No empty .Rs/.Re
[netbsd-mini2440.git] / sys / arch / sparc / include / pte.h
blobe6eed791932f37506882d8a72c8deb459ee5ac96
1 /* $NetBSD: pte.h,v 1.30 2005/12/24 20:07:32 perry Exp $ */
3 /*
4 * Copyright (c) 1996
5 * The President and Fellows of Harvard College. All rights reserved.
6 * Copyright (c) 1992, 1993
7 * The Regents of the University of California. All rights reserved.
9 * This software was developed by the Computer Systems Engineering group
10 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
11 * contributed to Berkeley.
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgements:
15 * This product includes software developed by Harvard University.
16 * This product includes software developed by the University of
17 * California, Lawrence Berkeley Laboratory.
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 * 1. Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution.
27 * 3. All advertising materials mentioning features or use of this software
28 * must display the following acknowledgements:
29 * This product includes software developed by Harvard University.
30 * This product includes software developed by the University of
31 * California, Berkeley and its contributors.
32 * 4. Neither the name of the University nor the names of its contributors
33 * may be used to endorse or promote products derived from this software
34 * without specific prior written permission.
36 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
37 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
40 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46 * SUCH DAMAGE.
48 * @(#)pte.h 8.1 (Berkeley) 6/11/93
51 #ifndef _SPARC_PTE_H_
52 #define _SPARC_PTE_H_
54 #if defined(_KERNEL_OPT)
55 #include "opt_sparc_arch.h"
56 #endif
59 * Sun-4 (sort of), 4c (SparcStation), and 4m Page Table Entries
60 * (Sun calls them `Page Map Entries').
63 #ifndef _LOCORE
65 * Segment maps contain `pmeg' (Page Map Entry Group) numbers.
66 * A PMEG is simply an index that names a group of 32 (sun4) or
67 * 64 (sun4c) PTEs.
68 * Depending on the CPU model, we need 7 (sun4c) to 10 (sun4/400) bits
69 * to hold the hardware MMU resource number.
71 typedef u_short pmeg_t; /* 10 bits needed per Sun-4 segmap entry */
73 * Region maps contain `smeg' (Segment Entry Group) numbers.
74 * An SMEG is simply an index that names a group of 64 PMEGs.
76 typedef u_char smeg_t; /* 8 bits needed per Sun-4 regmap entry */
77 #endif
80 * Address translation works as follows:
82 * (for sun4c and 2-level sun4)
83 * 1. test va<31:29> -- these must be 000 or 111 (or you get a fault)
84 * 2. concatenate context_reg<2:0> and va<29:18> to get a 15 bit number;
85 * use this to index the segment maps, yielding a 7 or 9 bit value.
86 * (for 3-level sun4)
87 * 1. concatenate context_reg<3:0> and va<31:24> to get a 8 bit number;
88 * use this to index the region maps, yielding a 10 bit value.
89 * 2. take the value from (1) above and concatenate va<17:12> to
90 * get a `segment map entry' index. This gives a 9 bit value.
91 * (for sun4c)
92 * 3. take the value from (2) above and concatenate va<17:12> to
93 * get a `page map entry' index. This gives a 32-bit PTE.
94 * (for sun4)
95 * 3. take the value from (2 or 3) above and concatenate va<17:13> to
96 * get a `page map entry' index. This gives a 32-bit PTE.
98 * For sun4m:
99 * 1. Use context_reg<3:0> to index the context table (located at
100 * (context_reg << 2) | ((ctx_tbl_ptr_reg >> 2) << 6) ). This
101 * gives a 32-bit page-table-descriptor (PTP).
102 * 2. Use va<31:24> to index the region table located by the PTP from (1):
103 * PTP<31:6> << 10. This gives another PTP for the segment tables
104 * 3. Use va<23:18> to index the segment table located by the PTP from (2)
105 * as follows: PTP<31:4> << 8. This gives another PTP for the page tbl.
106 * 4. Use va<17:12> to index the page table given by (3)'s PTP:
107 * PTP<31:4> << 8. This gives a 32-bit PTE.
