Some tests regarding the 110713 game. Turns out that pachi-my made fewer mistakes...
[pachi/pachi-r6144.git] / uct / dynkomi.c
bloba3ee259fd741fcdc8696054a5aca3608f4e2e140
1 #define DEBUG
2 #include <assert.h>
3 #include <math.h>
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
8 #include "board.h"
9 #include "debug.h"
10 #include "tactics/util.h"
11 #include "uct/dynkomi.h"
12 #include "uct/internal.h"
13 #include "uct/tree.h"
16 static void
17 generic_done(struct uct_dynkomi *d)
19 if (d->data) free(d->data);
20 free(d);
24 /* NONE dynkomi strategy - never fiddle with komi values. */
26 struct uct_dynkomi *
27 uct_dynkomi_init_none(struct uct *u, char *arg, struct board *b)
29 struct uct_dynkomi *d = calloc2(1, sizeof(*d));
30 d->uct = u;
31 d->permove = NULL;
32 d->persim = NULL;
33 d->done = generic_done;
34 d->data = NULL;
36 if (arg) {
37 fprintf(stderr, "uct: Dynkomi method none accepts no arguments\n");
38 exit(1);
41 return d;
45 /* LINEAR dynkomi strategy - Linearly Decreasing Handicap Compensation. */
46 /* At move 0, we impose extra komi of handicap_count*handicap_value, then
47 * we linearly decrease this extra komi throughout the game down to 0
48 * at @moves moves. */
50 struct dynkomi_linear {
51 int handicap_value[S_MAX];
52 int moves[S_MAX];
53 bool rootbased;
56 static floating_t
57 linear_permove(struct uct_dynkomi *d, struct board *b, struct tree *tree)
59 struct dynkomi_linear *l = d->data;
60 enum stone color = d->uct->pondering ? tree->root_color : stone_other(tree->root_color);
61 int lmoves = l->moves[color];
62 if (b->moves >= lmoves)
63 return 0;
65 floating_t base_komi = board_effective_handicap(b, l->handicap_value[color]);
66 floating_t extra_komi = base_komi * (lmoves - b->moves) / lmoves;
67 return extra_komi;
70 static floating_t
71 linear_persim(struct uct_dynkomi *d, struct board *b, struct tree *tree, struct tree_node *node)
73 struct dynkomi_linear *l = d->data;
74 if (l->rootbased)
75 return tree->extra_komi;
76 /* We don't reuse computed value from tree->extra_komi,
77 * since we want to use value correct for this node depth.
78 * This also means the values will stay correct after
79 * node promotion. */
80 return linear_permove(d, b, tree);
83 struct uct_dynkomi *
84 uct_dynkomi_init_linear(struct uct *u, char *arg, struct board *b)
86 struct uct_dynkomi *d = calloc2(1, sizeof(*d));
87 d->uct = u;
88 d->permove = linear_permove;
89 d->persim = linear_persim;
90 d->done = generic_done;
92 struct dynkomi_linear *l = calloc2(1, sizeof(*l));
93 d->data = l;
95 /* Force white to feel behind and try harder, but not to the
96 * point of resigning immediately in high handicap games.
97 * By move 100 white should still be behind but should have
98 * caught up enough to avoid resigning. */
99 if (board_large(b)) {
100 l->moves[S_BLACK] = 200;
101 l->moves[S_WHITE] = 100;
103 /* The real value of one stone is twice the komi so about 15 points.
