2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2006 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 * $Id: ar5211_reset.c,v 1.3 2009/01/06 06:03:57 mrg Exp $
22 * Chips specific device attachment and device info collection
23 * Connects Init Reg Vectors, EEPROM Data, and device Functions.
26 #include "ah_internal.h"
29 #include "ar5211/ar5211.h"
30 #include "ar5211/ar5211reg.h"
31 #include "ar5211/ar5211phy.h"
33 #include "ah_eeprom_v3.h"
35 /* Add static register initialization vectors */
36 #include "ar5211/boss.ini"
39 * Structure to hold 11b tuning information for Beanie/Sombrero
40 * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
43 uint32_t refClkSel
; /* reference clock, 1 for 16 MHz */
44 uint32_t channelSelect
; /* P[7:4]S[3:0] bits */
45 uint16_t channel5111
; /* 11a channel for 5111 */
48 #define CI_2GHZ_INDEX_CORRECTION 19
49 static const CHAN_INFO_2GHZ chan2GHzData
[] = {
50 { 1, 0x46, 96 }, /* 2312 -19 */
51 { 1, 0x46, 97 }, /* 2317 -18 */
52 { 1, 0x46, 98 }, /* 2322 -17 */
53 { 1, 0x46, 99 }, /* 2327 -16 */
54 { 1, 0x46, 100 }, /* 2332 -15 */
55 { 1, 0x46, 101 }, /* 2337 -14 */
56 { 1, 0x46, 102 }, /* 2342 -13 */
57 { 1, 0x46, 103 }, /* 2347 -12 */
58 { 1, 0x46, 104 }, /* 2352 -11 */
59 { 1, 0x46, 105 }, /* 2357 -10 */
60 { 1, 0x46, 106 }, /* 2362 -9 */
61 { 1, 0x46, 107 }, /* 2367 -8 */
62 { 1, 0x46, 108 }, /* 2372 -7 */
63 /* index -6 to 0 are pad to make this a nolookup table */
64 { 1, 0x46, 116 }, /* -6 */
65 { 1, 0x46, 116 }, /* -5 */
66 { 1, 0x46, 116 }, /* -4 */
67 { 1, 0x46, 116 }, /* -3 */
68 { 1, 0x46, 116 }, /* -2 */
69 { 1, 0x46, 116 }, /* -1 */
70 { 1, 0x46, 116 }, /* 0 */
71 { 1, 0x46, 116 }, /* 2412 1 */
72 { 1, 0x46, 117 }, /* 2417 2 */
73 { 1, 0x46, 118 }, /* 2422 3 */
74 { 1, 0x46, 119 }, /* 2427 4 */
75 { 1, 0x46, 120 }, /* 2432 5 */
76 { 1, 0x46, 121 }, /* 2437 6 */
77 { 1, 0x46, 122 }, /* 2442 7 */
78 { 1, 0x46, 123 }, /* 2447 8 */
79 { 1, 0x46, 124 }, /* 2452 9 */
80 { 1, 0x46, 125 }, /* 2457 10 */
81 { 1, 0x46, 126 }, /* 2462 11 */
82 { 1, 0x46, 127 }, /* 2467 12 */
83 { 1, 0x46, 128 }, /* 2472 13 */
84 { 1, 0x44, 124 }, /* 2484 14 */
85 { 1, 0x46, 136 }, /* 2512 15 */
86 { 1, 0x46, 140 }, /* 2532 16 */
87 { 1, 0x46, 144 }, /* 2552 17 */
88 { 1, 0x46, 148 }, /* 2572 18 */
89 { 1, 0x46, 152 }, /* 2592 19 */
90 { 1, 0x46, 156 }, /* 2612 20 */
91 { 1, 0x46, 160 }, /* 2632 21 */
92 { 1, 0x46, 164 }, /* 2652 22 */
93 { 1, 0x46, 168 }, /* 2672 23 */
94 { 1, 0x46, 172 }, /* 2692 24 */
95 { 1, 0x46, 176 }, /* 2712 25 */
96 { 1, 0x46, 180 } /* 2732 26 */
99 /* Power timeouts in usec to wait for chip to wake-up. */
100 #define POWER_UP_TIME 2000
102 #define DELAY_PLL_SETTLE 300 /* 300 us */
103 #define DELAY_BASE_ACTIVATE 100 /* 100 us */
107 static HAL_BOOL
ar5211SetResetReg(struct ath_hal
*ah
, uint32_t resetMask
);
108 static HAL_BOOL
ar5211SetChannel(struct ath_hal
*, HAL_CHANNEL_INTERNAL
*);
109 static int16_t ar5211RunNoiseFloor(struct ath_hal
*,
110 uint8_t runTime
, int16_t startingNF
);
111 static HAL_BOOL
ar5211IsNfGood(struct ath_hal
*, HAL_CHANNEL_INTERNAL
*chan
);
112 static HAL_BOOL
ar5211SetRf6and7(struct ath_hal
*, HAL_CHANNEL
*chan
);
113 static HAL_BOOL
ar5211SetBoardValues(struct ath_hal
*, HAL_CHANNEL
*chan
);
114 static void ar5211SetPowerTable(struct ath_hal
*,
115 PCDACS_EEPROM
*pSrcStruct
, uint16_t channel
);
116 static void ar5211SetRateTable(struct ath_hal
*,
117 RD_EDGES_POWER
*pRdEdgesPower
, TRGT_POWER_INFO
*pPowerInfo
,
118 uint16_t numChannels
, HAL_CHANNEL
*chan
);
119 static uint16_t ar5211GetScaledPower(uint16_t channel
, uint16_t pcdacValue
,
120 const PCDACS_EEPROM
*pSrcStruct
);
121 static HAL_BOOL
ar5211FindValueInList(uint16_t channel
, uint16_t pcdacValue
,
122 const PCDACS_EEPROM
*pSrcStruct
, uint16_t *powerValue
);
123 static uint16_t ar5211GetInterpolatedValue(uint16_t target
,
124 uint16_t srcLeft
, uint16_t srcRight
,
125 uint16_t targetLeft
, uint16_t targetRight
, HAL_BOOL scaleUp
);
126 static void ar5211GetLowerUpperValues(uint16_t value
,
127 const uint16_t *pList
, uint16_t listSize
,
128 uint16_t *pLowerValue
, uint16_t *pUpperValue
);
129 static void ar5211GetLowerUpperPcdacs(uint16_t pcdac
,
130 uint16_t channel
, const PCDACS_EEPROM
*pSrcStruct
,
131 uint16_t *pLowerPcdac
, uint16_t *pUpperPcdac
);
133 static void ar5211SetRfgain(struct ath_hal
*, const GAIN_VALUES
*);;
134 static void ar5211RequestRfgain(struct ath_hal
*);
135 static HAL_BOOL
ar5211InvalidGainReadback(struct ath_hal
*, GAIN_VALUES
*);
136 static HAL_BOOL
ar5211IsGainAdjustNeeded(struct ath_hal
*, const GAIN_VALUES
*);
137 static int32_t ar5211AdjustGain(struct ath_hal
*, GAIN_VALUES
*);
138 static void ar5211SetOperatingMode(struct ath_hal
*, int opmode
);
141 * Places the device in and out of reset and then places sane
142 * values in the registers based on EEPROM config, initialization
143 * vectors (as determined by the mode), and station configuration
145 * bChannelChange is used to preserve DMA/PCU registers across
146 * a HW Reset during channel change.
149 ar5211Reset(struct ath_hal
*ah
, HAL_OPMODE opmode
,
150 HAL_CHANNEL
*chan
, HAL_BOOL bChannelChange
, HAL_STATUS
*status
)
152 uint32_t softLedCfg
, softLedState
;
153 #define N(a) (sizeof (a) /sizeof (a[0]))
154 #define FAIL(_code) do { ecode = _code; goto bad; } while (0)
155 struct ath_hal_5211
*ahp
= AH5211(ah
);
156 HAL_CHANNEL_INTERNAL
*ichan
;
157 uint32_t i
, ledstate
;
161 uint32_t data
, synthDelay
;
163 uint16_t modesIndex
= 0, freqIndex
= 0;
164 uint32_t saveFrameSeqCount
[AR_NUM_DCU
];
165 uint32_t saveTsfLow
= 0, saveTsfHigh
= 0;
166 uint32_t saveDefAntenna
;
168 HALDEBUG(ah
, HAL_DEBUG_RESET
,
169 "%s: opmode %u channel %u/0x%x %s channel\n",
170 __func__
, opmode
, chan
->channel
, chan
->channelFlags
,
171 bChannelChange
? "change" : "same");
173 OS_MARK(ah
, AH_MARK_RESET
, bChannelChange
);
174 #define IS(_c,_f) (((_c)->channelFlags & _f) || 0)
175 if ((IS(chan
, CHANNEL_2GHZ
) ^ IS(chan
,CHANNEL_5GHZ
)) == 0) {
176 HALDEBUG(ah
, HAL_DEBUG_ANY
,
177 "%s: invalid channel %u/0x%x; not marked as 2GHz or 5GHz\n",
178 __func__
, chan
->channel
, chan
->channelFlags
);
181 if ((IS(chan
, CHANNEL_OFDM
) ^ IS(chan
, CHANNEL_CCK
)) == 0) {
182 HALDEBUG(ah
, HAL_DEBUG_ANY
,
183 "%s: invalid channel %u/0x%x; not marked as OFDM or CCK\n",
184 __func__
, chan
->channel
, chan
->channelFlags
);
189 * Map public channel to private.
191 ichan
= ath_hal_checkchannel(ah
, chan
);
192 if (ichan
== AH_NULL
) {
193 HALDEBUG(ah
, HAL_DEBUG_ANY
,
194 "%s: invalid channel %u/0x%x; no mapping\n",
195 __func__
, chan
->channel
, chan
->channelFlags
);
205 HALDEBUG(ah
, HAL_DEBUG_ANY
,
206 "%s: invalid operating mode %u\n", __func__
, opmode
);
210 HALASSERT(AH_PRIVATE(ah
)->ah_eeversion
>= AR_EEPROM_VER3
);
212 /* Preserve certain DMA hardware registers on a channel change */
213 if (bChannelChange
) {
215 * Need to save/restore the TSF because of an issue
216 * that accelerates the TSF during a chip reset.
218 * We could use system timer routines to more
219 * accurately restore the TSF, but
220 * 1. Timer routines on certain platforms are
221 * not accurate enough (e.g. 1 ms resolution).
222 * 2. It would still not be accurate.
224 * The most important aspect of this workaround,
225 * is that, after reset, the TSF is behind
226 * other STAs TSFs. This will allow the STA to
227 * properly resynchronize its TSF in adhoc mode.
