fs: use kmem_cache_zalloc instead
[pv_ops_mirror.git] / drivers / md / raid5.c
blob8ee181a01f5206730bd0ad23744247bf51fb289a
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
58 * Stripe cache
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
67 #define HASH_MASK (NR_HASH - 1)
69 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
72 * order without overlap. There may be several bio's per stripe+device, and
73 * a bio could span several devices.
74 * When walking this list for a particular stripe+device, we must never proceed
75 * beyond a bio that extends past this device, as the next bio might no longer
76 * be valid.
77 * This macro is used to determine the 'next' bio in the list, given the sector
78 * of the current stripe+device
80 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 * The following can be used to debug the driver
84 #define RAID5_PARANOIA 1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 #else
88 # define CHECK_DEVLOCK()
89 #endif
91 #ifdef DEBUG
92 #define inline
93 #define __inline__
94 #endif
96 #if !RAID6_USE_EMPTY_ZERO_PAGE
97 /* In .bss so it's zeroed */
98 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
99 #endif
101 static inline int raid6_next_disk(int disk, int raid_disks)
103 disk++;
104 return (disk < raid_disks) ? disk : 0;
107 static void return_io(struct bio *return_bi)
109 struct bio *bi = return_bi;
110 while (bi) {
112 return_bi = bi->bi_next;
113 bi->bi_next = NULL;
114 bi->bi_size = 0;
115 bi->bi_end_io(bi,
116 test_bit(BIO_UPTODATE, &bi->bi_flags)
117 ? 0 : -EIO);
118 bi = return_bi;
122 static void print_raid5_conf (raid5_conf_t *conf);
124 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
126 if (atomic_dec_and_test(&sh->count)) {
127 BUG_ON(!list_empty(&sh->lru));
128 BUG_ON(atomic_read(&conf->active_stripes)==0);
129 if (test_bit(STRIPE_HANDLE, &sh->state)) {
130 if (test_bit(STRIPE_DELAYED, &sh->state)) {
131 list_add_tail(&sh->lru, &conf->delayed_list);
132 blk_plug_device(conf->mddev->queue);
133 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
134 sh->bm_seq - conf->seq_write > 0) {
135 list_add_tail(&sh->lru, &conf->bitmap_list);
136 blk_plug_device(conf->mddev->queue);
137 } else {
138 clear_bit(STRIPE_BIT_DELAY, &sh->state);
139 list_add_tail(&sh->lru, &conf->handle_list);
141 md_wakeup_thread(conf->mddev->thread);
142 } else {
143 BUG_ON(sh->ops.pending);
144 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
145 atomic_dec(&conf->preread_active_stripes);
146 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
147 md_wakeup_thread(conf->mddev->thread);
149 atomic_dec(&conf->active_stripes);
150 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
151 list_add_tail(&sh->lru, &conf->inactive_list);
152 wake_up(&conf->wait_for_stripe);
153 if (conf->retry_read_aligned)
154 md_wakeup_thread(conf->mddev->thread);
159 static void release_stripe(struct stripe_head *sh)
161 raid5_conf_t *conf = sh->raid_conf;
162 unsigned long flags;
164 spin_lock_irqsave(&conf->device_lock, flags);
165 __release_stripe(conf, sh);
166 spin_unlock_irqrestore(&conf->device_lock, flags);
169 static inline void remove_hash(struct stripe_head *sh)
171 pr_debug("remove_hash(), stripe %llu\n",
172 (unsigned long long)sh->sector);
174 hlist_del_init(&sh->hash);
177 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
179 struct hlist_head *hp = stripe_hash(conf, sh->sector);
181 pr_debug("insert_hash(), stripe %llu\n",
182 (unsigned long long)sh->sector);
184 CHECK_DEVLOCK();
185 hlist_add_head(&sh->hash, hp);
189 /* find an idle stripe, make sure it is unhashed, and return it. */
190 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
192 struct stripe_head *sh = NULL;
193 struct list_head *first;
195 CHECK_DEVLOCK();
196 if (list_empty(&conf->inactive_list))
197 goto out;
198 first = conf->inactive_list.next;
199 sh = list_entry(first, struct stripe_head, lru);
200 list_del_init(first);
201 remove_hash(sh);
202 atomic_inc(&conf->active_stripes);
203 out:
204 return sh;
207 static void shrink_buffers(struct stripe_head *sh, int num)
209 struct page *p;
210 int i;
212 for (i=0; i<num ; i++) {
213 p = sh->dev[i].page;
214 if (!p)
215 continue;
216 sh->dev[i].page = NULL;
217 put_page(p);
221 static int grow_buffers(struct stripe_head *sh, int num)
223 int i;
225 for (i=0; i<num; i++) {
226 struct page *page;
228 if (!(page = alloc_page(GFP_KERNEL))) {
229 return 1;
231 sh->dev[i].page = page;
233 return 0;
236 static void raid5_build_block (struct stripe_head *sh, int i);
238 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
240 raid5_conf_t *conf = sh->raid_conf;
241 int i;
243 BUG_ON(atomic_read(&sh->count) != 0);
244 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
245 BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
247 CHECK_DEVLOCK();
248 pr_debug("init_stripe called, stripe %llu\n",
249 (unsigned long long)sh->sector);
251 remove_hash(sh);
253 sh->sector = sector;
254 sh->pd_idx = pd_idx;
255 sh->state = 0;
257 sh->disks = disks;
259 for (i = sh->disks; i--; ) {
260 struct r5dev *dev = &sh->dev[i];
262 if (dev->toread || dev->read || dev->towrite || dev->written ||
263 test_bit(R5_LOCKED, &dev->flags)) {
264 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
265 (unsigned long long)sh->sector, i, dev->toread,
266 dev->read, dev->towrite, dev->written,
267 test_bit(R5_LOCKED, &dev->flags));
268 BUG();
270 dev->flags = 0;
271 raid5_build_block(sh, i);
273 insert_hash(conf, sh);
276 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
278 struct stripe_head *sh;
279 struct hlist_node *hn;
281 CHECK_DEVLOCK();
282 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
283 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
284 if (sh->sector == sector && sh->disks == disks)
285 return sh;
286 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
287 return NULL;
290 static void unplug_slaves(mddev_t *mddev);
291 static void raid5_unplug_device(struct request_queue *q);
293 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
294 int pd_idx, int noblock)
296 struct stripe_head *sh;
298 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
300 spin_lock_irq(&conf->device_lock);
302 do {
303 wait_event_lock_irq(conf->wait_for_stripe,
304 conf->quiesce == 0,
305 conf->device_lock, /* nothing */);
306 sh = __find_stripe(conf, sector, disks);
307 if (!sh) {
308 if (!conf->inactive_blocked)
309 sh = get_free_stripe(conf);
310 if (noblock && sh == NULL)
311 break;
312 if (!sh) {
313 conf->inactive_blocked = 1;
314 wait_event_lock_irq(conf->wait_for_stripe,
315 !list_empty(&conf->inactive_list) &&
316 (atomic_read(&conf->active_stripes)
317 < (conf->max_nr_stripes *3/4)
318 || !conf->inactive_blocked),
319 conf->device_lock,
320 raid5_unplug_device(conf->mddev->queue)
322 conf->inactive_blocked = 0;
323 } else
324 init_stripe(sh, sector, pd_idx, disks);
325 } else {
326 if (atomic_read(&sh->count)) {
327 BUG_ON(!list_empty(&sh->lru));
328 } else {
329 if (!test_bit(STRIPE_HANDLE, &sh->state))
330 atomic_inc(&conf->active_stripes);
331 if (list_empty(&sh->lru) &&
332 !test_bit(STRIPE_EXPANDING, &sh->state))
333 BUG();
334 list_del_init(&sh->lru);
337 } while (sh == NULL);
339 if (sh)
340 atomic_inc(&sh->count);
342 spin_unlock_irq(&conf->device_lock);
343 return sh;
346 /* test_and_ack_op() ensures that we only dequeue an operation once */
347 #define test_and_ack_op(op, pend) \
348 do { \
349 if (test_bit(op, &sh->ops.pending) && \
350 !test_bit(op, &sh->ops.complete)) { \
351 if (test_and_set_bit(op, &sh->ops.ack)) \
352 clear_bit(op, &pend); \
353 else \
354 ack++; \
355 } else \
356 clear_bit(op, &pend); \
357 } while (0)
359 /* find new work to run, do not resubmit work that is already
360 * in flight
362 static unsigned long get_stripe_work(struct stripe_head *sh)
364 unsigned long pending;
365 int ack = 0;
367 pending = sh->ops.pending;
369 test_and_ack_op(STRIPE_OP_BIOFILL, pending);
370 test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
371 test_and_ack_op(STRIPE_OP_PREXOR, pending);
372 test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
373 test_and_ack_op(STRIPE_OP_POSTXOR, pending);
374 test_and_ack_op(STRIPE_OP_CHECK, pending);
375 if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
376 ack++;
378 sh->ops.count -= ack;
379 BUG_ON(sh->ops.count < 0);
381 return pending;
384 static void
385 raid5_end_read_request(struct bio *bi, int error);
386 static void
387 raid5_end_write_request(struct bio *bi, int error);
389 static void ops_run_io(struct stripe_head *sh)
391 raid5_conf_t *conf = sh->raid_conf;
392 int i, disks = sh->disks;
394 might_sleep();
396 for (i = disks; i--; ) {
397 int rw;
398 struct bio *bi;
399 mdk_rdev_t *rdev;
400 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
401 rw = WRITE;
402 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
403 rw = READ;
404 else
405 continue;
407 bi = &sh->dev[i].req;
409 bi->bi_rw = rw;
410 if (rw == WRITE)
411 bi->bi_end_io = raid5_end_write_request;
412 else
413 bi->bi_end_io = raid5_end_read_request;
415 rcu_read_lock();
416 rdev = rcu_dereference(conf->disks[i].rdev);
417 if (rdev && test_bit(Faulty, &rdev->flags))
418 rdev = NULL;
419 if (rdev)
420 atomic_inc(&rdev->nr_pending);
421 rcu_read_unlock();
423 if (rdev) {
424 if (test_bit(STRIPE_SYNCING, &sh->state) ||
425 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
426 test_bit(STRIPE_EXPAND_READY, &sh->state))
427 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
429 bi->bi_bdev = rdev->bdev;
430 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
431 __FUNCTION__, (unsigned long long)sh->sector,
432 bi->bi_rw, i);
433 atomic_inc(&sh->count);
434 bi->bi_sector = sh->sector + rdev->data_offset;
435 bi->bi_flags = 1 << BIO_UPTODATE;
436 bi->bi_vcnt = 1;
437 bi->bi_max_vecs = 1;
438 bi->bi_idx = 0;
439 bi->bi_io_vec = &sh->dev[i].vec;
440 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
441 bi->bi_io_vec[0].bv_offset = 0;
442 bi->bi_size = STRIPE_SIZE;
443 bi->bi_next = NULL;
444 if (rw == WRITE &&
445 test_bit(R5_ReWrite, &sh->dev[i].flags))
446 atomic_add(STRIPE_SECTORS,
447 &rdev->corrected_errors);
448 generic_make_request(bi);
449 } else {
450 if (rw == WRITE)
451 set_bit(STRIPE_DEGRADED, &sh->state);
452 pr_debug("skip op %ld on disc %d for sector %llu\n",
453 bi->bi_rw, i, (unsigned long long)sh->sector);
454 clear_bit(R5_LOCKED, &sh->dev[i].flags);
455 set_bit(STRIPE_HANDLE, &sh->state);
460 static struct dma_async_tx_descriptor *
461 async_copy_data(int frombio, struct bio *bio, struct page *page,
462 sector_t sector, struct dma_async_tx_descriptor *tx)
464 struct bio_vec *bvl;
465 struct page *bio_page;
466 int i;
467 int page_offset;
469 if (bio->bi_sector >= sector)
470 page_offset = (signed)(bio->bi_sector - sector) * 512;
471 else
472 page_offset = (signed)(sector - bio->bi_sector) * -512;
473 bio_for_each_segment(bvl, bio, i) {
474 int len = bio_iovec_idx(bio, i)->bv_len;
475 int clen;
476 int b_offset = 0;
478 if (page_offset < 0) {
479 b_offset = -page_offset;
480 page_offset += b_offset;
481 len -= b_offset;
484 if (len > 0 && page_offset + len > STRIPE_SIZE)
485 clen = STRIPE_SIZE - page_offset;
486 else
487 clen = len;
489 if (clen > 0) {
490 b_offset += bio_iovec_idx(bio, i)->bv_offset;
491 bio_page = bio_iovec_idx(bio, i)->bv_page;
492 if (frombio)
493 tx = async_memcpy(page, bio_page, page_offset,
494 b_offset, clen,
495 ASYNC_TX_DEP_ACK,
496 tx, NULL, NULL);
497 else
498 tx = async_memcpy(bio_page, page, b_offset,
499 page_offset, clen,
500 ASYNC_TX_DEP_ACK,
501 tx, NULL, NULL);
503 if (clen < len) /* hit end of page */
504 break;
505 page_offset += len;
508 return tx;
511 static void ops_complete_biofill(void *stripe_head_ref)
513 struct stripe_head *sh = stripe_head_ref;
514 struct bio *return_bi = NULL;
515 raid5_conf_t *conf = sh->raid_conf;
516 int i;
518 pr_debug("%s: stripe %llu\n", __FUNCTION__,
519 (unsigned long long)sh->sector);
521 /* clear completed biofills */
522 for (i = sh->disks; i--; ) {
523 struct r5dev *dev = &sh->dev[i];
525 /* acknowledge completion of a biofill operation */
526 /* and check if we need to reply to a read request,
527 * new R5_Wantfill requests are held off until
528 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
530 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
531 struct bio *rbi, *rbi2;
533 /* The access to dev->read is outside of the
534 * spin_lock_irq(&conf->device_lock), but is protected
535 * by the STRIPE_OP_BIOFILL pending bit
537 BUG_ON(!dev->read);
538 rbi = dev->read;
539 dev->read = NULL;
540 while (rbi && rbi->bi_sector <
541 dev->sector + STRIPE_SECTORS) {
542 rbi2 = r5_next_bio(rbi, dev->sector);
543 spin_lock_irq(&conf->device_lock);
544 if (--rbi->bi_phys_segments == 0) {
545 rbi->bi_next = return_bi;
546 return_bi = rbi;
548 spin_unlock_irq(&conf->device_lock);
549 rbi = rbi2;
553 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
554 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
556 return_io(return_bi);
558 set_bit(STRIPE_HANDLE, &sh->state);
559 release_stripe(sh);
562 static void ops_run_biofill(struct stripe_head *sh)
564 struct dma_async_tx_descriptor *tx = NULL;
565 raid5_conf_t *conf = sh->raid_conf;
566 int i;
568 pr_debug("%s: stripe %llu\n", __FUNCTION__,
569 (unsigned long long)sh->sector);
571 for (i = sh->disks; i--; ) {
572 struct r5dev *dev = &sh->dev[i];
573 if (test_bit(R5_Wantfill, &dev->flags)) {
574 struct bio *rbi;
575 spin_lock_irq(&conf->device_lock);
576 dev->read = rbi = dev->toread;
577 dev->toread = NULL;
578 spin_unlock_irq(&conf->device_lock);
579 while (rbi && rbi->bi_sector <
580 dev->sector + STRIPE_SECTORS) {
581 tx = async_copy_data(0, rbi, dev->page,
582 dev->sector, tx);
583 rbi = r5_next_bio(rbi, dev->sector);
588 atomic_inc(&sh->count);
589 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
590 ops_complete_biofill, sh);
593 static void ops_complete_compute5(void *stripe_head_ref)
595 struct stripe_head *sh = stripe_head_ref;
596 int target = sh->ops.target;
597 struct r5dev *tgt = &sh->dev[target];
599 pr_debug("%s: stripe %llu\n", __FUNCTION__,
600 (unsigned long long)sh->sector);
602 set_bit(R5_UPTODATE, &tgt->flags);
603 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
604 clear_bit(R5_Wantcompute, &tgt->flags);
605 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
606 set_bit(STRIPE_HANDLE, &sh->state);
607 release_stripe(sh);
610 static struct dma_async_tx_descriptor *
611 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
613 /* kernel stack size limits the total number of disks */
614 int disks = sh->disks;
615 struct page *xor_srcs[disks];
616 int target = sh->ops.target;
617 struct r5dev *tgt = &sh->dev[target];
618 struct page *xor_dest = tgt->page;
619 int count = 0;
620 struct dma_async_tx_descriptor *tx;
621 int i;
623 pr_debug("%s: stripe %llu block: %d\n",
624 __FUNCTION__, (unsigned long long)sh->sector, target);
625 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
627 for (i = disks; i--; )
628 if (i != target)
629 xor_srcs[count++] = sh->dev[i].page;
631 atomic_inc(&sh->count);
633 if (unlikely(count == 1))
634 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
635 0, NULL, ops_complete_compute5, sh);
636 else
637 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
638 ASYNC_TX_XOR_ZERO_DST, NULL,
639 ops_complete_compute5, sh);
641 /* ack now if postxor is not set to be run */
642 if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
643 async_tx_ack(tx);
645 return tx;
648 static void ops_complete_prexor(void *stripe_head_ref)
650 struct stripe_head *sh = stripe_head_ref;
652 pr_debug("%s: stripe %llu\n", __FUNCTION__,
653 (unsigned long long)sh->sector);
655 set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
658 static struct dma_async_tx_descriptor *
659 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
661 /* kernel stack size limits the total number of disks */
662 int disks = sh->disks;
663 struct page *xor_srcs[disks];
664 int count = 0, pd_idx = sh->pd_idx, i;
666 /* existing parity data subtracted */
667 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
669 pr_debug("%s: stripe %llu\n", __FUNCTION__,
670 (unsigned long long)sh->sector);
672 for (i = disks; i--; ) {
673 struct r5dev *dev = &sh->dev[i];
674 /* Only process blocks that are known to be uptodate */
675 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
676 xor_srcs[count++] = dev->page;
679 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
680 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
681 ops_complete_prexor, sh);
683 return tx;
686 static struct dma_async_tx_descriptor *
687 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
689 int disks = sh->disks;
690 int pd_idx = sh->pd_idx, i;
692 /* check if prexor is active which means only process blocks
693 * that are part of a read-modify-write (Wantprexor)
695 int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
697 pr_debug("%s: stripe %llu\n", __FUNCTION__,
698 (unsigned long long)sh->sector);
700 for (i = disks; i--; ) {
701 struct r5dev *dev = &sh->dev[i];
702 struct bio *chosen;
703 int towrite;
705 towrite = 0;
706 if (prexor) { /* rmw */
707 if (dev->towrite &&
708 test_bit(R5_Wantprexor, &dev->flags))
709 towrite = 1;
710 } else { /* rcw */
711 if (i != pd_idx && dev->towrite &&
712 test_bit(R5_LOCKED, &dev->flags))
713 towrite = 1;
716 if (towrite) {
717 struct bio *wbi;
719 spin_lock(&sh->lock);
720 chosen = dev->towrite;
721 dev->towrite = NULL;
722 BUG_ON(dev->written);
723 wbi = dev->written = chosen;
724 spin_unlock(&sh->lock);
726 while (wbi && wbi->bi_sector <
727 dev->sector + STRIPE_SECTORS) {
728 tx = async_copy_data(1, wbi, dev->page,
729 dev->sector, tx);
730 wbi = r5_next_bio(wbi, dev->sector);
735 return tx;
738 static void ops_complete_postxor(void *stripe_head_ref)
740 struct stripe_head *sh = stripe_head_ref;
742 pr_debug("%s: stripe %llu\n", __FUNCTION__,
743 (unsigned long long)sh->sector);
745 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
746 set_bit(STRIPE_HANDLE, &sh->state);
747 release_stripe(sh);
750 static void ops_complete_write(void *stripe_head_ref)
752 struct stripe_head *sh = stripe_head_ref;
753 int disks = sh->disks, i, pd_idx = sh->pd_idx;
755 pr_debug("%s: stripe %llu\n", __FUNCTION__,
756 (unsigned long long)sh->sector);
758 for (i = disks; i--; ) {
759 struct r5dev *dev = &sh->dev[i];
760 if (dev->written || i == pd_idx)
761 set_bit(R5_UPTODATE, &dev->flags);
764 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
765 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
767 set_bit(STRIPE_HANDLE, &sh->state);
768 release_stripe(sh);
771 static void
772 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
774 /* kernel stack size limits the total number of disks */
775 int disks = sh->disks;
776 struct page *xor_srcs[disks];
778 int count = 0, pd_idx = sh->pd_idx, i;
779 struct page *xor_dest;
780 int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
781 unsigned long flags;
782 dma_async_tx_callback callback;
784 pr_debug("%s: stripe %llu\n", __FUNCTION__,
785 (unsigned long long)sh->sector);
787 /* check if prexor is active which means only process blocks
788 * that are part of a read-modify-write (written)
790 if (prexor) {
791 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
792 for (i = disks; i--; ) {
793 struct r5dev *dev = &sh->dev[i];
794 if (dev->written)
795 xor_srcs[count++] = dev->page;
797 } else {
798 xor_dest = sh->dev[pd_idx].page;
799 for (i = disks; i--; ) {
800 struct r5dev *dev = &sh->dev[i];
801 if (i != pd_idx)
802 xor_srcs[count++] = dev->page;
806 /* check whether this postxor is part of a write */
807 callback = test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending) ?
