No empty .Rs/.Re
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / tree-flow-inline.h
blob581dbaa94b5318c271fc3f1252d6281e9f145558
1 /* Inline functions for tree-flow.h
2 Copyright (C) 2001, 2003, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #ifndef _TREE_FLOW_INLINE_H
23 #define _TREE_FLOW_INLINE_H 1
25 /* Inline functions for manipulating various data structures defined in
26 tree-flow.h. See tree-flow.h for documentation. */
28 /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
30 static inline void *
31 first_htab_element (htab_iterator *hti, htab_t table)
33 hti->htab = table;
34 hti->slot = table->entries;
35 hti->limit = hti->slot + htab_size (table);
38 PTR x = *(hti->slot);
39 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
40 break;
41 } while (++(hti->slot) < hti->limit);
43 if (hti->slot < hti->limit)
44 return *(hti->slot);
45 return NULL;
48 /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
49 or NULL if we have reached the end. */
51 static inline bool
52 end_htab_p (htab_iterator *hti)
54 if (hti->slot >= hti->limit)
55 return true;
56 return false;
59 /* Advance the hashtable iterator pointed to by HTI to the next element of the
60 hashtable. */
62 static inline void *
63 next_htab_element (htab_iterator *hti)
65 while (++(hti->slot) < hti->limit)
67 PTR x = *(hti->slot);
68 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
69 return x;
71 return NULL;
74 /* Initialize ITER to point to the first referenced variable in the
75 referenced_vars hashtable, and return that variable. */
77 static inline tree
78 first_referenced_var (referenced_var_iterator *iter)
80 struct int_tree_map *itm;
81 itm = first_htab_element (&iter->hti, referenced_vars);
82 if (!itm)
83 return NULL;
84 return itm->to;
87 /* Return true if we have hit the end of the referenced variables ITER is
88 iterating through. */
90 static inline bool
91 end_referenced_vars_p (referenced_var_iterator *iter)
93 return end_htab_p (&iter->hti);
96 /* Make ITER point to the next referenced_var in the referenced_var hashtable,
97 and return that variable. */
99 static inline tree
100 next_referenced_var (referenced_var_iterator *iter)
102 struct int_tree_map *itm;
103 itm = next_htab_element (&iter->hti);
104 if (!itm)
105 return NULL;
106 return itm->to;
109 /* Fill up VEC with the variables in the referenced vars hashtable. */
111 static inline void
112 fill_referenced_var_vec (VEC (tree, heap) **vec)
114 referenced_var_iterator rvi;
115 tree var;
116 *vec = NULL;
117 FOR_EACH_REFERENCED_VAR (var, rvi)
118 VEC_safe_push (tree, heap, *vec, var);
121 /* Return the variable annotation for T, which must be a _DECL node.
122 Return NULL if the variable annotation doesn't already exist. */
123 static inline var_ann_t
124 var_ann (tree t)
126 gcc_assert (t);
127 gcc_assert (DECL_P (t));
128 gcc_assert (!t->common.ann || t->common.ann->common.type == VAR_ANN);
130 return (var_ann_t) t->common.ann;
133 /* Return the variable annotation for T, which must be a _DECL node.
134 Create the variable annotation if it doesn't exist. */
135 static inline var_ann_t
136 get_var_ann (tree var)
138 var_ann_t ann = var_ann (var);
139 return (ann) ? ann : create_var_ann (var);
142 /* Return the statement annotation for T, which must be a statement
143 node. Return NULL if the statement annotation doesn't exist. */
144 static inline stmt_ann_t
145 stmt_ann (tree t)
147 #ifdef ENABLE_CHECKING
148 gcc_assert (is_gimple_stmt (t));
149 #endif
150 return (stmt_ann_t) t->common.ann;
153 /* Return the statement annotation for T, which must be a statement
154 node. Create the statement annotation if it doesn't exist. */
155 static inline stmt_ann_t
156 get_stmt_ann (tree stmt)
158 stmt_ann_t ann = stmt_ann (stmt);
159 return (ann) ? ann : create_stmt_ann (stmt);
162 /* Return the annotation type for annotation ANN. */
163 static inline enum tree_ann_type
164 ann_type (tree_ann_t ann)
166 return ann->common.type;
169 /* Return the basic block for statement T. */
170 static inline basic_block
171 bb_for_stmt (tree t)
173 stmt_ann_t ann;
175 if (TREE_CODE (t) == PHI_NODE)
176 return PHI_BB (t);
178 ann = stmt_ann (t);
179 return ann ? ann->bb : NULL;
182 /* Return the may_aliases varray for variable VAR, or NULL if it has
183 no may aliases. */
184 static inline varray_type
185 may_aliases (tree var)
187 var_ann_t ann = var_ann (var);
188 return ann ? ann->may_aliases : NULL;
191 /* Return the line number for EXPR, or return -1 if we have no line
192 number information for it. */
193 static inline int
194 get_lineno (tree expr)
196 if (expr == NULL_TREE)
197 return -1;