109 * In other words:
111 * struct sun4_3_levelmmu_virtual_addr {
112 * u_int va_reg:8, (virtual region)
113 * va_seg:6, (virtual segment)
114 * va_pg:5, (virtual page within segment)
115 * va_off:13; (offset within page)
116 * };
117 * struct sun4_virtual_addr {
118 * u_int :2, (required to be the same as bit 29)
119 * va_seg:12, (virtual segment)
120 * va_pg:5, (virtual page within segment)
121 * va_off:13; (offset within page)
122 * };
123 * struct sun4c_virtual_addr {
124 * u_int :2, (required to be the same as bit 29)
125 * va_seg:12, (virtual segment)
126 * va_pg:6, (virtual page within segment)
127 * va_off:12; (offset within page)
128 * };
130 * struct sun4m_virtual_addr {
131 * u_int va_reg:8, (virtual region)
132 * va_seg:6, (virtual segment within region)
133 * va_pg:6, (virtual page within segment)
134 * va_off:12; (offset within page)
135 * };
137 * Then, given any `va':
139 * extern smeg_t regmap[16][1<<8]; (3-level MMU only)
140 * extern pmeg_t segmap[8][1<<12]; ([16][1<<12] for sun4)
141 * extern int ptetable[128][1<<6]; ([512][1<<5] for sun4)
143 * extern u_int s4m_ctxmap[16]; (sun4m SRMMU only)
144 * extern u_int s4m_regmap[16][1<<8]; (sun4m SRMMU only)
145 * extern u_int s4m_segmap[1<<8][1<<6]; (sun4m SRMMU only)
146 * extern u_int s4m_pagmap[1<<14][1<<6]; (sun4m SRMMU only)
148 * (the above being in the hardware, accessed as Alternate Address Spaces on
149 * all machines but the Sun4m SRMMU, in which case the tables are in physical
150 * kernel memory. In the 4m architecture, the tables are not layed out as
151 * 2-dim arrays, but are sparsely allocated as needed, and point to each
152 * other.)
154 * if (cputyp==CPU_SUN4M || cputyp==CPU_SUN4D) // SPARC Reference MMU
155 * regptp = s4m_ctxmap[curr_ctx];
156 * if (!(regptp & SRMMU_TEPTD)) TRAP();
157 * segptp = *(u_int *)(((regptp & ~0x3) << 4) | va.va_reg);
158 * if (!(segptp & SRMMU_TEPTD)) TRAP();
159 * pagptp = *(u_int *)(((segptp & ~0x3) << 4) | va.va_seg);
160 * if (!(pagptp & SRMMU_TEPTD)) TRAP();
161 * pte = *(u_int *)(((pagptp & ~0x3) << 4) | va.va_pg);
162 * if (!(pte & SRMMU_TEPTE)) TRAP(); // like PG_V
163 * if (usermode && PTE_PROT_LEVEL(pte) > 0x5) TRAP();
164 * if (writing && !PTE_PROT_LEVEL_ALLOWS_WRITING(pte)) TRAP();
165 * if (!(pte & SRMMU_PG_C)) DO_NOT_USE_CACHE_FOR_THIS_ACCESS();
166 * pte |= SRMMU_PG_U;
167 * if (writing) pte |= PG_M;
168 * physaddr = ((pte & SRMMU_PG_PFNUM) << SRMMU_PGSHIFT)|va.va_off;
169 * return;
170 * if (mmu_3l)
171 * physreg = regmap[curr_ctx][va.va_reg];
172 * physseg = segmap[physreg][va.va_seg];
173 * else
174 * physseg = segmap[curr_ctx][va.va_seg];
175 * pte = ptetable[physseg][va.va_pg];
176 * if (!(pte & PG_V)) TRAP();
177 * if (writing && !pte.pg_w) TRAP();
178 * if (usermode && pte.pg_s) TRAP();