808 ops_complete_write : ops_complete_postxor;
810 /* 1/ if we prexor'd then the dest is reused as a source
811 * 2/ if we did not prexor then we are redoing the parity
812 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
813 * for the synchronous xor case
815 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
816 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
818 atomic_inc(&sh->count);
820 if (unlikely(count == 1)) {
821 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
822 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
823 flags, tx, callback, sh);
824 } else
825 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
826 flags, tx, callback, sh);
829 static void ops_complete_check(void *stripe_head_ref)
831 struct stripe_head *sh = stripe_head_ref;
832 int pd_idx = sh->pd_idx;
834 pr_debug("%s: stripe %llu\n", __FUNCTION__,
835 (unsigned long long)sh->sector);
837 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
838 sh->ops.zero_sum_result == 0)
839 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
841 set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
842 set_bit(STRIPE_HANDLE, &sh->state);
843 release_stripe(sh);
846 static void ops_run_check(struct stripe_head *sh)
848 /* kernel stack size limits the total number of disks */
849 int disks = sh->disks;
850 struct page *xor_srcs[disks];
851 struct dma_async_tx_descriptor *tx;
853 int count = 0, pd_idx = sh->pd_idx, i;
854 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
856 pr_debug("%s: stripe %llu\n", __FUNCTION__,
857 (unsigned long long)sh->sector);
859 for (i = disks; i--; ) {
860 struct r5dev *dev = &sh->dev[i];
861 if (i != pd_idx)
862 xor_srcs[count++] = dev->page;
865 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
866 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
868 if (tx)
869 set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
870 else
871 clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
873 atomic_inc(&sh->count);
874 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
875 ops_complete_check, sh);
878 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
880 int overlap_clear = 0, i, disks = sh->disks;
881 struct dma_async_tx_descriptor *tx = NULL;
883 if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
884 ops_run_biofill(sh);
885 overlap_clear++;
888 if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
889 tx = ops_run_compute5(sh, pending);
891 if (test_bit(STRIPE_OP_PREXOR, &pending))
892 tx = ops_run_prexor(sh, tx);
894 if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
895 tx = ops_run_biodrain(sh, tx);
896 overlap_clear++;
899 if (test_bit(STRIPE_OP_POSTXOR, &pending))
900 ops_run_postxor(sh, tx);
902 if (test_bit(STRIPE_OP_CHECK, &pending))
903 ops_run_check(sh);
905 if (test_bit(STRIPE_OP_IO, &pending))
906 ops_run_io(sh);
908 if (overlap_clear)
909 for (i = disks; i--; ) {
910 struct r5dev *dev = &sh->dev[i];
911 if (test_and_clear_bit(R5_Overlap, &dev->flags))
912 wake_up(&sh->raid_conf->wait_for_overlap);
916 static int grow_one_stripe(raid5_conf_t *conf)
918 struct stripe_head *sh;
919 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
920 if (!sh)
921 return 0;
922 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
923 sh->raid_conf = conf;
924 spin_lock_init(&sh->lock);
926 if (grow_buffers(sh, conf->raid_disks)) {
927 shrink_buffers(sh, conf->raid_disks);
928 kmem_cache_free(conf->slab_cache, sh);
929 return 0;
931 sh->disks = conf->raid_disks;
932 /* we just created an active stripe so... */
933 atomic_set(&sh->count, 1);
934 atomic_inc(&conf->active_stripes);
935 INIT_LIST_HEAD(&sh->lru);
936 release_stripe(sh);
937 return 1;
940 static int grow_stripes(raid5_conf_t *conf, int num)
942 struct kmem_cache *sc;
943 int devs = conf->raid_disks;
945 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
946 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
947 conf->active_name = 0;
948 sc = kmem_cache_create(conf->cache_name[conf->active_name],
949 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
950 0, 0, NULL);
951 if (!sc)
952 return 1;
953 conf->slab_cache = sc;
954 conf->pool_size = devs;
955 while (num--)
956 if (!grow_one_stripe(conf))
957 return 1;
958 return 0;
961 #ifdef CONFIG_MD_RAID5_RESHAPE
962 static int resize_stripes(raid5_conf_t *conf, int newsize)
964 /* Make all the stripes able to hold 'newsize' devices.
965 * New slots in each stripe get 'page' set to a new page.
967 * This happens in stages:
968 * 1/ create a new kmem_cache and allocate the required number of
969 * stripe_heads.
970 * 2/ gather all the old stripe_heads and tranfer the pages across
971 * to the new stripe_heads. This will have the side effect of
972 * freezing the array as once all stripe_heads have been collected,
973 * no IO will be possible. Old stripe heads are freed once their
974 * pages have been transferred over, and the old kmem_cache is
975 * freed when all stripes are done.
976 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
977 * we simple return a failre status - no need to clean anything up.
978 * 4/ allocate new pages for the new slots in the new stripe_heads.
979 * If this fails, we don't bother trying the shrink the
980 * stripe_heads down again, we just leave them as they are.
981 * As each stripe_head is processed the new one is released into
982 * active service.
984 * Once step2 is started, we cannot afford to wait for a write,
985 * so we use GFP_NOIO allocations.
987 struct stripe_head *osh, *nsh;
988 LIST_HEAD(newstripes);
989 struct disk_info *ndisks;
990 int err = 0;
991 struct kmem_cache *sc;
992 int i;
994 if (newsize <= conf->pool_size)
995 return 0; /* never bother to shrink */
997 md_allow_write(conf->mddev);
999 /* Step 1 */
1000 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1001 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1002 0, 0, NULL);
1003 if (!sc)
1004 return -ENOMEM;
1006 for (i = conf->max_nr_stripes; i; i--) {
1007 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1008 if (!nsh)
1009 break;
1011 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1013 nsh->raid_conf = conf;
1014 spin_lock_init(&nsh->lock);
1016 list_add(&nsh->lru, &newstripes);
1018 if (i) {
1019 /* didn't get enough, give up */
1020 while (!list_empty(&newstripes)) {
1021 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1022 list_del(&nsh->lru);
1023 kmem_cache_free(sc, nsh);
1025 kmem_cache_destroy(sc);
1026 return -ENOMEM;
1028 /* Step 2 - Must use GFP_NOIO now.
1029 * OK, we have enough stripes, start collecting inactive
1030 * stripes and copying them over
1032 list_for_each_entry(nsh, &newstripes, lru) {
1033 spin_lock_irq(&conf->device_lock);
1034 wait_event_lock_irq(conf->wait_for_stripe,
1035 !list_empty(&conf->inactive_list),
1036 conf->device_lock,
1037 unplug_slaves(conf->mddev)
1039 osh = get_free_stripe(conf);
1040 spin_unlock_irq(&conf->device_lock);
1041 atomic_set(&nsh->count, 1);
1042 for(i=0; i<conf->pool_size; i++)
1043 nsh->dev[i].page = osh->dev[i].page;
1044 for( ; i<newsize; i++)
1045 nsh->dev[i].page = NULL;
1046 kmem_cache_free(conf->slab_cache, osh);
1048 kmem_cache_destroy(conf->slab_cache);
1050 /* Step 3.
1051 * At this point, we are holding all the stripes so the array
1052 * is completely stalled, so now is a good time to resize
1053 * conf->disks.
1055 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1056 if (ndisks) {
1057 for (i=0; i<conf->raid_disks; i++)
1058 ndisks[i] = conf->disks[i];
1059 kfree(conf->disks);
1060 conf->disks = ndisks;
1061 } else
1062 err = -ENOMEM;
1064 /* Step 4, return new stripes to service */
1065 while(!list_empty(&newstripes)) {
1066 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1067 list_del_init(&nsh->lru);
1068 for (i=conf->raid_disks; i < newsize; i++)
1069 if (nsh->dev[i].page == NULL) {
1070 struct page *p = alloc_page(GFP_NOIO);
1071 nsh->dev[i].page = p;
1072 if (!p)
1073 err = -ENOMEM;
1075 release_stripe(nsh);
1077 /* critical section pass, GFP_NOIO no longer needed */
1079 conf->slab_cache = sc;
1080 conf->active_name = 1-conf->active_name;
1081 conf->pool_size = newsize;
1082 return err;
1084 #endif
1086 static int drop_one_stripe(raid5_conf_t *conf)
1088 struct stripe_head *sh;
1090 spin_lock_irq(&conf->device_lock);
1091 sh = get_free_stripe(conf);
1092 spin_unlock_irq(&conf->device_lock);
1093 if (!sh)
1094 return 0;
1095 BUG_ON(atomic_read(&sh->count));
1096 shrink_buffers(sh, conf->pool_size);
1097 kmem_cache_free(conf->slab_cache, sh);
1098 atomic_dec(&conf->active_stripes);
1099 return 1;
1102 static void shrink_stripes(raid5_conf_t *conf)
1104 while (drop_one_stripe(conf))
1107 if (conf->slab_cache)
1108 kmem_cache_destroy(conf->slab_cache);
1109 conf->slab_cache = NULL;
1112 static void raid5_end_read_request(struct bio * bi, int error)
1114 struct stripe_head *sh = bi->bi_private;
1115 raid5_conf_t *conf = sh->raid_conf;
1116 int disks = sh->disks, i;
1117 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1118 char b[BDEVNAME_SIZE];
1119 mdk_rdev_t *rdev;
1122 for (i=0 ; i<disks; i++)
1123 if (bi == &sh->dev[i].req)
1124 break;
1126 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1127 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1128 uptodate);
1129 if (i == disks) {
1130 BUG();
1131 return;
1134 if (uptodate) {
1135 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1136 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1137 rdev = conf->disks[i].rdev;
1138 printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1139 mdname(conf->mddev), STRIPE_SECTORS,
1140 (unsigned long long)sh->sector + rdev->data_offset,
1141 bdevname(rdev->bdev, b));
1142 clear_bit(R5_ReadError, &sh->dev[i].flags);
1143 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1145 if (atomic_read(&conf->disks[i].rdev->read_errors))
1146 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1147 } else {
1148 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1149 int retry = 0;
1150 rdev = conf->disks[i].rdev;
1152 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1153 atomic_inc(&rdev->read_errors);
1154 if (conf->mddev->degraded)
1155 printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
1156 mdname(conf->mddev),
1157 (unsigned long long)sh->sector + rdev->data_offset,
1158 bdn);
1159 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1160 /* Oh, no!!! */
1161 printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1162 mdname(conf->mddev),
1163 (unsigned long long)sh->sector + rdev->data_offset,
1164 bdn);
1165 else if (atomic_read(&rdev->read_errors)
1166 > conf->max_nr_stripes)
1167 printk(KERN_WARNING
1168 "raid5:%s: Too many read errors, failing device %s.\n",
1169 mdname(conf->mddev), bdn);
1170 else
1171 retry = 1;
1172 if (retry)
1173 set_bit(R5_ReadError, &sh->dev[i].flags);
1174 else {
1175 clear_bit(R5_ReadError, &sh->dev[i].flags);
1176 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1177 md_error(conf->mddev, rdev);
1180 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1181 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1182 set_bit(STRIPE_HANDLE, &sh->state);
1183 release_stripe(sh);
1186 static void raid5_end_write_request (struct bio *bi, int error)
1188 struct stripe_head *sh = bi->bi_private;
1189 raid5_conf_t *conf = sh->raid_conf;
1190 int disks = sh->disks, i;
1191 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1193 for (i=0 ; i<disks; i++)
1194 if (bi == &sh->dev[i].req)
1195 break;
1197 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1198 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1199 uptodate);
1200 if (i == disks) {
1201 BUG();
1202 return;
1205 if (!uptodate)
1206 md_error(conf->mddev, conf->disks[i].rdev);
1208 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1210 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1211 set_bit(STRIPE_HANDLE, &sh->state);
1212 release_stripe(sh);
1216 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1218 static void raid5_build_block (struct stripe_head *sh, int i)
1220 struct r5dev *dev = &sh->dev[i];
1222 bio_init(&dev->req);
1223 dev->req.bi_io_vec = &dev->vec;
1224 dev->req.bi_vcnt++;
1225 dev->req.bi_max_vecs++;
1226 dev->vec.bv_page = dev->page;
1227 dev->vec.bv_len = STRIPE_SIZE;
1228 dev->vec.bv_offset = 0;
1230 dev->req.bi_sector = sh->sector;
1231 dev->req.bi_private = sh;
1233 dev->flags = 0;
1234 dev->sector = compute_blocknr(sh, i);
1237 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1239 char b[BDEVNAME_SIZE];
1240 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1241 pr_debug("raid5: error called\n");
1243 if (!test_bit(Faulty, &rdev->flags)) {
1244 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1245 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1246 unsigned long flags;
1247 spin_lock_irqsave(&conf->device_lock, flags);
1248 mddev->degraded++;
1249 spin_unlock_irqrestore(&conf->device_lock, flags);
1251 * if recovery was running, make sure it aborts.
1253 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1255 set_bit(Faulty, &rdev->flags);
1256 printk (KERN_ALERT
1257 "raid5: Disk failure on %s, disabling device."
1258 " Operation continuing on %d devices\n",
1259 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1264 * Input: a 'big' sector number,
1265 * Output: index of the data and parity disk, and the sector # in them.