199 if (TREE_CODE (expr) == COMPOUND_EXPR)
200 expr = TREE_OPERAND (expr, 0);
202 if (! EXPR_HAS_LOCATION (expr))
203 return -1;
205 return EXPR_LINENO (expr);
208 /* Return the file name for EXPR, or return "???" if we have no
209 filename information. */
210 static inline const char *
211 get_filename (tree expr)
213 const char *filename;
214 if (expr == NULL_TREE)
215 return "???";
217 if (TREE_CODE (expr) == COMPOUND_EXPR)
218 expr = TREE_OPERAND (expr, 0);
220 if (EXPR_HAS_LOCATION (expr) && (filename = EXPR_FILENAME (expr)))
221 return filename;
222 else
223 return "???";
226 /* Return true if T is a noreturn call. */
227 static inline bool
228 noreturn_call_p (tree t)
230 tree call = get_call_expr_in (t);
231 return call != 0 && (call_expr_flags (call) & ECF_NORETURN) != 0;
234 /* Mark statement T as modified. */
235 static inline void
236 mark_stmt_modified (tree t)
238 stmt_ann_t ann;
239 if (TREE_CODE (t) == PHI_NODE)
240 return;
242 ann = stmt_ann (t);
243 if (ann == NULL)
244 ann = create_stmt_ann (t);
245 else if (noreturn_call_p (t))
246 VEC_safe_push (tree, gc, modified_noreturn_calls, t);
247 ann->modified = 1;
250 /* Mark statement T as modified, and update it. */
251 static inline void
252 update_stmt (tree t)
254 if (TREE_CODE (t) == PHI_NODE)
255 return;
256 mark_stmt_modified (t);
257 update_stmt_operands (t);
260 static inline void
261 update_stmt_if_modified (tree t)
263 if (stmt_modified_p (t))
264 update_stmt_operands (t);
267 /* Return true if T is marked as modified, false otherwise. */
268 static inline bool
269 stmt_modified_p (tree t)
271 stmt_ann_t ann = stmt_ann (t);
273 /* Note that if the statement doesn't yet have an annotation, we consider it
274 modified. This will force the next call to update_stmt_operands to scan
275 the statement. */
276 return ann ? ann->modified : true;
279 /* Delink an immediate_uses node from its chain. */
280 static inline void
281 delink_imm_use (ssa_use_operand_t *linknode)
283 /* Return if this node is not in a list. */
284 if (linknode->prev == NULL)
285 return;
287 linknode->prev->next = linknode->next;
288 linknode->next->prev = linknode->prev;
289 linknode->prev = NULL;
290 linknode->next = NULL;
293 /* Link ssa_imm_use node LINKNODE into the chain for LIST. */
294 static inline void
295 link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
297 /* Link the new node at the head of the list. If we are in the process of
298 traversing the list, we won't visit any new nodes added to it. */
299 linknode->prev = list;
300 linknode->next = list->next;
301 list->next->prev = linknode;
302 list->next = linknode;
305 /* Link ssa_imm_use node LINKNODE into the chain for DEF. */
306 static inline void
307 link_imm_use (ssa_use_operand_t *linknode, tree def)
309 ssa_use_operand_t *root;
311 if (!def || TREE_CODE (def) != SSA_NAME)
312 linknode->prev = NULL;
313 else
315 root = &(SSA_NAME_IMM_USE_NODE (def));
316 #ifdef ENABLE_CHECKING
317 if (linknode->use)
318 gcc_assert (*(linknode->use) == def);
319 #endif
320 link_imm_use_to_list (linknode, root);
324 /* Set the value of a use pointed to by USE to VAL. */
325 static inline void
326 set_ssa_use_from_ptr (use_operand_p use, tree val)
328 delink_imm_use (use);
329 *(use->use) = val;
330 link_imm_use (use, val);
333 /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
334 in STMT. */
335 static inline void
336 link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, tree stmt)
338 if (stmt)
339 link_imm_use (linknode, def);
340 else
341 link_imm_use (linknode, NULL);
342 linknode->stmt = stmt;
345 /* Relink a new node in place of an old node in the list. */
346 static inline void
347 relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
349 /* The node one had better be in the same list. */
350 gcc_assert (*(old->use) == *(node->use));
351 node->prev = old->prev;
352 node->next = old->next;
353 if (old->prev)
355 old->prev->next = node;
356 old->next->prev = node;
357 /* Remove the old node from the list. */
358 old->prev = NULL;
362 /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
363 in STMT. */
364 static inline void
365 relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, tree stmt)
367 if (stmt)
368 relink_imm_use (linknode, old);
369 else
370 link_imm_use (linknode, NULL);
371 linknode->stmt = stmt;
374 /* Finished the traverse of an immediate use list IMM by removing it from
375 the list. */
376 static inline void
377 end_safe_imm_use_traverse (imm_use_iterator *imm)
379 delink_imm_use (&(imm->iter_node));
382 /* Return true if IMM is at the end of the list. */
383 static inline bool
