update the value, the mode, the
11136 nonzero bits, and the number of sign bit copies. */
11138 reg_stat[regno].last_set_value = value;
11140 if (value)
11142 enum machine_mode mode = GET_MODE (reg);
11143 subst_low_cuid = INSN_CUID (insn);
11144 reg_stat[regno].last_set_mode = mode;
11145 if (GET_MODE_CLASS (mode) == MODE_INT
11146 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11147 mode = nonzero_bits_mode;
11148 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
11149 reg_stat[regno].last_set_sign_bit_copies
11150 = num_sign_bit_copies (value, GET_MODE (reg));
11154 /* Called via note_stores from record_dead_and_set_regs to handle one
11155 SET or CLOBBER in an insn. DATA is the instruction in which the
11156 set is occurring. */
11158 static void
11159 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
11161 rtx record_dead_insn = (rtx) data;
11163 if (GET_CODE (dest) == SUBREG)
11164 dest = SUBREG_REG (dest);
11166 if (REG_P (dest))
11168 /* If we are setting the whole register, we know its value. Otherwise
11169 show that we don't know the value. We can handle SUBREG in
11170 some cases. */
11171 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11172 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11173 else if (GET_CODE (setter) == SET
11174 && GET_CODE (SET_DEST (setter)) == SUBREG
11175 && SUBREG_REG (SET_DEST (setter)) == dest
11176 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11177 && subreg_lowpart_p (SET_DEST (setter)))
11178 record_value_for_reg (dest, record_dead_insn,
11179 gen_lowpart (GET_MODE (dest),
11180 SET_SRC (setter)));
11181 else
11182 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11184 else if (MEM_P (dest)
11185 /* Ignore pushes, they clobber nothing. */
11186 && ! push_operand (dest, GET_MODE (dest)))
11187 mem_last_set = INSN_CUID (record_dead_insn);
11190 /* Update the records of when each REG was most recently set or killed
11191 for the things done by INSN. This is the last thing done in processing
11192 INSN in the combiner loop.
11194 We update reg_stat[], in particular fields last_set, last_set_value,
11195 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11196 last_death, and also the similar information mem_last_set (which insn
11197 most recently modified memory) and last_call_cuid (which insn was the
11198 most recent subroutine call). */
11200 static void
11201 record_dead_and_set_regs (rtx insn)
11203 rtx link;
11204 unsigned int i;
11206 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11208 if (REG_NOTE_KIND (link) == REG_DEAD
11209 && REG_P (XEXP (link, 0)))
11211 unsigned int regno = REGNO (XEXP (link, 0));
11212 unsigned int endregno
11213 = regno + (regno < FIRST_PSEUDO_REGISTER
11214 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11215 : 1);
11217 for (i = regno; i < endregno; i++)
11218 reg_stat[i].last_death = insn;
11220 else if (REG_NOTE_KIND (link) == REG_INC)
11221 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11224 if (CALL_P (insn))
11226 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11227 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11229 reg_stat[i].last_set_value = 0;
11230 reg_stat[i].last_set_mode = 0;
11231 reg_stat[i].last_set_nonzero_bits = 0;
11232 reg_stat[i].last_set_sign_bit_copies = 0;
11233 reg_stat[i].last_death = 0;
11236 last_call_cuid = mem_last_set = INSN_CUID (insn);
11238 /* Don't bother recording what this insn does. It might set the
11239 return value register, but we can't combine into a call
11240 pattern anyway, so there's no point trying (and it may cause
11241 a crash, if e.g. we wind up asking for last_set_value of a
11242 SUBREG of the return value register). */
11243 return;
11246 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11249 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11250 register present in the SUBREG, so for each such SUBREG go back and
11251 adjust nonzero and sign bit information of the registers that are
11252 known to have some zero/sign bits set.
11254 This is needed because when combine blows the SUBREGs away, the
11255 information on zero/sign bits is lost and further combines can be
11256 missed because of that. */
11258 static void
11259 record_promoted_value (rtx insn, rtx subreg)
11261 rtx links, set;
11262 unsigned int regno = REGNO (SUBREG_REG (subreg));
11263 enum machine_mode mode = GET_MODE (subreg);
11265 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11266 return;
11268 for (links = LOG_LINKS (insn); links;)
11270 insn = XEXP (links, 0);
11271 set = single_set (insn);
11273 if (! set || !REG_P (SET_DEST (set))
11274 || REGNO (SET_DEST (set)) != regno
11275 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11277 links = XEXP (links, 1);
11278 continue;
11281 if (reg_stat[regno].last_set == insn)
11283 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11284 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11287 if (REG_P (SET_SRC (set)))
11289 regno = REGNO (SET_SRC (set));
11290 links = LOG_LINKS (insn);
11292 else
11293 break;
11297 /* Scan X for promoted SUBREGs. For each one found,
11298 note what it implies to the registers used in it. */
11300 static void
11301 check_promoted_subreg (rtx insn, rtx x)
11303 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11304 && REG_P (SUBREG_REG (x)))
11305 record_promoted_value (insn, x);
11306 else
11308 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11309 int i, j;
11311 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11312 switch (format[i])
11314 case 'e':
11315 check_promoted_subreg (insn, XEXP (x, i));
11316 break;
11317 case 'V':
11318 case 'E':
11319 if (XVEC (x, i) != 0)
11320 for (j = 0; j < XVECLEN (x, i); j++)
11321 check_promoted_subreg (insn, XVECEXP (x, i, j));
11322 break;
11327 /* Utility routine for the following function. Verify that all the registers
11328 mentioned in *LOC are valid when *LOC was part of a value set when
11329 label_tick == TICK. Return 0 if some are not.
