2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
62 #define DRV_VERSION "2.20" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
71 u16 heads
, u16 sectors
);
72 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
73 static void ata_dev_xfermask(struct ata_device
*dev
);
75 unsigned int ata_print_id
= 1;
76 static struct workqueue_struct
*ata_wq
;
78 struct workqueue_struct
*ata_aux_wq
;
80 int atapi_enabled
= 1;
81 module_param(atapi_enabled
, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
85 module_param(atapi_dmadir
, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
89 module_param_named(fua
, libata_fua
, int, 0444);
90 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
92 static int ata_ignore_hpa
= 0;
93 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
94 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96 static int ata_probe_timeout
= ATA_TMOUT_INTERNAL
/ HZ
;
97 module_param(ata_probe_timeout
, int, 0444);
98 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
100 int libata_noacpi
= 1;
101 module_param_named(noacpi
, libata_noacpi
, int, 0444);
102 MODULE_PARM_DESC(noacpi
, "Disables the use of ACPI in suspend/resume when set");
104 MODULE_AUTHOR("Jeff Garzik");
105 MODULE_DESCRIPTION("Library module for ATA devices");
106 MODULE_LICENSE("GPL");
107 MODULE_VERSION(DRV_VERSION
);
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
120 * Inherited from caller.
123 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8
*fis
, u8 pmp
)
125 fis
[0] = 0x27; /* Register - Host to Device FIS */
126 fis
[1] = (pmp
& 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis
[2] = tf
->command
;
129 fis
[3] = tf
->feature
;
136 fis
[8] = tf
->hob_lbal
;
137 fis
[9] = tf
->hob_lbam
;
138 fis
[10] = tf
->hob_lbah
;
139 fis
[11] = tf
->hob_feature
;
142 fis
[13] = tf
->hob_nsect
;
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
160 * Inherited from caller.
163 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
165 tf
->command
= fis
[2]; /* status */
166 tf
->feature
= fis
[3]; /* error */
173 tf
->hob_lbal
= fis
[8];
174 tf
->hob_lbam
= fis
[9];
175 tf
->hob_lbah
= fis
[10];
178 tf
->hob_nsect
= fis
[13];
181 static const u8 ata_rw_cmds
[] = {
185 ATA_CMD_READ_MULTI_EXT
,
186 ATA_CMD_WRITE_MULTI_EXT
,
190 ATA_CMD_WRITE_MULTI_FUA_EXT
,
194 ATA_CMD_PIO_READ_EXT
,
195 ATA_CMD_PIO_WRITE_EXT
,
208 ATA_CMD_WRITE_FUA_EXT
212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
216 * Examine the device configuration and tf->flags to calculate
217 * the proper read/write commands and protocol to use.
222 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
226 int index
, fua
, lba48
, write
;
228 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
229 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
230 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
232 if (dev
->flags
& ATA_DFLAG_PIO
) {
233 tf
->protocol
= ATA_PROT_PIO
;
234 index
= dev
->multi_count
? 0 : 8;
235 } else if (lba48
&& (dev
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
236 /* Unable to use DMA due to host limitation */
237 tf
->protocol
= ATA_PROT_PIO
;
238 index
= dev
->multi_count
? 0 : 8;
240 tf
->protocol
= ATA_PROT_DMA
;
244 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
265 * Block address read from @tf.
267 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
271 if (tf
->flags
& ATA_TFLAG_LBA
) {
272 if (tf
->flags
& ATA_TFLAG_LBA48
) {
273 block
|= (u64
)tf
->hob_lbah
<< 40;
274 block
|= (u64
)tf
->hob_lbam
<< 32;
275 block
|= tf
->hob_lbal
<< 24;
277 block
|= (tf
->device
& 0xf) << 24;
279 block
|= tf
->lbah
<< 16;
280 block
|= tf
->lbam
<< 8;
285 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
286 head
= tf
->device
& 0xf;
289 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
;
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
315 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
316 u64 block
, u32 n_block
, unsigned int tf_flags
,
319 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
320 tf
->flags
|= tf_flags
;
322 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
324 if (!lba_48_ok(block
, n_block
))
327 tf
->protocol
= ATA_PROT_NCQ
;
328 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
330 if (tf
->flags
& ATA_TFLAG_WRITE
)
331 tf
->command
= ATA_CMD_FPDMA_WRITE
;
333 tf
->command
= ATA_CMD_FPDMA_READ
;
335 tf
->nsect
= tag
<< 3;
336 tf
->hob_feature
= (n_block
>> 8) & 0xff;
337 tf
->feature
= n_block
& 0xff;
339 tf
->hob_lbah
= (block
>> 40) & 0xff;
340 tf
->hob_lbam
= (block
>> 32) & 0xff;
341 tf
->hob_lbal
= (block
>> 24) & 0xff;
342 tf
->lbah
= (block
>> 16) & 0xff;
343 tf
->lbam
= (block
>> 8) & 0xff;
344 tf
->lbal
= block
& 0xff;
347 if (tf
->flags
& ATA_TFLAG_FUA
)
348 tf
->device
|= 1 << 7;
349 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
350 tf
->flags
|= ATA_TFLAG_LBA
;
352 if (lba_28_ok(block
, n_block
)) {
354 tf
->device
|= (block
>> 24) & 0xf;
355 } else if (lba_48_ok(block
, n_block
)) {
356 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
360 tf
->flags
|= ATA_TFLAG_LBA48
;
362 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
364 tf
->hob_lbah
= (block
>> 40) & 0xff;
365 tf
->hob_lbam
= (block
>> 32) & 0xff;
366 tf
->hob_lbal
= (block
>> 24) & 0xff;
368 /* request too large even for LBA48 */
371 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
374 tf
->nsect
= n_block
& 0xff;
376 tf
->lbah
= (block
>> 16) & 0xff;
377 tf
->lbam
= (block
>> 8) & 0xff;
378 tf
->lbal
= block
& 0xff;
380 tf
->device
|= ATA_LBA
;
383 u32 sect
, head
, cyl
, track
;
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block
, n_block
))
389 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
392 /* Convert LBA to CHS */
393 track
= (u32
)block
/ dev
->sectors
;
394 cyl
= track
/ dev
->heads
;
395 head
= track
% dev
->heads
;
396 sect
= (u32
)block
% dev
->sectors
+ 1;
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32
)block
, track
, cyl
, head
, sect
);
401 /* Check whether the converted CHS can fit.
405 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
408 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
433 static unsigned int ata_pack_xfermask(unsigned int pio_mask
,
434 unsigned int mwdma_mask
,
435 unsigned int udma_mask
)
437 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
438 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
439 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
452 static void ata_unpack_xfermask(unsigned int xfer_mask
,
453 unsigned int *pio_mask
,
454 unsigned int *mwdma_mask
,
455 unsigned int *udma_mask
)
458 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
460 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
462 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
465 static const struct ata_xfer_ent
{
469 { ATA_SHIFT_PIO
, ATA_BITS_PIO
, XFER_PIO_0
},
470 { ATA_SHIFT_MWDMA
, ATA_BITS_MWDMA
, XFER_MW_DMA_0
},
471 { ATA_SHIFT_UDMA
, ATA_BITS_UDMA
, XFER_UDMA_0
},
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
486 * Matching XFER_* value, 0 if no match found.
488 static u8
ata_xfer_mask2mode(unsigned int xfer_mask
)
490 int highbit
= fls(xfer_mask
) - 1;
491 const struct ata_xfer_ent
*ent
;
493 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
494 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
495 return ent
->base
+ highbit
- ent
->shift
;
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
503 * Return matching xfer_mask for @xfer_mode.
509 * Matching xfer_mask, 0 if no match found.
511 static unsigned int ata_xfer_mode2mask(u8 xfer_mode
)
513 const struct ata_xfer_ent
*ent
;
515 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
516 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
517 return 1 << (ent
->shift
+ xfer_mode
- ent
->base
);
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
525 * Return matching xfer_shift for @xfer_mode.
531 * Matching xfer_shift, -1 if no match found.
533 static int ata_xfer_mode2shift(unsigned int xfer_mode
)
535 const struct ata_xfer_ent
*ent
;
537 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
538 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
547 * Determine string which represents the highest speed
548 * (highest bit in @modemask).
554 * Constant C string representing highest speed listed in
555 * @mode_mask, or the constant C string "<n/a>".
557 static const char *ata_mode_string(unsigned int xfer_mask
)
559 static const char * const xfer_mode_str
[] = {
583 highbit
= fls(xfer_mask
) - 1;
584 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
585 return xfer_mode_str
[highbit
];
589 static const char *sata_spd_string(unsigned int spd
)
591 static const char * const spd_str
[] = {
596 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
598 return spd_str
[spd
- 1];
601 void ata_dev_disable(struct ata_device
*dev
)
603 if (ata_dev_enabled(dev
) && ata_msg_drv(dev
->ap
)) {
604 ata_dev_printk(dev
, KERN_WARNING
, "disabled\n");
605 ata_down_xfermask_limit(dev
, ATA_DNXFER_FORCE_PIO0
|
612 * ata_devchk - PATA device presence detection
613 * @ap: ATA channel to examine
614 * @device: Device to examine (starting at zero)
616 * This technique was originally described in
617 * Hale Landis's ATADRVR (www.ata-atapi.com), and
618 * later found its way into the ATA/ATAPI spec.
620 * Write a pattern to the ATA shadow registers,
621 * and if a device is present, it will respond by
622 * correctly storing and echoing back the
623 * ATA shadow register contents.
629 static unsigned int ata_devchk(struct ata_port
*ap
, unsigned int device
)
631 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
634 ap
->ops
->dev_select(ap
, device
);
636 iowrite8(0x55, ioaddr
->nsect_addr
);
637 iowrite8(0xaa, ioaddr
->lbal_addr
);
639 iowrite8(0xaa, ioaddr
->nsect_addr
);
640 iowrite8(0x55, ioaddr
->lbal_addr
);
642 iowrite8(0x55, ioaddr
->nsect_addr
);
643 iowrite8(0xaa, ioaddr
->lbal_addr
);
645 nsect
= ioread8(ioaddr
->nsect_addr
);
646 lbal
= ioread8(ioaddr
->lbal_addr
);
648 if ((nsect
== 0x55) && (lbal
== 0xaa))
649 return 1; /* we found a device */
651 return 0; /* nothing found */
655 * ata_dev_classify - determine device type based on ATA-spec signature
656 * @tf: ATA taskfile register set for device to be identified
658 * Determine from taskfile register contents whether a device is
659 * ATA or ATAPI, as per "Signature and persistence" section
660 * of ATA/PI spec (volume 1, sect 5.14).
666 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
667 * the event of failure.
670 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
672 /* Apple's open source Darwin code hints that some devices only
673 * put a proper signature into the LBA mid/high registers,
674 * So, we only check those. It's sufficient for uniqueness.
677 if (((tf
->lbam
== 0) && (tf
->lbah
== 0)) ||
678 ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3))) {
679 DPRINTK("found ATA device by sig\n");
683 if (((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) ||
684 ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96))) {
685 DPRINTK("found ATAPI device by sig\n");
686 return ATA_DEV_ATAPI
;
689 DPRINTK("unknown device\n");
690 return ATA_DEV_UNKNOWN
;
694 * ata_dev_try_classify - Parse returned ATA device signature
695 * @ap: ATA channel to examine
696 * @device: Device to examine (starting at zero)
697 * @r_err: Value of error register on completion
699 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
700 * an ATA/ATAPI-defined set of values is placed in the ATA
701 * shadow registers, indicating the results of device detection
704 * Select the ATA device, and read the values from the ATA shadow
705 * registers. Then parse according to the Error register value,
706 * and the spec-defined values examined by ata_dev_classify().
712 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
716 ata_dev_try_classify(struct ata_port
*ap
, unsigned int device
, u8
*r_err
)
718 struct ata_taskfile tf
;
722 ap
->ops
->dev_select(ap
, device
);
724 memset(&tf
, 0, sizeof(tf
));
726 ap
->ops
->tf_read(ap
, &tf
);
731 /* see if device passed diags: if master then continue and warn later */
732 if (err
== 0 && device
== 0)
733 /* diagnostic fail : do nothing _YET_ */
734 ap
->device
[device
].horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
737 else if ((device
== 0) && (err
== 0x81))
742 /* determine if device is ATA or ATAPI */
743 class = ata_dev_classify(&tf
);
745 if (class == ATA_DEV_UNKNOWN
)
747 if ((class == ATA_DEV_ATA
) && (ata_chk_status(ap
) == 0))
753 * ata_id_string - Convert IDENTIFY DEVICE page into string
754 * @id: IDENTIFY DEVICE results we will examine
755 * @s: string into which data is output
756 * @ofs: offset into identify device page
757 * @len: length of string to return. must be an even number.
759 * The strings in the IDENTIFY DEVICE page are broken up into
760 * 16-bit chunks. Run through the string, and output each
761 * 8-bit chunk linearly, regardless of platform.
767 void ata_id_string(const u16
*id
, unsigned char *s
,
768 unsigned int ofs
, unsigned int len
)
787 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
788 * @id: IDENTIFY DEVICE results we will examine
789 * @s: string into which data is output
790 * @ofs: offset into identify device page
791 * @len: length of string to return. must be an odd number.
793 * This function is identical to ata_id_string except that it
794 * trims trailing spaces and terminates the resulting string with
795 * null. @len must be actual maximum length (even number) + 1.
800 void ata_id_c_string(const u16
*id
, unsigned char *s
,
801 unsigned int ofs
, unsigned int len
)
807 ata_id_string(id
, s
, ofs
, len
- 1);
809 p
= s
+ strnlen(s
, len
- 1);
810 while (p
> s
&& p
[-1] == ' ')
815 static u64
ata_tf_to_lba48(struct ata_taskfile
*tf
)
819 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
820 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
821 sectors
|= (tf
->hob_lbal
& 0xff) << 24;
822 sectors
|= (tf
->lbah
& 0xff) << 16;
823 sectors
|= (tf
->lbam
& 0xff) << 8;
824 sectors
|= (tf
->lbal
& 0xff);
829 static u64
ata_tf_to_lba(struct ata_taskfile
*tf
)
833 sectors
|= (tf
->device
& 0x0f) << 24;
834 sectors
|= (tf
->lbah
& 0xff) << 16;
835 sectors
|= (tf
->lbam
& 0xff) << 8;
836 sectors
|= (tf
->lbal
& 0xff);
842 * ata_read_native_max_address_ext - LBA48 native max query
843 * @dev: Device to query
845 * Perform an LBA48 size query upon the device in question. Return the
846 * actual LBA48 size or zero if the command fails.
849 static u64
ata_read_native_max_address_ext(struct ata_device
*dev
)
852 struct ata_taskfile tf
;
854 ata_tf_init(dev
, &tf
);
856 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
857 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_LBA48
| ATA_TFLAG_ISADDR
;
858 tf
.protocol
|= ATA_PROT_NODATA
;
861 err
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
865 return ata_tf_to_lba48(&tf
);
869 * ata_read_native_max_address - LBA28 native max query
870 * @dev: Device to query
872 * Performa an LBA28 size query upon the device in question. Return the
873 * actual LBA28 size or zero if the command fails.
876 static u64
ata_read_native_max_address(struct ata_device
*dev
)
879 struct ata_taskfile tf
;
881 ata_tf_init(dev
, &tf
);
883 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
884 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
885 tf
.protocol
|= ATA_PROT_NODATA
;
888 err
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
892 return ata_tf_to_lba(&tf
);
896 * ata_set_native_max_address_ext - LBA48 native max set
897 * @dev: Device to query
899 * Perform an LBA48 size set max upon the device in question. Return the
900 * actual LBA48 size or zero if the command fails.
903 static u64
ata_set_native_max_address_ext(struct ata_device
*dev
, u64 new_sectors
)
906 struct ata_taskfile tf
;
910 ata_tf_init(dev
, &tf
);
912 tf
.command
= ATA_CMD_SET_MAX_EXT
;
913 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_LBA48
| ATA_TFLAG_ISADDR
;
914 tf
.protocol
|= ATA_PROT_NODATA
;
917 tf
.lbal
= (new_sectors
>> 0) & 0xff;
918 tf
.lbam
= (new_sectors
>> 8) & 0xff;
919 tf
.lbah
= (new_sectors
>> 16) & 0xff;
921 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
922 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
923 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
925 err
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
929 return ata_tf_to_lba48(&tf
);
933 * ata_set_native_max_address - LBA28 native max set
934 * @dev: Device to query
936 * Perform an LBA28 size set max upon the device in question. Return the
937 * actual LBA28 size or zero if the command fails.
940 static u64
ata_set_native_max_address(struct ata_device
*dev
, u64 new_sectors
)
943 struct ata_taskfile tf
;
947 ata_tf_init(dev
, &tf
);
949 tf
.command
= ATA_CMD_SET_MAX
;
950 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
951 tf
.protocol
|= ATA_PROT_NODATA
;
953 tf
.lbal
= (new_sectors
>> 0) & 0xff;
954 tf
.lbam
= (new_sectors
>> 8) & 0xff;
955 tf
.lbah
= (new_sectors
>> 16) & 0xff;
956 tf
.device
|= ((new_sectors
>> 24) & 0x0f) | 0x40;
958 err
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
962 return ata_tf_to_lba(&tf
);
966 * ata_hpa_resize - Resize a device with an HPA set
967 * @dev: Device to resize
969 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
970 * it if required to the full size of the media. The caller must check
971 * the drive has the HPA feature set enabled.
974 static u64
ata_hpa_resize(struct ata_device
*dev
)
976 u64 sectors
= dev
->n_sectors
;
979 if (ata_id_has_lba48(dev
->id
))
980 hpa_sectors
= ata_read_native_max_address_ext(dev
);
982 hpa_sectors
= ata_read_native_max_address(dev
);
984 /* if no hpa, both should be equal */
985 ata_dev_printk(dev
, KERN_INFO
, "%s 1: sectors = %lld, "
986 "hpa_sectors = %lld\n",
987 __FUNCTION__
, (long long)sectors
, (long long)hpa_sectors
);
989 if (hpa_sectors
> sectors
) {
990 ata_dev_printk(dev
, KERN_INFO
,
991 "Host Protected Area detected:\n"
992 "\tcurrent size: %lld sectors\n"
993 "\tnative size: %lld sectors\n",
994 (long long)sectors
, (long long)hpa_sectors
);
996 if (ata_ignore_hpa
) {
997 if (ata_id_has_lba48(dev
->id
))
998 hpa_sectors
= ata_set_native_max_address_ext(dev
, hpa_sectors
);
1000 hpa_sectors
= ata_set_native_max_address(dev
,
1004 ata_dev_printk(dev
, KERN_INFO
, "native size "
1005 "increased to %lld sectors\n",
1006 (long long)hpa_sectors
);
1014 static u64
ata_id_n_sectors(const u16
*id
)
1016 if (ata_id_has_lba(id
)) {
1017 if (ata_id_has_lba48(id
))
1018 return ata_id_u64(id
, 100);
1020 return ata_id_u32(id
, 60);
1022 if (ata_id_current_chs_valid(id
))
1023 return ata_id_u32(id
, 57);
1025 return id
[1] * id
[3] * id
[6];
1030 * ata_id_to_dma_mode - Identify DMA mode from id block
1031 * @dev: device to identify
1032 * @unknown: mode to assume if we cannot tell
1034 * Set up the timing values for the device based upon the identify
1035 * reported values for the DMA mode. This function is used by drivers
1036 * which rely upon firmware configured modes, but wish to report the
1037 * mode correctly when possible.
1039 * In addition we emit similarly formatted messages to the default
1040 * ata_dev_set_mode handler, in order to provide consistency of
1044 void ata_id_to_dma_mode(struct ata_device
*dev
, u8 unknown
)
1049 /* Pack the DMA modes */
1050 mask
= ((dev
->id
[63] >> 8) << ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
;
1051 if (dev
->id
[53] & 0x04)
1052 mask
|= ((dev
->id
[88] >> 8) << ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
;
1054 /* Select the mode in use */
1055 mode
= ata_xfer_mask2mode(mask
);
1058 ata_dev_printk(dev
, KERN_INFO
, "configured for %s\n",
1059 ata_mode_string(mask
));
1061 /* SWDMA perhaps ? */
1063 ata_dev_printk(dev
, KERN_INFO
, "configured for DMA\n");
1066 /* Configure the device reporting */
1067 dev
->xfer_mode
= mode
;
1068 dev
->xfer_shift
= ata_xfer_mode2shift(mode
);
1072 * ata_noop_dev_select - Select device 0/1 on ATA bus
1073 * @ap: ATA channel to manipulate
1074 * @device: ATA device (numbered from zero) to select
1076 * This function performs no actual function.
1078 * May be used as the dev_select() entry in ata_port_operations.
