1 /* $NetBSD: adwlib.c,v 1.38 2007/10/19 11:59:45 ad Exp $ */
4 * Low level routines for the Advanced Systems Inc. SCSI controllers chips
6 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
9 * Author: Baldassare Dante Profeta <dante@mclink.it>
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
43 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
45 * Copyright (c) 1995-2000 Advanced System Products, Inc.
46 * All Rights Reserved.
48 * Redistribution and use in source and binary forms, with or without
49 * modification, are permitted provided that redistributions of source
50 * code retain the above copyright notice and this comment without
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.38 2007/10/19 11:59:45 ad Exp $");
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/queue.h>
62 #include <sys/device.h>
67 #include <dev/scsipi/scsi_all.h>
68 #include <dev/scsipi/scsipi_all.h>
69 #include <dev/scsipi/scsiconf.h>
71 #include <dev/pci/pcidevs.h>
73 #include <uvm/uvm_extern.h>
75 #include <dev/ic/adwlib.h>
76 #include <dev/ic/adwmcode.h>
77 #include <dev/ic/adw.h>
80 /* Static Functions */
82 int AdwRamSelfTest(bus_space_tag_t
, bus_space_handle_t
, u_int8_t
);
83 int AdwLoadMCode(bus_space_tag_t
, bus_space_handle_t
, u_int16_t
*, u_int8_t
);
84 int AdwASC3550Cabling(bus_space_tag_t
, bus_space_handle_t
, ADW_DVC_CFG
*);
85 int AdwASC38C0800Cabling(bus_space_tag_t
, bus_space_handle_t
, ADW_DVC_CFG
*);
86 int AdwASC38C1600Cabling(bus_space_tag_t
, bus_space_handle_t
, ADW_DVC_CFG
*);
88 static u_int16_t
AdwGetEEPROMConfig(bus_space_tag_t
, bus_space_handle_t
,
90 static void AdwSetEEPROMConfig(bus_space_tag_t
, bus_space_handle_t
,
92 static u_int16_t
AdwReadEEPWord(bus_space_tag_t
, bus_space_handle_t
, int);
93 static void AdwWaitEEPCmd(bus_space_tag_t
, bus_space_handle_t
);
95 static void AdwInquiryHandling(ADW_SOFTC
*, ADW_SCSI_REQ_Q
*);
97 static void AdwSleepMilliSecond(u_int32_t
);
98 static void AdwDelayMicroSecond(u_int32_t
);
102 * EEPROM Configuration.
104 * All drivers should use this structure to set the default EEPROM
105 * configuration. The BIOS now uses this structure when it is built.
106 * Additional structure information can be found in adwlib.h where
107 * the structure is defined.
109 static const ADW_EEPROM adw_3550_Default_EEPROM
= {
110 ADW_EEPROM_BIOS_ENABLE
, /* 00 cfg_lsw */
111 0x0000, /* 01 cfg_msw */
112 0xFFFF, /* 02 disc_enable */
113 0xFFFF, /* 03 wdtr_able */
114 { 0xFFFF }, /* 04 sdtr_able */
115 0xFFFF, /* 05 start_motor */
116 0xFFFF, /* 06 tagqng_able */
117 0xFFFF, /* 07 bios_scan */
118 0, /* 08 scam_tolerant */
119 7, /* 09 adapter_scsi_id */
120 0, /* bios_boot_delay */
121 3, /* 10 scsi_reset_delay */
123 0, /* 11 termination */
125 0xFFE7, /* 12 bios_ctrl */
126 { 0xFFFF }, /* 13 ultra_able */
127 { 0 }, /* 14 reserved2 */
128 ADW_DEF_MAX_HOST_QNG
, /* 15 max_host_qng */
129 ADW_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
131 { 0 }, /* 17 bug_fix */
132 { 0,0,0 }, /* 18-20 serial_number[3] */
133 0, /* 21 check_sum */
134 { /* 22-29 oem_name[16] */
138 0, /* 30 dvc_err_code */
139 0, /* 31 adv_err_code */
140 0, /* 32 adv_err_addr */
141 0, /* 33 saved_dvc_err_code */
142 0, /* 34 saved_adv_err_code */
143 0, /* 35 saved_adv_err_addr */
144 { /* 36-55 reserved1[16] */
145 0,0,0,0,0,0,0,0,0,0,
148 0, /* 56 cisptr_lsw */
149 0, /* 57 cisprt_msw */
150 0, /* 58 subsysvid */
152 { 0,0,0,0 } /* 60-63 reserved2[4] */
155 static const ADW_EEPROM adw_38C0800_Default_EEPROM
= {
156 ADW_EEPROM_BIOS_ENABLE
, /* 00 cfg_lsw */
157 0x0000, /* 01 cfg_msw */
158 0xFFFF, /* 02 disc_enable */
159 0xFFFF, /* 03 wdtr_able */
160 { 0x4444 }, /* 04 sdtr_speed1 */
161 0xFFFF, /* 05 start_motor */
162 0xFFFF, /* 06 tagqng_able */
163 0xFFFF, /* 07 bios_scan */
164 0, /* 08 scam_tolerant */
165 7, /* 09 adapter_scsi_id */
166 0, /* bios_boot_delay */
167 3, /* 10 scsi_reset_delay */
169 0, /* 11 termination_se */
170 0, /* termination_lvd */
171 0xFFE7, /* 12 bios_ctrl */
172 { 0x4444 }, /* 13 sdtr_speed2 */
173 { 0x4444 }, /* 14 sdtr_speed3 */
174 ADW_DEF_MAX_HOST_QNG
, /* 15 max_host_qng */
175 ADW_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
177 { 0x4444 }, /* 17 sdtr_speed4 */
178 { 0,0,0 }, /* 18-20 serial_number[3] */
179 0, /* 21 check_sum */
180 { /* 22-29 oem_name[16] */
184 0, /* 30 dvc_err_code */
185 0, /* 31 adv_err_code */
186 0, /* 32 adv_err_addr */
187 0, /* 33 saved_dvc_err_code */
188 0, /* 34 saved_adv_err_code */
189 0, /* 35 saved_adv_err_addr */
190 { /* 36-55 reserved1[16] */
191 0,0,0,0,0,0,0,0,0,0,
194 0, /* 56 cisptr_lsw */
195 0, /* 57 cisprt_msw */
196 PCI_VENDOR_ADVSYS
, /* 58 subsysvid */
197 PCI_PRODUCT_ADVSYS_U2W
, /* 59 subsysid */
198 { 0,0,0,0 } /* 60-63 reserved2[4] */
201 static const ADW_EEPROM adw_38C1600_Default_EEPROM
= {
202 ADW_EEPROM_BIOS_ENABLE
, /* 00 cfg_lsw */
203 0x0000, /* 01 cfg_msw */
204 0xFFFF, /* 02 disc_enable */
205 0xFFFF, /* 03 wdtr_able */
206 { 0x5555 }, /* 04 sdtr_speed1 */
207 0xFFFF, /* 05 start_motor */
208 0xFFFF, /* 06 tagqng_able */
209 0xFFFF, /* 07 bios_scan */
210 0, /* 08 scam_tolerant */
211 7, /* 09 adapter_scsi_id */
212 0, /* bios_boot_delay */
213 3, /* 10 scsi_reset_delay */
215 0, /* 11 termination_se */
216 0, /* termination_lvd */
217 0xFFE7, /* 12 bios_ctrl */
218 { 0x5555 }, /* 13 sdtr_speed2 */
219 { 0x5555 }, /* 14 sdtr_speed3 */
220 ADW_DEF_MAX_HOST_QNG
, /* 15 max_host_qng */
221 ADW_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
223 { 0x5555 }, /* 17 sdtr_speed4 */
224 { 0,0,0 }, /* 18-20 serial_number[3] */
225 0, /* 21 check_sum */
226 { /* 22-29 oem_name[16] */
230 0, /* 30 dvc_err_code */
231 0, /* 31 adv_err_code */
232 0, /* 32 adv_err_addr */
233 0, /* 33 saved_dvc_err_code */
234 0, /* 34 saved_adv_err_code */
235 0, /* 35 saved_adv_err_addr */
236 { /* 36-55 reserved1[16] */
237 0,0,0,0,0,0,0,0,0,0,
240 0, /* 56 cisptr_lsw */
241 0, /* 57 cisprt_msw */
242 PCI_VENDOR_ADVSYS
, /* 58 subsysvid */
243 PCI_PRODUCT_ADVSYS_U3W
, /* 59 subsysid */
244 { 0,0,0,0 } /* 60-63 reserved2[4] */
249 * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
250 * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
251 * all of this is done.
253 * For a non-fatal error return a warning code. If there are no warnings
254 * then 0 is returned.
256 * Note: Chip is stopped on entry.
259 AdwInitFromEEPROM(ADW_SOFTC
*sc
)
261 bus_space_tag_t iot
= sc
->sc_iot
;
262 bus_space_handle_t ioh
= sc
->sc_ioh
;
263 ADW_EEPROM eep_config
;
265 u_int16_t sdtr_speed
= 0;
266 u_int8_t tid
, termination
;
273 * Read the board's EEPROM configuration.
275 * Set default values if a bad checksum is found.
277 * XXX - Don't handle big-endian access to EEPROM yet.
279 if (AdwGetEEPROMConfig(iot
, ioh
, &eep_config
) != eep_config
.check_sum
) {
280 warn_code
|= ADW_WARN_EEPROM_CHKSUM
;
283 * Set EEPROM default values.
285 switch(sc
->chip_type
) {
286 case ADW_CHIP_ASC3550
:
287 eep_config
= adw_3550_Default_EEPROM
;
289 case ADW_CHIP_ASC38C0800
:
290 eep_config
= adw_38C0800_Default_EEPROM
;
292 case ADW_CHIP_ASC38C1600
:
293 eep_config
= adw_38C1600_Default_EEPROM
;
296 XXX TODO
!!! if (ASC_PCI_ID2FUNC(sc
->cfg
.pci_slot_info
) != 0) {
298 if (sc
->cfg
.pci_slot_info
!= 0) {
301 lsw_msb
= eep_config
.cfg_lsw
>> 8;
303 * Set Function 1 EEPROM Word 0 MSB
305 * Clear the BIOS_ENABLE (bit 14) and
306 * INTAB (bit 11) EEPROM bits.