1267 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1268 unsigned int data_disks, unsigned int * dd_idx,
1269 unsigned int * pd_idx, raid5_conf_t *conf)
1271 long stripe;
1272 unsigned long chunk_number;
1273 unsigned int chunk_offset;
1274 sector_t new_sector;
1275 int sectors_per_chunk = conf->chunk_size >> 9;
1277 /* First compute the information on this sector */
1280 * Compute the chunk number and the sector offset inside the chunk
1282 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1283 chunk_number = r_sector;
1284 BUG_ON(r_sector != chunk_number);
1287 * Compute the stripe number
1289 stripe = chunk_number / data_disks;
1292 * Compute the data disk and parity disk indexes inside the stripe
1294 *dd_idx = chunk_number % data_disks;
1297 * Select the parity disk based on the user selected algorithm.
1299 switch(conf->level) {
1300 case 4:
1301 *pd_idx = data_disks;
1302 break;
1303 case 5:
1304 switch (conf->algorithm) {
1305 case ALGORITHM_LEFT_ASYMMETRIC:
1306 *pd_idx = data_disks - stripe % raid_disks;
1307 if (*dd_idx >= *pd_idx)
1308 (*dd_idx)++;
1309 break;
1310 case ALGORITHM_RIGHT_ASYMMETRIC:
1311 *pd_idx = stripe % raid_disks;
1312 if (*dd_idx >= *pd_idx)
1313 (*dd_idx)++;
1314 break;
1315 case ALGORITHM_LEFT_SYMMETRIC:
1316 *pd_idx = data_disks - stripe % raid_disks;
1317 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1318 break;
1319 case ALGORITHM_RIGHT_SYMMETRIC:
1320 *pd_idx = stripe % raid_disks;
1321 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1322 break;
1323 default:
1324 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1325 conf->algorithm);
1327 break;
1328 case 6:
1330 /**** FIX THIS ****/
1331 switch (conf->algorithm) {
1332 case ALGORITHM_LEFT_ASYMMETRIC:
1333 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1334 if (*pd_idx == raid_disks-1)
1335 (*dd_idx)++; /* Q D D D P */
1336 else if (*dd_idx >= *pd_idx)
1337 (*dd_idx) += 2; /* D D P Q D */
1338 break;
1339 case ALGORITHM_RIGHT_ASYMMETRIC:
1340 *pd_idx = stripe % raid_disks;
1341 if (*pd_idx == raid_disks-1)
1342 (*dd_idx)++; /* Q D D D P */
1343 else if (*dd_idx >= *pd_idx)
1344 (*dd_idx) += 2; /* D D P Q D */
1345 break;
1346 case ALGORITHM_LEFT_SYMMETRIC:
1347 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1348 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1349 break;
1350 case ALGORITHM_RIGHT_SYMMETRIC:
1351 *pd_idx = stripe % raid_disks;
1352 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1353 break;
1354 default:
1355 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1356 conf->algorithm);
1358 break;
1362 * Finally, compute the new sector number
1364 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1365 return new_sector;
1369 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1371 raid5_conf_t *conf = sh->raid_conf;
1372 int raid_disks = sh->disks;
1373 int data_disks = raid_disks - conf->max_degraded;
1374 sector_t new_sector = sh->sector, check;
1375 int sectors_per_chunk = conf->chunk_size >> 9;
1376 sector_t stripe;
1377 int chunk_offset;
1378 int chunk_number, dummy1, dummy2, dd_idx = i;
1379 sector_t r_sector;
1382 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1383 stripe = new_sector;
1384 BUG_ON(new_sector != stripe);
1386 if (i == sh->pd_idx)
1387 return 0;
1388 switch(conf->level) {
1389 case 4: break;
1390 case 5:
1391 switch (conf->algorithm) {
1392 case ALGORITHM_LEFT_ASYMMETRIC:
1393 case ALGORITHM_RIGHT_ASYMMETRIC:
1394 if (i > sh->pd_idx)
1395 i--;
1396 break;
1397 case ALGORITHM_LEFT_SYMMETRIC:
1398 case ALGORITHM_RIGHT_SYMMETRIC:
1399 if (i < sh->pd_idx)
1400 i += raid_disks;
1401 i -= (sh->pd_idx + 1);
1402 break;
1403 default:
1404 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1405 conf->algorithm);
1407 break;
1408 case 6:
1409 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1410 return 0; /* It is the Q disk */
1411 switch (conf->algorithm) {
1412 case ALGORITHM_LEFT_ASYMMETRIC:
1413 case ALGORITHM_RIGHT_ASYMMETRIC:
1414 if (sh->pd_idx == raid_disks-1)
1415 i--; /* Q D D D P */
1416 else if (i > sh->pd_idx)
1417 i -= 2; /* D D P Q D */
1418 break;
1419 case ALGORITHM_LEFT_SYMMETRIC:
1420 case ALGORITHM_RIGHT_SYMMETRIC:
1421 if (sh->pd_idx == raid_disks-1)
1422 i--; /* Q D D D P */
1423 else {
1424 /* D D P Q D */
1425 if (i < sh->pd_idx)
1426 i += raid_disks;
1427 i -= (sh->pd_idx + 2);
1429 break;
1430 default:
1431 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1432 conf->algorithm);
1434 break;
1437 chunk_number = stripe * data_disks + i;
1438 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1440 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1441 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1442 printk(KERN_ERR "compute_blocknr: map not correct\n");
1443 return 0;
1445 return r_sector;
1451 * Copy data between a page in the stripe cache, and one or more bion
1452 * The page could align with the middle of the bio, or there could be
1453 * several bion, each with several bio_vecs, which cover part of the page
1454 * Multiple bion are linked together on bi_next. There may be extras
1455 * at the end of this list. We ignore them.
1457 static void copy_data(int frombio, struct bio *bio,
1458 struct page *page,
1459 sector_t sector)
1461 char *pa = page_address(page);
1462 struct bio_vec *bvl;
1463 int i;
1464 int page_offset;
1466 if (bio->bi_sector >= sector)
1467 page_offset = (signed)(bio->bi_sector - sector) * 512;
1468 else
1469 page_offset = (signed)(sector - bio->bi_sector) * -512;
1470 bio_for_each_segment(bvl, bio, i) {
1471 int len = bio_iovec_idx(bio,i)->bv_len;
1472 int clen;
1473 int b_offset = 0;
1475 if (page_offset < 0) {
1476 b_offset = -page_offset;
1477 page_offset += b_offset;
1478 len -= b_offset;
1481 if (len > 0 && page_offset + len > STRIPE_SIZE)
1482 clen = STRIPE_SIZE - page_offset;
1483 else clen = len;
1485 if (clen > 0) {
1486 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1487 if (frombio)
1488 memcpy(pa+page_offset, ba+b_offset, clen);
1489 else
1490 memcpy(ba+b_offset, pa+page_offset, clen);
1491 __bio_kunmap_atomic(ba, KM_USER0);
1493 if (clen < len) /* hit end of page */
1494 break;
1495 page_offset += len;
1499 #define check_xor() do { \
1500 if (count == MAX_XOR_BLOCKS) { \
1501 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1502 count = 0; \
1504 } while(0)
1506 static void compute_parity6(struct stripe_head *sh, int method)
1508 raid6_conf_t *conf = sh->raid_conf;
1509 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1510 struct bio *chosen;
1511 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1512 void *ptrs[disks];
1514 qd_idx = raid6_next_disk(pd_idx, disks);
1515 d0_idx = raid6_next_disk(qd_idx, disks);
1517 pr_debug("compute_parity, stripe %llu, method %d\n",
1518 (unsigned long long)sh->sector, method);
1520 switch(method) {
1521 case READ_MODIFY_WRITE:
1522 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1523 case RECONSTRUCT_WRITE:
1524 for (i= disks; i-- ;)
1525 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1526 chosen = sh->dev[i].towrite;
1527 sh->dev[i].towrite = NULL;
1529 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1530 wake_up(&conf->wait_for_overlap);
1532 BUG_ON(sh->dev[i].written);
1533 sh->dev[i].written = chosen;
1535 break;
1536 case CHECK_PARITY:
1537 BUG(); /* Not implemented yet */
1540 for (i = disks; i--;)
1541 if (sh->dev[i].written) {
1542 sector_t sector = sh->dev[i].sector;
1543 struct bio *wbi = sh->dev[i].written;
1544 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1545 copy_data(1, wbi, sh->dev[i].page, sector);
1546 wbi = r5_next_bio(wbi, sector);
1549 set_bit(R5_LOCKED, &sh->dev[i].flags);
1550 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1553 // switch(method) {
1554 // case RECONSTRUCT_WRITE:
1555 // case CHECK_PARITY:
1556 // case UPDATE_PARITY:
1557 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1558 /* FIX: Is this ordering of drives even remotely optimal? */
1559 count = 0;
1560 i = d0_idx;
1561 do {
1562 ptrs[count++] = page_address(sh->dev[i].page);
1563 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1564 printk("block %d/%d not uptodate on parity calc\n", i,count);
1565 i = raid6_next_disk(i, disks);
1566 } while ( i != d0_idx );
1567 // break;
1568 // }
1570 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1572 switch(method) {
1573 case RECONSTRUCT_WRITE:
1574 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1575 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1576 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1577 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1578 break;
1579 case UPDATE_PARITY:
1580 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1581 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1582 break;
1587 /* Compute one missing block */
1588 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1590 int i, count, disks = sh->disks;
1591 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1592 int pd_idx = sh->pd_idx;
1593 int qd_idx = raid6_next_disk(pd_idx, disks);
1595 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1596 (unsigned long long)sh->sector, dd_idx);
1598 if ( dd_idx == qd_idx ) {
1599 /* We're actually computing the Q drive */
1600 compute_parity6(sh, UPDATE_PARITY);
1601 } else {
1602 dest = page_address(sh->dev[dd_idx].page);
1603 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1604 count = 0;
1605 for (i = disks ; i--; ) {
1606 if (i == dd_idx || i == qd_idx)
1607 continue;
1608 p = page_address(sh->dev[i].page);
1609 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1610 ptr[count++] = p;
1611 else
1612 printk("compute_block() %d, stripe %llu, %d"
1613 " not present\n", dd_idx,
1614 (unsigned long long)sh->sector, i);
1616 check_xor();
1618 if (count)
1619 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1620 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1621 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1625 /* Compute two missing blocks */
1626 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1628 int i, count, disks = sh->disks;
1629 int pd_idx = sh->pd_idx;
1630 int qd_idx = raid6_next_disk(pd_idx, disks);
1631 int d0_idx = raid6_next_disk(qd_idx, disks);
1632 int faila, failb;
1634 /* faila and failb are disk numbers relative to d0_idx */
1635 /* pd_idx become disks-2 and qd_idx become disks-1 */
1636 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1637 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1639 BUG_ON(faila == failb);
1640 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1642 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1643 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1645 if ( failb == disks-1 ) {
1646 /* Q disk is one of the missing disks */
1647 if ( faila == disks-2 ) {
1648 /* Missing P+Q, just recompute */
1649 compute_parity6(sh, UPDATE_PARITY);
1650 return;
1651 } else {
1652 /* We're missing D+Q; recompute D from P */
1653 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1654 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1655 return;
1659 /* We're missing D+P or D+D; build pointer table */
1661 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1662 void *ptrs[disks];
1664 count = 0;
1665 i = d0_idx;
1666 do {
1667 ptrs[count++] = page_address(sh->dev[i].page);
1668 i = raid6_next_disk(i, disks);
1669 if (i != dd_idx1 && i != dd_idx2 &&
1670 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1671 printk("compute_2 with missing block %d/%d\n", count, i);
1672 } while ( i != d0_idx );
1674 if ( failb == disks-2 ) {
1675 /* We're missing D+P. */
1676 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1677 } else {
1678 /* We're missing D+D. */
1679 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1682 /* Both the above update both missing blocks */
1683 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1684 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1688 static int
1689 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1691 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1692 int locked = 0;
1694 if (rcw) {
1695 /* if we are not expanding this is a proper write request, and
1696 * there will be bios with new data to be drained into the
1697 * stripe cache
1699 if (!expand) {
1700 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1701 sh->ops.count++;
1704 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1705 sh->ops.count++;
1707 for (i = disks; i--; ) {
1708 struct r5dev *dev = &sh->dev[i];
1710 if (dev->towrite) {
1711 set_bit(R5_LOCKED, &dev->flags);
1712 if (!expand)
1713 clear_bit(R5_UPTODATE, &dev->flags);
1714 locked++;
1717 } else {
1718 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1719 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1721 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1722 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1723 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1725 sh->ops.count += 3;
1727 for (i = disks; i--; ) {
1728 struct r5dev *dev = &sh->dev[i];
1729 if (i == pd_idx)
1730 continue;
1732 /* For a read-modify write there may be blocks that are
1733 * locked for reading while others are ready to be
1734 * written so we distinguish these blocks by the
1735 * R5_Wantprexor bit
1737 if (dev->towrite &&
1738 (test_bit(R5_UPTODATE, &dev->flags) ||
1739 test_bit(R5_Wantcompute, &dev->flags))) {
1740 set_bit(R5_Wantprexor, &dev->flags);
1741 set_bit(R5_LOCKED, &dev->flags);
1742 clear_bit(R5_UPTODATE, &dev->flags);
1743 locked++;
1748 /* keep the parity disk locked while asynchronous operations
1749 * are in flight
1751 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1752 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1753 locked++;
1755 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1756 __FUNCTION__, (unsigned long long)sh->sector,
1757 locked, sh->ops.pending);
1759 return locked;
1763 * Each stripe/dev can have one or more bion attached.
1764 * toread/towrite point to the first in a chain.
1765 * The bi_next chain must be in order.
1767 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1769 struct bio **bip;
1770 raid5_conf_t *conf = sh->raid_conf;
1771 int firstwrite=0;
1773 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1774 (unsigned long long)bi->bi_sector,
1775 (unsigned long long)sh->sector);
1778 spin_lock(&sh->lock);
1779 spin_lock_irq(&conf->device_lock);
1780 if (forwrite) {
1781 bip = &sh->dev[dd_idx].towrite;
1782 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1783 firstwrite = 1;
1784 } else
1785 bip = &sh->dev[dd_idx].toread;
1786 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1787 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1788 goto overlap;
1789 bip = & (*bip)->bi_next;
1791 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1792 goto overlap;
1794 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1795 if (*bip)
1796 bi->bi_next = *bip;
1797 *bip = bi;
1798 bi->bi_phys_segments ++;
1799 spin_unlock_irq(&conf->device_lock);
1800 spin_unlock(&sh->lock);
1802 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1803 (unsigned long long)bi->bi_sector,
1804 (unsigned long long)sh->sector, dd_idx);
1806 if (conf->mddev->bitmap && firstwrite) {
1807 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1808 STRIPE_SECTORS, 0);
1809 sh->bm_seq = conf->seq_flush+1;
1810 set_bit(STRIPE_BIT_DELAY, &sh->state);
1813 if (forwrite) {
1814 /* check if page is covered */
1815 sector_t sector = sh->dev[dd_idx].sector;
1816 for (bi=sh->dev[dd_idx].towrite;
1817 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1818 bi && bi->bi_sector <= sector;
1819 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1820 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1821 sector = bi->bi_sector + (bi->bi_size>>9);
1823 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1824 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1826 return 1;
1828 overlap:
1829 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1830 spin_unlock_irq(&conf->device_lock);
1831 spin_unlock(&sh->lock);
1832 return 0;
1835 static void end_reshape(raid5_conf_t *conf);
1837 static int page_is_zero(struct page *p)
1839 char *a = page_address(p);
1840 return ((*(u32*)a) == 0 &&
1841 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1844 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1846 int sectors_per_chunk = conf->chunk_size >> 9;
1847 int pd_idx, dd_idx;
1848 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1850 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1851 *sectors_per_chunk + chunk_offset,
1852 disks, disks - conf->max_degraded,
1853 &dd_idx, &pd_idx, conf);
1854 return pd_idx;
1857 static void
1858 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1859 struct stripe_head_state *s, int disks,
1860 struct bio **return_bi)
1862 int i;
1863 for (i = disks; i--; ) {
1864 struct bio *bi;
1865 int bitmap_end = 0;
1867 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1868 mdk_rdev_t *rdev;
1869 rcu_read_lock();
1870 rdev = rcu_dereference(conf->disks[i].rdev);
1871 if (rdev && test_bit(In_sync, &rdev->flags))
1872 /* multiple read failures in one stripe */
1873 md_error(conf->mddev, rdev);
1874 rcu_read_unlock();
1876 spin_lock_irq(&conf->device_lock);
1877 /* fail all writes first */
1878 bi = sh->dev[i].towrite;
1879 sh->dev[i].towrite = NULL;
1880 if (bi) {
1881 s->to_write--;
1882 bitmap_end = 1;
1885 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1886 wake_up(&conf->wait_for_overlap);
1888 while (bi && bi->bi_sector <
1889 sh->dev[i].sector + STRIPE_SECTORS) {
1890 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1891 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1892 if (--bi->bi_phys_segments == 0) {
1893 md_write_end(conf->mddev);
1894 bi->bi_next = *return_bi;
1895 *return_bi = bi;
1897 bi = nextbi;
1899 /* and fail all 'written' */
1900 bi = sh->dev[i].written;
1901 sh->dev[i].written = NULL;
1902 if (bi) bitmap_end = 1;
1903 while (bi && bi->bi_sector <
1904 sh->dev[i].sector + STRIPE_SECTORS) {
1905 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1906 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1907 if (--bi->bi_phys_segments == 0) {
1908 md_write_end(conf->mddev);
1909 bi->bi_next = *return_bi;
1910 *return_bi = bi;
1912 bi = bi2;
1915 /* fail any reads if this device is non-operational and
1916 * the data has not reached the cache yet.
