Fix: Don't allow right-click to close world generation progress window. (#13084)
[openttd-github.git] / src / core / math_func.hpp
blob67b347f2b4e25bae4c4fd4698ebff2e57cae068a
1 /*
2 * This file is part of OpenTTD.
3 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
4 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
5 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
6 */
8 /** @file math_func.hpp Integer math functions */
10 #ifndef MATH_FUNC_HPP
11 #define MATH_FUNC_HPP
13 #include "strong_typedef_type.hpp"
15 /**
16 * Returns the absolute value of (scalar) variable.
18 * @note assumes variable to be signed
19 * @param a The value we want to unsign
20 * @return The unsigned value
22 template <typename T>
23 constexpr T abs(const T a)
25 return (a < static_cast<T>(0)) ? -a : a;
28 /**
29 * Return the smallest multiple of n equal or greater than x
31 * @note n must be a power of 2
32 * @param x The min value
33 * @param n The base of the number we are searching
34 * @return The smallest multiple of n equal or greater than x
36 template <typename T>
37 constexpr T Align(const T x, uint n)
39 assert((n & (n - 1)) == 0 && n != 0);
40 n--;
41 return static_cast<T>((x + n) & ~static_cast<T>(n));
44 /**
45 * Return the smallest multiple of n equal or greater than x
46 * Applies to pointers only
48 * @note n must be a power of 2
49 * @param x The min value
50 * @param n The base of the number we are searching
51 * @return The smallest multiple of n equal or greater than x
52 * @see Align()
54 template <typename T>
55 constexpr T *AlignPtr(T *x, uint n)
57 static_assert(sizeof(uintptr_t) == sizeof(void *));
58 return reinterpret_cast<T *>(Align(reinterpret_cast<uintptr_t>(x), n));
61 /**
62 * Clamp a value between an interval.
64 * This function returns a value which is between the given interval of
65 * min and max. If the given value is in this interval the value itself
66 * is returned otherwise the border of the interval is returned, according
67 * which side of the interval was 'left'.
69 * @note The min value must be less or equal of max or you get some
70 * unexpected results.
71 * @param a The value to clamp/truncate.
72 * @param min The minimum of the interval.
73 * @param max the maximum of the interval.
74 * @returns A value between min and max which is closest to a.
75 * @see ClampU(uint, uint, uint)
76 * @see Clamp(int, int, int)
78 template <typename T>
79 constexpr T Clamp(const T a, const T min, const T max)
81 assert(min <= max);
82 if (a <= min) return min;
83 if (a >= max) return max;
84 return a;
87 /**
88 * Clamp a value between an interval.
90 * This function returns a value which is between the given interval of
91 * min and max. If the given value is in this interval the value itself
92 * is returned otherwise the border of the interval is returned, according
93 * which side of the interval was 'left'.
95 * @note If the min value is greater than the max, return value is the average of the min and max.
96 * @param a The value to clamp/truncate.
97 * @param min The minimum of the interval.
98 * @param max the maximum of the interval.
99 * @returns A value between min and max which is closest to a.
101 template <typename T>
102 constexpr T SoftClamp(const T a, const T min, const T max)
104 if (min > max) {
105 using U = std::make_unsigned_t<T>;
106 return min - (U(min) - max) / 2;
108 if (a <= min) return min;
109 if (a >= max) return max;
110 return a;
114 * Clamp an integer between an interval.
116 * This function returns a value which is between the given interval of
117 * min and max. If the given value is in this interval the value itself
118 * is returned otherwise the border of the interval is returned, according
119 * which side of the interval was 'left'.
121 * @note The min value must be less or equal of max or you get some
122 * unexpected results.
123 * @param a The value to clamp/truncate.
124 * @param min The minimum of the interval.
125 * @param max the maximum of the interval.
126 * @returns A value between min and max which is closest to a.