229 saveTsfLow
= OS_REG_READ(ah
, AR_TSF_L32
);
230 saveTsfHigh
= OS_REG_READ(ah
, AR_TSF_U32
);
232 /* Read frame sequence count */
233 if (AH_PRIVATE(ah
)->ah_macVersion
>= AR_SREV_VERSION_OAHU
) {
234 saveFrameSeqCount
[0] = OS_REG_READ(ah
, AR_D0_SEQNUM
);
236 for (i
= 0; i
< AR_NUM_DCU
; i
++)
237 saveFrameSeqCount
[i
] = OS_REG_READ(ah
, AR_DSEQNUM(i
));
239 if (!(ichan
->privFlags
& CHANNEL_DFS
))
240 ichan
->privFlags
&= ~CHANNEL_INTERFERENCE
;
241 chan
->channelFlags
= ichan
->channelFlags
;
242 chan
->privFlags
= ichan
->privFlags
;
246 * Preserve the antenna on a channel change
248 saveDefAntenna
= OS_REG_READ(ah
, AR_DEF_ANTENNA
);
249 if (saveDefAntenna
== 0)
252 /* Save hardware flag before chip reset clears the register */
253 macStaId1
= OS_REG_READ(ah
, AR_STA_ID1
) & AR_STA_ID1_BASE_RATE_11B
;
255 /* Save led state from pci config register */
256 ledstate
= OS_REG_READ(ah
, AR_PCICFG
) &
257 (AR_PCICFG_LEDCTL
| AR_PCICFG_LEDMODE
| AR_PCICFG_LEDBLINK
|
259 softLedCfg
= OS_REG_READ(ah
, AR_GPIOCR
);
260 softLedState
= OS_REG_READ(ah
, AR_GPIODO
);
262 if (!ar5211ChipReset(ah
, chan
->channelFlags
)) {
263 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: chip reset failed\n", __func__
);
267 /* Setup the indices for the next set of register array writes */
268 switch (chan
->channelFlags
& CHANNEL_ALL
) {
286 /* Ah, a new wireless mode */
291 /* Set correct Baseband to analog shift setting to access analog chips. */
292 if (AH_PRIVATE(ah
)->ah_macVersion
>= AR_SREV_VERSION_OAHU
) {
293 OS_REG_WRITE(ah
, AR_PHY_BASE
, 0x00000007);
295 OS_REG_WRITE(ah
, AR_PHY_BASE
, 0x00000047);
298 /* Write parameters specific to AR5211 */
299 if (AH_PRIVATE(ah
)->ah_macVersion
>= AR_SREV_VERSION_OAHU
) {
300 if (IS_CHAN_2GHZ(chan
) &&
301 AH_PRIVATE(ah
)->ah_eeversion
>= AR_EEPROM_VER3_1
) {
302 HAL_EEPROM
*ee
= AH_PRIVATE(ah
)->ah_eeprom
;
303 uint32_t ob2GHz
, db2GHz
;
305 if (IS_CHAN_CCK(chan
)) {
306 ob2GHz
= ee
->ee_ob2GHz
[0];
307 db2GHz
= ee
->ee_db2GHz
[0];
309 ob2GHz
= ee
->ee_ob2GHz
[1];
310 db2GHz
= ee
->ee_db2GHz
[1];
312 ob2GHz
= ath_hal_reverseBits(ob2GHz
, 3);
313 db2GHz
= ath_hal_reverseBits(db2GHz
, 3);
314 ar5211Mode2_4
[25][freqIndex
] =
315 (ar5211Mode2_4
[25][freqIndex
] & ~0xC0) |
316 ((ob2GHz
<< 6) & 0xC0);
317 ar5211Mode2_4
[26][freqIndex
] =
318 (ar5211Mode2_4
[26][freqIndex
] & ~0x0F) |
319 (((ob2GHz
>> 2) & 0x1) |
320 ((db2GHz
<< 1) & 0x0E));
322 for (i
= 0; i
< N(ar5211Mode2_4
); i
++)
323 OS_REG_WRITE(ah
, ar5211Mode2_4
[i
][0],
324 ar5211Mode2_4
[i
][freqIndex
]);
327 /* Write the analog registers 6 and 7 before other config */
328 ar5211SetRf6and7(ah
, chan
);
330 /* Write registers that vary across all modes */
331 for (i
= 0; i
< N(ar5211Modes
); i
++)
332 OS_REG_WRITE(ah
, ar5211Modes
[i
][0], ar5211Modes
[i
][modesIndex
]);
334 /* Write RFGain Parameters that differ between 2.4 and 5 GHz */
335 for (i
= 0; i
< N(ar5211BB_RfGain
); i
++)
336 OS_REG_WRITE(ah
, ar5211BB_RfGain
[i
][0], ar5211BB_RfGain
[i
][freqIndex
]);
338 /* Write Common Array Parameters */
339 for (i
= 0; i
< N(ar5211Common
); i
++) {
340 uint32_t reg
= ar5211Common
[i
][0];
341 /* On channel change, don't reset the PCU registers */
342 if (!(bChannelChange
&& (0x8000 <= reg
&& reg
< 0x9000)))
343 OS_REG_WRITE(ah
, reg
, ar5211Common
[i
][1]);
346 /* Fix pre-AR5211 register values, this includes AR5311s. */
347 if (AH_PRIVATE(ah
)->ah_macVersion
< AR_SREV_VERSION_OAHU
) {
349 * The TX and RX latency values have changed locations
350 * within the USEC register in AR5211. Since they're
351 * set via the .ini, for both AR5211 and AR5311, they
352 * are written properly here for AR5311.
354 data
= OS_REG_READ(ah
, AR_USEC
);
355 /* Must be 0 for proper write in AR5311 */
356 HALASSERT((data
& 0x00700000) == 0);
357 OS_REG_WRITE(ah
, AR_USEC
,
358 (data
& (AR_USEC_M
| AR_USEC_32_M
| AR5311_USEC_TX_LAT_M
)) |
359 ((29 << AR5311_USEC_RX_LAT_S
) & AR5311_USEC_RX_LAT_M
));
360 /* The following registers exist only on AR5311. */
361 OS_REG_WRITE(ah
, AR5311_QDCLKGATE
, 0);
363 /* Set proper ADC & DAC delays for AR5311. */
364 OS_REG_WRITE(ah
, 0x00009878, 0x00000008);
366 /* Enable the PCU FIFO corruption ECO on AR5311. */
367 OS_REG_WRITE(ah
, AR_DIAG_SW
,
368 OS_REG_READ(ah
, AR_DIAG_SW
) | AR5311_DIAG_SW_USE_ECO
);
371 /* Restore certain DMA hardware registers on a channel change */
372 if (bChannelChange
) {
374 OS_REG_WRITE(ah
, AR_TSF_L32
, saveTsfLow
);
375 OS_REG_WRITE(ah
, AR_TSF_U32
, saveTsfHigh
);
377 if (AH_PRIVATE(ah
)->ah_macVersion
>= AR_SREV_VERSION_OAHU
) {
378 OS_REG_WRITE(ah
, AR_D0_SEQNUM
, saveFrameSeqCount
[0]);
380 for (i
= 0; i
< AR_NUM_DCU
; i
++)
381 OS_REG_WRITE(ah
, AR_DSEQNUM(i
), saveFrameSeqCount
[i
]);
385 OS_REG_WRITE(ah
, AR_STA_ID0
, LE_READ_4(ahp
->ah_macaddr
));
386 OS_REG_WRITE(ah
, AR_STA_ID1
, LE_READ_2(ahp
->ah_macaddr
+ 4)
389 ar5211SetOperatingMode(ah
, opmode
);
391 /* Restore previous led state */
392 OS_REG_WRITE(ah
, AR_PCICFG
, OS_REG_READ(ah
, AR_PCICFG
) | ledstate
);
393 OS_REG_WRITE(ah
, AR_GPIOCR
, softLedCfg
);
394 OS_REG_WRITE(ah
, AR_GPIODO
, softLedState
);
396 /* Restore previous antenna */
397 OS_REG_WRITE(ah
, AR_DEF_ANTENNA
, saveDefAntenna
);
399 OS_REG_WRITE(ah
, AR_BSS_ID0
, LE_READ_4(ahp
->ah_bssid
));
400 OS_REG_WRITE(ah
, AR_BSS_ID1
, LE_READ_2(ahp
->ah_bssid
+ 4));
402 /* Restore bmiss rssi & count thresholds */
403 OS_REG_WRITE(ah
, AR_RSSI_THR
, ahp
->ah_rssiThr
);
405 OS_REG_WRITE(ah
, AR_ISR
, ~0); /* cleared on write */
408 * for pre-Production Oahu only.
409 * Disable clock gating in all DMA blocks. Helps when using
410 * 11B and AES but results in higher power consumption.
412 if (AH_PRIVATE(ah
)->ah_macVersion
== AR_SREV_VERSION_OAHU
&&
413 AH_PRIVATE(ah
)->ah_macRev
< AR_SREV_OAHU_PROD
) {
414 OS_REG_WRITE(ah
, AR_CFG
,
415 OS_REG_READ(ah
, AR_CFG
) | AR_CFG_CLK_GATE_DIS
);
418 /* Setup the transmit power values. */
419 if (!ar5211SetTransmitPower(ah
, chan
)) {
420 HALDEBUG(ah
, HAL_DEBUG_ANY
,
421 "%s: error init'ing transmit power\n", __func__
);
426 * Configurable OFDM spoofing for 11n compatibility; used
427 * only when operating in station mode.
429 if (opmode
!= HAL_M_HOSTAP
&&
430 (AH_PRIVATE(ah
)->ah_11nCompat
& HAL_DIAG_11N_SERVICES
) != 0) {
431 /* NB: override the .ini setting */
432 OS_REG_RMW_FIELD(ah
, AR_PHY_FRAME_CTL
,
433 AR_PHY_FRAME_CTL_ERR_SERV
,
434 MS(AH_PRIVATE(ah
)->ah_11nCompat
, HAL_DIAG_11N_SERVICES
)&1);
437 /* Setup board specific options for EEPROM version 3 */
438 ar5211SetBoardValues(ah
, chan
);
440 if (!ar5211SetChannel(ah
, ichan
)) {
441 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: unable to set channel\n",
446 /* Activate the PHY */
447 if (AH_PRIVATE(ah
)->ah_devid
== AR5211_FPGA11B
&& IS_CHAN_2GHZ(chan
))
448 OS_REG_WRITE(ah
, 0xd808, 0x502); /* required for FPGA */
449 OS_REG_WRITE(ah
, AR_PHY_ACTIVE
, AR_PHY_ACTIVE_EN
);
452 * Wait for the frequency synth to settle (synth goes on
453 * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
454 * Value is in 100ns increments.
456 data
= OS_REG_READ(ah
, AR_PHY_RX_DELAY
) & AR_PHY_RX_DELAY_M
;
457 if (IS_CHAN_CCK(chan
)) {
458 synthDelay
= (4 * data
) / 22;
460 synthDelay
= data
/ 10;
463 * There is an issue if the AP starts the calibration before
464 * the baseband timeout completes. This could result in the
465 * rxclear false triggering. Add an extra delay to ensure this
466 * this does not happen.
468 OS_DELAY(synthDelay
+ DELAY_BASE_ACTIVATE
);
470 /* Calibrate the AGC and wait for completion. */
471 OS_REG_WRITE(ah
, AR_PHY_AGC_CONTROL
,
472 OS_REG_READ(ah
, AR_PHY_AGC_CONTROL
) | AR_PHY_AGC_CONTROL_CAL
);
473 (void) ath_hal_wait(ah
, AR_PHY_AGC_CONTROL
, AR_PHY_AGC_CONTROL_CAL
, 0);
475 /* Perform noise floor and set status */
476 if (!ar5211CalNoiseFloor(ah
, ichan
)) {
477 if (!IS_CHAN_CCK(chan
))
478 chan
->channelFlags
|= CHANNEL_CW_INT
;
479 HALDEBUG(ah
, HAL_DEBUG_ANY
,
480 "%s: noise floor calibration failed\n", __func__
);
484 /* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
485 if (ahp
->ah_calibrationTime
!= 0) {
486 OS_REG_WRITE(ah
, AR_PHY_TIMING_CTRL4
,
487 AR_PHY_TIMING_CTRL4_DO_IQCAL
| (INIT_IQCAL_LOG_COUNT_MAX
<< AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX_S
));
488 ahp
->ah_bIQCalibration
= AH_TRUE
;
491 /* set 1:1 QCU to DCU mapping for all queues */
492 for (q
= 0; q
< AR_NUM_DCU
; q
++)
493 OS_REG_WRITE(ah
, AR_DQCUMASK(q
), 1<<q
);
495 for (q
= 0; q
< HAL_NUM_TX_QUEUES
; q
++)
496 ar5211ResetTxQueue(ah
, q
);
498 /* Setup QCU0 transmit interrupt masks (TX_ERR, TX_OK, TX_DESC, TX_URN) */
499 OS_REG_WRITE(ah
, AR_IMR_S0
,
500 (AR_IMR_S0_QCU_TXOK
& AR_QCU_0
) |
501 (AR_IMR_S0_QCU_TXDESC
& (AR_QCU_0
<<AR_IMR_S0_QCU_TXDESC_S
)));
502 OS_REG_WRITE(ah
, AR_IMR_S1
, (AR_IMR_S1_QCU_TXERR
& AR_QCU_0
));
503 OS_REG_WRITE(ah
, AR_IMR_S2
, (AR_IMR_S2_QCU_TXURN
& AR_QCU_0
));
506 * GBL_EIFS must always be written after writing
507 * to any QCUMASK register.
