Linux v2.6.15-rc7
[pohmelfs.git] / drivers / md / dm.c
blob930b9fc27953766e94b2ce8869f6228feb5f04b3
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
9 #include "dm-bio-list.h"
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/blkpg.h>
15 #include <linux/bio.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
21 static const char *_name = DM_NAME;
23 static unsigned int major = 0;
24 static unsigned int _major = 0;
27 * One of these is allocated per bio.
29 struct dm_io {
30 struct mapped_device *md;
31 int error;
32 struct bio *bio;
33 atomic_t io_count;
37 * One of these is allocated per target within a bio. Hopefully
38 * this will be simplified out one day.
40 struct target_io {
41 struct dm_io *io;
42 struct dm_target *ti;
43 union map_info info;
46 union map_info *dm_get_mapinfo(struct bio *bio)
48 if (bio && bio->bi_private)
49 return &((struct target_io *)bio->bi_private)->info;
50 return NULL;
54 * Bits for the md->flags field.
56 #define DMF_BLOCK_IO 0
57 #define DMF_SUSPENDED 1
59 struct mapped_device {
60 struct rw_semaphore io_lock;
61 struct semaphore suspend_lock;
62 rwlock_t map_lock;
63 atomic_t holders;
65 unsigned long flags;
67 request_queue_t *queue;
68 struct gendisk *disk;
70 void *interface_ptr;
73 * A list of ios that arrived while we were suspended.
75 atomic_t pending;
76 wait_queue_head_t wait;
77 struct bio_list deferred;
80 * The current mapping.
82 struct dm_table *map;
85 * io objects are allocated from here.
87 mempool_t *io_pool;
88 mempool_t *tio_pool;
91 * Event handling.
93 atomic_t event_nr;
94 wait_queue_head_t eventq;
97 * freeze/thaw support require holding onto a super block
99 struct super_block *frozen_sb;
100 struct block_device *frozen_bdev;
103 #define MIN_IOS 256
104 static kmem_cache_t *_io_cache;
105 static kmem_cache_t *_tio_cache;
107 static struct bio_set *dm_set;
109 static int __init local_init(void)
111 int r;
113 dm_set = bioset_create(16, 16, 4);
114 if (!dm_set)
115 return -ENOMEM;
117 /* allocate a slab for the dm_ios */
118 _io_cache = kmem_cache_create("dm_io",
119 sizeof(struct dm_io), 0, 0, NULL, NULL);
120 if (!_io_cache)
121 return -ENOMEM;
123 /* allocate a slab for the target ios */
124 _tio_cache = kmem_cache_create("dm_tio", sizeof(struct target_io),
125 0, 0, NULL, NULL);
126 if (!_tio_cache) {
127 kmem_cache_destroy(_io_cache);
128 return -ENOMEM;
131 _major = major;
132 r = register_blkdev(_major, _name);
133 if (r < 0) {
134 kmem_cache_destroy(_tio_cache);
135 kmem_cache_destroy(_io_cache);
136 return r;
139 if (!_major)
140 _major = r;
142 return 0;
145 static void local_exit(void)
147 kmem_cache_destroy(_tio_cache);
148 kmem_cache_destroy(_io_cache);
150 bioset_free(dm_set);
152 if (unregister_blkdev(_major, _name) < 0)
153 DMERR("devfs_unregister_blkdev failed");
155 _major = 0;
157 DMINFO("cleaned up");
160 int (*_inits[])(void) __initdata = {
161 local_init,
162 dm_target_init,
163 dm_linear_init,
164 dm_stripe_init,
165 dm_interface_init,
168 void (*_exits[])(void) = {
169 local_exit,
170 dm_target_exit,
171 dm_linear_exit,
172 dm_stripe_exit,
173 dm_interface_exit,
176 static int __init dm_init(void)
178 const int count = ARRAY_SIZE(_inits);
180 int r, i;
182 for (i = 0; i < count; i++) {
183 r = _inits[i]();
184 if (r)
185 goto bad;
188 return 0;
190 bad:
191 while (i--)
192 _exits[i]();
194 return r;
197 static void __exit dm_exit(void)
199 int i = ARRAY_SIZE(_exits);
201 while (i--)
202 _exits[i]();
206 * Block device functions
208 static int dm_blk_open(struct inode *inode, struct file *file)
210 struct mapped_device *md;
212 md = inode->i_bdev->bd_disk->private_data;
213 dm_get(md);
214 return 0;
217 static int dm_blk_close(struct inode *inode, struct file *file)
219 struct mapped_device *md;
221 md = inode->i_bdev->bd_disk->private_data;
222 dm_put(md);
223 return 0;
226 static inline struct dm_io *alloc_io(struct mapped_device *md)
228 return mempool_alloc(md->io_pool, GFP_NOIO);
231 static inline void free_io(struct mapped_device *md, struct dm_io *io)
233 mempool_free(io, md->io_pool);
236 static inline struct target_io *alloc_tio(struct mapped_device *md)
238 return mempool_alloc(md->tio_pool, GFP_NOIO);
241 static inline void free_tio(struct mapped_device *md, struct target_io *tio)
243 mempool_free(tio, md->tio_pool);
247 * Add the bio to the list of deferred io.