179 * if (pte & PG_NC) DO_NOT_USE_CACHE_FOR_THIS_ACCESS();
180 * pte |= PG_U; (mark used/accessed)
181 * if (writing) pte |= PG_M; (mark modified)
182 * ptetable[physseg][va.va_pg] = pte;
183 * physadr = ((pte & PG_PFNUM) << PGSHIFT) | va.va_off;
186 #if defined(SUN4_MMU3L) && !defined(SUN4)
187 #error "configuration error"
188 #endif
190 #define NBPRG (1 << 24) /* bytes per region */
191 #define RGSHIFT 24 /* log2(NBPRG) */
192 #define RGOFSET (NBPRG - 1) /* mask for region offset */
193 #define NSEGRG (NBPRG / NBPSG) /* segments per region */
195 #define NBPSG (1 << 18) /* bytes per segment */
196 #define SGSHIFT 18 /* log2(NBPSG) */
197 #define SGOFSET (NBPSG - 1) /* mask for segment offset */
199 /* number of PTEs that map one segment (not number that fit in one segment!) */
200 #if defined(SUN4) && (defined(SUN4C) || defined(SUN4M) || defined(SUN4D))
201 extern int nptesg;
202 #define NPTESG nptesg /* (which someone will have to initialize) */
203 #else
204 #define NPTESG (NBPSG / NBPG)
205 #endif
207 /* virtual address to virtual region number */
208 #define VA_VREG(va) (((unsigned int)(va) >> RGSHIFT) & 255)
210 /* virtual address to virtual segment number */
211 #define VA_VSEG(va) (((unsigned int)(va) >> SGSHIFT) & 63)
213 /* virtual address to virtual page number, for Sun-4 and Sun-4c */
214 #define VA_SUN4_VPG(va) (((int)(va) >> 13) & 31)
215 #define VA_SUN4C_VPG(va) (((int)(va) >> 12) & 63)
216 #define VA_SUN4M_VPG(va) (((int)(va) >> 12) & 63)
217 #define VA_VPG(va) \
218 (PGSHIFT==SUN4_PGSHIFT ? VA_SUN4_VPG(va) : VA_SUN4C_VPG(va))
220 /* virtual address to offset within page */
221 #define VA_SUN4_OFF(va) (((int)(va)) & 0x1FFF)
222 #define VA_SUN4C_OFF(va) (((int)(va)) & 0xFFF)
223 #define VA_SUN4M_OFF(va) (((int)(va)) & 0xFFF)
224 #define VA_OFF(va) \
225 (PGSHIFT==SUN4_PGSHIFT ? VA_SUN4_OFF(va) : VA_SUN4C_OFF(va))
228 /* truncate virtual address to region base */
229 #define VA_ROUNDDOWNTOREG(va) ((int)(va) & ~RGOFSET)
231 /* truncate virtual address to segment base */
232 #define VA_ROUNDDOWNTOSEG(va) ((int)(va) & ~SGOFSET)
234 /* virtual segment to virtual address (must sign extend on holy MMUs!) */
235 #define VRTOVA(vr) ((CPU_HAS_SRMMU || HASSUN4_MMU3L) \
236 ? ((int)(vr) << RGSHIFT) \
237 : (((int)(vr) << (RGSHIFT+2)) >> 2))
238 #define VSTOVA(vr,vs) ((CPU_HAS_SRMMU || HASSUN4_MMU3L) \
239 ? (((int)(vr) << RGSHIFT) + ((int)(vs) << SGSHIFT)) \
240 : ((((int)(vr) << (RGSHIFT+2)) >> 2) + ((int)(vs) << SGSHIFT)))
242 extern int mmu_has_hole;
243 #define VA_INHOLE(va) (mmu_has_hole \
244 ? ( (unsigned int)(((int)(va) >> PG_VSHIFT) + 1) > 1) \
245 : 0)
247 /* Define the virtual address space hole */
248 #define MMU_HOLE_START 0x20000000
249 #define MMU_HOLE_END 0xe0000000
251 /* there is no `struct pte'; we just use `int'; this is for non-4M only */