104 * But use a lower value to avoid being too pessimistic as black
105 * or too optimistic as white. */
106 l->handicap_value[S_BLACK] = 7;
107 l->handicap_value[S_WHITE] = 5;
109 if (arg) {
110 char *optspec, *next = arg;
111 while (*next) {
112 optspec = next;
113 next += strcspn(next, ":");
114 if (*next) { *next++ = 0; } else { *next = 0; }
116 char *optname = optspec;
117 char *optval = strchr(optspec, '=');
118 if (optval) *optval++ = 0;
120 if (!strcasecmp(optname, "moves") && optval) {
121 /* Dynamic komi in handicap game; linearly
122 * decreases to basic settings until move
123 * #optval. moves=blackmoves%whitemoves */
124 for (int i = S_BLACK; *optval && i <= S_WHITE; i++) {
125 l->moves[i] = atoi(optval);
126 optval += strcspn(optval, "%");
127 if (*optval) optval++;
129 } else if (!strcasecmp(optname, "handicap_value") && optval) {
130 /* Point value of single handicap stone,
131 * for dynkomi computation. */
132 for (int i = S_BLACK; *optval && i <= S_WHITE; i++) {
133 l->handicap_value[i] = atoi(optval);
134 optval += strcspn(optval, "%");
135 if (*optval) optval++;
137 } else if (!strcasecmp(optname, "rootbased")) {
138 /* If set, the extra komi applied will be
139 * the same for all simulations within a move,
140 * instead of being same for all simulations
141 * within the tree node. */
142 l->rootbased = !optval || atoi(optval);
143 } else {
144 fprintf(stderr, "uct: Invalid dynkomi argument %s or missing value\n", optname);
145 exit(1);
150 return d;
154 /* ADAPTIVE dynkomi strategy - Adaptive Situational Compensation */
155 /* We adapt the komi based on current situation:
156 * (i) score-based: We maintain the average score outcome of our
157 * games and adjust the komi by a fractional step towards the expected
158 * score;
159 * (ii) value-based: While winrate is above given threshold, adjust
160 * the komi by a fixed step in the appropriate direction.
161 * These adjustments can be
162 * (a) Move-stepped, new extra komi value is always set only at the
163 * beginning of the tree search for next move;
164 * (b) Continuous, new extra komi value is periodically re-determined
165 * and adjusted throughout a single tree search. */
167 struct dynkomi_adaptive {
168 /* Do not take measured average score into regard for
169 * first @lead_moves - the variance is just too much.
170 * (Instead, we consider the handicap-based komi provided
171 * by linear dynkomi.) */
172 int lead_moves;
173 /* Maximum komi to pretend the opponent to give. */
174 floating_t max_losing_komi;
175 /* Game portion at which losing komi is not allowed anymore. */
176 floating_t losing_komi_stop;
177 /* Alternative game portion determination. */
178 bool adapt_aport;
179 floating_t (*indicator)(struct uct_dynkomi *d, struct board *b, struct tree *tree, enum stone color);
181 /* Value-based adaptation. */
182 floating_t zone_red, zone_green;
183 int score_step;
184 floating_t score_step_byavg; // use portion of average score as increment
185 bool use_komi_ratchet;
186 bool losing_komi_ratchet; // ratchet even losing komi
187 int komi_ratchet_maxage;
188 // runtime, not configuration:
189 int komi_ratchet_age;
190 floating_t komi_ratchet;
192 /* Score-based adaptation. */
193 floating_t (*adapter)(struct uct_dynkomi *d, struct board *b);
194 floating_t adapt_base; // [0,1)
195 /* Sigmoid adaptation rate parameter; see below for details. */
196 floating_t adapt_phase; // [0,1]
197 floating_t adapt_rate; // [1,infty)
198 /* Linear adaptation rate parameter. */
199 int adapt_moves;
200 floating_t adapt_dir; // [-1,1]
202 #define TRUSTWORTHY_KOMI_PLAYOUTS 200