509 OS_REG_WRITE(ah
, AR_D_GBL_IFS_EIFS
, OS_REG_READ(ah
, AR_D_GBL_IFS_EIFS
));
511 /* Now set up the Interrupt Mask Register and save it for future use */
512 OS_REG_WRITE(ah
, AR_IMR
, INIT_INTERRUPT_MASK
);
513 ahp
->ah_maskReg
= INIT_INTERRUPT_MASK
;
515 /* Enable bus error interrupts */
516 OS_REG_WRITE(ah
, AR_IMR_S2
, OS_REG_READ(ah
, AR_IMR_S2
) |
517 AR_IMR_S2_MCABT
| AR_IMR_S2_SSERR
| AR_IMR_S2_DPERR
);
519 /* Enable interrupts specific to AP */
520 if (opmode
== HAL_M_HOSTAP
) {
521 OS_REG_WRITE(ah
, AR_IMR
, OS_REG_READ(ah
, AR_IMR
) | AR_IMR_MIB
);
522 ahp
->ah_maskReg
|= AR_IMR_MIB
;
525 if (AH_PRIVATE(ah
)->ah_rfkillEnabled
)
526 ar5211EnableRfKill(ah
);
529 * Writing to AR_BEACON will start timers. Hence it should
530 * be the last register to be written. Do not reset tsf, do
531 * not enable beacons at this point, but preserve other values
532 * like beaconInterval.
534 OS_REG_WRITE(ah
, AR_BEACON
,
535 (OS_REG_READ(ah
, AR_BEACON
) &~ (AR_BEACON_EN
| AR_BEACON_RESET_TSF
)));
537 /* Restore user-specified slot time and timeouts */
538 if (ahp
->ah_sifstime
!= (u_int
) -1)
539 ar5211SetSifsTime(ah
, ahp
->ah_sifstime
);
540 if (ahp
->ah_slottime
!= (u_int
) -1)
541 ar5211SetSlotTime(ah
, ahp
->ah_slottime
);
542 if (ahp
->ah_acktimeout
!= (u_int
) -1)
543 ar5211SetAckTimeout(ah
, ahp
->ah_acktimeout
);
544 if (ahp
->ah_ctstimeout
!= (u_int
) -1)
545 ar5211SetCTSTimeout(ah
, ahp
->ah_ctstimeout
);
546 if (AH_PRIVATE(ah
)->ah_diagreg
!= 0)
547 OS_REG_WRITE(ah
, AR_DIAG_SW
, AH_PRIVATE(ah
)->ah_diagreg
);
549 AH_PRIVATE(ah
)->ah_opmode
= opmode
; /* record operating mode */
551 HALDEBUG(ah
, HAL_DEBUG_RESET
, "%s: done\n", __func__
);
563 * Places the PHY and Radio chips into reset. A full reset
564 * must be called to leave this state. The PCI/MAC/PCU are
565 * not placed into reset as we must receive interrupt to
566 * re-enable the hardware.
569 ar5211PhyDisable(struct ath_hal
*ah
)
571 return ar5211SetResetReg(ah
, AR_RC_BB
);
575 * Places all of hardware into reset
578 ar5211Disable(struct ath_hal
*ah
)
580 if (!ar5211SetPowerMode(ah
, HAL_PM_AWAKE
, AH_TRUE
))
583 * Reset the HW - PCI must be reset after the rest of the
584 * device has been reset.
586 if (!ar5211SetResetReg(ah
, AR_RC_MAC
| AR_RC_BB
| AR_RC_PCI
))
588 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
594 * Places the hardware into reset and then pulls it out of reset
596 * Only write the PLL if we're changing to or from CCK mode
598 * Attach calls with channelFlags = 0, as the coldreset should have
599 * us in the correct mode and we cannot check the hwchannel flags.
602 ar5211ChipReset(struct ath_hal
*ah
, uint16_t channelFlags
)
604 if (!ar5211SetPowerMode(ah
, HAL_PM_AWAKE
, AH_TRUE
))
607 /* Set CCK and Turbo modes correctly */
608 switch (channelFlags
& CHANNEL_ALL
) {
609 case CHANNEL_2GHZ
|CHANNEL_CCK
:
610 case CHANNEL_2GHZ
|CHANNEL_CCK
|CHANNEL_TURBO
:
611 OS_REG_WRITE(ah
, AR_PHY_TURBO
, 0);
612 OS_REG_WRITE(ah
, AR5211_PHY_MODE
,
613 AR5211_PHY_MODE_CCK
| AR5211_PHY_MODE_RF2GHZ
);
614 OS_REG_WRITE(ah
, AR_PHY_PLL_CTL
, AR_PHY_PLL_CTL_44
);
615 /* Wait for the PLL to settle */
616 OS_DELAY(DELAY_PLL_SETTLE
);
618 case CHANNEL_2GHZ
|CHANNEL_OFDM
:
619 case CHANNEL_2GHZ
|CHANNEL_OFDM
|CHANNEL_TURBO
:
620 OS_REG_WRITE(ah
, AR_PHY_TURBO
, 0);
621 if (AH_PRIVATE(ah
)->ah_devid
== AR5211_DEVID
) {
622 OS_REG_WRITE(ah
, AR_PHY_PLL_CTL
, AR_PHY_PLL_CTL_40
);
623 OS_DELAY(DELAY_PLL_SETTLE
);
624 OS_REG_WRITE(ah
, AR5211_PHY_MODE
,
625 AR5211_PHY_MODE_OFDM
| AR5211_PHY_MODE_RF2GHZ
);
630 if (channelFlags
& CHANNEL_TURBO
) {
631 OS_REG_WRITE(ah
, AR_PHY_TURBO
,
632 AR_PHY_FC_TURBO_MODE
| AR_PHY_FC_TURBO_SHORT
);
633 } else { /* 5 GHZ OFDM Mode */
634 OS_REG_WRITE(ah
, AR_PHY_TURBO
, 0);
636 if (AH_PRIVATE(ah
)->ah_devid
== AR5211_DEVID
) {
637 OS_REG_WRITE(ah
, AR_PHY_PLL_CTL
, AR_PHY_PLL_CTL_40
);
638 OS_DELAY(DELAY_PLL_SETTLE
);
639 OS_REG_WRITE(ah
, AR5211_PHY_MODE
,
640 AR5211_PHY_MODE_OFDM
| AR5211_PHY_MODE_RF5GHZ
);
644 /* NB: else no flags set - must be attach calling - do nothing */
647 * Reset the HW - PCI must be reset after the rest of the
648 * device has been reset
650 if (!ar5211SetResetReg(ah
, AR_RC_MAC
| AR_RC_BB
| AR_RC_PCI
))
652 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
654 /* Bring out of sleep mode (AGAIN) */
655 if (!ar5211SetPowerMode(ah
, HAL_PM_AWAKE
, AH_TRUE
))
658 /* Clear warm reset register */
659 return ar5211SetResetReg(ah
, 0);
663 * Recalibrate the lower PHY chips to account for temperature/environment
667 ar5211PerCalibrationN(struct ath_hal
*ah
, HAL_CHANNEL
*chan
, u_int chainMask
,
668 HAL_BOOL longCal
, HAL_BOOL
*isCalDone
)
670 struct ath_hal_5211
*ahp
= AH5211(ah
);
671 HAL_CHANNEL_INTERNAL
*ichan
;
672 int32_t qCoff
, qCoffDenom
;
675 int32_t iCoff
, iCoffDenom
;
676 uint32_t powerMeasQ
, powerMeasI
;
678 ichan
= ath_hal_checkchannel(ah
, chan
);
679 if (ichan
== AH_NULL
) {
680 HALDEBUG(ah
, HAL_DEBUG_ANY
,
681 "%s: invalid channel %u/0x%x; no mapping\n",
682 __func__
, chan
->channel
, chan
->channelFlags
);
685 /* IQ calibration in progress. Check to see if it has finished. */
686 if (ahp
->ah_bIQCalibration
&&
687 !(OS_REG_READ(ah
, AR_PHY_TIMING_CTRL4
) & AR_PHY_TIMING_CTRL4_DO_IQCAL
)) {
688 /* IQ Calibration has finished. */
689 ahp
->ah_bIQCalibration
= AH_FALSE
;
691 /* Read calibration results. */
692 powerMeasI
= OS_REG_READ(ah
, AR_PHY_IQCAL_RES_PWR_MEAS_I
);
693 powerMeasQ
= OS_REG_READ(ah
, AR_PHY_IQCAL_RES_PWR_MEAS_Q
);
694 iqCorrMeas
= OS_REG_READ(ah
, AR_PHY_IQCAL_RES_IQ_CORR_MEAS
);
697 * Prescale these values to remove 64-bit operation requirement at the loss
698 * of a little precision.
700 iCoffDenom
= (powerMeasI
/ 2 + powerMeasQ
/ 2) / 128;
701 qCoffDenom
= powerMeasQ
/ 64;
703 /* Protect against divide-by-0. */
704 if (iCoffDenom
!= 0 && qCoffDenom
!= 0) {
705 iCoff
= (-iqCorrMeas
) / iCoffDenom
;
706 /* IQCORR_Q_I_COFF is a signed 6 bit number */
707 iCoff
= iCoff
& 0x3f;
709 qCoff
= ((int32_t)powerMeasI
/ qCoffDenom
) - 64;
710 /* IQCORR_Q_Q_COFF is a signed 5 bit number */
711 qCoff
= qCoff
& 0x1f;
713 HALDEBUG(ah
, HAL_DEBUG_PERCAL
, "powerMeasI = 0x%08x\n",
715 HALDEBUG(ah
, HAL_DEBUG_PERCAL
, "powerMeasQ = 0x%08x\n",
717 HALDEBUG(ah
, HAL_DEBUG_PERCAL
, "iqCorrMeas = 0x%08x\n",
719 HALDEBUG(ah
, HAL_DEBUG_PERCAL
, "iCoff = %d\n",
721 HALDEBUG(ah
, HAL_DEBUG_PERCAL
, "qCoff = %d\n",
725 data
= OS_REG_READ(ah
, AR_PHY_TIMING_CTRL4
) |
726 AR_PHY_TIMING_CTRL4_IQCORR_ENABLE
|
727 (((uint32_t)iCoff
) << AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF_S
) |
729 OS_REG_WRITE(ah
, AR_PHY_TIMING_CTRL4
, data
);
732 *isCalDone
= !ahp
->ah_bIQCalibration
;
735 /* Perform noise floor and set status */
736 if (!ar5211IsNfGood(ah
, ichan
)) {
737 /* report up and clear internal state */
738 chan
->channelFlags
|= CHANNEL_CW_INT
;
739 ichan
->channelFlags
&= ~CHANNEL_CW_INT
;
742 if (!ar5211CalNoiseFloor(ah
, ichan
)) {
744 * Delay 5ms before retrying the noise floor
745 * just to make sure, as we are in an error
749 if (!ar5211CalNoiseFloor(ah
, ichan
)) {
750 if (!IS_CHAN_CCK(chan
))
751 chan
->channelFlags
|= CHANNEL_CW_INT
;
755 ar5211RequestRfgain(ah
);
761 ar5211PerCalibration(struct ath_hal
*ah
, HAL_CHANNEL
*chan
, HAL_BOOL
*isIQdone
)
763 return ar5211PerCalibrationN(ah
, chan
, 0x1, AH_TRUE
, isIQdone
);
767 ar5211ResetCalValid(struct ath_hal
*ah
, HAL_CHANNEL
*chan
)
774 * Writes the given reset bit mask into the reset register
777 ar5211SetResetReg(struct ath_hal
*ah
, uint32_t resetMask
)
779 uint32_t mask
= resetMask
? resetMask
: ~0;
782 (void) OS_REG_READ(ah
, AR_RXDP
);/* flush any pending MMR writes */
783 OS_REG_WRITE(ah
, AR_RC
, resetMask
);
785 /* need to wait at least 128 clocks when reseting PCI before read */
788 resetMask
&= AR_RC_MAC
| AR_RC_BB
;
789 mask
&= AR_RC_MAC
| AR_RC_BB
;
790 rt
= ath_hal_wait(ah
, AR_RC
, mask
, resetMask
);
791 if ((resetMask
& AR_RC_MAC
) == 0) {
794 * Set CFG, little-endian for register
795 * and descriptor accesses.