384 end_safe_imm_use_p (imm_use_iterator *imm)
386 return (imm->imm_use == imm->end_p);
389 /* Initialize iterator IMM to process the list for VAR. */
390 static inline use_operand_p
391 first_safe_imm_use (imm_use_iterator *imm, tree var)
393 /* Set up and link the iterator node into the linked list for VAR. */
394 imm->iter_node.use = NULL;
395 imm->iter_node.stmt = NULL_TREE;
396 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
397 /* Check if there are 0 elements. */
398 if (imm->end_p->next == imm->end_p)
400 imm->imm_use = imm->end_p;
401 return NULL_USE_OPERAND_P;
404 link_imm_use (&(imm->iter_node), var);
405 imm->imm_use = imm->iter_node.next;
406 return imm->imm_use;
409 /* Bump IMM to the next use in the list. */
410 static inline use_operand_p
411 next_safe_imm_use (imm_use_iterator *imm)
413 ssa_use_operand_t *ptr;
414 use_operand_p old;
416 old = imm->imm_use;
417 /* If the next node following the iter_node is still the one referred to by
418 imm_use, then the list hasn't changed, go to the next node. */
419 if (imm->iter_node.next == imm->imm_use)
421 ptr = &(imm->iter_node);
422 /* Remove iternode from the list. */
423 delink_imm_use (ptr);
424 imm->imm_use = imm->imm_use->next;
425 if (! end_safe_imm_use_p (imm))
427 /* This isn't the end, link iternode before the next use. */
428 ptr->prev = imm->imm_use->prev;
429 ptr->next = imm->imm_use;
430 imm->imm_use->prev->next = ptr;
431 imm->imm_use->prev = ptr;
433 else
434 return old;
436 else
438 /* If the 'next' value after the iterator isn't the same as it was, then
439 a node has been deleted, so we simply proceed to the node following
440 where the iterator is in the list. */
441 imm->imm_use = imm->iter_node.next;
442 if (end_safe_imm_use_p (imm))
444 end_safe_imm_use_traverse (imm);
445 return old;
449 return imm->imm_use;
452 /* Return true is IMM has reached the end of the immediate use list. */
453 static inline bool
454 end_readonly_imm_use_p (imm_use_iterator *imm)
456 return (imm->imm_use == imm->end_p);
459 /* Initialize iterator IMM to process the list for VAR. */
460 static inline use_operand_p
461 first_readonly_imm_use (imm_use_iterator *imm, tree var)
463 gcc_assert (TREE_CODE (var) == SSA_NAME);
465 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
466 imm->imm_use = imm->end_p->next;
467 #ifdef ENABLE_CHECKING
468 imm->iter_node.next = imm->imm_use->next;
469 #endif
470 if (end_readonly_imm_use_p (imm))
471 return NULL_USE_OPERAND_P;
472 return imm->imm_use;
475 /* Bump IMM to the next use in the list. */
476 static inline use_operand_p
477 next_readonly_imm_use (imm_use_iterator *imm)
479 use_operand_p old = imm->imm_use;
481 #ifdef ENABLE_CHECKING
482 /* If this assertion fails, it indicates the 'next' pointer has changed
483 since we the last bump. This indicates that the list is being modified
484 via stmt changes, or SET_USE, or somesuch thing, and you need to be
485 using the SAFE version of the iterator. */
486 gcc_assert (imm->iter_node.next == old->next);
487 imm->iter_node.next = old->next->next;
488 #endif
490 imm->imm_use = old->next;
491 if (end_readonly_imm_use_p (imm))
492 return old;
493 return imm->imm_use;
496 /* Return true if VAR has no uses. */
497 static inline bool
498 has_zero_uses (tree var)
500 ssa_use_operand_t *ptr;
501 ptr = &(SSA_NAME_IMM_USE_NODE (var));
502 /* A single use means there is no items in the list. */
503 return (ptr == ptr->next);
506 /* Return true if VAR has a single use. */
507 static inline bool
508 has_single_use (tree var)
510 ssa_use_operand_t *ptr;
511 ptr = &(SSA_NAME_IMM_USE_NODE (var));
512 /* A single use means there is one item in the list. */
513 return (ptr != ptr->next && ptr == ptr->next->next);
516 /* If VAR has only a single immediate use, return true, and set USE_P and STMT
517 to the use pointer and stmt of occurrence. */
518 static inline bool
519 single_imm_use (tree var, use_operand_p *use_p, tree *stmt)
521 ssa_use_operand_t *ptr;
523 ptr = &(SSA_NAME_IMM_USE_NODE (var));
524 if (ptr != ptr->next && ptr == ptr->next->next)
526 *use_p = ptr->next;
527 *stmt = ptr->next->stmt;
528 return true;
530 *use_p = NULL_USE_OPERAND_P;
531 *stmt = NULL_TREE;
532 return false;
535 /* Return the number of immediate uses of VAR. */
536 static inline unsigned int
537 num_imm_uses (tree var)
539 ssa_use_operand_t *ptr, *start;
540 unsigned int num;
542 start = &(SSA_NAME_IMM_USE_NODE (var));
543 num = 0;
544 for (ptr = start->next; ptr != start; ptr = ptr->next)
545 num++;
547 return num;
551 /* Return the tree pointer to by USE. */
552 static inline tree
553 get_use_from_ptr (use_operand_p use)
