2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
67 #define HASH_MASK (NR_HASH - 1)
69 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
72 * order without overlap. There may be several bio's per stripe+device, and
73 * a bio could span several devices.
74 * When walking this list for a particular stripe+device, we must never proceed
75 * beyond a bio that extends past this device, as the next bio might no longer
77 * This macro is used to determine the 'next' bio in the list, given the sector
78 * of the current stripe+device
80 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 * The following can be used to debug the driver
84 #define RAID5_PARANOIA 1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 # define CHECK_DEVLOCK()
96 #if !RAID6_USE_EMPTY_ZERO_PAGE
97 /* In .bss so it's zeroed */
98 const char raid6_empty_zero_page
[PAGE_SIZE
] __attribute__((aligned(256)));
101 static inline int raid6_next_disk(int disk
, int raid_disks
)
104 return (disk
< raid_disks
) ? disk
: 0;
107 static void return_io(struct bio
*return_bi
)
109 struct bio
*bi
= return_bi
;
112 return_bi
= bi
->bi_next
;
116 test_bit(BIO_UPTODATE
, &bi
->bi_flags
)
122 static void print_raid5_conf (raid5_conf_t
*conf
);
124 static void __release_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
)
126 if (atomic_dec_and_test(&sh
->count
)) {
127 BUG_ON(!list_empty(&sh
->lru
));
128 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
129 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
130 if (test_bit(STRIPE_DELAYED
, &sh
->state
)) {
131 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
132 blk_plug_device(conf
->mddev
->queue
);
133 } else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
134 sh
->bm_seq
- conf
->seq_write
> 0) {
135 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
136 blk_plug_device(conf
->mddev
->queue
);
138 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
139 list_add_tail(&sh
->lru
, &conf
->handle_list
);
141 md_wakeup_thread(conf
->mddev
->thread
);
143 BUG_ON(sh
->ops
.pending
);
144 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
145 atomic_dec(&conf
->preread_active_stripes
);
146 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
147 md_wakeup_thread(conf
->mddev
->thread
);
149 atomic_dec(&conf
->active_stripes
);
150 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
151 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
152 wake_up(&conf
->wait_for_stripe
);
153 if (conf
->retry_read_aligned
)
154 md_wakeup_thread(conf
->mddev
->thread
);
159 static void release_stripe(struct stripe_head
*sh
)
161 raid5_conf_t
*conf
= sh
->raid_conf
;
164 spin_lock_irqsave(&conf
->device_lock
, flags
);
165 __release_stripe(conf
, sh
);
166 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
169 static inline void remove_hash(struct stripe_head
*sh
)
171 pr_debug("remove_hash(), stripe %llu\n",
172 (unsigned long long)sh
->sector
);
174 hlist_del_init(&sh
->hash
);
177 static inline void insert_hash(raid5_conf_t
*conf
, struct stripe_head
*sh
)
179 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
181 pr_debug("insert_hash(), stripe %llu\n",
182 (unsigned long long)sh
->sector
);
185 hlist_add_head(&sh
->hash
, hp
);
189 /* find an idle stripe, make sure it is unhashed, and return it. */
190 static struct stripe_head
*get_free_stripe(raid5_conf_t
*conf
)
192 struct stripe_head
*sh
= NULL
;
193 struct list_head
*first
;
196 if (list_empty(&conf
->inactive_list
))
198 first
= conf
->inactive_list
.next
;
199 sh
= list_entry(first
, struct stripe_head
, lru
);
200 list_del_init(first
);
202 atomic_inc(&conf
->active_stripes
);
207 static void shrink_buffers(struct stripe_head
*sh
, int num
)
212 for (i
=0; i
<num
; i
++) {
216 sh
->dev
[i
].page
= NULL
;
221 static int grow_buffers(struct stripe_head
*sh
, int num
)
225 for (i
=0; i
<num
; i
++) {
228 if (!(page
= alloc_page(GFP_KERNEL
))) {
231 sh
->dev
[i
].page
= page
;
236 static void raid5_build_block (struct stripe_head
*sh
, int i
);
238 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int pd_idx
, int disks
)
240 raid5_conf_t
*conf
= sh
->raid_conf
;
243 BUG_ON(atomic_read(&sh
->count
) != 0);
244 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
245 BUG_ON(sh
->ops
.pending
|| sh
->ops
.ack
|| sh
->ops
.complete
);
248 pr_debug("init_stripe called, stripe %llu\n",
249 (unsigned long long)sh
->sector
);
259 for (i
= sh
->disks
; i
--; ) {
260 struct r5dev
*dev
= &sh
->dev
[i
];
262 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
263 test_bit(R5_LOCKED
, &dev
->flags
)) {
264 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
265 (unsigned long long)sh
->sector
, i
, dev
->toread
,
266 dev
->read
, dev
->towrite
, dev
->written
,
267 test_bit(R5_LOCKED
, &dev
->flags
));
271 raid5_build_block(sh
, i
);
273 insert_hash(conf
, sh
);
276 static struct stripe_head
*__find_stripe(raid5_conf_t
*conf
, sector_t sector
, int disks
)
278 struct stripe_head
*sh
;
279 struct hlist_node
*hn
;
282 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
283 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
284 if (sh
->sector
== sector
&& sh
->disks
== disks
)
286 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
290 static void unplug_slaves(mddev_t
*mddev
);
291 static void raid5_unplug_device(struct request_queue
*q
);
293 static struct stripe_head
*get_active_stripe(raid5_conf_t
*conf
, sector_t sector
, int disks
,
294 int pd_idx
, int noblock
)
296 struct stripe_head
*sh
;
298 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
300 spin_lock_irq(&conf
->device_lock
);
303 wait_event_lock_irq(conf
->wait_for_stripe
,
305 conf
->device_lock
, /* nothing */);
306 sh
= __find_stripe(conf
, sector
, disks
);
308 if (!conf
->inactive_blocked
)
309 sh
= get_free_stripe(conf
);
310 if (noblock
&& sh
== NULL
)
313 conf
->inactive_blocked
= 1;
314 wait_event_lock_irq(conf
->wait_for_stripe
,
315 !list_empty(&conf
->inactive_list
) &&
316 (atomic_read(&conf
->active_stripes
)
317 < (conf
->max_nr_stripes
*3/4)
318 || !conf
->inactive_blocked
),
320 raid5_unplug_device(conf
->mddev
->queue
)
322 conf
->inactive_blocked
= 0;
324 init_stripe(sh
, sector
, pd_idx
, disks
);
326 if (atomic_read(&sh
->count
)) {
327 BUG_ON(!list_empty(&sh
->lru
));
329 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
330 atomic_inc(&conf
->active_stripes
);
331 if (list_empty(&sh
->lru
) &&
332 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
334 list_del_init(&sh
->lru
);
337 } while (sh
== NULL
);
340 atomic_inc(&sh
->count
);
342 spin_unlock_irq(&conf
->device_lock
);
346 /* test_and_ack_op() ensures that we only dequeue an operation once */
347 #define test_and_ack_op(op, pend) \
349 if (test_bit(op, &sh->ops.pending) && \
350 !test_bit(op, &sh->ops.complete)) { \
351 if (test_and_set_bit(op, &sh->ops.ack)) \
352 clear_bit(op, &pend); \
356 clear_bit(op, &pend); \
359 /* find new work to run, do not resubmit work that is already
362 static unsigned long get_stripe_work(struct stripe_head
*sh
)
364 unsigned long pending
;
367 pending
= sh
->ops
.pending
;
369 test_and_ack_op(STRIPE_OP_BIOFILL
, pending
);
370 test_and_ack_op(STRIPE_OP_COMPUTE_BLK
, pending
);
371 test_and_ack_op(STRIPE_OP_PREXOR
, pending
);
372 test_and_ack_op(STRIPE_OP_BIODRAIN
, pending
);
373 test_and_ack_op(STRIPE_OP_POSTXOR
, pending
);
374 test_and_ack_op(STRIPE_OP_CHECK
, pending
);
375 if (test_and_clear_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
378 sh
->ops
.count
-= ack
;
379 BUG_ON(sh
->ops
.count
< 0);
385 raid5_end_read_request(struct bio
*bi
, int error
);
387 raid5_end_write_request(struct bio
*bi
, int error
);
389 static void ops_run_io(struct stripe_head
*sh
)
391 raid5_conf_t
*conf
= sh
->raid_conf
;
392 int i
, disks
= sh
->disks
;
396 for (i
= disks
; i
--; ) {
400 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
402 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
407 bi
= &sh
->dev
[i
].req
;
411 bi
->bi_end_io
= raid5_end_write_request
;
413 bi
->bi_end_io
= raid5_end_read_request
;
416 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
417 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
420 atomic_inc(&rdev
->nr_pending
);
424 if (test_bit(STRIPE_SYNCING
, &sh
->state
) ||
425 test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
) ||
426 test_bit(STRIPE_EXPAND_READY
, &sh
->state
))
427 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
429 bi
->bi_bdev
= rdev
->bdev
;
430 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
431 __FUNCTION__
, (unsigned long long)sh
->sector
,
433 atomic_inc(&sh
->count
);
434 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
435 bi
->bi_flags
= 1 << BIO_UPTODATE
;
439 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
440 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
441 bi
->bi_io_vec
[0].bv_offset
= 0;
442 bi
->bi_size
= STRIPE_SIZE
;
445 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
446 atomic_add(STRIPE_SECTORS
,
447 &rdev
->corrected_errors
);
448 generic_make_request(bi
);
451 set_bit(STRIPE_DEGRADED
, &sh
->state
);
452 pr_debug("skip op %ld on disc %d for sector %llu\n",
453 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
454 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
455 set_bit(STRIPE_HANDLE
, &sh
->state
);
460 static struct dma_async_tx_descriptor
*
461 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
462 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
465 struct page
*bio_page
;
469 if (bio
->bi_sector
>= sector
)
470 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
472 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
473 bio_for_each_segment(bvl
, bio
, i
) {
474 int len
= bio_iovec_idx(bio
, i
)->bv_len
;
478 if (page_offset
< 0) {
479 b_offset
= -page_offset
;
480 page_offset
+= b_offset
;
484 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
485 clen
= STRIPE_SIZE
- page_offset
;
490 b_offset
+= bio_iovec_idx(bio
, i
)->bv_offset
;
491 bio_page
= bio_iovec_idx(bio
, i
)->bv_page
;
493 tx
= async_memcpy(page
, bio_page
, page_offset
,
498 tx
= async_memcpy(bio_page
, page
, b_offset
,
503 if (clen
< len
) /* hit end of page */
511 static void ops_complete_biofill(void *stripe_head_ref
)
513 struct stripe_head
*sh
= stripe_head_ref
;
514 struct bio
*return_bi
= NULL
;
515 raid5_conf_t
*conf
= sh
->raid_conf
;
518 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
519 (unsigned long long)sh
->sector
);
521 /* clear completed biofills */
522 for (i
= sh
->disks
; i
--; ) {
523 struct r5dev
*dev
= &sh
->dev
[i
];
525 /* acknowledge completion of a biofill operation */
526 /* and check if we need to reply to a read request,
527 * new R5_Wantfill requests are held off until
528 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
530 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
531 struct bio
*rbi
, *rbi2
;
533 /* The access to dev->read is outside of the
534 * spin_lock_irq(&conf->device_lock), but is protected
535 * by the STRIPE_OP_BIOFILL pending bit
540 while (rbi
&& rbi
->bi_sector
<
541 dev
->sector
+ STRIPE_SECTORS
) {
542 rbi2
= r5_next_bio(rbi
, dev
->sector
);
543 spin_lock_irq(&conf
->device_lock
