10 #include "tactics/util.h"
11 #include "uct/dynkomi.h"
12 #include "uct/internal.h"
17 generic_done(struct uct_dynkomi
*d
)
19 if (d
->data
) free(d
->data
);
24 /* NONE dynkomi strategy - never fiddle with komi values. */
27 uct_dynkomi_init_none(struct uct
*u
, char *arg
, struct board
*b
)
29 struct uct_dynkomi
*d
= calloc2(1, sizeof(*d
));
33 d
->done
= generic_done
;
37 fprintf(stderr
, "uct: Dynkomi method none accepts no arguments\n");
45 /* LINEAR dynkomi strategy - Linearly Decreasing Handicap Compensation. */
46 /* At move 0, we impose extra komi of handicap_count*handicap_value, then
47 * we linearly decrease this extra komi throughout the game down to 0
50 struct dynkomi_linear
{
51 int handicap_value
[S_MAX
];
57 linear_permove(struct uct_dynkomi
*d
, struct board
*b
, struct tree
*tree
)
59 struct dynkomi_linear
*l
= d
->data
;
60 enum stone color
= d
->uct
->pondering
? tree
->root_color
: stone_other(tree
->root_color
);
61 int lmoves
= l
->moves
[color
];
62 if (b
->moves
>= lmoves
)
65 floating_t base_komi
= board_effective_handicap(b
, l
->handicap_value
[color
]);
66 floating_t extra_komi
= base_komi
* (lmoves
- b
->moves
) / lmoves
;
71 linear_persim(struct uct_dynkomi
*d
, struct board
*b
, struct tree
*tree
, struct tree_node
*node
)
73 struct dynkomi_linear
*l
= d
->data
;
75 return tree
->extra_komi
;
76 /* We don't reuse computed value from tree->extra_komi,
77 * since we want to use value correct for this node depth.
78 * This also means the values will stay correct after
80 return linear_permove(d
, b
, tree
);
84 uct_dynkomi_init_linear(struct uct
*u
, char *arg
, struct board
*b
)
86 struct uct_dynkomi
*d
= calloc2(1, sizeof(*d
));
88 d
->permove
= linear_permove
;
89 d
->persim
= linear_persim
;
90 d
->done
= generic_done
;
92 struct dynkomi_linear
*l
= calloc2(1, sizeof(*l
));
95 /* Force white to feel behind and try harder, but not to the
96 * point of resigning immediately in high handicap games.
97 * By move 100 white should still be behind but should have
98 * caught up enough to avoid resigning. */
100 l
->moves
[S_BLACK
] = 200;
101 l
->moves
[S_WHITE
] = 100;
103 /* The real value of one stone is twice the komi so about 15 points.
104 * But use a lower value to avoid being too pessimistic as black
105 * or too optimistic as white. */
106 l
->handicap_value
[S_BLACK
] = 7;
107 l
->handicap_value
[S_WHITE
] = 5;
110 char *optspec
, *next
= arg
;
113 next
+= strcspn(next
, ":");
114 if (*next
) { *next
++ = 0; } else { *next
= 0; }
116 char *optname
= optspec
;
117 char *optval
= strchr(optspec
, '=');
118 if (optval
) *optval
++ = 0;
120 if (!strcasecmp(optname
, "moves") && optval
) {
121 /* Dynamic komi in handicap game; linearly
122 * decreases to basic settings until move
123 * #optval. moves=blackmoves%whitemoves */
124 for (int i
= S_BLACK
; *optval
&& i
<= S_WHITE
; i
++) {
125 l
->moves
[i
] = atoi(optval
);
126 optval
+= strcspn(optval
, "%");
127 if (*optval
) optval
++;
129 } else if (!strcasecmp(optname
, "handicap_value") && optval
) {
130 /* Point value of single handicap stone,
131 * for dynkomi computation. */
132 for (int i
= S_BLACK
; *optval
&& i
<= S_WHITE
; i
++) {
133 l
->handicap_value
[i
] = atoi(optval
);
134 optval
+= strcspn(optval
, "%");
135 if (*optval
) optval
++;
137 } else if (!strcasecmp(optname
, "rootbased")) {
138 /* If set, the extra komi applied will be
139 * the same for all simulations within a move,
140 * instead of being same for all simulations
141 * within the tree node. */
142 l
->rootbased
= !optval
|| atoi(optval
);
144 fprintf(stderr
, "uct: Invalid dynkomi argument %s or missing value\n", optname
);
154 /* ADAPTIVE dynkomi strategy - Adaptive Situational Compensation */
155 /* We adapt the komi based on current situation:
156 * (i) score-based: We maintain the average score outcome of our
157 * games and adjust the komi by a fractional step towards the expected
159 * (ii) value-based: While winrate is above given threshold, adjust
160 * the komi by a fixed step in the appropriate direction.