249 static int queue_io(struct mapped_device *md, struct bio *bio)
251 down_write(&md->io_lock);
253 if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
254 up_write(&md->io_lock);
255 return 1;
258 bio_list_add(&md->deferred, bio);
260 up_write(&md->io_lock);
261 return 0; /* deferred successfully */
265 * Everyone (including functions in this file), should use this
266 * function to access the md->map field, and make sure they call
267 * dm_table_put() when finished.
269 struct dm_table *dm_get_table(struct mapped_device *md)
271 struct dm_table *t;
273 read_lock(&md->map_lock);
274 t = md->map;
275 if (t)
276 dm_table_get(t);
277 read_unlock(&md->map_lock);
279 return t;
282 /*-----------------------------------------------------------------
283 * CRUD START:
284 * A more elegant soln is in the works that uses the queue
285 * merge fn, unfortunately there are a couple of changes to
286 * the block layer that I want to make for this. So in the
287 * interests of getting something for people to use I give
288 * you this clearly demarcated crap.
289 *---------------------------------------------------------------*/
292 * Decrements the number of outstanding ios that a bio has been
293 * cloned into, completing the original io if necc.
295 static inline void dec_pending(struct dm_io *io, int error)
297 if (error)
298 io->error = error;
300 if (atomic_dec_and_test(&io->io_count)) {
301 if (atomic_dec_and_test(&io->md->pending))
302 /* nudge anyone waiting on suspend queue */
303 wake_up(&io->md->wait);
305 bio_endio(io->bio, io->bio->bi_size, io->error);
306 free_io(io->md, io);
310 static int clone_endio(struct bio *bio, unsigned int done, int error)
312 int r = 0;
313 struct target_io *tio = bio->bi_private;
314 struct dm_io *io = tio->io;
315 dm_endio_fn endio = tio->ti->type->end_io;
317 if (bio->bi_size)
318 return 1;
320 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
321 error = -EIO;
323 if (endio) {
324 r = endio(tio->ti, bio, error, &tio->info);
325 if (r < 0)
326 error = r;
328 else if (r > 0)
329 /* the target wants another shot at the io */
330 return 1;
333 free_tio(io->md, tio);
334 dec_pending(io, error);
335 bio_put(bio);
336 return r;
339 static sector_t max_io_len(struct mapped_device *md,
340 sector_t sector, struct dm_target *ti)
342 sector_t offset = sector - ti->begin;
343 sector_t len = ti->len - offset;
346 * Does the target need to split even further ?
348 if (ti->split_io) {
349 sector_t boundary;
350 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
351 - offset;
352 if (len > boundary)
353 len = boundary;
356 return len;
359 static void __map_bio(struct dm_target *ti, struct bio *clone,
360 struct target_io *tio)
362 int r;
365 * Sanity checks.
367 BUG_ON(!clone->bi_size);
369 clone->bi_end_io = clone_endio;
370 clone->bi_private = tio;
373 * Map the clone. If r == 0 we don't need to do
374 * anything, the target has assumed ownership of
375 * this io.