204 static floating_t
205 board_game_portion(struct dynkomi_adaptive *a, struct board *b)
207 if (!a->adapt_aport) {
208 int total_moves = b->moves + 2 * board_estimated_moves_left(b);
209 return (floating_t) b->moves / total_moves;
210 } else {
211 int brsize = board_size(b) - 2;
212 return 1.0 - (floating_t) b->flen / (brsize * brsize);
216 static floating_t
217 adapter_sigmoid(struct uct_dynkomi *d, struct board *b)
219 struct dynkomi_adaptive *a = d->data;
220 /* Figure out how much to adjust the komi based on the game
221 * stage. The adaptation rate is 0 at the beginning,
222 * at game stage a->adapt_phase crosses though 0.5 and
223 * approaches 1 at the game end; the slope is controlled
224 * by a->adapt_rate. */
225 floating_t game_portion = board_game_portion(a, b);
226 floating_t l = game_portion - a->adapt_phase;
227 return 1.0 / (1.0 + exp(-a->adapt_rate * l));
230 static floating_t
231 adapter_linear(struct uct_dynkomi *d, struct board *b)
233 struct dynkomi_adaptive *a = d->data;
234 /* Figure out how much to adjust the komi based on the game
235 * stage. We just linearly increase/decrease the adaptation
236 * rate for first N moves. */
237 if (b->moves > a->adapt_moves)
238 return 0;
239 if (a->adapt_dir < 0)
240 return 1 - (- a->adapt_dir) * b->moves / a->adapt_moves;
241 else
242 return a->adapt_dir * b->moves / a->adapt_moves;
245 static floating_t
246 komi_by_score(struct uct_dynkomi *d, struct board *b, struct tree *tree, enum stone color)
248 struct dynkomi_adaptive *a = d->data;
249 if (d->score.playouts < TRUSTWORTHY_KOMI_PLAYOUTS)
250 return tree->extra_komi;
252 struct move_stats score = d->score;
253 /* Almost-reset tree->score to gather fresh stats. */
254 d->score.playouts = 1;
256 /* Look at average score and push extra_komi in that direction. */
257 floating_t p = a->adapter(d, b);
258 p = a->adapt_base + p * (1 - a->adapt_base);
259 if (p > 0.9) p = 0.9; // don't get too eager!
260 floating_t extra_komi = tree->extra_komi + p * score.value;
261 if (DEBUGL(3))
262 fprintf(stderr, "mC += %f * %f\n", p, score.value);
263 return extra_komi;
266 static floating_t
267 komi_by_value(struct uct_dynkomi *d, struct board *b, struct tree *tree, enum stone color)
269 struct dynkomi_adaptive *a = d->data;
270 if (d->value.playouts < TRUSTWORTHY_KOMI_PLAYOUTS)
271 return tree->extra_komi;
273 struct move_stats value = d->value;
274 /* Almost-reset tree->value to gather fresh stats. */
275 d->value.playouts = 1;
276 /* Correct color POV. */
277 if (color == S_WHITE)
278 value.value = 1 - value.value;
280 /* We have three "value zones":
281 * red zone | yellow zone | green zone
282 * ~45% ~60%
283 * red zone: reduce komi
284 * yellow zone: do not touch komi
285 * green zone: enlage komi.
287 * Also, at some point komi will be tuned in such way
288 * that it will be in green zone but increasing it will
289 * be unfeasible. Thus, we have a _ratchet_ - we will
290 * remember the last komi that has put us into the
291 * red zone, and not use it or go over it. We use the
292 * ratchet only when giving extra komi, we always want
293 * to try to reduce extra komi we take.
295 * TODO: Make the ratchet expire after a while. */
297 /* We use komi_by_color() first to normalize komi
298 * additions/subtractions, then apply it again on
299 * return value to restore original komi parity. */
300 /* Positive extra_komi means that we are _giving_
301 * komi (winning), negative extra_komi is _taking_
302 * komi (losing). */
303 floating_t extra_komi = komi_by_color(tree->extra_komi, color);
304 int score_step_red = -a->score_step;
305 int score_step_green = a->score_step;