11331 If REPLACE is nonzero, replace the invalid reference with
11332 (clobber (const_int 0)) and return 1. This replacement is useful because
11333 we often can get useful information about the form of a value (e.g., if
11334 it was produced by a shift that always produces -1 or 0) even though
11335 we don't know exactly what registers it was produced from. */
11337 static int
11338 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11340 rtx x = *loc;
11341 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11342 int len = GET_RTX_LENGTH (GET_CODE (x));
11343 int i;
11345 if (REG_P (x))
11347 unsigned int regno = REGNO (x);
11348 unsigned int endregno
11349 = regno + (regno < FIRST_PSEUDO_REGISTER
11350 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11351 unsigned int j;
11353 for (j = regno; j < endregno; j++)
11354 if (reg_stat[j].last_set_invalid
11355 /* If this is a pseudo-register that was only set once and not
11356 live at the beginning of the function, it is always valid. */
11357 || (! (regno >= FIRST_PSEUDO_REGISTER
11358 && REG_N_SETS (regno) == 1
11359 && (! REGNO_REG_SET_P
11360 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11361 regno)))
11362 && reg_stat[j].last_set_label > tick))
11364 if (replace)
11365 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11366 return replace;
11369 return 1;
11371 /* If this is a memory reference, make sure that there were
11372 no stores after it that might have clobbered the value. We don't
11373 have alias info, so we assume any store invalidates it. */
11374 else if (MEM_P (x) && !MEM_READONLY_P (x)
11375 && INSN_CUID (insn) <= mem_last_set)
11377 if (replace)
11378 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11379 return replace;
11382 for (i = 0; i < len; i++)
11384 if (fmt[i] == 'e')
11386 /* Check for identical subexpressions. If x contains
11387 identical subexpression we only have to traverse one of
11388 them. */
11389 if (i == 1 && ARITHMETIC_P (x))
11391 /* Note that at this point x0 has already been checked
11392 and found valid. */
11393 rtx x0 = XEXP (x, 0);
11394 rtx x1 = XEXP (x, 1);
11396 /* If x0 and x1 are identical then x is also valid. */
11397 if (x0 == x1)
11398 return 1;
11400 /* If x1 is identical to a subexpression of x0 then
11401 while checking x0, x1 has already been checked. Thus
11402 it is valid and so as x. */
11403 if (ARITHMETIC_P (x0)
11404 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11405 return 1;
11407 /* If x0 is identical to a subexpression of x1 then x is
11408 valid iff the rest of x1 is valid. */
11409 if (ARITHMETIC_P (x1)
11410 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11411 return
11412 get_last_value_validate (&XEXP (x1,
11413 x0 == XEXP (x1, 0) ? 1 : 0),
11414 insn, tick, replace);
11417 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11418 replace) == 0)
11419 return 0;
11421 /* Don't bother with these. They shouldn't occur anyway. */
11422 else if (fmt[i] == 'E')
11423 return 0;
11426 /* If we haven't found a reason for it to be invalid, it is valid. */
11427 return 1;
11430 /* Get the last value assigned to X, if known. Some registers
11431 in the value may be replaced with (clobber (const_int 0)) if their value
11432 is known longer known reliably. */
11434 static rtx
11435 get_last_value (rtx x)
11437 unsigned int regno;
11438 rtx value;
11440 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11441 then convert it to the desired mode. If this is a paradoxical SUBREG,
11442 we cannot predict what values the "extra" bits might have. */
11443 if (GET_CODE (x) == SUBREG
11444 && subreg_lowpart_p (x)
11445 && (GET_MODE_SIZE (GET_MODE (x))
11446 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11447 && (value = get_last_value (SUBREG_REG (x))) != 0)
11448 return gen_lowpart (GET_MODE (x), value);
11450 if (!REG_P (x))
11451 return 0;
11453 regno = REGNO (x);
11454 value = reg_stat[regno].last_set_value;
11456 /* If we don't have a value, or if it isn't for this basic block and
11457 it's either a hard register, set more than once, or it's a live
11458 at the beginning of the function, return 0.
11460 Because if it's not live at the beginning of the function then the reg
11461 is always set before being used (is never used without being set).
11462 And, if it's set only once, and it's always set before use, then all
11463 uses must have the same last value, even if it's not from this basic
11464 block. */
11466 if (value == 0
11467 || (reg_stat[regno].last_set_label != label_tick
11468 && (regno < FIRST_PSEUDO_REGISTER
11469 || REG_N_SETS (regno) != 1
11470 || (REGNO_REG_SET_P
11471 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11472 regno)))))
11473 return 0;
11475 /* If the value was set in a later insn than the ones we are processing,
11476 we can't use it even if the register was only set once. */
11477 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11478 return 0;
11480 /* If the value has all its registers valid, return it. */
11481 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11482 reg_stat[regno].last_set_label, 0))
11483 return value;
11485 /* Otherwise, make a copy and replace any invalid register with
11486 (clobber (const_int 0)). If that fails for some reason, return 0. */
11488 value = copy_rtx (value);
11489 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11490 reg_stat[regno].last_set_label, 1))
11491 return value;
11493 return 0;
11496 /* Return nonzero if expression X refers to a REG or to memory
11497 that is set in an instruction more recent than FROM_CUID. */
11499 static int
11500 use_crosses_set_p (rtx x, int from_cuid)
11502 const char *fmt;
11503 int i;
11504 enum rtx_code code = GET_CODE (x);
11506 if (code == REG)
11508 unsigned int regno = REGNO (x);
11509 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11510 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11512 #ifdef PUSH_ROUNDING
11513 /* Don't allow uses of the stack pointer to be moved,
11514 because we don't know whether the move crosses a push insn. */
11515 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11516 return 1;
11517 #endif
11518 for (; regno < endreg; regno++)
11519 if (reg_stat[regno].last_set
11520 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11521 return 1;
11522 return 0;
11525 if (code == MEM && mem_last_set > from_cuid)
11526 return 1;
11528 fmt = GET_RTX_FORMAT (code);
11530 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11532 if (fmt[i] == 'E')
11534 int j;
11535 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11536 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11537 return 1;
11539 else if (fmt[i] == 'e'
11540 && use_crosses_set_p (XEXP (x, i), from_cuid))
11541 return 1;
11543 return 0;
11546 /* Define three variables used for communication between the following
11547 routines. */
11549 static unsigned int reg_dead_regno, reg_dead_endregno;
11550 static int reg_dead_flag;
11552 /* Function called via note_stores from reg_dead_at_p.