377 atomic_inc(&tio->io->io_count);
378 r = ti->type->map(ti, clone, &tio->info);
379 if (r > 0)
380 /* the bio has been remapped so dispatch it */
381 generic_make_request(clone);
383 else if (r < 0) {
384 /* error the io and bail out */
385 struct dm_io *io = tio->io;
386 free_tio(tio->io->md, tio);
387 dec_pending(io, r);
388 bio_put(clone);
392 struct clone_info {
393 struct mapped_device *md;
394 struct dm_table *map;
395 struct bio *bio;
396 struct dm_io *io;
397 sector_t sector;
398 sector_t sector_count;
399 unsigned short idx;
402 static void dm_bio_destructor(struct bio *bio)
404 bio_free(bio, dm_set);
408 * Creates a little bio that is just does part of a bvec.
410 static struct bio *split_bvec(struct bio *bio, sector_t sector,
411 unsigned short idx, unsigned int offset,
412 unsigned int len)
414 struct bio *clone;
415 struct bio_vec *bv = bio->bi_io_vec + idx;
417 clone = bio_alloc_bioset(GFP_NOIO, 1, dm_set);
418 clone->bi_destructor = dm_bio_destructor;
419 *clone->bi_io_vec = *bv;
421 clone->bi_sector = sector;
422 clone->bi_bdev = bio->bi_bdev;
423 clone->bi_rw = bio->bi_rw;
424 clone->bi_vcnt = 1;
425 clone->bi_size = to_bytes(len);
426 clone->bi_io_vec->bv_offset = offset;
427 clone->bi_io_vec->bv_len = clone->bi_size;
429 return clone;
433 * Creates a bio that consists of range of complete bvecs.
435 static struct bio *clone_bio(struct bio *bio, sector_t sector,
436 unsigned short idx, unsigned short bv_count,
437 unsigned int len)
439 struct bio *clone;
441 clone = bio_clone(bio, GFP_NOIO);
442 clone->bi_sector = sector;
443 clone->bi_idx = idx;
444 clone->bi_vcnt = idx + bv_count;
445 clone->bi_size = to_bytes(len);
446 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
448 return clone;
451 static void __clone_and_map(struct clone_info *ci)
453 struct bio *clone, *bio = ci->bio;
454 struct dm_target *ti = dm_table_find_target(ci->map, ci->sector);
455 sector_t len = 0, max = max_io_len(ci->md, ci->sector, ti);
456 struct target_io *tio;
459 * Allocate a target io object.
461 tio = alloc_tio(ci->md);
462 tio->io = ci->io;
463 tio->ti = ti;
464 memset(&tio->info, 0, sizeof(tio->info));
466 if (ci->sector_count <= max) {
468 * Optimise for the simple case where we can do all of
469 * the remaining io with a single clone.
471 clone = clone_bio(bio, ci->sector, ci->idx,
472 bio->bi_vcnt - ci->idx, ci->sector_count);
473 __map_bio(ti, clone, tio);
474 ci->sector_count = 0;
476 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
478 * There are some bvecs that don't span targets.
479 * Do as many of these as possible.
481 int i;
482 sector_t remaining = max;
483 sector_t bv_len;
485 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
486 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
488 if (bv_len > remaining)
489 break;
491 remaining -= bv_len;
492 len += bv_len;
495 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len);
496 __map_bio(ti, clone, tio);
498 ci->sector += len;
499 ci->sector_count -= len;
500 ci->idx = i;
502 } else {
504 * Create two copy bios to deal with io that has
505 * been split across a target.
507 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
509 clone = split_bvec(bio, ci->sector, ci->idx,
510 bv->bv_offset, max);
511 __map_bio(ti, clone, tio);
513 ci->sector += max;
514 ci->sector_count -= max;
515 ti = dm_table_find_target(ci->map, ci->sector);
517 len = to_sector(bv->bv_len) - max;
518 clone = split_bvec(bio, ci->sector, ci->idx,
519 bv->bv_offset + to_bytes(max), len);
520 tio = alloc_tio(ci->md);
521 tio->io = ci->io;
522 tio->ti = ti;
523 memset(&tio->info, 0, sizeof(tio->info));
524 __map_bio(ti, clone, tio);
526 ci->sector += len;
527 ci->sector_count -= len;
528 ci->idx++;
533 * Split the bio into several clones.