1083 void ata_noop_dev_select (struct ata_port
*ap
, unsigned int device
)
1089 * ata_std_dev_select - Select device 0/1 on ATA bus
1090 * @ap: ATA channel to manipulate
1091 * @device: ATA device (numbered from zero) to select
1093 * Use the method defined in the ATA specification to
1094 * make either device 0, or device 1, active on the
1095 * ATA channel. Works with both PIO and MMIO.
1097 * May be used as the dev_select() entry in ata_port_operations.
1103 void ata_std_dev_select (struct ata_port
*ap
, unsigned int device
)
1108 tmp
= ATA_DEVICE_OBS
;
1110 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
1112 iowrite8(tmp
, ap
->ioaddr
.device_addr
);
1113 ata_pause(ap
); /* needed; also flushes, for mmio */
1117 * ata_dev_select - Select device 0/1 on ATA bus
1118 * @ap: ATA channel to manipulate
1119 * @device: ATA device (numbered from zero) to select
1120 * @wait: non-zero to wait for Status register BSY bit to clear
1121 * @can_sleep: non-zero if context allows sleeping
1123 * Use the method defined in the ATA specification to
1124 * make either device 0, or device 1, active on the
1127 * This is a high-level version of ata_std_dev_select(),
1128 * which additionally provides the services of inserting
1129 * the proper pauses and status polling, where needed.
1135 void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
1136 unsigned int wait
, unsigned int can_sleep
)
1138 if (ata_msg_probe(ap
))
1139 ata_port_printk(ap
, KERN_INFO
, "ata_dev_select: ENTER, "
1140 "device %u, wait %u\n", device
, wait
);
1145 ap
->ops
->dev_select(ap
, device
);
1148 if (can_sleep
&& ap
->device
[device
].class == ATA_DEV_ATAPI
)
1155 * ata_dump_id - IDENTIFY DEVICE info debugging output
1156 * @id: IDENTIFY DEVICE page to dump
1158 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1165 static inline void ata_dump_id(const u16
*id
)
1167 DPRINTK("49==0x%04x "
1177 DPRINTK("80==0x%04x "
1187 DPRINTK("88==0x%04x "
1194 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1195 * @id: IDENTIFY data to compute xfer mask from
1197 * Compute the xfermask for this device. This is not as trivial
1198 * as it seems if we must consider early devices correctly.
1200 * FIXME: pre IDE drive timing (do we care ?).
1208 static unsigned int ata_id_xfermask(const u16
*id
)
1210 unsigned int pio_mask
, mwdma_mask
, udma_mask
;
1212 /* Usual case. Word 53 indicates word 64 is valid */
1213 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1214 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1218 /* If word 64 isn't valid then Word 51 high byte holds
1219 * the PIO timing number for the maximum. Turn it into
1222 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1223 if (mode
< 5) /* Valid PIO range */
1224 pio_mask
= (2 << mode
) - 1;
1228 /* But wait.. there's more. Design your standards by
1229 * committee and you too can get a free iordy field to
1230 * process. However its the speeds not the modes that
1231 * are supported... Note drivers using the timing API
1232 * will get this right anyway
1236 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1238 if (ata_id_is_cfa(id
)) {
1240 * Process compact flash extended modes
1242 int pio
= id
[163] & 0x7;
1243 int dma
= (id
[163] >> 3) & 7;
1246 pio_mask
|= (1 << 5);
1248 pio_mask
|= (1 << 6);
1250 mwdma_mask
|= (1 << 3);
1252 mwdma_mask
|= (1 << 4);
1256 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1257 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1259 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1263 * ata_port_queue_task - Queue port_task
1264 * @ap: The ata_port to queue port_task for
1265 * @fn: workqueue function to be scheduled
1266 * @data: data for @fn to use
1267 * @delay: delay time for workqueue function
1269 * Schedule @fn(@data) for execution after @delay jiffies using
1270 * port_task. There is one port_task per port and it's the
1271 * user(low level driver)'s responsibility to make sure that only
1272 * one task is active at any given time.
1274 * libata core layer takes care of synchronization between
1275 * port_task and EH. ata_port_queue_task() may be ignored for EH
1279 * Inherited from caller.
1281 void ata_port_queue_task(struct ata_port
*ap
, work_func_t fn
, void *data
,
1282 unsigned long delay
)
1286 if (ap
->pflags
& ATA_PFLAG_FLUSH_PORT_TASK
)
1289 PREPARE_DELAYED_WORK(&ap
->port_task
, fn
);
1290 ap
->port_task_data
= data
;
1292 rc
= queue_delayed_work(ata_wq
, &ap
->port_task
, delay
);
1294 /* rc == 0 means that another user is using port task */
1299 * ata_port_flush_task - Flush port_task
1300 * @ap: The ata_port to flush port_task for
1302 * After this function completes, port_task is guranteed not to
1303 * be running or scheduled.
1306 * Kernel thread context (may sleep)
1308 void ata_port_flush_task(struct ata_port
*ap
)
1310 unsigned long flags
;
1314 spin_lock_irqsave(ap
->lock
, flags
);
1315 ap
->pflags
|= ATA_PFLAG_FLUSH_PORT_TASK
;
1316 spin_unlock_irqrestore(ap
->lock
, flags
);
1318 DPRINTK("flush #1\n");
1319 cancel_work_sync(&ap
->port_task
.work
); /* akpm: seems unneeded */
1322 * At this point, if a task is running, it's guaranteed to see
1323 * the FLUSH flag; thus, it will never queue pio tasks again.
1326 if (!cancel_delayed_work(&ap
->port_task
)) {
1327 if (ata_msg_ctl(ap
))
1328 ata_port_printk(ap
, KERN_DEBUG
, "%s: flush #2\n",
1330 cancel_work_sync(&ap
->port_task
.work
);
1333 spin_lock_irqsave(ap
->lock
, flags
);
1334 ap
->pflags
&= ~ATA_PFLAG_FLUSH_PORT_TASK
;
1335 spin_unlock_irqrestore(ap
->lock
, flags
);
1337 if (ata_msg_ctl(ap
))
1338 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __FUNCTION__
);
1341 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1343 struct completion
*waiting
= qc
->private_data
;
1349 * ata_exec_internal_sg - execute libata internal command
1350 * @dev: Device to which the command is sent
1351 * @tf: Taskfile registers for the command and the result
1352 * @cdb: CDB for packet command
1353 * @dma_dir: Data tranfer direction of the command
1354 * @sg: sg list for the data buffer of the command
1355 * @n_elem: Number of sg entries
1357 * Executes libata internal command with timeout. @tf contains
1358 * command on entry and result on return. Timeout and error
1359 * conditions are reported via return value. No recovery action
1360 * is taken after a command times out. It's caller's duty to
1361 * clean up after timeout.
1364 * None. Should be called with kernel context, might sleep.
1367 * Zero on success, AC_ERR_* mask on failure
1369 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1370 struct ata_taskfile
*tf
, const u8
*cdb
,
1371 int dma_dir
, struct scatterlist
*sg
,
1372 unsigned int n_elem
)
1374 struct ata_port
*ap
= dev
->ap
;
1375 u8 command
= tf
->command
;
1376 struct ata_queued_cmd
*qc
;
1377 unsigned int tag
, preempted_tag
;
1378 u32 preempted_sactive
, preempted_qc_active
;
1379 DECLARE_COMPLETION_ONSTACK(wait
);
1380 unsigned long flags
;
1381 unsigned int err_mask
;
1384 spin_lock_irqsave(ap
->lock
, flags
);
1386 /* no internal command while frozen */
1387 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1388 spin_unlock_irqrestore(ap
->lock
, flags
);
1389 return AC_ERR_SYSTEM
;
1392 /* initialize internal qc */
1394 /* XXX: Tag 0 is used for drivers with legacy EH as some
1395 * drivers choke if any other tag is given. This breaks
1396 * ata_tag_internal() test for those drivers. Don't use new
1397 * EH stuff without converting to it.
1399 if (ap
->ops
->error_handler
)
1400 tag
= ATA_TAG_INTERNAL
;
1404 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1406 qc
= __ata_qc_from_tag(ap
, tag
);
1414 preempted_tag
= ap
->active_tag
;
1415 preempted_sactive
= ap
->sactive
;
1416 preempted_qc_active
= ap
->qc_active
;
1417 ap
->active_tag
= ATA_TAG_POISON
;
1421 /* prepare & issue qc */
1424 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1425 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1426 qc
->dma_dir
= dma_dir
;
1427 if (dma_dir
!= DMA_NONE
) {
1428 unsigned int i
, buflen
= 0;
1430 for (i
= 0; i
< n_elem
; i
++)
1431 buflen
+= sg
[i
].length
;
1433 ata_sg_init(qc
, sg
, n_elem
);
1434 qc
->nbytes
= buflen
;
1437 qc
->private_data
= &wait
;
1438 qc
->complete_fn
= ata_qc_complete_internal
;
1442 spin_unlock_irqrestore(ap
->lock
, flags
);
1444 rc
= wait_for_completion_timeout(&wait
, ata_probe_timeout
);
1446 ata_port_flush_task(ap
);
1449 spin_lock_irqsave(ap
->lock
, flags
);
1451 /* We're racing with irq here. If we lose, the
1452 * following test prevents us from completing the qc
1453 * twice. If we win, the port is frozen and will be
1454 * cleaned up by ->post_internal_cmd().
1456 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1457 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1459 if (ap
->ops
->error_handler
)
1460 ata_port_freeze(ap
);
1462 ata_qc_complete(qc
);
1464 if (ata_msg_warn(ap
))
1465 ata_dev_printk(dev
, KERN_WARNING
,
1466 "qc timeout (cmd 0x%x)\n", command
);
1469 spin_unlock_irqrestore(ap
->lock
, flags
);
1472 /* do post_internal_cmd */
1473 if (ap
->ops
->post_internal_cmd
)
1474 ap
->ops
->post_internal_cmd(qc
);
1476 /* perform minimal error analysis */
1477 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1478 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1479 qc
->err_mask
|= AC_ERR_DEV
;
1482 qc
->err_mask
|= AC_ERR_OTHER
;
1484 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1485 qc
->err_mask
&= ~AC_ERR_OTHER
;
1489 spin_lock_irqsave(ap
->lock
, flags
);
1491 *tf
= qc
->result_tf
;
1492 err_mask
= qc
->err_mask
;
1495 ap
->active_tag
= preempted_tag
;
1496 ap
->sactive
= preempted_sactive
;
1497 ap
->qc_active
= preempted_qc_active
;
1499 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1500 * Until those drivers are fixed, we detect the condition
1501 * here, fail the command with AC_ERR_SYSTEM and reenable the
1504 * Note that this doesn't change any behavior as internal
1505 * command failure results in disabling the device in the
1506 * higher layer for LLDDs without new reset/EH callbacks.
1508 * Kill the following code as soon as those drivers are fixed.
1510 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1511 err_mask
|= AC_ERR_SYSTEM
;
1515 spin_unlock_irqrestore(ap
->lock
, flags
);
1521 * ata_exec_internal - execute libata internal command
1522 * @dev: Device to which the command is sent
1523 * @tf: Taskfile registers for the command and the result
1524 * @cdb: CDB for packet command
1525 * @dma_dir: Data tranfer direction of the command
1526 * @buf: Data buffer of the command
1527 * @buflen: Length of data buffer
1529 * Wrapper around ata_exec_internal_sg() which takes simple
1530 * buffer instead of sg list.
1533 * None. Should be called with kernel context, might sleep.
1536 * Zero on success, AC_ERR_* mask on failure
1538 unsigned ata_exec_internal(struct ata_device
*dev
,
1539 struct ata_taskfile
*tf
, const u8
*cdb
,
1540 int dma_dir
, void *buf
, unsigned int buflen
)
1542 struct scatterlist
*psg
= NULL
, sg
;
1543 unsigned int n_elem
= 0;
1545 if (dma_dir
!= DMA_NONE
) {
1547 sg_init_one(&sg
, buf
, buflen
);
1552 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
);
1556 * ata_do_simple_cmd - execute simple internal command
1557 * @dev: Device to which the command is sent
1558 * @cmd: Opcode to execute
1560 * Execute a 'simple' command, that only consists of the opcode
1561 * 'cmd' itself, without filling any other registers
1564 * Kernel thread context (may sleep).
1567 * Zero on success, AC_ERR_* mask on failure
1569 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1571 struct ata_taskfile tf
;
1573 ata_tf_init(dev
, &tf
);
1576 tf
.flags
|= ATA_TFLAG_DEVICE
;
1577 tf
.protocol
= ATA_PROT_NODATA
;
1579 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
1583 * ata_pio_need_iordy - check if iordy needed
1586 * Check if the current speed of the device requires IORDY. Used
1587 * by various controllers for chip configuration.
1590 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1592 /* Controller doesn't support IORDY. Probably a pointless check
1593 as the caller should know this */
1594 if (adev
->ap
->flags
& ATA_FLAG_NO_IORDY
)
1596 /* PIO3 and higher it is mandatory */
1597 if (adev
->pio_mode
> XFER_PIO_2
)
1599 /* We turn it on when possible */
1600 if (ata_id_has_iordy(adev
->id
))
1606 * ata_pio_mask_no_iordy - Return the non IORDY mask
1609 * Compute the highest mode possible if we are not using iordy. Return
1610 * -1 if no iordy mode is available.
1613 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
1615 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1616 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1617 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1618 /* Is the speed faster than the drive allows non IORDY ? */
1620 /* This is cycle times not frequency - watch the logic! */
1621 if (pio
> 240) /* PIO2 is 240nS per cycle */
1622 return 3 << ATA_SHIFT_PIO
;
1623 return 7 << ATA_SHIFT_PIO
;
1626 return 3 << ATA_SHIFT_PIO
;
1630 * ata_dev_read_id - Read ID data from the specified device
1631 * @dev: target device
1632 * @p_class: pointer to class of the target device (may be changed)
1633 * @flags: ATA_READID_* flags
1634 * @id: buffer to read IDENTIFY data into
1636 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1637 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1638 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1639 * for pre-ATA4 drives.
1642 * Kernel thread context (may sleep)
1645 * 0 on success, -errno otherwise.
1647 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
1648 unsigned int flags
, u16
*id
)
1650 struct ata_port
*ap
= dev
->ap
;
1651 unsigned int class = *p_class
;
1652 struct ata_taskfile tf
;
1653 unsigned int err_mask
= 0;
1655 int tried_spinup
= 0;
1658 if (ata_msg_ctl(ap
))
1659 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __FUNCTION__
);
1661 ata_dev_select(ap
, dev
->devno
, 1, 1); /* select device 0/1 */
1663 ata_tf_init(dev
, &tf
);
1667 tf
.command
= ATA_CMD_ID_ATA
;
1670 tf
.command
= ATA_CMD_ID_ATAPI
;
1674 reason
= "unsupported class";
1678 tf
.protocol
= ATA_PROT_PIO
;
1680 /* Some devices choke if TF registers contain garbage. Make
1681 * sure those are properly initialized.
1683 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
1685 /* Device presence detection is unreliable on some
1686 * controllers. Always poll IDENTIFY if available.
1688 tf
.flags
|= ATA_TFLAG_POLLING
;
1690 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_FROM_DEVICE
,
1691 id
, sizeof(id
[0]) * ATA_ID_WORDS
);
1693 if (err_mask
& AC_ERR_NODEV_HINT
) {
1694 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1695 ap
->print_id
, dev
->devno
);
1700 reason
= "I/O error";
1704 swap_buf_le16(id
, ATA_ID_WORDS
);
1708 reason
= "device reports illegal type";
1710 if (class == ATA_DEV_ATA
) {
1711 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
1714 if (ata_id_is_ata(id
))
1718 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
1721 * Drive powered-up in standby mode, and requires a specific
1722 * SET_FEATURES spin-up subcommand before it will accept
1723 * anything other than the original IDENTIFY command.
1725 ata_tf_init(dev
, &tf
);
1726 tf
.command
= ATA_CMD_SET_FEATURES
;
1727 tf
.feature
= SETFEATURES_SPINUP
;
1728 tf
.protocol
= ATA_PROT_NODATA
;
1729 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
1730 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
1733 reason
= "SPINUP failed";
1737 * If the drive initially returned incomplete IDENTIFY info,
1738 * we now must reissue the IDENTIFY command.
1740 if (id
[2] == 0x37c8)
1744 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
1746 * The exact sequence expected by certain pre-ATA4 drives is:
1749 * INITIALIZE DEVICE PARAMETERS
1751 * Some drives were very specific about that exact sequence.
1753 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
1754 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
1757 reason
= "INIT_DEV_PARAMS failed";
1761 /* current CHS translation info (id[53-58]) might be
1762 * changed. reread the identify device info.
1764 flags
&= ~ATA_READID_POSTRESET
;
1774 if (ata_msg_warn(ap
))
1775 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
1776 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
1780 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
1782 return ((dev
->ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
1785 static void ata_dev_config_ncq(struct ata_device
*dev
,
1786 char *desc
, size_t desc_sz
)
1788 struct ata_port
*ap
= dev
->ap
;
1789 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
1791 if (!ata_id_has_ncq(dev
->id
)) {
1795 if (ata_device_blacklisted(dev
) & ATA_HORKAGE_NONCQ
) {
1796 snprintf(desc
, desc_sz
, "NCQ (not used)");
1799 if (ap
->flags
& ATA_FLAG_NCQ
) {
1800 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
1801 dev
->flags
|= ATA_DFLAG_NCQ
;
1804 if (hdepth
>= ddepth
)
1805 snprintf(desc
, desc_sz
, "NCQ (depth %d)", ddepth
);
1807 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)", hdepth
, ddepth
);
1811 * ata_dev_configure - Configure the specified ATA/ATAPI device
1812 * @dev: Target device to configure
1814 * Configure @dev according to @dev->id. Generic and low-level
1815 * driver specific fixups are also applied.
