Update fmda_rnn_spatial.ipynb
[notebooks.git] / fmda / moisture_models.py
blob4c38d27ac9dfe764a1525ee18f8e07c616d2acce
1 import numpy as np
2 import math
3 import matplotlib.pyplot as plt
4 import copy
7 def model_decay(m0,E,partials=0,T1=0.1,tlen=1):
8 # Arguments:
9 # m0 fuel moisture content at start dimensionless, unit (1)
10 # E fuel moisture eqilibrium (1)
11 # partials=0: return m1 = fuel moisture contents after time tlen (1)
12 # =1: return m1, dm0/dm0
13 # =2: return m1, dm1/dm0, dm1/dE
14 # =3: return m1, dm1/dm0, dm1/dE dm1/dT1
15 # T1 1/T, where T is the time constant approaching the equilibrium
16 # default 0.1/hour
17 # tlen the time interval length, default 1 hour
19 exp_t = np.exp(-tlen*T1) # compute this subexpression only once
20 m1 = E + (m0 - E)*exp_t # the solution at end
21 if partials==0:
22 return m1
23 dm1_dm0 = exp_t
24 if partials==1:
25 return m1, dm1_dm0 # return value and Jacobian
26 dm1_dE = 1 - exp_t
27 if partials==2:
28 return m1, dm1_dm0, dm1_dE
29 dm1_dT1 = -(m0 - E)*tlen*exp_t # partial derivative dm1 / dT1
30 if partials==3:
31 return m1, dm1_dm0, dm1_dE, dm1_dT1 # return value and all partial derivatives wrt m1 and parameters
32 raise('Bad arg partials')
35 def ext_kf(u,P,F,Q=0,d=None,H=None,R=None):
36 """
37 One step of the extended Kalman filter.
38 If there is no data, only advance in time.
39 :param u: the state vector, shape n
40 :param P: the state covariance, shape (n,n)
41 :param F: the model function, args vector u, returns F(u) and Jacobian J(u)
42 :param Q: the process model noise covariance, shape (n,n)
43 :param d: data vector, shape (m). If none, only advance in time
44 :param H: observation matrix, shape (m,n)
45 :param R: data error covariance, shape (n,n)
46 :return ua: the analysis state vector, shape (n)
47 :return Pa: the analysis covariance matrix, shape (n,n)
48 """
49 def d2(a):
50 return np.atleast_2d(a) # convert to at least 2d array
52 def d1(a):
53 return np.atleast_1d(a) # convert to at least 1d array
55 # forecast
56 uf, J = F(u) # advance the model state in time and get the Jacobian
57 uf = d1(uf) # if scalar, make state a 1D array
58 J = d2(J) # if scalar, make jacobian a 2D array
59 P = d2(P) # if scalar, make Jacobian as 2D array
60 Pf = d2(J.T @ P) @ J + Q # advance the state covariance Pf = J' * P * J + Q
61 # analysis
62 if d is None or not d.size : # no data, no analysis
63 return uf, Pf
64 # K = P H' * inverse(H * P * H' + R) = (inverse(H * P * H' + R)*(H P))'
65 H = d2(H)
66 HP = d2(H @ P) # precompute a part used twice
67 K = d2(np.linalg.solve( d2(HP @ H.T) + R, HP)).T # Kalman gain
68 # print('H',H)
69 # print('K',K)
70 res = d1(H @ d1(uf) - d) # res = H*uf - d
71 ua = uf - K @ res # analysis mean uf - K*res
72 Pa = Pf - K @ d2(H @ P) # analysis covariance
73 return ua, d2(Pa)
75 ### Define model function with drying, wetting, and rain equilibria
77 # Parameters
78 r0 = 0.05 # threshold rainfall [mm/h]
79 rs = 8.0 # saturation rain intensity [mm/h]
80 Tr = 14.0 # time constant for rain wetting model [h]
81 S = 250 # saturation intensity [dimensionless]
82 T = 10.0 # time constant for wetting/drying
84 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
86 def model_moisture(m0,Eqd,Eqw,r,t=None,partials=0,T=10.0,tlen=1.0):
87 # arguments:
88 # m0 starting fuel moistureb (%s
89 # Eqd drying equilibrium (%)
90 # Eqw wetting equilibrium (%)
91 # r rain intensity (mm/h)
92 # t time
93 # partials = 0, 1, 2
94 # returns: same as model_decay