161 * These adjustments can be
162 * (a) Move-stepped, new extra komi value is always set only at the
163 * beginning of the tree search for next move;
164 * (b) Continuous, new extra komi value is periodically re-determined
165 * and adjusted throughout a single tree search. */
167 struct dynkomi_adaptive
{
168 /* Do not take measured average score into regard for
169 * first @lead_moves - the variance is just too much.
170 * (Instead, we consider the handicap-based komi provided
171 * by linear dynkomi.) */
173 /* Maximum komi to pretend the opponent to give. */
174 floating_t max_losing_komi
;
175 /* Game portion at which losing komi is not allowed anymore. */
176 floating_t losing_komi_stop
;
177 /* Alternative game portion determination. */
179 floating_t (*indicator
)(struct uct_dynkomi
*d
, struct board
*b
, struct tree
*tree
, enum stone color
);
181 /* Value-based adaptation. */
182 floating_t zone_red
, zone_green
;
184 floating_t score_step_byavg
; // use portion of average score as increment
185 bool use_komi_ratchet
;
186 bool losing_komi_ratchet
; // ratchet even losing komi
187 int komi_ratchet_maxage
;
188 // runtime, not configuration:
189 int komi_ratchet_age
;
190 floating_t komi_ratchet
;
192 /* Score-based adaptation. */
193 floating_t (*adapter
)(struct uct_dynkomi
*d
, struct board
*b
);
194 floating_t adapt_base
; // [0,1)
195 /* Sigmoid adaptation rate parameter; see below for details. */
196 floating_t adapt_phase
; // [0,1]
197 floating_t adapt_rate
; // [1,infty)
198 /* Linear adaptation rate parameter. */
200 floating_t adapt_dir
; // [-1,1]
202 #define TRUSTWORTHY_KOMI_PLAYOUTS 200
205 board_game_portion(struct dynkomi_adaptive
*a
, struct board
*b
)
207 if (!a
->adapt_aport
) {
208 int total_moves
= b
->moves
+ 2 * board_estimated_moves_left(b
);
209 return (floating_t
) b
->moves
/ total_moves
;
211 int brsize
= board_size(b
) - 2;
212 return 1.0 - (floating_t
) b
->flen
/ (brsize
* brsize
);
217 adapter_sigmoid(struct uct_dynkomi
*d
, struct board
*b
)
219 struct dynkomi_adaptive
*a
= d
->data
;
220 /* Figure out how much to adjust the komi based on the game
221 * stage. The adaptation rate is 0 at the beginning,
222 * at game stage a->adapt_phase crosses though 0.5 and
223 * approaches 1 at the game end; the slope is controlled
224 * by a->adapt_rate. */
225 floating_t game_portion
= board_game_portion(a
, b
);
226 floating_t l
= game_portion
- a
->adapt_phase
;
227 return 1.0 / (1.0 + exp(-a
->adapt_rate
* l
));
231 adapter_linear(struct uct_dynkomi
*d
, struct board
*b
)
233 struct dynkomi_adaptive
*a
= d
->data
;
234 /* Figure out how much to adjust the komi based on the game
235 * stage. We just linearly increase/decrease the adaptation
236 * rate for first N moves. */
237 if (b
->moves
> a
->adapt_moves
)
239 if (a
->adapt_dir
< 0)
240 return 1 - (- a
->adapt_dir
) * b
->moves
/ a
->adapt_moves
;
242 return a
->adapt_dir
* b
->moves
/ a
->adapt_moves
;
246 komi_by_score(struct uct_dynkomi
*d
, struct board
*b
, struct tree
*tree
, enum stone color
)
248 struct dynkomi_adaptive
*a
= d
->data
;
249 if (d
->score
.playouts
< TRUSTWORTHY_KOMI_PLAYOUTS
)
250 return tree
->extra_komi
;
252 struct move_stats score
= d
->score
;
253 /* Almost-reset tree->score to gather fresh stats. */
254 d
->score
.playouts
= 1;
256 /* Look at average score and push extra_komi in that direction. */
257 floating_t p
= a
->adapter(d
, b
);
258 p
= a
->adapt_base
+ p
* (1 - a
->adapt_base
);
259 if (p
> 0.9) p
= 0.9; // don't get too eager!