555 return *(use->use);
558 /* Return the tree pointer to by DEF. */
559 static inline tree
560 get_def_from_ptr (def_operand_p def)
562 return *def;
565 /* Return a def_operand_p pointer for the result of PHI. */
566 static inline def_operand_p
567 get_phi_result_ptr (tree phi)
569 return &(PHI_RESULT_TREE (phi));
572 /* Return a use_operand_p pointer for argument I of phinode PHI. */
573 static inline use_operand_p
574 get_phi_arg_def_ptr (tree phi, int i)
576 return &(PHI_ARG_IMM_USE_NODE (phi,i));
580 /* Return the bitmap of addresses taken by STMT, or NULL if it takes
581 no addresses. */
582 static inline bitmap
583 addresses_taken (tree stmt)
585 stmt_ann_t ann = stmt_ann (stmt);
586 return ann ? ann->addresses_taken : NULL;
589 /* Return the PHI nodes for basic block BB, or NULL if there are no
590 PHI nodes. */
591 static inline tree
592 phi_nodes (basic_block bb)
594 return bb->phi_nodes;
597 /* Set list of phi nodes of a basic block BB to L. */
599 static inline void
600 set_phi_nodes (basic_block bb, tree l)
602 tree phi;
604 bb->phi_nodes = l;
605 for (phi = l; phi; phi = PHI_CHAIN (phi))
606 set_bb_for_stmt (phi, bb);
609 /* Return the phi argument which contains the specified use. */
611 static inline int
612 phi_arg_index_from_use (use_operand_p use)
614 struct phi_arg_d *element, *root;
615 int index;
616 tree phi;
618 /* Since the use is the first thing in a PHI argument element, we can
619 calculate its index based on casting it to an argument, and performing
620 pointer arithmetic. */
622 phi = USE_STMT (use);
623 gcc_assert (TREE_CODE (phi) == PHI_NODE);
625 element = (struct phi_arg_d *)use;
626 root = &(PHI_ARG_ELT (phi, 0));
627 index = element - root;
629 #ifdef ENABLE_CHECKING
630 /* Make sure the calculation doesn't have any leftover bytes. If it does,
631 then imm_use is likely not the first element in phi_arg_d. */
632 gcc_assert (
633 (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0);
634 gcc_assert (index >= 0 && index < PHI_ARG_CAPACITY (phi));
635 #endif
637 return index;
640 /* Mark VAR as used, so that it'll be preserved during rtl expansion. */
642 static inline void
643 set_is_used (tree var)
645 var_ann_t ann = get_var_ann (var);
646 ann->used = 1;
650 /* ----------------------------------------------------------------------- */
652 /* Return true if T is an executable statement. */
653 static inline bool
654 is_exec_stmt (tree t)
656 return (t && !IS_EMPTY_STMT (t) && t != error_mark_node);
660 /* Return true if this stmt can be the target of a control transfer stmt such
661 as a goto. */
662 static inline bool
663 is_label_stmt (tree t)
665 if (t)
666 switch (TREE_CODE (t))
668 case LABEL_DECL:
669 case LABEL_EXPR:
670 case CASE_LABEL_EXPR:
671 return true;
672 default:
673 return false;
675 return false;
678 /* Set the default definition for VAR to DEF. */
679 static inline void
680 set_default_def (tree var, tree def)
682 var_ann_t ann = get_var_ann (var);
683 ann->default_def = def;
686 /* Return the default definition for variable VAR, or NULL if none
687 exists. */
688 static inline tree
689 default_def (tree var)
691 var_ann_t ann = var_ann (var);
692 return ann ? ann->default_def : NULL_TREE;
695 /* PHI nodes should contain only ssa_names and invariants. A test
696 for ssa_name is definitely simpler; don't let invalid contents
697 slip in in the meantime. */
699 static inline bool
700 phi_ssa_name_p (tree t)
702 if (TREE_CODE (t) == SSA_NAME)
703 return true;
704 #ifdef ENABLE_CHECKING
705 gcc_assert (is_gimple_min_invariant (t));
706 #endif
707 return false;
710 /* ----------------------------------------------------------------------- */
712 /* Return a block_stmt_iterator that points to beginning of basic
713 block BB. */
714 static inline block_stmt_iterator
715 bsi_start (basic_block bb)
717 block_stmt_iterator bsi;
718 if (bb->stmt_list)
719 bsi.tsi = tsi_start (bb->stmt_list);
720 else
722 gcc_assert (bb->index < 0);
723 bsi.tsi.ptr = NULL;
724 bsi.tsi.container = NULL;
726 bsi.bb = bb;
727 return bsi;
730 /* Return a block statement iterator that points to the first non-label
731 statement in block BB. */
733 static inline block_stmt_iterator
734 bsi_after_labels (basic_block bb)
736 block_stmt_iterator bsi = bsi_start (bb);
738 while (!bsi_end_p (bsi) && TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
739 bsi_next (&bsi);
741 return bsi;
744 /* Return a block statement iterator that points to the end of basic
745 block BB. */
746 static inline block_stmt_iterator
747 bsi_last (basic_block bb)
749 block_stmt_iterator bsi;
750 if (bb->stmt_list)
751 bsi.tsi = tsi_last (bb->stmt_list);