11554 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11555 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11557 static void
11558 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11560 unsigned int regno, endregno;
11562 if (!REG_P (dest))
11563 return;
11565 regno = REGNO (dest);
11566 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11567 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11569 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11570 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11573 /* Return nonzero if REG is known to be dead at INSN.
11575 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11576 referencing REG, it is dead. If we hit a SET referencing REG, it is
11577 live. Otherwise, see if it is live or dead at the start of the basic
11578 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11579 must be assumed to be always live. */
11581 static int
11582 reg_dead_at_p (rtx reg, rtx insn)
11584 basic_block block;
11585 unsigned int i;
11587 /* Set variables for reg_dead_at_p_1. */
11588 reg_dead_regno = REGNO (reg);
11589 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11590 ? hard_regno_nregs[reg_dead_regno]
11591 [GET_MODE (reg)]
11592 : 1);
11594 reg_dead_flag = 0;
11596 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11597 we allow the machine description to decide whether use-and-clobber
11598 patterns are OK. */
11599 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11601 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11602 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11603 return 0;
11606 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11607 beginning of function. */
11608 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11609 insn = prev_nonnote_insn (insn))
11611 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11612 if (reg_dead_flag)
11613 return reg_dead_flag == 1 ? 1 : 0;
11615 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11616 return 1;
11619 /* Get the basic block that we were in. */
11620 if (insn == 0)
11621 block = ENTRY_BLOCK_PTR->next_bb;
11622 else
11624 FOR_EACH_BB (block)
11625 if (insn == BB_HEAD (block))
11626 break;
11628 if (block == EXIT_BLOCK_PTR)
11629 return 0;
11632 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11633 if (REGNO_REG_SET_P (block->il.rtl->global_live_at_start, i))
11634 return 0;
11636 return 1;
11639 /* Note hard registers in X that are used. This code is similar to
11640 that in flow.c, but much simpler since we don't care about pseudos. */
11642 static void
11643 mark_used_regs_combine (rtx x)
11645 RTX_CODE code = GET_CODE (x);
11646 unsigned int regno;
11647 int i;
11649 switch (code)
11651 case LABEL_REF:
11652 case SYMBOL_REF:
11653 case CONST_INT:
11654 case CONST:
11655 case CONST_DOUBLE:
11656 case CONST_VECTOR:
11657 case PC:
11658 case ADDR_VEC:
11659 case ADDR_DIFF_VEC:
11660 case ASM_INPUT:
11661 #ifdef HAVE_cc0
11662 /* CC0 must die in the insn after it is set, so we don't need to take
11663 special note of it here. */
11664 case CC0:
11665 #endif
11666 return;
11668 case CLOBBER:
11669 /* If we are clobbering a MEM, mark any hard registers inside the
11670 address as used. */
11671 if (MEM_P (XEXP (x, 0)))
11672 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11673 return;
11675 case REG:
11676 regno = REGNO (x);
11677 /* A hard reg in a wide mode may really be multiple registers.
11678 If so, mark all of them just like the first. */
11679 if (regno < FIRST_PSEUDO_REGISTER)
11681 unsigned int endregno, r;
11683 /* None of this applies to the stack, frame or arg pointers. */
11684 if (regno == STACK_POINTER_REGNUM
11685 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11686 || regno == HARD_FRAME_POINTER_REGNUM
11687 #endif
11688 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11689 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11690 #endif
11691 || regno == FRAME_POINTER_REGNUM)
11692 return;
11694 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11695 for (r = regno; r < endregno; r++)
11696 SET_HARD_REG_BIT (newpat_used_regs, r);
11698 return;
11700 case SET:
11702 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11703 the address. */
11704 rtx testreg = SET_DEST (x);
11706 while (GET_CODE (testreg) == SUBREG
11707 || GET_CODE (testreg) == ZERO_EXTRACT
11708 || GET_CODE (testreg) == STRICT_LOW_PART)
11709 testreg = XEXP (testreg, 0);
11711 if (MEM_P (testreg))
11712 mark_used_regs_combine (XEXP (testreg, 0));
11714 mark_used_regs_combine (SET_SRC (x));
11716 return;
11718 default:
11719 break;
11722 /* Recursively scan the operands of this expression. */
11725 const char *fmt = GET_RTX_FORMAT (code);
11727 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11729 if (fmt[i] == 'e')
11730 mark_used_regs_combine (XEXP (x, i));
11731 else if (fmt[i] == 'E')
11733 int j;
11735 for (j = 0; j < XVECLEN (x, i); j++)
11736 mark_used_regs_combine (XVECEXP (x, i, j));
11742 /* Remove register number REGNO from the dead registers list of INSN.
11744 Return the note used to record the death, if there was one. */
11747 remove_death (unsigned int regno, rtx insn)
11749 rtx note = find_regno_note (insn, REG_DEAD, regno);
11751 if (note)
11753 REG_N_DEATHS (regno)--;
11754 remove_note (insn, note);
11757 return note;
11760 /* For each register (hardware or pseudo) used within expression X, if its
11761 death is in an instruction with cuid between FROM_CUID (inclusive) and
11762 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11763 list headed by PNOTES.
