calling reproducibility.set_seed() after check 4
[notebooks.git] / fmda / moisture_models.py
blob3672248e28d0b21eb116fae882d89bd4af503236
1 import numpy as np
2 import tensorflow as tf
3 from keras.models import Sequential
4 from keras.layers import Dense, SimpleRNN
5 from keras.utils.vis_utils import plot_model
6 from sklearn.preprocessing import MinMaxScaler
7 from sklearn.metrics import mean_squared_error
8 import math
9 import matplotlib.pyplot as plt
10 import tensorflow as tf
11 import keras.backend as K
12 import tensorflow as tf
13 from utils import vprint
16 def model_decay(m0,E,partials=0,T1=0.1,tlen=1):
17 # Arguments:
18 # m0 fuel moisture content at start dimensionless, unit (1)
19 # E fuel moisture eqilibrium (1)
20 # partials=0: return m1 = fuel moisture contents after time tlen (1)
21 # =1: return m1, dm0/dm0
22 # =2: return m1, dm1/dm0, dm1/dE
23 # =3: return m1, dm1/dm0, dm1/dE dm1/dT1
24 # T1 1/T, where T is the time constant approaching the equilibrium
25 # default 0.1/hour
26 # tlen the time interval length, default 1 hour
28 exp_t = np.exp(-tlen*T1) # compute this subexpression only once
29 m1 = E + (m0 - E)*exp_t # the solution at end
30 if partials==0:
31 return m1
32 dm1_dm0 = exp_t
33 if partials==1:
34 return m1, dm1_dm0 # return value and Jacobian
35 dm1_dE = 1 - exp_t
36 if partials==2:
37 return m1, dm1_dm0, dm1_dE
38 dm1_dT1 = -(m0 - E)*tlen*exp_t # partial derivative dm1 / dT1
39 if partials==3:
40 return m1, dm1_dm0, dm1_dE, dm1_dT1 # return value and all partial derivatives wrt m1 and parameters
41 raise('Bad arg partials')
44 def ext_kf(u,P,F,Q=0,d=None,H=None,R=None):
45 """
46 One step of the extended Kalman filter.
47 If there is no data, only advance in time.
48 :param u: the state vector, shape n
49 :param P: the state covariance, shape (n,n)
50 :param F: the model function, args vector u, returns F(u) and Jacobian J(u)
51 :param Q: the process model noise covariance, shape (n,n)
52 :param d: data vector, shape (m). If none, only advance in time
53 :param H: observation matrix, shape (m,n)
54 :param R: data error covariance, shape (n,n)
55 :return ua: the analysis state vector, shape (n)
56 :return Pa: the analysis covariance matrix, shape (n,n)
57 """
58 def d2(a):
59 return np.atleast_2d(a) # convert to at least 2d array
61 def d1(a):
62 return np.atleast_1d(a) # convert to at least 1d array
64 # forecast
65 uf, J = F(u) # advance the model state in time and get the Jacobian
66 uf = d1(uf) # if scalar, make state a 1D array
67 J = d2(J) # if scalar, make jacobian a 2D array
68 P = d2(P) # if scalar, make Jacobian as 2D array
69 Pf = d2(J.T @ P) @ J + Q # advance the state covariance Pf = J' * P * J + Q
70 # analysis
71 if d is None or not d.size : # no data, no analysis
72 return uf, Pf
73 # K = P H' * inverse(H * P * H' + R) = (inverse(H * P * H' + R)*(H P))'
74 H = d2(H)
75 HP = d2(H @ P) # precompute a part used twice
76 K = d2(np.linalg.solve( d2(HP @ H.T) + R, HP)).T # Kalman gain
77 # print('H',H)
78 # print('K',K)
79 res = d1(H @ d1(uf) - d) # res = H*uf - d
80 ua = uf - K @ res # analysis mean uf - K*res
81 Pa = Pf - K @ d2(H @ P) # analysis covariance
82 return ua, d2(Pa)
84 ### Define model function with drying, wetting, and rain equilibria
86 # Parameters
87 r0 = 0.05 # threshold rainfall [mm/h]
88 rs = 8.0 # saturation rain intensity [mm/h]
89 Tr = 14.0 # time constant for rain wetting model [h]
90 S = 250 # saturation intensity [dimensionless]
91 T = 10.0 # time constant for wetting/drying
93 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
95 def model_moisture(m0,Eqd,Eqw,r,t=None,partials=0,T=10.0,tlen=1.0):