);
544 if (--rbi
->bi_phys_segments
== 0) {
545 rbi
->bi_next
= return_bi
;
548 spin_unlock_irq(&conf
->device_lock
);
553 clear_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.ack
);
554 clear_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.pending
);
556 return_io(return_bi
);
558 set_bit(STRIPE_HANDLE
, &sh
->state
);
562 static void ops_run_biofill(struct stripe_head
*sh
)
564 struct dma_async_tx_descriptor
*tx
= NULL
;
565 raid5_conf_t
*conf
= sh
->raid_conf
;
568 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
569 (unsigned long long)sh
->sector
);
571 for (i
= sh
->disks
; i
--; ) {
572 struct r5dev
*dev
= &sh
->dev
[i
];
573 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
575 spin_lock_irq(&conf
->device_lock
);
576 dev
->read
= rbi
= dev
->toread
;
578 spin_unlock_irq(&conf
->device_lock
);
579 while (rbi
&& rbi
->bi_sector
<
580 dev
->sector
+ STRIPE_SECTORS
) {
581 tx
= async_copy_data(0, rbi
, dev
->page
,
583 rbi
= r5_next_bio(rbi
, dev
->sector
);
588 atomic_inc(&sh
->count
);
589 async_trigger_callback(ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
, tx
,
590 ops_complete_biofill
, sh
);
593 static void ops_complete_compute5(void *stripe_head_ref
)
595 struct stripe_head
*sh
= stripe_head_ref
;
596 int target
= sh
->ops
.target
;
597 struct r5dev
*tgt
= &sh
->dev
[target
];
599 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
600 (unsigned long long)sh
->sector
);
602 set_bit(R5_UPTODATE
, &tgt
->flags
);
603 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
604 clear_bit(R5_Wantcompute
, &tgt
->flags
);
605 set_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
);
606 set_bit(STRIPE_HANDLE
, &sh
->state
);
610 static struct dma_async_tx_descriptor
*
611 ops_run_compute5(struct stripe_head
*sh
, unsigned long pending
)
613 /* kernel stack size limits the total number of disks */
614 int disks
= sh
->disks
;
615 struct page
*xor_srcs
[disks
];
616 int target
= sh
->ops
.target
;
617 struct r5dev
*tgt
= &sh
->dev
[target
];
618 struct page
*xor_dest
= tgt
->page
;
620 struct dma_async_tx_descriptor
*tx
;
623 pr_debug("%s: stripe %llu block: %d\n",
624 __FUNCTION__
, (unsigned long long)sh
->sector
, target
);
625 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
627 for (i
= disks
; i
--; )
629 xor_srcs
[count
++] = sh
->dev
[i
].page
;
631 atomic_inc(&sh
->count
);
633 if (unlikely(count
== 1))
634 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
,
635 0, NULL
, ops_complete_compute5
, sh
);
637 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
638 ASYNC_TX_XOR_ZERO_DST
, NULL
,
639 ops_complete_compute5
, sh
);
641 /* ack now if postxor is not set to be run */
642 if (tx
&& !test_bit(STRIPE_OP_POSTXOR
, &pending
))
648 static void ops_complete_prexor(void *stripe_head_ref
)
650 struct stripe_head
*sh
= stripe_head_ref
;
652 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
653 (unsigned long long)sh
->sector
);
655 set_bit(STRIPE_OP_PREXOR
, &sh
->ops
.complete
);
658 static struct dma_async_tx_descriptor
*
659 ops_run_prexor(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
661 /* kernel stack size limits the total number of disks */
662 int disks
= sh
->disks
;
663 struct page
*xor_srcs
[disks
];
664 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
666 /* existing parity data subtracted */
667 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
669 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
670 (unsigned long long)sh
->sector
);
672 for (i
= disks
; i
--; ) {
673 struct r5dev
*dev
= &sh
->dev
[i
];
674 /* Only process blocks that are known to be uptodate */
675 if (dev
->towrite
&& test_bit(R5_Wantprexor
, &dev
->flags
))
676 xor_srcs
[count
++] = dev
->page
;
679 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
680 ASYNC_TX_DEP_ACK
| ASYNC_TX_XOR_DROP_DST
, tx
,
681 ops_complete_prexor
, sh
);
686 static struct dma_async_tx_descriptor
*
687 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
689 int disks
= sh
->disks
;
690 int pd_idx
= sh
->pd_idx
, i
;
692 /* check if prexor is active which means only process blocks
693 * that are part of a read-modify-write (Wantprexor)
695 int prexor
= test_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
);
697 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
698 (unsigned long long)sh
->sector
);
700 for (i
= disks
; i
--; ) {
701 struct r5dev
*dev
= &sh
->dev
[i
];
706 if (prexor
) { /* rmw */
708 test_bit(R5_Wantprexor
, &dev
->flags
))
711 if (i
!= pd_idx
&& dev
->towrite
&&
712 test_bit(R5_LOCKED
, &dev
->flags
))
719 spin_lock(&sh
->lock
);
720 chosen
= dev
->towrite
;
722 BUG_ON(dev
->written
);
723 wbi
= dev
->written
= chosen
;
724 spin_unlock(&sh
->lock
);
726 while (wbi
&& wbi
->bi_sector
<
727 dev
->sector
+ STRIPE_SECTORS
) {
728 tx
= async_copy_data(1, wbi
, dev
->page
,
730 wbi
= r5_next_bio(wbi
, dev
->sector
);
738 static void ops_complete_postxor(void *stripe_head_ref
)
740 struct stripe_head
*sh
= stripe_head_ref
;
742 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
743 (unsigned long long)sh
->sector
);
745 set_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
);
746 set_bit(STRIPE_HANDLE
, &sh
->state
);
750 static void ops_complete_write(void *stripe_head_ref
)
752 struct stripe_head
*sh
= stripe_head_ref
;
753 int disks
= sh
->disks
, i
, pd_idx
= sh
->pd_idx
;
755 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
756 (unsigned long long)sh
->sector
);
758 for (i
= disks
; i
--; ) {
759 struct r5dev
*dev
= &sh
->dev
[i
];
760 if (dev
->written
|| i
== pd_idx
)
761 set_bit(R5_UPTODATE
, &dev
->flags
);
764 set_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.complete
);
765 set_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
);
767 set_bit(STRIPE_HANDLE
, &sh
->state
);
772 ops_run_postxor(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
774 /* kernel stack size limits the total number of disks */
775 int disks
= sh
->disks
;
776 struct page
*xor_srcs
[disks
];
778 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
779 struct page
*xor_dest
;
780 int prexor
= test_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
);
782 dma_async_tx_callback callback
;
784 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
785 (unsigned long long)sh
->sector
);
787 /* check if prexor is active which means only process blocks
788 * that are part of a read-modify-write (written)
791 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
792 for (i
= disks
; i
--; ) {
793 struct r5dev
*dev
= &sh
->dev
[i
];
795 xor_srcs
[count
++] = dev
->page
;
798 xor_dest
= sh
->dev
[pd_idx
].page
;
799 for (i
= disks
; i
--; ) {
800 struct r5dev
*dev
= &sh
->dev
[i
];
802 xor_srcs
[count
++] = dev
->page
;
806 /* check whether this postxor is part of a write */
807 callback
= test_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
) ?
808 ops_complete_write
: ops_complete_postxor
;
810 /* 1/ if we prexor'd then the dest is reused as a source
811 * 2/ if we did not prexor then we are redoing the parity
812 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
813 * for the synchronous xor case
815 flags
= ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
|
816 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
818 atomic_inc(&sh
->count
);
820 if (unlikely(count
== 1)) {
821 flags
&= ~(ASYNC_TX_XOR_DROP_DST
| ASYNC_TX_XOR_ZERO_DST
);
822 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
,
823 flags
, tx
, callback
, sh
);
825 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
826 flags
, tx
, callback
, sh
);
829 static void ops_complete_check(void *stripe_head_ref
)
831 struct stripe_head
*sh
= stripe_head_ref
;
832 int pd_idx
= sh
->pd_idx
;
834 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
835 (unsigned long long)sh
->sector
);
837 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK
, &sh
->ops
.pending
) &&
838 sh
->ops
.zero_sum_result
== 0)
839 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
841 set_bit(STRIPE_OP_CHECK
, &sh
->ops
.complete
);
842 set_bit(STRIPE_HANDLE
, &sh
->state
);
846 static void ops_run_check(struct stripe_head
*sh
)
848 /* kernel stack size limits the total number of disks */
849 int disks
= sh
->disks
;
850 struct page
*xor_srcs
[disks
];
851 struct dma_async_tx_descriptor
*tx
;
853 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
854 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
856 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
857 (unsigned long long)sh
->sector
);
859 for (i
= disks
; i
--; ) {
860 struct r5dev
*dev
= &sh
->dev
[i
];
862 xor_srcs
[count
++] = dev
->page
;
865 tx
= async_xor_zero_sum(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
866 &sh
->ops
.zero_sum_result
, 0, NULL
, NULL
, NULL
);
869 set_bit(STRIPE_OP_MOD_DMA_CHECK
, &sh
->ops
.pending
);
871 clear_bit(STRIPE_OP_MOD_DMA_CHECK
, &sh
->ops
.pending
);
873 atomic_inc(&sh
->count
);
874 tx
= async_trigger_callback(ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
, tx
,
875 ops_complete_check
, sh
);
878 static void raid5_run_ops(struct stripe_head
*sh
, unsigned long pending
)
880 int overlap_clear
= 0, i
, disks
= sh
->disks
;
881 struct dma_async_tx_descriptor
*tx
= NULL
;
883 if (test_bit(STRIPE_OP_BIOFILL
, &pending
)) {
888 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &pending
))
889 tx
= ops_run_compute5(sh
, pending
);
891 if (test_bit(STRIPE_OP_PREXOR
, &pending
))
892 tx
= ops_run_prexor(sh
, tx
);
894 if (test_bit(STRIPE_OP_BIODRAIN
, &pending
)) {
895 tx
= ops_run_biodrain(sh
, tx
);
899 if (test_bit(STRIPE_OP_POSTXOR
, &pending
))
900 ops_run_postxor(sh
, tx
);
902 if (test_bit(STRIPE_OP_CHECK
, &pending
))
905 if (test_bit(STRIPE_OP_IO
, &pending
))
909 for (i
= disks
; i
--; ) {
910 struct r5dev
*dev
= &sh
->dev
[i
];
911 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
912 wake_up(&sh
->raid_conf
->wait_for_overlap
);
916 static int grow_one_stripe(raid5_conf_t
*conf
)
918 struct stripe_head
*sh
;
919 sh
= kmem_cache_alloc(conf
->slab_cache
, GFP_KERNEL
);
922 memset(sh
, 0, sizeof(*sh
) + (conf
->raid_disks
-1)*sizeof(struct r5dev
));
923 sh
->raid_conf
= conf
;
924 spin_lock_init(&sh
->lock
);
926 if (grow_buffers(sh
, conf
->raid_disks
)) {
927 shrink_buffers(sh
, conf
->raid_disks
);
928 kmem_cache_free(conf
->slab_cache
, sh
);
931 sh
->disks
= conf
->raid_disks
;
932 /* we just created an active stripe so... */
933 atomic_set(&sh
->count
, 1);
934 atomic_inc(&conf
->active_stripes
);
935 INIT_LIST_HEAD(&sh
->lru
);
940 static int grow_stripes(raid5_conf_t
*conf
, int num
)
942 struct kmem_cache
*sc
;
943 int devs
= conf
->raid_disks
;
945 sprintf(conf
->cache_name
[0], "raid5-%s", mdname(conf
->mddev
));
946 sprintf(conf
->cache_name
[1], "raid5-%s-alt", mdname(conf
->mddev
));
947 conf
->active_name
= 0;
948 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
949 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
953 conf
->slab_cache
= sc
;
954 conf
->pool_size
= devs
;
956 if (!grow_one_stripe(conf
))
961 #ifdef CONFIG_MD_RAID5_RESHAPE
962 static int resize_stripes(raid5_conf_t
*conf
, int newsize
)
964 /* Make all the stripes able to hold 'newsize' devices.