11765 That said, don't move registers killed by maybe_kill_insn.
11767 This is done when X is being merged by combination into TO_INSN. These
11768 notes will then be distributed as needed. */
11770 static void
11771 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11772 rtx *pnotes)
11774 const char *fmt;
11775 int len, i;
11776 enum rtx_code code = GET_CODE (x);
11778 if (code == REG)
11780 unsigned int regno = REGNO (x);
11781 rtx where_dead = reg_stat[regno].last_death;
11782 rtx before_dead, after_dead;
11784 /* Don't move the register if it gets killed in between from and to. */
11785 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11786 && ! reg_referenced_p (x, maybe_kill_insn))
11787 return;
11789 /* WHERE_DEAD could be a USE insn made by combine, so first we
11790 make sure that we have insns with valid INSN_CUID values. */
11791 before_dead = where_dead;
11792 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11793 before_dead = PREV_INSN (before_dead);
11795 after_dead = where_dead;
11796 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11797 after_dead = NEXT_INSN (after_dead);
11799 if (before_dead && after_dead
11800 && INSN_CUID (before_dead) >= from_cuid
11801 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11802 || (where_dead != after_dead
11803 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11805 rtx note = remove_death (regno, where_dead);
11807 /* It is possible for the call above to return 0. This can occur
11808 when last_death points to I2 or I1 that we combined with.
11809 In that case make a new note.
11811 We must also check for the case where X is a hard register
11812 and NOTE is a death note for a range of hard registers
11813 including X. In that case, we must put REG_DEAD notes for
11814 the remaining registers in place of NOTE. */
11816 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11817 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11818 > GET_MODE_SIZE (GET_MODE (x))))
11820 unsigned int deadregno = REGNO (XEXP (note, 0));
11821 unsigned int deadend
11822 = (deadregno + hard_regno_nregs[deadregno]
11823 [GET_MODE (XEXP (note, 0))]);
11824 unsigned int ourend
11825 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11826 unsigned int i;
11828 for (i = deadregno; i < deadend; i++)
11829 if (i < regno || i >= ourend)
11830 REG_NOTES (where_dead)
11831 = gen_rtx_EXPR_LIST (REG_DEAD,
11832 regno_reg_rtx[i],
11833 REG_NOTES (where_dead));
11836 /* If we didn't find any note, or if we found a REG_DEAD note that
11837 covers only part of the given reg, and we have a multi-reg hard
11838 register, then to be safe we must check for REG_DEAD notes
11839 for each register other than the first. They could have
11840 their own REG_DEAD notes lying around. */
11841 else if ((note == 0
11842 || (note != 0
11843 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11844 < GET_MODE_SIZE (GET_MODE (x)))))
11845 && regno < FIRST_PSEUDO_REGISTER
11846 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11848 unsigned int ourend
11849 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11850 unsigned int i, offset;
11851 rtx oldnotes = 0;
11853 if (note)
11854 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11855 else
11856 offset = 1;
11858 for (i = regno + offset; i < ourend; i++)
11859 move_deaths (regno_reg_rtx[i],
11860 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11863 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11865 XEXP (note, 1) = *pnotes;
11866 *pnotes = note;
11868 else
11869 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11871 REG_N_DEATHS (regno)++;
11874 return;
11877 else if (GET_CODE (x) == SET)
11879 rtx dest = SET_DEST (x);
11881 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11883 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11884 that accesses one word of a multi-word item, some
11885 piece of everything register in the expression is used by
11886 this insn, so remove any old death. */
11887 /* ??? So why do we test for equality of the sizes? */
11889 if (GET_CODE (dest) == ZERO_EXTRACT
11890 || GET_CODE (dest) == STRICT_LOW_PART
11891 || (GET_CODE (dest) == SUBREG
11892 && (((GET_MODE_SIZE (GET_MODE (dest))
11893 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11894 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11895 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11897 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11898 return;
11901 /* If this is some other SUBREG, we know it replaces the entire
11902 value, so use that as the destination. */
11903 if (GET_CODE (dest) == SUBREG)
11904 dest = SUBREG_REG (dest);
11906 /* If this is a MEM, adjust deaths of anything used in the address.
11907 For a REG (the only other possibility), the entire value is
11908 being replaced so the old value is not used in this insn. */
11910 if (MEM_P (dest))
11911 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11912 to_insn, pnotes);
11913 return;
11916 else if (GET_CODE (x) == CLOBBER)
11917 return;
11919 len = GET_RTX_LENGTH (code);
11920 fmt = GET_RTX_FORMAT (code);
11922 for (i = 0; i < len; i++)
11924 if (fmt[i] == 'E')
11926 int j;
11927 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11928 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11929 to_insn, pnotes);
11931 else if (fmt[i] == 'e')
11932 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11936 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11937 pattern of an insn. X must be a REG. */
11939 static int
11940 reg_bitfield_target_p (rtx x, rtx body)
11942 int i;
11944 if (GET_CODE (body) == SET)
11946 rtx dest = SET_DEST (body);
11947 rtx target;
11948 unsigned int regno, tregno, endregno, endtregno;
11950 if (GET_CODE (dest) == ZERO_EXTRACT)
11951 target = XEXP (dest, 0);
11952 else if (GET_CODE (dest) == STRICT_LOW_PART)
11953 target = SUBREG_REG (XEXP (dest, 0));
11954 else
11955 return 0;
11957 if (GET_CODE (target) == SUBREG)
11958 target = SUBREG_REG (target);
11960 if (!REG_P (target))
11961 return 0;
11963 tregno = REGNO (target), regno = REGNO (x);
11964 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11965 return target == x;
11967 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11968 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11970 return endregno > tregno && regno < endtregno;
11973 else if (GET_CODE (body) == PARALLEL)
11974 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11975 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11976 return 1;
11978 return 0;
11981 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11982 as appropriate. I3 and I2 are the insns resulting from the combination
11983 insns including FROM (I2 may be zero).
