4 "cell_type": "markdown",
5 "id": "83b774b3-ef55-480a-b999-506676e49145",
8 "# v2.1 run RNN with Spatial Training\n",
10 "This notebook is intended to set up a test where the RNN is run serial by location and compared to the spatial training scheme. Additionally, the ODE model with the augmented KF will be run as a comparison, but note that the RNN models will be predicting entirely without knowledge of the heldout locations, while the augmented KF will be run directly on the test locations.\n"
14 "cell_type": "markdown",
15 "id": "bbd84d61-a9cd-47b4-b538-4986fb10b98d",
18 "## Environment Setup"
23 "execution_count": null,
24 "id": "83cc1dc4-3dcb-4325-9263-58101a3dc378",
28 "import numpy as np\n",
30 "sys.path.append('..')\n",
33 "import os.path as osp\n",
34 "import tensorflow as tf\n",
35 "from moisture_rnn_pkl import pkl2train\n",
36 "from moisture_rnn import RNNParams, RNNData, RNN, rnn_data_wrap\n",
37 "from utils import hash2, read_yml, read_pkl, retrieve_url, Dict, print_dict_summary, print_first, str2time, logging_setup\n",
38 "from moisture_rnn import RNN\n",
39 "import reproducibility\n",
40 "from data_funcs import rmse, to_json, combine_nested, subset_by_features, build_train_dict\n",
41 "from moisture_models import run_augmented_kf\n",
43 "import pandas as pd\n",
44 "import matplotlib.pyplot as plt\n",
51 "execution_count": null,
52 "id": "17db9b90-a931-4674-a447-5b8ffbcdc86a",
61 "execution_count": null,
62 "id": "35319c1c-7849-4b8c-8262-f5aa6656e0c7",
66 "filename = \"fmda_rocky_202403-05_f05.pkl\"\n",
68 " url = f\"https://demo.openwfm.org/web/data/fmda/dicts/{filename}\", \n",
69 " dest_path = f\"../data/{filename}\")"
74 "execution_count": null,
75 "id": "eabdbd9c-07d9-4bae-9851-cca79f321895",
79 "file_paths = [f'../data/{filename}']"
84 "execution_count": null,
85 "id": "dcca6185-e799-4dd1-8acb-87ad33c411d7",
89 "# # read/write control\n",
90 "# train_file='../data/train.pkl'\n",
91 "# train_create=True # if false, read\n",
92 "# train_write=False\n",
98 "execution_count": null,
99 "id": "604388de-11ab-45c3-9f0d-80bdff0cca60",
103 "# Params used for data filtering\n",
104 "params_data = read_yml(\"../params_data.yaml\") \n",
110 "execution_count": null,
111 "id": "211a1c2f-ba8d-40b8-b29c-daa38af97a26",
115 "# Params used for setting up RNN\n",
116 "params = read_yml(\"../params.yaml\", subkey='rnn') \n",
122 "execution_count": null,
123 "id": "38e6bc61-e123-4cc9-bdee-54b051bbb352",
127 "feats = ['Ed', 'Ew', 'solar', 'wind', 'elev', 'lon', 'lat', 'rain']\n",
128 "params.update({'features_list': feats})"
133 "execution_count": null,
134 "id": "ef84104f-9898-4cd9-be54-7c480536ee0e",
140 "train = build_train_dict(file_paths, atm_source=\"RAWS\", params_data = params_data,\n",
141 " features_subset = feats, spatial=True, verbose=True)"
146 "execution_count": null,
147 "id": "bc0a775b-b587-42ef-8576-e36dc0be3a75",
153 "# if train_create:\n",
154 "# params_data.update({'hours': 1440})\n",
155 "# logging.info('creating the training cases from files %s',file_paths)\n",
156 "# # osp.join works on windows too, joins paths using \\ or /\n",
157 "# train = process_train_dict(file_paths, atm_dict = \"RAWS\", params_data = params_data, verbose=True)\n",
158 "# train = subset_by_features(train, feats)\n",
159 "# train = combine_nested(train)\n",
160 "# if train_write:\n",
161 "# with open(train_file, 'wb') as file:\n",
162 "# logging.info('Writing the rain cases into file %s',train_file)\n",
163 "# pickle.dump(train, file)\n",
164 "# if train_read:\n",
165 "# logging.info('Reading the train cases from file %s',train_file)\n",
166 "# train = read_pkl(train_file)"
170 "cell_type": "markdown",
171 "id": "a24d76fc-6c25-43e7-99df-3cd5dbf84fc3",
174 "## Spatial Data Training\n",
176 "This method combines the training timeseries data into a single 3-d array, with timeseries at the same location arranged appropriately in the right order for a given `batch_size` hyperparameter. The hidden state of the recurrent layers are set up reset when the location changes. "
181 "execution_count": null,
182 "id": "36823193-b93c-421e-b699-8c1ae5719309",