752 else
754 gcc_assert (bb->index < 0);
755 bsi.tsi.ptr = NULL;
756 bsi.tsi.container = NULL;
758 bsi.bb = bb;
759 return bsi;
762 /* Return true if block statement iterator I has reached the end of
763 the basic block. */
764 static inline bool
765 bsi_end_p (block_stmt_iterator i)
767 return tsi_end_p (i.tsi);
770 /* Modify block statement iterator I so that it is at the next
771 statement in the basic block. */
772 static inline void
773 bsi_next (block_stmt_iterator *i)
775 tsi_next (&i->tsi);
778 /* Modify block statement iterator I so that it is at the previous
779 statement in the basic block. */
780 static inline void
781 bsi_prev (block_stmt_iterator *i)
783 tsi_prev (&i->tsi);
786 /* Return the statement that block statement iterator I is currently
787 at. */
788 static inline tree
789 bsi_stmt (block_stmt_iterator i)
791 return tsi_stmt (i.tsi);
794 /* Return a pointer to the statement that block statement iterator I
795 is currently at. */
796 static inline tree *
797 bsi_stmt_ptr (block_stmt_iterator i)
799 return tsi_stmt_ptr (i.tsi);
802 /* Returns the loop of the statement STMT. */
804 static inline struct loop *
805 loop_containing_stmt (tree stmt)
807 basic_block bb = bb_for_stmt (stmt);
808 if (!bb)
809 return NULL;
811 return bb->loop_father;
814 /* Return true if VAR is a clobbered by function calls. */
815 static inline bool
816 is_call_clobbered (tree var)
818 return is_global_var (var)
819 || bitmap_bit_p (call_clobbered_vars, DECL_UID (var));
822 /* Mark variable VAR as being clobbered by function calls. */
823 static inline void
824 mark_call_clobbered (tree var)
826 var_ann_t ann = var_ann (var);
827 /* If VAR is a memory tag, then we need to consider it a global
828 variable. This is because the pointer that VAR represents has
829 been found to point to either an arbitrary location or to a known
830 location in global memory. */
831 if (ann->mem_tag_kind != NOT_A_TAG && ann->mem_tag_kind != STRUCT_FIELD)
832 DECL_EXTERNAL (var) = 1;
833 bitmap_set_bit (call_clobbered_vars, DECL_UID (var));
834 ssa_call_clobbered_cache_valid = false;
835 ssa_ro_call_cache_valid = false;
838 /* Clear the call-clobbered attribute from variable VAR. */
839 static inline void
840 clear_call_clobbered (tree var)
842 var_ann_t ann = var_ann (var);
843 if (ann->mem_tag_kind != NOT_A_TAG && ann->mem_tag_kind != STRUCT_FIELD)
844 DECL_EXTERNAL (var) = 0;
845 bitmap_clear_bit (call_clobbered_vars, DECL_UID (var));
846 ssa_call_clobbered_cache_valid = false;
847 ssa_ro_call_cache_valid = false;
850 /* Mark variable VAR as being non-addressable. */
851 static inline void
852 mark_non_addressable (tree var)
854 bitmap_clear_bit (call_clobbered_vars, DECL_UID (var));
855 TREE_ADDRESSABLE (var) = 0;
856 ssa_call_clobbered_cache_valid = false;
857 ssa_ro_call_cache_valid = false;
860 /* Return the common annotation for T. Return NULL if the annotation
861 doesn't already exist. */
862 static inline tree_ann_t
863 tree_ann (tree t)
865 return t->common.ann;
868 /* Return a common annotation for T. Create the constant annotation if it
869 doesn't exist. */
870 static inline tree_ann_t
871 get_tree_ann (tree t)
873 tree_ann_t ann = tree_ann (t);
874 return (ann) ? ann : create_tree_ann (t);
877 /* ----------------------------------------------------------------------- */
879 /* The following set of routines are used to iterator over various type of
880 SSA operands. */
882 /* Return true if PTR is finished iterating. */
883 static inline bool
884 op_iter_done (ssa_op_iter *ptr)
886 return ptr->done;
889 /* Get the next iterator use value for PTR. */
890 static inline use_operand_p
891 op_iter_next_use (ssa_op_iter *ptr)
893 use_operand_p use_p;
894 #ifdef ENABLE_CHECKING
895 gcc_assert (ptr->iter_type == ssa_op_iter_use);
896 #endif
897 if (ptr->uses)
899 use_p = USE_OP_PTR (ptr->uses);
900 ptr->uses = ptr->uses->next;
901 return use_p;
903 if (ptr->vuses)
905 use_p = VUSE_OP_PTR (ptr->vuses);
906 ptr->vuses = ptr->vuses->next;
907 return use_p;
909 if (ptr->mayuses)
911 use_p = MAYDEF_OP_PTR (ptr->mayuses);
912 ptr->mayuses = ptr->mayuses->next;
913 return use_p;
915 if (ptr->mustkills)
917 use_p = MUSTDEF_KILL_PTR (ptr->mustkills);
918 ptr->mustkills = ptr->mustkills->next;
919 return use_p;
921 if (ptr->phi_i < ptr->num_phi)
923 return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++);
925 ptr->done = true;
926 return NULL_USE_OPERAND_P;
929 /* Get the next iterator def value for PTR. */
930 static inline def_operand_p
931 op_iter_next_def (ssa_op_iter *ptr)
933 def_operand_p def_p;
934 #ifdef ENABLE_CHECKING