11985 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11986 not need REG_DEAD notes because they are being substituted for. This
11987 saves searching in the most common cases.
11989 Each note in the list is either ignored or placed on some insns, depending
11990 on the type of note. */
11992 static void
11993 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
11994 rtx elim_i1)
11996 rtx note, next_note;
11997 rtx tem;
11999 for (note = notes; note; note = next_note)
12001 rtx place = 0, place2 = 0;
12003 /* If this NOTE references a pseudo register, ensure it references
12004 the latest copy of that register. */
12005 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
12006 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12007 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12009 next_note = XEXP (note, 1);
12010 switch (REG_NOTE_KIND (note))
12012 case REG_BR_PROB:
12013 case REG_BR_PRED:
12014 /* Doesn't matter much where we put this, as long as it's somewhere.
12015 It is preferable to keep these notes on branches, which is most
12016 likely to be i3. */
12017 place = i3;
12018 break;
12020 case REG_VALUE_PROFILE:
12021 /* Just get rid of this note, as it is unused later anyway. */
12022 break;
12024 case REG_NON_LOCAL_GOTO:
12025 if (JUMP_P (i3))
12026 place = i3;
12027 else
12029 gcc_assert (i2 && JUMP_P (i2));
12030 place = i2;
12032 break;
12034 case REG_EH_REGION:
12035 /* These notes must remain with the call or trapping instruction. */
12036 if (CALL_P (i3))
12037 place = i3;
12038 else if (i2 && CALL_P (i2))
12039 place = i2;
12040 else
12042 gcc_assert (flag_non_call_exceptions);
12043 if (may_trap_p (i3))
12044 place = i3;
12045 else if (i2 && may_trap_p (i2))
12046 place = i2;
12047 /* ??? Otherwise assume we've combined things such that we
12048 can now prove that the instructions can't trap. Drop the
12049 note in this case. */
12051 break;
12053 case REG_NORETURN:
12054 case REG_SETJMP:
12055 /* These notes must remain with the call. It should not be
12056 possible for both I2 and I3 to be a call. */
12057 if (CALL_P (i3))
12058 place = i3;
12059 else
12061 gcc_assert (i2 && CALL_P (i2));
12062 place = i2;
12064 break;
12066 case REG_UNUSED:
12067 /* Any clobbers for i3 may still exist, and so we must process
12068 REG_UNUSED notes from that insn.
12070 Any clobbers from i2 or i1 can only exist if they were added by
12071 recog_for_combine. In that case, recog_for_combine created the
12072 necessary REG_UNUSED notes. Trying to keep any original
12073 REG_UNUSED notes from these insns can cause incorrect output
12074 if it is for the same register as the original i3 dest.
12075 In that case, we will notice that the register is set in i3,
12076 and then add a REG_UNUSED note for the destination of i3, which
12077 is wrong. However, it is possible to have REG_UNUSED notes from
12078 i2 or i1 for register which were both used and clobbered, so
12079 we keep notes from i2 or i1 if they will turn into REG_DEAD
12080 notes. */
12082 /* If this register is set or clobbered in I3, put the note there
12083 unless there is one already. */
12084 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12086 if (from_insn != i3)
12087 break;
12089 if (! (REG_P (XEXP (note, 0))
12090 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12091 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12092 place = i3;
12094 /* Otherwise, if this register is used by I3, then this register
12095 now dies here, so we must put a REG_DEAD note here unless there
12096 is one already. */
12097 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12098 && ! (REG_P (XEXP (note, 0))
12099 ? find_regno_note (i3, REG_DEAD,
12100 REGNO (XEXP (note, 0)))
12101 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12103 PUT_REG_NOTE_KIND (note, REG_DEAD);
12104 place = i3;
12106 break;
12108 case REG_EQUAL:
12109 case REG_EQUIV:
12110 case REG_NOALIAS:
12111 /* These notes say something about results of an insn. We can
12112 only support them if they used to be on I3 in which case they
12113 remain on I3. Otherwise they are ignored.
12115 If the note refers to an expression that is not a constant, we
12116 must also ignore the note since we cannot tell whether the
12117 equivalence is still true. It might be possible to do
12118 slightly better than this (we only have a problem if I2DEST
12119 or I1DEST is present in the expression), but it doesn't
12120 seem worth the trouble. */
12122 if (from_insn == i3
12123 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12124 place = i3;
12125 break;
12127 case REG_INC:
12128 case REG_NO_CONFLICT:
12129 /* These notes say something about how a register is used. They must
12130 be present on any use of the register in I2 or I3. */
12131 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12132 place = i3;
12134 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12136 if (place)
12137 place2 = i2;
12138 else
12139 place = i2;
12141 break;
12143 case REG_LABEL:
12144 /* This can show up in several ways -- either directly in the
12145 pattern, or hidden off in the constant pool with (or without?)