307 if (a->score_step_byavg != 0) {
308 struct move_stats score = d->score;
309 /* Almost-reset tree->score to gather fresh stats. */
310 d->score.playouts = 1;
311 /* Correct color POV. */
312 if (color == S_WHITE)
313 score.value = - score.value;
314 if (score.value > 0)
315 score_step_green = round(score.value * a->score_step_byavg);
316 else
317 score_step_red = round(-score.value * a->score_step_byavg);
318 if (score_step_green < 0 || score_step_red > 0) {
319 /* The steps are in bad direction - keep still. */
320 return komi_by_color(extra_komi, color);
324 /* Wear out the ratchet. */
325 if (a->use_komi_ratchet && a->komi_ratchet_maxage > 0) {
326 a->komi_ratchet_age += value.playouts;
327 if (a->komi_ratchet_age > a->komi_ratchet_maxage) {
328 a->komi_ratchet = 1000;
329 a->komi_ratchet_age = 0;
333 if (value.value < a->zone_red) {
334 /* Red zone. Take extra komi. */
335 if (DEBUGL(2))
336 fprintf(stderr, "[red] %f, step %d | komi ratchet %f age %d/%d -> %f\n",
337 value.value, score_step_red, a->komi_ratchet, a->komi_ratchet_age, a->komi_ratchet_maxage, extra_komi);
338 if (a->losing_komi_ratchet || extra_komi > 0) {
339 a->komi_ratchet = extra_komi;
340 a->komi_ratchet_age = 0;
342 extra_komi += score_step_red;
343 return komi_by_color(extra_komi, color);
345 } else if (value.value < a->zone_green) {
346 /* Yellow zone, do nothing. */
347 return komi_by_color(extra_komi, color);
349 } else {
350 /* Green zone. Give extra komi. */
351 if (DEBUGL(2))
352 fprintf(stderr, "[green] %f, step %d | komi ratchet %f age %d/%d\n",
353 value.value, score_step_green, a->komi_ratchet, a->komi_ratchet_age, a->komi_ratchet_maxage);
354 extra_komi += score_step_green;
355 if (a->use_komi_ratchet && extra_komi >= a->komi_ratchet)
356 extra_komi = a->komi_ratchet - 1;
357 return komi_by_color(extra_komi, color);
361 static floating_t
362 bounded_komi(struct dynkomi_adaptive *a, struct board *b,
363 enum stone color, floating_t komi, floating_t max_losing_komi)
365 /* At the end of game, disallow losing komi. */
366 if (komi_by_color(komi, color) < 0
367 && board_game_portion(a, b) > a->losing_komi_stop)
368 return 0;
370 /* Get lower bound on komi we take so that we don't underperform
371 * too much. */
372 floating_t min_komi = komi_by_color(- max_losing_komi, color);
374 if (komi_by_color(komi - min_komi, color) > 0)
375 return komi;
376 else
377 return min_komi;
380 static floating_t
381 adaptive_permove(struct uct_dynkomi *d, struct board *b, struct tree *tree)
383 struct dynkomi_adaptive *a = d->data;
384 enum stone color = stone_other(tree->root_color);
385 if (DEBUGL(3))
386 fprintf(stderr, "m %d/%d ekomi %f permove %f/%d\n",
387 b->moves, a->lead_moves, tree->extra_komi,
388 d->score.value, d->score.playouts);
390 if (b->moves <= a->lead_moves)
391 return bounded_komi(a, b, color,
392 board_effective_handicap(b, 7 /* XXX */),
393 a->max_losing_komi);
395 floating_t komi = a->indicator(d, b, tree, color);
396 if (DEBUGL(3))
397 fprintf(stderr, "dynkomi: %f -> %f\n", tree->extra_komi, komi);
398 return bounded_komi(a, b, color, komi, a->max_losing_komi);
401 static floating_t
402 adaptive_persim(struct uct_dynkomi *d, struct board *b, struct tree *tree, struct tree_node *node)
404 return tree->extra_komi;
407 struct uct_dynkomi *
408 uct_dynkomi_init_adaptive(struct uct *u, char *arg, struct board *b)
410 struct uct_dynkomi *d = calloc2(1, sizeof(*d));
411 d->uct = u;
412 d->permove = adaptive_permove;
413 d->persim = adaptive_persim;
414 d->done = generic_done;
416 struct dynkomi_adaptive *a = calloc2(1, sizeof(*a));
417 d->data = a;