935 gcc_assert (ptr->iter_type == ssa_op_iter_def);
936 #endif
937 if (ptr->defs)
939 def_p = DEF_OP_PTR (ptr->defs);
940 ptr->defs = ptr->defs->next;
941 return def_p;
943 if (ptr->mustdefs)
945 def_p = MUSTDEF_RESULT_PTR (ptr->mustdefs);
946 ptr->mustdefs = ptr->mustdefs->next;
947 return def_p;
949 if (ptr->maydefs)
951 def_p = MAYDEF_RESULT_PTR (ptr->maydefs);
952 ptr->maydefs = ptr->maydefs->next;
953 return def_p;
955 ptr->done = true;
956 return NULL_DEF_OPERAND_P;
959 /* Get the next iterator tree value for PTR. */
960 static inline tree
961 op_iter_next_tree (ssa_op_iter *ptr)
963 tree val;
964 #ifdef ENABLE_CHECKING
965 gcc_assert (ptr->iter_type == ssa_op_iter_tree);
966 #endif
967 if (ptr->uses)
969 val = USE_OP (ptr->uses);
970 ptr->uses = ptr->uses->next;
971 return val;
973 if (ptr->vuses)
975 val = VUSE_OP (ptr->vuses);
976 ptr->vuses = ptr->vuses->next;
977 return val;
979 if (ptr->mayuses)
981 val = MAYDEF_OP (ptr->mayuses);
982 ptr->mayuses = ptr->mayuses->next;
983 return val;
985 if (ptr->mustkills)
987 val = MUSTDEF_KILL (ptr->mustkills);
988 ptr->mustkills = ptr->mustkills->next;
989 return val;
991 if (ptr->defs)
993 val = DEF_OP (ptr->defs);
994 ptr->defs = ptr->defs->next;
995 return val;
997 if (ptr->mustdefs)
999 val = MUSTDEF_RESULT (ptr->mustdefs);
1000 ptr->mustdefs = ptr->mustdefs->next;
1001 return val;
1003 if (ptr->maydefs)
1005 val = MAYDEF_RESULT (ptr->maydefs);
1006 ptr->maydefs = ptr->maydefs->next;
1007 return val;
1010 ptr->done = true;
1011 return NULL_TREE;
1016 /* This functions clears the iterator PTR, and marks it done. This is normally
1017 used to prevent warnings in the compile about might be uninitialized
1018 components. */
1020 static inline void
1021 clear_and_done_ssa_iter (ssa_op_iter *ptr)
1023 ptr->defs = NULL;
1024 ptr->uses = NULL;
1025 ptr->vuses = NULL;
1026 ptr->maydefs = NULL;
1027 ptr->mayuses = NULL;
1028 ptr->mustdefs = NULL;
1029 ptr->mustkills = NULL;
1030 ptr->iter_type = ssa_op_iter_none;
1031 ptr->phi_i = 0;
1032 ptr->num_phi = 0;
1033 ptr->phi_stmt = NULL_TREE;
1034 ptr->done = true;
1037 /* Initialize the iterator PTR to the virtual defs in STMT. */
1038 static inline void
1039 op_iter_init (ssa_op_iter *ptr, tree stmt, int flags)
1041 #ifdef ENABLE_CHECKING
1042 gcc_assert (stmt_ann (stmt));
1043 #endif
1045 ptr->defs = (flags & SSA_OP_DEF) ? DEF_OPS (stmt) : NULL;
1046 ptr->uses = (flags & SSA_OP_USE) ? USE_OPS (stmt) : NULL;
1047 ptr->vuses = (flags & SSA_OP_VUSE) ? VUSE_OPS (stmt) : NULL;
1048 ptr->maydefs = (flags & SSA_OP_VMAYDEF) ? MAYDEF_OPS (stmt) : NULL;
1049 ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? MAYDEF_OPS (stmt) : NULL;
1050 ptr->mustdefs = (flags & SSA_OP_VMUSTDEF) ? MUSTDEF_OPS (stmt) : NULL;
1051 ptr->mustkills = (flags & SSA_OP_VMUSTKILL) ? MUSTDEF_OPS (stmt) : NULL;
1052 ptr->done = false;
1054 ptr->phi_i = 0;
1055 ptr->num_phi = 0;
1056 ptr->phi_stmt = NULL_TREE;
1059 /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
1060 the first use. */
1061 static inline use_operand_p
1062 op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags)
1064 gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0);
1065 op_iter_init (ptr, stmt, flags);
1066 ptr->iter_type = ssa_op_iter_use;
1067 return op_iter_next_use (ptr);
1070 /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
1071 the first def. */
1072 static inline def_operand_p
1073 op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags)
1075 gcc_assert ((flags & (SSA_OP_ALL_USES | SSA_OP_VIRTUAL_KILLS)) == 0);
1076 op_iter_init (ptr, stmt, flags);
1077 ptr->iter_type = ssa_op_iter_def;
1078 return op_iter_next_def (ptr);
1081 /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
1082 the first operand as a tree. */
1083 static inline tree
1084 op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags)
1086 op_iter_init (ptr, stmt, flags);
1087 ptr->iter_type = ssa_op_iter_tree;
1088 return op_iter_next_tree (ptr);
1091 /* Get the next iterator mustdef value for PTR, returning the mustdef values in
1092 KILL and DEF. */
1093 static inline void
1094 op_iter_next_maymustdef (use_operand_p *use, def_operand_p *def,
1095 ssa_op_iter *ptr)
1097 #ifdef ENABLE_CHECKING
1098 gcc_assert (ptr->iter_type == ssa_op_iter_maymustdef);
1099 #endif
1100 if (ptr->mayuses)
1102 *def = MAYDEF_RESULT_PTR (ptr->mayuses);
1103 *use = MAYDEF_OP_PTR (ptr->mayuses);
1104 ptr->mayuses = ptr->mayuses->next;
1105 return;
1108 if (ptr->mustkills)
1110 *def = MUSTDEF_RESULT_PTR (ptr->mustkills);
1111 *use = MUSTDEF_KILL_PTR (ptr->mustkills);
1112 ptr->mustkills = ptr->mustkills->next;
1113 return;
1116 *def = NULL_DEF_OPERAND_P;