96 # arguments:
97 # m0 starting fuel moistureb (%s
98 # Eqd drying equilibrium (%)
99 # Eqw wetting equilibrium (%)
100 # r rain intensity (mm/h)
101 # t time
102 # partials = 0, 1, 2
103 # returns: same as model_decay
104 # if partials==0: m1 = fuel moisture contents after time 1 hour
105 # ==1: m1, dm1/dm0
106 # ==2: m1, dm1/dm0, dm1/dE
108 if r > r0:
109 # print('raining')
110 E = S
111 T1 = (1.0 - np.exp(- (r - r0) / rs)) / Tr
112 elif m0 <= Eqw:
113 # print('wetting')
114 E=Eqw
115 T1 = 1.0/T
116 elif m0 >= Eqd:
117 # print('drying')
118 E=Eqd
119 T1 = 1.0/T
120 else: # no change'
121 E = m0
122 T1=0.0
123 exp_t = np.exp(-tlen*T1)
124 m1 = E + (m0 - E)*exp_t
125 dm1_dm0 = exp_t
126 dm1_dE = 1 - exp_t
127 #if t>=933 and t < 940:
128 # print('t,Eqw,Eqd,r,T1,E,m0,m1,dm1_dm0,dm1_dE',
129 # t,Eqw,Eqd,r,T1,E,m0,m1,dm1_dm0,dm1_dE)
130 if partials==0:
131 return m1
132 if partials==1:
133 return m1, dm1_dm0
134 if partials==2:
135 return m1, dm1_dm0, dm1_dE
136 raise('bad partials')
138 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
140 ## NOT TESTED
141 def model_moisture_run(Eqd,Eqw,r,hours=None,T=10.0,tlen=1.0):
142 # for arrays of FMC model input run the fuel moisture model
143 if hours is None:
144 hours = min(len(Eqd),len(Eqw),len(r))
145 m = np.zeros(hours)
146 m[0]=(Eqd[0]+Eqw[0])/2
147 for k in range(hours-1):
148 m[k+1]=model_moisture(m[k],Eqd[k],Eqw[k],r[k],T=T,tlen=tlen)
149 return m
151 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
153 def model_augmented(u0,Ed,Ew,r,t):
154 # state u is the vector [m,dE] with dE correction to equilibria Ed and Ew at t
156 m0, Ec = u0 # decompose state u0
157 # reuse model_moisture(m0,Eqd,Eqw,r,partials=0):
158 # arguments:
159 # m0 starting fuel moistureb (1)
160 # Ed drying equilibrium (1)
161 # Ew wetting equilibrium (1)
162 # r rain intensity (mm/h)
163 # partials = 0, 1, 2
164 # returns: same as model_decay
165 # if partials==0: m1 = fuel moisture contents after time 1 hour
166 # ==1: m1, dm0/dm0
167 # ==2: m1, dm1/dm0, dm1/dE
168 m1, dm1_dm0, dm1_dE = model_moisture(m0,Ed + Ec, Ew + Ec, r, t, partials=2)
169 u1 = np.array([m1,Ec]) # dE is just copied
170 J = np.array([[dm1_dm0, dm1_dE],
171 [0. , 1.]])
172 return u1, J
174 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
175 ### Default Uncertainty Matrices
176 Q = np.array([[1e-3, 0.],
177 [0, 1e-3]]) # process noise covariance
178 H = np.array([[1., 0.]]) # first component observed
179 R = np.array([1e-3]) # data variance
181 def run_augmented_kf(dat,h2=None,hours=None, H=H, Q=Q, R=R):
182 d = dat['fm']
183 Ed = dat['Ed']
184 Ew = dat['Ew']
185 rain = dat['rain']
186 if h2 is None:
187 h2 = int(dat['h2'])
188 if hours is None:
189 hours = int(dat['hours'])
190 u = np.zeros((2,hours))
191 u[:,0]=[0.1,0.0] # initialize,background state
192 P = np.zeros((2,2,hours))
193 P[:,:,0] = np.array([[1e-3, 0.],
194 [0., 1e-3]]) # background state covariance
195 # Q = np.array([[1e-3, 0.],
196 # [0, 1e-3]]) # process noise covariance
197 # H = np.array([[1., 0.]]) # first component observed
198 # R = np.array([1e-3]) # data variance
200 for t in range(1,h2):
201 # use lambda construction to pass additional arguments to the model
202 u[:,t],P[:,:,t] = ext_kf(u[:,t-1],P[:,:,t-1],
203 lambda uu: model_augmented(uu,Ed[t],Ew[t],rain[t],t),
204 Q,d[t],H=H,R=R)
205 # print('time',t,'data',d[t],'filtered',u[0,t],'Ec',u[1,t])
206 for t in range(h2,hours):
207 u[:,t],P[:,:,t] = ext_kf(u[:,t-1],P[:,:,t-1],
208 lambda uu: model_augmented(uu,Ed[t],Ew[t],rain[t],t),
209 Q*0.0)
210 # print('time',t,'data',d[t],'forecast',u[0,t],'Ec',u[1,t])
211 return u