186 "reproducibility.set_seed(123)"
191 "execution_count": null,
192 "id": "66f40c9f-c1c2-4b12-bf14-2ada8c26113d",
196 "params = RNNParams(params)\n",
197 "params.update({'epochs': 200, \n",
198 " 'learning_rate': 0.001,\n",
199 " 'activation': ['relu', 'relu'], # Activation for RNN Layers, Dense layers respectively.\n",
200 " 'recurrent_layers': 1, 'recurrent_units': 30, \n",
201 " 'dense_layers': 1, 'dense_units': 30,\n",
202 " 'early_stopping_patience': 30, # how many epochs of no validation accuracy gain to wait before stopping\n",
203 " 'batch_schedule_type': 'exp', # Hidden state batch reset schedule\n",
204 " 'bmin': 20, # Lower bound of hidden state batch reset, \n",
205 " 'bmax': params_data['hours'], # Upper bound of hidden state batch reset, using max hours\n",
206 " 'batch_size': 60,\n",
207 " 'space_fracs': [.8, .1, .1]\n",
213 "execution_count": null,
214 "id": "82bc407d-9d26-41e3-8b58-ab3f7238e105",
218 "import importlib\n",
219 "import moisture_rnn\n",
220 "importlib.reload(moisture_rnn)\n",
221 "from moisture_rnn import RNNData"
226 "execution_count": null,
227 "id": "c0c7f5fb-4c33-45f8-9a2e-38c9ab1cd4e3",
231 "# rnn_dat_sp = RNNData(\n",
232 "# train, # input dictionary\n",
233 "# scaler=\"standard\", # data scaling type\n",
234 "# features_list = params['features_list'] # features for predicting outcome\n",
238 "# rnn_dat_sp.train_test_split( \n",
239 "# time_fracs = [.8, .1, .1], # Percent of total time steps used for train/val/test\n",
240 "# space_fracs = [.8, .1, .1] # Percent of total timeseries used for train/val/test\n",
242 "# rnn_dat_sp.scale_data()\n",
244 "# rnn_dat_sp.batch_reshape(\n",
245 "# timesteps = params['timesteps'], # Timesteps aka sequence length for RNN input data. \n",
246 "# batch_size = params['batch_size'] # Number of samples of length timesteps for a single round of grad. descent\n",
248 "# # Update Params specific to spatial training\n",
249 "# params.update({\n",
250 "# 'loc_batch_reset': rnn_dat_sp.n_seqs # Used to reset hidden state when location changes for a given batch\n",
256 "execution_count": null,
257 "id": "924549ba-ea73-4fc9-91b3-8f1f0e32e831",
261 "rnn_dat_sp = rnn_data_wrap(train, params)\n",
263 " 'loc_batch_reset': rnn_dat_sp.n_seqs # Used to reset hidden state when location changes for a given batch\n",
269 "execution_count": null,
270 "id": "4bc11474-fed8-47f2-b9cf-dfdda0d3d3b2",
274 "rnn_sp = RNN(params)\n",
275 "m_sp, errs = rnn_sp.run_model(rnn_dat_sp)"
280 "execution_count": null,
281 "id": "704ad662-d81a-488d-be3d-e90bf775a5b8",
289 "cell_type": "markdown",
290 "id": "62c1b049-304e-4c90-b1d2-b9b96b9a202f",
298 "execution_count": null,
299 "id": "f333521f-c724-40bf-8c1c-32735aea52cc",
303 "outpath = \"../outputs/models\"\n",
304 "filename = osp.join(outpath, f\"model_predict_raws_rocky.keras\")\n",
305 "rnn_sp.model_predict.save(filename)"
309 "cell_type": "markdown",
310 "id": "bc1c601f-23a9-41b0-b921-47f1340f2a47",
318 "execution_count": null,
319 "id": "3c27b3c1-6f60-450e-82ea-18eaf012fece",
323 "mod = tf.keras.models.load_model(filename)"
328 "execution_count": null,
329 "id": "25bf5420-d681-40ec-9eb8-aed784ca4e5a",
333 "from utils import hash_weights\n",
340 "execution_count": null,
341 "id": "d773b2ab-18de-4b13-a243-b6353c57f192",
345 "type(rnn_dat_sp.X_test)"
350 "execution_count": null,
351 "id": "253ba437-c3a2-452b-b8e6-078aa17c8408",
355 "X_test = np.stack(rnn_dat_sp.X_test, axis=0)\n",
356 "y_array = np.stack(rnn_dat_sp.y_test, axis=0)"
361 "execution_count": null,
362 "id": "f4332dd8-57cd-4f5b-a864-dc72f96d72b2",
366 "preds = mod.predict(X_test)\n",
372 "execution_count": null,
373 "id": "4e4cd809-6701-4bd7-b4fe-37c5e35d8999",
377 "np.mean(np.sqrt(np.mean(np.square(preds - y_array), axis=(1,2))))"
382 "execution_count": null,
383 "id": "4f4d80cb-edef-4720-b335-4af5a04992c3",
390 "execution_count": null,
391 "id": "e9d7f913-b391-4e14-9b64-46a0a9786f4a",
399 "display_name": "Python 3 (ipykernel)",
400 "language": "python",
408 "file_extension": ".py",
409 "mimetype": "text/x-python",
411 "nbconvert_exporter": "python",
412 "pygments_lexer": "ipython3",