965 * New slots in each stripe get 'page' set to a new page.
967 * This happens in stages:
968 * 1/ create a new kmem_cache and allocate the required number of
970 * 2/ gather all the old stripe_heads and tranfer the pages across
971 * to the new stripe_heads. This will have the side effect of
972 * freezing the array as once all stripe_heads have been collected,
973 * no IO will be possible. Old stripe heads are freed once their
974 * pages have been transferred over, and the old kmem_cache is
975 * freed when all stripes are done.
976 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
977 * we simple return a failre status - no need to clean anything up.
978 * 4/ allocate new pages for the new slots in the new stripe_heads.
979 * If this fails, we don't bother trying the shrink the
980 * stripe_heads down again, we just leave them as they are.
981 * As each stripe_head is processed the new one is released into
984 * Once step2 is started, we cannot afford to wait for a write,
985 * so we use GFP_NOIO allocations.
987 struct stripe_head
*osh
, *nsh
;
988 LIST_HEAD(newstripes
);
989 struct disk_info
*ndisks
;
991 struct kmem_cache
*sc
;
994 if (newsize
<= conf
->pool_size
)
995 return 0; /* never bother to shrink */
997 md_allow_write(conf
->mddev
);
1000 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
1001 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
1006 for (i
= conf
->max_nr_stripes
; i
; i
--) {
1007 nsh
= kmem_cache_alloc(sc
, GFP_KERNEL
);
1011 memset(nsh
, 0, sizeof(*nsh
) + (newsize
-1)*sizeof(struct r5dev
));
1013 nsh
->raid_conf
= conf
;
1014 spin_lock_init(&nsh
->lock
);
1016 list_add(&nsh
->lru
, &newstripes
);
1019 /* didn't get enough, give up */
1020 while (!list_empty(&newstripes
)) {
1021 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1022 list_del(&nsh
->lru
);
1023 kmem_cache_free(sc
, nsh
);
1025 kmem_cache_destroy(sc
);
1028 /* Step 2 - Must use GFP_NOIO now.
1029 * OK, we have enough stripes, start collecting inactive
1030 * stripes and copying them over
1032 list_for_each_entry(nsh
, &newstripes
, lru
) {
1033 spin_lock_irq(&conf
->device_lock
);
1034 wait_event_lock_irq(conf
->wait_for_stripe
,
1035 !list_empty(&conf
->inactive_list
),
1037 unplug_slaves(conf
->mddev
)
1039 osh
= get_free_stripe(conf
);
1040 spin_unlock_irq(&conf
->device_lock
);
1041 atomic_set(&nsh
->count
, 1);
1042 for(i
=0; i
<conf
->pool_size
; i
++)
1043 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
1044 for( ; i
<newsize
; i
++)
1045 nsh
->dev
[i
].page
= NULL
;
1046 kmem_cache_free(conf
->slab_cache
, osh
);
1048 kmem_cache_destroy(conf
->slab_cache
);
1051 * At this point, we are holding all the stripes so the array
1052 * is completely stalled, so now is a good time to resize
1055 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
1057 for (i
=0; i
<conf
->raid_disks
; i
++)
1058 ndisks
[i
] = conf
->disks
[i
];
1060 conf
->disks
= ndisks
;
1064 /* Step 4, return new stripes to service */
1065 while(!list_empty(&newstripes
)) {
1066 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1067 list_del_init(&nsh
->lru
);
1068 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
1069 if (nsh
->dev
[i
].page
== NULL
) {
1070 struct page
*p
= alloc_page(GFP_NOIO
);
1071 nsh
->dev
[i
].page
= p
;
1075 release_stripe(nsh
);
1077 /* critical section pass, GFP_NOIO no longer needed */
1079 conf
->slab_cache
= sc
;
1080 conf
->active_name
= 1-conf
->active_name
;
1081 conf
->pool_size
= newsize
;
1086 static int drop_one_stripe(raid5_conf_t
*conf
)
1088 struct stripe_head
*sh
;
1090 spin_lock_irq(&conf
->device_lock
);
1091 sh
= get_free_stripe(conf
);
1092 spin_unlock_irq(&conf
->device_lock
);
1095 BUG_ON(atomic_read(&sh
->count
));
1096 shrink_buffers(sh
, conf
->pool_size
);
1097 kmem_cache_free(conf
->slab_cache
, sh
);
1098 atomic_dec(&conf
->active_stripes
);
1102 static void shrink_stripes(raid5_conf_t
*conf
)
1104 while (drop_one_stripe(conf
))
1107 if (conf
->slab_cache
)
1108 kmem_cache_destroy(conf
->slab_cache
);
1109 conf
->slab_cache
= NULL
;
1112 static void raid5_end_read_request(struct bio
* bi
, int error
)
1114 struct stripe_head
*sh
= bi
->bi_private
;
1115 raid5_conf_t
*conf
= sh
->raid_conf
;
1116 int disks
= sh
->disks
, i
;
1117 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1118 char b
[BDEVNAME_SIZE
];
1122 for (i
=0 ; i
<disks
; i
++)
1123 if (bi
== &sh
->dev
[i
].req
)
1126 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1127 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1135 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1136 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1137 rdev
= conf
->disks
[i
].rdev
;
1138 printk(KERN_INFO
"raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1139 mdname(conf
->mddev
), STRIPE_SECTORS
,
1140 (unsigned long long)sh
->sector
+ rdev
->data_offset
,
1141 bdevname(rdev
->bdev
, b
));
1142 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1143 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1145 if (atomic_read(&conf
->disks
[i
].rdev
->read_errors
))
1146 atomic_set(&conf
->disks
[i
].rdev
->read_errors
, 0);
1148 const char *bdn
= bdevname(conf
->disks
[i
].rdev
->bdev
, b
);
1150 rdev
= conf
->disks
[i
].rdev
;
1152 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1153 atomic_inc(&rdev
->read_errors
);
1154 if (conf
->mddev
->degraded
)
1155 printk(KERN_WARNING
"raid5:%s: read error not correctable (sector %llu on %s).\n",
1156 mdname(conf
->mddev
),
1157 (unsigned long long)sh
->sector
+ rdev
->data_offset
,
1159 else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
1161 printk(KERN_WARNING
"raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1162 mdname(conf
->mddev
),
1163 (unsigned long long)sh
->sector
+ rdev
->data_offset
,
1165 else if (atomic_read(&rdev
->read_errors
)
1166 > conf
->max_nr_stripes
)
1168 "raid5:%s: Too many read errors, failing device %s.\n",
1169 mdname(conf
->mddev
), bdn
);
1173 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1175 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1176 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1177 md_error(conf
->mddev
, rdev
);
1180 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1181 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1182 set_bit(STRIPE_HANDLE
, &sh
->state
);
1186 static void raid5_end_write_request (struct bio
*bi
, int error
)
1188 struct stripe_head
*sh
= bi
->bi_private
;
1189 raid5_conf_t
*conf
= sh
->raid_conf
;
1190 int disks
= sh
->disks
, i
;
1191 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1193 for (i
=0 ; i
<disks
; i
++)
1194 if (bi
== &sh
->dev
[i
].req
)
1197 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1198 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1206 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
1208 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1210 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1211 set_bit(STRIPE_HANDLE
, &sh
->state
);
1216 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
);
1218 static void raid5_build_block (struct stripe_head
*sh
, int i
)
1220 struct r5dev
*dev
= &sh
->dev
[i
];
1222 bio_init(&dev
->req
);
1223 dev
->req
.bi_io_vec
= &dev
->vec
;
1225 dev
->req
.bi_max_vecs
++;
1226 dev
->vec
.bv_page
= dev
->page
;
1227 dev
->vec
.bv_len
= STRIPE_SIZE
;
1228 dev
->vec
.bv_offset
= 0;
1230 dev
->req
.bi_sector
= sh
->sector
;
1231 dev
->req
.bi_private
= sh
;
1234 dev
->sector
= compute_blocknr(sh
, i
);
1237 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1239 char b
[BDEVNAME_SIZE
];
1240 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
1241 pr_debug("raid5: error called\n");
1243 if (!test_bit(Faulty
, &rdev
->flags
)) {
1244 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1245 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1246 unsigned long flags
;
1247 spin_lock_irqsave(&conf
->device_lock
, flags
);
1249 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1251 * if recovery was running, make sure it aborts.
1253 set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
);
1255 set_bit(Faulty
, &rdev
->flags
);
1257 "raid5: Disk failure on %s, disabling device."
1258 " Operation continuing on %d devices\n",
1259 bdevname(rdev
->bdev
,b
), conf
->raid_disks
- mddev
->degraded
);
1264 * Input: a 'big' sector number,
1265 * Output: index of the data and parity disk, and the sector # in them.
1267 static sector_t
raid5_compute_sector(sector_t r_sector
, unsigned int raid_disks
,
1268 unsigned int data_disks
, unsigned int * dd_idx
,
1269 unsigned int * pd_idx
, raid5_conf_t
*conf
)
1272 unsigned long chunk_number
;
1273 unsigned int chunk_offset
;
1274 sector_t new_sector
;
1275 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1277 /* First compute the information on this sector */
1280 * Compute the chunk number and the sector offset inside the chunk
1282 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
1283 chunk_number
= r_sector
;
1284 BUG_ON(r_sector
!= chunk_number
);
1287 * Compute the stripe number
1289 stripe
= chunk_number
/ data_disks
;
1292 * Compute the data disk and parity disk indexes inside the stripe
1294 *dd_idx
= chunk_number
% data_disks
;
1297 * Select the parity disk based on the user selected algorithm.