535 static void __split_bio(struct mapped_device *md, struct bio *bio)
537 struct clone_info ci;
539 ci.map = dm_get_table(md);
540 if (!ci.map) {
541 bio_io_error(bio, bio->bi_size);
542 return;
545 ci.md = md;
546 ci.bio = bio;
547 ci.io = alloc_io(md);
548 ci.io->error = 0;
549 atomic_set(&ci.io->io_count, 1);
550 ci.io->bio = bio;
551 ci.io->md = md;
552 ci.sector = bio->bi_sector;
553 ci.sector_count = bio_sectors(bio);
554 ci.idx = bio->bi_idx;
556 atomic_inc(&md->pending);
557 while (ci.sector_count)
558 __clone_and_map(&ci);
560 /* drop the extra reference count */
561 dec_pending(ci.io, 0);
562 dm_table_put(ci.map);
564 /*-----------------------------------------------------------------
565 * CRUD END
566 *---------------------------------------------------------------*/
569 * The request function that just remaps the bio built up by
570 * dm_merge_bvec.
572 static int dm_request(request_queue_t *q, struct bio *bio)
574 int r;
575 struct mapped_device *md = q->queuedata;
577 down_read(&md->io_lock);
580 * If we're suspended we have to queue
581 * this io for later.
583 while (test_bit(DMF_BLOCK_IO, &md->flags)) {
584 up_read(&md->io_lock);
586 if (bio_rw(bio) == READA) {
587 bio_io_error(bio, bio->bi_size);
588 return 0;
591 r = queue_io(md, bio);
592 if (r < 0) {
593 bio_io_error(bio, bio->bi_size);
594 return 0;
596 } else if (r == 0)
597 return 0; /* deferred successfully */
600 * We're in a while loop, because someone could suspend
601 * before we get to the following read lock.
603 down_read(&md->io_lock);
606 __split_bio(md, bio);
607 up_read(&md->io_lock);
608 return 0;
611 static int dm_flush_all(request_queue_t *q, struct gendisk *disk,
612 sector_t *error_sector)
614 struct mapped_device *md = q->queuedata;
615 struct dm_table *map = dm_get_table(md);
616 int ret = -ENXIO;
618 if (map) {
619 ret = dm_table_flush_all(map);
620 dm_table_put(map);
623 return ret;
626 static void dm_unplug_all(request_queue_t *q)
628 struct mapped_device *md = q->queuedata;
629 struct dm_table *map = dm_get_table(md);
631 if (map) {
632 dm_table_unplug_all(map);
633 dm_table_put(map);
637 static int dm_any_congested(void *congested_data, int bdi_bits)
639 int r;
640 struct mapped_device *md = (struct mapped_device *) congested_data;
641 struct dm_table *map = dm_get_table(md);
643 if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
644 r = bdi_bits;
645 else
646 r = dm_table_any_congested(map, bdi_bits);
648 dm_table_put(map);
649 return r;
652 /*-----------------------------------------------------------------
653 * An IDR is used to keep track of allocated minor numbers.
654 *---------------------------------------------------------------*/
655 static DECLARE_MUTEX(_minor_lock);
656 static DEFINE_IDR(_minor_idr);
658 static void free_minor(unsigned int minor)
660 down(&_minor_lock);
661 idr_remove(&_minor_idr, minor);
662 up(&_minor_lock);
666 * See if the device with a specific minor # is free.
668 static int specific_minor(struct mapped_device *md, unsigned int minor)
670 int r, m;
672 if (minor >= (1 << MINORBITS))
673 return -EINVAL;
675 down(&_minor_lock);
677 if (idr_find(&_minor_idr, minor)) {
678 r = -EBUSY;
679 goto out;
682 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
683 if (!r) {
684 r = -ENOMEM;
685 goto out;
688 r = idr_get_new_above(&_minor_idr, md, minor, &m);
689 if (r) {
690 goto out;
693 if (m != minor) {
694 idr_remove(&_minor_idr, m);
695 r = -EBUSY;
696 goto out;
699 out:
700 up(&_minor_lock);
701 return r;
704 static int next_free_minor(struct mapped_device *md, unsigned int *minor)
706 int r;
707 unsigned int m;
709 down(&_minor_lock);
711 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
712 if (!r) {
713 r = -ENOMEM;
714 goto out;
717 r = idr_get_new(&_minor_idr, md, &m);
718 if (r) {
719 goto out;
722 if (m >= (1 << MINORBITS)) {
723 idr_remove(&_minor_idr, m);
724 r = -ENOSPC;
725 goto out;
728 *minor = m;
730 out:
731 up(&_minor_lock);
732 return r;
735 static struct block_device_operations dm_blk_dops;
738 * Allocate and initialise a blank device with a given minor.