1918 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1919 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1920 test_bit(R5_ReadError, &sh->dev[i].flags))) {
1921 bi = sh->dev[i].toread;
1922 sh->dev[i].toread = NULL;
1923 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1924 wake_up(&conf->wait_for_overlap);
1925 if (bi) s->to_read--;
1926 while (bi && bi->bi_sector <
1927 sh->dev[i].sector + STRIPE_SECTORS) {
1928 struct bio *nextbi =
1929 r5_next_bio(bi, sh->dev[i].sector);
1930 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1931 if (--bi->bi_phys_segments == 0) {
1932 bi->bi_next = *return_bi;
1933 *return_bi = bi;
1935 bi = nextbi;
1938 spin_unlock_irq(&conf->device_lock);
1939 if (bitmap_end)
1940 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1941 STRIPE_SECTORS, 0, 0);
1946 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1947 * to process
1949 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1950 struct stripe_head_state *s, int disk_idx, int disks)
1952 struct r5dev *dev = &sh->dev[disk_idx];
1953 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1955 /* don't schedule compute operations or reads on the parity block while
1956 * a check is in flight
1958 if ((disk_idx == sh->pd_idx) &&
1959 test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1960 return ~0;
1962 /* is the data in this block needed, and can we get it? */
1963 if (!test_bit(R5_LOCKED, &dev->flags) &&
1964 !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1965 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1966 s->syncing || s->expanding || (s->failed &&
1967 (failed_dev->toread || (failed_dev->towrite &&
1968 !test_bit(R5_OVERWRITE, &failed_dev->flags)
1969 ))))) {
1970 /* 1/ We would like to get this block, possibly by computing it,
1971 * but we might not be able to.
1973 * 2/ Since parity check operations potentially make the parity
1974 * block !uptodate it will need to be refreshed before any
1975 * compute operations on data disks are scheduled.
1977 * 3/ We hold off parity block re-reads until check operations
1978 * have quiesced.
1980 if ((s->uptodate == disks - 1) &&
1981 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
1982 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1983 set_bit(R5_Wantcompute, &dev->flags);
1984 sh->ops.target = disk_idx;
1985 s->req_compute = 1;
1986 sh->ops.count++;
1987 /* Careful: from this point on 'uptodate' is in the eye
1988 * of raid5_run_ops which services 'compute' operations
1989 * before writes. R5_Wantcompute flags a block that will
1990 * be R5_UPTODATE by the time it is needed for a
1991 * subsequent operation.
1993 s->uptodate++;
1994 return 0; /* uptodate + compute == disks */
1995 } else if ((s->uptodate < disks - 1) &&
1996 test_bit(R5_Insync, &dev->flags)) {
1997 /* Note: we hold off compute operations while checks are
1998 * in flight, but we still prefer 'compute' over 'read'
1999 * hence we only read if (uptodate < * disks-1)
2001 set_bit(R5_LOCKED, &dev->flags);
2002 set_bit(R5_Wantread, &dev->flags);
2003 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2004 sh->ops.count++;
2005 s->locked++;
2006 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2007 s->syncing);
2011 return ~0;
2014 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2015 struct stripe_head_state *s, int disks)
2017 int i;
2019 /* Clear completed compute operations. Parity recovery
2020 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2021 * later on in this routine
2023 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2024 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2025 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2026 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2027 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2030 /* look for blocks to read/compute, skip this if a compute
2031 * is already in flight, or if the stripe contents are in the
2032 * midst of changing due to a write
2034 if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2035 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2036 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2037 for (i = disks; i--; )
2038 if (__handle_issuing_new_read_requests5(
2039 sh, s, i, disks) == 0)
2040 break;
2042 set_bit(STRIPE_HANDLE, &sh->state);
2045 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2046 struct stripe_head_state *s, struct r6_state *r6s,
2047 int disks)
2049 int i;
2050 for (i = disks; i--; ) {
2051 struct r5dev *dev = &sh->dev[i];
2052 if (!test_bit(R5_LOCKED, &dev->flags) &&
2053 !test_bit(R5_UPTODATE, &dev->flags) &&
2054 (dev->toread || (dev->towrite &&
2055 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2056 s->syncing || s->expanding ||
2057 (s->failed >= 1 &&
2058 (sh->dev[r6s->failed_num[0]].toread ||
2059 s->to_write)) ||
2060 (s->failed >= 2 &&
2061 (sh->dev[r6s->failed_num[1]].toread ||
2062 s->to_write)))) {
2063 /* we would like to get this block, possibly
2064 * by computing it, but we might not be able to
2066 if (s->uptodate == disks-1) {
2067 pr_debug("Computing stripe %llu block %d\n",
2068 (unsigned long long)sh->sector, i);
2069 compute_block_1(sh, i, 0);
2070 s->uptodate++;
2071 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2072 /* Computing 2-failure is *very* expensive; only
2073 * do it if failed >= 2
2075 int other;
2076 for (other = disks; other--; ) {
2077 if (other == i)
2078 continue;
2079 if (!test_bit(R5_UPTODATE,
2080 &sh->dev[other].flags))
2081 break;
2083 BUG_ON(other < 0);
2084 pr_debug("Computing stripe %llu blocks %d,%d\n",
2085 (unsigned long long)sh->sector,
2086 i, other);
2087 compute_block_2(sh, i, other);
2088 s->uptodate += 2;
2089 } else if (test_bit(R5_Insync, &dev->flags)) {
2090 set_bit(R5_LOCKED, &dev->flags);
2091 set_bit(R5_Wantread, &dev->flags);
2092 s->locked++;
2093 pr_debug("Reading block %d (sync=%d)\n",
2094 i, s->syncing);
2098 set_bit(STRIPE_HANDLE, &sh->state);
2102 /* handle_completed_write_requests
2103 * any written block on an uptodate or failed drive can be returned.
2104 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2105 * never LOCKED, so we don't need to test 'failed' directly.
2107 static void handle_completed_write_requests(raid5_conf_t *conf,
2108 struct stripe_head *sh, int disks, struct bio **return_bi)
2110 int i;
2111 struct r5dev *dev;
2113 for (i = disks; i--; )
2114 if (sh->dev[i].written) {
2115 dev = &sh->dev[i];
2116 if (!test_bit(R5_LOCKED, &dev->flags) &&
2117 test_bit(R5_UPTODATE, &dev->flags)) {
2118 /* We can return any write requests */
2119 struct bio *wbi, *wbi2;
2120 int bitmap_end = 0;
2121 pr_debug("Return write for disc %d\n", i);
2122 spin_lock_irq(&conf->device_lock);
2123 wbi = dev->written;
2124 dev->written = NULL;
2125 while (wbi && wbi->bi_sector <
2126 dev->sector + STRIPE_SECTORS) {
2127 wbi2 = r5_next_bio(wbi, dev->sector);
2128 if (--wbi->bi_phys_segments == 0) {
2129 md_write_end(conf->mddev);
2130 wbi->bi_next = *return_bi;
2131 *return_bi = wbi;
2133 wbi = wbi2;
2135 if (dev->towrite == NULL)
2136 bitmap_end = 1;
2137 spin_unlock_irq(&conf->device_lock);
2138 if (bitmap_end)
2139 bitmap_endwrite(conf->mddev->bitmap,
2140 sh->sector,
2141 STRIPE_SECTORS,
2142 !test_bit(STRIPE_DEGRADED, &sh->state),
2148 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2149 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2151 int rmw = 0, rcw = 0, i;
2152 for (i = disks; i--; ) {
2153 /* would I have to read this buffer for read_modify_write */
2154 struct r5dev *dev = &sh->dev[i];
2155 if ((dev->towrite || i == sh->pd_idx) &&
2156 !test_bit(R5_LOCKED, &dev->flags) &&
2157 !(test_bit(R5_UPTODATE, &dev->flags) ||
2158 test_bit(R5_Wantcompute, &dev->flags))) {
2159 if (test_bit(R5_Insync, &dev->flags))
2160 rmw++;
2161 else
2162 rmw += 2*disks; /* cannot read it */
2164 /* Would I have to read this buffer for reconstruct_write */
2165 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2166 !test_bit(R5_LOCKED, &dev->flags) &&
2167 !(test_bit(R5_UPTODATE, &dev->flags) ||
2168 test_bit(R5_Wantcompute, &dev->flags))) {
2169 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2170 else
2171 rcw += 2*disks;
2174 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2175 (unsigned long long)sh->sector, rmw, rcw);
2176 set_bit(STRIPE_HANDLE, &sh->state);
2177 if (rmw < rcw && rmw > 0)
2178 /* prefer read-modify-write, but need to get some data */
2179 for (i = disks; i--; ) {
2180 struct r5dev *dev = &sh->dev[i];
2181 if ((dev->towrite || i == sh->pd_idx) &&
2182 !test_bit(R5_LOCKED, &dev->flags) &&
2183 !(test_bit(R5_UPTODATE, &dev->flags) ||
2184 test_bit(R5_Wantcompute, &dev->flags)) &&
2185 test_bit(R5_Insync, &dev->flags)) {
2186 if (
2187 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2188 pr_debug("Read_old block "
2189 "%d for r-m-w\n", i);
2190 set_bit(R5_LOCKED, &dev->flags);
2191 set_bit(R5_Wantread, &dev->flags);
2192 if (!test_and_set_bit(
2193 STRIPE_OP_IO, &sh->ops.pending))
2194 sh->ops.count++;
2195 s->locked++;
2196 } else {
2197 set_bit(STRIPE_DELAYED, &sh->state);
2198 set_bit(STRIPE_HANDLE, &sh->state);
2202 if (rcw <= rmw && rcw > 0)
2203 /* want reconstruct write, but need to get some data */
2204 for (i = disks; i--; ) {
2205 struct r5dev *dev = &sh->dev[i];
2206 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2207 i != sh->pd_idx &&
2208 !test_bit(R5_LOCKED, &dev->flags) &&
2209 !(test_bit(R5_UPTODATE, &dev->flags) ||
2210 test_bit(R5_Wantcompute, &dev->flags)) &&
2211 test_bit(R5_Insync, &dev->flags)) {
2212 if (
2213 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2214 pr_debug("Read_old block "
2215 "%d for Reconstruct\n", i);
2216 set_bit(R5_LOCKED, &dev->flags);
2217 set_bit(R5_Wantread, &dev->flags);
2218 if (!test_and_set_bit(
2219 STRIPE_OP_IO, &sh->ops.pending))
2220 sh->ops.count++;
2221 s->locked++;
2222 } else {
2223 set_bit(STRIPE_DELAYED, &sh->state);
2224 set_bit(STRIPE_HANDLE, &sh->state);
2228 /* now if nothing is locked, and if we have enough data,
2229 * we can start a write request
2231 /* since handle_stripe can be called at any time we need to handle the
2232 * case where a compute block operation has been submitted and then a
2233 * subsequent call wants to start a write request. raid5_run_ops only
2234 * handles the case where compute block and postxor are requested
2235 * simultaneously. If this is not the case then new writes need to be
2236 * held off until the compute completes.
2238 if ((s->req_compute ||
2239 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2240 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2241 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2242 s->locked += handle_write_operations5(sh, rcw == 0, 0);
2245 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2246 struct stripe_head *sh, struct stripe_head_state *s,
2247 struct r6_state *r6s, int disks)
2249 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2250 int qd_idx = r6s->qd_idx;
2251 for (i = disks; i--; ) {
2252 struct r5dev *dev = &sh->dev[i];
2253 /* Would I have to read this buffer for reconstruct_write */
2254 if (!test_bit(R5_OVERWRITE, &dev->flags)
2255 && i != pd_idx && i != qd_idx
2256 && (!test_bit(R5_LOCKED, &dev->flags)
2257 ) &&
2258 !test_bit(R5_UPTODATE, &dev->flags)) {
2259 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2260 else {
2261 pr_debug("raid6: must_compute: "
2262 "disk %d flags=%#lx\n", i, dev->flags);
2263 must_compute++;
2267 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2268 (unsigned long long)sh->sector, rcw, must_compute);
2269 set_bit(STRIPE_HANDLE, &sh->state);
2271 if (rcw > 0)
2272 /* want reconstruct write, but need to get some data */
2273 for (i = disks; i--; ) {
2274 struct r5dev *dev = &sh->dev[i];
2275 if (!test_bit(R5_OVERWRITE, &dev->flags)
2276 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2277 && !test_bit(R5_LOCKED, &dev->flags) &&
2278 !test_bit(R5_UPTODATE, &dev->flags) &&
2279 test_bit(R5_Insync, &dev->flags)) {
2280 if (
2281 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2282 pr_debug("Read_old stripe %llu "
2283 "block %d for Reconstruct\n",
2284 (unsigned long long)sh->sector, i);
2285 set_bit(R5_LOCKED, &dev->flags);
2286 set_bit(R5_Wantread, &dev->flags);
2287 s->locked++;
2288 } else {
2289 pr_debug("Request delayed stripe %llu "
2290 "block %d for Reconstruct\n",
2291 (unsigned long long)sh->sector, i);
2292 set_bit(STRIPE_DELAYED, &sh->state);
2293 set_bit(STRIPE_HANDLE, &sh->state);
2297 /* now if nothing is locked, and if we have enough data, we can start a
2298 * write request
2300 if (s->locked == 0 && rcw == 0 &&
2301 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2302 if (must_compute > 0) {
2303 /* We have failed blocks and need to compute them */
2304 switch (s->failed) {
2305 case 0:
2306 BUG();
2307 case 1:
2308 compute_block_1(sh, r6s->failed_num[0], 0);
2309 break;
2310 case 2:
2311 compute_block_2(sh, r6s->failed_num[0],
2312 r6s->failed_num[1]);
2313 break;
2314 default: /* This request should have been failed? */
2315 BUG();
2319 pr_debug("Computing parity for stripe %llu\n",
2320 (unsigned long long)sh->sector);
2321 compute_parity6(sh, RECONSTRUCT_WRITE);
2322 /* now every locked buffer is ready to be written */
2323 for (i = disks; i--; )
2324 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2325 pr_debug("Writing stripe %llu block %d\n",
2326 (unsigned long long)sh->sector, i);
2327 s->locked++;
2328 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2330 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2331 set_bit(STRIPE_INSYNC, &sh->state);
2333 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2334 atomic_dec(&conf->preread_active_stripes);
2335 if (atomic_read(&conf->preread_active_stripes) <
2336 IO_THRESHOLD)
2337 md_wakeup_thread(conf->mddev->thread);
2342 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2343 struct stripe_head_state *s, int disks)
2345 set_bit(STRIPE_HANDLE, &sh->state);
2346 /* Take one of the following actions:
2347 * 1/ start a check parity operation if (uptodate == disks)
2348 * 2/ finish a check parity operation and act on the result
2349 * 3/ skip to the writeback section if we previously
2350 * initiated a recovery operation
2352 if (s->failed == 0 &&
2353 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2354 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2355 BUG_ON(s->uptodate != disks);
2356 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2357 sh->ops.count++;
2358 s->uptodate--;
2359 } else if (
2360 test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2361 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2362 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2364 if (sh->ops.zero_sum_result == 0)
2365 /* parity is correct (on disc,
2366 * not in buffer any more)
2368 set_bit(STRIPE_INSYNC, &sh->state);
2369 else {
2370 conf->mddev->resync_mismatches +=
2371 STRIPE_SECTORS;
2372 if (test_bit(
2373 MD_RECOVERY_CHECK, &conf->mddev->recovery))
2374 /* don't try to repair!! */
2375 set_bit(STRIPE_INSYNC, &sh->state);
2376 else {
2377 set_bit(STRIPE_OP_COMPUTE_BLK,
2378 &sh->ops.pending);
2379 set_bit(STRIPE_OP_MOD_REPAIR_PD,
2380 &sh->ops.pending);
2381 set_bit(R5_Wantcompute,
2382 &sh->dev[sh->pd_idx].flags);
2383 sh->ops.target = sh->pd_idx;
2384 sh->ops.count++;
2385 s->uptodate++;
2391 /* check if we can clear a parity disk reconstruct */
2392 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2393 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2395 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2396 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2397 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2398 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2401 /* Wait for check parity and compute block operations to complete
2402 * before write-back
2404 if (!test_bit(STRIPE_INSYNC, &sh->state) &&
2405 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2406 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2407 struct r5dev *dev;
2408 /* either failed parity check, or recovery is happening */
2409 if (s->failed == 0)
2410 s->failed_num = sh->pd_idx;
2411 dev = &sh->dev[s->failed_num];
2412 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2413 BUG_ON(s->uptodate != disks);
2415 set_bit(R5_LOCKED, &dev->flags);
2416 set_bit(R5_Wantwrite, &dev->flags);
2417 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2418 sh->ops.count++;
2420 clear_bit(STRIPE_DEGRADED, &sh->state);
2421 s->locked++;
2422 set_bit(STRIPE_INSYNC, &sh->state);
2427 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2428 struct stripe_head_state *s,
2429 struct r6_state *r6s, struct page *tmp_page,
2430 int disks)
2432 int update_p = 0, update_q = 0;
2433 struct r5dev *dev;
2434 int pd_idx = sh->pd_idx;
2435 int qd_idx = r6s->qd_idx;
2437 set_bit(STRIPE_HANDLE, &sh->state);
2439 BUG_ON(s->failed > 2);
2440 BUG_ON(s->uptodate < disks);
2441 /* Want to check and possibly repair P and Q.