1299 switch(conf
->level
) {
1301 *pd_idx
= data_disks
;
1304 switch (conf
->algorithm
) {
1305 case ALGORITHM_LEFT_ASYMMETRIC
:
1306 *pd_idx
= data_disks
- stripe
% raid_disks
;
1307 if (*dd_idx
>= *pd_idx
)
1310 case ALGORITHM_RIGHT_ASYMMETRIC
:
1311 *pd_idx
= stripe
% raid_disks
;
1312 if (*dd_idx
>= *pd_idx
)
1315 case ALGORITHM_LEFT_SYMMETRIC
:
1316 *pd_idx
= data_disks
- stripe
% raid_disks
;
1317 *dd_idx
= (*pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1319 case ALGORITHM_RIGHT_SYMMETRIC
:
1320 *pd_idx
= stripe
% raid_disks
;
1321 *dd_idx
= (*pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1324 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1330 /**** FIX THIS ****/
1331 switch (conf
->algorithm
) {
1332 case ALGORITHM_LEFT_ASYMMETRIC
:
1333 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1334 if (*pd_idx
== raid_disks
-1)
1335 (*dd_idx
)++; /* Q D D D P */
1336 else if (*dd_idx
>= *pd_idx
)
1337 (*dd_idx
) += 2; /* D D P Q D */
1339 case ALGORITHM_RIGHT_ASYMMETRIC
:
1340 *pd_idx
= stripe
% raid_disks
;
1341 if (*pd_idx
== raid_disks
-1)
1342 (*dd_idx
)++; /* Q D D D P */
1343 else if (*dd_idx
>= *pd_idx
)
1344 (*dd_idx
) += 2; /* D D P Q D */
1346 case ALGORITHM_LEFT_SYMMETRIC
:
1347 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1348 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1350 case ALGORITHM_RIGHT_SYMMETRIC
:
1351 *pd_idx
= stripe
% raid_disks
;
1352 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1355 printk (KERN_CRIT
"raid6: unsupported algorithm %d\n",
1362 * Finally, compute the new sector number
1364 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
1369 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
)
1371 raid5_conf_t
*conf
= sh
->raid_conf
;
1372 int raid_disks
= sh
->disks
;
1373 int data_disks
= raid_disks
- conf
->max_degraded
;
1374 sector_t new_sector
= sh
->sector
, check
;
1375 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1378 int chunk_number
, dummy1
, dummy2
, dd_idx
= i
;
1382 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
1383 stripe
= new_sector
;
1384 BUG_ON(new_sector
!= stripe
);
1386 if (i
== sh
->pd_idx
)
1388 switch(conf
->level
) {
1391 switch (conf
->algorithm
) {
1392 case ALGORITHM_LEFT_ASYMMETRIC
:
1393 case ALGORITHM_RIGHT_ASYMMETRIC
:
1397 case ALGORITHM_LEFT_SYMMETRIC
:
1398 case ALGORITHM_RIGHT_SYMMETRIC
:
1401 i
-= (sh
->pd_idx
+ 1);
1404 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1409 if (i
== raid6_next_disk(sh
->pd_idx
, raid_disks
))
1410 return 0; /* It is the Q disk */
1411 switch (conf
->algorithm
) {
1412 case ALGORITHM_LEFT_ASYMMETRIC
:
1413 case ALGORITHM_RIGHT_ASYMMETRIC
:
1414 if (sh
->pd_idx
== raid_disks
-1)
1415 i
--; /* Q D D D P */
1416 else if (i
> sh
->pd_idx
)
1417 i
-= 2; /* D D P Q D */
1419 case ALGORITHM_LEFT_SYMMETRIC
:
1420 case ALGORITHM_RIGHT_SYMMETRIC
:
1421 if (sh
->pd_idx
== raid_disks
-1)
1422 i
--; /* Q D D D P */
1427 i
-= (sh
->pd_idx
+ 2);
1431 printk (KERN_CRIT
"raid6: unsupported algorithm %d\n",
1437 chunk_number
= stripe
* data_disks
+ i
;
1438 r_sector
= (sector_t
)chunk_number
* sectors_per_chunk
+ chunk_offset
;
1440 check
= raid5_compute_sector (r_sector
, raid_disks
, data_disks
, &dummy1
, &dummy2
, conf
);
1441 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| dummy2
!= sh
->pd_idx
) {
1442 printk(KERN_ERR
"compute_blocknr: map not correct\n");
1451 * Copy data between a page in the stripe cache, and one or more bion
1452 * The page could align with the middle of the bio, or there could be
1453 * several bion, each with several bio_vecs, which cover part of the page
1454 * Multiple bion are linked together on bi_next. There may be extras
1455 * at the end of this list. We ignore them.
1457 static void copy_data(int frombio
, struct bio
*bio
,
1461 char *pa
= page_address(page
);
1462 struct bio_vec
*bvl
;
1466 if (bio
->bi_sector
>= sector
)
1467 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
1469 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
1470 bio_for_each_segment(bvl
, bio
, i
) {
1471 int len
= bio_iovec_idx(bio
,i
)->bv_len
;
1475 if (page_offset
< 0) {
1476 b_offset
= -page_offset
;
1477 page_offset
+= b_offset
;
1481 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
1482 clen
= STRIPE_SIZE
- page_offset
;
1486 char *ba
= __bio_kmap_atomic(bio
, i
, KM_USER0
);
1488 memcpy(pa
+page_offset
, ba
+b_offset
, clen
);
1490 memcpy(ba
+b_offset
, pa
+page_offset
, clen
);
1491 __bio_kunmap_atomic(ba
, KM_USER0
);
1493 if (clen
< len
) /* hit end of page */
1499 #define check_xor() do { \
1500 if (count == MAX_XOR_BLOCKS) { \
1501 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1506 static void compute_parity6(struct stripe_head
*sh
, int method
)
1508 raid6_conf_t
*conf
= sh
->raid_conf
;
1509 int i
, pd_idx
= sh
->pd_idx
, qd_idx
, d0_idx
, disks
= sh
->disks
, count
;
1511 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1514 qd_idx
= raid6_next_disk(pd_idx
, disks
);
1515 d0_idx
= raid6_next_disk(qd_idx
, disks
);
1517 pr_debug("compute_parity, stripe %llu, method %d\n",
1518 (unsigned long long)sh
->sector
, method
);
1521 case READ_MODIFY_WRITE
:
1522 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1523 case RECONSTRUCT_WRITE
:
1524 for (i
= disks
; i
-- ;)
1525 if ( i
!= pd_idx
&& i
!= qd_idx
&& sh
->dev
[i
].towrite
) {
1526 chosen
= sh
->dev
[i
].towrite
;
1527 sh
->dev
[i
].towrite
= NULL
;
1529 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1530 wake_up(&conf
->wait_for_overlap
);
1532 BUG_ON(sh
->dev
[i
].written
);
1533 sh
->dev
[i
].written
= chosen
;
1537 BUG(); /* Not implemented yet */
1540 for (i
= disks
; i
--;)
1541 if (sh
->dev
[i
].written
) {
1542 sector_t sector
= sh
->dev
[i
].sector
;
1543 struct bio
*wbi
= sh
->dev
[i
].written
;
1544 while (wbi
&& wbi
->bi_sector
< sector
+ STRIPE_SECTORS
) {
1545 copy_data(1, wbi
, sh
->dev
[i
].page
, sector
);
1546 wbi
= r5_next_bio(wbi
, sector
);
1549 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1550 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1554 // case RECONSTRUCT_WRITE:
1555 // case CHECK_PARITY:
1556 // case UPDATE_PARITY:
1557 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1558 /* FIX: Is this ordering of drives even remotely optimal? */
1562 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
1563 if (count
<= disks
-2 && !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1564 printk("block %d/%d not uptodate on parity calc\n", i
,count
);
1565 i
= raid6_next_disk(i
, disks
);
1566 } while ( i
!= d0_idx
);
1570 raid6_call
.gen_syndrome(disks
, STRIPE_SIZE
, ptrs
);
1573 case RECONSTRUCT_WRITE
:
1574 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1575 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1576 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1577 set_bit(R5_LOCKED
, &sh
->dev
[qd_idx
].flags
);
1580 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1581 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1587 /* Compute one missing block */
1588 static void compute_block_1(struct stripe_head
*sh
, int dd_idx
, int nozero
)
1590 int i
, count
, disks
= sh
->disks
;
1591 void *ptr
[MAX_XOR_BLOCKS
], *dest
, *p
;
1592 int pd_idx
= sh
->pd_idx
;
1593 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1595 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1596 (unsigned long long)sh
->sector
, dd_idx
);
1598 if ( dd_idx
== qd_idx
) {
1599 /* We're actually computing the Q drive */
1600 compute_parity6(sh
, UPDATE_PARITY
);
1602 dest
= page_address(sh
->dev
[dd_idx
].page
);
1603 if (!nozero
) memset(dest
, 0, STRIPE_SIZE
);
1605 for (i
= disks
; i
--; ) {
1606 if (i
== dd_idx
|| i
== qd_idx
)
1608 p
= page_address(sh
->dev
[i
].page
);
1609 if (test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1612 printk("compute_block() %d, stripe %llu, %d"
1613 " not present\n", dd_idx
,
1614 (unsigned long long)sh
->sector
, i
);
1619 xor_blocks(count
, STRIPE_SIZE
, dest
, ptr
);
1620 if (!nozero
) set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1621 else clear_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1625 /* Compute two missing blocks */
1626 static void compute_block_2(struct stripe_head
*sh
, int dd_idx1
, int dd_idx2
)
1628 int i
, count
, disks
= sh
->disks
;
1629 int pd_idx
= sh
->pd_idx
;
1630 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1631 int d0_idx
= raid6_next_disk(qd_idx
, disks
);
1634 /* faila and failb are disk numbers relative to d0_idx */
1635 /* pd_idx become disks-2 and qd_idx become disks-1 */
1636 faila
= (dd_idx1
< d0_idx
) ? dd_idx1
+(disks
-d0_idx
) : dd_idx1
-d0_idx
;
1637 failb
= (dd_idx2
< d0_idx
) ? dd_idx2
+(disks
-d0_idx
) : dd_idx2
-d0_idx
;
1639 BUG_ON(faila
== failb
);
1640 if ( failb
< faila
) { int tmp
= faila
; faila
= failb
; failb
= tmp
; }
1642 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1643 (unsigned long long)sh
->sector
, dd_idx1
, dd_idx2
, faila
, failb
);
1645 if ( failb
== disks
-1 ) {
1646 /* Q disk is one of the missing disks */
1647 if ( faila
== disks
-2 ) {
1648 /* Missing P+Q, just recompute */
1649 compute_parity6(sh
, UPDATE_PARITY
);
1652 /* We're missing D+Q; recompute D from P */
1653 compute_block_1(sh
, (dd_idx1
== qd_idx
) ? dd_idx2
: dd_idx1
, 0);
1654 compute_parity6(sh
, UPDATE_PARITY
); /* Is this necessary? */
1659 /* We're missing D+P or D+D; build pointer table */
1661 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1667 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
1668 i
= raid6_next_disk(i
, disks
);
1669 if (i
!= dd_idx1
&& i
!= dd_idx2
&&
1670 !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1671 printk("compute_2 with missing block %d/%d\n", count
, i
);
1672 } while ( i
!= d0_idx
);
1674 if ( failb
== disks
-2 ) {
1675 /* We're missing D+P. */
1676 raid6_datap_recov(disks
, STRIPE_SIZE
, faila
, ptrs
);
1678 /* We're missing D+D. */
1679 raid6_2data_recov(disks
, STRIPE_SIZE
, faila
, failb
, ptrs
);
1682 /* Both the above update both missing blocks */
1683 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx1
].flags
);
1684 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx2
].flags
);
1689 handle_write_operations5(struct stripe_head
*sh
, int rcw
, int expand
)
1691 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
1695 /* if we are not expanding this is a proper write request, and
1696 * there will be bios with new data to be drained into the
1700 set_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
);
1704 set_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
);
1707 for (i
= disks
; i
--; ) {
1708 struct r5dev
*dev
= &sh
->dev
[i
];
1711 set_bit(R5_LOCKED
, &dev
->flags
);
1713 clear_bit(R5_UPTODATE
, &dev
->flags
);
1718 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
1719 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
1721 set_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
);
1722 set_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
);
1723 set_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
);
1727 for (i
= disks
; i
--; ) {
1728 struct r5dev
*dev
= &sh
->dev
[i
];
1732 /* For a read-modify write there may be blocks that are
1733 * locked for reading while others are ready to be
1734 * written so we distinguish these blocks by the
1738 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
1739 test_bit(R5_Wantcompute
, &dev
->flags
))) {
1740 set_bit(R5_Wantprexor
, &dev
->flags
);
1741 set_bit(R5_LOCKED
, &dev
->flags
);
1742 clear_bit(R5_UPTODATE
, &dev
->flags
);
1748 /* keep the parity disk locked while asynchronous operations
1751 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1752 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1755 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1756 __FUNCTION__
, (unsigned long long)sh
->sector
,
1757 locked
, sh
->ops
.pending
);
1763 * Each stripe/dev can have one or more bion attached.