740 static struct mapped_device *alloc_dev(unsigned int minor, int persistent)
742 int r;
743 struct mapped_device *md = kmalloc(sizeof(*md), GFP_KERNEL);
745 if (!md) {
746 DMWARN("unable to allocate device, out of memory.");
747 return NULL;
750 /* get a minor number for the dev */
751 r = persistent ? specific_minor(md, minor) : next_free_minor(md, &minor);
752 if (r < 0)
753 goto bad1;
755 memset(md, 0, sizeof(*md));
756 init_rwsem(&md->io_lock);
757 init_MUTEX(&md->suspend_lock);
758 rwlock_init(&md->map_lock);
759 atomic_set(&md->holders, 1);
760 atomic_set(&md->event_nr, 0);
762 md->queue = blk_alloc_queue(GFP_KERNEL);
763 if (!md->queue)
764 goto bad1;
766 md->queue->queuedata = md;
767 md->queue->backing_dev_info.congested_fn = dm_any_congested;
768 md->queue->backing_dev_info.congested_data = md;
769 blk_queue_make_request(md->queue, dm_request);
770 md->queue->unplug_fn = dm_unplug_all;
771 md->queue->issue_flush_fn = dm_flush_all;
773 md->io_pool = mempool_create(MIN_IOS, mempool_alloc_slab,
774 mempool_free_slab, _io_cache);
775 if (!md->io_pool)
776 goto bad2;
778 md->tio_pool = mempool_create(MIN_IOS, mempool_alloc_slab,
779 mempool_free_slab, _tio_cache);
780 if (!md->tio_pool)
781 goto bad3;
783 md->disk = alloc_disk(1);
784 if (!md->disk)
785 goto bad4;
787 md->disk->major = _major;
788 md->disk->first_minor = minor;
789 md->disk->fops = &dm_blk_dops;
790 md->disk->queue = md->queue;
791 md->disk->private_data = md;
792 sprintf(md->disk->disk_name, "dm-%d", minor);
793 add_disk(md->disk);
795 atomic_set(&md->pending, 0);
796 init_waitqueue_head(&md->wait);
797 init_waitqueue_head(&md->eventq);
799 return md;
801 bad4:
802 mempool_destroy(md->tio_pool);
803 bad3:
804 mempool_destroy(md->io_pool);
805 bad2:
806 blk_put_queue(md->queue);
807 free_minor(minor);
808 bad1:
809 kfree(md);
810 return NULL;
813 static void free_dev(struct mapped_device *md)
815 free_minor(md->disk->first_minor);
816 mempool_destroy(md->tio_pool);
817 mempool_destroy(md->io_pool);
818 del_gendisk(md->disk);
819 put_disk(md->disk);
820 blk_put_queue(md->queue);
821 kfree(md);
825 * Bind a table to the device.
827 static void event_callback(void *context)
829 struct mapped_device *md = (struct mapped_device *) context;
831 atomic_inc(&md->event_nr);
832 wake_up(&md->eventq);
835 static void __set_size(struct mapped_device *md, sector_t size)
837 set_capacity(md->disk, size);
839 down(&md->frozen_bdev->bd_inode->i_sem);
840 i_size_write(md->frozen_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
841 up(&md->frozen_bdev->bd_inode->i_sem);
844 static int __bind(struct mapped_device *md, struct dm_table *t)
846 request_queue_t *q = md->queue;
847 sector_t size;
849 size = dm_table_get_size(t);
850 __set_size(md, size);
851 if (size == 0)
852 return 0;
854 dm_table_get(t);
855 dm_table_event_callback(t, event_callback, md);
857 write_lock(&md->map_lock);
858 md->map = t;
859 dm_table_set_restrictions(t, q);
860 write_unlock(&md->map_lock);
862 return 0;
865 static void __unbind(struct mapped_device *md)
867 struct dm_table *map = md->map;
869 if (!map)
870 return;
872 dm_table_event_callback(map, NULL, NULL);
873 write_lock(&md->map_lock);
874 md->map = NULL;
875 write_unlock(&md->map_lock);
876 dm_table_put(map);
880 * Constructor for a new device.