2442 * However there could be one 'failed' device, in which
2443 * case we can only check one of them, possibly using the
2444 * other to generate missing data
2447 /* If !tmp_page, we cannot do the calculations,
2448 * but as we have set STRIPE_HANDLE, we will soon be called
2449 * by stripe_handle with a tmp_page - just wait until then.
2451 if (tmp_page) {
2452 if (s->failed == r6s->q_failed) {
2453 /* The only possible failed device holds 'Q', so it
2454 * makes sense to check P (If anything else were failed,
2455 * we would have used P to recreate it).
2457 compute_block_1(sh, pd_idx, 1);
2458 if (!page_is_zero(sh->dev[pd_idx].page)) {
2459 compute_block_1(sh, pd_idx, 0);
2460 update_p = 1;
2463 if (!r6s->q_failed && s->failed < 2) {
2464 /* q is not failed, and we didn't use it to generate
2465 * anything, so it makes sense to check it
2467 memcpy(page_address(tmp_page),
2468 page_address(sh->dev[qd_idx].page),
2469 STRIPE_SIZE);
2470 compute_parity6(sh, UPDATE_PARITY);
2471 if (memcmp(page_address(tmp_page),
2472 page_address(sh->dev[qd_idx].page),
2473 STRIPE_SIZE) != 0) {
2474 clear_bit(STRIPE_INSYNC, &sh->state);
2475 update_q = 1;
2478 if (update_p || update_q) {
2479 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2480 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2481 /* don't try to repair!! */
2482 update_p = update_q = 0;
2485 /* now write out any block on a failed drive,
2486 * or P or Q if they need it
2489 if (s->failed == 2) {
2490 dev = &sh->dev[r6s->failed_num[1]];
2491 s->locked++;
2492 set_bit(R5_LOCKED, &dev->flags);
2493 set_bit(R5_Wantwrite, &dev->flags);
2495 if (s->failed >= 1) {
2496 dev = &sh->dev[r6s->failed_num[0]];
2497 s->locked++;
2498 set_bit(R5_LOCKED, &dev->flags);
2499 set_bit(R5_Wantwrite, &dev->flags);
2502 if (update_p) {
2503 dev = &sh->dev[pd_idx];
2504 s->locked++;
2505 set_bit(R5_LOCKED, &dev->flags);
2506 set_bit(R5_Wantwrite, &dev->flags);
2508 if (update_q) {
2509 dev = &sh->dev[qd_idx];
2510 s->locked++;
2511 set_bit(R5_LOCKED, &dev->flags);
2512 set_bit(R5_Wantwrite, &dev->flags);
2514 clear_bit(STRIPE_DEGRADED, &sh->state);
2516 set_bit(STRIPE_INSYNC, &sh->state);
2520 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2521 struct r6_state *r6s)
2523 int i;
2525 /* We have read all the blocks in this stripe and now we need to
2526 * copy some of them into a target stripe for expand.
2528 struct dma_async_tx_descriptor *tx = NULL;
2529 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2530 for (i = 0; i < sh->disks; i++)
2531 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2532 int dd_idx, pd_idx, j;
2533 struct stripe_head *sh2;
2535 sector_t bn = compute_blocknr(sh, i);
2536 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2537 conf->raid_disks -
2538 conf->max_degraded, &dd_idx,
2539 &pd_idx, conf);
2540 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2541 pd_idx, 1);
2542 if (sh2 == NULL)
2543 /* so far only the early blocks of this stripe
2544 * have been requested. When later blocks
2545 * get requested, we will try again
2547 continue;
2548 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2549 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2550 /* must have already done this block */
2551 release_stripe(sh2);
2552 continue;
2555 /* place all the copies on one channel */
2556 tx = async_memcpy(sh2->dev[dd_idx].page,
2557 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2558 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2560 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2561 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2562 for (j = 0; j < conf->raid_disks; j++)
2563 if (j != sh2->pd_idx &&
2564 (!r6s || j != raid6_next_disk(sh2->pd_idx,
2565 sh2->disks)) &&
2566 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2567 break;
2568 if (j == conf->raid_disks) {
2569 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2570 set_bit(STRIPE_HANDLE, &sh2->state);
2572 release_stripe(sh2);
2575 /* done submitting copies, wait for them to complete */
2576 if (tx) {
2577 async_tx_ack(tx);
2578 dma_wait_for_async_tx(tx);
2583 * handle_stripe - do things to a stripe.
2585 * We lock the stripe and then examine the state of various bits
2586 * to see what needs to be done.
2587 * Possible results:
2588 * return some read request which now have data
2589 * return some write requests which are safely on disc
2590 * schedule a read on some buffers
2591 * schedule a write of some buffers
2592 * return confirmation of parity correctness
2594 * buffers are taken off read_list or write_list, and bh_cache buffers
2595 * get BH_Lock set before the stripe lock is released.
2599 static void handle_stripe5(struct stripe_head *sh)
2601 raid5_conf_t *conf = sh->raid_conf;
2602 int disks = sh->disks, i;
2603 struct bio *return_bi = NULL;
2604 struct stripe_head_state s;
2605 struct r5dev *dev;
2606 unsigned long pending = 0;
2608 memset(&s, 0, sizeof(s));
2609 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2610 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2611 atomic_read(&sh->count), sh->pd_idx,
2612 sh->ops.pending, sh->ops.ack, sh->ops.complete);
2614 spin_lock(&sh->lock);
2615 clear_bit(STRIPE_HANDLE, &sh->state);
2616 clear_bit(STRIPE_DELAYED, &sh->state);
2618 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2619 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2620 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2621 /* Now to look around and see what can be done */
2623 rcu_read_lock();
2624 for (i=disks; i--; ) {
2625 mdk_rdev_t *rdev;
2626 struct r5dev *dev = &sh->dev[i];
2627 clear_bit(R5_Insync, &dev->flags);
2629 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2630 "written %p\n", i, dev->flags, dev->toread, dev->read,
2631 dev->towrite, dev->written);
2633 /* maybe we can request a biofill operation
2635 * new wantfill requests are only permitted while
2636 * STRIPE_OP_BIOFILL is clear
2638 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2639 !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2640 set_bit(R5_Wantfill, &dev->flags);
2642 /* now count some things */
2643 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2644 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2645 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2647 if (test_bit(R5_Wantfill, &dev->flags))
2648 s.to_fill++;
2649 else if (dev->toread)
2650 s.to_read++;
2651 if (dev->towrite) {
2652 s.to_write++;
2653 if (!test_bit(R5_OVERWRITE, &dev->flags))
2654 s.non_overwrite++;
2656 if (dev->written)
2657 s.written++;
2658 rdev = rcu_dereference(conf->disks[i].rdev);
2659 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2660 /* The ReadError flag will just be confusing now */
2661 clear_bit(R5_ReadError, &dev->flags);
2662 clear_bit(R5_ReWrite, &dev->flags);
2664 if (!rdev || !test_bit(In_sync, &rdev->flags)
2665 || test_bit(R5_ReadError, &dev->flags)) {
2666 s.failed++;
2667 s.failed_num = i;
2668 } else
2669 set_bit(R5_Insync, &dev->flags);
2671 rcu_read_unlock();
2673 if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2674 sh->ops.count++;
2676 pr_debug("locked=%d uptodate=%d to_read=%d"
2677 " to_write=%d failed=%d failed_num=%d\n",
2678 s.locked, s.uptodate, s.to_read, s.to_write,
2679 s.failed, s.failed_num);
2680 /* check if the array has lost two devices and, if so, some requests might
2681 * need to be failed
2683 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2684 handle_requests_to_failed_array(conf, sh, &s, disks,
2685 &return_bi);
2686 if (s.failed > 1 && s.syncing) {
2687 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2688 clear_bit(STRIPE_SYNCING, &sh->state);
2689 s.syncing = 0;
2692 /* might be able to return some write requests if the parity block
2693 * is safe, or on a failed drive
2695 dev = &sh->dev[sh->pd_idx];
2696 if ( s.written &&
2697 ((test_bit(R5_Insync, &dev->flags) &&
2698 !test_bit(R5_LOCKED, &dev->flags) &&
2699 test_bit(R5_UPTODATE, &dev->flags)) ||
2700 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2701 handle_completed_write_requests(conf, sh, disks, &return_bi);
2703 /* Now we might consider reading some blocks, either to check/generate
2704 * parity, or to satisfy requests
2705 * or to load a block that is being partially written.
2707 if (s.to_read || s.non_overwrite ||
2708 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2709 test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2710 handle_issuing_new_read_requests5(sh, &s, disks);
2712 /* Now we check to see if any write operations have recently
2713 * completed
2716 /* leave prexor set until postxor is done, allows us to distinguish
2717 * a rmw from a rcw during biodrain
2719 if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2720 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2722 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2723 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2724 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2726 for (i = disks; i--; )
2727 clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2730 /* if only POSTXOR is set then this is an 'expand' postxor */
2731 if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2732 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2734 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2735 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2736 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2738 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2739 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2740 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2742 /* All the 'written' buffers and the parity block are ready to
2743 * be written back to disk
2745 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2746 for (i = disks; i--; ) {
2747 dev = &sh->dev[i];
2748 if (test_bit(R5_LOCKED, &dev->flags) &&
2749 (i == sh->pd_idx || dev->written)) {
2750 pr_debug("Writing block %d\n", i);
2751 set_bit(R5_Wantwrite, &dev->flags);
2752 if (!test_and_set_bit(
2753 STRIPE_OP_IO, &sh->ops.pending))
2754 sh->ops.count++;
2755 if (!test_bit(R5_Insync, &dev->flags) ||
2756 (i == sh->pd_idx && s.failed == 0))
2757 set_bit(STRIPE_INSYNC, &sh->state);
2760 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2761 atomic_dec(&conf->preread_active_stripes);
2762 if (atomic_read(&conf->preread_active_stripes) <
2763 IO_THRESHOLD)
2764 md_wakeup_thread(conf->mddev->thread);
2768 /* Now to consider new write requests and what else, if anything
2769 * should be read. We do not handle new writes when:
2770 * 1/ A 'write' operation (copy+xor) is already in flight.
2771 * 2/ A 'check' operation is in flight, as it may clobber the parity
2772 * block.
2774 if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2775 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2776 handle_issuing_new_write_requests5(conf, sh, &s, disks);
2778 /* maybe we need to check and possibly fix the parity for this stripe
2779 * Any reads will already have been scheduled, so we just see if enough
2780 * data is available. The parity check is held off while parity
2781 * dependent operations are in flight.
2783 if ((s.syncing && s.locked == 0 &&
2784 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2785 !test_bit(STRIPE_INSYNC, &sh->state)) ||
2786 test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2787 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2788 handle_parity_checks5(conf, sh, &s, disks);
2790 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2791 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2792 clear_bit(STRIPE_SYNCING, &sh->state);
2795 /* If the failed drive is just a ReadError, then we might need to progress
2796 * the repair/check process
2798 if (s.failed == 1 && !conf->mddev->ro &&
2799 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2800 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2801 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2803 dev = &sh->dev[s.failed_num];
2804 if (!test_bit(R5_ReWrite, &dev->flags)) {
2805 set_bit(R5_Wantwrite, &dev->flags);
2806 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2807 sh->ops.count++;
2808 set_bit(R5_ReWrite, &dev->flags);
2809 set_bit(R5_LOCKED, &dev->flags);
2810 s.locked++;
2811 } else {
2812 /* let's read it back */
2813 set_bit(R5_Wantread, &dev->flags);
2814 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2815 sh->ops.count++;
2816 set_bit(R5_LOCKED, &dev->flags);
2817 s.locked++;
2821 /* Finish postxor operations initiated by the expansion
2822 * process
2824 if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2825 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2827 clear_bit(STRIPE_EXPANDING, &sh->state);
2829 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2830 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2831 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2833 for (i = conf->raid_disks; i--; ) {
2834 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2835 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2836 sh->ops.count++;
2840 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2841 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2842 /* Need to write out all blocks after computing parity */
2843 sh->disks = conf->raid_disks;
2844 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2845 conf->raid_disks);
2846 s.locked += handle_write_operations5(sh, 1, 1);
2847 } else if (s.expanded &&
2848 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2849 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2850 atomic_dec(&conf->reshape_stripes);
2851 wake_up(&conf->wait_for_overlap);
2852 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2855 if (s.expanding && s.locked == 0)
2856 handle_stripe_expansion(conf, sh, NULL);
2858 if (sh->ops.count)
2859 pending = get_stripe_work(sh);
2861 spin_unlock(&sh->lock);
2863 if (pending)
2864 raid5_run_ops(sh, pending);
2866 return_io(return_bi);
2870 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2872 raid6_conf_t *conf = sh->raid_conf;
2873 int disks = sh->disks;
2874 struct bio *return_bi = NULL;
2875 int i, pd_idx = sh->pd_idx;
2876 struct stripe_head_state s;
2877 struct r6_state r6s;
2878 struct r5dev *dev, *pdev, *qdev;
2880 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2881 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2882 "pd_idx=%d, qd_idx=%d\n",
2883 (unsigned long long)sh->sector, sh->state,
2884 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2885 memset(&s, 0, sizeof(s));
2887 spin_lock(&sh->lock);
2888 clear_bit(STRIPE_HANDLE, &sh->state);
2889 clear_bit(STRIPE_DELAYED, &sh->state);
2891 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2892 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2893 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2894 /* Now to look around and see what can be done */
2896 rcu_read_lock();
2897 for (i=disks; i--; ) {
2898 mdk_rdev_t *rdev;
2899 dev = &sh->dev[i];
2900 clear_bit(R5_Insync, &dev->flags);
2902 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2903 i, dev->flags, dev->toread, dev->towrite, dev->written);
2904 /* maybe we can reply to a read */
2905 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2906 struct bio *rbi, *rbi2;
2907 pr_debug("Return read for disc %d\n", i);
2908 spin_lock_irq(&conf->device_lock);
2909 rbi = dev->toread;
2910 dev->toread = NULL;
2911 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2912 wake_up(&conf->wait_for_overlap);
2913 spin_unlock_irq(&conf->device_lock);
2914 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2915 copy_data(0, rbi, dev->page, dev->sector);
2916 rbi2 = r5_next_bio(rbi, dev->sector);
2917 spin_lock_irq(&conf->device_lock);
2918 if (--rbi->bi_phys_segments == 0) {
2919 rbi->bi_next = return_bi;
2920 return_bi = rbi;
2922 spin_unlock_irq(&conf->device_lock);
2923 rbi = rbi2;
2927 /* now count some things */
2928 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2929 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2932 if (dev->toread)
2933 s.to_read++;
2934 if (dev->towrite) {
2935 s.to_write++;
2936 if (!test_bit(R5_OVERWRITE, &dev->flags))
2937 s.non_overwrite++;
2939 if (dev->written)
2940 s.written++;
2941 rdev = rcu_dereference(conf->disks[i].rdev);
2942 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2943 /* The ReadError flag will just be confusing now */
2944 clear_bit(R5_ReadError, &dev->flags);
2945 clear_bit(R5_ReWrite, &dev->flags);
2947 if (!rdev || !test_bit(In_sync, &rdev->flags)
2948 || test_bit(R5_ReadError, &dev->flags)) {
2949 if (s.failed < 2)
2950 r6s.failed_num[s.failed] = i;
2951 s.failed++;
2952 } else
2953 set_bit(R5_Insync, &dev->flags);
2955 rcu_read_unlock();
2956 pr_debug("locked=%d uptodate=%d to_read=%d"
2957 " to_write=%d failed=%d failed_num=%d,%d\n",
2958 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2959 r6s.failed_num[0], r6s.failed_num[1]);
2960 /* check if the array has lost >2 devices and, if so, some requests
2961 * might need to be failed
2963 if (s.failed > 2 && s.to_read+s.to_write+s.written)
2964 handle_requests_to_failed_array(conf, sh, &s, disks,
2965 &return_bi);
2966 if (s.failed > 2 && s.syncing) {
2967 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2968 clear_bit(STRIPE_SYNCING, &sh->state);
2969 s.syncing = 0;
2973 * might be able to return some write requests if the parity blocks
2974 * are safe, or on a failed drive
2976 pdev = &sh->dev[pd_idx];
2977 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2978 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2979 qdev = &sh->dev[r6s.qd_idx];
2980 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2981 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2983 if ( s.written &&
2984 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
2985 && !test_bit(R5_LOCKED, &pdev->flags)
2986 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2987 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
2988 && !test_bit(R5_LOCKED, &qdev->flags)
2989 && test_bit(R5_UPTODATE, &qdev->flags)))))
2990 handle_completed_write_requests(conf, sh, disks, &return_bi);
2992 /* Now we might consider reading some blocks, either to check/generate
2993 * parity, or to satisfy requests
2994 * or to load a block that is being partially written.