1764 * toread/towrite point to the first in a chain.
1765 * The bi_next chain must be in order.
1767 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
1770 raid5_conf_t
*conf
= sh
->raid_conf
;
1773 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1774 (unsigned long long)bi
->bi_sector
,
1775 (unsigned long long)sh
->sector
);
1778 spin_lock(&sh
->lock
);
1779 spin_lock_irq(&conf
->device_lock
);
1781 bip
= &sh
->dev
[dd_idx
].towrite
;
1782 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
1785 bip
= &sh
->dev
[dd_idx
].toread
;
1786 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
1787 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
1789 bip
= & (*bip
)->bi_next
;
1791 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
1794 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
1798 bi
->bi_phys_segments
++;
1799 spin_unlock_irq(&conf
->device_lock
);
1800 spin_unlock(&sh
->lock
);
1802 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1803 (unsigned long long)bi
->bi_sector
,
1804 (unsigned long long)sh
->sector
, dd_idx
);
1806 if (conf
->mddev
->bitmap
&& firstwrite
) {
1807 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
1809 sh
->bm_seq
= conf
->seq_flush
+1;
1810 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
1814 /* check if page is covered */
1815 sector_t sector
= sh
->dev
[dd_idx
].sector
;
1816 for (bi
=sh
->dev
[dd_idx
].towrite
;
1817 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
1818 bi
&& bi
->bi_sector
<= sector
;
1819 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
1820 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
1821 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
1823 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
1824 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
1829 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
1830 spin_unlock_irq(&conf
->device_lock
);
1831 spin_unlock(&sh
->lock
);
1835 static void end_reshape(raid5_conf_t
*conf
);
1837 static int page_is_zero(struct page
*p
)
1839 char *a
= page_address(p
);
1840 return ((*(u32
*)a
) == 0 &&
1841 memcmp(a
, a
+4, STRIPE_SIZE
-4)==0);
1844 static int stripe_to_pdidx(sector_t stripe
, raid5_conf_t
*conf
, int disks
)
1846 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1848 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
1850 raid5_compute_sector(stripe
* (disks
- conf
->max_degraded
)
1851 *sectors_per_chunk
+ chunk_offset
,
1852 disks
, disks
- conf
->max_degraded
,
1853 &dd_idx
, &pd_idx
, conf
);
1858 handle_requests_to_failed_array(raid5_conf_t
*conf
, struct stripe_head
*sh
,
1859 struct stripe_head_state
*s
, int disks
,
1860 struct bio
**return_bi
)
1863 for (i
= disks
; i
--; ) {
1867 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1870 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
1871 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
1872 /* multiple read failures in one stripe */
1873 md_error(conf
->mddev
, rdev
);
1876 spin_lock_irq(&conf
->device_lock
);
1877 /* fail all writes first */
1878 bi
= sh
->dev
[i
].towrite
;
1879 sh
->dev
[i
].towrite
= NULL
;
1885 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1886 wake_up(&conf
->wait_for_overlap
);
1888 while (bi
&& bi
->bi_sector
<
1889 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1890 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1891 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1892 if (--bi
->bi_phys_segments
== 0) {
1893 md_write_end(conf
->mddev
);
1894 bi
->bi_next
= *return_bi
;
1899 /* and fail all 'written' */
1900 bi
= sh
->dev
[i
].written
;
1901 sh
->dev
[i
].written
= NULL
;
1902 if (bi
) bitmap_end
= 1;
1903 while (bi
&& bi
->bi_sector
<
1904 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1905 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1906 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1907 if (--bi
->bi_phys_segments
== 0) {
1908 md_write_end(conf
->mddev
);
1909 bi
->bi_next
= *return_bi
;
1915 /* fail any reads if this device is non-operational and
1916 * the data has not reached the cache yet.
1918 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
1919 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
1920 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
1921 bi
= sh
->dev
[i
].toread
;
1922 sh
->dev
[i
].toread
= NULL
;
1923 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1924 wake_up(&conf
->wait_for_overlap
);
1925 if (bi
) s
->to_read
--;
1926 while (bi
&& bi
->bi_sector
<
1927 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1928 struct bio
*nextbi
=
1929 r5_next_bio(bi
, sh
->dev
[i
].sector
);
1930 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1931 if (--bi
->bi_phys_segments
== 0) {
1932 bi
->bi_next
= *return_bi
;
1938 spin_unlock_irq(&conf
->device_lock
);
1940 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
1941 STRIPE_SECTORS
, 0, 0);
1946 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1949 static int __handle_issuing_new_read_requests5(struct stripe_head
*sh
,
1950 struct stripe_head_state
*s
, int disk_idx
, int disks
)
1952 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
1953 struct r5dev
*failed_dev
= &sh
->dev
[s
->failed_num
];
1955 /* don't schedule compute operations or reads on the parity block while
1956 * a check is in flight
1958 if ((disk_idx
== sh
->pd_idx
) &&
1959 test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
))
1962 /* is the data in this block needed, and can we get it? */
1963 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
1964 !test_bit(R5_UPTODATE
, &dev
->flags
) && (dev
->toread
||
1965 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
1966 s
->syncing
|| s
->expanding
|| (s
->failed
&&
1967 (failed_dev
->toread
|| (failed_dev
->towrite
&&
1968 !test_bit(R5_OVERWRITE
, &failed_dev
->flags
)
1970 /* 1/ We would like to get this block, possibly by computing it,
1971 * but we might not be able to.
1973 * 2/ Since parity check operations potentially make the parity
1974 * block !uptodate it will need to be refreshed before any
1975 * compute operations on data disks are scheduled.
1977 * 3/ We hold off parity block re-reads until check operations
1980 if ((s
->uptodate
== disks
- 1) &&
1981 !test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
)) {
1982 set_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
);
1983 set_bit(R5_Wantcompute
, &dev
->flags
);
1984 sh
->ops
.target
= disk_idx
;
1987 /* Careful: from this point on 'uptodate' is in the eye
1988 * of raid5_run_ops which services 'compute' operations
1989 * before writes. R5_Wantcompute flags a block that will
1990 * be R5_UPTODATE by the time it is needed for a
1991 * subsequent operation.
1994 return 0; /* uptodate + compute == disks */
1995 } else if ((s
->uptodate
< disks
- 1) &&
1996 test_bit(R5_Insync
, &dev
->flags
)) {
1997 /* Note: we hold off compute operations while checks are
1998 * in flight, but we still prefer 'compute' over 'read'
1999 * hence we only read if (uptodate < * disks-1)
2001 set_bit(R5_LOCKED
, &dev
->flags
);
2002 set_bit(R5_Wantread
, &dev
->flags
);
2003 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2006 pr_debug("Reading block %d (sync=%d)\n", disk_idx
,
2014 static void handle_issuing_new_read_requests5(struct stripe_head
*sh
,
2015 struct stripe_head_state
*s
, int disks
)
2019 /* Clear completed compute operations. Parity recovery
2020 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2021 * later on in this routine
2023 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
) &&
2024 !test_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
)) {
2025 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
);
2026 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.ack
);
2027 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
);
2030 /* look for blocks to read/compute, skip this if a compute
2031 * is already in flight, or if the stripe contents are in the
2032 * midst of changing due to a write
2034 if (!test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
) &&
2035 !test_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
) &&
2036 !test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
)) {
2037 for (i
= disks
; i
--; )
2038 if (__handle_issuing_new_read_requests5(
2039 sh
, s
, i
, disks
) == 0)
2042 set_bit(STRIPE_HANDLE
, &sh
->state
);
2045 static void handle_issuing_new_read_requests6(struct stripe_head
*sh
,
2046 struct stripe_head_state
*s
, struct r6_state
*r6s
,
2050 for (i
= disks
; i
--; ) {
2051 struct r5dev
*dev
= &sh
->dev
[i
];
2052 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2053 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2054 (dev
->toread
|| (dev
->towrite
&&
2055 !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2056 s
->syncing
|| s
->expanding
||
2058 (sh
->dev
[r6s
->failed_num
[0]].toread
||
2061 (sh
->dev
[r6s
->failed_num
[1]].toread
||
2063 /* we would like to get this block, possibly
2064 * by computing it, but we might not be able to
2066 if (s
->uptodate
== disks
-1) {
2067 pr_debug("Computing stripe %llu block %d\n",
2068 (unsigned long long)sh
->sector
, i
);
2069 compute_block_1(sh
, i
, 0);
2071 } else if ( s
->uptodate
== disks
-2 && s
->failed
>= 2 ) {
2072 /* Computing 2-failure is *very* expensive; only
2073 * do it if failed >= 2
2076 for (other
= disks
; other
--; ) {
2079 if (!test_bit(R5_UPTODATE
,
2080 &sh
->dev
[other
].flags
))
2084 pr_debug("Computing stripe %llu blocks %d,%d\n",
2085 (unsigned long long)sh
->sector
,
2087 compute_block_2(sh
, i
, other
);
2089 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2090 set_bit(R5_LOCKED
, &dev
->flags
);
2091 set_bit(R5_Wantread
, &dev
->flags
);
2093 pr_debug("Reading block %d (sync=%d)\n",
2098 set_bit(STRIPE_HANDLE
, &sh
->state
);
2102 /* handle_completed_write_requests
2103 * any written block on an uptodate or failed drive can be returned.
2104 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2105 * never LOCKED, so we don't need to test 'failed' directly.