308 * Disable Bit 14 (BIOS_ENABLE) to fix
309 * SPARC Ultra 60 and old Mac system booting
310 * problem. The Expansion ROM must
311 * be disabled in Function 1 for these systems.
313 lsw_msb
&= ~(((ADW_EEPROM_BIOS_ENABLE
|
314 ADW_EEPROM_INTAB
) >> 8) & 0xFF);
316 * Set the INTAB (bit 11) if the GPIO 0 input
317 * indicates the Function 1 interrupt line is
320 * Set/Clear Bit 11 (INTAB) from
321 * the GPIO bit 0 input:
322 * 1 - Function 1 intr line wired to INT A.
323 * 0 - Function 1 intr line wired to INT B.
325 * Note: Adapter boards always have Function 0
327 * Put all 5 GPIO bits in input mode and then
328 * read their input values.
330 ADW_WRITE_BYTE_REGISTER(iot
, ioh
,
332 if (ADW_READ_BYTE_REGISTER(iot
, ioh
,
333 IOPB_GPIO_DATA
) & 0x01) {
335 * Function 1 interrupt wired to INTA;
338 lsw_msb
|= (ADW_EEPROM_INTAB
>> 8)
341 eep_config
.cfg_lsw
&= 0x00FF;
342 eep_config
.cfg_lsw
|= lsw_msb
<< 8;
348 * Assume the 6 byte board serial number that was read
349 * from EEPROM is correct even if the EEPROM checksum
352 for (i
=2, j
=1; i
>=0; i
--, j
++) {
353 eep_config
.serial_number
[i
] =
354 AdwReadEEPWord(iot
, ioh
, ASC_EEP_DVC_CFG_END
- j
);
357 AdwSetEEPROMConfig(iot
, ioh
, &eep_config
);
360 * Set sc and sc->cfg variables from the EEPROM configuration
363 * This is the mapping of EEPROM fields to Adw Library fields.
365 sc
->wdtr_able
= eep_config
.wdtr_able
;
366 if (sc
->chip_type
== ADW_CHIP_ASC3550
) {
367 sc
->sdtr_able
= eep_config
.sdtr1
.sdtr_able
;
368 sc
->ultra_able
= eep_config
.sdtr2
.ultra_able
;
370 sc
->sdtr_speed1
= eep_config
.sdtr1
.sdtr_speed1
;
371 sc
->sdtr_speed2
= eep_config
.sdtr2
.sdtr_speed2
;
372 sc
->sdtr_speed3
= eep_config
.sdtr3
.sdtr_speed3
;
373 sc
->sdtr_speed4
= eep_config
.sdtr4
.sdtr_speed4
;
376 sc
->tagqng_able
= eep_config
.tagqng_able
;
377 sc
->cfg
.disc_enable
= eep_config
.disc_enable
;
378 sc
->max_host_qng
= eep_config
.max_host_qng
;
379 sc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
380 sc
->chip_scsi_id
= (eep_config
.adapter_scsi_id
& ADW_MAX_TID
);
381 sc
->start_motor
= eep_config
.start_motor
;
382 sc
->scsi_reset_wait
= eep_config
.scsi_reset_delay
;
383 sc
->bios_ctrl
= eep_config
.bios_ctrl
;
384 sc
->no_scam
= eep_config
.scam_tolerant
;
385 sc
->cfg
.serial1
= eep_config
.serial_number
[0];
386 sc
->cfg
.serial2
= eep_config
.serial_number
[1];
387 sc
->cfg
.serial3
= eep_config
.serial_number
[2];
389 if (sc
->chip_type
== ADW_CHIP_ASC38C0800
||
390 sc
->chip_type
== ADW_CHIP_ASC38C1600
) {
392 for (tid
= 0; tid
<= ADW_MAX_TID
; tid
++) {
394 sdtr_speed
= sc
->sdtr_speed1
;
395 } else if (tid
== 4) {
396 sdtr_speed
= sc
->sdtr_speed2
;
397 } else if (tid
== 8) {
398 sdtr_speed
= sc
->sdtr_speed3
;
399 } else if (tid
== 12) {
400 sdtr_speed
= sc
->sdtr_speed4
;
402 if (sdtr_speed
& ADW_MAX_TID
) {
403 sc
->sdtr_able
|= (1 << tid
);
410 * Set the host maximum queuing (max. 253, min. 16) and the per device
411 * maximum queuing (max. 63, min. 4).
413 if (eep_config
.max_host_qng
> ADW_DEF_MAX_HOST_QNG
) {
414 eep_config
.max_host_qng
= ADW_DEF_MAX_HOST_QNG
;
415 } else if (eep_config
.max_host_qng
< ADW_DEF_MIN_HOST_QNG
)
417 /* If the value is zero, assume it is uninitialized. */
418 if (eep_config
.max_host_qng
== 0) {
419 eep_config
.max_host_qng
= ADW_DEF_MAX_HOST_QNG
;
421 eep_config
.max_host_qng
= ADW_DEF_MIN_HOST_QNG
;
425 if (eep_config
.max_dvc_qng
> ADW_DEF_MAX_DVC_QNG
) {
426 eep_config
.max_dvc_qng
= ADW_DEF_MAX_DVC_QNG
;
427 } else if (eep_config
.max_dvc_qng
< ADW_DEF_MIN_DVC_QNG
) {
428 /* If the value is zero, assume it is uninitialized. */
429 if (eep_config
.max_dvc_qng
== 0) {
430 eep_config
.max_dvc_qng
= ADW_DEF_MAX_DVC_QNG
;
432 eep_config
.max_dvc_qng
= ADW_DEF_MIN_DVC_QNG
;
437 * If 'max_dvc_qng' is greater than 'max_host_qng', then
438 * set 'max_dvc_qng' to 'max_host_qng'.
440 if (eep_config
.max_dvc_qng
> eep_config
.max_host_qng
) {
441 eep_config
.max_dvc_qng
= eep_config
.max_host_qng
;
445 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
446 * values based on possibly adjusted EEPROM values.
448 sc
->max_host_qng
= eep_config
.max_host_qng
;
449 sc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
453 * If the EEPROM 'termination' field is set to automatic (0), then set
454 * the ADV_DVC_CFG 'termination' field to automatic also.
456 * If the termination is specified with a non-zero 'termination'
457 * value check that a legal value is set and set the ADV_DVC_CFG
458 * 'termination' field appropriately.
461 switch(sc
->chip_type
) {
462 case ADW_CHIP_ASC3550
:
463 sc
->cfg
.termination
= 0; /* auto termination */
464 switch(eep_config
.termination_se
) {
466 /* Enable manual control with low on / high on. */
467 sc
->cfg
.termination
|= ADW_TERM_CTL_L
;
469 /* Enable manual control with low off / high on. */
470 sc
->cfg
.termination
|= ADW_TERM_CTL_H
;
472 /* Enable manual control with low off / high off. */
473 sc
->cfg
.termination
|= ADW_TERM_CTL_SEL
;
477 warn_code
|= ADW_WARN_EEPROM_TERMINATION
;
481 case ADW_CHIP_ASC38C0800
:
482 case ADW_CHIP_ASC38C1600
:
483 switch(eep_config
.termination_se
) {
485 /* auto termination for SE */
489 /* Enable manual control with low off / high off. */
493 /* Enable manual control with low off / high on. */
494 termination
= ADW_TERM_SE_HI
;
497 /* Enable manual control with low on / high on. */
498 termination
= ADW_TERM_SE
;
502 * The EEPROM 'termination_se' field contains a
503 * bad value. Use automatic termination instead.
506 warn_code
|= ADW_WARN_EEPROM_TERMINATION
;
509 switch(eep_config
.termination_lvd
) {
511 /* auto termination for LVD */
512 sc
->cfg
.termination
= termination
;
515 /* Enable manual control with low off / high off. */
516 sc
->cfg
.termination
= termination
;
519 /* Enable manual control with low off / high on. */
520 sc
->cfg
.termination
= termination
| ADW_TERM_LVD_HI
;
523 /* Enable manual control with low on / high on. */
524 sc
->cfg
.termination
= termination
| ADW_TERM_LVD
;
528 * The EEPROM 'termination_lvd' field contains a
529 * bad value. Use automatic termination instead.
531 sc
->cfg
.termination
= termination
;
532 warn_code
|= ADW_WARN_EEPROM_TERMINATION
;
542 * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
544 * On failure return the error code.
547 AdwInitDriver(ADW_SOFTC
*sc
)
549 bus_space_tag_t iot
= sc
->sc_iot
;
550 bus_space_handle_t ioh
= sc
->sc_ioh
;
551 u_int16_t error_code
;
554 u_int16_t bios_mem
[ADW_MC_BIOSLEN
/2]; /* BIOS RISC Memory
556 u_int16_t wdtr_able
= 0, sdtr_able
, ppr_able
, tagqng_able
;
557 u_int8_t max_cmd
[ADW_MAX_TID
+ 1];
564 * Save the RISC memory BIOS region before writing the microcode.
565 * The BIOS may already be loaded and using its RISC LRAM region
566 * so its region must be saved and restored.
568 * Note: This code makes the assumption, which is currently true,
569 * that a chip reset does not clear RISC LRAM.
571 for (i
= 0; i
< ADW_MC_BIOSLEN
/2; i
++) {
572 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_BIOSMEM
+(2*i
), bios_mem
[i
]);
576 * Save current per TID negotiated values.