260 floating_t extra_komi
= tree
->extra_komi
+ p
* score
.value
;
262 fprintf(stderr
, "mC += %f * %f\n", p
, score
.value
);
267 komi_by_value(struct uct_dynkomi
*d
, struct board
*b
, struct tree
*tree
, enum stone color
)
269 struct dynkomi_adaptive
*a
= d
->data
;
270 if (d
->value
.playouts
< TRUSTWORTHY_KOMI_PLAYOUTS
)
271 return tree
->extra_komi
;
273 struct move_stats value
= d
->value
;
274 /* Almost-reset tree->value to gather fresh stats. */
275 d
->value
.playouts
= 1;
276 /* Correct color POV. */
277 if (color
== S_WHITE
)
278 value
.value
= 1 - value
.value
;
280 /* We have three "value zones":
281 * red zone | yellow zone | green zone
283 * red zone: reduce komi
284 * yellow zone: do not touch komi
285 * green zone: enlage komi.
287 * Also, at some point komi will be tuned in such way
288 * that it will be in green zone but increasing it will
289 * be unfeasible. Thus, we have a _ratchet_ - we will
290 * remember the last komi that has put us into the
291 * red zone, and not use it or go over it. We use the
292 * ratchet only when giving extra komi, we always want
293 * to try to reduce extra komi we take.
295 * TODO: Make the ratchet expire after a while. */
297 /* We use komi_by_color() first to normalize komi
298 * additions/subtractions, then apply it again on
299 * return value to restore original komi parity. */
300 /* Positive extra_komi means that we are _giving_
301 * komi (winning), negative extra_komi is _taking_
303 floating_t extra_komi
= komi_by_color(tree
->extra_komi
, color
);
304 int score_step_red
= -a
->score_step
;
305 int score_step_green
= a
->score_step
;
307 if (a
->score_step_byavg
!= 0) {
308 struct move_stats score
= d
->score
;
309 /* Almost-reset tree->score to gather fresh stats. */
310 d
->score
.playouts
= 1;
311 /* Correct color POV. */
312 if (color
== S_WHITE
)
313 score
.value
= - score
.value
;
315 score_step_green
= round(score
.value
* a
->score_step_byavg
);
317 score_step_red
= round(-score
.value
* a
->score_step_byavg
);
318 if (score_step_green
< 0 || score_step_red
> 0) {
319 /* The steps are in bad direction - keep still. */
320 return komi_by_color(extra_komi
, color
);
324 /* Wear out the ratchet. */
325 if (a
->use_komi_ratchet
&& a
->komi_ratchet_maxage
> 0) {
326 a
->komi_ratchet_age
+= value
.playouts
;
327 if (a
->komi_ratchet_age
> a
->komi_ratchet_maxage
) {
328 a
->komi_ratchet
= 1000;
329 a
->komi_ratchet_age
= 0;
333 if (value
.value
< a
->zone_red
) {
334 /* Red zone. Take extra komi. */
336 fprintf(stderr
, "[red] %f, step %d | komi ratchet %f age %d/%d -> %f\n",
337 value
.value
, score_step_red
, a
->komi_ratchet
, a
->komi_ratchet_age
, a
->komi_ratchet_maxage
, extra_komi
);
338 if (a
->losing_komi_ratchet
|| extra_komi
> 0) {
339 a
->komi_ratchet
= extra_komi
;
340 a
->komi_ratchet_age
= 0;