2107 static void handle_completed_write_requests(raid5_conf_t
*conf
,
2108 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2113 for (i
= disks
; i
--; )
2114 if (sh
->dev
[i
].written
) {
2116 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2117 test_bit(R5_UPTODATE
, &dev
->flags
)) {
2118 /* We can return any write requests */
2119 struct bio
*wbi
, *wbi2
;
2121 pr_debug("Return write for disc %d\n", i
);
2122 spin_lock_irq(&conf
->device_lock
);
2124 dev
->written
= NULL
;
2125 while (wbi
&& wbi
->bi_sector
<
2126 dev
->sector
+ STRIPE_SECTORS
) {
2127 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2128 if (--wbi
->bi_phys_segments
== 0) {
2129 md_write_end(conf
->mddev
);
2130 wbi
->bi_next
= *return_bi
;
2135 if (dev
->towrite
== NULL
)
2137 spin_unlock_irq(&conf
->device_lock
);
2139 bitmap_endwrite(conf
->mddev
->bitmap
,
2142 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
2148 static void handle_issuing_new_write_requests5(raid5_conf_t
*conf
,
2149 struct stripe_head
*sh
, struct stripe_head_state
*s
, int disks
)
2151 int rmw
= 0, rcw
= 0, i
;
2152 for (i
= disks
; i
--; ) {
2153 /* would I have to read this buffer for read_modify_write */
2154 struct r5dev
*dev
= &sh
->dev
[i
];
2155 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2156 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2157 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2158 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2159 if (test_bit(R5_Insync
, &dev
->flags
))
2162 rmw
+= 2*disks
; /* cannot read it */
2164 /* Would I have to read this buffer for reconstruct_write */
2165 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
2166 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2167 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2168 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2169 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2174 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2175 (unsigned long long)sh
->sector
, rmw
, rcw
);
2176 set_bit(STRIPE_HANDLE
, &sh
->state
);
2177 if (rmw
< rcw
&& rmw
> 0)
2178 /* prefer read-modify-write, but need to get some data */
2179 for (i
= disks
; i
--; ) {
2180 struct r5dev
*dev
= &sh
->dev
[i
];
2181 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2182 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2183 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2184 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2185 test_bit(R5_Insync
, &dev
->flags
)) {
2187 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2188 pr_debug("Read_old block "
2189 "%d for r-m-w\n", i
);
2190 set_bit(R5_LOCKED
, &dev
->flags
);
2191 set_bit(R5_Wantread
, &dev
->flags
);
2192 if (!test_and_set_bit(
2193 STRIPE_OP_IO
, &sh
->ops
.pending
))
2197 set_bit(STRIPE_DELAYED
, &sh
->state
);
2198 set_bit(STRIPE_HANDLE
, &sh
->state
);
2202 if (rcw
<= rmw
&& rcw
> 0)
2203 /* want reconstruct write, but need to get some data */
2204 for (i
= disks
; i
--; ) {
2205 struct r5dev
*dev
= &sh
->dev
[i
];
2206 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2208 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2209 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2210 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2211 test_bit(R5_Insync
, &dev
->flags
)) {
2213 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2214 pr_debug("Read_old block "
2215 "%d for Reconstruct\n", i
);
2216 set_bit(R5_LOCKED
, &dev
->flags
);
2217 set_bit(R5_Wantread
, &dev
->flags
);
2218 if (!test_and_set_bit(
2219 STRIPE_OP_IO
, &sh
->ops
.pending
))
2223 set_bit(STRIPE_DELAYED
, &sh
->state
);
2224 set_bit(STRIPE_HANDLE
, &sh
->state
);
2228 /* now if nothing is locked, and if we have enough data,
2229 * we can start a write request
2231 /* since handle_stripe can be called at any time we need to handle the
2232 * case where a compute block operation has been submitted and then a
2233 * subsequent call wants to start a write request. raid5_run_ops only
2234 * handles the case where compute block and postxor are requested
2235 * simultaneously. If this is not the case then new writes need to be
2236 * held off until the compute completes.
2238 if ((s
->req_compute
||
2239 !test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
)) &&
2240 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
2241 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
2242 s
->locked
+= handle_write_operations5(sh
, rcw
== 0, 0);
2245 static void handle_issuing_new_write_requests6(raid5_conf_t
*conf
,
2246 struct stripe_head
*sh
, struct stripe_head_state
*s
,
2247 struct r6_state
*r6s
, int disks
)
2249 int rcw
= 0, must_compute
= 0, pd_idx
= sh
->pd_idx
, i
;
2250 int qd_idx
= r6s
->qd_idx
;
2251 for (i
= disks
; i
--; ) {
2252 struct r5dev
*dev
= &sh
->dev
[i
];
2253 /* Would I have to read this buffer for reconstruct_write */
2254 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2255 && i
!= pd_idx
&& i
!= qd_idx
2256 && (!test_bit(R5_LOCKED
, &dev
->flags
)
2258 !test_bit(R5_UPTODATE
, &dev
->flags
)) {
2259 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2261 pr_debug("raid6: must_compute: "
2262 "disk %d flags=%#lx\n", i
, dev
->flags
);
2267 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2268 (unsigned long long)sh
->sector
, rcw
, must_compute
);
2269 set_bit(STRIPE_HANDLE
, &sh
->state
);
2272 /* want reconstruct write, but need to get some data */
2273 for (i
= disks
; i
--; ) {
2274 struct r5dev
*dev
= &sh
->dev
[i
];
2275 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2276 && !(s
->failed
== 0 && (i
== pd_idx
|| i
== qd_idx
))
2277 && !test_bit(R5_LOCKED
, &dev
->flags
) &&
2278 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2279 test_bit(R5_Insync
, &dev
->flags
)) {
2281 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2282 pr_debug("Read_old stripe %llu "
2283 "block %d for Reconstruct\n",
2284 (unsigned long long)sh
->sector
, i
);
2285 set_bit(R5_LOCKED
, &dev
->flags
);
2286 set_bit(R5_Wantread
, &dev
->flags
);
2289 pr_debug("Request delayed stripe %llu "
2290 "block %d for Reconstruct\n",
2291 (unsigned long long)sh
->sector
, i
);
2292 set_bit(STRIPE_DELAYED
, &sh
->state
);
2293 set_bit(STRIPE_HANDLE
, &sh
->state
);
2297 /* now if nothing is locked, and if we have enough data, we can start a
2300 if (s
->locked
== 0 && rcw
== 0 &&
2301 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
2302 if (must_compute
> 0) {
2303 /* We have failed blocks and need to compute them */
2304 switch (s
->failed
) {
2308 compute_block_1(sh
, r6s
->failed_num
[0], 0);
2311 compute_block_2(sh
, r6s
->failed_num
[0],
2312 r6s
->failed_num
[1]);
2314 default: /* This request should have been failed? */
2319 pr_debug("Computing parity for stripe %llu\n",
2320 (unsigned long long)sh
->sector
);
2321 compute_parity6(sh
, RECONSTRUCT_WRITE
);
2322 /* now every locked buffer is ready to be written */
2323 for (i
= disks
; i
--; )
2324 if (test_bit(R5_LOCKED
, &sh
->dev
[i
].flags
)) {
2325 pr_debug("Writing stripe %llu block %d\n",
2326 (unsigned long long)sh
->sector
, i
);
2328 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2330 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2331 set_bit(STRIPE_INSYNC
, &sh
->state
);
2333 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2334 atomic_dec(&conf
->preread_active_stripes
);
2335 if (atomic_read(&conf
->preread_active_stripes
) <
2337 md_wakeup_thread(conf
->mddev
->thread
);
2342 static void handle_parity_checks5(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2343 struct stripe_head_state
*s
, int disks
)
2345 set_bit(STRIPE_HANDLE
, &sh
->state
);
2346 /* Take one of the following actions:
2347 * 1/ start a check parity operation if (uptodate == disks)
2348 * 2/ finish a check parity operation and act on the result
2349 * 3/ skip to the writeback section if we previously
2350 * initiated a recovery operation
2352 if (s
->failed
== 0 &&
2353 !test_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
)) {
2354 if (!test_and_set_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
)) {
2355 BUG_ON(s
->uptodate
!= disks
);
2356 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2360 test_and_clear_bit(STRIPE_OP_CHECK
, &sh
->ops
.complete
)) {
2361 clear_bit(STRIPE_OP_CHECK
, &sh
->ops
.ack
);
2362 clear_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
);
2364 if (sh
->ops
.zero_sum_result
== 0)
2365 /* parity is correct (on disc,
2366 * not in buffer any more)
2368 set_bit(STRIPE_INSYNC
, &sh
->state
);
2370 conf
->mddev
->resync_mismatches
+=
2373 MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2374 /* don't try to repair!! */
2375 set_bit(STRIPE_INSYNC
, &sh
->state
);
2377 set_bit(STRIPE_OP_COMPUTE_BLK
,
2379 set_bit(STRIPE_OP_MOD_REPAIR_PD
,
2381 set_bit(R5_Wantcompute
,
2382 &sh
->dev
[sh
->pd_idx
].flags
);
2383 sh
->ops
.target
= sh
->pd_idx
;
2391 /* check if we can clear a parity disk reconstruct */
2392 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
) &&
2393 test_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
)) {
2395 clear_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
);
2396 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
);
2397 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.ack
);
2398 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
);
2401 /* Wait for check parity and compute block operations to complete
2404 if (!test_bit(STRIPE_INSYNC
, &sh
->state
) &&
2405 !test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
) &&
2406 !test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
)) {
2408 /* either failed parity check, or recovery is happening */
2410 s
->failed_num
= sh
->pd_idx
;
2411 dev
= &sh
->dev
[s
->failed_num
];
2412 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
2413 BUG_ON(s
->uptodate
!= disks
);
2415 set_bit(R5_LOCKED
, &dev
->flags
);
2416 set_bit(R5_Wantwrite
, &dev
->flags
);
2417 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2420 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2422 set_bit(STRIPE_INSYNC
, &sh
->state
);
2427 static void handle_parity_checks6(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2428 struct stripe_head_state
*s
,
2429 struct r6_state
*r6s
, struct page
*tmp_page
,
2432 int update_p
= 0, update_q
= 0;
2434 int pd_idx
= sh
->pd_idx
;
2435 int qd_idx
= r6s
->qd_idx
;
2437 set_bit(STRIPE_HANDLE
, &sh
->state
);
2439 BUG_ON(s
->failed
> 2);
2440 BUG_ON(s
->uptodate
< disks
);
2441 /* Want to check and possibly repair P and Q.
2442 * However there could be one 'failed' device, in which
2443 * case we can only check one of them, possibly using the
2444 * other to generate missing data
2447 /* If !tmp_page, we cannot do the calculations,
2448 * but as we have set STRIPE_HANDLE, we will soon be called
2449 * by stripe_handle with a tmp_page - just wait until then.
2452 if (s
->failed
== r6s
->q_failed
) {
2453 /* The only possible failed device holds 'Q', so it
2454 * makes sense to check P (If anything else were failed,
2455 * we would have used P to recreate it).
2457 compute_block_1(sh
, pd_idx
, 1);
2458 if (!page_is_zero(sh
->dev
[pd_idx
].page
)) {
2459 compute_block_1(sh
, pd_idx
, 0);
2463 if (!r6s
->q_failed
&& s
->failed
< 2) {
2464 /* q is not failed, and we didn't use it to generate
2465 * anything, so it makes sense to check it
2467 memcpy(page_address(tmp_page
),
2468 page_address(sh
->dev
[qd_idx
].page
),
2470 compute_parity6(sh
, UPDATE_PARITY
);
2471 if (memcmp(page_address(tmp_page
),
2472 page_address(sh
->dev
[qd_idx
].page
),
2473 STRIPE_SIZE
) != 0) {
2474 clear_bit(STRIPE_INSYNC
, &sh
->state
);
2478 if (update_p
|| update_q
) {
2479 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2480 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2481 /* don't try to repair!! */
2482 update_p
= update_q
= 0;
2485 /* now write out any block on a failed drive,
2486 * or P or Q if they need it
2489 if (s
->failed
== 2) {
2490 dev
= &sh
->dev
[r6s
->failed_num
[1]];
2492 set_bit(R5_LOCKED
, &dev
->flags
);
2493 set_bit(R5_Wantwrite
, &dev
->flags
);
2495 if (s
->failed
>= 1) {
2496 dev
= &sh
->dev
[r6s
->failed_num
[0]];
2498 set_bit(R5_LOCKED
, &dev
->flags
);
2499 set_bit(R5_Wantwrite
, &dev
->flags
);
2503 dev
= &sh
->dev
[pd_idx
];
2505 set_bit(R5_LOCKED
, &dev
->flags
);
2506 set_bit(R5_Wantwrite
, &dev
->flags
);
2509 dev
= &sh
->dev
[qd_idx
];
2511 set_bit(R5_LOCKED
, &dev
->flags
);
2512 set_bit(R5_Wantwrite
, &dev
->flags
);
2514 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2516 set_bit(STRIPE_INSYNC
, &sh
->state
);
2520 static void handle_stripe_expansion(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2521 struct r6_state
*r6s
)
2525 /* We have read all the blocks in this stripe and now we need to
2526 * copy some of them into a target stripe for expand.