578 switch (sc
->chip_type
) {
579 case ADW_CHIP_ASC3550
:
580 if (bios_mem
[(ADW_MC_BIOS_SIGNATURE
-ADW_MC_BIOSMEM
)/2]==0x55AA){
582 u_int16_t bios_version
, major
, minor
;
584 bios_version
= bios_mem
[(ADW_MC_BIOS_VERSION
-
585 ADW_MC_BIOSMEM
) / 2];
586 major
= (bios_version
>> 12) & 0xF;
587 minor
= (bios_version
>> 8) & 0xF;
588 if (major
< 3 || (major
== 3 && minor
== 1)) {
590 * BIOS 3.1 and earlier location of
591 * 'wdtr_able' variable.
593 ADW_READ_WORD_LRAM(iot
, ioh
, 0x120, wdtr_able
);
595 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_WDTR_ABLE
,
601 case ADW_CHIP_ASC38C1600
:
602 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_PPR_ABLE
, ppr_able
);
604 case ADW_CHIP_ASC38C0800
:
605 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_WDTR_ABLE
, wdtr_able
);
608 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_SDTR_ABLE
, sdtr_able
);
609 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_TAGQNG_ABLE
, tagqng_able
);
610 for (tid
= 0; tid
<= ADW_MAX_TID
; tid
++) {
611 ADW_READ_BYTE_LRAM(iot
, ioh
, ADW_MC_NUMBER_OF_MAX_CMD
+ tid
,
616 * Perform a RAM Built-In Self Test
618 if((error_code
= AdwRamSelfTest(iot
, ioh
, sc
->chip_type
))) {
626 if((error_code
= AdwLoadMCode(iot
, ioh
, bios_mem
, sc
->chip_type
))) {
631 * Read microcode version and date.
633 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_VERSION_DATE
, sc
->cfg
.mcode_date
);
634 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_VERSION_NUM
, sc
->cfg
.mcode_version
);
637 * If the PCI Configuration Command Register "Parity Error Response
638 * Control" Bit was clear (0), then set the microcode variable
639 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
640 * to ignore DMA parity errors.
642 if (sc
->cfg
.control_flag
& CONTROL_FLAG_IGNORE_PERR
) {
643 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_CONTROL_FLAG
, word
);
644 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_CONTROL_FLAG
,
645 word
| CONTROL_FLAG_IGNORE_PERR
);
648 switch (sc
->chip_type
) {
649 case ADW_CHIP_ASC3550
:
651 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
652 * FIFO threshold of 128 bytes.
653 * This register is only accessible to the host.
655 ADW_WRITE_BYTE_REGISTER(iot
, ioh
, IOPB_DMA_CFG0
,
656 START_CTL_EMFU
| READ_CMD_MRM
);
659 case ADW_CHIP_ASC38C0800
:
661 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
662 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
663 * cable detection and then we are able to read C_DET[3:0].
665 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
666 * Microcode Default Value' section below.
668 ADW_WRITE_WORD_REGISTER(iot
, ioh
, IOPW_SCSI_CFG1
,
669 ADW_READ_WORD_REGISTER(iot
, ioh
, IOPW_SCSI_CFG1
)
673 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
674 * START_CTL_TH [3:2] bits for the default FIFO threshold.
676 * Note: ASC-38C0800 FIFO threshold has been changed to
679 * For DMA Errata #4 set the BC_THRESH_ENB bit.
681 ADW_WRITE_BYTE_REGISTER(iot
, ioh
, IOPB_DMA_CFG0
,
682 BC_THRESH_ENB
| FIFO_THRESH_80B
683 | START_CTL_TH
| READ_CMD_MRM
);
686 case ADW_CHIP_ASC38C1600
:
688 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
689 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
690 * cable detection and then we are able to read C_DET[3:0].
692 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
693 * Microcode Default Value' section below.
695 ADW_WRITE_WORD_REGISTER(iot
, ioh
, IOPW_SCSI_CFG1
,
696 ADW_READ_WORD_REGISTER(iot
, ioh
, IOPW_SCSI_CFG1
)
700 * If the BIOS control flag AIPP (Asynchronous Information
701 * Phase Protection) disable bit is not set, then set the
702 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
703 * enable AIPP checking and encoding.
705 if ((sc
->bios_ctrl
& BIOS_CTRL_AIPP_DIS
) == 0) {
706 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_CONTROL_FLAG
, word
);
707 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_CONTROL_FLAG
,
708 word
| CONTROL_FLAG_ENABLE_AIPP
);
712 * For ASC-38C1600 use DMA_CFG0 default values:
713 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
715 ADW_WRITE_BYTE_REGISTER(iot
, ioh
, IOPB_DMA_CFG0
,
716 FIFO_THRESH_80B
| START_CTL_TH
| READ_CMD_MRM
);
721 * Microcode operating variables for WDTR, SDTR, and command tag
722 * queuing will be set in AdvInquiryHandling() based on what a
723 * device reports it is capable of in Inquiry byte 7.
725 * If SCSI Bus Resets have been disabled, then directly set
726 * SDTR and WDTR from the EEPROM configuration. This will allow
727 * the BIOS and warm boot to work without a SCSI bus hang on
728 * the Inquiry caused by host and target mismatched DTR values.
729 * Without the SCSI Bus Reset, before an Inquiry a device can't
730 * be assumed to be in Asynchronous, Narrow mode.
732 if ((sc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) == 0) {
733 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_WDTR_ABLE
, sc
->wdtr_able
);
734 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_SDTR_ABLE
, sc
->sdtr_able
);
738 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
739 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
740 * bitmask. These values determine the maximum SDTR speed negotiated
743 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
744 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
745 * without determining here whether the device supports SDTR.
747 switch (sc
->chip_type
) {
748 case ADW_CHIP_ASC3550
:
750 for (tid
= 0; tid
<= ADW_MAX_TID
; tid
++) {
751 if (ADW_TID_TO_TIDMASK(tid
) & sc
->ultra_able
) {
752 /* Set Ultra speed for TID 'tid'. */
753 word
|= (0x3 << (4 * (tid
% 4)));
755 /* Set Fast speed for TID 'tid'. */
756 word
|= (0x2 << (4 * (tid
% 4)));
758 /* Check if done with sdtr_speed1. */
760 ADW_WRITE_WORD_LRAM(iot
, ioh
,
761 ADW_MC_SDTR_SPEED1
, word
);
763 /* Check if done with sdtr_speed2. */
764 } else if (tid
== 7) {
765 ADW_WRITE_WORD_LRAM(iot
, ioh
,
766 ADW_MC_SDTR_SPEED2
, word
);
768 /* Check if done with sdtr_speed3. */
769 } else if (tid
== 11) {
770 ADW_WRITE_WORD_LRAM(iot
, ioh
,
771 ADW_MC_SDTR_SPEED3
, word
);
773 /* Check if done with sdtr_speed4. */
774 } else if (tid
== 15) {
775 ADW_WRITE_WORD_LRAM(iot
, ioh
,
776 ADW_MC_SDTR_SPEED4
, word
);
782 * Set microcode operating variable for the
783 * disconnect per TID bitmask.
785 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_DISC_ENABLE
,
786 sc
->cfg
.disc_enable
);
789 case ADW_CHIP_ASC38C0800
:
791 case ADW_CHIP_ASC38C1600
:
792 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_DISC_ENABLE
,
793 sc
->cfg
.disc_enable
);
794 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_SDTR_SPEED1
,
796 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_SDTR_SPEED2
,
798 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_SDTR_SPEED3
,
800 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_SDTR_SPEED4
,
807 * Set SCSI_CFG0 Microcode Default Value.
809 * The microcode will set the SCSI_CFG0 register using this value
810 * after it is started below.
812 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_DEFAULT_SCSI_CFG0
,
813 ADW_PARITY_EN
| ADW_QUEUE_128
| ADW_SEL_TMO_LONG
|
814 ADW_OUR_ID_EN
| sc
->chip_scsi_id
);
817 switch(sc
->chip_type
) {
818 case ADW_CHIP_ASC3550
:
819 error_code
= AdwASC3550Cabling(iot
, ioh
, &sc
->cfg
);
822 case ADW_CHIP_ASC38C0800
:
823 error_code
= AdwASC38C0800Cabling(iot
, ioh
, &sc
->cfg
);
826 case ADW_CHIP_ASC38C1600
:
827 error_code
= AdwASC38C1600Cabling(iot
, ioh
, &sc
->cfg
);
835 * Set SEL_MASK Microcode Default Value
837 * The microcode will set the SEL_MASK register using this value
838 * after it is started below.
840 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_DEFAULT_SEL_MASK
,
841 ADW_TID_TO_TIDMASK(sc
->chip_scsi_id
));
844 * Create and Initialize Host->RISC Carrier lists
846 sc
->carr_freelist
= AdwInitCarriers(sc
->sc_dmamap_carrier
,
847 sc
->sc_control
->carriers
);
850 * Set-up the Host->RISC Initiator Command Queue (ICQ).
853 if ((sc
->icq_sp
= sc
->carr_freelist
) == NULL
) {
854 return ADW_IERR_NO_CARRIER
;
856 sc
->carr_freelist
= ADW_CARRIER_VADDR(sc
,
857 ASC_GET_CARRP(sc
->icq_sp
->next_ba
));
860 * The first command issued will be placed in the stopper carrier.
862 sc
->icq_sp
->next_ba
= htole32(ASC_CQ_STOPPER
);
865 * Set RISC ICQ physical address start value.
867 ADW_WRITE_DWORD_LRAM(iot
, ioh
, ADW_MC_ICQ
, le32toh(sc
->icq_sp
->carr_ba
));
870 * Initialize the COMMA register to the same value otherwise
871 * the RISC will prematurely detect a command is available.
873 if(sc
->chip_type
== ADW_CHIP_ASC38C1600
) {
874 ADW_WRITE_DWORD_REGISTER(iot
, ioh
, IOPDW_COMMA
,
875 le32toh(sc
->icq_sp
->carr_ba
));
879 * Set-up the RISC->Host Initiator Response Queue (IRQ).