882 static int create_aux(unsigned int minor, int persistent,
883 struct mapped_device **result)
885 struct mapped_device *md;
887 md = alloc_dev(minor, persistent);
888 if (!md)
889 return -ENXIO;
891 *result = md;
892 return 0;
895 int dm_create(struct mapped_device **result)
897 return create_aux(0, 0, result);
900 int dm_create_with_minor(unsigned int minor, struct mapped_device **result)
902 return create_aux(minor, 1, result);
905 void *dm_get_mdptr(dev_t dev)
907 struct mapped_device *md;
908 void *mdptr = NULL;
909 unsigned minor = MINOR(dev);
911 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
912 return NULL;
914 down(&_minor_lock);
916 md = idr_find(&_minor_idr, minor);
918 if (md && (dm_disk(md)->first_minor == minor))
919 mdptr = md->interface_ptr;
921 up(&_minor_lock);
923 return mdptr;
926 void dm_set_mdptr(struct mapped_device *md, void *ptr)
928 md->interface_ptr = ptr;
931 void dm_get(struct mapped_device *md)
933 atomic_inc(&md->holders);
936 void dm_put(struct mapped_device *md)
938 struct dm_table *map = dm_get_table(md);
940 if (atomic_dec_and_test(&md->holders)) {
941 if (!dm_suspended(md)) {
942 dm_table_presuspend_targets(map);
943 dm_table_postsuspend_targets(map);
945 __unbind(md);
946 free_dev(md);
949 dm_table_put(map);
953 * Process the deferred bios
955 static void __flush_deferred_io(struct mapped_device *md, struct bio *c)
957 struct bio *n;
959 while (c) {
960 n = c->bi_next;
961 c->bi_next = NULL;
962 __split_bio(md, c);
963 c = n;
968 * Swap in a new table (destroying old one).
970 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
972 int r = -EINVAL;
974 down(&md->suspend_lock);
976 /* device must be suspended */
977 if (!dm_suspended(md))
978 goto out;
980 __unbind(md);
981 r = __bind(md, table);
983 out:
984 up(&md->suspend_lock);
985 return r;
989 * Functions to lock and unlock any filesystem running on the
990 * device.
992 static int lock_fs(struct mapped_device *md)
994 int r = -ENOMEM;
996 md->frozen_bdev = bdget_disk(md->disk, 0);
997 if (!md->frozen_bdev) {
998 DMWARN("bdget failed in lock_fs");
999 goto out;
1002 WARN_ON(md->frozen_sb);
1004 md->frozen_sb = freeze_bdev(md->frozen_bdev);
1005 if (IS_ERR(md->frozen_sb)) {
1006 r = PTR_ERR(md->frozen_sb);
1007 goto out_bdput;
1010 /* don't bdput right now, we don't want the bdev
1011 * to go away while it is locked. We'll bdput
1012 * in unlock_fs
1014 return 0;
1016 out_bdput:
1017 bdput(md->frozen_bdev);
1018 md->frozen_sb = NULL;
1019 md->frozen_bdev = NULL;
1020 out:
1021 return r;
1024 static void unlock_fs(struct mapped_device *md)
1026 thaw_bdev(md->frozen_bdev, md->frozen_sb);
1027 bdput(md->frozen_bdev);
1029 md->frozen_sb = NULL;
1030 md->frozen_bdev = NULL;
1034 * We need to be able to change a mapping table under a mounted
1035 * filesystem. For example we might want to move some data in
1036 * the background. Before the table can be swapped with
1037 * dm_bind_table, dm_suspend must be called to flush any in
1038 * flight bios and ensure that any further io gets deferred.