127 * @see ClampU(uint, uint, uint)
129 constexpr int Clamp(const int a, const int min, const int max)
131 return Clamp<int>(a, min, max);
135 * Clamp an unsigned integer between an interval.
137 * This function returns a value which is between the given interval of
138 * min and max. If the given value is in this interval the value itself
139 * is returned otherwise the border of the interval is returned, according
140 * which side of the interval was 'left'.
142 * @note The min value must be less or equal of max or you get some
143 * unexpected results.
144 * @param a The value to clamp/truncate.
145 * @param min The minimum of the interval.
146 * @param max the maximum of the interval.
147 * @returns A value between min and max which is closest to a.
148 * @see Clamp(int, int, int)
150 constexpr uint ClampU(const uint a, const uint min, const uint max)
152 return Clamp<uint>(a, min, max);
156 * Clamp the given value down to lie within the requested type.
158 * For example ClampTo<uint8_t> will return a value clamped to the range of 0
159 * to 255. Anything smaller will become 0, anything larger will become 255.
161 * @param a The 64-bit value to clamp.
162 * @return The 64-bit value reduced to a value within the given allowed range
163 * for the return type.
164 * @see Clamp(int, int, int)
166 template <typename To, typename From, std::enable_if_t<std::is_integral<From>::value, int> = 0>
167 constexpr To ClampTo(From value)
169 static_assert(std::numeric_limits<To>::is_integer, "Do not clamp from non-integer values");
170 static_assert(std::numeric_limits<From>::is_integer, "Do not clamp to non-integer values");
172 if constexpr (sizeof(To) >= sizeof(From) && std::numeric_limits<To>::is_signed == std::numeric_limits<From>::is_signed) {
173 /* Same signedness and To type is larger or equal than From type, no clamping is required. */
174 return static_cast<To>(value);
177 if constexpr (sizeof(To) > sizeof(From) && std::numeric_limits<To>::is_signed) {
178 /* Signed destination and a larger To type, no clamping is required. */
179 return static_cast<To>(value);
182 /* Get the bigger of the two types based on essentially the number of bits. */
183 using BiggerType = typename std::conditional<sizeof(From) >= sizeof(To), From, To>::type;
185 if constexpr (std::numeric_limits<To>::is_signed) {
186 /* The output is a signed number. */
187 if constexpr (std::numeric_limits<From>::is_signed) {
188 /* Both input and output are signed. */
189 return static_cast<To>(std::clamp<BiggerType>(value,
190 std::numeric_limits<To>::lowest(), std::numeric_limits<To>::max()));
193 /* The input is unsigned, so skip the minimum check and use unsigned variant of the biggest type as intermediate type. */
194 using BiggerUnsignedType = typename std::make_unsigned<BiggerType>::type;
195 return static_cast<To>(std::min<BiggerUnsignedType>(std::numeric_limits<To>::max(), value));
198 /* The output is unsigned. */
200 if constexpr (std::numeric_limits<From>::is_signed) {
201 /* Input is signed; account for the negative numbers in the input. */
202 if constexpr (sizeof(To) >= sizeof(From)) {
203 /* If the output type is larger or equal to the input type, then only clamp the negative numbers. */
204 return static_cast<To>(std::max<From>(value, 0));
207 /* The output type is smaller than the input type. */
208 using BiggerSignedType = typename std::make_signed<BiggerType>::type;
209 return static_cast<To>(std::clamp<BiggerSignedType>(value,
210 std::numeric_limits<To>::lowest(), std::numeric_limits<To>::max()));
213 /* The input and output are unsigned, just clamp at the high side. */
214 return static_cast<To>(std::min<BiggerType>(value, std::numeric_limits<To>::max()));
218 * Specialization of ClampTo for #StrongType::Typedef.