881 if ((sc
->irq_sp
= sc
->carr_freelist
) == NULL
) {
882 return ADW_IERR_NO_CARRIER
;
884 sc
->carr_freelist
= ADW_CARRIER_VADDR(sc
,
885 ASC_GET_CARRP(sc
->irq_sp
->next_ba
));
888 * The first command completed by the RISC will be placed in
891 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
892 * completed the RISC will set the ASC_RQ_DONE bit.
894 sc
->irq_sp
->next_ba
= htole32(ASC_CQ_STOPPER
);
897 * Set RISC IRQ physical address start value.
899 ADW_WRITE_DWORD_LRAM(iot
, ioh
, ADW_MC_IRQ
, le32toh(sc
->irq_sp
->carr_ba
));
900 sc
->carr_pending_cnt
= 0;
902 ADW_WRITE_BYTE_REGISTER(iot
, ioh
, IOPB_INTR_ENABLES
,
903 (ADW_INTR_ENABLE_HOST_INTR
| ADW_INTR_ENABLE_GLOBAL_INTR
));
904 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_CODE_BEGIN_ADDR
, word
);
905 ADW_WRITE_WORD_REGISTER(iot
, ioh
, IOPW_PC
, word
);
907 /* finally, finally, gentlemen, start your engine */
908 ADW_WRITE_WORD_REGISTER(iot
, ioh
, IOPW_RISC_CSR
, ADW_RISC_CSR_RUN
);
911 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
912 * Resets should be performed. The RISC has to be running
913 * to issue a SCSI Bus Reset.
915 if (sc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
)
918 * If the BIOS Signature is present in memory, restore the
919 * BIOS Handshake Configuration Table and do not perform
922 if (bios_mem
[(ADW_MC_BIOS_SIGNATURE
- ADW_MC_BIOSMEM
)/2] ==
925 * Restore per TID negotiated values.
927 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_WDTR_ABLE
,
929 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_SDTR_ABLE
,
931 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_TAGQNG_ABLE
,
933 for (tid
= 0; tid
<= ADW_MAX_TID
; tid
++) {
934 ADW_WRITE_BYTE_LRAM(iot
, ioh
,
935 ADW_MC_NUMBER_OF_MAX_CMD
+ tid
,
939 if (AdwResetCCB(sc
) != ADW_TRUE
) {
940 error_code
= ADW_WARN_BUSRESET_ERROR
;
950 AdwRamSelfTest(bus_space_tag_t iot
, bus_space_handle_t ioh
, u_int8_t chip_type
)
956 if ((chip_type
== ADW_CHIP_ASC38C0800
) ||
957 (chip_type
== ADW_CHIP_ASC38C1600
)) {
959 * RAM BIST (RAM Built-In Self Test)
961 * Address : I/O base + offset 0x38h register (byte).
962 * Function: Bit 7-6(RW) : RAM mode
964 * Pre-test Mode : 0x40
965 * RAM Test Mode : 0x80
967 * Bit 4(RO) : Done bit
968 * Bit 3-0(RO) : Status
970 * Int_RAM Error : 0x04
975 * Note: RAM BIST code should be put right here, before loading
976 * the microcode and after saving the RISC memory BIOS region.
982 * Write PRE_TEST_MODE (0x40) to register and wait for
984 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
985 * return an error. Reset to NORMAL_MODE (0x00) and do again.
986 * If cannot reset to NORMAL_MODE, return an error too.
988 for (i
= 0; i
< 2; i
++) {
989 ADW_WRITE_BYTE_REGISTER(iot
, ioh
, IOPB_RAM_BIST
,
991 /* Wait for 10ms before reading back. */
992 AdwSleepMilliSecond(10);
993 byte
= ADW_READ_BYTE_REGISTER(iot
, ioh
, IOPB_RAM_BIST
);
994 if ((byte
& RAM_TEST_DONE
) == 0 || (byte
& 0x0F) !=
996 return ADW_IERR_BIST_PRE_TEST
;
999 ADW_WRITE_BYTE_REGISTER(iot
, ioh
, IOPB_RAM_BIST
,
1001 /* Wait for 10ms before reading back. */
1002 AdwSleepMilliSecond(10);
1003 if (ADW_READ_BYTE_REGISTER(iot
, ioh
, IOPB_RAM_BIST
)
1005 return ADW_IERR_BIST_PRE_TEST
;
1010 * LRAM Test - It takes about 1.5 ms to run through the test.
1012 * Write RAM_TEST_MODE (0x80) to register and wait for
1014 * If Done bit not set or Status not 0, save register byte,
1015 * set the err_code, and return an error.
1017 ADW_WRITE_BYTE_REGISTER(iot
, ioh
, IOPB_RAM_BIST
, RAM_TEST_MODE
);
1018 /* Wait for 10ms before checking status. */
1019 AdwSleepMilliSecond(10);
1021 byte
= ADW_READ_BYTE_REGISTER(iot
, ioh
, IOPB_RAM_BIST
);
1022 if ((byte
& RAM_TEST_DONE
)==0 || (byte
& RAM_TEST_STATUS
)!=0) {
1023 /* Get here if Done bit not set or Status not 0. */
1024 return ADW_IERR_BIST_RAM_TEST
;
1027 /* We need to reset back to normal mode after LRAM test passes*/
1028 ADW_WRITE_BYTE_REGISTER(iot
, ioh
, IOPB_RAM_BIST
, NORMAL_MODE
);
1036 AdwLoadMCode(bus_space_tag_t iot
, bus_space_handle_t ioh
, u_int16_t
*bios_mem
, u_int8_t chip_type
)
1038 const u_int8_t
*mcode_data
;
1039 u_int32_t mcode_chksum
;
1040 u_int16_t mcode_size
;
1047 int adw_mcode_expanded_size
;
1052 case ADW_CHIP_ASC3550
:
1053 mcode_data
= (const u_int8_t
*)adw_asc3550_mcode_data
.mcode_data
;
1054 mcode_chksum
= (u_int32_t
)adw_asc3550_mcode_data
.mcode_chksum
;
1055 mcode_size
= (u_int16_t
)adw_asc3550_mcode_data
.mcode_size
;
1056 adw_memsize
= ADW_3550_MEMSIZE
;
1059 case ADW_CHIP_ASC38C0800
:
1060 mcode_data
= (const u_int8_t
*)adw_asc38C0800_mcode_data
.mcode_data
;
1061 mcode_chksum
=(u_int32_t
)adw_asc38C0800_mcode_data
.mcode_chksum
;
1062 mcode_size
= (u_int16_t
)adw_asc38C0800_mcode_data
.mcode_size
;
1063 adw_memsize
= ADW_38C0800_MEMSIZE
;
1066 case ADW_CHIP_ASC38C1600
:
1067 mcode_data
= (const u_int8_t
*)adw_asc38C1600_mcode_data
.mcode_data
;
1068 mcode_chksum
=(u_int32_t
)adw_asc38C1600_mcode_data
.mcode_chksum
;
1069 mcode_size
= (u_int16_t
)adw_asc38C1600_mcode_data
.mcode_size
;
1070 adw_memsize
= ADW_38C1600_MEMSIZE
;
1078 * Write the microcode image to RISC memory starting at address 0.
1080 ADW_WRITE_WORD_REGISTER(iot
, ioh
, IOPW_RAM_ADDR
, 0);
1082 /* Assume the following compressed format of the microcode buffer:
1084 * 254 word (508 byte) table indexed by byte code followed
1085 * by the following byte codes:
1088 * 00: Emit word 0 in table.
1089 * 01: Emit word 1 in table.
1091 * FD: Emit word 253 in table.
1094 * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
1095 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
1098 for (i
= 253 * 2; i
< mcode_size
; i
++) {
1099 if (mcode_data
[i
] == 0xff) {
1100 for (j
= 0; j
< mcode_data
[i
+ 1]; j
++) {
1101 ADW_WRITE_WORD_AUTO_INC_LRAM(iot
, ioh
,
1102 (((u_int16_t
)mcode_data
[i
+ 3] << 8) |
1103 mcode_data
[i
+ 2]));
1107 } else if (mcode_data
[i
] == 0xfe) {
1108 ADW_WRITE_WORD_AUTO_INC_LRAM(iot
, ioh
,
1109 (((u_int16_t
)mcode_data
[i
+ 2] << 8) |
1110 mcode_data
[i
+ 1]));
1114 ADW_WRITE_WORD_AUTO_INC_LRAM(iot
, ioh
, (((u_int16_t
)
1115 mcode_data
[(mcode_data
[i
] * 2) + 1] <<8) |
1116 mcode_data
[mcode_data
[i
] * 2]));
1122 * Set 'word' for later use to clear the rest of memory and save
1123 * the expanded mcode size.
1126 adw_mcode_expanded_size
= word
;
1129 * Clear the rest of the Internal RAM.
1131 for (; word
< adw_memsize
; word
+= 2) {
1132 ADW_WRITE_WORD_AUTO_INC_LRAM(iot
, ioh
, 0);
1136 * Verify the microcode checksum.
1139 ADW_WRITE_WORD_REGISTER(iot
, ioh
, IOPW_RAM_ADDR
, 0);
1141 for (word
= 0; word
< adw_mcode_expanded_size
; word
+= 2) {
1142 sum
+= ADW_READ_WORD_AUTO_INC_LRAM(iot
, ioh
);
1145 if (sum
!= mcode_chksum
) {
1146 return ADW_IERR_MCODE_CHKSUM
;
1150 * Restore the RISC memory BIOS region.
1152 for (i
= 0; i
< ADW_MC_BIOSLEN
/2; i
++) {
1153 if(chip_type
== ADW_CHIP_ASC3550
) {
1154 ADW_WRITE_BYTE_LRAM(iot
, ioh
, ADW_MC_BIOSMEM
+ (2 * i
),
1157 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_BIOSMEM
+ (2 * i
),
1163 * Calculate and write the microcode code checksum to the microcode
1164 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
1166 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_CODE_BEGIN_ADDR
, begin_addr
);
1167 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_CODE_END_ADDR
, end_addr
);
1169 ADW_WRITE_WORD_REGISTER(iot
, ioh
, IOPW_RAM_ADDR
, begin_addr
);
1170 for (word
= begin_addr
; word
< end_addr
; word
+= 2) {
1171 code_sum
+= ADW_READ_WORD_AUTO_INC_LRAM(iot
, ioh
);
1173 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_CODE_CHK_SUM
, code_sum
);
1176 * Set the chip type.