252 #define PG_V 0x80000000
253 #define PG_PROT 0x60000000 /* both protection bits */
254 #define PG_W 0x40000000 /* allowed to write */
255 #define PG_S 0x20000000 /* supervisor only */
256 #define PG_NC 0x10000000 /* non-cacheable */
257 #define PG_TYPE 0x0c000000 /* both type bits */
259 #define PG_OBMEM 0x00000000 /* on board memory */
260 #define PG_OBIO 0x04000000 /* on board I/O (incl. Sbus on 4c) */
261 #define PG_VME16 0x08000000 /* 16-bit-data VME space */
262 #define PG_VME32 0x0c000000 /* 32-bit-data VME space */
263 #if defined(SUN4M) || defined(SUN4D)
264 #define PG_SUN4M_OBMEM 0x0 /* No type bits=>obmem on 4m */
265 #define PG_SUN4M_OBIO 0xf /* obio maps to 0xf on 4M */
266 #define SRMMU_PGTYPE 0xf0000000 /* Top 4 bits of pte PPN give type */
267 #endif
269 #define PG_U 0x02000000
270 #define PG_M 0x01000000
271 #define PG_IOC 0x00800000
272 #define PG_MBZ 0x00780000 /* unused; must be zero (oh really?) */
273 #define PG_PFNUM 0x0007ffff /* n.b.: only 16 bits on sun4c */
274 #define PG_WIRED 0x00400000 /* S/W only; in MBZ area */
276 #define PG_TNC_SHIFT 26 /* shift to get PG_TYPE + PG_NC */
277 #define PG_M_SHIFT 24 /* shift to get PG_M, PG_U */
278 #define PG_M_SHIFT4M 5 /* shift to get SRMMU_PG_M,R on 4m */
279 /*efine PG_NOACC 0 ** XXX */
280 #define PG_KR 0x20000000
281 #define PG_KW 0x60000000
282 #define PG_URKR 0
283 #define PG_UW 0x40000000
285 #ifdef KGDB
286 /* but we will define one for gdb anyway */
287 struct pte {
288 u_int pg_v:1,
289 pg_w:1,
290 pg_s:1,
291 pg_nc:1;
292 enum pgtype { pg_obmem, pg_obio, pg_vme16, pg_vme32 } pg_type:2;
293 u_int pg_u:1,
294 pg_m:1,
295 pg_mbz:5,
296 pg_pfnum:19;
298 #if defined(SUN4M) || defined(SUN4D)
299 struct srmmu_pte {
300 u_int pg_pfnum:20,
301 pg_c:1,
302 pg_m:1,
303 pg_u:1;
304 enum pgprot { pprot_r_r, pprot_rw_rw, pprot_rx_rx, pprot_rwx_rwx,
305 pprot_x_x, pprot_r_rw, pprot_n_rx, pprot_n_rwx }
306 pg_prot:3; /* prot. bits: pprot_<user>_<supervisor> */
307 u_int pg_must_be_2:2;
309 #endif
310 #endif
313 * These are needed in the register window code
314 * to check the validity of (ostensible) user stack PTEs.
316 #define PG_VSHIFT 29 /* (va>>vshift)==0 or -1 => valid */
317 /* XXX fix this name, it is a va shift not a pte bit shift! */
319 #define PG_PROTSHIFT 29
320 #define PG_PROTUWRITE 6 /* PG_V,PG_W,!PG_S */
321 #define PG_PROTUREAD 4 /* PG_V,!PG_W,!PG_S */
323 /* %%%: Fix above and below for 4m? */
325 /* static __inline int PG_VALID(void *va) {
326 register int t = va; t >>= PG_VSHIFT; return (t == 0 || t == -1);
327 } */
331 * Here are the bit definitions for 4M/SRMMU pte's
333 /* MMU TABLE ENTRIES */
334 #define SRMMU_TEINVALID 0x0 /* invalid (serves as !valid bit) */
335 #define SRMMU_TEPTD 0x1 /* Page Table Descriptor */
336 #define SRMMU_TEPTE 0x2 /* Page Table Entry */