1818 * Kernel thread context (may sleep)
1821 * 0 on success, -errno otherwise
1823 int ata_dev_configure(struct ata_device
*dev
)
1825 struct ata_port
*ap
= dev
->ap
;
1826 int print_info
= ap
->eh_context
.i
.flags
& ATA_EHI_PRINTINFO
;
1827 const u16
*id
= dev
->id
;
1828 unsigned int xfer_mask
;
1829 char revbuf
[7]; /* XYZ-99\0 */
1830 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
1831 char modelbuf
[ATA_ID_PROD_LEN
+1];
1834 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
1835 ata_dev_printk(dev
, KERN_INFO
, "%s: ENTER/EXIT -- nodev\n",
1840 if (ata_msg_probe(ap
))
1841 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __FUNCTION__
);
1844 rc
= ata_acpi_push_id(ap
, dev
->devno
);
1846 ata_dev_printk(dev
, KERN_WARNING
, "failed to set _SDD(%d)\n",
1850 /* retrieve and execute the ATA task file of _GTF */
1851 ata_acpi_exec_tfs(ap
);
1853 /* print device capabilities */
1854 if (ata_msg_probe(ap
))
1855 ata_dev_printk(dev
, KERN_DEBUG
,
1856 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1857 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1859 id
[49], id
[82], id
[83], id
[84],
1860 id
[85], id
[86], id
[87], id
[88]);
1862 /* initialize to-be-configured parameters */
1863 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
1864 dev
->max_sectors
= 0;
1872 * common ATA, ATAPI feature tests
1875 /* find max transfer mode; for printk only */
1876 xfer_mask
= ata_id_xfermask(id
);
1878 if (ata_msg_probe(ap
))
1881 /* ATA-specific feature tests */
1882 if (dev
->class == ATA_DEV_ATA
) {
1883 if (ata_id_is_cfa(id
)) {
1884 if (id
[162] & 1) /* CPRM may make this media unusable */
1885 ata_dev_printk(dev
, KERN_WARNING
,
1886 "supports DRM functions and may "
1887 "not be fully accessable.\n");
1888 snprintf(revbuf
, 7, "CFA");
1891 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
1893 dev
->n_sectors
= ata_id_n_sectors(id
);
1894 dev
->n_sectors_boot
= dev
->n_sectors
;
1896 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1897 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
1900 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
1903 if (dev
->id
[59] & 0x100)
1904 dev
->multi_count
= dev
->id
[59] & 0xff;
1906 if (ata_id_has_lba(id
)) {
1907 const char *lba_desc
;
1911 dev
->flags
|= ATA_DFLAG_LBA
;
1912 if (ata_id_has_lba48(id
)) {
1913 dev
->flags
|= ATA_DFLAG_LBA48
;
1916 if (dev
->n_sectors
>= (1UL << 28) &&
1917 ata_id_has_flush_ext(id
))
1918 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
1921 if (ata_id_hpa_enabled(dev
->id
))
1922 dev
->n_sectors
= ata_hpa_resize(dev
);
1925 ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
1927 /* print device info to dmesg */
1928 if (ata_msg_drv(ap
) && print_info
) {
1929 ata_dev_printk(dev
, KERN_INFO
,
1930 "%s: %s, %s, max %s\n",
1931 revbuf
, modelbuf
, fwrevbuf
,
1932 ata_mode_string(xfer_mask
));
1933 ata_dev_printk(dev
, KERN_INFO
,
1934 "%Lu sectors, multi %u: %s %s\n",
1935 (unsigned long long)dev
->n_sectors
,
1936 dev
->multi_count
, lba_desc
, ncq_desc
);
1941 /* Default translation */
1942 dev
->cylinders
= id
[1];
1944 dev
->sectors
= id
[6];
1946 if (ata_id_current_chs_valid(id
)) {
1947 /* Current CHS translation is valid. */
1948 dev
->cylinders
= id
[54];
1949 dev
->heads
= id
[55];
1950 dev
->sectors
= id
[56];
1953 /* print device info to dmesg */
1954 if (ata_msg_drv(ap
) && print_info
) {
1955 ata_dev_printk(dev
, KERN_INFO
,
1956 "%s: %s, %s, max %s\n",
1957 revbuf
, modelbuf
, fwrevbuf
,
1958 ata_mode_string(xfer_mask
));
1959 ata_dev_printk(dev
, KERN_INFO
,
1960 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1961 (unsigned long long)dev
->n_sectors
,
1962 dev
->multi_count
, dev
->cylinders
,
1963 dev
->heads
, dev
->sectors
);
1970 /* ATAPI-specific feature tests */
1971 else if (dev
->class == ATA_DEV_ATAPI
) {
1972 char *cdb_intr_string
= "";
1974 rc
= atapi_cdb_len(id
);
1975 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
1976 if (ata_msg_warn(ap
))
1977 ata_dev_printk(dev
, KERN_WARNING
,
1978 "unsupported CDB len\n");
1982 dev
->cdb_len
= (unsigned int) rc
;
1984 if (ata_id_cdb_intr(dev
->id
)) {
1985 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
1986 cdb_intr_string
= ", CDB intr";
1989 /* print device info to dmesg */
1990 if (ata_msg_drv(ap
) && print_info
)
1991 ata_dev_printk(dev
, KERN_INFO
, "ATAPI, max %s%s\n",
1992 ata_mode_string(xfer_mask
),
1996 /* determine max_sectors */
1997 dev
->max_sectors
= ATA_MAX_SECTORS
;
1998 if (dev
->flags
& ATA_DFLAG_LBA48
)
1999 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2001 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2002 /* Let the user know. We don't want to disallow opens for
2003 rescue purposes, or in case the vendor is just a blithering
2006 ata_dev_printk(dev
, KERN_WARNING
,
2007 "Drive reports diagnostics failure. This may indicate a drive\n");
2008 ata_dev_printk(dev
, KERN_WARNING
,
2009 "fault or invalid emulation. Contact drive vendor for information.\n");
2013 /* limit bridge transfers to udma5, 200 sectors */
2014 if (ata_dev_knobble(dev
)) {
2015 if (ata_msg_drv(ap
) && print_info
)
2016 ata_dev_printk(dev
, KERN_INFO
,
2017 "applying bridge limits\n");
2018 dev
->udma_mask
&= ATA_UDMA5
;
2019 dev
->max_sectors
= ATA_MAX_SECTORS
;
2022 if (ata_device_blacklisted(dev
) & ATA_HORKAGE_MAX_SEC_128
)
2023 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2026 /* limit ATAPI DMA to R/W commands only */
2027 if (ata_device_blacklisted(dev
) & ATA_HORKAGE_DMA_RW_ONLY
)
2028 dev
->horkage
|= ATA_HORKAGE_DMA_RW_ONLY
;
2030 if (ap
->ops
->dev_config
)
2031 ap
->ops
->dev_config(dev
);
2033 if (ata_msg_probe(ap
))
2034 ata_dev_printk(dev
, KERN_DEBUG
, "%s: EXIT, drv_stat = 0x%x\n",
2035 __FUNCTION__
, ata_chk_status(ap
));
2039 if (ata_msg_probe(ap
))
2040 ata_dev_printk(dev
, KERN_DEBUG
,
2041 "%s: EXIT, err\n", __FUNCTION__
);
2046 * ata_cable_40wire - return 40 wire cable type
2049 * Helper method for drivers which want to hardwire 40 wire cable
2053 int ata_cable_40wire(struct ata_port
*ap
)
2055 return ATA_CBL_PATA40
;
2059 * ata_cable_80wire - return 80 wire cable type
2062 * Helper method for drivers which want to hardwire 80 wire cable
2066 int ata_cable_80wire(struct ata_port
*ap
)
2068 return ATA_CBL_PATA80
;
2072 * ata_cable_unknown - return unknown PATA cable.
2075 * Helper method for drivers which have no PATA cable detection.
2078 int ata_cable_unknown(struct ata_port
*ap
)
2080 return ATA_CBL_PATA_UNK
;
2084 * ata_cable_sata - return SATA cable type
2087 * Helper method for drivers which have SATA cables
2090 int ata_cable_sata(struct ata_port
*ap
)
2092 return ATA_CBL_SATA
;
2096 * ata_bus_probe - Reset and probe ATA bus
2099 * Master ATA bus probing function. Initiates a hardware-dependent
2100 * bus reset, then attempts to identify any devices found on
2104 * PCI/etc. bus probe sem.
2107 * Zero on success, negative errno otherwise.
2110 int ata_bus_probe(struct ata_port
*ap
)
2112 unsigned int classes
[ATA_MAX_DEVICES
];
2113 int tries
[ATA_MAX_DEVICES
];
2115 struct ata_device
*dev
;
2119 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2120 tries
[i
] = ATA_PROBE_MAX_TRIES
;
2123 /* reset and determine device classes */
2124 ap
->ops
->phy_reset(ap
);
2126 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2127 dev
= &ap
->device
[i
];
2129 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
2130 dev
->class != ATA_DEV_UNKNOWN
)
2131 classes
[dev
->devno
] = dev
->class;
2133 classes
[dev
->devno
] = ATA_DEV_NONE
;
2135 dev
->class = ATA_DEV_UNKNOWN
;
2140 /* after the reset the device state is PIO 0 and the controller
2141 state is undefined. Record the mode */
2143 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2144 ap
->device
[i
].pio_mode
= XFER_PIO_0
;
2146 /* read IDENTIFY page and configure devices. We have to do the identify
2147 specific sequence bass-ackwards so that PDIAG- is released by
2150 for (i
= ATA_MAX_DEVICES
- 1; i
>= 0; i
--) {
2151 dev
= &ap
->device
[i
];
2154 dev
->class = classes
[i
];
2156 if (!ata_dev_enabled(dev
))
2159 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2165 /* Now ask for the cable type as PDIAG- should have been released */
2166 if (ap
->ops
->cable_detect
)
2167 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2169 /* After the identify sequence we can now set up the devices. We do
2170 this in the normal order so that the user doesn't get confused */
2172 for(i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2173 dev
= &ap
->device
[i
];
2174 if (!ata_dev_enabled(dev
))
2177 ap
->eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2178 rc
= ata_dev_configure(dev
);
2179 ap
->eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2184 /* configure transfer mode */
2185 rc
= ata_set_mode(ap
, &dev
);
2189 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2190 if (ata_dev_enabled(&ap
->device
[i
]))
2193 /* no device present, disable port */
2194 ata_port_disable(ap
);
2195 ap
->ops
->port_disable(ap
);
2199 tries
[dev
->devno
]--;
2203 /* eeek, something went very wrong, give up */
2204 tries
[dev
->devno
] = 0;
2208 /* give it just one more chance */
2209 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2211 if (tries
[dev
->devno
] == 1) {
2212 /* This is the last chance, better to slow
2213 * down than lose it.
2215 sata_down_spd_limit(ap
);
2216 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2220 if (!tries
[dev
->devno
])
2221 ata_dev_disable(dev
);
2227 * ata_port_probe - Mark port as enabled
2228 * @ap: Port for which we indicate enablement
2230 * Modify @ap data structure such that the system
2231 * thinks that the entire port is enabled.
2233 * LOCKING: host lock, or some other form of
2237 void ata_port_probe(struct ata_port
*ap
)
2239 ap
->flags
&= ~ATA_FLAG_DISABLED
;
2243 * sata_print_link_status - Print SATA link status
2244 * @ap: SATA port to printk link status about
2246 * This function prints link speed and status of a SATA link.
2251 void sata_print_link_status(struct ata_port
*ap
)
2253 u32 sstatus
, scontrol
, tmp
;
2255 if (sata_scr_read(ap
, SCR_STATUS
, &sstatus
))
2257 sata_scr_read(ap
, SCR_CONTROL
, &scontrol
);
2259 if (ata_port_online(ap
)) {
2260 tmp
= (sstatus
>> 4) & 0xf;
2261 ata_port_printk(ap
, KERN_INFO
,
2262 "SATA link up %s (SStatus %X SControl %X)\n",
2263 sata_spd_string(tmp
), sstatus
, scontrol
);
2265 ata_port_printk(ap
, KERN_INFO
,
2266 "SATA link down (SStatus %X SControl %X)\n",
2272 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2273 * @ap: SATA port associated with target SATA PHY.
2275 * This function issues commands to standard SATA Sxxx
2276 * PHY registers, to wake up the phy (and device), and
2277 * clear any reset condition.
2280 * PCI/etc. bus probe sem.
2283 void __sata_phy_reset(struct ata_port
*ap
)
2286 unsigned long timeout
= jiffies
+ (HZ
* 5);
2288 if (ap
->flags
& ATA_FLAG_SATA_RESET
) {
2289 /* issue phy wake/reset */
2290 sata_scr_write_flush(ap
, SCR_CONTROL
, 0x301);
2291 /* Couldn't find anything in SATA I/II specs, but
2292 * AHCI-1.1 10.4.2 says at least 1 ms. */
2295 /* phy wake/clear reset */
2296 sata_scr_write_flush(ap
, SCR_CONTROL
, 0x300);
2298 /* wait for phy to become ready, if necessary */
2301 sata_scr_read(ap
, SCR_STATUS
, &sstatus
);
2302 if ((sstatus
& 0xf) != 1)
2304 } while (time_before(jiffies
, timeout
));
2306 /* print link status */
2307 sata_print_link_status(ap
);
2309 /* TODO: phy layer with polling, timeouts, etc. */
2310 if (!ata_port_offline(ap
))
2313 ata_port_disable(ap
);
2315 if (ap
->flags
& ATA_FLAG_DISABLED
)
2318 if (ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
)) {
2319 ata_port_disable(ap
);
2323 ap
->cbl
= ATA_CBL_SATA
;
2327 * sata_phy_reset - Reset SATA bus.
2328 * @ap: SATA port associated with target SATA PHY.
2330 * This function resets the SATA bus, and then probes
2331 * the bus for devices.
2334 * PCI/etc. bus probe sem.
2337 void sata_phy_reset(struct ata_port
*ap
)
2339 __sata_phy_reset(ap
);
2340 if (ap
->flags
& ATA_FLAG_DISABLED
)
2346 * ata_dev_pair - return other device on cable
2349 * Obtain the other device on the same cable, or if none is
2350 * present NULL is returned
2353 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2355 struct ata_port
*ap
= adev
->ap
;
2356 struct ata_device
*pair
= &ap
->device
[1 - adev
->devno
];
2357 if (!ata_dev_enabled(pair
))
2363 * ata_port_disable - Disable port.
2364 * @ap: Port to be disabled.
2366 * Modify @ap data structure such that the system
2367 * thinks that the entire port is disabled, and should
2368 * never attempt to probe or communicate with devices
2371 * LOCKING: host lock, or some other form of
2375 void ata_port_disable(struct ata_port
*ap
)
2377 ap
->device
[0].class = ATA_DEV_NONE
;
2378 ap
->device
[1].class = ATA_DEV_NONE
;
2379 ap
->flags
|= ATA_FLAG_DISABLED
;
2383 * sata_down_spd_limit - adjust SATA spd limit downward
2384 * @ap: Port to adjust SATA spd limit for
2386 * Adjust SATA spd limit of @ap downward. Note that this
2387 * function only adjusts the limit. The change must be applied
2388 * using sata_set_spd().
2391 * Inherited from caller.
2394 * 0 on success, negative errno on failure
2396 int sata_down_spd_limit(struct ata_port
*ap
)
2398 u32 sstatus
, spd
, mask
;
2401 rc
= sata_scr_read(ap
, SCR_STATUS
, &sstatus
);
2405 mask
= ap
->sata_spd_limit
;
2408 highbit
= fls(mask
) - 1;
2409 mask
&= ~(1 << highbit
);
2411 spd
= (sstatus
>> 4) & 0xf;
2415 mask
&= (1 << spd
) - 1;
2419 ap
->sata_spd_limit
= mask
;
2421 ata_port_printk(ap
, KERN_WARNING
, "limiting SATA link speed to %s\n",
2422 sata_spd_string(fls(mask
)));
2427 static int __sata_set_spd_needed(struct ata_port
*ap
, u32
*scontrol
)
2431 if (ap
->sata_spd_limit
== UINT_MAX
)
2434 limit
= fls(ap
->sata_spd_limit
);
2436 spd
= (*scontrol
>> 4) & 0xf;
2437 *scontrol
= (*scontrol
& ~0xf0) | ((limit
& 0xf) << 4);
2439 return spd
!= limit
;
2443 * sata_set_spd_needed - is SATA spd configuration needed
2444 * @ap: Port in question
2446 * Test whether the spd limit in SControl matches
2447 * @ap->sata_spd_limit. This function is used to determine
2448 * whether hardreset is necessary to apply SATA spd
2452 * Inherited from caller.
2455 * 1 if SATA spd configuration is needed, 0 otherwise.
2457 int sata_set_spd_needed(struct ata_port
*ap
)
2461 if (sata_scr_read(ap
, SCR_CONTROL
, &scontrol
))
2464 return __sata_set_spd_needed(ap
, &scontrol
);
2468 * sata_set_spd - set SATA spd according to spd limit
2469 * @ap: Port to set SATA spd for
2471 * Set SATA spd of @ap according to sata_spd_limit.
2474 * Inherited from caller.
2477 * 0 if spd doesn't need to be changed, 1 if spd has been
2478 * changed. Negative errno if SCR registers are inaccessible.
2480 int sata_set_spd(struct ata_port
*ap
)
2485 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
2488 if (!__sata_set_spd_needed(ap
, &scontrol
))
2491 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
2498 * This mode timing computation functionality is ported over from
2499 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2502 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2503 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2504 * for UDMA6, which is currently supported only by Maxtor drives.
2506 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2509 static const struct ata_timing ata_timing
[] = {
2511 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
2512 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
2513 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
2514 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
2516 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 80, 0 },
2517 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 100, 0 },
2518 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
2519 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
2520 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
2522 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2524 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
2525 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
2526 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
2528 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
2529 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
2530 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
2532 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 80, 0 },
2533 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 100, 0 },
2534 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
2535 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
2537 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
2538 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
2539 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
2541 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2546 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2547 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2549 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
2551 q
->setup
= EZ(t
->setup
* 1000, T
);
2552 q
->act8b
= EZ(t
->act8b
* 1000, T
);
2553 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
2554 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
2555 q
->active
= EZ(t
->active
* 1000, T
);
2556 q
->recover
= EZ(t
->recover
* 1000, T
);
2557 q
->cycle
= EZ(t
->cycle
* 1000, T
);
2558 q
->udma
= EZ(t
->udma
* 1000, UT
);
2561 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
2562 struct ata_timing
*m
, unsigned int what
)
2564 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
2565 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
2566 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
2567 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
2568 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
2569 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
2570 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
2571 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
2574 static const struct ata_timing
* ata_timing_find_mode(unsigned short speed
)
2576 const struct ata_timing
*t
;
2578 for (t
= ata_timing
; t
->mode
!= speed
; t
++)
2579 if (t
->mode
== 0xFF)
2584 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
2585 struct ata_timing
*t
, int T
, int UT
)
2587 const struct ata_timing
*s
;
2588 struct ata_timing p
;
2594 if (!(s
= ata_timing_find_mode(speed
)))
2597 memcpy(t
, s
, sizeof(*s
));
2600 * If the drive is an EIDE drive, it can tell us it needs extended
2601 * PIO/MW_DMA cycle timing.
2604 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
2605 memset(&p
, 0, sizeof(p
));
2606 if(speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
2607 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
2608 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
2609 } else if(speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
2610 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
2612 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
2616 * Convert the timing to bus clock counts.
2619 ata_timing_quantize(t
, t
, T
, UT
);
2622 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2623 * S.M.A.R.T * and some other commands. We have to ensure that the
2624 * DMA cycle timing is slower/equal than the fastest PIO timing.
2627 if (speed
> XFER_PIO_6
) {
2628 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
2629 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
2633 * Lengthen active & recovery time so that cycle time is correct.
2636 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
2637 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
2638 t
->rec8b
= t
->cyc8b
- t
->act8b
;
2641 if (t
->active
+ t
->recover
< t
->cycle
) {
2642 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
2643 t
->recover
= t
->cycle
- t
->active
;
2646 /* In a few cases quantisation may produce enough errors to
2647 leave t->cycle too low for the sum of active and recovery
2648 if so we must correct this */
2649 if (t
->active
+ t
->recover
> t
->cycle
)
2650 t
->cycle
= t
->active
+ t
->recover
;
2656 * ata_down_xfermask_limit - adjust dev xfer masks downward
2657 * @dev: Device to adjust xfer masks
2658 * @sel: ATA_DNXFER_* selector
2660 * Adjust xfer masks of @dev downward. Note that this function
2661 * does not apply the change. Invoking ata_set_mode() afterwards
2662 * will apply the limit.
2665 * Inherited from caller.
2668 * 0 on success, negative errno on failure
2670 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
2673 unsigned int orig_mask
, xfer_mask
;
2674 unsigned int pio_mask
, mwdma_mask
, udma_mask
;
2677 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
2678 sel
&= ~ATA_DNXFER_QUIET
;
2680 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
2683 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
2686 case ATA_DNXFER_PIO
:
2687 highbit
= fls(pio_mask
) - 1;
2688 pio_mask
&= ~(1 << highbit
);
2691 case ATA_DNXFER_DMA
:
2693 highbit
= fls(udma_mask
) - 1;
2694 udma_mask
&= ~(1 << highbit
);
2697 } else if (mwdma_mask
) {
2698 highbit
= fls(mwdma_mask
) - 1;
2699 mwdma_mask
&= ~(1 << highbit
);
2705 case ATA_DNXFER_40C
:
2706 udma_mask
&= ATA_UDMA_MASK_40C
;
2709 case ATA_DNXFER_FORCE_PIO0
:
2711 case ATA_DNXFER_FORCE_PIO
:
2720 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
2722 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
2726 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
2727 snprintf(buf
, sizeof(buf
), "%s:%s",
2728 ata_mode_string(xfer_mask
),
2729 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
2731 snprintf(buf
, sizeof(buf
), "%s",
2732 ata_mode_string(xfer_mask
));
2734 ata_dev_printk(dev
, KERN_WARNING
,
2735 "limiting speed to %s\n", buf
);
2738 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
2744 static int ata_dev_set_mode(struct ata_device
*dev
)
2746 struct ata_eh_context
*ehc
= &dev
->ap
->eh_context
;
2747 unsigned int err_mask
;
2750 dev
->flags
&= ~ATA_DFLAG_PIO
;
2751 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
2752 dev
->flags
|= ATA_DFLAG_PIO
;
2754 err_mask
= ata_dev_set_xfermode(dev
);
2755 /* Old CFA may refuse this command, which is just fine */
2756 if (dev
->xfer_shift
== ATA_SHIFT_PIO
&& ata_id_is_cfa(dev
->id
))
2757 err_mask
&= ~AC_ERR_DEV
;
2760 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
2761 "(err_mask=0x%x)\n", err_mask
);
2765 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
2766 rc
= ata_dev_revalidate(dev
, 0);
2767 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
2771 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2772 dev
->xfer_shift
, (int)dev
->xfer_mode
);
2774 ata_dev_printk(dev
, KERN_INFO
, "configured for %s\n",
2775 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)));
2780 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2781 * @ap: port on which timings will be programmed
2782 * @r_failed_dev: out paramter for failed device
2784 * Standard implementation of the function used to tune and set
2785 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2786 * ata_dev_set_mode() fails, pointer to the failing device is
2787 * returned in @r_failed_dev.
2790 * PCI/etc. bus probe sem.