342 extra_komi
+= score_step_red
;
343 return komi_by_color(extra_komi
, color
);
345 } else if (value
.value
< a
->zone_green
) {
346 /* Yellow zone, do nothing. */
347 return komi_by_color(extra_komi
, color
);
350 /* Green zone. Give extra komi. */
352 fprintf(stderr
, "[green] %f, step %d | komi ratchet %f age %d/%d\n",
353 value
.value
, score_step_green
, a
->komi_ratchet
, a
->komi_ratchet_age
, a
->komi_ratchet_maxage
);
354 extra_komi
+= score_step_green
;
355 if (a
->use_komi_ratchet
&& extra_komi
>= a
->komi_ratchet
)
356 extra_komi
= a
->komi_ratchet
- 1;
357 return komi_by_color(extra_komi
, color
);
362 bounded_komi(struct dynkomi_adaptive
*a
, struct board
*b
,
363 enum stone color
, floating_t komi
, floating_t max_losing_komi
)
365 /* At the end of game, disallow losing komi. */
366 if (komi_by_color(komi
, color
) < 0
367 && board_game_portion(a
, b
) > a
->losing_komi_stop
)
370 /* Get lower bound on komi we take so that we don't underperform
372 floating_t min_komi
= komi_by_color(- max_losing_komi
, color
);
374 if (komi_by_color(komi
- min_komi
, color
) > 0)
381 adaptive_permove(struct uct_dynkomi
*d
, struct board
*b
, struct tree
*tree
)
383 struct dynkomi_adaptive
*a
= d
->data
;
384 enum stone color
= stone_other(tree
->root_color
);
386 fprintf(stderr
, "m %d/%d ekomi %f permove %f/%d\n",
387 b
->moves
, a
->lead_moves
, tree
->extra_komi
,
388 d
->score
.value
, d
->score
.playouts
);
390 if (b
->moves
<= a
->lead_moves
)
391 return bounded_komi(a
, b
, color
,
392 board_effective_handicap(b
, 7 /* XXX */),
395 floating_t komi
= a
->indicator(d
, b
, tree
, color
);
397 fprintf(stderr
, "dynkomi: %f -> %f\n", tree
->extra_komi
, komi
);
398 return bounded_komi(a
, b
, color
, komi
, a
->max_losing_komi
);
402 adaptive_persim(struct uct_dynkomi
*d
, struct board
*b
, struct tree
*tree
, struct tree_node
*node
)
404 return tree
->extra_komi
;
408 uct_dynkomi_init_adaptive(struct uct
*u
, char *arg
, struct board
*b
)
410 struct uct_dynkomi
*d
= calloc2(1, sizeof(*d
));
412 d
->permove
= adaptive_permove
;
413 d
->persim
= adaptive_persim
;
414 d
->done
= generic_done
;
416 struct dynkomi_adaptive
*a
= calloc2(1, sizeof(*a
));
419 a
->lead_moves
= board_large(b
) ? 20 : 4; // XXX
420 a
->max_losing_komi
= 30;
421 a
->losing_komi_stop
= 1.0f
;
422 a
->indicator
= komi_by_value
;
424 a
->adapter
= adapter_sigmoid
;
426 a
->adapt_phase
= 0.65;
427 a
->adapt_moves
= 200;
431 a
->zone_green
= 0.50;
433 a
->use_komi_ratchet
= true;
434 a
->komi_ratchet_maxage
= 0;
435 a
->komi_ratchet
= 1000;
438 char *optspec
, *next
= arg
;
441 next
+= strcspn(next
, ":");
442 if (*next
) { *next
++ = 0; } else { *next
= 0; }
444 char *optname
= optspec
;
445 char *optval
= strchr(optspec
, '=');
446 if (optval
) *optval
++ = 0;
448 if (!strcasecmp(optname
, "lead_moves") && optval