2996 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
2997 (s.syncing && (s.uptodate < disks)) || s.expanding)
2998 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3000 /* now to consider writing and what else, if anything should be read */
3001 if (s.to_write)
3002 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3004 /* maybe we need to check and possibly fix the parity for this stripe
3005 * Any reads will already have been scheduled, so we just see if enough
3006 * data is available
3008 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3009 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3011 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3012 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3013 clear_bit(STRIPE_SYNCING, &sh->state);
3016 /* If the failed drives are just a ReadError, then we might need
3017 * to progress the repair/check process
3019 if (s.failed <= 2 && !conf->mddev->ro)
3020 for (i = 0; i < s.failed; i++) {
3021 dev = &sh->dev[r6s.failed_num[i]];
3022 if (test_bit(R5_ReadError, &dev->flags)
3023 && !test_bit(R5_LOCKED, &dev->flags)
3024 && test_bit(R5_UPTODATE, &dev->flags)
3026 if (!test_bit(R5_ReWrite, &dev->flags)) {
3027 set_bit(R5_Wantwrite, &dev->flags);
3028 set_bit(R5_ReWrite, &dev->flags);
3029 set_bit(R5_LOCKED, &dev->flags);
3030 } else {
3031 /* let's read it back */
3032 set_bit(R5_Wantread, &dev->flags);
3033 set_bit(R5_LOCKED, &dev->flags);
3038 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3039 /* Need to write out all blocks after computing P&Q */
3040 sh->disks = conf->raid_disks;
3041 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3042 conf->raid_disks);
3043 compute_parity6(sh, RECONSTRUCT_WRITE);
3044 for (i = conf->raid_disks ; i-- ; ) {
3045 set_bit(R5_LOCKED, &sh->dev[i].flags);
3046 s.locked++;
3047 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3049 clear_bit(STRIPE_EXPANDING, &sh->state);
3050 } else if (s.expanded) {
3051 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3052 atomic_dec(&conf->reshape_stripes);
3053 wake_up(&conf->wait_for_overlap);
3054 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3057 if (s.expanding && s.locked == 0)
3058 handle_stripe_expansion(conf, sh, &r6s);
3060 spin_unlock(&sh->lock);
3062 return_io(return_bi);
3064 for (i=disks; i-- ;) {
3065 int rw;
3066 struct bio *bi;
3067 mdk_rdev_t *rdev;
3068 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3069 rw = WRITE;
3070 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3071 rw = READ;
3072 else
3073 continue;
3075 bi = &sh->dev[i].req;
3077 bi->bi_rw = rw;
3078 if (rw == WRITE)
3079 bi->bi_end_io = raid5_end_write_request;
3080 else
3081 bi->bi_end_io = raid5_end_read_request;
3083 rcu_read_lock();
3084 rdev = rcu_dereference(conf->disks[i].rdev);
3085 if (rdev && test_bit(Faulty, &rdev->flags))
3086 rdev = NULL;
3087 if (rdev)
3088 atomic_inc(&rdev->nr_pending);
3089 rcu_read_unlock();
3091 if (rdev) {
3092 if (s.syncing || s.expanding || s.expanded)
3093 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3095 bi->bi_bdev = rdev->bdev;
3096 pr_debug("for %llu schedule op %ld on disc %d\n",
3097 (unsigned long long)sh->sector, bi->bi_rw, i);
3098 atomic_inc(&sh->count);
3099 bi->bi_sector = sh->sector + rdev->data_offset;
3100 bi->bi_flags = 1 << BIO_UPTODATE;
3101 bi->bi_vcnt = 1;
3102 bi->bi_max_vecs = 1;
3103 bi->bi_idx = 0;
3104 bi->bi_io_vec = &sh->dev[i].vec;
3105 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3106 bi->bi_io_vec[0].bv_offset = 0;
3107 bi->bi_size = STRIPE_SIZE;
3108 bi->bi_next = NULL;
3109 if (rw == WRITE &&
3110 test_bit(R5_ReWrite, &sh->dev[i].flags))
3111 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3112 generic_make_request(bi);
3113 } else {
3114 if (rw == WRITE)
3115 set_bit(STRIPE_DEGRADED, &sh->state);
3116 pr_debug("skip op %ld on disc %d for sector %llu\n",
3117 bi->bi_rw, i, (unsigned long long)sh->sector);
3118 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3119 set_bit(STRIPE_HANDLE, &sh->state);
3124 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3126 if (sh->raid_conf->level == 6)
3127 handle_stripe6(sh, tmp_page);
3128 else
3129 handle_stripe5(sh);
3134 static void raid5_activate_delayed(raid5_conf_t *conf)
3136 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3137 while (!list_empty(&conf->delayed_list)) {
3138 struct list_head *l = conf->delayed_list.next;
3139 struct stripe_head *sh;
3140 sh = list_entry(l, struct stripe_head, lru);
3141 list_del_init(l);
3142 clear_bit(STRIPE_DELAYED, &sh->state);
3143 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3144 atomic_inc(&conf->preread_active_stripes);
3145 list_add_tail(&sh->lru, &conf->handle_list);
3150 static void activate_bit_delay(raid5_conf_t *conf)
3152 /* device_lock is held */
3153 struct list_head head;
3154 list_add(&head, &conf->bitmap_list);
3155 list_del_init(&conf->bitmap_list);
3156 while (!list_empty(&head)) {
3157 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3158 list_del_init(&sh->lru);
3159 atomic_inc(&sh->count);
3160 __release_stripe(conf, sh);
3164 static void unplug_slaves(mddev_t *mddev)
3166 raid5_conf_t *conf = mddev_to_conf(mddev);
3167 int i;
3169 rcu_read_lock();
3170 for (i=0; i<mddev->raid_disks; i++) {
3171 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3172 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3173 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3175 atomic_inc(&rdev->nr_pending);
3176 rcu_read_unlock();
3178 if (r_queue->unplug_fn)
3179 r_queue->unplug_fn(r_queue);
3181 rdev_dec_pending(rdev, mddev);
3182 rcu_read_lock();
3185 rcu_read_unlock();
3188 static void raid5_unplug_device(struct request_queue *q)
3190 mddev_t *mddev = q->queuedata;
3191 raid5_conf_t *conf = mddev_to_conf(mddev);
3192 unsigned long flags;
3194 spin_lock_irqsave(&conf->device_lock, flags);
3196 if (blk_remove_plug(q)) {
3197 conf->seq_flush++;
3198 raid5_activate_delayed(conf);
3200 md_wakeup_thread(mddev->thread);
3202 spin_unlock_irqrestore(&conf->device_lock, flags);
3204 unplug_slaves(mddev);
3207 static int raid5_congested(void *data, int bits)
3209 mddev_t *mddev = data;
3210 raid5_conf_t *conf = mddev_to_conf(mddev);
3212 /* No difference between reads and writes. Just check
3213 * how busy the stripe_cache is
3215 if (conf->inactive_blocked)
3216 return 1;
3217 if (conf->quiesce)
3218 return 1;
3219 if (list_empty_careful(&conf->inactive_list))
3220 return 1;
3222 return 0;
3225 /* We want read requests to align with chunks where possible,
3226 * but write requests don't need to.
3228 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3230 mddev_t *mddev = q->queuedata;
3231 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3232 int max;
3233 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3234 unsigned int bio_sectors = bio->bi_size >> 9;
3236 if (bio_data_dir(bio) == WRITE)
3237 return biovec->bv_len; /* always allow writes to be mergeable */
3239 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3240 if (max < 0) max = 0;
3241 if (max <= biovec->bv_len && bio_sectors == 0)
3242 return biovec->bv_len;
3243 else
3244 return max;
3248 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3250 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3251 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3252 unsigned int bio_sectors = bio->bi_size >> 9;
3254 return chunk_sectors >=
3255 ((sector & (chunk_sectors - 1)) + bio_sectors);
3259 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3260 * later sampled by raid5d.
3262 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3264 unsigned long flags;
3266 spin_lock_irqsave(&conf->device_lock, flags);
3268 bi->bi_next = conf->retry_read_aligned_list;
3269 conf->retry_read_aligned_list = bi;
3271 spin_unlock_irqrestore(&conf->device_lock, flags);
3272 md_wakeup_thread(conf->mddev->thread);
3276 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3278 struct bio *bi;
3280 bi = conf->retry_read_aligned;
3281 if (bi) {
3282 conf->retry_read_aligned = NULL;
3283 return bi;
3285 bi = conf->retry_read_aligned_list;
3286 if(bi) {
3287 conf->retry_read_aligned_list = bi->bi_next;
3288 bi->bi_next = NULL;
3289 bi->bi_phys_segments = 1; /* biased count of active stripes */
3290 bi->bi_hw_segments = 0; /* count of processed stripes */
3293 return bi;
3298 * The "raid5_align_endio" should check if the read succeeded and if it
3299 * did, call bio_endio on the original bio (having bio_put the new bio
3300 * first).
3301 * If the read failed..
3303 static void raid5_align_endio(struct bio *bi, int error)
3305 struct bio* raid_bi = bi->bi_private;
3306 mddev_t *mddev;
3307 raid5_conf_t *conf;
3308 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3309 mdk_rdev_t *rdev;
3311 bio_put(bi);
3313 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3314 conf = mddev_to_conf(mddev);
3315 rdev = (void*)raid_bi->bi_next;
3316 raid_bi->bi_next = NULL;
3318 rdev_dec_pending(rdev, conf->mddev);
3320 if (!error && uptodate) {
3321 bio_endio(raid_bi, 0);
3322 if (atomic_dec_and_test(&conf->active_aligned_reads))
3323 wake_up(&conf->wait_for_stripe);
3324 return;
3328 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3330 add_bio_to_retry(raid_bi, conf);
3333 static int bio_fits_rdev(struct bio *bi)
3335 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3337 if ((bi->bi_size>>9) > q->max_sectors)
3338 return 0;
3339 blk_recount_segments(q, bi);
3340 if (bi->bi_phys_segments > q->max_phys_segments ||
3341 bi->bi_hw_segments > q->max_hw_segments)
3342 return 0;
3344 if (q->merge_bvec_fn)
3345 /* it's too hard to apply the merge_bvec_fn at this stage,
3346 * just just give up
3348 return 0;
3350 return 1;
3354 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3356 mddev_t *mddev = q->queuedata;
3357 raid5_conf_t *conf = mddev_to_conf(mddev);
3358 const unsigned int raid_disks = conf->raid_disks;
3359 const unsigned int data_disks = raid_disks - conf->max_degraded;
3360 unsigned int dd_idx, pd_idx;
3361 struct bio* align_bi;
3362 mdk_rdev_t *rdev;
3364 if (!in_chunk_boundary(mddev, raid_bio)) {
3365 pr_debug("chunk_aligned_read : non aligned\n");
3366 return 0;
3369 * use bio_clone to make a copy of the bio
3371 align_bi = bio_clone(raid_bio, GFP_NOIO);
3372 if (!align_bi)
3373 return 0;
3375 * set bi_end_io to a new function, and set bi_private to the
3376 * original bio.
3378 align_bi->bi_end_io = raid5_align_endio;
3379 align_bi->bi_private = raid_bio;
3381 * compute position
3383 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3384 raid_disks,
3385 data_disks,
3386 &dd_idx,
3387 &pd_idx,
3388 conf);
3390 rcu_read_lock();
3391 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3392 if (rdev && test_bit(In_sync, &rdev->flags)) {
3393 atomic_inc(&rdev->nr_pending);
3394 rcu_read_unlock();
3395 raid_bio->bi_next = (void*)rdev;
3396 align_bi->bi_bdev = rdev->bdev;
3397 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3398 align_bi->bi_sector += rdev->data_offset;
3400 if (!bio_fits_rdev(align_bi)) {
3401 /* too big in some way */
3402 bio_put(align_bi);
3403 rdev_dec_pending(rdev, mddev);
3404 return 0;
3407 spin_lock_irq(&conf->device_lock);
3408 wait_event_lock_irq(conf->wait_for_stripe,
3409 conf->quiesce == 0,
3410 conf->device_lock, /* nothing */);
3411 atomic_inc(&conf->active_aligned_reads);
3412 spin_unlock_irq(&conf->device_lock);
3414 generic_make_request(align_bi);
3415 return 1;
3416 } else {
3417 rcu_read_unlock();
3418 bio_put(align_bi);
3419 return 0;
3424 static int make_request(struct request_queue *q, struct bio * bi)
3426 mddev_t *mddev = q->queuedata;
3427 raid5_conf_t *conf = mddev_to_conf(mddev);
3428 unsigned int dd_idx, pd_idx;
3429 sector_t new_sector;
3430 sector_t logical_sector, last_sector;
3431 struct stripe_head *sh;
3432 const int rw = bio_data_dir(bi);
3433 int remaining;
3435 if (unlikely(bio_barrier(bi))) {
3436 bio_endio(bi, -EOPNOTSUPP);
3437 return 0;
3440 md_write_start(mddev, bi);
3442 disk_stat_inc(mddev->gendisk, ios[rw]);
3443 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3445 if (rw == READ &&
3446 mddev->reshape_position == MaxSector &&
3447 chunk_aligned_read(q,bi))
3448 return 0;
3450 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3451 last_sector = bi->bi_sector + (bi->bi_size>>9);
3452 bi->bi_next = NULL;
3453 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3455 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3456 DEFINE_WAIT(w);
3457 int disks, data_disks;
3459 retry:
3460 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3461 if (likely(conf->expand_progress == MaxSector))
3462 disks = conf->raid_disks;
3463 else {
3464 /* spinlock is needed as expand_progress may be
3465 * 64bit on a 32bit platform, and so it might be
3466 * possible to see a half-updated value
3467 * Ofcourse expand_progress could change after
3468 * the lock is dropped, so once we get a reference
3469 * to the stripe that we think it is, we will have
3470 * to check again.
3472 spin_lock_irq(&conf->device_lock);
3473 disks = conf->raid_disks;
3474 if (logical_sector >= conf->expand_progress)
3475 disks = conf->previous_raid_disks;
3476 else {
3477 if (logical_sector >= conf->expand_lo) {
3478 spin_unlock_irq(&conf->device_lock);
3479 schedule();
3480 goto retry;
3483 spin_unlock_irq(&conf->device_lock);
3485 data_disks = disks - conf->max_degraded;
3487 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3488 &dd_idx, &pd_idx, conf);
3489 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3490 (unsigned long long)new_sector,
3491 (unsigned long long)logical_sector);
3493 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3494 if (sh) {
3495 if (unlikely(conf->expand_progress != MaxSector)) {
3496 /* expansion might have moved on while waiting for a
3497 * stripe, so we must do the range check again.
3498 * Expansion could still move past after this
3499 * test, but as we are holding a reference to
3500 * 'sh', we know that if that happens,
3501 * STRIPE_EXPANDING will get set and the expansion
3502 * won't proceed until we finish with the stripe.
3504 int must_retry = 0;
3505 spin_lock_irq(&conf->device_lock);
3506 if (logical_sector < conf->expand_progress &&
3507 disks == conf->previous_raid_disks)
3508 /* mismatch, need to try again */
3509 must_retry = 1;
3510 spin_unlock_irq(&conf->device_lock);
3511 if (must_retry) {
3512 release_stripe(sh);
3513 goto retry;
3516 /* FIXME what if we get a false positive because these
3517 * are being updated.
3519 if (logical_sector >= mddev->suspend_lo &&
3520 logical_sector < mddev->suspend_hi) {
3521 release_stripe(sh);
3522 schedule();
3523 goto retry;
3526 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3527 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3528 /* Stripe is busy expanding or
3529 * add failed due to overlap. Flush everything
3530 * and wait a while
3532 raid5_unplug_device(mddev->queue);
3533 release_stripe(sh);
3534 schedule();
3535 goto retry;
3537 finish_wait(&conf->wait_for_overlap, &w);
3538 handle_stripe(sh, NULL);
3539 release_stripe(sh);
3540 } else {
3541 /* cannot get stripe for read-ahead, just give-up */
3542 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3543 finish_wait(&conf->wait_for_overlap, &w);
3544 break;
3548 spin_lock_irq(&conf->device_lock);
3549 remaining = --bi->bi_phys_segments;
3550 spin_unlock_irq(&conf->device_lock);
3551 if (remaining == 0) {
3553 if ( rw == WRITE )
3554 md_write_end(mddev);
3556 bi->bi_end_io(bi,
3557 test_bit(BIO_UPTODATE, &bi->bi_flags)
3558 ? 0 : -EIO);
3560 return 0;
3563 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3565 /* reshaping is quite different to recovery/resync so it is
3566 * handled quite separately ... here.
3568 * On each call to sync_request, we gather one chunk worth of
3569 * destination stripes and flag them as expanding.
3570 * Then we find all the source stripes and request reads.
3571 * As the reads complete, handle_stripe will copy the data
3572 * into the destination stripe and release that stripe.
3574 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3575 struct stripe_head *sh;
3576 int pd_idx;
3577 sector_t first_sector, last_sector;
3578 int raid_disks = conf->previous_raid_disks;
3579 int data_disks = raid_disks - conf->max_degraded;
3580 int new_data_disks = conf->raid_disks - conf->max_degraded;
3581 int i;
3582 int dd_idx;
3583 sector_t writepos, safepos, gap;
3585 if (sector_nr == 0 &&
3586 conf->expand_progress != 0) {
3587 /* restarting in the middle, skip the initial sectors */
3588 sector_nr = conf->expand_progress;
3589 sector_div(sector_nr, new_data_disks);
3590 *skipped = 1;
3591 return sector_nr;
3594 /* we update the metadata when there is more than 3Meg
3595 * in the block range (that is rather arbitrary, should
3596 * probably be time based) or when the data about to be
3597 * copied would over-write the source of the data at
3598 * the front of the range.