1178 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_CHIP_TYPE
, chip_type
);
1185 AdwASC3550Cabling(bus_space_tag_t iot
, bus_space_handle_t ioh
, ADW_DVC_CFG
*cfg
)
1187 u_int16_t scsi_cfg1
;
1191 * Determine SCSI_CFG1 Microcode Default Value.
1193 * The microcode will set the SCSI_CFG1 register using this value
1194 * after it is started below.
1197 /* Read current SCSI_CFG1 Register value. */
1198 scsi_cfg1
= ADW_READ_WORD_REGISTER(iot
, ioh
, IOPW_SCSI_CFG1
);
1201 * If all three connectors are in use in ASC3550, return an error.
1203 if ((scsi_cfg1
& CABLE_ILLEGAL_A
) == 0 ||
1204 (scsi_cfg1
& CABLE_ILLEGAL_B
) == 0) {
1205 return ADW_IERR_ILLEGAL_CONNECTION
;
1209 * If the cable is reversed all of the SCSI_CTRL register signals
1210 * will be set. Check for and return an error if this condition is
1213 if ((ADW_READ_WORD_REGISTER(iot
,ioh
, IOPW_SCSI_CTRL
) & 0x3F07)==0x3F07){
1214 return ADW_IERR_REVERSED_CABLE
;
1218 * If this is a differential board and a single-ended device
1219 * is attached to one of the connectors, return an error.
1221 if ((scsi_cfg1
& ADW_DIFF_MODE
) &&
1222 (scsi_cfg1
& ADW_DIFF_SENSE
) == 0) {
1223 return ADW_IERR_SINGLE_END_DEVICE
;
1227 * If automatic termination control is enabled, then set the
1228 * termination value based on a table listed in a_condor.h.
1230 * If manual termination was specified with an EEPROM setting
1231 * then 'termination' was set-up in AdwInitFromEEPROM() and
1232 * is ready to be 'ored' into SCSI_CFG1.
1234 if (cfg
->termination
== 0) {
1236 * The software always controls termination by setting
1238 * If TERM_CTL_SEL were set to 0, the hardware would set
1241 cfg
->termination
|= ADW_TERM_CTL_SEL
;
1243 switch(scsi_cfg1
& ADW_CABLE_DETECT
) {
1244 /* TERM_CTL_H: on, TERM_CTL_L: on */
1245 case 0x3: case 0x7: case 0xB:
1246 case 0xD: case 0xE: case 0xF:
1248 (ADW_TERM_CTL_H
| ADW_TERM_CTL_L
);
1251 /* TERM_CTL_H: on, TERM_CTL_L: off */
1252 case 0x1: case 0x5: case 0x9:
1254 cfg
->termination
|= ADW_TERM_CTL_H
;
1257 /* TERM_CTL_H: off, TERM_CTL_L: off */
1264 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
1266 scsi_cfg1
&= ~ADW_TERM_CTL
;
1269 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
1270 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
1271 * referenced, because the hardware internally inverts
1272 * the Termination High and Low bits if TERM_POL is set.
1274 scsi_cfg1
|= (ADW_TERM_CTL_SEL
| (~cfg
->termination
& ADW_TERM_CTL
));
1277 * Set SCSI_CFG1 Microcode Default Value
1279 * Set filter value and possibly modified termination control
1280 * bits in the Microcode SCSI_CFG1 Register Value.
1282 * The microcode will set the SCSI_CFG1 register using this value
1283 * after it is started below.
1285 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_DEFAULT_SCSI_CFG1
,
1286 ADW_FLTR_DISABLE
| scsi_cfg1
);
1289 * Set MEM_CFG Microcode Default Value
1291 * The microcode will set the MEM_CFG register using this value
1292 * after it is started below.
1294 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1297 * ASC-3550 has 8KB internal memory.
1299 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_DEFAULT_MEM_CFG
,
1300 ADW_BIOS_EN
| ADW_RAM_SZ_8KB
);
1307 AdwASC38C0800Cabling(bus_space_tag_t iot
, bus_space_handle_t ioh
, ADW_DVC_CFG
*cfg
)
1309 u_int16_t scsi_cfg1
;
1313 * Determine SCSI_CFG1 Microcode Default Value.
1315 * The microcode will set the SCSI_CFG1 register using this value
1316 * after it is started below.
1319 /* Read current SCSI_CFG1 Register value. */
1320 scsi_cfg1
= ADW_READ_WORD_REGISTER(iot
, ioh
, IOPW_SCSI_CFG1
);
1323 * If the cable is reversed all of the SCSI_CTRL register signals
1324 * will be set. Check for and return an error if this condition is
1327 if ((ADW_READ_WORD_REGISTER(iot
,ioh
, IOPW_SCSI_CTRL
) & 0x3F07)==0x3F07){
1328 return ADW_IERR_REVERSED_CABLE
;
1332 * All kind of combinations of devices attached to one of four
1333 * connectors are acceptable except HVD device attached.
1334 * For example, LVD device can be attached to SE connector while
1335 * SE device attached to LVD connector.
1336 * If LVD device attached to SE connector, it only runs up to
1339 * If an HVD device is attached to one of LVD connectors, return
1341 * However, there is no way to detect HVD device attached to
1344 if (scsi_cfg1
& ADW_HVD
) {
1345 return ADW_IERR_HVD_DEVICE
;
1349 * If either SE or LVD automatic termination control is enabled, then
1350 * set the termination value based on a table listed in a_condor.h.
1352 * If manual termination was specified with an EEPROM setting then
1353 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
1354 * to be 'ored' into SCSI_CFG1.
1356 if ((cfg
->termination
& ADW_TERM_SE
) == 0) {
1357 /* SE automatic termination control is enabled. */
1358 switch(scsi_cfg1
& ADW_C_DET_SE
) {
1359 /* TERM_SE_HI: on, TERM_SE_LO: on */
1360 case 0x1: case 0x2: case 0x3:
1361 cfg
->termination
|= ADW_TERM_SE
;
1364 /* TERM_SE_HI: on, TERM_SE_LO: off */
1366 cfg
->termination
|= ADW_TERM_SE_HI
;
1371 if ((cfg
->termination
& ADW_TERM_LVD
) == 0) {
1372 /* LVD automatic termination control is enabled. */
1373 switch(scsi_cfg1
& ADW_C_DET_LVD
) {
1374 /* TERM_LVD_HI: on, TERM_LVD_LO: on */
1375 case 0x4: case 0x8: case 0xC:
1376 cfg
->termination
|= ADW_TERM_LVD
;
1379 /* TERM_LVD_HI: off, TERM_LVD_LO: off */
1386 * Clear any set TERM_SE and TERM_LVD bits.
1388 scsi_cfg1
&= (~ADW_TERM_SE
& ~ADW_TERM_LVD
);
1391 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
1393 scsi_cfg1
|= (~cfg
->termination
& 0xF0);
1396 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
1397 * HVD/LVD/SE bits and set possibly modified termination control bits
1398 * in the Microcode SCSI_CFG1 Register Value.
1400 scsi_cfg1
&= (~ADW_BIG_ENDIAN
& ~ADW_DIS_TERM_DRV
&
1401 ~ADW_TERM_POL
& ~ADW_HVD_LVD_SE
);
1404 * Set SCSI_CFG1 Microcode Default Value
1406 * Set possibly modified termination control and reset DIS_TERM_DRV
1407 * bits in the Microcode SCSI_CFG1 Register Value.
1409 * The microcode will set the SCSI_CFG1 register using this value
1410 * after it is started below.
1412 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_DEFAULT_SCSI_CFG1
, scsi_cfg1
);
1415 * Set MEM_CFG Microcode Default Value
1417 * The microcode will set the MEM_CFG register using this value
1418 * after it is started below.
1420 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1423 * ASC-38C0800 has 16KB internal memory.
1425 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_DEFAULT_MEM_CFG
,
1426 ADW_BIOS_EN
| ADW_RAM_SZ_16KB
);
1433 AdwASC38C1600Cabling(bus_space_tag_t iot
, bus_space_handle_t ioh
, ADW_DVC_CFG
*cfg
)
1435 u_int16_t scsi_cfg1
;
1439 * Determine SCSI_CFG1 Microcode Default Value.
1441 * The microcode will set the SCSI_CFG1 register using this value
1442 * after it is started below.
1443 * Each ASC-38C1600 function has only two cable detect bits.
1444 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
1447 /* Read current SCSI_CFG1 Register value. */
1448 scsi_cfg1
= ADW_READ_WORD_REGISTER(iot
, ioh
, IOPW_SCSI_CFG1
);
1451 * If the cable is reversed all of the SCSI_CTRL register signals
1452 * will be set. Check for and return an error if this condition is
1455 if ((ADW_READ_WORD_REGISTER(iot
,ioh
, IOPW_SCSI_CTRL
) & 0x3F07)==0x3F07){
1456 return ADW_IERR_REVERSED_CABLE
;
1460 * Each ASC-38C1600 function has two connectors. Only an HVD device
1461 * cannot be connected to either connector. An LVD device or SE device
1462 * may be connected to either connector. If an SE device is connected,
1463 * then at most Ultra speed (20 MHz) can be used on both connectors.
1465 * If an HVD device is attached, return an error.
1467 if (scsi_cfg1
& ADW_HVD
) {
1468 return ADW_IERR_HVD_DEVICE
;
1472 * Each function in the ASC-38C1600 uses only the SE cable detect and
1473 * termination because there are two connectors for each function.
1474 * Each function may use either LVD or SE mode.
1475 * Corresponding the SE automatic termination control EEPROM bits are
1476 * used for each function.
1477 * Each function has its own EEPROM. If SE automatic control is enabled
1478 * for the function, then set the termination value based on a table
1479 * listed in adwlib.h.