220 template <typename To, typename From, std::enable_if_t<std::is_base_of<StrongTypedefBase, From>::value, int> = 0>
221 constexpr To ClampTo(From value)
223 return ClampTo<To>(value.base());
227 * Returns the (absolute) difference between two (scalar) variables
229 * @param a The first scalar
230 * @param b The second scalar
231 * @return The absolute difference between the given scalars
233 template <typename T>
234 constexpr T Delta(const T a, const T b)
236 return (a < b) ? b - a : a - b;
240 * Checks if a value is between a window started at some base point.
242 * This function checks if the value x is between the value of base
243 * and base+size. If x equals base this returns true. If x equals
244 * base+size this returns false.
246 * @param x The value to check
247 * @param base The base value of the interval
248 * @param size The size of the interval
249 * @return True if the value is in the interval, false else.
251 template <typename T>
252 constexpr bool IsInsideBS(const T x, const size_t base, const size_t size)
254 return static_cast<size_t>(x - base) < size;
258 * Checks if a value is in an interval.
260 * Returns true if a value is in the interval of [min, max).
262 * @param x The value to check
263 * @param min The minimum of the interval
264 * @param max The maximum of the interval
265 * @see IsInsideBS()
267 template <typename T, std::enable_if_t<std::disjunction_v<std::is_convertible<T, size_t>, std::is_base_of<StrongTypedefBase, T>>, int> = 0>
268 constexpr bool IsInsideMM(const T x, const size_t min, const size_t max) noexcept
270 if constexpr (std::is_base_of_v<StrongTypedefBase, T>) {
271 return static_cast<size_t>(x.base() - min) < (max - min);
272 } else {
273 return static_cast<size_t>(x - min) < (max - min);
278 * Type safe swap operation
279 * @param a variable to swap with b
280 * @param b variable to swap with a
282 template <typename T>
283 constexpr void Swap(T &a, T &b)
285 T t = a;
286 a = b;
287 b = t;
291 * Converts a "fract" value 0..255 to "percent" value 0..100
292 * @param i value to convert, range 0..255
293 * @return value in range 0..100
295 constexpr uint ToPercent8(uint i)
297 assert(i < 256);
298 return i * 101 >> 8;
302 * Converts a "fract" value 0..65535 to "percent" value 0..100
303 * @param i value to convert, range 0..65535
304 * @return value in range 0..100
306 constexpr uint ToPercent16(uint i)
308 assert(i < 65536);
309 return i * 101 >> 16;
312 int DivideApprox(int a, int b);
315 * Computes ceil(a / b) for non-negative a and b.
316 * @param a Numerator
317 * @param b Denominator
318 * @return Quotient, rounded up
320 constexpr uint CeilDiv(uint a, uint b)
322 return (a + b - 1) / b;
326 * Computes ceil(a / b) * b for non-negative a and b.
327 * @param a Numerator
328 * @param b Denominator
329 * @return a rounded up to the nearest multiple of b.
331 constexpr uint Ceil(uint a, uint b)
333 return CeilDiv(a, b) * b;
337 * Computes round(a / b) for signed a and unsigned b.
338 * @param a Numerator
339 * @param b Denominator
340 * @return Quotient, rounded to nearest
342 constexpr int RoundDivSU(int a, uint b)
344 if (a > 0) {
345 /* 0.5 is rounded to 1 */
346 return (a + static_cast<int>(b) / 2) / static_cast<int>(b);
347 } else {
348 /* -0.5 is rounded to 0 */
349 return (a - (static_cast<int>(b) - 1) / 2) / static_cast<int>(b);
354 * Computes ten to the given power.
355 * @param power The power of ten to get.
356 * @return The power of ten.
358 constexpr uint64_t PowerOfTen(int power)
360 assert(power >= 0 && power <= 20 /* digits in uint64_t */);
361 uint64_t result = 1;
362 for (int i = 0; i < power; i++) result *= 10;
363 return result;
366 uint32_t IntSqrt(uint32_t num);
368 #endif /* MATH_FUNC_HPP */