3599 * i.e. one new_stripe forward from expand_progress new_maps
3600 * to after where expand_lo old_maps to
3602 writepos = conf->expand_progress +
3603 conf->chunk_size/512*(new_data_disks);
3604 sector_div(writepos, new_data_disks);
3605 safepos = conf->expand_lo;
3606 sector_div(safepos, data_disks);
3607 gap = conf->expand_progress - conf->expand_lo;
3609 if (writepos >= safepos ||
3610 gap > (new_data_disks)*3000*2 /*3Meg*/) {
3611 /* Cannot proceed until we've updated the superblock... */
3612 wait_event(conf->wait_for_overlap,
3613 atomic_read(&conf->reshape_stripes)==0);
3614 mddev->reshape_position = conf->expand_progress;
3615 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3616 md_wakeup_thread(mddev->thread);
3617 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3618 kthread_should_stop());
3619 spin_lock_irq(&conf->device_lock);
3620 conf->expand_lo = mddev->reshape_position;
3621 spin_unlock_irq(&conf->device_lock);
3622 wake_up(&conf->wait_for_overlap);
3625 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3626 int j;
3627 int skipped = 0;
3628 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3629 sh = get_active_stripe(conf, sector_nr+i,
3630 conf->raid_disks, pd_idx, 0);
3631 set_bit(STRIPE_EXPANDING, &sh->state);
3632 atomic_inc(&conf->reshape_stripes);
3633 /* If any of this stripe is beyond the end of the old
3634 * array, then we need to zero those blocks
3636 for (j=sh->disks; j--;) {
3637 sector_t s;
3638 if (j == sh->pd_idx)
3639 continue;
3640 if (conf->level == 6 &&
3641 j == raid6_next_disk(sh->pd_idx, sh->disks))
3642 continue;
3643 s = compute_blocknr(sh, j);
3644 if (s < (mddev->array_size<<1)) {
3645 skipped = 1;
3646 continue;
3648 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3649 set_bit(R5_Expanded, &sh->dev[j].flags);
3650 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3652 if (!skipped) {
3653 set_bit(STRIPE_EXPAND_READY, &sh->state);
3654 set_bit(STRIPE_HANDLE, &sh->state);
3656 release_stripe(sh);
3658 spin_lock_irq(&conf->device_lock);
3659 conf->expand_progress = (sector_nr + i) * new_data_disks;
3660 spin_unlock_irq(&conf->device_lock);
3661 /* Ok, those stripe are ready. We can start scheduling
3662 * reads on the source stripes.
3663 * The source stripes are determined by mapping the first and last
3664 * block on the destination stripes.
3666 first_sector =
3667 raid5_compute_sector(sector_nr*(new_data_disks),
3668 raid_disks, data_disks,
3669 &dd_idx, &pd_idx, conf);
3670 last_sector =
3671 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3672 *(new_data_disks) -1,
3673 raid_disks, data_disks,
3674 &dd_idx, &pd_idx, conf);
3675 if (last_sector >= (mddev->size<<1))
3676 last_sector = (mddev->size<<1)-1;
3677 while (first_sector <= last_sector) {
3678 pd_idx = stripe_to_pdidx(first_sector, conf,
3679 conf->previous_raid_disks);
3680 sh = get_active_stripe(conf, first_sector,
3681 conf->previous_raid_disks, pd_idx, 0);
3682 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3683 set_bit(STRIPE_HANDLE, &sh->state);
3684 release_stripe(sh);
3685 first_sector += STRIPE_SECTORS;
3687 return conf->chunk_size>>9;
3690 /* FIXME go_faster isn't used */
3691 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3693 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3694 struct stripe_head *sh;
3695 int pd_idx;
3696 int raid_disks = conf->raid_disks;
3697 sector_t max_sector = mddev->size << 1;
3698 int sync_blocks;
3699 int still_degraded = 0;
3700 int i;
3702 if (sector_nr >= max_sector) {
3703 /* just being told to finish up .. nothing much to do */
3704 unplug_slaves(mddev);
3705 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3706 end_reshape(conf);
3707 return 0;
3710 if (mddev->curr_resync < max_sector) /* aborted */
3711 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3712 &sync_blocks, 1);
3713 else /* completed sync */
3714 conf->fullsync = 0;
3715 bitmap_close_sync(mddev->bitmap);
3717 return 0;
3720 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3721 return reshape_request(mddev, sector_nr, skipped);
3723 /* if there is too many failed drives and we are trying
3724 * to resync, then assert that we are finished, because there is
3725 * nothing we can do.
3727 if (mddev->degraded >= conf->max_degraded &&
3728 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3729 sector_t rv = (mddev->size << 1) - sector_nr;
3730 *skipped = 1;
3731 return rv;
3733 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3734 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3735 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3736 /* we can skip this block, and probably more */
3737 sync_blocks /= STRIPE_SECTORS;
3738 *skipped = 1;
3739 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3742 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3743 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3744 if (sh == NULL) {
3745 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3746 /* make sure we don't swamp the stripe cache if someone else
3747 * is trying to get access
3749 schedule_timeout_uninterruptible(1);
3751 /* Need to check if array will still be degraded after recovery/resync
3752 * We don't need to check the 'failed' flag as when that gets set,
3753 * recovery aborts.
3755 for (i=0; i<mddev->raid_disks; i++)
3756 if (conf->disks[i].rdev == NULL)
3757 still_degraded = 1;
3759 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3761 spin_lock(&sh->lock);
3762 set_bit(STRIPE_SYNCING, &sh->state);
3763 clear_bit(STRIPE_INSYNC, &sh->state);
3764 spin_unlock(&sh->lock);
3766 handle_stripe(sh, NULL);
3767 release_stripe(sh);
3769 return STRIPE_SECTORS;
3772 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3774 /* We may not be able to submit a whole bio at once as there
3775 * may not be enough stripe_heads available.
3776 * We cannot pre-allocate enough stripe_heads as we may need
3777 * more than exist in the cache (if we allow ever large chunks).
3778 * So we do one stripe head at a time and record in
3779 * ->bi_hw_segments how many have been done.
3781 * We *know* that this entire raid_bio is in one chunk, so
3782 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3784 struct stripe_head *sh;
3785 int dd_idx, pd_idx;
3786 sector_t sector, logical_sector, last_sector;
3787 int scnt = 0;
3788 int remaining;
3789 int handled = 0;
3791 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3792 sector = raid5_compute_sector( logical_sector,
3793 conf->raid_disks,
3794 conf->raid_disks - conf->max_degraded,
3795 &dd_idx,
3796 &pd_idx,
3797 conf);
3798 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3800 for (; logical_sector < last_sector;
3801 logical_sector += STRIPE_SECTORS,
3802 sector += STRIPE_SECTORS,
3803 scnt++) {
3805 if (scnt < raid_bio->bi_hw_segments)
3806 /* already done this stripe */
3807 continue;
3809 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3811 if (!sh) {
3812 /* failed to get a stripe - must wait */
3813 raid_bio->bi_hw_segments = scnt;
3814 conf->retry_read_aligned = raid_bio;
3815 return handled;
3818 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3819 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3820 release_stripe(sh);
3821 raid_bio->bi_hw_segments = scnt;
3822 conf->retry_read_aligned = raid_bio;
3823 return handled;
3826 handle_stripe(sh, NULL);
3827 release_stripe(sh);
3828 handled++;
3830 spin_lock_irq(&conf->device_lock);
3831 remaining = --raid_bio->bi_phys_segments;
3832 spin_unlock_irq(&conf->device_lock);
3833 if (remaining == 0) {
3835 raid_bio->bi_end_io(raid_bio,
3836 test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
3837 ? 0 : -EIO);
3839 if (atomic_dec_and_test(&conf->active_aligned_reads))
3840 wake_up(&conf->wait_for_stripe);
3841 return handled;
3847 * This is our raid5 kernel thread.
3849 * We scan the hash table for stripes which can be handled now.
3850 * During the scan, completed stripes are saved for us by the interrupt
3851 * handler, so that they will not have to wait for our next wakeup.
3853 static void raid5d (mddev_t *mddev)
3855 struct stripe_head *sh;
3856 raid5_conf_t *conf = mddev_to_conf(mddev);
3857 int handled;
3859 pr_debug("+++ raid5d active\n");
3861 md_check_recovery(mddev);
3863 handled = 0;
3864 spin_lock_irq(&conf->device_lock);
3865 while (1) {
3866 struct list_head *first;
3867 struct bio *bio;
3869 if (conf->seq_flush != conf->seq_write) {
3870 int seq = conf->seq_flush;
3871 spin_unlock_irq(&conf->device_lock);
3872 bitmap_unplug(mddev->bitmap);
3873 spin_lock_irq(&conf->device_lock);
3874 conf->seq_write = seq;
3875 activate_bit_delay(conf);
3878 if (list_empty(&conf->handle_list) &&
3879 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
3880 !blk_queue_plugged(mddev->queue) &&
3881 !list_empty(&conf->delayed_list))
3882 raid5_activate_delayed(conf);
3884 while ((bio = remove_bio_from_retry(conf))) {
3885 int ok;
3886 spin_unlock_irq(&conf->device_lock);
3887 ok = retry_aligned_read(conf, bio);
3888 spin_lock_irq(&conf->device_lock);
3889 if (!ok)
3890 break;
3891 handled++;
3894 if (list_empty(&conf->handle_list)) {
3895 async_tx_issue_pending_all();
3896 break;
3899 first = conf->handle_list.next;
3900 sh = list_entry(first, struct stripe_head, lru);
3902 list_del_init(first);
3903 atomic_inc(&sh->count);
3904 BUG_ON(atomic_read(&sh->count)!= 1);
3905 spin_unlock_irq(&conf->device_lock);
3907 handled++;
3908 handle_stripe(sh, conf->spare_page);
3909 release_stripe(sh);
3911 spin_lock_irq(&conf->device_lock);
3913 pr_debug("%d stripes handled\n", handled);
3915 spin_unlock_irq(&conf->device_lock);
3917 unplug_slaves(mddev);
3919 pr_debug("--- raid5d inactive\n");
3922 static ssize_t
3923 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3925 raid5_conf_t *conf = mddev_to_conf(mddev);
3926 if (conf)
3927 return sprintf(page, "%d\n", conf->max_nr_stripes);
3928 else
3929 return 0;
3932 static ssize_t
3933 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3935 raid5_conf_t *conf = mddev_to_conf(mddev);
3936 char *end;
3937 int new;
3938 if (len >= PAGE_SIZE)
3939 return -EINVAL;
3940 if (!conf)
3941 return -ENODEV;
3943 new = simple_strtoul(page, &end, 10);
3944 if (!*page || (*end && *end != '\n') )
3945 return -EINVAL;
3946 if (new <= 16 || new > 32768)
3947 return -EINVAL;
3948 while (new < conf->max_nr_stripes) {
3949 if (drop_one_stripe(conf))
3950 conf->max_nr_stripes--;
3951 else
3952 break;
3954 md_allow_write(mddev);
3955 while (new > conf->max_nr_stripes) {
3956 if (grow_one_stripe(conf))
3957 conf->max_nr_stripes++;
3958 else break;
3960 return len;
3963 static struct md_sysfs_entry
3964 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3965 raid5_show_stripe_cache_size,
3966 raid5_store_stripe_cache_size);
3968 static ssize_t
3969 stripe_cache_active_show(mddev_t *mddev, char *page)
3971 raid5_conf_t *conf = mddev_to_conf(mddev);
3972 if (conf)
3973 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3974 else
3975 return 0;
3978 static struct md_sysfs_entry
3979 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3981 static struct attribute *raid5_attrs[] = {
3982 &raid5_stripecache_size.attr,
3983 &raid5_stripecache_active.attr,
3984 NULL,
3986 static struct attribute_group raid5_attrs_group = {
3987 .name = NULL,
3988 .attrs = raid5_attrs,
3991 static int run(mddev_t *mddev)
3993 raid5_conf_t *conf;
3994 int raid_disk, memory;
3995 mdk_rdev_t *rdev;
3996 struct disk_info *disk;
3997 struct list_head *tmp;
3998 int working_disks = 0;
4000 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4001 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4002 mdname(mddev), mddev->level);
4003 return -EIO;
4006 if (mddev->reshape_position != MaxSector) {
4007 /* Check that we can continue the reshape.
4008 * Currently only disks can change, it must
4009 * increase, and we must be past the point where
4010 * a stripe over-writes itself
4012 sector_t here_new, here_old;
4013 int old_disks;
4014 int max_degraded = (mddev->level == 5 ? 1 : 2);
4016 if (mddev->new_level != mddev->level ||
4017 mddev->new_layout != mddev->layout ||
4018 mddev->new_chunk != mddev->chunk_size) {
4019 printk(KERN_ERR "raid5: %s: unsupported reshape "
4020 "required - aborting.\n",
4021 mdname(mddev));
4022 return -EINVAL;
4024 if (mddev->delta_disks <= 0) {
4025 printk(KERN_ERR "raid5: %s: unsupported reshape "
4026 "(reduce disks) required - aborting.\n",
4027 mdname(mddev));
4028 return -EINVAL;
4030 old_disks = mddev->raid_disks - mddev->delta_disks;
4031 /* reshape_position must be on a new-stripe boundary, and one
4032 * further up in new geometry must map after here in old
4033 * geometry.
4035 here_new = mddev->reshape_position;
4036 if (sector_div(here_new, (mddev->chunk_size>>9)*
4037 (mddev->raid_disks - max_degraded))) {
4038 printk(KERN_ERR "raid5: reshape_position not "
4039 "on a stripe boundary\n");
4040 return -EINVAL;
4042 /* here_new is the stripe we will write to */
4043 here_old = mddev->reshape_position;
4044 sector_div(here_old, (mddev->chunk_size>>9)*
4045 (old_disks-max_degraded));
4046 /* here_old is the first stripe that we might need to read
4047 * from */
4048 if (here_new >= here_old) {
4049 /* Reading from the same stripe as writing to - bad */
4050 printk(KERN_ERR "raid5: reshape_position too early for "
4051 "auto-recovery - aborting.\n");
4052 return -EINVAL;
4054 printk(KERN_INFO "raid5: reshape will continue\n");
4055 /* OK, we should be able to continue; */
4059 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4060 if ((conf = mddev->private) == NULL)
4061 goto abort;
4062 if (mddev->reshape_position == MaxSector) {
4063 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4064 } else {
4065 conf->raid_disks = mddev->raid_disks;
4066 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4069 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4070 GFP_KERNEL);
4071 if (!conf->disks)
4072 goto abort;
4074 conf->mddev = mddev;
4076 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4077 goto abort;
4079 if (mddev->level == 6) {
4080 conf->spare_page = alloc_page(GFP_KERNEL);
4081 if (!conf->spare_page)
4082 goto abort;
4084 spin_lock_init(&conf->device_lock);
4085 init_waitqueue_head(&conf->wait_for_stripe);
4086 init_waitqueue_head(&conf->wait_for_overlap);
4087 INIT_LIST_HEAD(&conf->handle_list);
4088 INIT_LIST_HEAD(&conf->delayed_list);
4089 INIT_LIST_HEAD(&conf->bitmap_list);
4090 INIT_LIST_HEAD(&conf->inactive_list);
4091 atomic_set(&conf->active_stripes, 0);
4092 atomic_set(&conf->preread_active_stripes, 0);
4093 atomic_set(&conf->active_aligned_reads, 0);
4095 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4097 ITERATE_RDEV(mddev,rdev,tmp) {
4098 raid_disk = rdev->raid_disk;
4099 if (raid_disk >= conf->raid_disks
4100 || raid_disk < 0)
4101 continue;
4102 disk = conf->disks + raid_disk;
4104 disk->rdev = rdev;
4106 if (test_bit(In_sync, &rdev->flags)) {
4107 char b[BDEVNAME_SIZE];
4108 printk(KERN_INFO "raid5: device %s operational as raid"
4109 " disk %d\n", bdevname(rdev->bdev,b),
4110 raid_disk);
4111 working_disks++;
4116 * 0 for a fully functional array, 1 or 2 for a degraded array.