1481 * If manual termination is specified in the EEPROM for the function,
1482 * then 'termination' was set-up in AdwInitFromEEPROM() and is
1483 * ready to be 'ored' into SCSI_CFG1.
1485 if ((cfg
->termination
& ADW_TERM_SE
) == 0) {
1486 /* SE automatic termination control is enabled. */
1487 switch(scsi_cfg1
& ADW_C_DET_SE
) {
1488 /* TERM_SE_HI: on, TERM_SE_LO: on */
1489 case 0x1: case 0x2: case 0x3:
1490 cfg
->termination
|= ADW_TERM_SE
;
1496 if (ASC_PCI_ID2FUNC(cfg
->pci_slot_info
) == 0) {
1497 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
1502 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
1503 cfg
->termination
|= ADW_TERM_SE_HI
;
1510 * Clear any set TERM_SE bits.
1512 scsi_cfg1
&= ~ADW_TERM_SE
;
1515 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
1517 scsi_cfg1
|= (~cfg
->termination
& ADW_TERM_SE
);
1520 * Clear Big Endian and Terminator Polarity bits and set possibly
1521 * modified termination control bits in the Microcode SCSI_CFG1
1524 scsi_cfg1
&= (~ADW_BIG_ENDIAN
& ~ADW_DIS_TERM_DRV
& ~ADW_TERM_POL
);
1527 * Set SCSI_CFG1 Microcode Default Value
1529 * Set possibly modified termination control bits in the Microcode
1530 * SCSI_CFG1 Register Value.
1532 * The microcode will set the SCSI_CFG1 register using this value
1533 * after it is started below.
1535 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_DEFAULT_SCSI_CFG1
, scsi_cfg1
);
1538 * Set MEM_CFG Microcode Default Value
1540 * The microcode will set the MEM_CFG register using this value
1541 * after it is started below.
1543 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1546 * ASC-38C1600 has 32KB internal memory.
1548 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_DEFAULT_MEM_CFG
,
1549 ADW_BIOS_EN
| ADW_RAM_SZ_32KB
);
1556 * Read EEPROM configuration into the specified buffer.
1558 * Return a checksum based on the EEPROM configuration read.
1561 AdwGetEEPROMConfig(bus_space_tag_t iot
, bus_space_handle_t ioh
, ADW_EEPROM
*cfg_buf
)
1563 u_int16_t wval
, chksum
;
1568 wbuf
= (u_int16_t
*) cfg_buf
;
1571 for (eep_addr
= ASC_EEP_DVC_CFG_BEGIN
;
1572 eep_addr
< ASC_EEP_DVC_CFG_END
;
1573 eep_addr
++, wbuf
++) {
1574 wval
= AdwReadEEPWord(iot
, ioh
, eep_addr
);
1579 *wbuf
= AdwReadEEPWord(iot
, ioh
, eep_addr
);
1581 for (eep_addr
= ASC_EEP_DVC_CTL_BEGIN
;
1582 eep_addr
< ASC_EEP_MAX_WORD_ADDR
;
1583 eep_addr
++, wbuf
++) {
1584 *wbuf
= AdwReadEEPWord(iot
, ioh
, eep_addr
);
1592 * Read the EEPROM from specified location
1595 AdwReadEEPWord(bus_space_tag_t iot
, bus_space_handle_t ioh
, int eep_word_addr
)
1597 ADW_WRITE_WORD_REGISTER(iot
, ioh
, IOPW_EE_CMD
,
1598 ASC_EEP_CMD_READ
| eep_word_addr
);
1599 AdwWaitEEPCmd(iot
, ioh
);
1601 return ADW_READ_WORD_REGISTER(iot
, ioh
, IOPW_EE_DATA
);
1606 * Wait for EEPROM command to complete
1609 AdwWaitEEPCmd(bus_space_tag_t iot
, bus_space_handle_t ioh
)
1614 for (eep_delay_ms
= 0; eep_delay_ms
< ASC_EEP_DELAY_MS
; eep_delay_ms
++){
1615 if (ADW_READ_WORD_REGISTER(iot
, ioh
, IOPW_EE_CMD
) &
1619 AdwSleepMilliSecond(1);
1622 (void)ADW_READ_WORD_REGISTER(iot
, ioh
, IOPW_EE_CMD
);
1627 * Write the EEPROM from 'cfg_buf'.
1630 AdwSetEEPROMConfig(bus_space_tag_t iot
, bus_space_handle_t ioh
, ADW_EEPROM
*cfg_buf
)
1633 u_int16_t addr
, chksum
;
1636 wbuf
= (u_int16_t
*) cfg_buf
;
1639 ADW_WRITE_WORD_REGISTER(iot
, ioh
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_ABLE
);
1640 AdwWaitEEPCmd(iot
, ioh
);
1643 * Write EEPROM from word 0 to word 20
1645 for (addr
= ASC_EEP_DVC_CFG_BEGIN
;
1646 addr
< ASC_EEP_DVC_CFG_END
; addr
++, wbuf
++) {
1648 ADW_WRITE_WORD_REGISTER(iot
, ioh
, IOPW_EE_DATA
, *wbuf
);
1649 ADW_WRITE_WORD_REGISTER(iot
, ioh
, IOPW_EE_CMD
,
1650 ASC_EEP_CMD_WRITE
| addr
);
1651 AdwWaitEEPCmd(iot
, ioh
);
1652 AdwSleepMilliSecond(ASC_EEP_DELAY_MS
);
1656 * Write EEPROM checksum at word 21
1658 ADW_WRITE_WORD_REGISTER(iot
, ioh
, IOPW_EE_DATA
, chksum
);
1659 ADW_WRITE_WORD_REGISTER(iot
, ioh
, IOPW_EE_CMD
,
1660 ASC_EEP_CMD_WRITE
| addr
);
1661 AdwWaitEEPCmd(iot
, ioh
);
1662 wbuf
++; /* skip over check_sum */
1665 * Write EEPROM OEM name at words 22 to 29
1667 for (addr
= ASC_EEP_DVC_CTL_BEGIN
;
1668 addr
< ASC_EEP_MAX_WORD_ADDR
; addr
++, wbuf
++) {
1669 ADW_WRITE_WORD_REGISTER(iot
, ioh
, IOPW_EE_DATA
, *wbuf
);
1670 ADW_WRITE_WORD_REGISTER(iot
, ioh
, IOPW_EE_CMD
,
1671 ASC_EEP_CMD_WRITE
| addr
);
1672 AdwWaitEEPCmd(iot
, ioh
);
1675 ADW_WRITE_WORD_REGISTER(iot
, ioh
, IOPW_EE_CMD
,
1676 ASC_EEP_CMD_WRITE_DISABLE
);
1677 AdwWaitEEPCmd(iot
, ioh
);
1684 * AdwExeScsiQueue() - Send a request to the RISC microcode program.
1686 * Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
1687 * add the carrier to the ICQ (Initiator Command Queue), and tickle the
1688 * RISC to notify it a new command is ready to be executed.
1690 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
1691 * set to SCSI_MAX_RETRY.
1694 * ADW_SUCCESS(1) - The request was successfully queued.
1695 * ADW_BUSY(0) - Resource unavailable; Retry again after pending
1696 * request completes.
1697 * ADW_ERROR(-1) - Invalid ADW_SCSI_REQ_Q request structure
1701 AdwExeScsiQueue(ADW_SOFTC
*sc
, ADW_SCSI_REQ_Q
*scsiq
)
1703 bus_space_tag_t iot
= sc
->sc_iot
;
1704 bus_space_handle_t ioh
= sc
->sc_ioh
;
1706 u_int32_t req_paddr
;
1707 ADW_CARRIER
*new_carrp
;
1710 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
1712 if (scsiq
->target_id
> ADW_MAX_TID
) {
1713 scsiq
->host_status
= QHSTA_M_INVALID_DEVICE
;
1714 scsiq
->done_status
= QD_WITH_ERROR
;
1719 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
1722 ccb
= adw_ccb_phys_kv(sc
, scsiq
->ccb_ptr
);
1725 * Allocate a carrier and initialize fields.
1727 if ((new_carrp
= sc
->carr_freelist
) == NULL
) {
1730 sc
->carr_freelist
= ADW_CARRIER_VADDR(sc
,
1731 ASC_GET_CARRP(new_carrp
->next_ba
));
1732 sc
->carr_pending_cnt
++;
1735 * Set the carrier to be a stopper by setting 'next_ba'
1736 * to the stopper value. The current stopper will be changed
1737 * below to point to the new stopper.
1739 new_carrp
->next_ba
= htole32(ASC_CQ_STOPPER
);
1741 req_paddr
= sc
->sc_dmamap_control
->dm_segs
[0].ds_addr
+
1742 ADW_CCB_OFF(ccb
) + offsetof(struct adw_ccb
, scsiq
);
1744 /* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
1745 scsiq
->scsiq_rptr
= htole32(req_paddr
);
1748 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
1749 * order during initialization.
1751 scsiq
->carr_ba
= sc
->icq_sp
->carr_ba
;
1752 scsiq
->carr_va
= sc
->icq_sp
->carr_ba
;
1755 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
1756 * the microcode. The newly allocated stopper will become the new
1759 sc
->icq_sp
->areq_ba
= htole32(req_paddr
);
1762 * Set the 'next_ba' pointer for the old stopper to be the
1763 * physical address of the new stopper. The RISC can only
1764 * follow physical addresses.
1766 sc
->icq_sp
->next_ba
= new_carrp
->carr_ba
;
1769 printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
1770 sc
->icq_sp
->carr_id
,
1771 sc
->icq_sp
->carr_ba
,
1772 sc
->icq_sp
->areq_ba
,
1773 sc
->icq_sp
->next_ba
);
1776 * Set the host adapter stopper pointer to point to the new carrier.