) {
449 /* Do not adjust komi adaptively for first
451 a
->lead_moves
= atoi(optval
);
452 } else if (!strcasecmp(optname
, "max_losing_komi") && optval
) {
453 a
->max_losing_komi
= atof(optval
);
454 } else if (!strcasecmp(optname
, "losing_komi_stop") && optval
) {
455 a
->losing_komi_stop
= atof(optval
);
456 } else if (!strcasecmp(optname
, "indicator")) {
457 /* Adaptatation indicator - how to decide
458 * the adaptation rate and direction. */
459 if (!strcasecmp(optval
, "value")) {
460 /* Winrate w/ komi so far. */
461 a
->indicator
= komi_by_value
;
462 } else if (!strcasecmp(optval
, "score")) {
463 /* Expected score w/ current komi. */
464 a
->indicator
= komi_by_score
;
466 fprintf(stderr
, "UCT: Invalid indicator %s\n", optval
);
470 /* value indicator settings */
471 } else if (!strcasecmp(optname
, "zone_red") && optval
) {
472 a
->zone_red
= atof(optval
);
473 } else if (!strcasecmp(optname
, "zone_green") && optval
) {
474 a
->zone_green
= atof(optval
);
475 } else if (!strcasecmp(optname
, "score_step") && optval
) {
476 a
->score_step
= atoi(optval
);
477 } else if (!strcasecmp(optname
, "score_step_byavg") && optval
) {
478 a
->score_step_byavg
= atof(optval
);
479 } else if (!strcasecmp(optname
, "use_komi_ratchet")) {
480 a
->use_komi_ratchet
= !optval
|| atoi(optval
);
481 } else if (!strcasecmp(optname
, "losing_komi_ratchet")) {
482 a
->losing_komi_ratchet
= !optval
|| atoi(optval
);
483 } else if (!strcasecmp(optname
, "komi_ratchet_age") && optval
) {
484 a
->komi_ratchet_maxage
= atoi(optval
);
486 /* score indicator settings */
487 } else if (!strcasecmp(optname
, "adapter") && optval
) {
488 /* Adaptatation method. */
489 if (!strcasecmp(optval
, "sigmoid")) {
490 a
->adapter
= adapter_sigmoid
;
491 } else if (!strcasecmp(optval
, "linear")) {
492 a
->adapter
= adapter_linear
;
494 fprintf(stderr
, "UCT: Invalid adapter %s\n", optval
);
497 } else if (!strcasecmp(optname
, "adapt_base") && optval
) {
498 /* Adaptation base rate; see above. */
499 a
->adapt_base
= atof(optval
);
500 } else if (!strcasecmp(optname
, "adapt_rate") && optval
) {
501 /* Adaptation slope; see above. */
502 a
->adapt_rate
= atof(optval
);
503 } else if (!strcasecmp(optname
, "adapt_phase") && optval
) {
504 /* Adaptation phase shift; see above. */
505 a
->adapt_phase
= atof(optval
);
506 } else if (!strcasecmp(optname
, "adapt_moves") && optval
) {
507 /* Adaptation move amount; see above. */
508 a
->adapt_moves
= atoi(optval
);
509 } else if (!strcasecmp(optname
, "adapt_aport")) {
510 a
->adapt_aport
= !optval
|| atoi(optval
);
511 } else if (!strcasecmp(optname
, "adapt_dir") && optval
) {
512 /* Adaptation direction vector; see above. */
513 a
->adapt_dir
= atof(optval
);
516 fprintf(stderr
, "uct: Invalid dynkomi argument %s or missing value\n", optname
);