337 #define SRMMU_TERES 0x3 /* reserved */
338 #define SRMMU_TETYPE 0x3 /* mask for table entry type */
339 /* PTE FIELDS */
340 #define SRMMU_PPNMASK 0xFFFFFF00
341 #define SRMMU_PPNSHIFT 0x8
342 #define SRMMU_PPNPASHIFT 0x4 /* shift to put ppn into PAddr */
343 #define SRMMU_L1PPNSHFT 0x14
344 #define SRMMU_L1PPNMASK 0xFFF00000
345 #define SRMMU_L2PPNSHFT 0xE
346 #define SRMMU_L2PPNMASK 0xFC000
347 #define SRMMU_L3PPNSHFT 0x8
348 #define SRMMU_L3PPNMASK 0x3F00
349 /* PTE BITS */
350 #define SRMMU_PG_C 0x80 /* cacheable */
351 #define SRMMU_PG_M 0x40 /* modified (dirty) */
352 #define SRMMU_PG_R 0x20 /* referenced */
353 #define SRMMU_PGBITSMSK 0xE0
354 /* PTE PROTECTION */
355 #define SRMMU_PROT_MASK 0x1C /* Mask protection bits out of pte */
356 #define SRMMU_PROT_SHFT 0x2
357 #define PPROT_R_R 0x0 /* These are in the form: */
358 #define PPROT_RW_RW 0x4 /* PPROT_<u>_<s> */
359 #define PPROT_RX_RX 0x8 /* where <u> is the user-mode */
360 #define PPROT_RWX_RWX 0xC /* permission, and <s> is the */
361 #define PPROT_X_X 0x10 /* supervisor mode permission. */
362 #define PPROT_R_RW 0x14 /* R=read, W=write, X=execute */
363 #define PPROT_N_RX 0x18 /* N=none. */
364 #define PPROT_N_RWX 0x1C
365 #define PPROT_WRITE 0x4 /* set iff write priv. allowed */
366 #define PPROT_S 0x18 /* effective S bit */
367 #define PPROT_U2S_OMASK 0x18 /* OR with prot. to revoke user priv */
368 /* TABLE SIZES */
369 #define SRMMU_L1SIZE 0x100
370 #define SRMMU_L2SIZE 0x40
371 #define SRMMU_L3SIZE 0x40
373 #define SRMMU_PTE_BITS "\177\020" \
374 "f\0\2TYPE\0=\1PTD\0=\2PTE\0f\2\3PROT\0" \
375 "=\0R_R\0=\4RW_RW\0=\10RX_RX\0=\14RWX_RWX\0=\20X_X\0=\24R_RW\0" \
376 "=\30N_RX\0=\34N_RWX\0" \
377 "b\5R\0b\6M\0b\7C\0f\10\30PFN\0"
380 * IOMMU PTE bits.
382 #define IOPTE_PPN_MASK 0x07ffff00
383 #define IOPTE_PPN_SHIFT 8
384 #define IOPTE_RSVD 0x000000f1
385 #define IOPTE_WRITE 0x00000004
386 #define IOPTE_VALID 0x00000002
388 #define IOMMU_PTE_BITS "\177\020" \
389 "f\10\23PPN\0b\2W\0b\1V\0"
392 #if defined(_KERNEL) || defined(_STANDALONE)
394 * Macros to get and set the processor context.
396 #define getcontext4() lduba(AC_CONTEXT, ASI_CONTROL)
397 #define getcontext4m() lda(SRMMU_CXR, ASI_SRMMU)
398 #define getcontext() (CPU_HAS_SRMMU ? getcontext4m() \
399 : getcontext4())
401 #define setcontext4(c) stba(AC_CONTEXT, ASI_CONTROL, c)
402 #define setcontext4m(c) sta(SRMMU_CXR, ASI_SRMMU, c)
403 #define setcontext(c) (CPU_HAS_SRMMU ? setcontext4m(c) \
404 : setcontext4(c))
406 /* sun4/sun4c access to MMU-resident PTEs */
407 #define getpte4(va) lda(va, ASI_PTE)
408 #define setpte4(va, pte) sta(va, ASI_PTE, pte)
410 /* sun4m TLB probe */
411 #define getpte4m(va) lda((va & 0xFFFFF000) | ASI_SRMMUFP_L3, \
412 ASI_SRMMUFP)
414 #endif /* _KERNEL || _STANDALONE */
415 #endif /* _SPARC_PTE_H_ */