1778 sc
->icq_sp
= new_carrp
;
1780 if (sc
->chip_type
== ADW_CHIP_ASC3550
||
1781 sc
->chip_type
== ADW_CHIP_ASC38C0800
) {
1783 * Tickle the RISC to tell it to read its Command Queue Head
1786 ADW_WRITE_BYTE_REGISTER(iot
, ioh
, IOPB_TICKLE
, ADW_TICKLE_A
);
1787 if (sc
->chip_type
== ADW_CHIP_ASC3550
) {
1789 * Clear the tickle value. In the ASC-3550 the RISC flag
1790 * command 'clr_tickle_a' does not work unless the host
1793 ADW_WRITE_BYTE_REGISTER(iot
, ioh
, IOPB_TICKLE
,
1796 } else if (sc
->chip_type
== ADW_CHIP_ASC38C1600
) {
1798 * Notify the RISC a carrier is ready by writing the physical
1799 * address of the new carrier stopper to the COMMA register.
1801 ADW_WRITE_DWORD_REGISTER(iot
, ioh
, IOPDW_COMMA
,
1802 le32toh(new_carrp
->carr_ba
));
1806 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
1814 AdwResetChip(bus_space_tag_t iot
, bus_space_handle_t ioh
)
1820 ADW_WRITE_WORD_REGISTER(iot
, ioh
, IOPW_CTRL_REG
,
1821 ADW_CTRL_REG_CMD_RESET
);
1822 AdwSleepMilliSecond(100);
1823 ADW_WRITE_WORD_REGISTER(iot
, ioh
, IOPW_CTRL_REG
,
1824 ADW_CTRL_REG_CMD_WR_IO_REG
);
1829 * Reset SCSI Bus and purge all outstanding requests.
1832 * ADW_TRUE(1) - All requests are purged and SCSI Bus is reset.
1833 * ADW_FALSE(0) - Microcode command failed.
1834 * ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
1835 * may be hung which requires driver recovery.
1838 AdwResetCCB(ADW_SOFTC
*sc
)
1843 * Send the SCSI Bus Reset idle start idle command which asserts
1844 * the SCSI Bus Reset signal.
1846 status
= AdwSendIdleCmd(sc
, (u_int16_t
) IDLE_CMD_SCSI_RESET_START
, 0L);
1847 if (status
!= ADW_TRUE
) {
1852 * Delay for the specified SCSI Bus Reset hold time.
1854 * The hold time delay is done on the host because the RISC has no
1855 * microsecond accurate timer.
1857 AdwDelayMicroSecond((u_int16_t
) ASC_SCSI_RESET_HOLD_TIME_US
);
1860 * Send the SCSI Bus Reset end idle command which de-asserts
1861 * the SCSI Bus Reset signal and purges any pending requests.
1863 status
= AdwSendIdleCmd(sc
, (u_int16_t
) IDLE_CMD_SCSI_RESET_END
, 0L);
1864 if (status
!= ADW_TRUE
) {
1868 AdwSleepMilliSecond((u_int32_t
) sc
->scsi_reset_wait
* 1000);
1875 * Reset chip and SCSI Bus.
1878 * ADW_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
1879 * ADW_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
1882 AdwResetSCSIBus(ADW_SOFTC
*sc
)
1884 bus_space_tag_t iot
= sc
->sc_iot
;
1885 bus_space_handle_t ioh
= sc
->sc_ioh
;
1887 u_int16_t wdtr_able
, sdtr_able
, tagqng_able
;
1888 u_int16_t ppr_able
= 0; /* XXX: gcc */
1889 u_int8_t tid
, max_cmd
[ADW_MAX_TID
+ 1];
1894 * Save current per TID negotiated values.
1896 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_WDTR_ABLE
, wdtr_able
);
1897 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_SDTR_ABLE
, sdtr_able
);
1898 if (sc
->chip_type
== ADW_CHIP_ASC38C1600
) {
1899 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_PPR_ABLE
, ppr_able
);
1901 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_TAGQNG_ABLE
, tagqng_able
);
1902 for (tid
= 0; tid
<= ADW_MAX_TID
; tid
++) {
1903 ADW_READ_BYTE_LRAM(iot
, ioh
, ADW_MC_NUMBER_OF_MAX_CMD
+ tid
,
1908 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
1909 * by clearing the BIOS signature word.
1910 * The initialization functions assumes a SCSI Bus Reset is not
1911 * needed if the BIOS signature word is present.
1913 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_BIOS_SIGNATURE
, bios_sig
);
1914 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_BIOS_SIGNATURE
, 0);
1917 * Stop chip and reset it.
1919 ADW_WRITE_WORD_REGISTER(iot
, ioh
, IOPW_RISC_CSR
, ADW_RISC_CSR_STOP
);
1920 ADW_WRITE_WORD_REGISTER(iot
, ioh
, IOPW_CTRL_REG
,
1921 ADW_CTRL_REG_CMD_RESET
);
1922 AdwSleepMilliSecond(100);
1923 ADW_WRITE_WORD_REGISTER(iot
, ioh
, IOPW_CTRL_REG
,
1924 ADW_CTRL_REG_CMD_WR_IO_REG
);
1927 * Reset Adv Library error code, if any, and try
1928 * re-initializing the chip.
1929 * Then translate initialization return value to status value.
1931 status
= (AdwInitDriver(sc
) == 0)? ADW_TRUE
: ADW_FALSE
;
1934 * Restore the BIOS signature word.
1936 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_BIOS_SIGNATURE
, bios_sig
);
1939 * Restore per TID negotiated values.
1941 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_WDTR_ABLE
, wdtr_able
);
1942 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_SDTR_ABLE
, sdtr_able
);
1943 if (sc
->chip_type
== ADW_CHIP_ASC38C1600
) {
1944 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_PPR_ABLE
, ppr_able
);
1946 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_TAGQNG_ABLE
, tagqng_able
);
1947 for (tid
= 0; tid
<= ADW_MAX_TID
; tid
++) {
1948 ADW_WRITE_BYTE_LRAM(iot
, ioh
, ADW_MC_NUMBER_OF_MAX_CMD
+ tid
,
1957 * Adv Library Interrupt Service Routine
1959 * This function is called by a driver's interrupt service routine.
1960 * The function disables and re-enables interrupts.
1962 * When a microcode idle command is completed, the ADV_DVC_VAR
1963 * 'idle_cmd_done' field is set to ADW_TRUE.
1965 * Note: AdwISR() can be called when interrupts are disabled or even
1966 * when there is no hardware interrupt condition present. It will
1967 * always check for completed idle commands and microcode requests.
1968 * This is an important feature that shouldn't be changed because it
1969 * allows commands to be completed from polling mode loops.
1972 * ADW_TRUE(1) - interrupt was pending
1973 * ADW_FALSE(0) - no interrupt was pending
1976 AdwISR(ADW_SOFTC
*sc
)
1978 bus_space_tag_t iot
= sc
->sc_iot
;
1979 bus_space_handle_t ioh
= sc
->sc_ioh
;
1981 ADW_CARRIER
*free_carrp
/*, *ccb_carr*/;
1982 u_int32_t irq_next_pa
;
1983 ADW_SCSI_REQ_Q
*scsiq
;
1990 /* Reading the register clears the interrupt. */
1991 int_stat
= ADW_READ_BYTE_REGISTER(iot
, ioh
, IOPB_INTR_STATUS_REG
);
1993 if ((int_stat
& (ADW_INTR_STATUS_INTRA
| ADW_INTR_STATUS_INTRB
|
1994 ADW_INTR_STATUS_INTRC
)) == 0) {
2000 * Notify the driver of an asynchronous microcode condition by
2001 * calling the ADV_DVC_VAR.async_callback function. The function
2002 * is passed the microcode ADW_MC_INTRB_CODE byte value.
2004 if (int_stat
& ADW_INTR_STATUS_INTRB
) {
2005 u_int8_t intrb_code
;
2007 ADW_READ_BYTE_LRAM(iot
, ioh
, ADW_MC_INTRB_CODE
, intrb_code
);
2009 if (sc
->chip_type
== ADW_CHIP_ASC3550
||
2010 sc
->chip_type
== ADW_CHIP_ASC38C0800
) {
2011 if (intrb_code
== ADV_ASYNC_CARRIER_READY_FAILURE
&&
2012 sc
->carr_pending_cnt
!= 0) {
2013 ADW_WRITE_BYTE_REGISTER(iot
, ioh
,
2014 IOPB_TICKLE
, ADW_TICKLE_A
);
2015 if (sc
->chip_type
== ADW_CHIP_ASC3550
) {
2016 ADW_WRITE_BYTE_REGISTER(iot
, ioh
,
2017 IOPB_TICKLE
, ADW_TICKLE_NOP
);
2022 if (sc
->async_callback
!= 0) {
2023 (*(ADW_ASYNC_CALLBACK
)sc
->async_callback
)(sc
, intrb_code
);
2028 * Check if the IRQ stopper carrier contains a completed request.
2030 while (((le32toh(irq_next_pa
= sc
->irq_sp
->next_ba
)) & ASC_RQ_DONE
) != 0)
2033 printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
2034 sc
->irq_sp
->carr_id
,
2035 sc
->irq_sp
->carr_ba
,
2036 sc
->irq_sp
->areq_ba
,
2037 sc
->irq_sp
->next_ba
);
2040 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
2042 * The RISC will have set 'areq_ba' to a virtual address.
2044 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
2045 * field to the carrier ADV_CARR_T.areq_ba field.
2046 * The conversion below complements the conversion of
2047 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
2049 ccb
= adw_ccb_phys_kv(sc
, sc
->irq_sp
->areq_ba
);
2050 scsiq
= &ccb
->scsiq
;
2051 scsiq
->ccb_ptr
= sc
->irq_sp
->areq_ba
;
2054 * Request finished with good status and the queue was not
2055 * DMAed to host memory by the firmware. Set all status fields
2056 * to indicate good status.