797 mask
= INIT_CONFIG_STATUS
|
798 AR_CFG_SWTD
| AR_CFG_SWRD
| AR_CFG_SWRG
;
799 OS_REG_WRITE(ah
, AR_CFG
, LE_READ_4(&mask
));
801 OS_REG_WRITE(ah
, AR_CFG
, INIT_CONFIG_STATUS
);
807 * Takes the MHz channel value and sets the Channel value
809 * ASSUMES: Writes enabled to analog bus before AGC is active
810 * or by disabling the AGC.
813 ar5211SetChannel(struct ath_hal
*ah
, HAL_CHANNEL_INTERNAL
*chan
)
815 uint32_t refClk
, reg32
, data2111
;
816 int16_t chan5111
, chanIEEE
;
818 chanIEEE
= ath_hal_mhz2ieee(ah
, chan
->channel
, chan
->channelFlags
);
819 if (IS_CHAN_2GHZ(chan
)) {
820 const CHAN_INFO_2GHZ
* ci
=
821 &chan2GHzData
[chanIEEE
+ CI_2GHZ_INDEX_CORRECTION
];
823 data2111
= ((ath_hal_reverseBits(ci
->channelSelect
, 8) & 0xff)
825 | (ci
->refClkSel
<< 4);
826 chan5111
= ci
->channel5111
;
832 /* Rest of the code is common for 5 GHz and 2.4 GHz. */
833 if (chan5111
>= 145 || (chan5111
& 0x1)) {
834 reg32
= ath_hal_reverseBits(chan5111
- 24, 8) & 0xFF;
837 reg32
= ath_hal_reverseBits(((chan5111
- 24) / 2), 8) & 0xFF;
841 reg32
= (reg32
<< 2) | (refClk
<< 1) | (1 << 10) | 0x1;
842 OS_REG_WRITE(ah
, AR_PHY(0x27), ((data2111
& 0xff) << 8) | (reg32
& 0xff));
844 OS_REG_WRITE(ah
, AR_PHY(0x34), (data2111
& 0xff00) | (reg32
& 0xff));
846 AH_PRIVATE(ah
)->ah_curchan
= chan
;
851 ar5211GetNoiseFloor(struct ath_hal
*ah
)
855 nf
= (OS_REG_READ(ah
, AR_PHY(25)) >> 19) & 0x1ff;
857 nf
= 0 - ((nf
^ 0x1ff) + 1);
862 * Peform the noisefloor calibration for the length of time set
863 * in runTime (valid values 1 to 7)
865 * Returns: The NF value at the end of the given time (or 0 for failure)
868 ar5211RunNoiseFloor(struct ath_hal
*ah
, uint8_t runTime
, int16_t startingNF
)
872 HALASSERT(runTime
<= 7);
874 /* Setup noise floor run time and starting value */
875 OS_REG_WRITE(ah
, AR_PHY(25),
876 (OS_REG_READ(ah
, AR_PHY(25)) & ~0xFFF) |
877 ((runTime
<< 9) & 0xE00) | (startingNF
& 0x1FF));
878 /* Calibrate the noise floor */
879 OS_REG_WRITE(ah
, AR_PHY_AGC_CONTROL
,
880 OS_REG_READ(ah
, AR_PHY_AGC_CONTROL
) | AR_PHY_AGC_CONTROL_NF
);
882 /* Compute the required amount of searchTime needed to finish NF */
884 /* 8 search windows * 6.4us each */
887 /* 512 * runtime search windows * 6.4us each */
888 searchTime
= (runTime
* 512) * 7;
892 * Do not read noise floor until it has been updated
894 * As a guesstimate - we may only get 1/60th the time on
895 * the air to see search windows in a heavily congested
896 * network (40 us every 2400 us of time)
898 for (i
= 0; i
< 60; i
++) {
899 if ((OS_REG_READ(ah
, AR_PHY_AGC_CONTROL
) & AR_PHY_AGC_CONTROL_NF
) == 0)
901 OS_DELAY(searchTime
);
904 HALDEBUG(ah
, HAL_DEBUG_NFCAL
,
905 "NF with runTime %d failed to end on channel %d\n",
906 runTime
, AH_PRIVATE(ah
)->ah_curchan
->channel
);
907 HALDEBUG(ah
, HAL_DEBUG_NFCAL
,
908 " PHY NF Reg state: 0x%x\n",
909 OS_REG_READ(ah
, AR_PHY_AGC_CONTROL
));
910 HALDEBUG(ah
, HAL_DEBUG_NFCAL
,
911 " PHY Active Reg state: 0x%x\n",
912 OS_REG_READ(ah
, AR_PHY_ACTIVE
));
916 return ar5211GetNoiseFloor(ah
);
920 getNoiseFloorThresh(struct ath_hal
*ah
, HAL_CHANNEL_INTERNAL
*chan
, int16_t *nft
)
922 HAL_EEPROM
*ee
= AH_PRIVATE(ah
)->ah_eeprom
;
924 switch (chan
->channelFlags
& CHANNEL_ALL_NOTURBO
) {
926 *nft
= ee
->ee_noiseFloorThresh
[0];
928 case CHANNEL_CCK
|CHANNEL_2GHZ
:
929 *nft
= ee
->ee_noiseFloorThresh
[1];
931 case CHANNEL_OFDM
|CHANNEL_2GHZ
:
932 *nft
= ee
->ee_noiseFloorThresh
[2];
935 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: invalid channel flags 0x%x\n",
936 __func__
, chan
->channelFlags
);
943 * Read the NF and check it against the noise floor threshhold
945 * Returns: TRUE if the NF is good
948 ar5211IsNfGood(struct ath_hal
*ah
, HAL_CHANNEL_INTERNAL
*chan
)
950 int16_t nf
, nfThresh
;
952 if (!getNoiseFloorThresh(ah
, chan
, &nfThresh
))
955 if (OS_REG_READ(ah
, AR_PHY_AGC_CONTROL
) & AR_PHY_AGC_CONTROL_NF
)
956 HALDEBUG(ah
, HAL_DEBUG_ANY
,
957 "%s: NF did not complete in calibration window\n", __func__
);
959 nf
= ar5211GetNoiseFloor(ah
);
961 HALDEBUG(ah
, HAL_DEBUG_ANY
,
962 "%s: noise floor failed; detected %u, threshold %u\n",
963 __func__
, nf
, nfThresh
);
965 * NB: Don't discriminate 2.4 vs 5Ghz, if this
966 * happens it indicates a problem regardless
969 chan
->channelFlags
|= CHANNEL_CW_INT
;
971 chan
->rawNoiseFloor
= nf
;
972 return (nf
<= nfThresh
);
976 * Peform the noisefloor calibration and check for any constant channel
979 * NOTE: preAR5211 have a lengthy carrier wave detection process - hence
980 * it is if'ed for MKK regulatory domain only.
982 * Returns: TRUE for a successful noise floor calibration; else FALSE
985 ar5211CalNoiseFloor(struct ath_hal
*ah
, HAL_CHANNEL_INTERNAL
*chan
)
987 #define N(a) (sizeof (a) / sizeof (a[0]))
988 /* Check for Carrier Wave interference in MKK regulatory zone */
989 if (AH_PRIVATE(ah
)->ah_macVersion
< AR_SREV_VERSION_OAHU
&&
990 ath_hal_getnfcheckrequired(ah
, (HAL_CHANNEL
*) chan
)) {
991 static const uint8_t runtime
[3] = { 0, 2, 7 };
992 int16_t nf
, nfThresh
;
995 if (!getNoiseFloorThresh(ah
, chan
, &nfThresh
))
998 * Run a quick noise floor that will hopefully
999 * complete (decrease delay time).
1001 for (i
= 0; i
< N(runtime
); i
++) {
1002 nf
= ar5211RunNoiseFloor(ah
, runtime
[i
], 0);
1003 if (nf
> nfThresh
) {
1004 HALDEBUG(ah
, HAL_DEBUG_ANY
,
1005 "%s: run failed with %u > threshold %u "
1006 "(runtime %u)\n", __func__
,
1007 nf
, nfThresh
, runtime
[i
]);
1008 chan
->rawNoiseFloor
= 0;
1010 chan
->rawNoiseFloor
= nf
;
1012 return (i
<= N(runtime
));
1014 /* Calibrate the noise floor */
1015 OS_REG_WRITE(ah
, AR_PHY_AGC_CONTROL
,
1016 OS_REG_READ(ah
, AR_PHY_AGC_CONTROL
) |
1017 AR_PHY_AGC_CONTROL_NF
);
1024 * Adjust NF based on statistical values for 5GHz frequencies.