12146 a REG_EQUAL note. */
12147 /* ??? Ignore the without-reg_equal-note problem for now. */
12148 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12149 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12150 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12151 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12152 place = i3;
12154 if (i2
12155 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12156 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12157 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12158 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12160 if (place)
12161 place2 = i2;
12162 else
12163 place = i2;
12166 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
12167 a JUMP_LABEL instead or decrement LABEL_NUSES. */
12168 if (place && JUMP_P (place))
12170 rtx label = JUMP_LABEL (place);
12172 if (!label)
12173 JUMP_LABEL (place) = XEXP (note, 0);
12174 else
12176 gcc_assert (label == XEXP (note, 0));
12177 if (LABEL_P (label))
12178 LABEL_NUSES (label)--;
12180 place = 0;
12182 if (place2 && JUMP_P (place2))
12184 rtx label = JUMP_LABEL (place2);
12186 if (!label)
12187 JUMP_LABEL (place2) = XEXP (note, 0);
12188 else
12190 gcc_assert (label == XEXP (note, 0));
12191 if (LABEL_P (label))
12192 LABEL_NUSES (label)--;
12194 place2 = 0;
12196 break;
12198 case REG_NONNEG:
12199 /* This note says something about the value of a register prior
12200 to the execution of an insn. It is too much trouble to see
12201 if the note is still correct in all situations. It is better
12202 to simply delete it. */
12203 break;
12205 case REG_RETVAL:
12206 /* If the insn previously containing this note still exists,
12207 put it back where it was. Otherwise move it to the previous
12208 insn. Adjust the corresponding REG_LIBCALL note. */
12209 if (!NOTE_P (from_insn))
12210 place = from_insn;
12211 else
12213 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12214 place = prev_real_insn (from_insn);
12215 if (tem && place)
12216 XEXP (tem, 0) = place;
12217 /* If we're deleting the last remaining instruction of a
12218 libcall sequence, don't add the notes. */
12219 else if (XEXP (note, 0) == from_insn)
12220 tem = place = 0;
12221 /* Don't add the dangling REG_RETVAL note. */
12222 else if (! tem)
12223 place = 0;
12225 break;
12227 case REG_LIBCALL:
12228 /* This is handled similarly to REG_RETVAL. */
12229 if (!NOTE_P (from_insn))
12230 place = from_insn;
12231 else
12233 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12234 place = next_real_insn (from_insn);
12235 if (tem && place)
12236 XEXP (tem, 0) = place;
12237 /* If we're deleting the last remaining instruction of a
12238 libcall sequence, don't add the notes. */
12239 else if (XEXP (note, 0) == from_insn)
12240 tem = place = 0;
12241 /* Don't add the dangling REG_LIBCALL note. */
12242 else if (! tem)
12243 place = 0;
12245 break;
12247 case REG_DEAD:
12248 /* If we replaced the right hand side of FROM_INSN with a
12249 REG_EQUAL note, the original use of the dying register
12250 will not have been combined into I3 and I2. In such cases,
12251 FROM_INSN is guaranteed to be the first of the combined
12252 instructions, so we simply need to search back before
12253 FROM_INSN for the previous use or set of this register,
12254 then alter the notes there appropriately.
12256 If the register is used as an input in I3, it dies there.
12257 Similarly for I2, if it is nonzero and adjacent to I3.
12259 If the register is not used as an input in either I3 or I2
12260 and it is not one of the registers we were supposed to eliminate,
12261 there are two possibilities. We might have a non-adjacent I2
12262 or we might have somehow eliminated an additional register
12263 from a computation. For example, we might have had A & B where
12264 we discover that B will always be zero. In this case we will
12265 eliminate the reference to A.
12267 In both cases, we must search to see if we can find a previous
12268 use of A and put the death note there. */
12270 if (from_insn
12271 && from_insn == i2mod
12272 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
12273 tem = from_insn;
12274 else
12276 if (from_insn
12277 && CALL_P (from_insn)
12278 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12279 place = from_insn;
12280 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12281 place = i3;
12282 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12283 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12284 place = i2;
12285 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
12286 && !(i2mod
12287 && reg_overlap_mentioned_p (XEXP (note, 0),
12288 i2mod_old_rhs)))
12289 || rtx_equal_p (XEXP (note, 0), elim_i1))
12290 break;
12291 tem = i3;
12294 if (place == 0)
12296 basic_block bb = this_basic_block;
12298 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
12300 if (! INSN_P (tem))
12302 if (tem == BB_HEAD (bb))
12303 break;
12304 continue;
12307 /* If the register is being set at TEM, see if that is all
12308 TEM is doing. If so, delete TEM. Otherwise, make this
12309 into a REG_UNUSED note instead. Don't delete sets to
12310 global register vars. */
12311 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12312 || !global_regs[REGNO (XEXP (note, 0))])
12313 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12315 rtx set = single_set (tem);
12316 rtx inner_dest = 0;
12317 #ifdef HAVE_cc0
12318 rtx cc0_setter = NULL_RTX;
12319 #endif
12321 if (set != 0)
12322 for (inner_dest = SET_DEST (set);
12323 (GET_CODE (inner_dest) == STRICT_LOW_PART
12324 || GET_CODE (inner_dest) == SUBREG
12325 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12326 inner_dest = XEXP (inner_dest, 0))
12329 /* Verify that it was the set, and not a clobber that
12330 modified the register.
12332 CC0 targets must be careful to maintain setter/user
12333 pairs. If we cannot delete the setter due to side
12334 effects, mark the user with an UNUSED note instead
12335 of deleting it. */
12337 if (set != 0 && ! side_effects_p (SET_SRC (set))
12338 && rtx_equal_p (XEXP (note, 0), inner_dest)
12339 #ifdef HAVE_cc0
12340 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12341 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12342 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12343 #endif
12346 /* Move the notes and links of TEM elsewhere.