2058 if ((le32toh(irq_next_pa
) & ASC_RQ_GOOD
) != 0) {
2059 scsiq
->done_status
= QD_NO_ERROR
;
2060 scsiq
->host_status
= scsiq
->scsi_status
= 0;
2061 scsiq
->data_cnt
= 0L;
2065 * Advance the stopper pointer to the next carrier
2066 * ignoring the lower four bits. Free the previous
2069 free_carrp
= sc
->irq_sp
;
2070 sc
->irq_sp
= ADW_CARRIER_VADDR(sc
, ASC_GET_CARRP(irq_next_pa
));
2072 free_carrp
->next_ba
= (sc
->carr_freelist
== NULL
) ? 0
2073 : sc
->carr_freelist
->carr_ba
;
2074 sc
->carr_freelist
= free_carrp
;
2075 sc
->carr_pending_cnt
--;
2078 * Clear request microcode control flag.
2083 * Check Condition handling
2086 * If the command that completed was a SCSI INQUIRY and
2087 * LUN 0 was sent the command, then process the INQUIRY
2088 * command information for the device.
2090 if (scsiq
->done_status
== QD_NO_ERROR
&&
2091 scsiq
->cdb
[0] == INQUIRY
&&
2092 scsiq
->target_lun
== 0) {
2093 AdwInquiryHandling(sc
, scsiq
);
2097 * Notify the driver of the completed request by passing
2098 * the ADW_SCSI_REQ_Q pointer to its callback function.
2100 (*(ADW_ISR_CALLBACK
)sc
->isr_callback
)(sc
, scsiq
);
2102 * Note: After the driver callback function is called, 'scsiq'
2103 * can no longer be referenced.
2105 * Fall through and continue processing other completed
2117 * Send an idle command to the chip and wait for completion.
2119 * Command completion is polled for once per microsecond.
2121 * The function can be called from anywhere including an interrupt handler.
2122 * But the function is not re-entrant, so it uses the splbio/splx()
2123 * functions to prevent reentrancy.
2126 * ADW_TRUE - command completed successfully
2127 * ADW_FALSE - command failed
2128 * ADW_ERROR - command timed out
2131 AdwSendIdleCmd(ADW_SOFTC
*sc
, u_int16_t idle_cmd
, u_int32_t idle_cmd_parameter
)
2133 bus_space_tag_t iot
= sc
->sc_iot
;
2134 bus_space_handle_t ioh
= sc
->sc_ioh
;
2141 * Clear the idle command status which is set by the microcode
2142 * to a non-zero value to indicate when the command is completed.
2144 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_IDLE_CMD_STATUS
, (u_int16_t
) 0);
2147 * Write the idle command value after the idle command parameter
2148 * has been written to avoid a race condition. If the order is not
2149 * followed, the microcode may process the idle command before the
2150 * parameters have been written to LRAM.
2152 ADW_WRITE_DWORD_LRAM(iot
, ioh
, ADW_MC_IDLE_CMD_PARAMETER
,
2153 idle_cmd_parameter
);
2154 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_IDLE_CMD
, idle_cmd
);
2157 * Tickle the RISC to tell it to process the idle command.
2159 ADW_WRITE_BYTE_REGISTER(iot
, ioh
, IOPB_TICKLE
, ADW_TICKLE_B
);
2160 if (sc
->chip_type
== ADW_CHIP_ASC3550
) {
2162 * Clear the tickle value. In the ASC-3550 the RISC flag
2163 * command 'clr_tickle_b' does not work unless the host
2166 ADW_WRITE_BYTE_REGISTER(iot
, ioh
, IOPB_TICKLE
, ADW_TICKLE_NOP
);
2169 /* Wait for up to 100 millisecond for the idle command to timeout. */
2170 for (i
= 0; i
< SCSI_WAIT_100_MSEC
; i
++) {
2171 /* Poll once each microsecond for command completion. */
2172 for (j
= 0; j
< SCSI_US_PER_MSEC
; j
++) {
2173 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_IDLE_CMD_STATUS
,
2179 AdwDelayMicroSecond(1);
2189 * Inquiry Information Byte 7 Handling
2191 * Handle SCSI Inquiry Command information for a device by setting
2192 * microcode operating variables that affect WDTR, SDTR, and Tag
2196 AdwInquiryHandling(ADW_SOFTC
*sc
, ADW_SCSI_REQ_Q
*scsiq
)
2199 bus_space_tag_t iot
= sc
->sc_iot
;
2200 bus_space_handle_t ioh
= sc
->sc_ioh
;
2202 struct scsipi_inquiry_data
*inq
;
2208 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
2211 * If less than 8 bytes of INQUIRY information were requested or less
2212 * than 8 bytes were transferred, then return. cdb[4] is the request
2213 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
2214 * microcode to the transfer residual count.
2217 if (scsiq
->cdb
[4] < 8 || (scsiq
->cdb
[4] - scsiq
->data_cnt
) < 8) {
2221 tid
= scsiq
->target_id
;
2223 inq
= (struct scsipi_inquiry_data
*) scsiq
->vdata_addr
;
2226 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
2228 if (((inq
->response_format
& SID_RespDataFmt
) < 2) /*SCSI-1 | CCS*/ &&
2229 ((inq
->version
& SID_ANSII
) < 2)) {
2233 * INQUIRY Byte 7 Handling
2235 * Use a device's INQUIRY byte 7 to determine whether it
2236 * supports WDTR, SDTR, and Tag Queuing. If the feature
2237 * is enabled in the EEPROM and the device supports the
2238 * feature, then enable it in the microcode.
2241 tidmask
= ADW_TID_TO_TIDMASK(tid
);
2246 * If the EEPROM enabled WDTR for the device and the device
2247 * supports wide bus (16 bit) transfers, then turn on the
2248 * device's 'wdtr_able' bit and write the new value to the
2251 #ifdef SCSI_ADW_WDTR_DISABLE
2252 if(!(tidmask
& SCSI_ADW_WDTR_DISABLE
))
2253 #endif /* SCSI_ADW_WDTR_DISABLE */
2254 if ((sc
->wdtr_able
& tidmask
) && (inq
->flags3
& SID_WBus16
)) {
2255 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_WDTR_ABLE
,
2257 if ((cfg_word
& tidmask
) == 0) {
2258 cfg_word
|= tidmask
;
2259 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_WDTR_ABLE
,
2263 * Clear the microcode "SDTR negotiation" and
2264 * "WDTR negotiation" done indicators for the
2265 * target to cause it to negotiate with the new
2266 * setting set above.
2267 * WDTR when accepted causes the target to enter
2268 * asynchronous mode, so SDTR must be negotiated
2270 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_SDTR_DONE
,
2272 cfg_word
&= ~tidmask
;
2273 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_SDTR_DONE
,
2275 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_WDTR_DONE
,
2277 cfg_word
&= ~tidmask
;
2278 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_WDTR_DONE
,
2284 * Synchronous Transfers
2286 * If the EEPROM enabled SDTR for the device and the device
2287 * supports synchronous transfers, then turn on the device's
2288 * 'sdtr_able' bit. Write the new value to the microcode.
2290 #ifdef SCSI_ADW_SDTR_DISABLE
2291 if(!(tidmask
& SCSI_ADW_SDTR_DISABLE
))
2292 #endif /* SCSI_ADW_SDTR_DISABLE */
2293 if ((sc
->sdtr_able
& tidmask
) && (inq
->flags3
& SID_Sync
)) {
2294 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_SDTR_ABLE
,cfg_word
);
2295 if ((cfg_word
& tidmask
) == 0) {
2296 cfg_word
|= tidmask
;
2297 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_SDTR_ABLE
,
2301 * Clear the microcode "SDTR negotiation"
2302 * done indicator for the target to cause it
2303 * to negotiate with the new setting set above.
2305 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_SDTR_DONE
,
2307 cfg_word
&= ~tidmask
;
2308 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_SDTR_DONE
,
2313 * If the Inquiry data included enough space for the SPI-3
2314 * Clocking field, then check if DT mode is supported.
2316 if (sc
->chip_type
== ADW_CHIP_ASC38C1600
&&
2317 (scsiq
->cdb
[4] >= 57 ||
2318 (scsiq
->cdb
[4] - scsiq
->data_cnt
) >= 57)) {
2320 * PPR (Parallel Protocol Request) Capable
2322 * If the device supports DT mode, then it must be
2324 * The PPR message will be used in place of the SDTR
2325 * and WDTR messages to negotiate synchronous speed
2326 * and offset, transfer width, and protocol options.
2328 if((inq
->flags4
& SID_Clocking
) & SID_CLOCKING_DT_ONLY
){
2329 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_PPR_ABLE
,
2331 sc
->ppr_able
|= tidmask
;
2332 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_PPR_ABLE
,
2338 * If the EEPROM enabled Tag Queuing for the device and the
2339 * device supports Tag Queueing, then turn on the device's
2340 * 'tagqng_enable' bit in the microcode and set the microcode
2341 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
2344 * Tag Queuing is disabled for the BIOS which runs in polled
2345 * mode and would see no benefit from Tag Queuing. Also by
2346 * disabling Tag Queuing in the BIOS devices with Tag Queuing
2347 * bugs will at least work with the BIOS.
2349 #ifdef SCSI_ADW_TAGQ_DISABLE
2350 if(!(tidmask
& SCSI_ADW_TAGQ_DISABLE
))
2351 #endif /* SCSI_ADW_TAGQ_DISABLE */
2352 if ((sc
->tagqng_able
& tidmask
) && (inq
->flags3
& SID_CmdQue
)) {
2353 ADW_READ_WORD_LRAM(iot
, ioh
, ADW_MC_TAGQNG_ABLE
,
2355 cfg_word
|= tidmask
;
2356 ADW_WRITE_WORD_LRAM(iot
, ioh
, ADW_MC_TAGQNG_ABLE
,
2359 ADW_WRITE_BYTE_LRAM(iot
, ioh
,
2360 ADW_MC_NUMBER_OF_MAX_CMD
+ tid
,
2364 #endif /* FAILSAFE */
2369 AdwSleepMilliSecond(u_int32_t n
)
2377 AdwDelayMicroSecond(u_int32_t n
)