1027 ar5211GetNfAdjust(struct ath_hal
*ah
, const HAL_CHANNEL_INTERNAL
*c
)
1029 static const struct {
1033 { 5790, 11 }, /* NB: ordered high -> low */
1041 { 5209, 0 }, /* XXX? bogus but doesn't matter */
1046 for (i
= 0; c
->channel
<= adjust5111
[i
].freqLow
; i
++)
1048 /* NB: placeholder for 5111's less severe requirement */
1049 return adjust5111
[i
].adjust
/ 3;
1053 * Reads EEPROM header info from device structure and programs
1054 * analog registers 6 and 7
1056 * REQUIRES: Access to the analog device
1059 ar5211SetRf6and7(struct ath_hal
*ah
, HAL_CHANNEL
*chan
)
1061 #define N(a) (sizeof (a) / sizeof (a[0]))
1062 HAL_EEPROM
*ee
= AH_PRIVATE(ah
)->ah_eeprom
;
1063 struct ath_hal_5211
*ahp
= AH5211(ah
);
1064 uint16_t rfXpdGain
, rfPloSel
, rfPwdXpd
;
1065 uint16_t tempOB
, tempDB
;
1069 freqIndex
= (chan
->channelFlags
& CHANNEL_2GHZ
) ? 2 : 1;
1072 * TODO: This array mode correspondes with the index used
1074 * For readability, this should be changed to an enum or #define
1076 switch (chan
->channelFlags
& CHANNEL_ALL_NOTURBO
) {
1078 if (chan
->channel
> 4000 && chan
->channel
< 5260) {
1079 tempOB
= ee
->ee_ob1
;
1080 tempDB
= ee
->ee_db1
;
1081 } else if (chan
->channel
>= 5260 && chan
->channel
< 5500) {
1082 tempOB
= ee
->ee_ob2
;
1083 tempDB
= ee
->ee_db2
;
1084 } else if (chan
->channel
>= 5500 && chan
->channel
< 5725) {
1085 tempOB
= ee
->ee_ob3
;
1086 tempDB
= ee
->ee_db3
;
1087 } else if (chan
->channel
>= 5725) {
1088 tempOB
= ee
->ee_ob4
;
1089 tempDB
= ee
->ee_db4
;
1092 tempOB
= tempDB
= 0;
1095 rfXpdGain
= ee
->ee_xgain
[0];
1096 rfPloSel
= ee
->ee_xpd
[0];
1097 rfPwdXpd
= !ee
->ee_xpd
[0];
1099 ar5211Rf6n7
[5][freqIndex
] =
1100 (ar5211Rf6n7
[5][freqIndex
] & ~0x10000000) |
1101 (ee
->ee_cornerCal
.pd84
<< 28);
1102 ar5211Rf6n7
[6][freqIndex
] =
1103 (ar5211Rf6n7
[6][freqIndex
] & ~0x04000000) |
1104 (ee
->ee_cornerCal
.pd90
<< 26);
1105 ar5211Rf6n7
[21][freqIndex
] =
1106 (ar5211Rf6n7
[21][freqIndex
] & ~0x08) |
1107 (ee
->ee_cornerCal
.gSel
<< 3);
1109 case CHANNEL_CCK
|CHANNEL_2GHZ
:
1110 tempOB
= ee
->ee_obFor24
;
1111 tempDB
= ee
->ee_dbFor24
;
1112 rfXpdGain
= ee
->ee_xgain
[1];
1113 rfPloSel
= ee
->ee_xpd
[1];
1114 rfPwdXpd
= !ee
->ee_xpd
[1];
1116 case CHANNEL_OFDM
|CHANNEL_2GHZ
:
1117 tempOB
= ee
->ee_obFor24g
;
1118 tempDB
= ee
->ee_dbFor24g
;
1119 rfXpdGain
= ee
->ee_xgain
[2];
1120 rfPloSel
= ee
->ee_xpd
[2];
1121 rfPwdXpd
= !ee
->ee_xpd
[2];
1124 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: invalid channel flags 0x%x\n",
1125 __func__
, chan
->channelFlags
);
1129 HALASSERT(1 <= tempOB
&& tempOB
<= 5);
1130 HALASSERT(1 <= tempDB
&& tempDB
<= 5);
1132 /* Set rfXpdGain and rfPwdXpd */
1133 ar5211Rf6n7
[11][freqIndex
] = (ar5211Rf6n7
[11][freqIndex
] & ~0xC0) |
1134 (((ath_hal_reverseBits(rfXpdGain
, 4) << 7) | (rfPwdXpd
<< 6)) & 0xC0);
1135 ar5211Rf6n7
[12][freqIndex
] = (ar5211Rf6n7
[12][freqIndex
] & ~0x07) |
1136 ((ath_hal_reverseBits(rfXpdGain
, 4) >> 1) & 0x07);
1139 ar5211Rf6n7
[12][freqIndex
] = (ar5211Rf6n7
[12][freqIndex
] & ~0x80) |
1140 ((ath_hal_reverseBits(tempOB
, 3) << 7) & 0x80);
1141 ar5211Rf6n7
[13][freqIndex
] = (ar5211Rf6n7
[13][freqIndex
] & ~0x03) |
1142 ((ath_hal_reverseBits(tempOB
, 3) >> 1) & 0x03);
1145 ar5211Rf6n7
[13][freqIndex
] = (ar5211Rf6n7
[13][freqIndex
] & ~0x1C) |
1146 ((ath_hal_reverseBits(tempDB
, 3) << 2) & 0x1C);
1149 ar5211Rf6n7
[17][freqIndex
] = (ar5211Rf6n7
[17][freqIndex
] & ~0x08) |
1150 ((rfPloSel
<< 3) & 0x08);
1152 /* Write the Rf registers 6 & 7 */
1153 for (i
= 0; i
< N(ar5211Rf6n7
); i
++)
1154 OS_REG_WRITE(ah
, ar5211Rf6n7
[i
][0], ar5211Rf6n7
[i
][freqIndex
]);
1156 /* Now that we have reprogrammed rfgain value, clear the flag. */
1157 ahp
->ah_rfgainState
= RFGAIN_INACTIVE
;
1164 ar5211SetAntennaSwitchInternal(struct ath_hal
*ah
, HAL_ANT_SETTING settings
,
1165 const HAL_CHANNEL
*chan
)
1167 #define ANT_SWITCH_TABLE1 0x9960
1168 #define ANT_SWITCH_TABLE2 0x9964
1169 HAL_EEPROM
*ee
= AH_PRIVATE(ah
)->ah_eeprom
;
1170 struct ath_hal_5211
*ahp
= AH5211(ah
);
1171 uint32_t antSwitchA
, antSwitchB
;
1174 switch (chan
->channelFlags
& CHANNEL_ALL_NOTURBO
) {
1175 case CHANNEL_A
: ix
= 0; break;
1176 case CHANNEL_B
: ix
= 1; break;
1177 case CHANNEL_PUREG
: ix
= 2; break;
1179 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: invalid channel flags 0x%x\n",
1180 __func__
, chan
->channelFlags
);
1184 antSwitchA
= ee
->ee_antennaControl
[1][ix
]
1185 | (ee
->ee_antennaControl
[2][ix
] << 6)
1186 | (ee
->ee_antennaControl
[3][ix
] << 12)
1187 | (ee
->ee_antennaControl
[4][ix
] << 18)
1188 | (ee
->ee_antennaControl
[5][ix
] << 24)
1190 antSwitchB
= ee
->ee_antennaControl
[6][ix
]
1191 | (ee
->ee_antennaControl
[7][ix
] << 6)
1192 | (ee
->ee_antennaControl
[8][ix
] << 12)
1193 | (ee
->ee_antennaControl
[9][ix
] << 18)
1194 | (ee
->ee_antennaControl
[10][ix
] << 24)
1197 * For fixed antenna, give the same setting for both switch banks
1200 case HAL_ANT_FIXED_A
:
1201 antSwitchB
= antSwitchA
;
1203 case HAL_ANT_FIXED_B
:
1204 antSwitchA
= antSwitchB
;
1206 case HAL_ANT_VARIABLE
:
1209 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: bad antenna setting %u\n",
1210 __func__
, settings
);
1213 ahp
->ah_diversityControl
= settings
;
1215 OS_REG_WRITE(ah
, ANT_SWITCH_TABLE1
, antSwitchA
);
1216 OS_REG_WRITE(ah
, ANT_SWITCH_TABLE2
, antSwitchB
);
1219 #undef ANT_SWITCH_TABLE1
1220 #undef ANT_SWITCH_TABLE2
1224 * Reads EEPROM header info and programs the device for correct operation
1225 * given the channel value
1228 ar5211SetBoardValues(struct ath_hal
*ah
, HAL_CHANNEL
*chan
)
1230 HAL_EEPROM
*ee
= AH_PRIVATE(ah
)->ah_eeprom
;
1231 struct ath_hal_5211
*ahp
= AH5211(ah
);
1232 int arrayMode
, falseDectectBackoff
;
1234 switch (chan
->channelFlags
& CHANNEL_ALL_NOTURBO
) {
1237 OS_REG_RMW_FIELD(ah
, AR_PHY_FRAME_CTL
,
1238 AR_PHY_FRAME_CTL_TX_CLIP
, ee
->ee_cornerCal
.clip
);
1240 case CHANNEL_CCK
|CHANNEL_2GHZ
:
1243 case CHANNEL_OFDM
|CHANNEL_2GHZ
:
1247 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: invalid channel flags 0x%x\n",
1248 __func__
, chan
->channelFlags
);
1252 /* Set the antenna register(s) correctly for the chip revision */
1253 if (AH_PRIVATE(ah
)->ah_macVersion
< AR_SREV_VERSION_OAHU
) {
1254 OS_REG_WRITE(ah
, AR_PHY(68),
1255 (OS_REG_READ(ah
, AR_PHY(68)) & 0xFFFFFFFC) | 0x3);
1257 OS_REG_WRITE(ah
, AR_PHY(68),
1258 (OS_REG_READ(ah
, AR_PHY(68)) & 0xFFFFFC06) |
1259 (ee
->ee_antennaControl
[0][arrayMode
] << 4) | 0x1);
1261 ar5211SetAntennaSwitchInternal(ah
,
1262 ahp
->ah_diversityControl
, chan
);
1264 /* Set the Noise Floor Thresh on ar5211 devices */
1265 OS_REG_WRITE(ah
, AR_PHY_BASE
+ (90 << 2),
1266 (ee
->ee_noiseFloorThresh
[arrayMode
] & 0x1FF) | (1<<9));
1268 OS_REG_WRITE(ah
, AR_PHY_BASE
+ (17 << 2),
1269 (OS_REG_READ(ah
, AR_PHY_BASE
+ (17 << 2)) & 0xFFFFC07F) |
1270 ((ee
->ee_switchSettling
[arrayMode
] << 7) & 0x3F80));
1271 OS_REG_WRITE(ah
, AR_PHY_BASE
+ (18 << 2),
1272 (OS_REG_READ(ah
, AR_PHY_BASE
+ (18 << 2)) & 0xFFFC0FFF) |
1273 ((ee
->ee_txrxAtten
[arrayMode
] << 12) & 0x3F000));
1274 OS_REG_WRITE(ah
, AR_PHY_BASE
+ (20 << 2),
1275 (OS_REG_READ(ah
, AR_PHY_BASE
+ (20 << 2)) & 0xFFFF0000) |
1276 ((ee
->ee_pgaDesiredSize
[arrayMode
] << 8) & 0xFF00) |
1277 (ee
->ee_adcDesiredSize
[arrayMode
] & 0x00FF));
1278 OS_REG_WRITE(ah
, AR_PHY_BASE
+ (13 << 2),
1279 (ee
->ee_txEndToXPAOff
[arrayMode
] << 24) |
1280 (ee
->ee_txEndToXPAOff
[arrayMode
] << 16) |
1281 (ee
->ee_txFrameToXPAOn
[arrayMode
] << 8) |
1282 ee
->ee_txFrameToXPAOn
[arrayMode
]);
1283 OS_REG_WRITE(ah
, AR_PHY_BASE
+ (10 << 2),
1284 (OS_REG_READ(ah
, AR_PHY_BASE
+ (10 << 2)) & 0xFFFF00FF) |
1285 (ee
->ee_txEndToXLNAOn
[arrayMode
] << 8));
1286 OS_REG_WRITE(ah
, AR_PHY_BASE
+ (25 << 2),
1287 (OS_REG_READ(ah
, AR_PHY_BASE
+ (25 << 2)) & 0xFFF80FFF) |
1288 ((ee
->ee_thresh62
[arrayMode
] << 12) & 0x7F000));
1290 #define NO_FALSE_DETECT_BACKOFF 2
1291 #define CB22_FALSE_DETECT_BACKOFF 6
1293 * False detect backoff - suspected 32 MHz spur causes
1294 * false detects in OFDM, causing Tx Hangs. Decrease
1295 * weak signal sensitivity for this card.
1297 falseDectectBackoff
= NO_FALSE_DETECT_BACKOFF
;
1298 if (AH_PRIVATE(ah
)->ah_eeversion
< AR_EEPROM_VER3_3
) {
1299 if (AH_PRIVATE(ah
)->ah_subvendorid
== 0x1022 &&
1301 falseDectectBackoff
+= CB22_FALSE_DETECT_BACKOFF
;
1303 uint32_t remainder
= chan
->channel
% 32;
1305 if (remainder
&& (remainder
< 10 || remainder
> 22))
1306 falseDectectBackoff
+= ee
->ee_falseDetectBackoff
[arrayMode
];
1308 OS_REG_WRITE(ah
, 0x9924,
1309 (OS_REG_READ(ah
, 0x9924) & 0xFFFFFF01)
1310 | ((falseDectectBackoff
<< 1) & 0xF7));
1313 #undef NO_FALSE_DETECT_BACKOFF
1314 #undef CB22_FALSE_DETECT_BACKOFF
1318 * Set the limit on the overall output power. Used for dynamic
1319 * transmit power control and the like.