1117 *use = NULL_USE_OPERAND_P;
1118 ptr->done = true;
1119 return;
1123 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1124 in USE and DEF. */
1125 static inline void
1126 op_iter_init_maydef (ssa_op_iter *ptr, tree stmt, use_operand_p *use,
1127 def_operand_p *def)
1129 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1131 op_iter_init (ptr, stmt, SSA_OP_VMAYUSE);
1132 ptr->iter_type = ssa_op_iter_maymustdef;
1133 op_iter_next_maymustdef (use, def, ptr);
1137 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1138 in KILL and DEF. */
1139 static inline void
1140 op_iter_init_mustdef (ssa_op_iter *ptr, tree stmt, use_operand_p *kill,
1141 def_operand_p *def)
1143 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1145 op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL);
1146 ptr->iter_type = ssa_op_iter_maymustdef;
1147 op_iter_next_maymustdef (kill, def, ptr);
1150 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1151 in KILL and DEF. */
1152 static inline void
1153 op_iter_init_must_and_may_def (ssa_op_iter *ptr, tree stmt,
1154 use_operand_p *kill, def_operand_p *def)
1156 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1158 op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL|SSA_OP_VMAYUSE);
1159 ptr->iter_type = ssa_op_iter_maymustdef;
1160 op_iter_next_maymustdef (kill, def, ptr);
1164 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1165 return NULL. */
1166 static inline tree
1167 single_ssa_tree_operand (tree stmt, int flags)
1169 tree var;
1170 ssa_op_iter iter;
1172 var = op_iter_init_tree (&iter, stmt, flags);
1173 if (op_iter_done (&iter))
1174 return NULL_TREE;
1175 op_iter_next_tree (&iter);
1176 if (op_iter_done (&iter))
1177 return var;
1178 return NULL_TREE;
1182 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1183 return NULL. */
1184 static inline use_operand_p
1185 single_ssa_use_operand (tree stmt, int flags)
1187 use_operand_p var;
1188 ssa_op_iter iter;
1190 var = op_iter_init_use (&iter, stmt, flags);
1191 if (op_iter_done (&iter))
1192 return NULL_USE_OPERAND_P;
1193 op_iter_next_use (&iter);
1194 if (op_iter_done (&iter))
1195 return var;
1196 return NULL_USE_OPERAND_P;
1201 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1202 return NULL. */
1203 static inline def_operand_p
1204 single_ssa_def_operand (tree stmt, int flags)
1206 def_operand_p var;
1207 ssa_op_iter iter;
1209 var = op_iter_init_def (&iter, stmt, flags);
1210 if (op_iter_done (&iter))
1211 return NULL_DEF_OPERAND_P;
1212 op_iter_next_def (&iter);
1213 if (op_iter_done (&iter))
1214 return var;
1215 return NULL_DEF_OPERAND_P;
1219 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1220 return NULL. */
1221 static inline bool
1222 zero_ssa_operands (tree stmt, int flags)
1224 ssa_op_iter iter;
1226 op_iter_init_tree (&iter, stmt, flags);
1227 return op_iter_done (&iter);
1231 /* Return the number of operands matching FLAGS in STMT. */
1232 static inline int
1233 num_ssa_operands (tree stmt, int flags)
1235 ssa_op_iter iter;
1236 tree t;
1237 int num = 0;
1239 FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
1240 num++;
1241 return num;
1245 /* Delink all immediate_use information for STMT. */
1246 static inline void
1247 delink_stmt_imm_use (tree stmt)
1249 ssa_op_iter iter;
1250 use_operand_p use_p;
1252 if (ssa_operands_active ())
1253 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
1254 (SSA_OP_ALL_USES | SSA_OP_ALL_KILLS))
1255 delink_imm_use (use_p);
1259 /* This routine will compare all the operands matching FLAGS in STMT1 to those
1260 in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */
1261 static inline bool
1262 compare_ssa_operands_equal (tree stmt1, tree stmt2, int flags)
1264 ssa_op_iter iter1, iter2;
1265 tree op1 = NULL_TREE;
1266 tree op2 = NULL_TREE;
1267 bool look1, look2;
1269 if (stmt1 == stmt2)
1270 return true;
1272 look1 = stmt1 && stmt_ann (stmt1);
1273 look2 = stmt2 && stmt_ann (stmt2);
1275 if (look1)
1277 op1 = op_iter_init_tree (&iter1, stmt1, flags);
1278 if (!look2)
1279 return op_iter_done (&iter1);
1281 else
1282 clear_and_done_ssa_iter (&iter1);
1284 if (look2)
1286 op2 = op_iter_init_tree (&iter2, stmt2, flags);
1287 if (!look1)
1288 return op_iter_done (&iter2);
1290 else
1291 clear_and_done_ssa_iter (&iter2);
1293 while (!op_iter_done (&iter1) && !op_iter_done (&iter2))
1295 if (op1 != op2)
1296 return false;
1297 op1 = op_iter_next_tree (&iter1);
1298 op2 = op_iter_next_tree (&iter2);
1301 return (op_iter_done (&iter1) && op_iter_done (&iter2));
1305 /* If there is a single DEF in the PHI node which matches FLAG, return it.