2793 * 0 on success, negative errno otherwise
2796 int ata_do_set_mode(struct ata_port
*ap
, struct ata_device
**r_failed_dev
)
2798 struct ata_device
*dev
;
2799 int i
, rc
= 0, used_dma
= 0, found
= 0;
2802 /* step 1: calculate xfer_mask */
2803 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2804 unsigned int pio_mask
, dma_mask
;
2806 dev
= &ap
->device
[i
];
2808 if (!ata_dev_enabled(dev
))
2811 ata_dev_xfermask(dev
);
2813 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
2814 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
2815 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
2816 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
2825 /* step 2: always set host PIO timings */
2826 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2827 dev
= &ap
->device
[i
];
2828 if (!ata_dev_enabled(dev
))
2831 if (!dev
->pio_mode
) {
2832 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
2837 dev
->xfer_mode
= dev
->pio_mode
;
2838 dev
->xfer_shift
= ATA_SHIFT_PIO
;
2839 if (ap
->ops
->set_piomode
)
2840 ap
->ops
->set_piomode(ap
, dev
);
2843 /* step 3: set host DMA timings */
2844 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2845 dev
= &ap
->device
[i
];
2847 if (!ata_dev_enabled(dev
) || !dev
->dma_mode
)
2850 dev
->xfer_mode
= dev
->dma_mode
;
2851 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
2852 if (ap
->ops
->set_dmamode
)
2853 ap
->ops
->set_dmamode(ap
, dev
);
2856 /* step 4: update devices' xfer mode */
2857 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2858 dev
= &ap
->device
[i
];
2860 /* don't update suspended devices' xfer mode */
2861 if (!ata_dev_ready(dev
))
2864 rc
= ata_dev_set_mode(dev
);
2869 /* Record simplex status. If we selected DMA then the other
2870 * host channels are not permitted to do so.
2872 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
2873 ap
->host
->simplex_claimed
= ap
;
2875 /* step5: chip specific finalisation */
2876 if (ap
->ops
->post_set_mode
)
2877 ap
->ops
->post_set_mode(ap
);
2880 *r_failed_dev
= dev
;
2885 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2886 * @ap: port on which timings will be programmed
2887 * @r_failed_dev: out paramter for failed device
2889 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2890 * ata_set_mode() fails, pointer to the failing device is
2891 * returned in @r_failed_dev.
2894 * PCI/etc. bus probe sem.
2897 * 0 on success, negative errno otherwise
2899 int ata_set_mode(struct ata_port
*ap
, struct ata_device
**r_failed_dev
)
2901 /* has private set_mode? */
2902 if (ap
->ops
->set_mode
)
2903 return ap
->ops
->set_mode(ap
, r_failed_dev
);
2904 return ata_do_set_mode(ap
, r_failed_dev
);
2908 * ata_tf_to_host - issue ATA taskfile to host controller
2909 * @ap: port to which command is being issued
2910 * @tf: ATA taskfile register set
2912 * Issues ATA taskfile register set to ATA host controller,
2913 * with proper synchronization with interrupt handler and
2917 * spin_lock_irqsave(host lock)
2920 static inline void ata_tf_to_host(struct ata_port
*ap
,
2921 const struct ata_taskfile
*tf
)
2923 ap
->ops
->tf_load(ap
, tf
);
2924 ap
->ops
->exec_command(ap
, tf
);
2928 * ata_busy_sleep - sleep until BSY clears, or timeout
2929 * @ap: port containing status register to be polled
2930 * @tmout_pat: impatience timeout
2931 * @tmout: overall timeout
2933 * Sleep until ATA Status register bit BSY clears,
2934 * or a timeout occurs.
2937 * Kernel thread context (may sleep).
2940 * 0 on success, -errno otherwise.
2942 int ata_busy_sleep(struct ata_port
*ap
,
2943 unsigned long tmout_pat
, unsigned long tmout
)
2945 unsigned long timer_start
, timeout
;
2948 status
= ata_busy_wait(ap
, ATA_BUSY
, 300);
2949 timer_start
= jiffies
;
2950 timeout
= timer_start
+ tmout_pat
;
2951 while (status
!= 0xff && (status
& ATA_BUSY
) &&
2952 time_before(jiffies
, timeout
)) {
2954 status
= ata_busy_wait(ap
, ATA_BUSY
, 3);
2957 if (status
!= 0xff && (status
& ATA_BUSY
))
2958 ata_port_printk(ap
, KERN_WARNING
,
2959 "port is slow to respond, please be patient "
2960 "(Status 0x%x)\n", status
);
2962 timeout
= timer_start
+ tmout
;
2963 while (status
!= 0xff && (status
& ATA_BUSY
) &&
2964 time_before(jiffies
, timeout
)) {
2966 status
= ata_chk_status(ap
);
2972 if (status
& ATA_BUSY
) {
2973 ata_port_printk(ap
, KERN_ERR
, "port failed to respond "
2974 "(%lu secs, Status 0x%x)\n",
2975 tmout
/ HZ
, status
);
2983 * ata_wait_ready - sleep until BSY clears, or timeout
2984 * @ap: port containing status register to be polled
2985 * @deadline: deadline jiffies for the operation
2987 * Sleep until ATA Status register bit BSY clears, or timeout
2991 * Kernel thread context (may sleep).
2994 * 0 on success, -errno otherwise.
2996 int ata_wait_ready(struct ata_port
*ap
, unsigned long deadline
)
2998 unsigned long start
= jiffies
;
3002 u8 status
= ata_chk_status(ap
);
3003 unsigned long now
= jiffies
;
3005 if (!(status
& ATA_BUSY
))
3009 if (time_after(now
, deadline
))
3012 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3013 (deadline
- now
> 3 * HZ
)) {
3014 ata_port_printk(ap
, KERN_WARNING
,
3015 "port is slow to respond, please be patient "
3016 "(Status 0x%x)\n", status
);
3024 static int ata_bus_post_reset(struct ata_port
*ap
, unsigned int devmask
,
3025 unsigned long deadline
)
3027 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3028 unsigned int dev0
= devmask
& (1 << 0);
3029 unsigned int dev1
= devmask
& (1 << 1);
3032 /* if device 0 was found in ata_devchk, wait for its
3036 rc
= ata_wait_ready(ap
, deadline
);
3044 /* if device 1 was found in ata_devchk, wait for
3045 * register access, then wait for BSY to clear
3050 ap
->ops
->dev_select(ap
, 1);
3051 nsect
= ioread8(ioaddr
->nsect_addr
);
3052 lbal
= ioread8(ioaddr
->lbal_addr
);
3053 if ((nsect
== 1) && (lbal
== 1))
3055 if (time_after(jiffies
, deadline
))
3057 msleep(50); /* give drive a breather */
3060 rc
= ata_wait_ready(ap
, deadline
);
3068 /* is all this really necessary? */
3069 ap
->ops
->dev_select(ap
, 0);
3071 ap
->ops
->dev_select(ap
, 1);
3073 ap
->ops
->dev_select(ap
, 0);
3078 static int ata_bus_softreset(struct ata_port
*ap
, unsigned int devmask
,
3079 unsigned long deadline
)
3081 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3083 DPRINTK("ata%u: bus reset via SRST\n", ap
->print_id
);
3085 /* software reset. causes dev0 to be selected */
3086 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3087 udelay(20); /* FIXME: flush */
3088 iowrite8(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
3089 udelay(20); /* FIXME: flush */
3090 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3092 /* spec mandates ">= 2ms" before checking status.
3093 * We wait 150ms, because that was the magic delay used for
3094 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3095 * between when the ATA command register is written, and then
3096 * status is checked. Because waiting for "a while" before
3097 * checking status is fine, post SRST, we perform this magic
3098 * delay here as well.
3100 * Old drivers/ide uses the 2mS rule and then waits for ready
3104 /* Before we perform post reset processing we want to see if
3105 * the bus shows 0xFF because the odd clown forgets the D7
3106 * pulldown resistor.
3108 if (ata_check_status(ap
) == 0xFF)
3111 return ata_bus_post_reset(ap
, devmask
, deadline
);
3115 * ata_bus_reset - reset host port and associated ATA channel
3116 * @ap: port to reset
3118 * This is typically the first time we actually start issuing
3119 * commands to the ATA channel. We wait for BSY to clear, then
3120 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3121 * result. Determine what devices, if any, are on the channel
3122 * by looking at the device 0/1 error register. Look at the signature
3123 * stored in each device's taskfile registers, to determine if
3124 * the device is ATA or ATAPI.
3127 * PCI/etc. bus probe sem.
3128 * Obtains host lock.
3131 * Sets ATA_FLAG_DISABLED if bus reset fails.
3134 void ata_bus_reset(struct ata_port
*ap
)
3136 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3137 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
3139 unsigned int dev0
, dev1
= 0, devmask
= 0;
3142 DPRINTK("ENTER, host %u, port %u\n", ap
->print_id
, ap
->port_no
);
3144 /* determine if device 0/1 are present */
3145 if (ap
->flags
& ATA_FLAG_SATA_RESET
)
3148 dev0
= ata_devchk(ap
, 0);
3150 dev1
= ata_devchk(ap
, 1);
3154 devmask
|= (1 << 0);
3156 devmask
|= (1 << 1);
3158 /* select device 0 again */
3159 ap
->ops
->dev_select(ap
, 0);
3161 /* issue bus reset */
3162 if (ap
->flags
& ATA_FLAG_SRST
) {
3163 rc
= ata_bus_softreset(ap
, devmask
, jiffies
+ 40 * HZ
);
3164 if (rc
&& rc
!= -ENODEV
)
3169 * determine by signature whether we have ATA or ATAPI devices
3171 ap
->device
[0].class = ata_dev_try_classify(ap
, 0, &err
);
3172 if ((slave_possible
) && (err
!= 0x81))
3173 ap
->device
[1].class = ata_dev_try_classify(ap
, 1, &err
);
3175 /* re-enable interrupts */
3176 ap
->ops
->irq_on(ap
);
3178 /* is double-select really necessary? */
3179 if (ap
->device
[1].class != ATA_DEV_NONE
)
3180 ap
->ops
->dev_select(ap
, 1);
3181 if (ap
->device
[0].class != ATA_DEV_NONE
)
3182 ap
->ops
->dev_select(ap
, 0);
3184 /* if no devices were detected, disable this port */
3185 if ((ap
->device
[0].class == ATA_DEV_NONE
) &&
3186 (ap
->device
[1].class == ATA_DEV_NONE
))
3189 if (ap
->flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
)) {
3190 /* set up device control for ATA_FLAG_SATA_RESET */
3191 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3198 ata_port_printk(ap
, KERN_ERR
, "disabling port\n");
3199 ap
->ops
->port_disable(ap
);
3205 * sata_phy_debounce - debounce SATA phy status
3206 * @ap: ATA port to debounce SATA phy status for
3207 * @params: timing parameters { interval, duratinon, timeout } in msec
3208 * @deadline: deadline jiffies for the operation
3210 * Make sure SStatus of @ap reaches stable state, determined by
3211 * holding the same value where DET is not 1 for @duration polled
3212 * every @interval, before @timeout. Timeout constraints the
3213 * beginning of the stable state. Because DET gets stuck at 1 on
3214 * some controllers after hot unplugging, this functions waits
3215 * until timeout then returns 0 if DET is stable at 1.
3217 * @timeout is further limited by @deadline. The sooner of the
3221 * Kernel thread context (may sleep)
3224 * 0 on success, -errno on failure.
3226 int sata_phy_debounce(struct ata_port
*ap
, const unsigned long *params
,
3227 unsigned long deadline
)
3229 unsigned long interval_msec
= params
[0];
3230 unsigned long duration
= msecs_to_jiffies(params
[1]);
3231 unsigned long last_jiffies
, t
;
3235 t
= jiffies
+ msecs_to_jiffies(params
[2]);
3236 if (time_before(t
, deadline
))
3239 if ((rc
= sata_scr_read(ap
, SCR_STATUS
, &cur
)))
3244 last_jiffies
= jiffies
;
3247 msleep(interval_msec
);
3248 if ((rc
= sata_scr_read(ap
, SCR_STATUS
, &cur
)))
3254 if (cur
== 1 && time_before(jiffies
, deadline
))
3256 if (time_after(jiffies
, last_jiffies
+ duration
))
3261 /* unstable, start over */
3263 last_jiffies
= jiffies
;
3265 /* check deadline */
3266 if (time_after(jiffies
, deadline
))
3272 * sata_phy_resume - resume SATA phy
3273 * @ap: ATA port to resume SATA phy for
3274 * @params: timing parameters { interval, duratinon, timeout } in msec
3275 * @deadline: deadline jiffies for the operation
3277 * Resume SATA phy of @ap and debounce it.
3280 * Kernel thread context (may sleep)
3283 * 0 on success, -errno on failure.
3285 int sata_phy_resume(struct ata_port
*ap
, const unsigned long *params
,
3286 unsigned long deadline
)
3291 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
3294 scontrol
= (scontrol
& 0x0f0) | 0x300;
3296 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
3299 /* Some PHYs react badly if SStatus is pounded immediately
3300 * after resuming. Delay 200ms before debouncing.
3304 return sata_phy_debounce(ap
, params
, deadline
);
3308 * ata_std_prereset - prepare for reset
3309 * @ap: ATA port to be reset
3310 * @deadline: deadline jiffies for the operation
3312 * @ap is about to be reset. Initialize it. Failure from
3313 * prereset makes libata abort whole reset sequence and give up
3314 * that port, so prereset should be best-effort. It does its
3315 * best to prepare for reset sequence but if things go wrong, it
3316 * should just whine, not fail.
3319 * Kernel thread context (may sleep)
3322 * 0 on success, -errno otherwise.
3324 int ata_std_prereset(struct ata_port
*ap
, unsigned long deadline
)
3326 struct ata_eh_context
*ehc
= &ap
->eh_context
;
3327 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3330 /* handle link resume */
3331 if ((ehc
->i
.flags
& ATA_EHI_RESUME_LINK
) &&
3332 (ap
->flags
& ATA_FLAG_HRST_TO_RESUME
))
3333 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3335 /* if we're about to do hardreset, nothing more to do */
3336 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3339 /* if SATA, resume phy */
3340 if (ap
->cbl
== ATA_CBL_SATA
) {
3341 rc
= sata_phy_resume(ap
, timing
, deadline
);
3342 /* whine about phy resume failure but proceed */
3343 if (rc
&& rc
!= -EOPNOTSUPP
)
3344 ata_port_printk(ap
, KERN_WARNING
, "failed to resume "
3345 "link for reset (errno=%d)\n", rc
);
3348 /* Wait for !BSY if the controller can wait for the first D2H
3349 * Reg FIS and we don't know that no device is attached.
3351 if (!(ap
->flags
& ATA_FLAG_SKIP_D2H_BSY
) && !ata_port_offline(ap
)) {
3352 rc
= ata_wait_ready(ap
, deadline
);
3354 ata_port_printk(ap
, KERN_WARNING
, "device not ready "
3355 "(errno=%d), forcing hardreset\n", rc
);
3356 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3364 * ata_std_softreset - reset host port via ATA SRST
3365 * @ap: port to reset
3366 * @classes: resulting classes of attached devices
3367 * @deadline: deadline jiffies for the operation
3369 * Reset host port using ATA SRST.
3372 * Kernel thread context (may sleep)
3375 * 0 on success, -errno otherwise.
3377 int ata_std_softreset(struct ata_port
*ap
, unsigned int *classes
,
3378 unsigned long deadline
)
3380 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
3381 unsigned int devmask
= 0;
3387 if (ata_port_offline(ap
)) {
3388 classes
[0] = ATA_DEV_NONE
;
3392 /* determine if device 0/1 are present */
3393 if (ata_devchk(ap
, 0))
3394 devmask
|= (1 << 0);
3395 if (slave_possible
&& ata_devchk(ap
, 1))
3396 devmask
|= (1 << 1);
3398 /* select device 0 again */
3399 ap
->ops
->dev_select(ap
, 0);
3401 /* issue bus reset */
3402 DPRINTK("about to softreset, devmask=%x\n", devmask
);
3403 rc
= ata_bus_softreset(ap
, devmask
, deadline
);
3404 /* if link is occupied, -ENODEV too is an error */
3405 if (rc
&& (rc
!= -ENODEV
|| sata_scr_valid(ap
))) {
3406 ata_port_printk(ap
, KERN_ERR
, "SRST failed (errno=%d)\n", rc
);
3410 /* determine by signature whether we have ATA or ATAPI devices */
3411 classes
[0] = ata_dev_try_classify(ap
, 0, &err
);
3412 if (slave_possible
&& err
!= 0x81)
3413 classes
[1] = ata_dev_try_classify(ap
, 1, &err
);
3416 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
3421 * sata_port_hardreset - reset port via SATA phy reset
3422 * @ap: port to reset
3423 * @timing: timing parameters { interval, duratinon, timeout } in msec
3424 * @deadline: deadline jiffies for the operation
3426 * SATA phy-reset host port using DET bits of SControl register.
3429 * Kernel thread context (may sleep)
3432 * 0 on success, -errno otherwise.
3434 int sata_port_hardreset(struct ata_port
*ap
, const unsigned long *timing
,
3435 unsigned long deadline
)
3442 if (sata_set_spd_needed(ap
)) {
3443 /* SATA spec says nothing about how to reconfigure
3444 * spd. To be on the safe side, turn off phy during
3445 * reconfiguration. This works for at least ICH7 AHCI
3448 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
3451 scontrol
= (scontrol
& 0x0f0) | 0x304;
3453 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
3459 /* issue phy wake/reset */
3460 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
3463 scontrol
= (scontrol
& 0x0f0) | 0x301;
3465 if ((rc
= sata_scr_write_flush(ap
, SCR_CONTROL
, scontrol
)))
3468 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3469 * 10.4.2 says at least 1 ms.
3473 /* bring phy back */
3474 rc
= sata_phy_resume(ap
, timing
, deadline
);
3476 DPRINTK("EXIT, rc=%d\n", rc
);
3481 * sata_std_hardreset - reset host port via SATA phy reset
3482 * @ap: port to reset
3483 * @class: resulting class of attached device
3484 * @deadline: deadline jiffies for the operation
3486 * SATA phy-reset host port using DET bits of SControl register,
3487 * wait for !BSY and classify the attached device.
3490 * Kernel thread context (may sleep)
3493 * 0 on success, -errno otherwise.
3495 int sata_std_hardreset(struct ata_port
*ap
, unsigned int *class,
3496 unsigned long deadline
)
3498 const unsigned long *timing
= sata_ehc_deb_timing(&ap
->eh_context
);
3504 rc
= sata_port_hardreset(ap
, timing
, deadline
);
3506 ata_port_printk(ap
, KERN_ERR
,
3507 "COMRESET failed (errno=%d)\n", rc
);
3511 /* TODO: phy layer with polling, timeouts, etc. */
3512 if (ata_port_offline(ap
)) {
3513 *class = ATA_DEV_NONE
;
3514 DPRINTK("EXIT, link offline\n");
3518 /* wait a while before checking status, see SRST for more info */
3521 rc
= ata_wait_ready(ap
, deadline
);
3522 /* link occupied, -ENODEV too is an error */
3524 ata_port_printk(ap
, KERN_ERR
,
3525 "COMRESET failed (errno=%d)\n", rc
);
3529 ap
->ops
->dev_select(ap
, 0); /* probably unnecessary */
3531 *class = ata_dev_try_classify(ap
, 0, NULL
);
3533 DPRINTK("EXIT, class=%u\n", *class);
3538 * ata_std_postreset - standard postreset callback
3539 * @ap: the target ata_port
3540 * @classes: classes of attached devices
3542 * This function is invoked after a successful reset. Note that
3543 * the device might have been reset more than once using
3544 * different reset methods before postreset is invoked.