12347 This might delete other dead insns recursively.
12348 First set the pattern to something that won't use
12349 any register. */
12350 rtx old_notes = REG_NOTES (tem);
12352 PATTERN (tem) = pc_rtx;
12353 REG_NOTES (tem) = NULL;
12355 distribute_notes (old_notes, tem, tem, NULL_RTX,
12356 NULL_RTX, NULL_RTX);
12357 distribute_links (LOG_LINKS (tem));
12359 SET_INSN_DELETED (tem);
12361 #ifdef HAVE_cc0
12362 /* Delete the setter too. */
12363 if (cc0_setter)
12365 PATTERN (cc0_setter) = pc_rtx;
12366 old_notes = REG_NOTES (cc0_setter);
12367 REG_NOTES (cc0_setter) = NULL;
12369 distribute_notes (old_notes, cc0_setter,
12370 cc0_setter, NULL_RTX,
12371 NULL_RTX, NULL_RTX);
12372 distribute_links (LOG_LINKS (cc0_setter));
12374 SET_INSN_DELETED (cc0_setter);
12376 #endif
12378 else
12380 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12382 /* If there isn't already a REG_UNUSED note, put one
12383 here. Do not place a REG_DEAD note, even if
12384 the register is also used here; that would not
12385 match the algorithm used in lifetime analysis
12386 and can cause the consistency check in the
12387 scheduler to fail. */
12388 if (! find_regno_note (tem, REG_UNUSED,
12389 REGNO (XEXP (note, 0))))
12390 place = tem;
12391 break;
12394 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12395 || (CALL_P (tem)
12396 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12398 place = tem;
12400 /* If we are doing a 3->2 combination, and we have a
12401 register which formerly died in i3 and was not used
12402 by i2, which now no longer dies in i3 and is used in
12403 i2 but does not die in i2, and place is between i2
12404 and i3, then we may need to move a link from place to
12405 i2. */
12406 if (i2 && INSN_UID (place) <= max_uid_cuid
12407 && INSN_CUID (place) > INSN_CUID (i2)
12408 && from_insn
12409 && INSN_CUID (from_insn) > INSN_CUID (i2)
12410 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12412 rtx links = LOG_LINKS (place);
12413 LOG_LINKS (place) = 0;
12414 distribute_links (links);
12416 break;
12419 if (tem == BB_HEAD (bb))
12420 break;
12423 /* We haven't found an insn for the death note and it
12424 is still a REG_DEAD note, but we have hit the beginning
12425 of the block. If the existing life info says the reg
12426 was dead, there's nothing left to do. Otherwise, we'll
12427 need to do a global life update after combine. */
12428 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12429 && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start,
12430 REGNO (XEXP (note, 0))))
12431 SET_BIT (refresh_blocks, this_basic_block->index);
12434 /* If the register is set or already dead at PLACE, we needn't do
12435 anything with this note if it is still a REG_DEAD note.
12436 We check here if it is set at all, not if is it totally replaced,
12437 which is what `dead_or_set_p' checks, so also check for it being
12438 set partially. */
12440 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12442 unsigned int regno = REGNO (XEXP (note, 0));
12444 /* Similarly, if the instruction on which we want to place
12445 the note is a noop, we'll need do a global live update
12446 after we remove them in delete_noop_moves. */
12447 if (noop_move_p (place))
12448 SET_BIT (refresh_blocks, this_basic_block->index);
12450 if (dead_or_set_p (place, XEXP (note, 0))
12451 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12453 /* Unless the register previously died in PLACE, clear
12454 last_death. [I no longer understand why this is
12455 being done.] */
12456 if (reg_stat[regno].last_death != place)
12457 reg_stat[regno].last_death = 0;
12458 place = 0;
12460 else
12461 reg_stat[regno].last_death = place;
12463 /* If this is a death note for a hard reg that is occupying
12464 multiple registers, ensure that we are still using all
12465 parts of the object. If we find a piece of the object
12466 that is unused, we must arrange for an appropriate REG_DEAD
12467 note to be added for it. However, we can't just emit a USE
12468 and tag the note to it, since the register might actually
12469 be dead; so we recourse, and the recursive call then finds
12470 the previous insn that used this register. */
12472 if (place && regno < FIRST_PSEUDO_REGISTER
12473 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12475 unsigned int endregno
12476 = regno + hard_regno_nregs[regno]
12477 [GET_MODE (XEXP (note, 0))];
12478 int all_used = 1;
12479 unsigned int i;
12481 for (i = regno; i < endregno; i++)
12482 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12483 && ! find_regno_fusage (place, USE, i))
12484 || dead_or_set_regno_p (place, i))
12485 all_used = 0;
12487 if (! all_used)
12489 /* Put only REG_DEAD notes for pieces that are
12490 not already dead or set. */
12492 for (i = regno; i < endregno;
12493 i += hard_regno_nregs[i][reg_raw_mode[i]])
12495 rtx piece = regno_reg_rtx[i];
12496 basic_block bb = this_basic_block;
12498 if (! dead_or_set_p (place, piece)
12499 && ! reg_bitfield_target_p (piece,
12500 PATTERN (place)))
12502 rtx new_note
12503 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12505 distribute_notes (new_note, place, place,
12506 NULL_RTX, NULL_RTX, NULL_RTX);
12508 else if (! refers_to_regno_p (i, i + 1,
12509 PATTERN (place), 0)
12510 && ! find_regno_fusage (place, USE, i))
12511 for (tem = PREV_INSN (place); ;
12512 tem = PREV_INSN (tem))
12514 if (! INSN_P (tem))
12516 if (tem == BB_HEAD (bb))
12518 SET_BIT (refresh_blocks,
12519 this_basic_block->index);
12520 break;
12522 continue;
12524 if (dead_or_set_p (tem, piece)
12525 || reg_bitfield_target_p (piece,
12526 PATTERN (tem)))
12528 REG_NOTES (tem)
12529 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12530 REG_NOTES (tem));
12531 break;
12537 place = 0;
12541 break;
12543 default:
12544 /* Any other notes should not be present at this point in the
12545 compilation. */
12546 gcc_unreachable ();
12549 if (place)
12551 XEXP (note, 1) = REG_NOTES (place);
12552 REG_NOTES (place) = note;
12554 else if ((REG_NOTE_KIND (note) == REG_DEAD
12555 || REG_NOTE_KIND (note) == REG_UNUSED)
12556 && REG_P (XEXP (note, 0)))
12557 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12559 if (place2)
12561 if ((REG_NOTE_KIND (note) == REG_DEAD
12562 || REG_NOTE_KIND (note) == REG_UNUSED)
12563 && REG_P (XEXP (note, 0)))
12564 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12566 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12567 REG_NOTE_KIND (note),
12568 XEXP (note, 0),
12569 REG_NOTES (place2));
12574 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12575 I3, I2, and I1 to new locations. This is also called to add a link
12576 pointing at I3 when I3's destination is changed. */
12578 static void
12579 distribute_links (rtx links)
12581 rtx link, next_link;
12583 for (link = links; link; link = next_link)
12585 rtx place = 0;
12586 rtx insn;
12587 rtx set, reg;
12589 next_link = XEXP (link, 1);
12591 /* If the insn that this link points to is a NOTE or isn't a single
12592 set, ignore it. In the latter case, it isn't clear what we
12593 can do other than ignore the link, since we can't tell which
12594 register it was for. Such links wouldn't be used by combine
12595 anyway.