2528 struct dma_async_tx_descriptor
*tx
= NULL
;
2529 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2530 for (i
= 0; i
< sh
->disks
; i
++)
2531 if (i
!= sh
->pd_idx
&& (!r6s
|| i
!= r6s
->qd_idx
)) {
2532 int dd_idx
, pd_idx
, j
;
2533 struct stripe_head
*sh2
;
2535 sector_t bn
= compute_blocknr(sh
, i
);
2536 sector_t s
= raid5_compute_sector(bn
, conf
->raid_disks
,
2538 conf
->max_degraded
, &dd_idx
,
2540 sh2
= get_active_stripe(conf
, s
, conf
->raid_disks
,
2543 /* so far only the early blocks of this stripe
2544 * have been requested. When later blocks
2545 * get requested, we will try again
2548 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
2549 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
2550 /* must have already done this block */
2551 release_stripe(sh2
);
2555 /* place all the copies on one channel */
2556 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
2557 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
2558 ASYNC_TX_DEP_ACK
, tx
, NULL
, NULL
);
2560 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
2561 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
2562 for (j
= 0; j
< conf
->raid_disks
; j
++)
2563 if (j
!= sh2
->pd_idx
&&
2564 (!r6s
|| j
!= raid6_next_disk(sh2
->pd_idx
,
2566 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
2568 if (j
== conf
->raid_disks
) {
2569 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
2570 set_bit(STRIPE_HANDLE
, &sh2
->state
);
2572 release_stripe(sh2
);
2575 /* done submitting copies, wait for them to complete */
2578 dma_wait_for_async_tx(tx
);
2583 * handle_stripe - do things to a stripe.
2585 * We lock the stripe and then examine the state of various bits
2586 * to see what needs to be done.
2588 * return some read request which now have data
2589 * return some write requests which are safely on disc
2590 * schedule a read on some buffers
2591 * schedule a write of some buffers
2592 * return confirmation of parity correctness
2594 * buffers are taken off read_list or write_list, and bh_cache buffers
2595 * get BH_Lock set before the stripe lock is released.
2599 static void handle_stripe5(struct stripe_head
*sh
)
2601 raid5_conf_t
*conf
= sh
->raid_conf
;
2602 int disks
= sh
->disks
, i
;
2603 struct bio
*return_bi
= NULL
;
2604 struct stripe_head_state s
;
2606 unsigned long pending
= 0;
2608 memset(&s
, 0, sizeof(s
));
2609 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2610 "ops=%lx:%lx:%lx\n", (unsigned long long)sh
->sector
, sh
->state
,
2611 atomic_read(&sh
->count
), sh
->pd_idx
,
2612 sh
->ops
.pending
, sh
->ops
.ack
, sh
->ops
.complete
);
2614 spin_lock(&sh
->lock
);
2615 clear_bit(STRIPE_HANDLE
, &sh
->state
);
2616 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2618 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2619 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2620 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2621 /* Now to look around and see what can be done */
2624 for (i
=disks
; i
--; ) {
2626 struct r5dev
*dev
= &sh
->dev
[i
];
2627 clear_bit(R5_Insync
, &dev
->flags
);
2629 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2630 "written %p\n", i
, dev
->flags
, dev
->toread
, dev
->read
,
2631 dev
->towrite
, dev
->written
);
2633 /* maybe we can request a biofill operation
2635 * new wantfill requests are only permitted while
2636 * STRIPE_OP_BIOFILL is clear
2638 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
2639 !test_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.pending
))
2640 set_bit(R5_Wantfill
, &dev
->flags
);
2642 /* now count some things */
2643 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
2644 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
2645 if (test_bit(R5_Wantcompute
, &dev
->flags
)) s
.compute
++;
2647 if (test_bit(R5_Wantfill
, &dev
->flags
))
2649 else if (dev
->toread
)
2653 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
2658 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2659 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
2660 /* The ReadError flag will just be confusing now */
2661 clear_bit(R5_ReadError
, &dev
->flags
);
2662 clear_bit(R5_ReWrite
, &dev
->flags
);
2664 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
2665 || test_bit(R5_ReadError
, &dev
->flags
)) {
2669 set_bit(R5_Insync
, &dev
->flags
);
2673 if (s
.to_fill
&& !test_and_set_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.pending
))
2676 pr_debug("locked=%d uptodate=%d to_read=%d"
2677 " to_write=%d failed=%d failed_num=%d\n",
2678 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
,
2679 s
.failed
, s
.failed_num
);
2680 /* check if the array has lost two devices and, if so, some requests might
2683 if (s
.failed
> 1 && s
.to_read
+s
.to_write
+s
.written
)
2684 handle_requests_to_failed_array(conf
, sh
, &s
, disks
,
2686 if (s
.failed
> 1 && s
.syncing
) {
2687 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
2688 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2692 /* might be able to return some write requests if the parity block
2693 * is safe, or on a failed drive
2695 dev
= &sh
->dev
[sh
->pd_idx
];
2697 ((test_bit(R5_Insync
, &dev
->flags
) &&
2698 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2699 test_bit(R5_UPTODATE
, &dev
->flags
)) ||
2700 (s
.failed
== 1 && s
.failed_num
== sh
->pd_idx
)))
2701 handle_completed_write_requests(conf
, sh
, disks
, &return_bi
);
2703 /* Now we might consider reading some blocks, either to check/generate
2704 * parity, or to satisfy requests
2705 * or to load a block that is being partially written.
2707 if (s
.to_read
|| s
.non_overwrite
||
2708 (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
||
2709 test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
))
2710 handle_issuing_new_read_requests5(sh
, &s
, disks
);
2712 /* Now we check to see if any write operations have recently
2716 /* leave prexor set until postxor is done, allows us to distinguish
2717 * a rmw from a rcw during biodrain
2719 if (test_bit(STRIPE_OP_PREXOR
, &sh
->ops
.complete
) &&
2720 test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
)) {
2722 clear_bit(STRIPE_OP_PREXOR
, &sh
->ops
.complete
);
2723 clear_bit(STRIPE_OP_PREXOR
, &sh
->ops
.ack
);
2724 clear_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
);
2726 for (i
= disks
; i
--; )
2727 clear_bit(R5_Wantprexor
, &sh
->dev
[i
].flags
);
2730 /* if only POSTXOR is set then this is an 'expand' postxor */
2731 if (test_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.complete
) &&
2732 test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
)) {
2734 clear_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.complete
);
2735 clear_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.ack
);
2736 clear_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
);
2738 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
);
2739 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.ack
);
2740 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
);
2742 /* All the 'written' buffers and the parity block are ready to
2743 * be written back to disk
2745 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
2746 for (i
= disks
; i
--; ) {
2748 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
2749 (i
== sh
->pd_idx
|| dev
->written
)) {
2750 pr_debug("Writing block %d\n", i
);
2751 set_bit(R5_Wantwrite
, &dev
->flags
);
2752 if (!test_and_set_bit(
2753 STRIPE_OP_IO
, &sh
->ops
.pending
))
2755 if (!test_bit(R5_Insync
, &dev
->flags
) ||
2756 (i
== sh
->pd_idx
&& s
.failed
== 0))
2757 set_bit(STRIPE_INSYNC
, &sh
->state
);
2760 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2761 atomic_dec(&conf
->preread_active_stripes
);
2762 if (atomic_read(&conf
->preread_active_stripes
) <
2764 md_wakeup_thread(conf
->mddev
->thread
);
2768 /* Now to consider new write requests and what else, if anything
2769 * should be read. We do not handle new writes when:
2770 * 1/ A 'write' operation (copy+xor) is already in flight.
2771 * 2/ A 'check' operation is in flight, as it may clobber the parity
2774 if (s
.to_write
&& !test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
) &&
2775 !test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
))
2776 handle_issuing_new_write_requests5(conf
, sh
, &s
, disks
);
2778 /* maybe we need to check and possibly fix the parity for this stripe
2779 * Any reads will already have been scheduled, so we just see if enough
2780 * data is available. The parity check is held off while parity
2781 * dependent operations are in flight.
2783 if ((s
.syncing
&& s
.locked
== 0 &&
2784 !test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
) &&
2785 !test_bit(STRIPE_INSYNC
, &sh
->state
)) ||
2786 test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
) ||
2787 test_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
))
2788 handle_parity_checks5(conf
, sh
, &s
, disks
);
2790 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
2791 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
2792 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2795 /* If the failed drive is just a ReadError, then we might need to progress
2796 * the repair/check process
2798 if (s
.failed
== 1 && !conf
->mddev
->ro
&&
2799 test_bit(R5_ReadError
, &sh
->dev
[s
.failed_num
].flags
)
2800 && !test_bit(R5_LOCKED
, &sh
->dev
[s
.failed_num
].flags
)
2801 && test_bit(R5_UPTODATE
, &sh
->dev
[s
.failed_num
].flags
)
2803 dev
= &sh
->dev
[s
.failed_num
];
2804 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
2805 set_bit(R5_Wantwrite
, &dev
->flags
);
2806 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2808 set_bit(R5_ReWrite
, &dev
->flags
);
2809 set_bit(R5_LOCKED
, &dev
->flags
);
2812 /* let's read it back */
2813 set_bit(R5_Wantread
, &dev
->flags
);
2814 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2816 set_bit(R5_LOCKED
, &dev
->flags
);
2821 /* Finish postxor operations initiated by the expansion
2824 if (test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
) &&
2825 !test_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
)) {
2827 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
2829 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
);
2830 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.ack
);
2831 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
);
2833 for (i
= conf
->raid_disks
; i
--; ) {
2834 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2835 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2840 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
2841 !test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
)) {
2842 /* Need to write out all blocks after computing parity */
2843 sh
->disks
= conf
->raid_disks
;
2844 sh
->pd_idx
= stripe_to_pdidx(sh
->sector
, conf
,
2846 s
.locked
+= handle_write_operations5(sh
, 1, 1);
2847 } else if (s
.expanded
&&
2848 !test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
)) {
2849 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2850 atomic_dec(&conf
->reshape_stripes
);
2851 wake_up(&conf
->wait_for_overlap
);
2852 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
2855 if (s
.expanding
&& s
.locked
== 0)
2856 handle_stripe_expansion(conf
, sh
, NULL
);
2859 pending
= get_stripe_work(sh
);
2861 spin_unlock(&sh
->lock
);
2864 raid5_run_ops(sh
, pending
);
2866 return_io(return_bi
);
2870 static void handle_stripe6(struct stripe_head
*sh
, struct page
*tmp_page
)
2872 raid6_conf_t
*conf
= sh
->raid_conf
;
2873 int disks
= sh
->disks
;
2874 struct bio
*return_bi
= NULL
;
2875 int i
, pd_idx
= sh
->pd_idx
;
2876 struct stripe_head_state s
;
2877 struct r6_state r6s
;
2878 struct r5dev
*dev
, *pdev
, *qdev
;
2880 r6s
.qd_idx
= raid6_next_disk(pd_idx
, disks
);
2881 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2882 "pd_idx=%d, qd_idx=%d\n",
2883 (unsigned long long)sh
->sector
, sh
->state
,
2884 atomic_read(&sh
->count
), pd_idx
, r6s
.qd_idx
);
2885 memset(&s
, 0, sizeof(s
));
2887 spin_lock(&sh
->lock
);
2888 clear_bit(STRIPE_HANDLE
, &sh
->state
);
2889 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2891 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2892 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2893 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2894 /* Now to look around and see what can be done */
2897 for (i
=disks
; i
--; ) {
2900 clear_bit(R5_Insync
, &dev
->flags
);
2902 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2903 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
2904 /* maybe we can reply to a read */
2905 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
) {
2906 struct bio
*rbi
, *rbi2
;
2907 pr_debug("Return read for disc %d\n", i
);
2908 spin_lock_irq(&conf
->device_lock
);
2911 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
2912 wake_up(&conf
->wait_for_overlap
);
2913 spin_unlock_irq(&conf
->device_lock
);
2914 while (rbi
&& rbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
2915 copy_data(0, rbi
, dev
->page
, dev
->sector
);
2916 rbi2
= r5_next_bio(rbi
, dev
->sector
);
2917 spin_lock_irq(&conf
->device_lock
);
2918 if (--rbi
->bi_phys_segments
== 0) {
2919 rbi
->bi_next
= return_bi
;
2922 spin_unlock_irq(&conf
->device_lock
);
2927 /* now count some things */
2928 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
2929 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
2936 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
2941 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2942 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
2943 /* The ReadError flag will just be confusing now */
2944 clear_bit(R5_ReadError
, &dev
->flags
);
2945 clear_bit(R5_ReWrite
, &dev
->flags
);
2947 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
2948 || test_bit(R5_ReadError
, &dev
->flags
)) {
2950 r6s
.failed_num
[s
.failed
] = i
;
2953 set_bit(R5_Insync
, &dev
->flags
);
2956 pr_debug("locked=%d uptodate=%d to_read=%d"
2957 " to_write=%d failed=%d failed_num=%d,%d\n",
2958 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
2959 r6s
.failed_num
[0], r6s
.failed_num
[1]);
2960 /* check if the array has lost >2 devices and, if so, some requests
2961 * might need to be failed
2963 if (s
.failed
> 2 && s
.to_read
+s
.to_write
+s
.written
)
2964 handle_requests_to_failed_array(conf
, sh
, &s
, disks
,
2966 if (s
.failed
> 2 && s
.syncing
) {
2967 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
2968 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2973 * might be able to return some write requests if the parity blocks
2974 * are safe, or on a failed drive
2976 pdev
= &sh
->dev
[pd_idx
];
2977 r6s
.p_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == pd_idx
)
2978 || (s
.failed
>= 2 && r6s
.failed_num
[1] == pd_idx
);
2979 qdev
= &sh
->dev
[r6s
.qd_idx
];
2980 r6s
.q_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == r6s
.qd_idx
)
2981 || (s
.failed
>= 2 && r6s
.failed_num
[1] == r6s
.qd_idx
);
2984 ( r6s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
2985 && !test_bit(R5_LOCKED
, &pdev
->flags
)
2986 && test_bit(R5_UPTODATE
, &pdev
->flags
)))) &&
2987 ( r6s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
2988 && !test_bit(R5_LOCKED
, &qdev
->flags
)
2989 && test_bit(R5_UPTODATE
, &qdev
->flags
)))))
2990 handle_completed_write_requests(conf
, sh
, disks
, &return_bi
);
2992 /* Now we might consider reading some blocks, either to check/generate
2993 * parity, or to satisfy requests
2994 * or to load a block that is being partially written.