419 a->lead_moves = board_large(b) ? 20 : 4; // XXX
420 a->max_losing_komi = 30;
421 a->losing_komi_stop = 1.0f;
422 a->indicator = komi_by_value;
424 a->adapter = adapter_sigmoid;
425 a->adapt_rate = -18;
426 a->adapt_phase = 0.65;
427 a->adapt_moves = 200;
428 a->adapt_dir = -0.5;
430 a->zone_red = 0.45;
431 a->zone_green = 0.50;
432 a->score_step = 1;
433 a->use_komi_ratchet = true;
434 a->komi_ratchet_maxage = 0;
435 a->komi_ratchet = 1000;
437 if (arg) {
438 char *optspec, *next = arg;
439 while (*next) {
440 optspec = next;
441 next += strcspn(next, ":");
442 if (*next) { *next++ = 0; } else { *next = 0; }
444 char *optname = optspec;
445 char *optval = strchr(optspec, '=');
446 if (optval) *optval++ = 0;
448 if (!strcasecmp(optname, "lead_moves") && optval) {
449 /* Do not adjust komi adaptively for first
450 * N moves. */
451 a->lead_moves = atoi(optval);
452 } else if (!strcasecmp(optname, "max_losing_komi") && optval) {
453 a->max_losing_komi = atof(optval);
454 } else if (!strcasecmp(optname, "losing_komi_stop") && optval) {
455 a->losing_komi_stop = atof(optval);
456 } else if (!strcasecmp(optname, "indicator")) {
457 /* Adaptatation indicator - how to decide
458 * the adaptation rate and direction. */
459 if (!strcasecmp(optval, "value")) {
460 /* Winrate w/ komi so far. */
461 a->indicator = komi_by_value;
462 } else if (!strcasecmp(optval, "score")) {
463 /* Expected score w/ current komi. */
464 a->indicator = komi_by_score;
465 } else {
466 fprintf(stderr, "UCT: Invalid indicator %s\n", optval);
467 exit(1);
470 /* value indicator settings */
471 } else if (!strcasecmp(optname, "zone_red") && optval) {
472 a->zone_red = atof(optval);
473 } else if (!strcasecmp(optname, "zone_green") && optval) {
474 a->zone_green = atof(optval);
475 } else if (!strcasecmp(optname, "score_step") && optval) {
476 a->score_step = atoi(optval);
477 } else if (!strcasecmp(optname, "score_step_byavg") && optval) {
478 a->score_step_byavg = atof(optval);
479 } else if (!strcasecmp(optname, "use_komi_ratchet")) {
480 a->use_komi_ratchet = !optval || atoi(optval);
481 } else if (!strcasecmp(optname, "losing_komi_ratchet")) {
482 a->losing_komi_ratchet = !optval || atoi(optval);
483 } else if (!strcasecmp(optname, "komi_ratchet_age") && optval) {
484 a->komi_ratchet_maxage = atoi(optval);
486 /* score indicator settings */
487 } else if (!strcasecmp(optname, "adapter") && optval) {
488 /* Adaptatation method. */
489 if (!strcasecmp(optval, "sigmoid")) {
490 a->adapter = adapter_sigmoid;
491 } else if (!strcasecmp(optval, "linear")) {
492 a->adapter = adapter_linear;
493 } else {
494 fprintf(stderr, "UCT: Invalid adapter %s\n", optval);
495 exit(1);
497 } else if (!strcasecmp(optname, "adapt_base") && optval) {
498 /* Adaptation base rate; see above. */
499 a->adapt_base = atof(optval);
500 } else if (!strcasecmp(optname, "adapt_rate") && optval) {
501 /* Adaptation slope; see above. */
502 a->adapt_rate = atof(optval);
503 } else if (!strcasecmp(optname, "adapt_phase") && optval) {
504 /* Adaptation phase shift; see above. */
505 a->adapt_phase = atof(optval);
506 } else if (!strcasecmp(optname, "adapt_moves") && optval) {
507 /* Adaptation move amount; see above. */
508 a->adapt_moves = atoi(optval);
509 } else if (!strcasecmp(optname, "adapt_aport")) {
510 a->adapt_aport = !optval || atoi(optval);
511 } else if (!strcasecmp(optname, "adapt_dir") && optval) {
512 /* Adaptation direction vector; see above. */
513 a->adapt_dir = atof(optval);
515 } else {
516 fprintf(stderr, "uct: Invalid dynkomi argument %s or missing value\n", optname);
517 exit(1);
522 return d;