1321 * NOTE: The power is passed in is in units of 0.5 dBm.
1324 ar5211SetTxPowerLimit(struct ath_hal
*ah
, uint32_t limit
)
1327 AH_PRIVATE(ah
)->ah_powerLimit
= AH_MIN(limit
, MAX_RATE_POWER
);
1328 OS_REG_WRITE(ah
, AR_PHY_POWER_TX_RATE_MAX
, limit
);
1333 * Sets the transmit power in the baseband for the given
1334 * operating channel and mode.
1337 ar5211SetTransmitPower(struct ath_hal
*ah
, HAL_CHANNEL
*chan
)
1339 HAL_EEPROM
*ee
= AH_PRIVATE(ah
)->ah_eeprom
;
1340 TRGT_POWER_INFO
*pi
;
1341 RD_EDGES_POWER
*rep
;
1342 PCDACS_EEPROM eepromPcdacs
;
1343 u_int nchan
, cfgCtl
;
1346 /* setup the pcdac struct to point to the correct info, based on mode */
1347 switch (chan
->channelFlags
& CHANNEL_ALL_NOTURBO
) {
1349 eepromPcdacs
.numChannels
= ee
->ee_numChannels11a
;
1350 eepromPcdacs
.pChannelList
= ee
->ee_channels11a
;
1351 eepromPcdacs
.pDataPerChannel
= ee
->ee_dataPerChannel11a
;
1352 nchan
= ee
->ee_numTargetPwr_11a
;
1353 pi
= ee
->ee_trgtPwr_11a
;
1355 case CHANNEL_OFDM
|CHANNEL_2GHZ
:
1356 eepromPcdacs
.numChannels
= ee
->ee_numChannels2_4
;
1357 eepromPcdacs
.pChannelList
= ee
->ee_channels11g
;
1358 eepromPcdacs
.pDataPerChannel
= ee
->ee_dataPerChannel11g
;
1359 nchan
= ee
->ee_numTargetPwr_11g
;
1360 pi
= ee
->ee_trgtPwr_11g
;
1362 case CHANNEL_CCK
|CHANNEL_2GHZ
:
1363 eepromPcdacs
.numChannels
= ee
->ee_numChannels2_4
;
1364 eepromPcdacs
.pChannelList
= ee
->ee_channels11b
;
1365 eepromPcdacs
.pDataPerChannel
= ee
->ee_dataPerChannel11b
;
1366 nchan
= ee
->ee_numTargetPwr_11b
;
1367 pi
= ee
->ee_trgtPwr_11b
;
1370 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: invalid channel flags 0x%x\n",
1371 __func__
, chan
->channelFlags
);
1375 ar5211SetPowerTable(ah
, &eepromPcdacs
, chan
->channel
);
1378 /* Match CTL to EEPROM value */
1379 cfgCtl
= ath_hal_getctl(ah
, chan
);
1380 for (i
= 0; i
< ee
->ee_numCtls
; i
++)
1381 if (ee
->ee_ctl
[i
] != 0 && ee
->ee_ctl
[i
] == cfgCtl
) {
1382 rep
= &ee
->ee_rdEdgesPower
[i
* NUM_EDGES
];
1385 ar5211SetRateTable(ah
, rep
, pi
, nchan
, chan
);
1391 * Read the transmit power levels from the structures taken
1392 * from EEPROM. Interpolate read transmit power values for
1393 * this channel. Organize the transmit power values into a
1394 * table for writing into the hardware.
1397 ar5211SetPowerTable(struct ath_hal
*ah
, PCDACS_EEPROM
*pSrcStruct
, uint16_t channel
)
1399 static FULL_PCDAC_STRUCT pcdacStruct
;
1400 static uint16_t pcdacTable
[PWR_TABLE_SIZE
];
1403 uint16_t *pPcdacValues
;
1404 int16_t *pScaledUpDbm
;
1405 int16_t minScaledPwr
;
1406 int16_t maxScaledPwr
;
1408 uint16_t pcdacMin
= 0;
1409 uint16_t pcdacMax
= 63;
1410 uint16_t pcdacTableIndex
;
1411 uint16_t scaledPcdac
;
1415 OS_MEMZERO(&pcdacStruct
, sizeof(FULL_PCDAC_STRUCT
));
1416 OS_MEMZERO(pcdacTable
, sizeof(uint16_t) * PWR_TABLE_SIZE
);
1417 pPcdacValues
= pcdacStruct
.PcdacValues
;
1418 pScaledUpDbm
= pcdacStruct
.PwrValues
;
1420 /* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
1421 for (i
= PCDAC_START
, j
= 0; i
<= PCDAC_STOP
; i
+= PCDAC_STEP
, j
++)
1422 pPcdacValues
[j
] = i
;
1424 pcdacStruct
.numPcdacValues
= j
;
1425 pcdacStruct
.pcdacMin
= PCDAC_START
;
1426 pcdacStruct
.pcdacMax
= PCDAC_STOP
;
1428 /* Fill out the power values for this channel */
1429 for (j
= 0; j
< pcdacStruct
.numPcdacValues
; j
++ )
1430 pScaledUpDbm
[j
] = ar5211GetScaledPower(channel
, pPcdacValues
[j
], pSrcStruct
);
1432 /* Now scale the pcdac values to fit in the 64 entry power table */
1433 minScaledPwr
= pScaledUpDbm
[0];
1434 maxScaledPwr
= pScaledUpDbm
[pcdacStruct
.numPcdacValues
- 1];
1436 /* find minimum and make monotonic */
1437 for (j
= 0; j
< pcdacStruct
.numPcdacValues
; j
++) {
1438 if (minScaledPwr
>= pScaledUpDbm
[j
]) {
1439 minScaledPwr
= pScaledUpDbm
[j
];
1443 * Make the full_hsh monotonically increasing otherwise
1444 * interpolation algorithm will get fooled gotta start
1445 * working from the top, hence i = 63 - j.
1447 i
= (uint16_t)(pcdacStruct
.numPcdacValues
- 1 - j
);
1450 if (pScaledUpDbm
[i
-1] > pScaledUpDbm
[i
]) {
1452 * It could be a glitch, so make the power for
1453 * this pcdac the same as the power from the
1454 * next highest pcdac.
1456 pScaledUpDbm
[i
- 1] = pScaledUpDbm
[i
];
1460 for (j
= 0; j
< pcdacStruct
.numPcdacValues
; j
++)
1461 if (maxScaledPwr
< pScaledUpDbm
[j
]) {
1462 maxScaledPwr
= pScaledUpDbm
[j
];
1466 /* Find the first power level with a pcdac */
1467 pwr
= (uint16_t)(PWR_STEP
* ((minScaledPwr
- PWR_MIN
+ PWR_STEP
/ 2) / PWR_STEP
) + PWR_MIN
);
1469 /* Write all the first pcdac entries based off the pcdacMin */
1470 pcdacTableIndex
= 0;
1471 for (i
= 0; i
< (2 * (pwr
- PWR_MIN
) / EEP_SCALE
+ 1); i
++)
1472 pcdacTable
[pcdacTableIndex
++] = pcdacMin
;
1475 while (pwr
< pScaledUpDbm
[pcdacStruct
.numPcdacValues
- 1]) {
1477 /* stop if dbM > max_power_possible */
1478 while (pwr
< pScaledUpDbm
[pcdacStruct
.numPcdacValues
- 1] &&
1479 (pwr
- pScaledUpDbm
[i
])*(pwr
- pScaledUpDbm
[i
+1]) > 0)
1481 /* scale by 2 and add 1 to enable round up or down as needed */
1482 scaledPcdac
= (uint16_t)(ar5211GetInterpolatedValue(pwr
,
1483 pScaledUpDbm
[i
], pScaledUpDbm
[i
+1],
1484 (uint16_t)(pPcdacValues
[i
] * 2),
1485 (uint16_t)(pPcdacValues
[i
+1] * 2), 0) + 1);
1487 pcdacTable
[pcdacTableIndex
] = scaledPcdac
/ 2;
1488 if (pcdacTable
[pcdacTableIndex
] > pcdacMax
)
1489 pcdacTable
[pcdacTableIndex
] = pcdacMax
;
1493 /* Write all the last pcdac entries based off the last valid pcdac */
1494 while (pcdacTableIndex
< PWR_TABLE_SIZE
) {
1495 pcdacTable
[pcdacTableIndex
] = pcdacTable
[pcdacTableIndex
- 1];
1499 /* Finally, write the power values into the baseband power table */
1500 addr
= AR_PHY_BASE
+ (608 << 2);
1501 for (i
= 0; i
< 32; i
++) {
1502 temp32
= 0xffff & ((pcdacTable
[2 * i
+ 1] << 8) | 0xff);
1503 temp32
= (temp32
<< 16) | (0xffff & ((pcdacTable
[2 * i
] << 8) | 0xff));
1504 OS_REG_WRITE(ah
, addr
, temp32
);
1511 * Set the transmit power in the baseband for the given
1512 * operating channel and mode.