3547 * Kernel thread context (may sleep)
3549 void ata_std_postreset(struct ata_port
*ap
, unsigned int *classes
)
3555 /* print link status */
3556 sata_print_link_status(ap
);
3559 if (sata_scr_read(ap
, SCR_ERROR
, &serror
) == 0)
3560 sata_scr_write(ap
, SCR_ERROR
, serror
);
3562 /* re-enable interrupts */
3563 if (!ap
->ops
->error_handler
)
3564 ap
->ops
->irq_on(ap
);
3566 /* is double-select really necessary? */
3567 if (classes
[0] != ATA_DEV_NONE
)
3568 ap
->ops
->dev_select(ap
, 1);
3569 if (classes
[1] != ATA_DEV_NONE
)
3570 ap
->ops
->dev_select(ap
, 0);
3572 /* bail out if no device is present */
3573 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
3574 DPRINTK("EXIT, no device\n");
3578 /* set up device control */
3579 if (ap
->ioaddr
.ctl_addr
)
3580 iowrite8(ap
->ctl
, ap
->ioaddr
.ctl_addr
);
3586 * ata_dev_same_device - Determine whether new ID matches configured device
3587 * @dev: device to compare against
3588 * @new_class: class of the new device
3589 * @new_id: IDENTIFY page of the new device
3591 * Compare @new_class and @new_id against @dev and determine
3592 * whether @dev is the device indicated by @new_class and
3599 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3601 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
3604 const u16
*old_id
= dev
->id
;
3605 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
3606 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
3609 if (dev
->class != new_class
) {
3610 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
3611 dev
->class, new_class
);
3615 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
3616 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
3617 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
3618 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
3619 new_n_sectors
= ata_id_n_sectors(new_id
);
3621 if (strcmp(model
[0], model
[1])) {
3622 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
3623 "'%s' != '%s'\n", model
[0], model
[1]);
3627 if (strcmp(serial
[0], serial
[1])) {
3628 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
3629 "'%s' != '%s'\n", serial
[0], serial
[1]);
3633 if (dev
->class == ATA_DEV_ATA
&& dev
->n_sectors
!= new_n_sectors
) {
3634 ata_dev_printk(dev
, KERN_INFO
, "n_sectors mismatch "
3636 (unsigned long long)dev
->n_sectors
,
3637 (unsigned long long)new_n_sectors
);
3638 /* Are we the boot time size - if so we appear to be the
3639 same disk at this point and our HPA got reapplied */
3640 if (ata_ignore_hpa
&& dev
->n_sectors_boot
== new_n_sectors
3641 && ata_id_hpa_enabled(new_id
))
3650 * ata_dev_revalidate - Revalidate ATA device
3651 * @dev: device to revalidate
3652 * @readid_flags: read ID flags
3654 * Re-read IDENTIFY page and make sure @dev is still attached to
3658 * Kernel thread context (may sleep)
3661 * 0 on success, negative errno otherwise
3663 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int readid_flags
)
3665 unsigned int class = dev
->class;
3666 u16
*id
= (void *)dev
->ap
->sector_buf
;
3669 if (!ata_dev_enabled(dev
)) {
3675 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
3679 /* is the device still there? */
3680 if (!ata_dev_same_device(dev
, class, id
)) {
3685 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
3687 /* configure device according to the new ID */
3688 rc
= ata_dev_configure(dev
);
3693 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
3697 struct ata_blacklist_entry
{
3698 const char *model_num
;
3699 const char *model_rev
;
3700 unsigned long horkage
;
3703 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
3704 /* Devices with DMA related problems under Linux */
3705 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
3706 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
3707 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
3708 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
3709 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
3710 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
3711 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
3712 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
3713 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
3714 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
3715 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
3716 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
3717 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
3718 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
3719 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
3720 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
3721 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
3722 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
3723 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
3724 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
3725 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
3726 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
3727 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
3728 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
3729 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
3730 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
3731 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
3732 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
3733 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA
},
3735 /* Weird ATAPI devices */
3736 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
|
3737 ATA_HORKAGE_DMA_RW_ONLY
},
3739 /* Devices we expect to fail diagnostics */
3741 /* Devices where NCQ should be avoided */
3743 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
3744 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3745 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
3747 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ
},
3748 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3749 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ
},
3750 /* Blacklist entries taken from Silicon Image 3124/3132
3751 Windows driver .inf file - also several Linux problem reports */
3752 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
3753 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
3754 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
3756 /* Devices with NCQ limits */
3762 unsigned long ata_device_blacklisted(const struct ata_device
*dev
)
3764 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
3765 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
3766 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
3768 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
3769 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
3771 while (ad
->model_num
) {
3772 if (!strcmp(ad
->model_num
, model_num
)) {
3773 if (ad
->model_rev
== NULL
)
3775 if (!strcmp(ad
->model_rev
, model_rev
))
3783 static int ata_dma_blacklisted(const struct ata_device
*dev
)
3785 /* We don't support polling DMA.
3786 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3787 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3789 if ((dev
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
3790 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
3792 return (ata_device_blacklisted(dev
) & ATA_HORKAGE_NODMA
) ? 1 : 0;
3796 * ata_dev_xfermask - Compute supported xfermask of the given device
3797 * @dev: Device to compute xfermask for
3799 * Compute supported xfermask of @dev and store it in
3800 * dev->*_mask. This function is responsible for applying all
3801 * known limits including host controller limits, device
3807 static void ata_dev_xfermask(struct ata_device
*dev
)
3809 struct ata_port
*ap
= dev
->ap
;
3810 struct ata_host
*host
= ap
->host
;
3811 unsigned long xfer_mask
;
3813 /* controller modes available */
3814 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
3815 ap
->mwdma_mask
, ap
->udma_mask
);
3817 /* drive modes available */
3818 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
3819 dev
->mwdma_mask
, dev
->udma_mask
);
3820 xfer_mask
&= ata_id_xfermask(dev
->id
);
3823 * CFA Advanced TrueIDE timings are not allowed on a shared
3826 if (ata_dev_pair(dev
)) {
3827 /* No PIO5 or PIO6 */
3828 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
3829 /* No MWDMA3 or MWDMA 4 */
3830 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
3833 if (ata_dma_blacklisted(dev
)) {
3834 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
3835 ata_dev_printk(dev
, KERN_WARNING
,
3836 "device is on DMA blacklist, disabling DMA\n");
3839 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
3840 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
3841 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
3842 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
3843 "other device, disabling DMA\n");
3846 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
3847 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
3849 if (ap
->ops
->mode_filter
)
3850 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
3852 /* Apply cable rule here. Don't apply it early because when
3853 * we handle hot plug the cable type can itself change.
3854 * Check this last so that we know if the transfer rate was
3855 * solely limited by the cable.
3856 * Unknown or 80 wire cables reported host side are checked
3857 * drive side as well. Cases where we know a 40wire cable
3858 * is used safely for 80 are not checked here.
3860 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
3861 /* UDMA/44 or higher would be available */
3862 if((ap
->cbl
== ATA_CBL_PATA40
) ||
3863 (ata_drive_40wire(dev
->id
) &&
3864 (ap
->cbl
== ATA_CBL_PATA_UNK
||
3865 ap
->cbl
== ATA_CBL_PATA80
))) {
3866 ata_dev_printk(dev
, KERN_WARNING
,
3867 "limited to UDMA/33 due to 40-wire cable\n");
3868 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
3871 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
3872 &dev
->mwdma_mask
, &dev
->udma_mask
);
3876 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3877 * @dev: Device to which command will be sent
3879 * Issue SET FEATURES - XFER MODE command to device @dev
3883 * PCI/etc. bus probe sem.
3886 * 0 on success, AC_ERR_* mask otherwise.
3889 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
3891 struct ata_taskfile tf
;
3892 unsigned int err_mask
;
3894 /* set up set-features taskfile */
3895 DPRINTK("set features - xfer mode\n");
3897 ata_tf_init(dev
, &tf
);
3898 tf
.command
= ATA_CMD_SET_FEATURES
;
3899 tf
.feature
= SETFEATURES_XFER
;
3900 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
3901 tf
.protocol
= ATA_PROT_NODATA
;
3902 tf
.nsect
= dev
->xfer_mode
;
3904 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
3906 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
3911 * ata_dev_init_params - Issue INIT DEV PARAMS command
3912 * @dev: Device to which command will be sent
3913 * @heads: Number of heads (taskfile parameter)
3914 * @sectors: Number of sectors (taskfile parameter)
3917 * Kernel thread context (may sleep)
3920 * 0 on success, AC_ERR_* mask otherwise.
3922 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
3923 u16 heads
, u16 sectors
)
3925 struct ata_taskfile tf
;
3926 unsigned int err_mask
;
3928 /* Number of sectors per track 1-255. Number of heads 1-16 */
3929 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
3930 return AC_ERR_INVALID
;
3932 /* set up init dev params taskfile */
3933 DPRINTK("init dev params \n");
3935 ata_tf_init(dev
, &tf
);
3936 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
3937 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
3938 tf
.protocol
= ATA_PROT_NODATA
;
3940 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
3942 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
3944 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
3949 * ata_sg_clean - Unmap DMA memory associated with command
3950 * @qc: Command containing DMA memory to be released
3952 * Unmap all mapped DMA memory associated with this command.
3955 * spin_lock_irqsave(host lock)
3957 void ata_sg_clean(struct ata_queued_cmd
*qc
)
3959 struct ata_port
*ap
= qc
->ap
;
3960 struct scatterlist
*sg
= qc
->__sg
;
3961 int dir
= qc
->dma_dir
;
3962 void *pad_buf
= NULL
;
3964 WARN_ON(!(qc
->flags
& ATA_QCFLAG_DMAMAP
));
3965 WARN_ON(sg
== NULL
);
3967 if (qc
->flags
& ATA_QCFLAG_SINGLE
)
3968 WARN_ON(qc
->n_elem
> 1);
3970 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
3972 /* if we padded the buffer out to 32-bit bound, and data
3973 * xfer direction is from-device, we must copy from the
3974 * pad buffer back into the supplied buffer
3976 if (qc
->pad_len
&& !(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
3977 pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3979 if (qc
->flags
& ATA_QCFLAG_SG
) {
3981 dma_unmap_sg(ap
->dev
, sg
, qc
->n_elem
, dir
);
3982 /* restore last sg */
3983 sg
[qc
->orig_n_elem
- 1].length
+= qc
->pad_len
;
3985 struct scatterlist
*psg
= &qc
->pad_sgent
;
3986 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
3987 memcpy(addr
+ psg
->offset
, pad_buf
, qc
->pad_len
);
3988 kunmap_atomic(addr
, KM_IRQ0
);
3992 dma_unmap_single(ap
->dev
,
3993 sg_dma_address(&sg
[0]), sg_dma_len(&sg
[0]),
3996 sg
->length
+= qc
->pad_len
;
3998 memcpy(qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
3999 pad_buf
, qc
->pad_len
);
4002 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4007 * ata_fill_sg - Fill PCI IDE PRD table
4008 * @qc: Metadata associated with taskfile to be transferred
4010 * Fill PCI IDE PRD (scatter-gather) table with segments
4011 * associated with the current disk command.
4014 * spin_lock_irqsave(host lock)
4017 static void ata_fill_sg(struct ata_queued_cmd
*qc
)
4019 struct ata_port
*ap
= qc
->ap
;
4020 struct scatterlist
*sg
;
4023 WARN_ON(qc
->__sg
== NULL
);
4024 WARN_ON(qc
->n_elem
== 0 && qc
->pad_len
== 0);
4027 ata_for_each_sg(sg
, qc
) {
4031 /* determine if physical DMA addr spans 64K boundary.
4032 * Note h/w doesn't support 64-bit, so we unconditionally
4033 * truncate dma_addr_t to u32.
4035 addr
= (u32
) sg_dma_address(sg
);
4036 sg_len
= sg_dma_len(sg
);
4039 offset
= addr
& 0xffff;
4041 if ((offset
+ sg_len
) > 0x10000)
4042 len
= 0x10000 - offset
;
4044 ap
->prd
[idx
].addr
= cpu_to_le32(addr
);
4045 ap
->prd
[idx
].flags_len
= cpu_to_le32(len
& 0xffff);
4046 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx
, addr
, len
);
4055 ap
->prd
[idx
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
4058 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4059 * @qc: Metadata associated with taskfile to check
4061 * Allow low-level driver to filter ATA PACKET commands, returning
4062 * a status indicating whether or not it is OK to use DMA for the
4063 * supplied PACKET command.
4066 * spin_lock_irqsave(host lock)
4068 * RETURNS: 0 when ATAPI DMA can be used
4071 int ata_check_atapi_dma(struct ata_queued_cmd
*qc
)
4073 struct ata_port
*ap
= qc
->ap
;
4074 int rc
= 0; /* Assume ATAPI DMA is OK by default */
4076 /* some drives can only do ATAPI DMA on read/write */
4077 if (unlikely(qc
->dev
->horkage
& ATA_HORKAGE_DMA_RW_ONLY
)) {
4078 struct scsi_cmnd
*cmd
= qc
->scsicmd
;
4079 u8
*scsicmd
= cmd
->cmnd
;
4081 switch (scsicmd
[0]) {
4088 /* atapi dma maybe ok */
4091 /* turn off atapi dma */
4096 if (ap
->ops
->check_atapi_dma
)
4097 rc
= ap
->ops
->check_atapi_dma(qc
);
4102 * ata_qc_prep - Prepare taskfile for submission
4103 * @qc: Metadata associated with taskfile to be prepared
4105 * Prepare ATA taskfile for submission.
4108 * spin_lock_irqsave(host lock)
4110 void ata_qc_prep(struct ata_queued_cmd
*qc
)
4112 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4118 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4121 * ata_sg_init_one - Associate command with memory buffer
4122 * @qc: Command to be associated
4123 * @buf: Memory buffer
4124 * @buflen: Length of memory buffer, in bytes.
4126 * Initialize the data-related elements of queued_cmd @qc
4127 * to point to a single memory buffer, @buf of byte length @buflen.
4130 * spin_lock_irqsave(host lock)
4133 void ata_sg_init_one(struct ata_queued_cmd
*qc
, void *buf
, unsigned int buflen
)
4135 qc
->flags
|= ATA_QCFLAG_SINGLE
;
4137 qc
->__sg
= &qc
->sgent
;
4139 qc
->orig_n_elem
= 1;
4141 qc
->nbytes
= buflen
;
4143 sg_init_one(&qc
->sgent
, buf
, buflen
);
4147 * ata_sg_init - Associate command with scatter-gather table.
4148 * @qc: Command to be associated
4149 * @sg: Scatter-gather table.
4150 * @n_elem: Number of elements in s/g table.
4152 * Initialize the data-related elements of queued_cmd @qc
4153 * to point to a scatter-gather table @sg, containing @n_elem
4157 * spin_lock_irqsave(host lock)
4160 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4161 unsigned int n_elem
)
4163 qc
->flags
|= ATA_QCFLAG_SG
;
4165 qc
->n_elem
= n_elem
;
4166 qc
->orig_n_elem
= n_elem
;
4170 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4171 * @qc: Command with memory buffer to be mapped.
4173 * DMA-map the memory buffer associated with queued_cmd @qc.
4176 * spin_lock_irqsave(host lock)
4179 * Zero on success, negative on error.
4182 static int ata_sg_setup_one(struct ata_queued_cmd
*qc
)
4184 struct ata_port
*ap
= qc
->ap
;
4185 int dir
= qc
->dma_dir
;
4186 struct scatterlist
*sg
= qc
->__sg
;
4187 dma_addr_t dma_address
;
4190 /* we must lengthen transfers to end on a 32-bit boundary */
4191 qc
->pad_len
= sg
->length
& 3;
4193 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4194 struct scatterlist
*psg
= &qc
->pad_sgent
;
4196 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
4198 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
4200 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
)
4201 memcpy(pad_buf
, qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
4204 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4205 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
4207 sg
->length
-= qc
->pad_len
;
4208 if (sg
->length
== 0)
4211 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4212 sg
->length
, qc
->pad_len
);
4220 dma_address
= dma_map_single(ap
->dev
, qc
->buf_virt
,
4222 if (dma_mapping_error(dma_address
)) {
4224 sg
->length
+= qc
->pad_len
;
4228 sg_dma_address(sg
) = dma_address
;
4229 sg_dma_len(sg
) = sg
->length
;
4232 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg
),
4233 qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
4239 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4240 * @qc: Command with scatter-gather table to be mapped.
4242 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4245 * spin_lock_irqsave(host lock)
4248 * Zero on success, negative on error.
4252 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4254 struct ata_port
*ap
= qc
->ap
;
4255 struct scatterlist
*sg
= qc
->__sg
;
4256 struct scatterlist
*lsg
= &sg
[qc
->n_elem
- 1];
4257 int n_elem
, pre_n_elem
, dir
, trim_sg
= 0;
4259 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4260 WARN_ON(!(qc
->flags
& ATA_QCFLAG_SG
));
4262 /* we must lengthen transfers to end on a 32-bit boundary */
4263 qc
->pad_len
= lsg
->length
& 3;
4265 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4266 struct scatterlist
*psg
= &qc
->pad_sgent
;
4267 unsigned int offset
;
4269 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
4271 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
4274 * psg->page/offset are used to copy to-be-written
4275 * data in this function or read data in ata_sg_clean.
4277 offset
= lsg
->offset
+ lsg
->length
- qc
->pad_len
;
4278 psg
->page
= nth_page(lsg
->page
, offset
>> PAGE_SHIFT
);
4279 psg
->offset
= offset_in_page(offset
);
4281 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
4282 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
4283 memcpy(pad_buf
, addr
+ psg
->offset
, qc
->pad_len
);
4284 kunmap_atomic(addr
, KM_IRQ0
);
4287 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4288 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
4290 lsg
->length
-= qc
->pad_len
;
4291 if (lsg
->length
== 0)
4294 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4295 qc
->n_elem
- 1, lsg
->length
, qc
->pad_len
);
4298 pre_n_elem
= qc
->n_elem
;
4299 if (trim_sg
&& pre_n_elem
)
4308 n_elem
= dma_map_sg(ap
->dev
, sg
, pre_n_elem
, dir
);
4310 /* restore last sg */
4311 lsg
->length
+= qc
->pad_len
;
4315 DPRINTK("%d sg elements mapped\n", n_elem
);
4318 qc
->n_elem
= n_elem
;
4324 * swap_buf_le16 - swap halves of 16-bit words in place
4325 * @buf: Buffer to swap
4326 * @buf_words: Number of 16-bit words in buffer.
4328 * Swap halves of 16-bit words if needed to convert from
4329 * little-endian byte order to native cpu byte order, or
4333 * Inherited from caller.
4335 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4340 for (i
= 0; i
< buf_words
; i
++)
4341 buf
[i
] = le16_to_cpu(buf
[i
]);
4342 #endif /* __BIG_ENDIAN */
4346 * ata_data_xfer - Transfer data by PIO
4347 * @adev: device to target
4349 * @buflen: buffer length
4350 * @write_data: read/write
4352 * Transfer data from/to the device data register by PIO.
4355 * Inherited from caller.
4357 void ata_data_xfer(struct ata_device
*adev
, unsigned char *buf
,
4358 unsigned int buflen
, int write_data
)
4360 struct ata_port
*ap
= adev
->ap
;
4361 unsigned int words
= buflen
>> 1;
4363 /* Transfer multiple of 2 bytes */
4365 iowrite16_rep(ap
->ioaddr
.data_addr
, buf
, words
);
4367 ioread16_rep(ap
->ioaddr
.data_addr
, buf
, words
);
4369 /* Transfer trailing 1 byte, if any. */
4370 if (unlikely(buflen
& 0x01)) {
4371 u16 align_buf
[1] = { 0 };
4372 unsigned char *trailing_buf
= buf
+ buflen
- 1;
4375 memcpy(align_buf
, trailing_buf
, 1);
4376 iowrite16(le16_to_cpu(align_buf
[0]), ap
->ioaddr
.data_addr
);
4378 align_buf
[0] = cpu_to_le16(ioread16(ap
->ioaddr
.data_addr
));
4379 memcpy(trailing_buf
, align_buf
, 1);
4385 * ata_data_xfer_noirq - Transfer data by PIO
4386 * @adev: device to target
4388 * @buflen: buffer length
4389 * @write_data: read/write
4391 * Transfer data from/to the device data register by PIO. Do the
4392 * transfer with interrupts disabled.
4395 * Inherited from caller.
4397 void ata_data_xfer_noirq(struct ata_device
*adev
, unsigned char *buf
,
4398 unsigned int buflen
, int write_data
)
4400 unsigned long flags
;
4401 local_irq_save(flags
);
4402 ata_data_xfer(adev
, buf
, buflen
, write_data
);
4403 local_irq_restore(flags
);
4408 * ata_pio_sector - Transfer a sector of data.
4409 * @qc: Command on going
4411 * Transfer qc->sect_size bytes of data from/to the ATA device.
4414 * Inherited from caller.
4417 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
4419 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
4420 struct scatterlist
*sg
= qc
->__sg
;
4421 struct ata_port
*ap
= qc
->ap
;
4423 unsigned int offset
;
4426 if (qc
->curbytes
== qc
->nbytes
- qc
->sect_size
)
4427 ap
->hsm_task_state
= HSM_ST_LAST
;
4429 page
= sg
[qc
->cursg
].page
;
4430 offset
= sg
[qc
->cursg
].offset
+ qc
->cursg_ofs
;
4432 /* get the current page and offset */
4433 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
4434 offset
%= PAGE_SIZE
;
4436 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
4438 if (PageHighMem(page
)) {
4439 unsigned long flags
;
4441 /* FIXME: use a bounce buffer */
4442 local_irq_save(flags
);
4443 buf
= kmap_atomic(page
, KM_IRQ0
);
4445 /* do the actual data transfer */
4446 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
, do_write
);
4448 kunmap_atomic(buf
, KM_IRQ0
);
4449 local_irq_restore(flags
);
4451 buf
= page_address(page
);
4452 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
, do_write
);
4455 qc
->curbytes
+= qc
->sect_size
;
4456 qc
->cursg_ofs
+= qc
->sect_size
;
4458 if (qc
->cursg_ofs
== (&sg
[qc
->cursg
])->length
) {
4465 * ata_pio_sectors - Transfer one or many sectors.