12597 It is not possible for the destination of the target of the link to
12598 have been changed by combine. The only potential of this is if we
12599 replace I3, I2, and I1 by I3 and I2. But in that case the
12600 destination of I2 also remains unchanged. */
12602 if (NOTE_P (XEXP (link, 0))
12603 || (set = single_set (XEXP (link, 0))) == 0)
12604 continue;
12606 reg = SET_DEST (set);
12607 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12608 || GET_CODE (reg) == STRICT_LOW_PART)
12609 reg = XEXP (reg, 0);
12611 /* A LOG_LINK is defined as being placed on the first insn that uses
12612 a register and points to the insn that sets the register. Start
12613 searching at the next insn after the target of the link and stop
12614 when we reach a set of the register or the end of the basic block.
12616 Note that this correctly handles the link that used to point from
12617 I3 to I2. Also note that not much searching is typically done here
12618 since most links don't point very far away. */
12620 for (insn = NEXT_INSN (XEXP (link, 0));
12621 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12622 || BB_HEAD (this_basic_block->next_bb) != insn));
12623 insn = NEXT_INSN (insn))
12624 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12626 if (reg_referenced_p (reg, PATTERN (insn)))
12627 place = insn;
12628 break;
12630 else if (CALL_P (insn)
12631 && find_reg_fusage (insn, USE, reg))
12633 place = insn;
12634 break;
12636 else if (INSN_P (insn) && reg_set_p (reg, insn))
12637 break;
12639 /* If we found a place to put the link, place it there unless there
12640 is already a link to the same insn as LINK at that point. */
12642 if (place)
12644 rtx link2;
12646 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12647 if (XEXP (link2, 0) == XEXP (link, 0))
12648 break;
12650 if (link2 == 0)
12652 XEXP (link, 1) = LOG_LINKS (place);
12653 LOG_LINKS (place) = link;
12655 /* Set added_links_insn to the earliest insn we added a
12656 link to. */
12657 if (added_links_insn == 0
12658 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12659 added_links_insn = place;
12665 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12666 Check whether the expression pointer to by LOC is a register or
12667 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12668 Otherwise return zero. */
12670 static int
12671 unmentioned_reg_p_1 (rtx *loc, void *expr)
12673 rtx x = *loc;
12675 if (x != NULL_RTX
12676 && (REG_P (x) || MEM_P (x))
12677 && ! reg_mentioned_p (x, (rtx) expr))
12678 return 1;
12679 return 0;
12682 /* Check for any register or memory mentioned in EQUIV that is not
12683 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12684 of EXPR where some registers may have been replaced by constants. */
12686 static bool
12687 unmentioned_reg_p (rtx equiv, rtx expr)
12689 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12692 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12694 static int
12695 insn_cuid (rtx insn)
12697 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12698 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12699 insn = NEXT_INSN (insn);
12701 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12703 return INSN_CUID (insn);
12706 void
12707 dump_combine_stats (FILE *file)
12709 fprintf
12710 (file,
12711 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12712 combine_attempts, combine_merges, combine_extras, combine_successes);
12715 void
12716 dump_combine_total_stats (FILE *file)
12718 fprintf
12719 (file,
12720 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12721 total_attempts, total_merges, total_extras, total_successes);
12725 static bool
12726 gate_handle_combine (void)
12728 return (optimize > 0);
12731 /* Try combining insns through substitution. */
12732 static void
12733 rest_of_handle_combine (void)
12735 int rebuild_jump_labels_after_combine
12736 = combine_instructions (get_insns (), max_reg_num ());
12738 /* Combining insns may have turned an indirect jump into a
12739 direct jump. Rebuild the JUMP_LABEL fields of jumping
12740 instructions. */
12741 if (rebuild_jump_labels_after_combine)
12743 timevar_push (TV_JUMP);
12744 rebuild_jump_labels (get_insns ());
12745 timevar_pop (TV_JUMP);
12747 delete_dead_jumptables ();
12748 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
12752 struct tree_opt_pass pass_combine =
12754 "combine", /* name */
12755 gate_handle_combine, /* gate */
12756 rest_of_handle_combine, /* execute */
12757 NULL, /* sub */
12758 NULL, /* next */
12759 0, /* static_pass_number */
12760 TV_COMBINE, /* tv_id */
12761 0, /* properties_required */
12762 0, /* properties_provided */
12763 0, /* properties_destroyed */
12764 0, /* todo_flags_start */
12765 TODO_dump_func |
12766 TODO_ggc_collect, /* todo_flags_finish */
12767 'c' /* letter */