1306 Otherwise return NULL_DEF_OPERAND_P. */
1307 static inline tree
1308 single_phi_def (tree stmt, int flags)
1310 tree def = PHI_RESULT (stmt);
1311 if ((flags & SSA_OP_DEF) && is_gimple_reg (def))
1312 return def;
1313 if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
1314 return def;
1315 return NULL_TREE;
1318 /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
1319 be either SSA_OP_USES or SAS_OP_VIRTUAL_USES. */
1320 static inline use_operand_p
1321 op_iter_init_phiuse (ssa_op_iter *ptr, tree phi, int flags)
1323 tree phi_def = PHI_RESULT (phi);
1324 int comp;
1326 clear_and_done_ssa_iter (ptr);
1327 ptr->done = false;
1329 gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
1331 comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
1333 /* If the PHI node doesn't the operand type we care about, we're done. */
1334 if ((flags & comp) == 0)
1336 ptr->done = true;
1337 return NULL_USE_OPERAND_P;
1340 ptr->phi_stmt = phi;
1341 ptr->num_phi = PHI_NUM_ARGS (phi);
1342 ptr->iter_type = ssa_op_iter_use;
1343 return op_iter_next_use (ptr);
1347 /* Start an iterator for a PHI definition. */
1349 static inline def_operand_p
1350 op_iter_init_phidef (ssa_op_iter *ptr, tree phi, int flags)
1352 tree phi_def = PHI_RESULT (phi);
1353 int comp;
1355 clear_and_done_ssa_iter (ptr);
1356 ptr->done = false;
1358 gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
1360 comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
1362 /* If the PHI node doesn't the operand type we care about, we're done. */
1363 if ((flags & comp) == 0)
1365 ptr->done = true;
1366 return NULL_USE_OPERAND_P;
1369 ptr->iter_type = ssa_op_iter_def;
1370 /* The first call to op_iter_next_def will terminate the iterator since
1371 all the fields are NULL. Simply return the result here as the first and
1372 therefore only result. */
1373 return PHI_RESULT_PTR (phi);
1378 /* Return true if VAR cannot be modified by the program. */
1380 static inline bool
1381 unmodifiable_var_p (tree var)
1383 if (TREE_CODE (var) == SSA_NAME)
1384 var = SSA_NAME_VAR (var);
1385 return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
1388 /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */
1390 static inline bool
1391 array_ref_contains_indirect_ref (tree ref)
1393 gcc_assert (TREE_CODE (ref) == ARRAY_REF);
1395 do {
1396 ref = TREE_OPERAND (ref, 0);
1397 } while (handled_component_p (ref));
1399 return TREE_CODE (ref) == INDIRECT_REF;
1402 /* Return true if REF, a handled component reference, has an ARRAY_REF
1403 somewhere in it. */
1405 static inline bool
1406 ref_contains_array_ref (tree ref)
1408 gcc_assert (handled_component_p (ref));
1410 do {
1411 if (TREE_CODE (ref) == ARRAY_REF)
1412 return true;
1413 ref = TREE_OPERAND (ref, 0);
1414 } while (handled_component_p (ref));
1416 return false;
1419 /* Given a variable VAR, lookup and return a pointer to the list of
1420 subvariables for it. */
1422 static inline subvar_t *
1423 lookup_subvars_for_var (tree var)
1425 var_ann_t ann = var_ann (var);
1426 gcc_assert (ann);
1427 return &ann->subvars;
1430 /* Given a variable VAR, return a linked list of subvariables for VAR, or
1431 NULL, if there are no subvariables. */
1433 static inline subvar_t
1434 get_subvars_for_var (tree var)
1436 subvar_t subvars;
1438 gcc_assert (SSA_VAR_P (var));
1440 if (TREE_CODE (var) == SSA_NAME)
1441 subvars = *(lookup_subvars_for_var (SSA_NAME_VAR (var)));
1442 else
1443 subvars = *(lookup_subvars_for_var (var));
1444 return subvars;
1447 /* Return the subvariable of VAR at offset OFFSET. */
1449 static inline tree
1450 get_subvar_at (tree var, unsigned HOST_WIDE_INT offset)
1452 subvar_t sv;
1454 for (sv = get_subvars_for_var (var); sv; sv = sv->next)
1455 if (sv->offset == offset)
1456 return sv->var;
1458 return NULL_TREE;
1461 /* Return true if V is a tree that we can have subvars for.
1462 Normally, this is any aggregate type, however, due to implementation
1463 limitations ATM, we exclude array types as well. */
1465 static inline bool
1466 var_can_have_subvars (tree v)
1468 /* Volatile variables should never have subvars. */
1469 if (TREE_THIS_VOLATILE (v))
1470 return false;
1472 return (AGGREGATE_TYPE_P (TREE_TYPE (v)) &&
1473 TREE_CODE (TREE_TYPE (v)) != ARRAY_TYPE);
1477 /* Return true if OFFSET and SIZE define a range that overlaps with some
1478 portion of the range of SV, a subvar. If there was an exact overlap,
1479 *EXACT will be set to true upon return. */
1481 static inline bool
1482 overlap_subvar (unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size,
1483 subvar_t sv, bool *exact)
1485 /* There are three possible cases of overlap.
1486 1. We can have an exact overlap, like so:
1487 |offset, offset + size |
1488 |sv->offset, sv->offset + sv->size |
1490 2. We can have offset starting after sv->offset, like so:
1492 |offset, offset + size |
1493 |sv->offset, sv->offset + sv->size |
1495 3. We can have offset starting before sv->offset, like so:
1497 |offset, offset + size |
1498 |sv->offset, sv->offset + sv->size|
1501 if (exact)
1502 *exact = false;
1503 if (offset == sv->offset && size == sv->size)
1505 if (exact)
1506 *exact = true;
1507 return true;
1509 else if (offset >= sv->offset && offset < (sv->offset + sv->size))
1511 return true;
1513 else if (offset < sv->offset && (size > sv->offset - offset))
1515 return true;
1517 return false;
1521 #endif /* _TREE_FLOW_INLINE_H */