4466 * @qc: Command on going
4468 * Transfer one or many sectors of data from/to the
4469 * ATA device for the DRQ request.
4472 * Inherited from caller.
4475 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
4477 if (is_multi_taskfile(&qc
->tf
)) {
4478 /* READ/WRITE MULTIPLE */
4481 WARN_ON(qc
->dev
->multi_count
== 0);
4483 nsect
= min((qc
->nbytes
- qc
->curbytes
) / qc
->sect_size
,
4484 qc
->dev
->multi_count
);
4492 * atapi_send_cdb - Write CDB bytes to hardware
4493 * @ap: Port to which ATAPI device is attached.
4494 * @qc: Taskfile currently active
4496 * When device has indicated its readiness to accept
4497 * a CDB, this function is called. Send the CDB.
4503 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
4506 DPRINTK("send cdb\n");
4507 WARN_ON(qc
->dev
->cdb_len
< 12);
4509 ap
->ops
->data_xfer(qc
->dev
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
4510 ata_altstatus(ap
); /* flush */
4512 switch (qc
->tf
.protocol
) {
4513 case ATA_PROT_ATAPI
:
4514 ap
->hsm_task_state
= HSM_ST
;
4516 case ATA_PROT_ATAPI_NODATA
:
4517 ap
->hsm_task_state
= HSM_ST_LAST
;
4519 case ATA_PROT_ATAPI_DMA
:
4520 ap
->hsm_task_state
= HSM_ST_LAST
;
4521 /* initiate bmdma */
4522 ap
->ops
->bmdma_start(qc
);
4528 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4529 * @qc: Command on going
4530 * @bytes: number of bytes
4532 * Transfer Transfer data from/to the ATAPI device.
4535 * Inherited from caller.
4539 static void __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
4541 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
4542 struct scatterlist
*sg
= qc
->__sg
;
4543 struct ata_port
*ap
= qc
->ap
;
4546 unsigned int offset
, count
;
4548 if (qc
->curbytes
+ bytes
>= qc
->nbytes
)
4549 ap
->hsm_task_state
= HSM_ST_LAST
;
4552 if (unlikely(qc
->cursg
>= qc
->n_elem
)) {
4554 * The end of qc->sg is reached and the device expects
4555 * more data to transfer. In order not to overrun qc->sg
4556 * and fulfill length specified in the byte count register,
4557 * - for read case, discard trailing data from the device
4558 * - for write case, padding zero data to the device
4560 u16 pad_buf
[1] = { 0 };
4561 unsigned int words
= bytes
>> 1;
4564 if (words
) /* warning if bytes > 1 */
4565 ata_dev_printk(qc
->dev
, KERN_WARNING
,
4566 "%u bytes trailing data\n", bytes
);
4568 for (i
= 0; i
< words
; i
++)
4569 ap
->ops
->data_xfer(qc
->dev
, (unsigned char*)pad_buf
, 2, do_write
);
4571 ap
->hsm_task_state
= HSM_ST_LAST
;
4575 sg
= &qc
->__sg
[qc
->cursg
];
4578 offset
= sg
->offset
+ qc
->cursg_ofs
;
4580 /* get the current page and offset */
4581 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
4582 offset
%= PAGE_SIZE
;
4584 /* don't overrun current sg */
4585 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
4587 /* don't cross page boundaries */
4588 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
4590 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
4592 if (PageHighMem(page
)) {
4593 unsigned long flags
;
4595 /* FIXME: use bounce buffer */
4596 local_irq_save(flags
);
4597 buf
= kmap_atomic(page
, KM_IRQ0
);
4599 /* do the actual data transfer */
4600 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
4602 kunmap_atomic(buf
, KM_IRQ0
);
4603 local_irq_restore(flags
);
4605 buf
= page_address(page
);
4606 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
4610 qc
->curbytes
+= count
;
4611 qc
->cursg_ofs
+= count
;
4613 if (qc
->cursg_ofs
== sg
->length
) {
4623 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4624 * @qc: Command on going
4626 * Transfer Transfer data from/to the ATAPI device.
4629 * Inherited from caller.
4632 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
4634 struct ata_port
*ap
= qc
->ap
;
4635 struct ata_device
*dev
= qc
->dev
;
4636 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
4637 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
4639 /* Abuse qc->result_tf for temp storage of intermediate TF
4640 * here to save some kernel stack usage.
4641 * For normal completion, qc->result_tf is not relevant. For
4642 * error, qc->result_tf is later overwritten by ata_qc_complete().
4643 * So, the correctness of qc->result_tf is not affected.
4645 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
4646 ireason
= qc
->result_tf
.nsect
;
4647 bc_lo
= qc
->result_tf
.lbam
;
4648 bc_hi
= qc
->result_tf
.lbah
;
4649 bytes
= (bc_hi
<< 8) | bc_lo
;
4651 /* shall be cleared to zero, indicating xfer of data */
4652 if (ireason
& (1 << 0))
4655 /* make sure transfer direction matches expected */
4656 i_write
= ((ireason
& (1 << 1)) == 0) ? 1 : 0;
4657 if (do_write
!= i_write
)
4660 VPRINTK("ata%u: xfering %d bytes\n", ap
->print_id
, bytes
);
4662 __atapi_pio_bytes(qc
, bytes
);
4667 ata_dev_printk(dev
, KERN_INFO
, "ATAPI check failed\n");
4668 qc
->err_mask
|= AC_ERR_HSM
;
4669 ap
->hsm_task_state
= HSM_ST_ERR
;
4673 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4674 * @ap: the target ata_port
4678 * 1 if ok in workqueue, 0 otherwise.
4681 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
4683 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4686 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
4687 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
4688 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
4691 if (is_atapi_taskfile(&qc
->tf
) &&
4692 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
4700 * ata_hsm_qc_complete - finish a qc running on standard HSM
4701 * @qc: Command to complete
4702 * @in_wq: 1 if called from workqueue, 0 otherwise
4704 * Finish @qc which is running on standard HSM.
4707 * If @in_wq is zero, spin_lock_irqsave(host lock).
4708 * Otherwise, none on entry and grabs host lock.
4710 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
4712 struct ata_port
*ap
= qc
->ap
;
4713 unsigned long flags
;
4715 if (ap
->ops
->error_handler
) {
4717 spin_lock_irqsave(ap
->lock
, flags
);
4719 /* EH might have kicked in while host lock is
4722 qc
= ata_qc_from_tag(ap
, qc
->tag
);
4724 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
4725 ap
->ops
->irq_on(ap
);
4726 ata_qc_complete(qc
);
4728 ata_port_freeze(ap
);
4731 spin_unlock_irqrestore(ap
->lock
, flags
);
4733 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
4734 ata_qc_complete(qc
);
4736 ata_port_freeze(ap
);
4740 spin_lock_irqsave(ap
->lock
, flags
);
4741 ap
->ops
->irq_on(ap
);
4742 ata_qc_complete(qc
);
4743 spin_unlock_irqrestore(ap
->lock
, flags
);
4745 ata_qc_complete(qc
);
4748 ata_altstatus(ap
); /* flush */
4752 * ata_hsm_move - move the HSM to the next state.
4753 * @ap: the target ata_port
4755 * @status: current device status
4756 * @in_wq: 1 if called from workqueue, 0 otherwise
4759 * 1 when poll next status needed, 0 otherwise.
4761 int ata_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
4762 u8 status
, int in_wq
)
4764 unsigned long flags
= 0;
4767 WARN_ON((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
4769 /* Make sure ata_qc_issue_prot() does not throw things
4770 * like DMA polling into the workqueue. Notice that
4771 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4773 WARN_ON(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
4776 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4777 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
4779 switch (ap
->hsm_task_state
) {
4781 /* Send first data block or PACKET CDB */
4783 /* If polling, we will stay in the work queue after
4784 * sending the data. Otherwise, interrupt handler
4785 * takes over after sending the data.
4787 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
4789 /* check device status */
4790 if (unlikely((status
& ATA_DRQ
) == 0)) {
4791 /* handle BSY=0, DRQ=0 as error */
4792 if (likely(status
& (ATA_ERR
| ATA_DF
)))
4793 /* device stops HSM for abort/error */
4794 qc
->err_mask
|= AC_ERR_DEV
;
4796 /* HSM violation. Let EH handle this */
4797 qc
->err_mask
|= AC_ERR_HSM
;
4799 ap
->hsm_task_state
= HSM_ST_ERR
;
4803 /* Device should not ask for data transfer (DRQ=1)
4804 * when it finds something wrong.
4805 * We ignore DRQ here and stop the HSM by
4806 * changing hsm_task_state to HSM_ST_ERR and
4807 * let the EH abort the command or reset the device.
4809 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4810 ata_port_printk(ap
, KERN_WARNING
, "DRQ=1 with device "
4811 "error, dev_stat 0x%X\n", status
);
4812 qc
->err_mask
|= AC_ERR_HSM
;
4813 ap
->hsm_task_state
= HSM_ST_ERR
;
4817 /* Send the CDB (atapi) or the first data block (ata pio out).
4818 * During the state transition, interrupt handler shouldn't
4819 * be invoked before the data transfer is complete and
4820 * hsm_task_state is changed. Hence, the following locking.
4823 spin_lock_irqsave(ap
->lock
, flags
);
4825 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
4826 /* PIO data out protocol.
4827 * send first data block.
4830 /* ata_pio_sectors() might change the state
4831 * to HSM_ST_LAST. so, the state is changed here
4832 * before ata_pio_sectors().
4834 ap
->hsm_task_state
= HSM_ST
;
4835 ata_pio_sectors(qc
);
4836 ata_altstatus(ap
); /* flush */
4839 atapi_send_cdb(ap
, qc
);
4842 spin_unlock_irqrestore(ap
->lock
, flags
);
4844 /* if polling, ata_pio_task() handles the rest.
4845 * otherwise, interrupt handler takes over from here.
4850 /* complete command or read/write the data register */
4851 if (qc
->tf
.protocol
== ATA_PROT_ATAPI
) {
4852 /* ATAPI PIO protocol */
4853 if ((status
& ATA_DRQ
) == 0) {
4854 /* No more data to transfer or device error.
4855 * Device error will be tagged in HSM_ST_LAST.
4857 ap
->hsm_task_state
= HSM_ST_LAST
;
4861 /* Device should not ask for data transfer (DRQ=1)
4862 * when it finds something wrong.
4863 * We ignore DRQ here and stop the HSM by
4864 * changing hsm_task_state to HSM_ST_ERR and
4865 * let the EH abort the command or reset the device.
4867 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4868 ata_port_printk(ap
, KERN_WARNING
, "DRQ=1 with "
4869 "device error, dev_stat 0x%X\n",
4871 qc
->err_mask
|= AC_ERR_HSM
;
4872 ap
->hsm_task_state
= HSM_ST_ERR
;
4876 atapi_pio_bytes(qc
);
4878 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
4879 /* bad ireason reported by device */
4883 /* ATA PIO protocol */
4884 if (unlikely((status
& ATA_DRQ
) == 0)) {
4885 /* handle BSY=0, DRQ=0 as error */
4886 if (likely(status
& (ATA_ERR
| ATA_DF
)))
4887 /* device stops HSM for abort/error */
4888 qc
->err_mask
|= AC_ERR_DEV
;
4890 /* HSM violation. Let EH handle this.
4891 * Phantom devices also trigger this
4892 * condition. Mark hint.
4894 qc
->err_mask
|= AC_ERR_HSM
|
4897 ap
->hsm_task_state
= HSM_ST_ERR
;
4901 /* For PIO reads, some devices may ask for
4902 * data transfer (DRQ=1) alone with ERR=1.
4903 * We respect DRQ here and transfer one
4904 * block of junk data before changing the
4905 * hsm_task_state to HSM_ST_ERR.
4907 * For PIO writes, ERR=1 DRQ=1 doesn't make
4908 * sense since the data block has been
4909 * transferred to the device.
4911 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4912 /* data might be corrputed */
4913 qc
->err_mask
|= AC_ERR_DEV
;
4915 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
4916 ata_pio_sectors(qc
);
4918 status
= ata_wait_idle(ap
);
4921 if (status
& (ATA_BUSY
| ATA_DRQ
))
4922 qc
->err_mask
|= AC_ERR_HSM
;
4924 /* ata_pio_sectors() might change the
4925 * state to HSM_ST_LAST. so, the state
4926 * is changed after ata_pio_sectors().
4928 ap
->hsm_task_state
= HSM_ST_ERR
;
4932 ata_pio_sectors(qc
);
4934 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
4935 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
4938 status
= ata_wait_idle(ap
);
4943 ata_altstatus(ap
); /* flush */
4948 if (unlikely(!ata_ok(status
))) {
4949 qc
->err_mask
|= __ac_err_mask(status
);
4950 ap
->hsm_task_state
= HSM_ST_ERR
;
4954 /* no more data to transfer */
4955 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4956 ap
->print_id
, qc
->dev
->devno
, status
);
4958 WARN_ON(qc
->err_mask
);
4960 ap
->hsm_task_state
= HSM_ST_IDLE
;
4962 /* complete taskfile transaction */
4963 ata_hsm_qc_complete(qc
, in_wq
);
4969 /* make sure qc->err_mask is available to
4970 * know what's wrong and recover
4972 WARN_ON(qc
->err_mask
== 0);
4974 ap
->hsm_task_state
= HSM_ST_IDLE
;
4976 /* complete taskfile transaction */
4977 ata_hsm_qc_complete(qc
, in_wq
);
4989 static void ata_pio_task(struct work_struct
*work
)
4991 struct ata_port
*ap
=
4992 container_of(work
, struct ata_port
, port_task
.work
);
4993 struct ata_queued_cmd
*qc
= ap
->port_task_data
;
4998 WARN_ON(ap
->hsm_task_state
== HSM_ST_IDLE
);
5001 * This is purely heuristic. This is a fast path.
5002 * Sometimes when we enter, BSY will be cleared in
5003 * a chk-status or two. If not, the drive is probably seeking
5004 * or something. Snooze for a couple msecs, then
5005 * chk-status again. If still busy, queue delayed work.
5007 status
= ata_busy_wait(ap
, ATA_BUSY
, 5);
5008 if (status
& ATA_BUSY
) {
5010 status
= ata_busy_wait(ap
, ATA_BUSY
, 10);
5011 if (status
& ATA_BUSY
) {
5012 ata_port_queue_task(ap
, ata_pio_task
, qc
, ATA_SHORT_PAUSE
);
5018 poll_next
= ata_hsm_move(ap
, qc
, status
, 1);
5020 /* another command or interrupt handler
5021 * may be running at this point.
5028 * ata_qc_new - Request an available ATA command, for queueing
5029 * @ap: Port associated with device @dev
5030 * @dev: Device from whom we request an available command structure
5036 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
5038 struct ata_queued_cmd
*qc
= NULL
;
5041 /* no command while frozen */
5042 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
5045 /* the last tag is reserved for internal command. */
5046 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
5047 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
5048 qc
= __ata_qc_from_tag(ap
, i
);
5059 * ata_qc_new_init - Request an available ATA command, and initialize it
5060 * @dev: Device from whom we request an available command structure
5066 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
5068 struct ata_port
*ap
= dev
->ap
;
5069 struct ata_queued_cmd
*qc
;
5071 qc
= ata_qc_new(ap
);
5084 * ata_qc_free - free unused ata_queued_cmd
5085 * @qc: Command to complete
5087 * Designed to free unused ata_queued_cmd object
5088 * in case something prevents using it.
5091 * spin_lock_irqsave(host lock)
5093 void ata_qc_free(struct ata_queued_cmd
*qc
)
5095 struct ata_port
*ap
= qc
->ap
;
5098 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
5102 if (likely(ata_tag_valid(tag
))) {
5103 qc
->tag
= ATA_TAG_POISON
;
5104 clear_bit(tag
, &ap
->qc_allocated
);
5108 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
5110 struct ata_port
*ap
= qc
->ap
;
5112 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
5113 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
5115 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
5118 /* command should be marked inactive atomically with qc completion */
5119 if (qc
->tf
.protocol
== ATA_PROT_NCQ
)
5120 ap
->sactive
&= ~(1 << qc
->tag
);
5122 ap
->active_tag
= ATA_TAG_POISON
;
5124 /* atapi: mark qc as inactive to prevent the interrupt handler
5125 * from completing the command twice later, before the error handler
5126 * is called. (when rc != 0 and atapi request sense is needed)
5128 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
5129 ap
->qc_active
&= ~(1 << qc
->tag
);
5131 /* call completion callback */
5132 qc
->complete_fn(qc
);
5135 static void fill_result_tf(struct ata_queued_cmd
*qc
)
5137 struct ata_port
*ap
= qc
->ap
;
5139 qc
->result_tf
.flags
= qc
->tf
.flags
;
5140 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
5144 * ata_qc_complete - Complete an active ATA command
5145 * @qc: Command to complete
5146 * @err_mask: ATA Status register contents
5148 * Indicate to the mid and upper layers that an ATA
5149 * command has completed, with either an ok or not-ok status.
5152 * spin_lock_irqsave(host lock)
5154 void ata_qc_complete(struct ata_queued_cmd
*qc
)
5156 struct ata_port
*ap
= qc
->ap
;
5158 /* XXX: New EH and old EH use different mechanisms to
5159 * synchronize EH with regular execution path.
5161 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5162 * Normal execution path is responsible for not accessing a
5163 * failed qc. libata core enforces the rule by returning NULL
5164 * from ata_qc_from_tag() for failed qcs.
5166 * Old EH depends on ata_qc_complete() nullifying completion
5167 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5168 * not synchronize with interrupt handler. Only PIO task is
5171 if (ap
->ops
->error_handler
) {
5172 WARN_ON(ap
->pflags
& ATA_PFLAG_FROZEN
);
5174 if (unlikely(qc
->err_mask
))
5175 qc
->flags
|= ATA_QCFLAG_FAILED
;
5177 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
5178 if (!ata_tag_internal(qc
->tag
)) {
5179 /* always fill result TF for failed qc */
5181 ata_qc_schedule_eh(qc
);
5186 /* read result TF if requested */
5187 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5190 __ata_qc_complete(qc
);
5192 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
5195 /* read result TF if failed or requested */
5196 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5199 __ata_qc_complete(qc
);
5204 * ata_qc_complete_multiple - Complete multiple qcs successfully
5205 * @ap: port in question
5206 * @qc_active: new qc_active mask
5207 * @finish_qc: LLDD callback invoked before completing a qc
5209 * Complete in-flight commands. This functions is meant to be
5210 * called from low-level driver's interrupt routine to complete
5211 * requests normally. ap->qc_active and @qc_active is compared
5212 * and commands are completed accordingly.
5215 * spin_lock_irqsave(host lock)
5218 * Number of completed commands on success, -errno otherwise.
5220 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
,
5221 void (*finish_qc
)(struct ata_queued_cmd
*))
5227 done_mask
= ap
->qc_active
^ qc_active
;
5229 if (unlikely(done_mask
& qc_active
)) {
5230 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
5231 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
5235 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++) {
5236 struct ata_queued_cmd
*qc
;
5238 if (!(done_mask
& (1 << i
)))
5241 if ((qc
= ata_qc_from_tag(ap
, i
))) {
5244 ata_qc_complete(qc
);
5252 static inline int ata_should_dma_map(struct ata_queued_cmd
*qc
)
5254 struct ata_port
*ap
= qc
->ap
;
5256 switch (qc
->tf
.protocol
) {
5259 case ATA_PROT_ATAPI_DMA
:
5262 case ATA_PROT_ATAPI
:
5264 if (ap
->flags
& ATA_FLAG_PIO_DMA
)
5277 * ata_qc_issue - issue taskfile to device
5278 * @qc: command to issue to device
5280 * Prepare an ATA command to submission to device.
5281 * This includes mapping the data into a DMA-able
5282 * area, filling in the S/G table, and finally
5283 * writing the taskfile to hardware, starting the command.
5286 * spin_lock_irqsave(host lock)
5288 void ata_qc_issue(struct ata_queued_cmd
*qc
)
5290 struct ata_port
*ap
= qc
->ap
;
5292 /* Make sure only one non-NCQ command is outstanding. The
5293 * check is skipped for old EH because it reuses active qc to
5294 * request ATAPI sense.