4118 mddev->degraded = conf->raid_disks - working_disks;
4119 conf->mddev = mddev;
4120 conf->chunk_size = mddev->chunk_size;
4121 conf->level = mddev->level;
4122 if (conf->level == 6)
4123 conf->max_degraded = 2;
4124 else
4125 conf->max_degraded = 1;
4126 conf->algorithm = mddev->layout;
4127 conf->max_nr_stripes = NR_STRIPES;
4128 conf->expand_progress = mddev->reshape_position;
4130 /* device size must be a multiple of chunk size */
4131 mddev->size &= ~(mddev->chunk_size/1024 -1);
4132 mddev->resync_max_sectors = mddev->size << 1;
4134 if (conf->level == 6 && conf->raid_disks < 4) {
4135 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4136 mdname(mddev), conf->raid_disks);
4137 goto abort;
4139 if (!conf->chunk_size || conf->chunk_size % 4) {
4140 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4141 conf->chunk_size, mdname(mddev));
4142 goto abort;
4144 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4145 printk(KERN_ERR
4146 "raid5: unsupported parity algorithm %d for %s\n",
4147 conf->algorithm, mdname(mddev));
4148 goto abort;
4150 if (mddev->degraded > conf->max_degraded) {
4151 printk(KERN_ERR "raid5: not enough operational devices for %s"
4152 " (%d/%d failed)\n",
4153 mdname(mddev), mddev->degraded, conf->raid_disks);
4154 goto abort;
4157 if (mddev->degraded > 0 &&
4158 mddev->recovery_cp != MaxSector) {
4159 if (mddev->ok_start_degraded)
4160 printk(KERN_WARNING
4161 "raid5: starting dirty degraded array: %s"
4162 "- data corruption possible.\n",
4163 mdname(mddev));
4164 else {
4165 printk(KERN_ERR
4166 "raid5: cannot start dirty degraded array for %s\n",
4167 mdname(mddev));
4168 goto abort;
4173 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4174 if (!mddev->thread) {
4175 printk(KERN_ERR
4176 "raid5: couldn't allocate thread for %s\n",
4177 mdname(mddev));
4178 goto abort;
4181 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4182 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4183 if (grow_stripes(conf, conf->max_nr_stripes)) {
4184 printk(KERN_ERR
4185 "raid5: couldn't allocate %dkB for buffers\n", memory);
4186 shrink_stripes(conf);
4187 md_unregister_thread(mddev->thread);
4188 goto abort;
4189 } else
4190 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4191 memory, mdname(mddev));
4193 if (mddev->degraded == 0)
4194 printk("raid5: raid level %d set %s active with %d out of %d"
4195 " devices, algorithm %d\n", conf->level, mdname(mddev),
4196 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4197 conf->algorithm);
4198 else
4199 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4200 " out of %d devices, algorithm %d\n", conf->level,
4201 mdname(mddev), mddev->raid_disks - mddev->degraded,
4202 mddev->raid_disks, conf->algorithm);
4204 print_raid5_conf(conf);
4206 if (conf->expand_progress != MaxSector) {
4207 printk("...ok start reshape thread\n");
4208 conf->expand_lo = conf->expand_progress;
4209 atomic_set(&conf->reshape_stripes, 0);
4210 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4211 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4212 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4213 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4214 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4215 "%s_reshape");
4218 /* read-ahead size must cover two whole stripes, which is
4219 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4222 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4223 int stripe = data_disks *
4224 (mddev->chunk_size / PAGE_SIZE);
4225 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4226 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4229 /* Ok, everything is just fine now */
4230 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4231 printk(KERN_WARNING
4232 "raid5: failed to create sysfs attributes for %s\n",
4233 mdname(mddev));
4235 mddev->queue->unplug_fn = raid5_unplug_device;
4236 mddev->queue->backing_dev_info.congested_data = mddev;
4237 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4239 mddev->array_size = mddev->size * (conf->previous_raid_disks -
4240 conf->max_degraded);
4242 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4244 return 0;
4245 abort:
4246 if (conf) {
4247 print_raid5_conf(conf);
4248 safe_put_page(conf->spare_page);
4249 kfree(conf->disks);
4250 kfree(conf->stripe_hashtbl);
4251 kfree(conf);
4253 mddev->private = NULL;
4254 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4255 return -EIO;
4260 static int stop(mddev_t *mddev)
4262 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4264 md_unregister_thread(mddev->thread);
4265 mddev->thread = NULL;
4266 shrink_stripes(conf);
4267 kfree(conf->stripe_hashtbl);
4268 mddev->queue->backing_dev_info.congested_fn = NULL;
4269 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4270 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4271 kfree(conf->disks);
4272 kfree(conf);
4273 mddev->private = NULL;
4274 return 0;
4277 #ifdef DEBUG
4278 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4280 int i;
4282 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4283 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4284 seq_printf(seq, "sh %llu, count %d.\n",
4285 (unsigned long long)sh->sector, atomic_read(&sh->count));
4286 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4287 for (i = 0; i < sh->disks; i++) {
4288 seq_printf(seq, "(cache%d: %p %ld) ",
4289 i, sh->dev[i].page, sh->dev[i].flags);
4291 seq_printf(seq, "\n");
4294 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4296 struct stripe_head *sh;
4297 struct hlist_node *hn;
4298 int i;
4300 spin_lock_irq(&conf->device_lock);
4301 for (i = 0; i < NR_HASH; i++) {
4302 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4303 if (sh->raid_conf != conf)
4304 continue;
4305 print_sh(seq, sh);
4308 spin_unlock_irq(&conf->device_lock);
4310 #endif
4312 static void status (struct seq_file *seq, mddev_t *mddev)
4314 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4315 int i;
4317 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4318 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4319 for (i = 0; i < conf->raid_disks; i++)
4320 seq_printf (seq, "%s",
4321 conf->disks[i].rdev &&
4322 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4323 seq_printf (seq, "]");
4324 #ifdef DEBUG
4325 seq_printf (seq, "\n");
4326 printall(seq, conf);
4327 #endif
4330 static void print_raid5_conf (raid5_conf_t *conf)
4332 int i;
4333 struct disk_info *tmp;
4335 printk("RAID5 conf printout:\n");
4336 if (!conf) {
4337 printk("(conf==NULL)\n");
4338 return;
4340 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4341 conf->raid_disks - conf->mddev->degraded);
4343 for (i = 0; i < conf->raid_disks; i++) {
4344 char b[BDEVNAME_SIZE];
4345 tmp = conf->disks + i;
4346 if (tmp->rdev)
4347 printk(" disk %d, o:%d, dev:%s\n",
4348 i, !test_bit(Faulty, &tmp->rdev->flags),
4349 bdevname(tmp->rdev->bdev,b));
4353 static int raid5_spare_active(mddev_t *mddev)
4355 int i;
4356 raid5_conf_t *conf = mddev->private;
4357 struct disk_info *tmp;
4359 for (i = 0; i < conf->raid_disks; i++) {
4360 tmp = conf->disks + i;
4361 if (tmp->rdev
4362 && !test_bit(Faulty, &tmp->rdev->flags)
4363 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4364 unsigned long flags;
4365 spin_lock_irqsave(&conf->device_lock, flags);
4366 mddev->degraded--;
4367 spin_unlock_irqrestore(&conf->device_lock, flags);
4370 print_raid5_conf(conf);
4371 return 0;
4374 static int raid5_remove_disk(mddev_t *mddev, int number)
4376 raid5_conf_t *conf = mddev->private;
4377 int err = 0;
4378 mdk_rdev_t *rdev;
4379 struct disk_info *p = conf->disks + number;
4381 print_raid5_conf(conf);
4382 rdev = p->rdev;
4383 if (rdev) {
4384 if (test_bit(In_sync, &rdev->flags) ||
4385 atomic_read(&rdev->nr_pending)) {
4386 err = -EBUSY;
4387 goto abort;
4389 p->rdev = NULL;
4390 synchronize_rcu();
4391 if (atomic_read(&rdev->nr_pending)) {
4392 /* lost the race, try later */
4393 err = -EBUSY;
4394 p->rdev = rdev;
4397 abort:
4399 print_raid5_conf(conf);
4400 return err;
4403 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4405 raid5_conf_t *conf = mddev->private;
4406 int found = 0;
4407 int disk;
4408 struct disk_info *p;
4410 if (mddev->degraded > conf->max_degraded)
4411 /* no point adding a device */
4412 return 0;
4415 * find the disk ... but prefer rdev->saved_raid_disk
4416 * if possible.
4418 if (rdev->saved_raid_disk >= 0 &&
4419 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4420 disk = rdev->saved_raid_disk;
4421 else
4422 disk = 0;
4423 for ( ; disk < conf->raid_disks; disk++)
4424 if ((p=conf->disks + disk)->rdev == NULL) {
4425 clear_bit(In_sync, &rdev->flags);
4426 rdev->raid_disk = disk;
4427 found = 1;
4428 if (rdev->saved_raid_disk != disk)
4429 conf->fullsync = 1;
4430 rcu_assign_pointer(p->rdev, rdev);
4431 break;
4433 print_raid5_conf(conf);
4434 return found;
4437 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4439 /* no resync is happening, and there is enough space
4440 * on all devices, so we can resize.
4441 * We need to make sure resync covers any new space.
4442 * If the array is shrinking we should possibly wait until
4443 * any io in the removed space completes, but it hardly seems
4444 * worth it.
4446 raid5_conf_t *conf = mddev_to_conf(mddev);
4448 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4449 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4450 set_capacity(mddev->gendisk, mddev->array_size << 1);
4451 mddev->changed = 1;
4452 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4453 mddev->recovery_cp = mddev->size << 1;
4454 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4456 mddev->size = sectors /2;
4457 mddev->resync_max_sectors = sectors;
4458 return 0;
4461 #ifdef CONFIG_MD_RAID5_RESHAPE
4462 static int raid5_check_reshape(mddev_t *mddev)
4464 raid5_conf_t *conf = mddev_to_conf(mddev);
4465 int err;
4467 if (mddev->delta_disks < 0 ||
4468 mddev->new_level != mddev->level)
4469 return -EINVAL; /* Cannot shrink array or change level yet */
4470 if (mddev->delta_disks == 0)
4471 return 0; /* nothing to do */
4473 /* Can only proceed if there are plenty of stripe_heads.
4474 * We need a minimum of one full stripe,, and for sensible progress
4475 * it is best to have about 4 times that.
4476 * If we require 4 times, then the default 256 4K stripe_heads will
4477 * allow for chunk sizes up to 256K, which is probably OK.
4478 * If the chunk size is greater, user-space should request more
4479 * stripe_heads first.
4481 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4482 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4483 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4484 (mddev->chunk_size / STRIPE_SIZE)*4);
4485 return -ENOSPC;
4488 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4489 if (err)
4490 return err;
4492 if (mddev->degraded > conf->max_degraded)
4493 return -EINVAL;
4494 /* looks like we might be able to manage this */
4495 return 0;
4498 static int raid5_start_reshape(mddev_t *mddev)
4500 raid5_conf_t *conf = mddev_to_conf(mddev);
4501 mdk_rdev_t *rdev;
4502 struct list_head *rtmp;
4503 int spares = 0;
4504 int added_devices = 0;
4505 unsigned long flags;
4507 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4508 return -EBUSY;
4510 ITERATE_RDEV(mddev, rdev, rtmp)
4511 if (rdev->raid_disk < 0 &&
4512 !test_bit(Faulty, &rdev->flags))
4513 spares++;
4515 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4516 /* Not enough devices even to make a degraded array
4517 * of that size
4519 return -EINVAL;
4521 atomic_set(&conf->reshape_stripes, 0);
4522 spin_lock_irq(&conf->device_lock);
4523 conf->previous_raid_disks = conf->raid_disks;
4524 conf->raid_disks += mddev->delta_disks;
4525 conf->expand_progress = 0;
4526 conf->expand_lo = 0;
4527 spin_unlock_irq(&conf->device_lock);
4529 /* Add some new drives, as many as will fit.
4530 * We know there are enough to make the newly sized array work.
4532 ITERATE_RDEV(mddev, rdev, rtmp)
4533 if (rdev->raid_disk < 0 &&
4534 !test_bit(Faulty, &rdev->flags)) {
4535 if (raid5_add_disk(mddev, rdev)) {
4536 char nm[20];
4537 set_bit(In_sync, &rdev->flags);
4538 added_devices++;
4539 rdev->recovery_offset = 0;
4540 sprintf(nm, "rd%d", rdev->raid_disk);
4541 if (sysfs_create_link(&mddev->kobj,
4542 &rdev->kobj, nm))
4543 printk(KERN_WARNING
4544 "raid5: failed to create "
4545 " link %s for %s\n",
4546 nm, mdname(mddev));
4547 } else
4548 break;
4551 spin_lock_irqsave(&conf->device_lock, flags);
4552 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4553 spin_unlock_irqrestore(&conf->device_lock, flags);
4554 mddev->raid_disks = conf->raid_disks;
4555 mddev->reshape_position = 0;
4556 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4558 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4559 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4560 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4561 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4562 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4563 "%s_reshape");
4564 if (!mddev->sync_thread) {
4565 mddev->recovery = 0;
4566 spin_lock_irq(&conf->device_lock);
4567 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4568 conf->expand_progress = MaxSector;
4569 spin_unlock_irq(&conf->device_lock);
4570 return -EAGAIN;
4572 md_wakeup_thread(mddev->sync_thread);
4573 md_new_event(mddev);
4574 return 0;
4576 #endif
4578 static void end_reshape(raid5_conf_t *conf)
4580 struct block_device *bdev;
4582 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4583 conf->mddev->array_size = conf->mddev->size *
4584 (conf->raid_disks - conf->max_degraded);
4585 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4586 conf->mddev->changed = 1;
4588 bdev = bdget_disk(conf->mddev->gendisk, 0);
4589 if (bdev) {
4590 mutex_lock(&bdev->bd_inode->i_mutex);
4591 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4592 mutex_unlock(&bdev->bd_inode->i_mutex);
4593 bdput(bdev);
4595 spin_lock_irq(&conf->device_lock);
4596 conf->expand_progress = MaxSector;
4597 spin_unlock_irq(&conf->device_lock);
4598 conf->mddev->reshape_position = MaxSector;
4600 /* read-ahead size must cover two whole stripes, which is
4601 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4604 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4605 int stripe = data_disks *
4606 (conf->mddev->chunk_size / PAGE_SIZE);
4607 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4608 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4613 static void raid5_quiesce(mddev_t *mddev, int state)
4615 raid5_conf_t *conf = mddev_to_conf(mddev);
4617 switch(state) {
4618 case 2: /* resume for a suspend */
4619 wake_up(&conf->wait_for_overlap);
4620 break;
4622 case 1: /* stop all writes */
4623 spin_lock_irq(&conf->device_lock);
4624 conf->quiesce = 1;
4625 wait_event_lock_irq(conf->wait_for_stripe,
4626 atomic_read(&conf->active_stripes) == 0 &&
4627 atomic_read(&conf->active_aligned_reads) == 0,
4628 conf->device_lock, /* nothing */);
4629 spin_unlock_irq(&conf->device_lock);
4630 break;
4632 case 0: /* re-enable writes */
4633 spin_lock_irq(&conf->device_lock);
4634 conf->quiesce = 0;
4635 wake_up(&conf->wait_for_stripe);
4636 wake_up(&conf->wait_for_overlap);
4637 spin_unlock_irq(&conf->device_lock);
4638 break;
4642 static struct mdk_personality raid6_personality =
4644 .name = "raid6",
4645 .level = 6,
4646 .owner = THIS_MODULE,
4647 .make_request = make_request,
4648 .run = run,
4649 .stop = stop,
4650 .status = status,
4651 .error_handler = error,
4652 .hot_add_disk = raid5_add_disk,
4653 .hot_remove_disk= raid5_remove_disk,
4654 .spare_active = raid5_spare_active,
4655 .sync_request = sync_request,
4656 .resize = raid5_resize,
4657 #ifdef CONFIG_MD_RAID5_RESHAPE
4658 .check_reshape = raid5_check_reshape,
4659 .start_reshape = raid5_start_reshape,
4660 #endif
4661 .quiesce = raid5_quiesce,
4663 static struct mdk_personality raid5_personality =
4665 .name = "raid5",
4666 .level = 5,
4667 .owner = THIS_MODULE,
4668 .make_request = make_request,
4669 .run = run,
4670 .stop = stop,
4671 .status = status,
4672 .error_handler = error,
4673 .hot_add_disk = raid5_add_disk,
4674 .hot_remove_disk= raid5_remove_disk,
4675 .spare_active = raid5_spare_active,
4676 .sync_request = sync_request,
4677 .resize = raid5_resize,
4678 #ifdef CONFIG_MD_RAID5_RESHAPE
4679 .check_reshape = raid5_check_reshape,
4680 .start_reshape = raid5_start_reshape,
4681 #endif
4682 .quiesce = raid5_quiesce,
4685 static struct mdk_personality raid4_personality =
4687 .name = "raid4",
4688 .level = 4,
4689 .owner = THIS_MODULE,
4690 .make_request = make_request,
4691 .run = run,
4692 .stop = stop,
4693 .status = status,
4694 .error_handler = error,
4695 .hot_add_disk = raid5_add_disk,
4696 .hot_remove_disk= raid5_remove_disk,
4697 .spare_active = raid5_spare_active,
4698 .sync_request = sync_request,
4699 .resize = raid5_resize,
4700 #ifdef CONFIG_MD_RAID5_RESHAPE
4701 .check_reshape = raid5_check_reshape,
4702 .start_reshape = raid5_start_reshape,
4703 #endif
4704 .quiesce = raid5_quiesce,
4707 static int __init raid5_init(void)
4709 int e;
4711 e = raid6_select_algo();
4712 if ( e )
4713 return e;
4714 register_md_personality(&raid6_personality);
4715 register_md_personality(&raid5_personality);
4716 register_md_personality(&raid4_personality);
4717 return 0;
4720 static void raid5_exit(void)
4722 unregister_md_personality(&raid6_personality);
4723 unregister_md_personality(&raid5_personality);
4724 unregister_md_personality(&raid4_personality);
4727 module_init(raid5_init);
4728 module_exit(raid5_exit);
4729 MODULE_LICENSE("GPL");
4730 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4731 MODULE_ALIAS("md-raid5");
4732 MODULE_ALIAS("md-raid4");
4733 MODULE_ALIAS("md-level-5");
4734 MODULE_ALIAS("md-level-4");
4735 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4736 MODULE_ALIAS("md-raid6");
4737 MODULE_ALIAS("md-level-6");
4739 /* This used to be two separate modules, they were: */
4740 MODULE_ALIAS("raid5");
4741 MODULE_ALIAS("raid6");