1515 ar5211SetRateTable(struct ath_hal
*ah
, RD_EDGES_POWER
*pRdEdgesPower
,
1516 TRGT_POWER_INFO
*pPowerInfo
, uint16_t numChannels
,
1519 HAL_EEPROM
*ee
= AH_PRIVATE(ah
)->ah_eeprom
;
1520 struct ath_hal_5211
*ahp
= AH5211(ah
);
1521 static uint16_t ratesArray
[NUM_RATES
];
1522 static const uint16_t tpcScaleReductionTable
[5] =
1523 { 0, 3, 6, 9, MAX_RATE_POWER
};
1525 uint16_t *pRatesPower
;
1526 uint16_t lowerChannel
= 0, lowerIndex
=0, lowerPower
=0;
1527 uint16_t upperChannel
= 0, upperIndex
=0, upperPower
=0;
1528 uint16_t twiceMaxEdgePower
=63;
1529 uint16_t twicePower
= 0;
1530 uint16_t i
, numEdges
;
1531 uint16_t tempChannelList
[NUM_EDGES
]; /* temp array for holding edge channels */
1532 uint16_t twiceMaxRDPower
;
1533 int16_t scaledPower
= 0; /* for gcc -O2 */
1534 uint16_t mask
= 0x3f;
1535 HAL_BOOL paPreDEnable
= 0;
1536 int8_t twiceAntennaGain
, twiceAntennaReduction
= 0;
1538 pRatesPower
= ratesArray
;
1539 twiceMaxRDPower
= chan
->maxRegTxPower
* 2;
1541 if (IS_CHAN_5GHZ(chan
)) {
1542 twiceAntennaGain
= ee
->ee_antennaGainMax
[0];
1544 twiceAntennaGain
= ee
->ee_antennaGainMax
[1];
1547 twiceAntennaReduction
= ath_hal_getantennareduction(ah
, chan
, twiceAntennaGain
);
1549 if (pRdEdgesPower
) {
1550 /* Get the edge power */
1551 for (i
= 0; i
< NUM_EDGES
; i
++) {
1552 if (pRdEdgesPower
[i
].rdEdge
== 0)
1554 tempChannelList
[i
] = pRdEdgesPower
[i
].rdEdge
;
1558 ar5211GetLowerUpperValues(chan
->channel
, tempChannelList
,
1559 numEdges
, &lowerChannel
, &upperChannel
);
1560 /* Get the index for this channel */
1561 for (i
= 0; i
< numEdges
; i
++)
1562 if (lowerChannel
== tempChannelList
[i
])
1564 HALASSERT(i
!= numEdges
);
1566 if ((lowerChannel
== upperChannel
&&
1567 lowerChannel
== chan
->channel
) ||
1568 pRdEdgesPower
[i
].flag
) {
1569 twiceMaxEdgePower
= pRdEdgesPower
[i
].twice_rdEdgePower
;
1570 HALASSERT(twiceMaxEdgePower
> 0);
1574 /* extrapolate the power values for the test Groups */
1575 for (i
= 0; i
< numChannels
; i
++)
1576 tempChannelList
[i
] = pPowerInfo
[i
].testChannel
;
1578 ar5211GetLowerUpperValues(chan
->channel
, tempChannelList
,
1579 numChannels
, &lowerChannel
, &upperChannel
);
1581 /* get the index for the channel */
1582 for (i
= 0; i
< numChannels
; i
++) {
1583 if (lowerChannel
== tempChannelList
[i
])
1585 if (upperChannel
== tempChannelList
[i
]) {
1591 for (i
= 0; i
< NUM_RATES
; i
++) {
1592 if (IS_CHAN_OFDM(chan
)) {
1593 /* power for rates 6,9,12,18,24 is all the same */
1595 lowerPower
= pPowerInfo
[lowerIndex
].twicePwr6_24
;
1596 upperPower
= pPowerInfo
[upperIndex
].twicePwr6_24
;
1597 } else if (i
== 5) {
1598 lowerPower
= pPowerInfo
[lowerIndex
].twicePwr36
;
1599 upperPower
= pPowerInfo
[upperIndex
].twicePwr36
;
1600 } else if (i
== 6) {
1601 lowerPower
= pPowerInfo
[lowerIndex
].twicePwr48
;
1602 upperPower
= pPowerInfo
[upperIndex
].twicePwr48
;
1603 } else if (i
== 7) {
1604 lowerPower
= pPowerInfo
[lowerIndex
].twicePwr54
;
1605 upperPower
= pPowerInfo
[upperIndex
].twicePwr54
;
1611 lowerPower
= pPowerInfo
[lowerIndex
].twicePwr6_24
;
1612 upperPower
= pPowerInfo
[upperIndex
].twicePwr6_24
;
1616 lowerPower
= pPowerInfo
[lowerIndex
].twicePwr36
;
1617 upperPower
= pPowerInfo
[upperIndex
].twicePwr36
;
1621 lowerPower
= pPowerInfo
[lowerIndex
].twicePwr48
;
1622 upperPower
= pPowerInfo
[upperIndex
].twicePwr48
;
1626 lowerPower
= pPowerInfo
[lowerIndex
].twicePwr54
;
1627 upperPower
= pPowerInfo
[upperIndex
].twicePwr54
;
1632 twicePower
= ar5211GetInterpolatedValue(chan
->channel
,
1633 lowerChannel
, upperChannel
, lowerPower
, upperPower
, 0);
1635 /* Reduce power by band edge restrictions */
1636 twicePower
= AH_MIN(twicePower
, twiceMaxEdgePower
);
1639 * If turbo is set, reduce power to keep power
1640 * consumption under 2 Watts. Note that we always do
1641 * this unless specially configured. Then we limit
1642 * power only for non-AP operation.
1644 if (IS_CHAN_TURBO(chan
) &&
1645 AH_PRIVATE(ah
)->ah_eeversion
>= AR_EEPROM_VER3_1
1646 #ifdef AH_ENABLE_AP_SUPPORT
1647 && AH_PRIVATE(ah
)->ah_opmode
!= HAL_M_HOSTAP
1650 twicePower
= AH_MIN(twicePower
, ee
->ee_turbo2WMaxPower5
);
1653 /* Reduce power by max regulatory domain allowed restrictions */
1654 pRatesPower
[i
] = AH_MIN(twicePower
, twiceMaxRDPower
- twiceAntennaReduction
);
1656 /* Use 6 Mb power level for transmit power scaling reduction */
1657 /* We don't want to reduce higher rates if its not needed */
1659 scaledPower
= pRatesPower
[0] -
1660 (tpcScaleReductionTable
[AH_PRIVATE(ah
)->ah_tpScale
] * 2);
1661 if (scaledPower
< 1)
1665 pRatesPower
[i
] = AH_MIN(pRatesPower
[i
], scaledPower
);
1668 /* Record txPower at Rate 6 for info gathering */
1669 ahp
->ah_tx6PowerInHalfDbm
= pRatesPower
[0];
1672 HALDEBUG(ah
, HAL_DEBUG_RESET
,
1673 "%s: final output power setting %d MHz:\n",
1674 __func__
, chan
->channel
);
1675 HALDEBUG(ah
, HAL_DEBUG_RESET
,
1676 "6 Mb %d dBm, MaxRD: %d dBm, MaxEdge %d dBm\n",
1677 scaledPower
/ 2, twiceMaxRDPower
/ 2, twiceMaxEdgePower
/ 2);
1678 HALDEBUG(ah
, HAL_DEBUG_RESET
, "TPC Scale %d dBm - Ant Red %d dBm\n",
1679 tpcScaleReductionTable
[AH_PRIVATE(ah
)->ah_tpScale
] * 2,
1680 twiceAntennaReduction
/ 2);
1681 if (IS_CHAN_TURBO(chan
) &&
1682 AH_PRIVATE(ah
)->ah_eeversion
>= AR_EEPROM_VER3_1
)
1683 HALDEBUG(ah
, HAL_DEBUG_RESET
, "Max Turbo %d dBm\n",
1684 ee
->ee_turbo2WMaxPower5
);
1685 HALDEBUG(ah
, HAL_DEBUG_RESET
,
1686 " %2d | %2d | %2d | %2d | %2d | %2d | %2d | %2d dBm\n",
1687 pRatesPower
[0] / 2, pRatesPower
[1] / 2, pRatesPower
[2] / 2,
1688 pRatesPower
[3] / 2, pRatesPower
[4] / 2, pRatesPower
[5] / 2,
1689 pRatesPower
[6] / 2, pRatesPower
[7] / 2);
1690 #endif /* AH_DEBUG */
1692 /* Write the power table into the hardware */
1693 OS_REG_WRITE(ah
, AR_PHY_POWER_TX_RATE1
,
1694 ((paPreDEnable
& 1)<< 30) | ((pRatesPower
[3] & mask
) << 24) |
1695 ((paPreDEnable
& 1)<< 22) | ((pRatesPower
[2] & mask
) << 16) |
1696 ((paPreDEnable
& 1)<< 14) | ((pRatesPower
[1] & mask
) << 8) |
1697 ((paPreDEnable
& 1)<< 6 ) | (pRatesPower
[0] & mask
));
1698 OS_REG_WRITE(ah
, AR_PHY_POWER_TX_RATE2
,
1699 ((paPreDEnable
& 1)<< 30) | ((pRatesPower
[7] & mask
) << 24) |
1700 ((paPreDEnable
& 1)<< 22) | ((pRatesPower
[6] & mask
) << 16) |
1701 ((paPreDEnable
& 1)<< 14) | ((pRatesPower
[5] & mask
) << 8) |
1702 ((paPreDEnable
& 1)<< 6 ) | (pRatesPower
[4] & mask
));
1704 /* set max power to the power value at rate 6 */
1705 ar5211SetTxPowerLimit(ah
, pRatesPower
[0]);
1707 AH_PRIVATE(ah
)->ah_maxPowerLevel
= pRatesPower
[0];
1711 * Get or interpolate the pcdac value from the calibrated data
1714 ar5211GetScaledPower(uint16_t channel
, uint16_t pcdacValue
, const PCDACS_EEPROM
*pSrcStruct
)
1716 uint16_t powerValue
;
1717 uint16_t lFreq
= 0, rFreq
= 0; /* left and right frequency values */
1718 uint16_t llPcdac
= 0, ulPcdac
= 0; /* lower and upper left pcdac values */
1719 uint16_t lrPcdac
= 0, urPcdac
= 0; /* lower and upper right pcdac values */
1720 uint16_t lPwr
= 0, uPwr
= 0; /* lower and upper temp pwr values */
1721 uint16_t lScaledPwr
, rScaledPwr
; /* left and right scaled power */
1723 if (ar5211FindValueInList(channel
, pcdacValue
, pSrcStruct
, &powerValue
))
1724 /* value was copied from srcStruct */
1727 ar5211GetLowerUpperValues(channel
, pSrcStruct
->pChannelList
,
1728 pSrcStruct
->numChannels
, &lFreq
, &rFreq
);
1729 ar5211GetLowerUpperPcdacs(pcdacValue
, lFreq
, pSrcStruct
,
1730 &llPcdac
, &ulPcdac
);
1731 ar5211GetLowerUpperPcdacs(pcdacValue
, rFreq
, pSrcStruct
,
1732 &lrPcdac
, &urPcdac
);
1734 /* get the power index for the pcdac value */
1735 ar5211FindValueInList(lFreq
, llPcdac
, pSrcStruct
, &lPwr
);
1736 ar5211FindValueInList(lFreq
, ulPcdac
, pSrcStruct
, &uPwr
);
1737 lScaledPwr
= ar5211GetInterpolatedValue(pcdacValue
,
1738 llPcdac
, ulPcdac
, lPwr
, uPwr
, 0);
1740 ar5211FindValueInList(rFreq
, lrPcdac
, pSrcStruct
, &lPwr
);
1741 ar5211FindValueInList(rFreq
, urPcdac
, pSrcStruct
, &uPwr
);
1742 rScaledPwr
= ar5211GetInterpolatedValue(pcdacValue
,
1743 lrPcdac
, urPcdac
, lPwr
, uPwr
, 0);
1745 return ar5211GetInterpolatedValue(channel
, lFreq
, rFreq
,
1746 lScaledPwr
, rScaledPwr
, 0);
1750 * Find the value from the calibrated source data struct
1753 ar5211FindValueInList(uint16_t channel
, uint16_t pcdacValue
,
1754 const PCDACS_EEPROM
*pSrcStruct
, uint16_t *powerValue
)
1756 const DATA_PER_CHANNEL
*pChannelData
;
1757 const uint16_t *pPcdac
;
1760 pChannelData
= pSrcStruct
->pDataPerChannel
;
1761 for (i
= 0; i
< pSrcStruct
->numChannels
; i
++ ) {
1762 if (pChannelData
->channelValue
== channel
) {
1763 pPcdac
= pChannelData
->PcdacValues
;
1764 for (j
= 0; j
< pChannelData
->numPcdacValues
; j
++ ) {
1765 if (*pPcdac
== pcdacValue
) {
1766 *powerValue
= pChannelData
->PwrValues
[j
];
1778 * Returns interpolated or the scaled up interpolated value
1781 ar5211GetInterpolatedValue(uint16_t target
,
1782 uint16_t srcLeft
, uint16_t srcRight
,
1783 uint16_t targetLeft
, uint16_t targetRight
,
1788 uint16_t scaleValue
= EEP_SCALE
;
1790 /* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
1791 if ((targetLeft
* targetRight
) == 0)
1796 if (srcRight
!= srcLeft
) {
1798 * Note the ratio always need to be scaled,
1799 * since it will be a fraction.