5296 WARN_ON(ap
->ops
->error_handler
&& ata_tag_valid(ap
->active_tag
));
5298 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
5299 WARN_ON(ap
->sactive
& (1 << qc
->tag
));
5300 ap
->sactive
|= 1 << qc
->tag
;
5302 WARN_ON(ap
->sactive
);
5303 ap
->active_tag
= qc
->tag
;
5306 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
5307 ap
->qc_active
|= 1 << qc
->tag
;
5309 if (ata_should_dma_map(qc
)) {
5310 if (qc
->flags
& ATA_QCFLAG_SG
) {
5311 if (ata_sg_setup(qc
))
5313 } else if (qc
->flags
& ATA_QCFLAG_SINGLE
) {
5314 if (ata_sg_setup_one(qc
))
5318 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
5321 ap
->ops
->qc_prep(qc
);
5323 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
5324 if (unlikely(qc
->err_mask
))
5329 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
5330 qc
->err_mask
|= AC_ERR_SYSTEM
;
5332 ata_qc_complete(qc
);
5336 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5337 * @qc: command to issue to device
5339 * Using various libata functions and hooks, this function
5340 * starts an ATA command. ATA commands are grouped into
5341 * classes called "protocols", and issuing each type of protocol
5342 * is slightly different.
5344 * May be used as the qc_issue() entry in ata_port_operations.
5347 * spin_lock_irqsave(host lock)
5350 * Zero on success, AC_ERR_* mask on failure
5353 unsigned int ata_qc_issue_prot(struct ata_queued_cmd
*qc
)
5355 struct ata_port
*ap
= qc
->ap
;
5357 /* Use polling pio if the LLD doesn't handle
5358 * interrupt driven pio and atapi CDB interrupt.
5360 if (ap
->flags
& ATA_FLAG_PIO_POLLING
) {
5361 switch (qc
->tf
.protocol
) {
5363 case ATA_PROT_NODATA
:
5364 case ATA_PROT_ATAPI
:
5365 case ATA_PROT_ATAPI_NODATA
:
5366 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
5368 case ATA_PROT_ATAPI_DMA
:
5369 if (qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)
5370 /* see ata_dma_blacklisted() */
5378 /* Some controllers show flaky interrupt behavior after
5379 * setting xfer mode. Use polling instead.
5381 if (unlikely(qc
->tf
.command
== ATA_CMD_SET_FEATURES
&&
5382 qc
->tf
.feature
== SETFEATURES_XFER
) &&
5383 (ap
->flags
& ATA_FLAG_SETXFER_POLLING
))
5384 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
5386 /* select the device */
5387 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
5389 /* start the command */
5390 switch (qc
->tf
.protocol
) {
5391 case ATA_PROT_NODATA
:
5392 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5393 ata_qc_set_polling(qc
);
5395 ata_tf_to_host(ap
, &qc
->tf
);
5396 ap
->hsm_task_state
= HSM_ST_LAST
;
5398 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5399 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5404 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
5406 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
5407 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
5408 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
5409 ap
->hsm_task_state
= HSM_ST_LAST
;
5413 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5414 ata_qc_set_polling(qc
);
5416 ata_tf_to_host(ap
, &qc
->tf
);
5418 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
5419 /* PIO data out protocol */
5420 ap
->hsm_task_state
= HSM_ST_FIRST
;
5421 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5423 /* always send first data block using
5424 * the ata_pio_task() codepath.
5427 /* PIO data in protocol */
5428 ap
->hsm_task_state
= HSM_ST
;
5430 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5431 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5433 /* if polling, ata_pio_task() handles the rest.
5434 * otherwise, interrupt handler takes over from here.
5440 case ATA_PROT_ATAPI
:
5441 case ATA_PROT_ATAPI_NODATA
:
5442 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5443 ata_qc_set_polling(qc
);
5445 ata_tf_to_host(ap
, &qc
->tf
);
5447 ap
->hsm_task_state
= HSM_ST_FIRST
;
5449 /* send cdb by polling if no cdb interrupt */
5450 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
5451 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
5452 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5455 case ATA_PROT_ATAPI_DMA
:
5456 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
5458 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
5459 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
5460 ap
->hsm_task_state
= HSM_ST_FIRST
;
5462 /* send cdb by polling if no cdb interrupt */
5463 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
5464 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5469 return AC_ERR_SYSTEM
;
5476 * ata_host_intr - Handle host interrupt for given (port, task)
5477 * @ap: Port on which interrupt arrived (possibly...)
5478 * @qc: Taskfile currently active in engine
5480 * Handle host interrupt for given queued command. Currently,
5481 * only DMA interrupts are handled. All other commands are
5482 * handled via polling with interrupts disabled (nIEN bit).
5485 * spin_lock_irqsave(host lock)
5488 * One if interrupt was handled, zero if not (shared irq).
5491 inline unsigned int ata_host_intr (struct ata_port
*ap
,
5492 struct ata_queued_cmd
*qc
)
5494 struct ata_eh_info
*ehi
= &ap
->eh_info
;
5495 u8 status
, host_stat
= 0;
5497 VPRINTK("ata%u: protocol %d task_state %d\n",
5498 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
5500 /* Check whether we are expecting interrupt in this state */
5501 switch (ap
->hsm_task_state
) {
5503 /* Some pre-ATAPI-4 devices assert INTRQ
5504 * at this state when ready to receive CDB.
5507 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5508 * The flag was turned on only for atapi devices.
5509 * No need to check is_atapi_taskfile(&qc->tf) again.
5511 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
5515 if (qc
->tf
.protocol
== ATA_PROT_DMA
||
5516 qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
) {
5517 /* check status of DMA engine */
5518 host_stat
= ap
->ops
->bmdma_status(ap
);
5519 VPRINTK("ata%u: host_stat 0x%X\n",
5520 ap
->print_id
, host_stat
);
5522 /* if it's not our irq... */
5523 if (!(host_stat
& ATA_DMA_INTR
))
5526 /* before we do anything else, clear DMA-Start bit */
5527 ap
->ops
->bmdma_stop(qc
);
5529 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
5530 /* error when transfering data to/from memory */
5531 qc
->err_mask
|= AC_ERR_HOST_BUS
;
5532 ap
->hsm_task_state
= HSM_ST_ERR
;
5542 /* check altstatus */
5543 status
= ata_altstatus(ap
);
5544 if (status
& ATA_BUSY
)
5547 /* check main status, clearing INTRQ */
5548 status
= ata_chk_status(ap
);
5549 if (unlikely(status
& ATA_BUSY
))
5552 /* ack bmdma irq events */
5553 ap
->ops
->irq_clear(ap
);
5555 ata_hsm_move(ap
, qc
, status
, 0);
5557 if (unlikely(qc
->err_mask
) && (qc
->tf
.protocol
== ATA_PROT_DMA
||
5558 qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
))
5559 ata_ehi_push_desc(ehi
, "BMDMA stat 0x%x", host_stat
);
5561 return 1; /* irq handled */
5564 ap
->stats
.idle_irq
++;
5567 if ((ap
->stats
.idle_irq
% 1000) == 0) {
5568 ap
->ops
->irq_ack(ap
, 0); /* debug trap */
5569 ata_port_printk(ap
, KERN_WARNING
, "irq trap\n");
5573 return 0; /* irq not handled */
5577 * ata_interrupt - Default ATA host interrupt handler
5578 * @irq: irq line (unused)
5579 * @dev_instance: pointer to our ata_host information structure
5581 * Default interrupt handler for PCI IDE devices. Calls
5582 * ata_host_intr() for each port that is not disabled.
5585 * Obtains host lock during operation.
5588 * IRQ_NONE or IRQ_HANDLED.
5591 irqreturn_t
ata_interrupt (int irq
, void *dev_instance
)
5593 struct ata_host
*host
= dev_instance
;
5595 unsigned int handled
= 0;
5596 unsigned long flags
;
5598 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5599 spin_lock_irqsave(&host
->lock
, flags
);
5601 for (i
= 0; i
< host
->n_ports
; i
++) {
5602 struct ata_port
*ap
;
5604 ap
= host
->ports
[i
];
5606 !(ap
->flags
& ATA_FLAG_DISABLED
)) {
5607 struct ata_queued_cmd
*qc
;
5609 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
5610 if (qc
&& (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
)) &&
5611 (qc
->flags
& ATA_QCFLAG_ACTIVE
))
5612 handled
|= ata_host_intr(ap
, qc
);
5616 spin_unlock_irqrestore(&host
->lock
, flags
);
5618 return IRQ_RETVAL(handled
);
5622 * sata_scr_valid - test whether SCRs are accessible
5623 * @ap: ATA port to test SCR accessibility for
5625 * Test whether SCRs are accessible for @ap.
5631 * 1 if SCRs are accessible, 0 otherwise.
5633 int sata_scr_valid(struct ata_port
*ap
)
5635 return ap
->cbl
== ATA_CBL_SATA
&& ap
->ops
->scr_read
;
5639 * sata_scr_read - read SCR register of the specified port
5640 * @ap: ATA port to read SCR for
5642 * @val: Place to store read value
5644 * Read SCR register @reg of @ap into *@val. This function is
5645 * guaranteed to succeed if the cable type of the port is SATA
5646 * and the port implements ->scr_read.
5652 * 0 on success, negative errno on failure.
5654 int sata_scr_read(struct ata_port
*ap
, int reg
, u32
*val
)
5656 if (sata_scr_valid(ap
)) {
5657 *val
= ap
->ops
->scr_read(ap
, reg
);
5664 * sata_scr_write - write SCR register of the specified port
5665 * @ap: ATA port to write SCR for
5666 * @reg: SCR to write
5667 * @val: value to write
5669 * Write @val to SCR register @reg of @ap. This function is
5670 * guaranteed to succeed if the cable type of the port is SATA
5671 * and the port implements ->scr_read.
5677 * 0 on success, negative errno on failure.
5679 int sata_scr_write(struct ata_port
*ap
, int reg
, u32 val
)
5681 if (sata_scr_valid(ap
)) {
5682 ap
->ops
->scr_write(ap
, reg
, val
);
5689 * sata_scr_write_flush - write SCR register of the specified port and flush
5690 * @ap: ATA port to write SCR for
5691 * @reg: SCR to write
5692 * @val: value to write
5694 * This function is identical to sata_scr_write() except that this
5695 * function performs flush after writing to the register.
5701 * 0 on success, negative errno on failure.
5703 int sata_scr_write_flush(struct ata_port
*ap
, int reg
, u32 val
)
5705 if (sata_scr_valid(ap
)) {
5706 ap
->ops
->scr_write(ap
, reg
, val
);
5707 ap
->ops
->scr_read(ap
, reg
);
5714 * ata_port_online - test whether the given port is online
5715 * @ap: ATA port to test
5717 * Test whether @ap is online. Note that this function returns 0
5718 * if online status of @ap cannot be obtained, so
5719 * ata_port_online(ap) != !ata_port_offline(ap).
5725 * 1 if the port online status is available and online.
5727 int ata_port_online(struct ata_port
*ap
)
5731 if (!sata_scr_read(ap
, SCR_STATUS
, &sstatus
) && (sstatus
& 0xf) == 0x3)
5737 * ata_port_offline - test whether the given port is offline
5738 * @ap: ATA port to test
5740 * Test whether @ap is offline. Note that this function returns
5741 * 0 if offline status of @ap cannot be obtained, so
5742 * ata_port_online(ap) != !ata_port_offline(ap).
5748 * 1 if the port offline status is available and offline.
5750 int ata_port_offline(struct ata_port
*ap
)
5754 if (!sata_scr_read(ap
, SCR_STATUS
, &sstatus
) && (sstatus
& 0xf) != 0x3)
5759 int ata_flush_cache(struct ata_device
*dev
)
5761 unsigned int err_mask
;
5764 if (!ata_try_flush_cache(dev
))
5767 if (dev
->flags
& ATA_DFLAG_FLUSH_EXT
)
5768 cmd
= ATA_CMD_FLUSH_EXT
;
5770 cmd
= ATA_CMD_FLUSH
;
5772 err_mask
= ata_do_simple_cmd(dev
, cmd
);
5774 ata_dev_printk(dev
, KERN_ERR
, "failed to flush cache\n");
5782 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
5783 unsigned int action
, unsigned int ehi_flags
,
5786 unsigned long flags
;
5789 for (i
= 0; i
< host
->n_ports
; i
++) {
5790 struct ata_port
*ap
= host
->ports
[i
];
5792 /* Previous resume operation might still be in
5793 * progress. Wait for PM_PENDING to clear.
5795 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5796 ata_port_wait_eh(ap
);
5797 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5800 /* request PM ops to EH */
5801 spin_lock_irqsave(ap
->lock
, flags
);
5806 ap
->pm_result
= &rc
;
5809 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5810 ap
->eh_info
.action
|= action
;
5811 ap
->eh_info
.flags
|= ehi_flags
;
5813 ata_port_schedule_eh(ap
);
5815 spin_unlock_irqrestore(ap
->lock
, flags
);
5817 /* wait and check result */
5819 ata_port_wait_eh(ap
);
5820 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5830 * ata_host_suspend - suspend host
5831 * @host: host to suspend
5834 * Suspend @host. Actual operation is performed by EH. This
5835 * function requests EH to perform PM operations and waits for EH
5839 * Kernel thread context (may sleep).
5842 * 0 on success, -errno on failure.
5844 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5848 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
5852 /* EH is quiescent now. Fail if we have any ready device.
5853 * This happens if hotplug occurs between completion of device
5854 * suspension and here.
5856 for (i
= 0; i
< host
->n_ports
; i
++) {
5857 struct ata_port
*ap
= host
->ports
[i
];
5859 for (j
= 0; j
< ATA_MAX_DEVICES
; j
++) {
5860 struct ata_device
*dev
= &ap
->device
[j
];
5862 if (ata_dev_ready(dev
)) {
5863 ata_port_printk(ap
, KERN_WARNING
,
5864 "suspend failed, device %d "
5865 "still active\n", dev
->devno
);
5872 host
->dev
->power
.power_state
= mesg
;
5876 ata_host_resume(host
);
5881 * ata_host_resume - resume host
5882 * @host: host to resume
5884 * Resume @host. Actual operation is performed by EH. This
5885 * function requests EH to perform PM operations and returns.
5886 * Note that all resume operations are performed parallely.
5889 * Kernel thread context (may sleep).
5891 void ata_host_resume(struct ata_host
*host
)
5893 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_SOFTRESET
,
5894 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
5895 host
->dev
->power
.power_state
= PMSG_ON
;
5900 * ata_port_start - Set port up for dma.
5901 * @ap: Port to initialize
5903 * Called just after data structures for each port are
5904 * initialized. Allocates space for PRD table.
5906 * May be used as the port_start() entry in ata_port_operations.
5909 * Inherited from caller.
5911 int ata_port_start(struct ata_port
*ap
)
5913 struct device
*dev
= ap
->dev
;
5916 ap
->prd
= dmam_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
,
5921 rc
= ata_pad_alloc(ap
, dev
);
5925 DPRINTK("prd alloc, virt %p, dma %llx\n", ap
->prd
,
5926 (unsigned long long)ap
->prd_dma
);
5931 * ata_dev_init - Initialize an ata_device structure
5932 * @dev: Device structure to initialize
5934 * Initialize @dev in preparation for probing.
5937 * Inherited from caller.
5939 void ata_dev_init(struct ata_device
*dev
)
5941 struct ata_port
*ap
= dev
->ap
;
5942 unsigned long flags
;
5944 /* SATA spd limit is bound to the first device */
5945 ap
->sata_spd_limit
= ap
->hw_sata_spd_limit
;
5947 /* High bits of dev->flags are used to record warm plug
5948 * requests which occur asynchronously. Synchronize using
5951 spin_lock_irqsave(ap
->lock
, flags
);
5952 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5953 spin_unlock_irqrestore(ap
->lock
, flags
);
5955 memset((void *)dev
+ ATA_DEVICE_CLEAR_OFFSET
, 0,
5956 sizeof(*dev
) - ATA_DEVICE_CLEAR_OFFSET
);
5957 dev
->pio_mask
= UINT_MAX
;
5958 dev
->mwdma_mask
= UINT_MAX
;
5959 dev
->udma_mask
= UINT_MAX
;
5963 * ata_port_alloc - allocate and initialize basic ATA port resources
5964 * @host: ATA host this allocated port belongs to
5966 * Allocate and initialize basic ATA port resources.
5969 * Allocate ATA port on success, NULL on failure.
5972 * Inherited from calling layer (may sleep).
5974 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
5976 struct ata_port
*ap
;
5981 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
5985 ap
->lock
= &host
->lock
;
5986 ap
->flags
= ATA_FLAG_DISABLED
;
5988 ap
->ctl
= ATA_DEVCTL_OBS
;
5990 ap
->dev
= host
->dev
;
5992 ap
->hw_sata_spd_limit
= UINT_MAX
;
5993 ap
->active_tag
= ATA_TAG_POISON
;
5994 ap
->last_ctl
= 0xFF;
5996 #if defined(ATA_VERBOSE_DEBUG)
5997 /* turn on all debugging levels */
5998 ap
->msg_enable
= 0x00FF;
5999 #elif defined(ATA_DEBUG)
6000 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
6002 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
6005 INIT_DELAYED_WORK(&ap
->port_task
, NULL
);
6006 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
6007 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
6008 INIT_LIST_HEAD(&ap
->eh_done_q
);
6009 init_waitqueue_head(&ap
->eh_wait_q
);
6011 ap
->cbl
= ATA_CBL_NONE
;
6013 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
6014 struct ata_device
*dev
= &ap
->device
[i
];
6021 ap
->stats
.unhandled_irq
= 1;
6022 ap
->stats
.idle_irq
= 1;
6027 static void ata_host_release(struct device
*gendev
, void *res
)
6029 struct ata_host
*host
= dev_get_drvdata(gendev
);
6032 for (i
= 0; i
< host
->n_ports
; i
++) {
6033 struct ata_port
*ap
= host
->ports
[i
];
6038 if ((host
->flags
& ATA_HOST_STARTED
) && ap
->ops
->port_stop
)
6039 ap
->ops
->port_stop(ap
);
6042 if ((host
->flags
& ATA_HOST_STARTED
) && host
->ops
->host_stop
)
6043 host
->ops
->host_stop(host
);
6045 for (i
= 0; i
< host
->n_ports
; i
++) {
6046 struct ata_port
*ap
= host
->ports
[i
];
6052 scsi_host_put(ap
->scsi_host
);
6055 host
->ports
[i
] = NULL
;
6058 dev_set_drvdata(gendev
, NULL
);
6062 * ata_host_alloc - allocate and init basic ATA host resources
6063 * @dev: generic device this host is associated with
6064 * @max_ports: maximum number of ATA ports associated with this host
6066 * Allocate and initialize basic ATA host resources. LLD calls
6067 * this function to allocate a host, initializes it fully and
6068 * attaches it using ata_host_register().
6070 * @max_ports ports are allocated and host->n_ports is
6071 * initialized to @max_ports. The caller is allowed to decrease
6072 * host->n_ports before calling ata_host_register(). The unused
6073 * ports will be automatically freed on registration.
6076 * Allocate ATA host on success, NULL on failure.
6079 * Inherited from calling layer (may sleep).
6081 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
6083 struct ata_host
*host
;
6089 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
6092 /* alloc a container for our list of ATA ports (buses) */
6093 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
6094 /* alloc a container for our list of ATA ports (buses) */
6095 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
6099 devres_add(dev
, host
);
6100 dev_set_drvdata(dev
, host
);
6102 spin_lock_init(&host
->lock
);
6104 host
->n_ports
= max_ports
;
6106 /* allocate ports bound to this host */
6107 for (i
= 0; i
< max_ports
; i
++) {
6108 struct ata_port
*ap
;
6110 ap
= ata_port_alloc(host
);
6115 host
->ports
[i
] = ap
;
6118 devres_remove_group(dev
, NULL
);
6122 devres_release_group(dev
, NULL
);
6127 * ata_host_alloc_pinfo - alloc host and init with port_info array
6128 * @dev: generic device this host is associated with
6129 * @ppi: array of ATA port_info to initialize host with
6130 * @n_ports: number of ATA ports attached to this host
6132 * Allocate ATA host and initialize with info from @ppi. If NULL
6133 * terminated, @ppi may contain fewer entries than @n_ports. The
6134 * last entry will be used for the remaining ports.
6137 * Allocate ATA host on success, NULL on failure.
6140 * Inherited from calling layer (may sleep).