95 # if partials==0: m1 = fuel moisture contents after time 1 hour
96 # ==1: m1, dm1/dm0
97 # ==2: m1, dm1/dm0, dm1/dE
99 if r > r0:
100 # print('raining')
101 E = S
102 T1 = (1.0 - np.exp(- (r - r0) / rs)) / Tr
103 elif m0 <= Eqw:
104 # print('wetting')
105 E=Eqw
106 T1 = 1.0/T
107 elif m0 >= Eqd:
108 # print('drying')
109 E=Eqd
110 T1 = 1.0/T
111 else: # no change'
112 E = m0
113 T1=0.0
114 exp_t = np.exp(-tlen*T1)
115 m1 = E + (m0 - E)*exp_t
116 dm1_dm0 = exp_t
117 dm1_dE = 1 - exp_t
118 #if t>=933 and t < 940:
119 # print('t,Eqw,Eqd,r,T1,E,m0,m1,dm1_dm0,dm1_dE',
120 # t,Eqw,Eqd,r,T1,E,m0,m1,dm1_dm0,dm1_dE)
121 if partials==0:
122 return m1
123 if partials==1:
124 return m1, dm1_dm0
125 if partials==2:
126 return m1, dm1_dm0, dm1_dE
127 raise('bad partials')
129 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
131 ## NOT TESTED
132 def model_moisture_run(Eqd,Eqw,r,hours=None,T=10.0,tlen=1.0):
133 # for arrays of FMC model input run the fuel moisture model
134 if hours is None:
135 hours = min(len(Eqd),len(Eqw),len(r))
136 m = np.zeros(hours)
137 m[0]=(Eqd[0]+Eqw[0])/2
138 for k in range(hours-1):
139 m[k+1]=model_moisture(m[k],Eqd[k],Eqw[k],r[k],T=T,tlen=tlen)
140 return m
142 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
144 def model_augmented(u0,Ed,Ew,r,t):
145 # state u is the vector [m,dE] with dE correction to equilibria Ed and Ew at t
147 m0, Ec = u0 # decompose state u0
148 # reuse model_moisture(m0,Eqd,Eqw,r,partials=0):
149 # arguments:
150 # m0 starting fuel moistureb (1)
151 # Ed drying equilibrium (1)
152 # Ew wetting equilibrium (1)
153 # r rain intensity (mm/h)
154 # partials = 0, 1, 2
155 # returns: same as model_decay
156 # if partials==0: m1 = fuel moisture contents after time 1 hour
157 # ==1: m1, dm0/dm0
158 # ==2: m1, dm1/dm0, dm1/dE
159 m1, dm1_dm0, dm1_dE = model_moisture(m0,Ed + Ec, Ew + Ec, r, t, partials=2)
160 u1 = np.array([m1,Ec]) # dE is just copied
161 J = np.array([[dm1_dm0, dm1_dE],
162 [0. , 1.]])
163 return u1, J
165 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
166 ### Default Uncertainty Matrices
167 Q = np.array([[1e-3, 0.],
168 [0, 1e-3]]) # process noise covariance
169 H = np.array([[1., 0.]]) # first component observed
170 R = np.array([1e-3]) # data variance
172 def run_augmented_kf(dat0,h2=None,hours=None, H=H, Q=Q, R=R):
173 dat = copy.deepcopy(dat0)
175 if h2 is None:
176 h2 = int(dat['h2'])
177 if hours is None:
178 hours = int(dat['hours'])
180 d = dat['y']
181 feats = dat['features_list']
182 Ed = dat['X'][:,feats.index('Ed')]
183 Ew = dat['X'][:,feats.index('Ew')]
184 rain = dat['X'][:,feats.index('rain')]
186 u = np.zeros((2,hours))
187 u[:,0]=[0.1,0.0] # initialize,background state
188 P = np.zeros((2,2,hours))
189 P[:,:,0] = np.array([[1e-3, 0.],
190 [0., 1e-3]]) # background state covariance
191 # Q = np.array([[1e-3, 0.],
192 # [0, 1e-3]]) # process noise covariance
193 # H = np.array([[1., 0.]]) # first component observed
194 # R = np.array([1e-3]) # data variance
196 for t in range(1,h2):
197 # use lambda construction to pass additional arguments to the model
198 u[:,t],P[:,:,t] = ext_kf(u[:,t-1],P[:,:,t-1],
199 lambda uu: model_augmented(uu,Ed[t],Ew[t],rain[t],t),
200 Q,d[t],H=H,R=R)
201 # print('time',t,'data',d[t],'filtered',u[0,t],'Ec',u[1,t])
202 for t in range(h2,hours):
203 u[:,t],P[:,:,t] = ext_kf(u[:,t-1],P[:,:,t-1],
204 lambda uu: model_augmented(uu,Ed[t],Ew[t],rain[t],t),
205 Q*0.0)
206 # print('time',t,'data',d[t],'forecast',u[0,t],'Ec',u[1,t])
207 return u