1801 lRatio
= (target
- srcLeft
) * EEP_SCALE
/ (srcRight
- srcLeft
);
1803 /* Return as Left target if value would be negative */
1804 rv
= targetLeft
* (scaleUp
? EEP_SCALE
: 1);
1805 } else if (lRatio
> EEP_SCALE
) {
1806 /* Return as Right target if Ratio is greater than 100% (SCALE) */
1807 rv
= targetRight
* (scaleUp
? EEP_SCALE
: 1);
1809 rv
= (lRatio
* targetRight
+ (EEP_SCALE
- lRatio
) *
1810 targetLeft
) / scaleValue
;
1821 * Look for value being within 0.1 of the search values
1822 * however, NDIS can't do float calculations, so multiply everything
1823 * up by EEP_SCALE so can do integer arithmatic
1825 * INPUT value -value to search for
1826 * INPUT pList -ptr to the list to search
1827 * INPUT listSize -number of entries in list
1828 * OUTPUT pLowerValue -return the lower value
1829 * OUTPUT pUpperValue -return the upper value
1832 ar5211GetLowerUpperValues(uint16_t value
,
1833 const uint16_t *pList
, uint16_t listSize
,
1834 uint16_t *pLowerValue
, uint16_t *pUpperValue
)
1836 const uint16_t listEndValue
= *(pList
+ listSize
- 1);
1837 uint32_t target
= value
* EEP_SCALE
;
1841 * See if value is lower than the first value in the list
1842 * if so return first value
1844 if (target
< (uint32_t)(*pList
* EEP_SCALE
- EEP_DELTA
)) {
1845 *pLowerValue
= *pList
;
1846 *pUpperValue
= *pList
;
1851 * See if value is greater than last value in list
1852 * if so return last value
1854 if (target
> (uint32_t)(listEndValue
* EEP_SCALE
+ EEP_DELTA
)) {
1855 *pLowerValue
= listEndValue
;
1856 *pUpperValue
= listEndValue
;
1860 /* look for value being near or between 2 values in list */
1861 for (i
= 0; i
< listSize
; i
++) {
1863 * If value is close to the current value of the list
1864 * then target is not between values, it is one of the values
1866 if (abs(pList
[i
] * EEP_SCALE
- (int32_t) target
) < EEP_DELTA
) {
1867 *pLowerValue
= pList
[i
];
1868 *pUpperValue
= pList
[i
];
1873 * Look for value being between current value and next value
1874 * if so return these 2 values
1876 if (target
< (uint32_t)(pList
[i
+ 1] * EEP_SCALE
- EEP_DELTA
)) {
1877 *pLowerValue
= pList
[i
];
1878 *pUpperValue
= pList
[i
+ 1];
1885 * Get the upper and lower pcdac given the channel and the pcdac
1886 * used in the search
1889 ar5211GetLowerUpperPcdacs(uint16_t pcdac
, uint16_t channel
,
1890 const PCDACS_EEPROM
*pSrcStruct
,
1891 uint16_t *pLowerPcdac
, uint16_t *pUpperPcdac
)
1893 const DATA_PER_CHANNEL
*pChannelData
;
1896 /* Find the channel information */
1897 pChannelData
= pSrcStruct
->pDataPerChannel
;
1898 for (i
= 0; i
< pSrcStruct
->numChannels
; i
++) {
1899 if (pChannelData
->channelValue
== channel
)
1903 ar5211GetLowerUpperValues(pcdac
, pChannelData
->PcdacValues
,
1904 pChannelData
->numPcdacValues
, pLowerPcdac
, pUpperPcdac
);
1907 #define DYN_ADJ_UP_MARGIN 15
1908 #define DYN_ADJ_LO_MARGIN 20
1910 static const GAIN_OPTIMIZATION_LADDER gainLadder
= {
1911 9, /* numStepsInLadder */
1912 4, /* defaultStepNum */
1913 { { {4, 1, 1, 1}, 6, "FG8"},
1914 { {4, 0, 1, 1}, 4, "FG7"},
1915 { {3, 1, 1, 1}, 3, "FG6"},
1916 { {4, 0, 0, 1}, 1, "FG5"},
1917 { {4, 1, 1, 0}, 0, "FG4"}, /* noJack */
1918 { {4, 0, 1, 0}, -2, "FG3"}, /* halfJack */
1919 { {3, 1, 1, 0}, -3, "FG2"}, /* clip3 */
1920 { {4, 0, 0, 0}, -4, "FG1"}, /* noJack */
1921 { {2, 1, 1, 0}, -6, "FG0"} /* clip2 */
1926 * Initialize the gain structure to good values
1929 ar5211InitializeGainValues(struct ath_hal
*ah
)
1931 struct ath_hal_5211
*ahp
= AH5211(ah
);
1932 GAIN_VALUES
*gv
= &ahp
->ah_gainValues
;
1934 /* initialize gain optimization values */
1935 gv
->currStepNum
= gainLadder
.defaultStepNum
;
1936 gv
->currStep
= &gainLadder
.optStep
[gainLadder
.defaultStepNum
];
1937 gv
->active
= AH_TRUE
;
1943 ar5211InvalidGainReadback(struct ath_hal
*ah
, GAIN_VALUES
*gv
)
1945 HAL_CHANNEL_INTERNAL
*chan
= AH_PRIVATE(ah
)->ah_curchan
;
1947 uint32_t L1
, L2
, L3
, L4
;
1949 if (IS_CHAN_CCK(chan
)) {
1965 gv
->loTrig
= L1
+ DYN_ADJ_LO_MARGIN
;
1966 gv
->hiTrig
= L4
- DYN_ADJ_UP_MARGIN
;
1970 return !((g
>= L1
&& g
<= L2
) || (g
>= L3
&& g
<= L4
));
1974 * Enable the probe gain check on the next packet
1977 ar5211RequestRfgain(struct ath_hal
*ah
)
1979 struct ath_hal_5211
*ahp
= AH5211(ah
);
1981 /* Enable the gain readback probe */
1982 OS_REG_WRITE(ah
, AR_PHY_PAPD_PROBE
,
1983 SM(ahp
->ah_tx6PowerInHalfDbm
, AR_PHY_PAPD_PROBE_POWERTX
)
1984 | AR_PHY_PAPD_PROBE_NEXT_TX
);
1986 ahp
->ah_rfgainState
= HAL_RFGAIN_READ_REQUESTED
;
1990 * Exported call to check for a recent gain reading and return
1991 * the current state of the thermal calibration gain engine.
1994 ar5211GetRfgain(struct ath_hal
*ah
)
1996 struct ath_hal_5211
*ahp
= AH5211(ah
);
1997 GAIN_VALUES
*gv
= &ahp
->ah_gainValues
;
2001 return HAL_RFGAIN_INACTIVE
;
2003 if (ahp
->ah_rfgainState
== HAL_RFGAIN_READ_REQUESTED
) {
2004 /* Caller had asked to setup a new reading. Check it. */
2005 rddata
= OS_REG_READ(ah
, AR_PHY_PAPD_PROBE
);
2007 if ((rddata
& AR_PHY_PAPD_PROBE_NEXT_TX
) == 0) {
2008 /* bit got cleared, we have a new reading. */
2009 gv
->currGain
= rddata
>> AR_PHY_PAPD_PROBE_GAINF_S
;
2010 /* inactive by default */
2011 ahp
->ah_rfgainState
= HAL_RFGAIN_INACTIVE
;
2013 if (!ar5211InvalidGainReadback(ah
, gv
) &&
2014 ar5211IsGainAdjustNeeded(ah
, gv
) &&
2015 ar5211AdjustGain(ah
, gv
) > 0) {
2017 * Change needed. Copy ladder info
2020 ar5211SetRfgain(ah
, gv
);
2021 ahp
->ah_rfgainState
= HAL_RFGAIN_NEED_CHANGE
;
2025 return ahp
->ah_rfgainState
;
2029 * Check to see if our readback gain level sits within the linear
2030 * region of our current variable attenuation window
2033 ar5211IsGainAdjustNeeded(struct ath_hal
*ah
, const GAIN_VALUES
*gv
)
2035 return (gv
->currGain
<= gv
->loTrig
|| gv
->currGain
>= gv
->hiTrig
);
2039 * Move the rabbit ears in the correct direction.
2042 ar5211AdjustGain(struct ath_hal
*ah
, GAIN_VALUES
*gv
)
2044 /* return > 0 for valid adjustments. */
2048 gv
->currStep
= &gainLadder
.optStep
[gv
->currStepNum
];
2049 if (gv
->currGain
>= gv
->hiTrig
) {
2050 if (gv
->currStepNum
== 0) {
2051 HALDEBUG(ah
, HAL_DEBUG_RFPARAM
,
2052 "%s: Max gain limit.\n", __func__
);
2055 HALDEBUG(ah
, HAL_DEBUG_RFPARAM
,
2056 "%s: Adding gain: currG=%d [%s] --> ",
2057 __func__
, gv
->currGain
, gv
->currStep
->stepName
);
2058 gv
->targetGain
= gv
->currGain
;
2059 while (gv
->targetGain
>= gv
->hiTrig
&& gv
->currStepNum
> 0) {
2060 gv
->targetGain
-= 2 * (gainLadder
.optStep
[--(gv
->currStepNum
)].stepGain
-
2061 gv
->currStep
->stepGain
);
2062 gv
->currStep
= &gainLadder
.optStep
[gv
->currStepNum
];
2064 HALDEBUG(ah
, HAL_DEBUG_RFPARAM
, "targG=%d [%s]\n",
2065 gv
->targetGain
, gv
->currStep
->stepName
);
2068 if (gv
->currGain
<= gv
->loTrig
) {
2069 if (gv
->currStepNum
== gainLadder
.numStepsInLadder
-1) {
2070 HALDEBUG(ah
, HAL_DEBUG_RFPARAM
,
2071 "%s: Min gain limit.\n", __func__
);
2074 HALDEBUG(ah
, HAL_DEBUG_RFPARAM
,
2075 "%s: Deducting gain: currG=%d [%s] --> ",
2076 __func__
, gv
->currGain
, gv
->currStep
->stepName
);
2077 gv
->targetGain
= gv
->currGain
;
2078 while (gv
->targetGain
<= gv
->loTrig
&&
2079 gv
->currStepNum
< (gainLadder
.numStepsInLadder
- 1)) {
2080 gv
->targetGain
-= 2 *
2081 (gainLadder
.optStep
[++(gv
->currStepNum
)].stepGain
- gv
->currStep
->stepGain
);
2082 gv
->currStep
= &gainLadder
.optStep
[gv
->currStepNum
];
2084 HALDEBUG(ah
, HAL_DEBUG_RFPARAM
, "targG=%d [%s]\n",
2085 gv
->targetGain
, gv
->currStep
->stepName
);
2088 return 0; /* caller didn't call needAdjGain first */
2092 * Adjust the 5GHz EEPROM information with the desired calibration values.
2095 ar5211SetRfgain(struct ath_hal
*ah
, const GAIN_VALUES
*gv
)
2097 HAL_EEPROM
*ee
= AH_PRIVATE(ah
)->ah_eeprom
;
2101 ee
->ee_cornerCal
.clip
= gv
->currStep
->paramVal
[0]; /* bb_tx_clip */
2102 ee
->ee_cornerCal
.pd90
= gv
->currStep
->paramVal
[1]; /* rf_pwd_90 */
2103 ee
->ee_cornerCal
.pd84
= gv
->currStep
->paramVal
[2]; /* rf_pwd_84 */
2104 ee
->ee_cornerCal
.gSel
= gv
->currStep
->paramVal
[3]; /* rf_rfgainsel */
2108 ar5211SetOperatingMode(struct ath_hal
*ah
, int opmode
)
2110 struct ath_hal_5211
*ahp
= AH5211(ah
);
2113 val
= OS_REG_READ(ah
, AR_STA_ID1
) & 0xffff;
2116 OS_REG_WRITE(ah
, AR_STA_ID1
, val
2118 | AR_STA_ID1_RTS_USE_DEF
2119 | ahp
->ah_staId1Defaults
);
2122 OS_REG_WRITE(ah
, AR_STA_ID1
, val
2124 | AR_STA_ID1_DESC_ANTENNA
2125 | ahp
->ah_staId1Defaults
);
2129 OS_REG_WRITE(ah
, AR_STA_ID1
, val
2130 | AR_STA_ID1_DEFAULT_ANTENNA
2131 | ahp
->ah_staId1Defaults
);
2137 ar5211SetPCUConfig(struct ath_hal
*ah
)
2139 ar5211SetOperatingMode(ah
, AH_PRIVATE(ah
)->ah_opmode
);