1040 int dm_suspend(struct mapped_device *md)
1042 struct dm_table *map = NULL;
1043 DECLARE_WAITQUEUE(wait, current);
1044 int r = -EINVAL;
1046 down(&md->suspend_lock);
1048 if (dm_suspended(md))
1049 goto out;
1051 map = dm_get_table(md);
1053 /* This does not get reverted if there's an error later. */
1054 dm_table_presuspend_targets(map);
1056 /* Flush I/O to the device. */
1057 r = lock_fs(md);
1058 if (r)
1059 goto out;
1062 * First we set the BLOCK_IO flag so no more ios will be mapped.
1064 down_write(&md->io_lock);
1065 set_bit(DMF_BLOCK_IO, &md->flags);
1067 add_wait_queue(&md->wait, &wait);
1068 up_write(&md->io_lock);
1070 /* unplug */
1071 if (map)
1072 dm_table_unplug_all(map);
1075 * Then we wait for the already mapped ios to
1076 * complete.
1078 while (1) {
1079 set_current_state(TASK_INTERRUPTIBLE);
1081 if (!atomic_read(&md->pending) || signal_pending(current))
1082 break;
1084 io_schedule();
1086 set_current_state(TASK_RUNNING);
1088 down_write(&md->io_lock);
1089 remove_wait_queue(&md->wait, &wait);
1091 /* were we interrupted ? */
1092 r = -EINTR;
1093 if (atomic_read(&md->pending)) {
1094 up_write(&md->io_lock);
1095 unlock_fs(md);
1096 clear_bit(DMF_BLOCK_IO, &md->flags);
1097 goto out;
1099 up_write(&md->io_lock);
1101 dm_table_postsuspend_targets(map);
1103 set_bit(DMF_SUSPENDED, &md->flags);
1105 r = 0;
1107 out:
1108 dm_table_put(map);
1109 up(&md->suspend_lock);
1110 return r;
1113 int dm_resume(struct mapped_device *md)
1115 int r = -EINVAL;
1116 struct bio *def;
1117 struct dm_table *map = NULL;
1119 down(&md->suspend_lock);
1120 if (!dm_suspended(md))
1121 goto out;
1123 map = dm_get_table(md);
1124 if (!map || !dm_table_get_size(map))
1125 goto out;
1127 dm_table_resume_targets(map);
1129 down_write(&md->io_lock);
1130 clear_bit(DMF_BLOCK_IO, &md->flags);
1132 def = bio_list_get(&md->deferred);
1133 __flush_deferred_io(md, def);
1134 up_write(&md->io_lock);
1136 unlock_fs(md);
1138 clear_bit(DMF_SUSPENDED, &md->flags);
1140 dm_table_unplug_all(map);
1142 r = 0;
1144 out:
1145 dm_table_put(map);
1146 up(&md->suspend_lock);
1148 return r;
1151 /*-----------------------------------------------------------------
1152 * Event notification.
1153 *---------------------------------------------------------------*/
1154 uint32_t dm_get_event_nr(struct mapped_device *md)
1156 return atomic_read(&md->event_nr);
1159 int dm_wait_event(struct mapped_device *md, int event_nr)
1161 return wait_event_interruptible(md->eventq,
1162 (event_nr != atomic_read(&md->event_nr)));
1166 * The gendisk is only valid as long as you have a reference
1167 * count on 'md'.
1169 struct gendisk *dm_disk(struct mapped_device *md)
1171 return md->disk;
1174 int dm_suspended(struct mapped_device *md)
1176 return test_bit(DMF_SUSPENDED, &md->flags);
1179 static struct block_device_operations dm_blk_dops = {
1180 .open = dm_blk_open,
1181 .release = dm_blk_close,
1182 .owner = THIS_MODULE
1185 EXPORT_SYMBOL(dm_get_mapinfo);
1188 * module hooks
1190 module_init(dm_init);
1191 module_exit(dm_exit);
1193 module_param(major, uint, 0);
1194 MODULE_PARM_DESC(major, "The major number of the device mapper");
1195 MODULE_DESCRIPTION(DM_NAME " driver");
1196 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1197 MODULE_LICENSE("GPL");