6142 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
6143 const struct ata_port_info
* const * ppi
,
6146 const struct ata_port_info
*pi
;
6147 struct ata_host
*host
;
6150 host
= ata_host_alloc(dev
, n_ports
);
6154 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
6155 struct ata_port
*ap
= host
->ports
[i
];
6160 ap
->pio_mask
= pi
->pio_mask
;
6161 ap
->mwdma_mask
= pi
->mwdma_mask
;
6162 ap
->udma_mask
= pi
->udma_mask
;
6163 ap
->flags
|= pi
->flags
;
6164 ap
->ops
= pi
->port_ops
;
6166 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
6167 host
->ops
= pi
->port_ops
;
6168 if (!host
->private_data
&& pi
->private_data
)
6169 host
->private_data
= pi
->private_data
;
6176 * ata_host_start - start and freeze ports of an ATA host
6177 * @host: ATA host to start ports for
6179 * Start and then freeze ports of @host. Started status is
6180 * recorded in host->flags, so this function can be called
6181 * multiple times. Ports are guaranteed to get started only
6182 * once. If host->ops isn't initialized yet, its set to the
6183 * first non-dummy port ops.
6186 * Inherited from calling layer (may sleep).
6189 * 0 if all ports are started successfully, -errno otherwise.
6191 int ata_host_start(struct ata_host
*host
)
6195 if (host
->flags
& ATA_HOST_STARTED
)
6198 for (i
= 0; i
< host
->n_ports
; i
++) {
6199 struct ata_port
*ap
= host
->ports
[i
];
6201 if (!host
->ops
&& !ata_port_is_dummy(ap
))
6202 host
->ops
= ap
->ops
;
6204 if (ap
->ops
->port_start
) {
6205 rc
= ap
->ops
->port_start(ap
);
6207 ata_port_printk(ap
, KERN_ERR
, "failed to "
6208 "start port (errno=%d)\n", rc
);
6213 ata_eh_freeze_port(ap
);
6216 host
->flags
|= ATA_HOST_STARTED
;
6221 struct ata_port
*ap
= host
->ports
[i
];
6223 if (ap
->ops
->port_stop
)
6224 ap
->ops
->port_stop(ap
);
6230 * ata_sas_host_init - Initialize a host struct
6231 * @host: host to initialize
6232 * @dev: device host is attached to
6233 * @flags: host flags
6237 * PCI/etc. bus probe sem.
6240 /* KILLME - the only user left is ipr */
6241 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
6242 unsigned long flags
, const struct ata_port_operations
*ops
)
6244 spin_lock_init(&host
->lock
);
6246 host
->flags
= flags
;
6251 * ata_host_register - register initialized ATA host
6252 * @host: ATA host to register
6253 * @sht: template for SCSI host
6255 * Register initialized ATA host. @host is allocated using
6256 * ata_host_alloc() and fully initialized by LLD. This function
6257 * starts ports, registers @host with ATA and SCSI layers and
6258 * probe registered devices.
6261 * Inherited from calling layer (may sleep).
6264 * 0 on success, -errno otherwise.
6266 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
6270 /* host must have been started */
6271 if (!(host
->flags
& ATA_HOST_STARTED
)) {
6272 dev_printk(KERN_ERR
, host
->dev
,
6273 "BUG: trying to register unstarted host\n");
6278 /* Blow away unused ports. This happens when LLD can't
6279 * determine the exact number of ports to allocate at
6282 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
6283 kfree(host
->ports
[i
]);
6285 /* give ports names and add SCSI hosts */
6286 for (i
= 0; i
< host
->n_ports
; i
++)
6287 host
->ports
[i
]->print_id
= ata_print_id
++;
6289 rc
= ata_scsi_add_hosts(host
, sht
);
6293 /* set cable, sata_spd_limit and report */
6294 for (i
= 0; i
< host
->n_ports
; i
++) {
6295 struct ata_port
*ap
= host
->ports
[i
];
6298 unsigned long xfer_mask
;
6300 /* set SATA cable type if still unset */
6301 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
6302 ap
->cbl
= ATA_CBL_SATA
;
6304 /* init sata_spd_limit to the current value */
6305 if (sata_scr_read(ap
, SCR_CONTROL
, &scontrol
) == 0) {
6306 int spd
= (scontrol
>> 4) & 0xf;
6307 ap
->hw_sata_spd_limit
&= (1 << spd
) - 1;
6309 ap
->sata_spd_limit
= ap
->hw_sata_spd_limit
;
6311 /* report the secondary IRQ for second channel legacy */
6312 irq_line
= host
->irq
;
6313 if (i
== 1 && host
->irq2
)
6314 irq_line
= host
->irq2
;
6316 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
6319 /* print per-port info to dmesg */
6320 if (!ata_port_is_dummy(ap
))
6321 ata_port_printk(ap
, KERN_INFO
, "%cATA max %s cmd 0x%p "
6322 "ctl 0x%p bmdma 0x%p irq %d\n",
6323 ap
->cbl
== ATA_CBL_SATA
? 'S' : 'P',
6324 ata_mode_string(xfer_mask
),
6325 ap
->ioaddr
.cmd_addr
,
6326 ap
->ioaddr
.ctl_addr
,
6327 ap
->ioaddr
.bmdma_addr
,
6330 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
6333 /* perform each probe synchronously */
6334 DPRINTK("probe begin\n");
6335 for (i
= 0; i
< host
->n_ports
; i
++) {
6336 struct ata_port
*ap
= host
->ports
[i
];
6340 if (ap
->ops
->error_handler
) {
6341 struct ata_eh_info
*ehi
= &ap
->eh_info
;
6342 unsigned long flags
;
6346 /* kick EH for boot probing */
6347 spin_lock_irqsave(ap
->lock
, flags
);
6349 ehi
->probe_mask
= (1 << ATA_MAX_DEVICES
) - 1;
6350 ehi
->action
|= ATA_EH_SOFTRESET
;
6351 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
6353 ap
->pflags
|= ATA_PFLAG_LOADING
;
6354 ata_port_schedule_eh(ap
);
6356 spin_unlock_irqrestore(ap
->lock
, flags
);
6358 /* wait for EH to finish */
6359 ata_port_wait_eh(ap
);
6361 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
6362 rc
= ata_bus_probe(ap
);
6363 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
6366 /* FIXME: do something useful here?
6367 * Current libata behavior will
6368 * tear down everything when
6369 * the module is removed
6370 * or the h/w is unplugged.
6376 /* probes are done, now scan each port's disk(s) */
6377 DPRINTK("host probe begin\n");
6378 for (i
= 0; i
< host
->n_ports
; i
++) {
6379 struct ata_port
*ap
= host
->ports
[i
];
6381 ata_scsi_scan_host(ap
);
6388 * ata_host_activate - start host, request IRQ and register it
6389 * @host: target ATA host
6390 * @irq: IRQ to request
6391 * @irq_handler: irq_handler used when requesting IRQ
6392 * @irq_flags: irq_flags used when requesting IRQ
6393 * @sht: scsi_host_template to use when registering the host
6395 * After allocating an ATA host and initializing it, most libata
6396 * LLDs perform three steps to activate the host - start host,
6397 * request IRQ and register it. This helper takes necessasry
6398 * arguments and performs the three steps in one go.
6401 * Inherited from calling layer (may sleep).
6404 * 0 on success, -errno otherwise.
6406 int ata_host_activate(struct ata_host
*host
, int irq
,
6407 irq_handler_t irq_handler
, unsigned long irq_flags
,
6408 struct scsi_host_template
*sht
)
6412 rc
= ata_host_start(host
);
6416 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
6417 dev_driver_string(host
->dev
), host
);
6421 rc
= ata_host_register(host
, sht
);
6422 /* if failed, just free the IRQ and leave ports alone */
6424 devm_free_irq(host
->dev
, irq
, host
);
6430 * ata_port_detach - Detach ATA port in prepration of device removal
6431 * @ap: ATA port to be detached
6433 * Detach all ATA devices and the associated SCSI devices of @ap;
6434 * then, remove the associated SCSI host. @ap is guaranteed to
6435 * be quiescent on return from this function.
6438 * Kernel thread context (may sleep).
6440 void ata_port_detach(struct ata_port
*ap
)
6442 unsigned long flags
;
6445 if (!ap
->ops
->error_handler
)
6448 /* tell EH we're leaving & flush EH */
6449 spin_lock_irqsave(ap
->lock
, flags
);
6450 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
6451 spin_unlock_irqrestore(ap
->lock
, flags
);
6453 ata_port_wait_eh(ap
);
6455 /* EH is now guaranteed to see UNLOADING, so no new device
6456 * will be attached. Disable all existing devices.
6458 spin_lock_irqsave(ap
->lock
, flags
);
6460 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
6461 ata_dev_disable(&ap
->device
[i
]);
6463 spin_unlock_irqrestore(ap
->lock
, flags
);
6465 /* Final freeze & EH. All in-flight commands are aborted. EH
6466 * will be skipped and retrials will be terminated with bad
6469 spin_lock_irqsave(ap
->lock
, flags
);
6470 ata_port_freeze(ap
); /* won't be thawed */
6471 spin_unlock_irqrestore(ap
->lock
, flags
);
6473 ata_port_wait_eh(ap
);
6475 /* Flush hotplug task. The sequence is similar to
6476 * ata_port_flush_task().
6478 cancel_work_sync(&ap
->hotplug_task
.work
); /* akpm: why? */
6479 cancel_delayed_work(&ap
->hotplug_task
);
6480 cancel_work_sync(&ap
->hotplug_task
.work
);
6483 /* remove the associated SCSI host */
6484 scsi_remove_host(ap
->scsi_host
);
6488 * ata_host_detach - Detach all ports of an ATA host
6489 * @host: Host to detach
6491 * Detach all ports of @host.
6494 * Kernel thread context (may sleep).
6496 void ata_host_detach(struct ata_host
*host
)
6500 for (i
= 0; i
< host
->n_ports
; i
++)
6501 ata_port_detach(host
->ports
[i
]);
6505 * ata_std_ports - initialize ioaddr with standard port offsets.
6506 * @ioaddr: IO address structure to be initialized
6508 * Utility function which initializes data_addr, error_addr,
6509 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6510 * device_addr, status_addr, and command_addr to standard offsets
6511 * relative to cmd_addr.
6513 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6516 void ata_std_ports(struct ata_ioports
*ioaddr
)
6518 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
6519 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
6520 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
6521 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
6522 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
6523 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
6524 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
6525 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
6526 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
6527 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
6534 * ata_pci_remove_one - PCI layer callback for device removal
6535 * @pdev: PCI device that was removed
6537 * PCI layer indicates to libata via this hook that hot-unplug or
6538 * module unload event has occurred. Detach all ports. Resource
6539 * release is handled via devres.
6542 * Inherited from PCI layer (may sleep).
6544 void ata_pci_remove_one(struct pci_dev
*pdev
)
6546 struct device
*dev
= pci_dev_to_dev(pdev
);
6547 struct ata_host
*host
= dev_get_drvdata(dev
);
6549 ata_host_detach(host
);
6552 /* move to PCI subsystem */
6553 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
6555 unsigned long tmp
= 0;
6557 switch (bits
->width
) {
6560 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
6566 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
6572 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
6583 return (tmp
== bits
->val
) ? 1 : 0;
6587 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6589 pci_save_state(pdev
);
6590 pci_disable_device(pdev
);
6592 if (mesg
.event
== PM_EVENT_SUSPEND
)
6593 pci_set_power_state(pdev
, PCI_D3hot
);
6596 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
6600 pci_set_power_state(pdev
, PCI_D0
);
6601 pci_restore_state(pdev
);
6603 rc
= pcim_enable_device(pdev
);
6605 dev_printk(KERN_ERR
, &pdev
->dev
,
6606 "failed to enable device after resume (%d)\n", rc
);
6610 pci_set_master(pdev
);
6614 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6616 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6619 rc
= ata_host_suspend(host
, mesg
);
6623 ata_pci_device_do_suspend(pdev
, mesg
);
6628 int ata_pci_device_resume(struct pci_dev
*pdev
)
6630 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6633 rc
= ata_pci_device_do_resume(pdev
);
6635 ata_host_resume(host
);
6638 #endif /* CONFIG_PM */
6640 #endif /* CONFIG_PCI */
6643 static int __init
ata_init(void)
6645 ata_probe_timeout
*= HZ
;
6646 ata_wq
= create_workqueue("ata");
6650 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
6652 destroy_workqueue(ata_wq
);
6656 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
6660 static void __exit
ata_exit(void)
6662 destroy_workqueue(ata_wq
);
6663 destroy_workqueue(ata_aux_wq
);
6666 subsys_initcall(ata_init
);
6667 module_exit(ata_exit
);
6669 static unsigned long ratelimit_time
;
6670 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
6672 int ata_ratelimit(void)
6675 unsigned long flags
;
6677 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
6679 if (time_after(jiffies
, ratelimit_time
)) {
6681 ratelimit_time
= jiffies
+ (HZ
/5);
6685 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
6691 * ata_wait_register - wait until register value changes
6692 * @reg: IO-mapped register
6693 * @mask: Mask to apply to read register value
6694 * @val: Wait condition
6695 * @interval_msec: polling interval in milliseconds
6696 * @timeout_msec: timeout in milliseconds
6698 * Waiting for some bits of register to change is a common
6699 * operation for ATA controllers. This function reads 32bit LE
6700 * IO-mapped register @reg and tests for the following condition.
6702 * (*@reg & mask) != val
6704 * If the condition is met, it returns; otherwise, the process is
6705 * repeated after @interval_msec until timeout.
6708 * Kernel thread context (may sleep)
6711 * The final register value.
6713 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
6714 unsigned long interval_msec
,
6715 unsigned long timeout_msec
)
6717 unsigned long timeout
;
6720 tmp
= ioread32(reg
);
6722 /* Calculate timeout _after_ the first read to make sure
6723 * preceding writes reach the controller before starting to
6724 * eat away the timeout.
6726 timeout
= jiffies
+ (timeout_msec
* HZ
) / 1000;
6728 while ((tmp
& mask
) == val
&& time_before(jiffies
, timeout
)) {
6729 msleep(interval_msec
);
6730 tmp
= ioread32(reg
);
6739 static void ata_dummy_noret(struct ata_port
*ap
) { }
6740 static int ata_dummy_ret0(struct ata_port
*ap
) { return 0; }
6741 static void ata_dummy_qc_noret(struct ata_queued_cmd
*qc
) { }
6743 static u8
ata_dummy_check_status(struct ata_port
*ap
)
6748 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6750 return AC_ERR_SYSTEM
;
6753 const struct ata_port_operations ata_dummy_port_ops
= {
6754 .port_disable
= ata_port_disable
,
6755 .check_status
= ata_dummy_check_status
,
6756 .check_altstatus
= ata_dummy_check_status
,
6757 .dev_select
= ata_noop_dev_select
,
6758 .qc_prep
= ata_noop_qc_prep
,
6759 .qc_issue
= ata_dummy_qc_issue
,
6760 .freeze
= ata_dummy_noret
,
6761 .thaw
= ata_dummy_noret
,
6762 .error_handler
= ata_dummy_noret
,
6763 .post_internal_cmd
= ata_dummy_qc_noret
,
6764 .irq_clear
= ata_dummy_noret
,
6765 .port_start
= ata_dummy_ret0
,
6766 .port_stop
= ata_dummy_noret
,
6769 const struct ata_port_info ata_dummy_port_info
= {
6770 .port_ops
= &ata_dummy_port_ops
,
6774 * libata is essentially a library of internal helper functions for
6775 * low-level ATA host controller drivers. As such, the API/ABI is
6776 * likely to change as new drivers are added and updated.
6777 * Do not depend on ABI/API stability.
6780 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6781 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6782 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6783 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6784 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
6785 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6786 EXPORT_SYMBOL_GPL(ata_std_ports
);
6787 EXPORT_SYMBOL_GPL(ata_host_init
);
6788 EXPORT_SYMBOL_GPL(ata_host_alloc
);
6789 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
6790 EXPORT_SYMBOL_GPL(ata_host_start
);
6791 EXPORT_SYMBOL_GPL(ata_host_register
);
6792 EXPORT_SYMBOL_GPL(ata_host_activate
);
6793 EXPORT_SYMBOL_GPL(ata_host_detach
);
6794 EXPORT_SYMBOL_GPL(ata_sg_init
);
6795 EXPORT_SYMBOL_GPL(ata_sg_init_one
);
6796 EXPORT_SYMBOL_GPL(ata_hsm_move
);
6797 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6798 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6799 EXPORT_SYMBOL_GPL(ata_qc_issue_prot
);
6800 EXPORT_SYMBOL_GPL(ata_tf_load
);
6801 EXPORT_SYMBOL_GPL(ata_tf_read
);
6802 EXPORT_SYMBOL_GPL(ata_noop_dev_select
);
6803 EXPORT_SYMBOL_GPL(ata_std_dev_select
);
6804 EXPORT_SYMBOL_GPL(sata_print_link_status
);
6805 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6806 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6807 EXPORT_SYMBOL_GPL(ata_check_status
);
6808 EXPORT_SYMBOL_GPL(ata_altstatus
);
6809 EXPORT_SYMBOL_GPL(ata_exec_command
);
6810 EXPORT_SYMBOL_GPL(ata_port_start
);
6811 EXPORT_SYMBOL_GPL(ata_interrupt
);
6812 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
6813 EXPORT_SYMBOL_GPL(ata_data_xfer
);
6814 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq
);
6815 EXPORT_SYMBOL_GPL(ata_qc_prep
);
6816 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6817 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
6818 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
6819 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
6820 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
6821 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
6822 EXPORT_SYMBOL_GPL(ata_bmdma_freeze
);
6823 EXPORT_SYMBOL_GPL(ata_bmdma_thaw
);
6824 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh
);
6825 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
6826 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
6827 EXPORT_SYMBOL_GPL(ata_port_probe
);
6828 EXPORT_SYMBOL_GPL(ata_dev_disable
);
6829 EXPORT_SYMBOL_GPL(sata_set_spd
);
6830 EXPORT_SYMBOL_GPL(sata_phy_debounce
);
6831 EXPORT_SYMBOL_GPL(sata_phy_resume
);
6832 EXPORT_SYMBOL_GPL(sata_phy_reset
);
6833 EXPORT_SYMBOL_GPL(__sata_phy_reset
);
6834 EXPORT_SYMBOL_GPL(ata_bus_reset
);
6835 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6836 EXPORT_SYMBOL_GPL(ata_std_softreset
);
6837 EXPORT_SYMBOL_GPL(sata_port_hardreset
);
6838 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6839 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6840 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6841 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6842 EXPORT_SYMBOL_GPL(ata_port_disable
);
6843 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6844 EXPORT_SYMBOL_GPL(ata_wait_register
);
6845 EXPORT_SYMBOL_GPL(ata_busy_sleep
);
6846 EXPORT_SYMBOL_GPL(ata_wait_ready
);
6847 EXPORT_SYMBOL_GPL(ata_port_queue_task
);
6848 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
6849 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6850 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6851 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6852 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6853 EXPORT_SYMBOL_GPL(ata_host_intr
);
6854 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6855 EXPORT_SYMBOL_GPL(sata_scr_read
);
6856 EXPORT_SYMBOL_GPL(sata_scr_write
);
6857 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6858 EXPORT_SYMBOL_GPL(ata_port_online
);
6859 EXPORT_SYMBOL_GPL(ata_port_offline
);
6861 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6862 EXPORT_SYMBOL_GPL(ata_host_resume
);
6863 #endif /* CONFIG_PM */
6864 EXPORT_SYMBOL_GPL(ata_id_string
);
6865 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6866 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode
);
6867 EXPORT_SYMBOL_GPL(ata_device_blacklisted
);
6868 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6870 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6871 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6872 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6875 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6876 EXPORT_SYMBOL_GPL(ata_pci_init_native_host
);
6877 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host
);
6878 EXPORT_SYMBOL_GPL(ata_pci_init_one
);
6879 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
6881 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
6882 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
6883 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
6884 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
6885 #endif /* CONFIG_PM */
6886 EXPORT_SYMBOL_GPL(ata_pci_default_filter
);
6887 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex
);
6888 #endif /* CONFIG_PCI */
6891 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend
);
6892 EXPORT_SYMBOL_GPL(ata_scsi_device_resume
);
6893 #endif /* CONFIG_PM */
6895 EXPORT_SYMBOL_GPL(ata_eng_timeout
);
6896 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
6897 EXPORT_SYMBOL_GPL(ata_port_abort
);
6898 EXPORT_SYMBOL_GPL(ata_port_freeze
);
6899 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
6900 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
6901 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
6902 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
6903 EXPORT_SYMBOL_GPL(ata_do_eh
);
6904 EXPORT_SYMBOL_GPL(ata_irq_on
);
6905 EXPORT_SYMBOL_GPL(ata_dummy_irq_on
);
6906 EXPORT_SYMBOL_GPL(ata_irq_ack
);
6907 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack
);
6908 EXPORT_SYMBOL_GPL(ata_dev_try_classify
);
6910 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
6911 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
6912 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
6913 EXPORT_SYMBOL_GPL(ata_cable_sata
);