2996 if (s
.to_read
|| s
.non_overwrite
|| (s
.to_write
&& s
.failed
) ||
2997 (s
.syncing
&& (s
.uptodate
< disks
)) || s
.expanding
)
2998 handle_issuing_new_read_requests6(sh
, &s
, &r6s
, disks
);
3000 /* now to consider writing and what else, if anything should be read */
3002 handle_issuing_new_write_requests6(conf
, sh
, &s
, &r6s
, disks
);
3004 /* maybe we need to check and possibly fix the parity for this stripe
3005 * Any reads will already have been scheduled, so we just see if enough
3008 if (s
.syncing
&& s
.locked
== 0 && !test_bit(STRIPE_INSYNC
, &sh
->state
))
3009 handle_parity_checks6(conf
, sh
, &s
, &r6s
, tmp_page
, disks
);
3011 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3012 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
3013 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3016 /* If the failed drives are just a ReadError, then we might need
3017 * to progress the repair/check process
3019 if (s
.failed
<= 2 && !conf
->mddev
->ro
)
3020 for (i
= 0; i
< s
.failed
; i
++) {
3021 dev
= &sh
->dev
[r6s
.failed_num
[i
]];
3022 if (test_bit(R5_ReadError
, &dev
->flags
)
3023 && !test_bit(R5_LOCKED
, &dev
->flags
)
3024 && test_bit(R5_UPTODATE
, &dev
->flags
)
3026 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3027 set_bit(R5_Wantwrite
, &dev
->flags
);
3028 set_bit(R5_ReWrite
, &dev
->flags
);
3029 set_bit(R5_LOCKED
, &dev
->flags
);
3031 /* let's read it back */
3032 set_bit(R5_Wantread
, &dev
->flags
);
3033 set_bit(R5_LOCKED
, &dev
->flags
);
3038 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
3039 /* Need to write out all blocks after computing P&Q */
3040 sh
->disks
= conf
->raid_disks
;
3041 sh
->pd_idx
= stripe_to_pdidx(sh
->sector
, conf
,
3043 compute_parity6(sh
, RECONSTRUCT_WRITE
);
3044 for (i
= conf
->raid_disks
; i
-- ; ) {
3045 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3047 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3049 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3050 } else if (s
.expanded
) {
3051 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3052 atomic_dec(&conf
->reshape_stripes
);
3053 wake_up(&conf
->wait_for_overlap
);
3054 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3057 if (s
.expanding
&& s
.locked
== 0)
3058 handle_stripe_expansion(conf
, sh
, &r6s
);
3060 spin_unlock(&sh
->lock
);
3062 return_io(return_bi
);
3064 for (i
=disks
; i
-- ;) {
3068 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
3070 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
3075 bi
= &sh
->dev
[i
].req
;
3079 bi
->bi_end_io
= raid5_end_write_request
;
3081 bi
->bi_end_io
= raid5_end_read_request
;
3084 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3085 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
3088 atomic_inc(&rdev
->nr_pending
);
3092 if (s
.syncing
|| s
.expanding
|| s
.expanded
)
3093 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
3095 bi
->bi_bdev
= rdev
->bdev
;
3096 pr_debug("for %llu schedule op %ld on disc %d\n",
3097 (unsigned long long)sh
->sector
, bi
->bi_rw
, i
);
3098 atomic_inc(&sh
->count
);
3099 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
3100 bi
->bi_flags
= 1 << BIO_UPTODATE
;
3102 bi
->bi_max_vecs
= 1;
3104 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
3105 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
3106 bi
->bi_io_vec
[0].bv_offset
= 0;
3107 bi
->bi_size
= STRIPE_SIZE
;
3110 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
3111 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
3112 generic_make_request(bi
);
3115 set_bit(STRIPE_DEGRADED
, &sh
->state
);
3116 pr_debug("skip op %ld on disc %d for sector %llu\n",
3117 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
3118 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3119 set_bit(STRIPE_HANDLE
, &sh
->state
);
3124 static void handle_stripe(struct stripe_head
*sh
, struct page
*tmp_page
)
3126 if (sh
->raid_conf
->level
== 6)
3127 handle_stripe6(sh
, tmp_page
);
3134 static void raid5_activate_delayed(raid5_conf_t
*conf
)
3136 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
3137 while (!list_empty(&conf
->delayed_list
)) {
3138 struct list_head
*l
= conf
->delayed_list
.next
;
3139 struct stripe_head
*sh
;
3140 sh
= list_entry(l
, struct stripe_head
, lru
);
3142 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3143 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3144 atomic_inc(&conf
->preread_active_stripes
);
3145 list_add_tail(&sh
->lru
, &conf
->handle_list
);
3150 static void activate_bit_delay(raid5_conf_t
*conf
)
3152 /* device_lock is held */
3153 struct list_head head
;
3154 list_add(&head
, &conf
->bitmap_list
);
3155 list_del_init(&conf
->bitmap_list
);
3156 while (!list_empty(&head
)) {
3157 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
3158 list_del_init(&sh
->lru
);
3159 atomic_inc(&sh
->count
);
3160 __release_stripe(conf
, sh
);
3164 static void unplug_slaves(mddev_t
*mddev
)
3166 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3170 for (i
=0; i
<mddev
->raid_disks
; i
++) {
3171 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3172 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
3173 struct request_queue
*r_queue
= bdev_get_queue(rdev
->bdev
);
3175 atomic_inc(&rdev
->nr_pending
);
3178 if (r_queue
->unplug_fn
)
3179 r_queue
->unplug_fn(r_queue
);
3181 rdev_dec_pending(rdev
, mddev
);
3188 static void raid5_unplug_device(struct request_queue
*q
)
3190 mddev_t
*mddev
= q
->queuedata
;
3191 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3192 unsigned long flags
;
3194 spin_lock_irqsave(&conf
->device_lock
, flags
);
3196 if (blk_remove_plug(q
)) {
3198 raid5_activate_delayed(conf
);
3200 md_wakeup_thread(mddev
->thread
);
3202 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3204 unplug_slaves(mddev
);
3207 static int raid5_congested(void *data
, int bits
)
3209 mddev_t
*mddev
= data
;
3210 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3212 /* No difference between reads and writes. Just check
3213 * how busy the stripe_cache is
3215 if (conf
->inactive_blocked
)
3219 if (list_empty_careful(&conf
->inactive_list
))
3225 /* We want read requests to align with chunks where possible,
3226 * but write requests don't need to.
3228 static int raid5_mergeable_bvec(struct request_queue
*q
, struct bio
*bio
, struct bio_vec
*biovec
)
3230 mddev_t
*mddev
= q
->queuedata
;
3231 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3233 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
3234 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3236 if (bio_data_dir(bio
) == WRITE
)
3237 return biovec
->bv_len
; /* always allow writes to be mergeable */
3239 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
3240 if (max
< 0) max
= 0;
3241 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
3242 return biovec
->bv_len
;
3248 static int in_chunk_boundary(mddev_t
*mddev
, struct bio
*bio
)
3250 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3251 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
3252 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3254 return chunk_sectors
>=
3255 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
3259 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3260 * later sampled by raid5d.
3262 static void add_bio_to_retry(struct bio
*bi
,raid5_conf_t
*conf
)
3264 unsigned long flags
;
3266 spin_lock_irqsave(&conf
->device_lock
, flags
);
3268 bi
->bi_next
= conf
->retry_read_aligned_list
;
3269 conf
->retry_read_aligned_list
= bi
;
3271 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3272 md_wakeup_thread(conf
->mddev
->thread
);
3276 static struct bio
*remove_bio_from_retry(raid5_conf_t
*conf
)
3280 bi
= conf
->retry_read_aligned
;
3282 conf
->retry_read_aligned
= NULL
;
3285 bi
= conf
->retry_read_aligned_list
;
3287 conf
->retry_read_aligned_list
= bi
->bi_next
;
3289 bi
->bi_phys_segments
= 1; /* biased count of active stripes */
3290 bi
->bi_hw_segments
= 0; /* count of processed stripes */
3298 * The "raid5_align_endio" should check if the read succeeded and if it
3299 * did, call bio_endio on the original bio (having bio_put the new bio
3301 * If the read failed..
3303 static void raid5_align_endio(struct bio
*bi
, int error
)
3305 struct bio
* raid_bi
= bi
->bi_private
;
3308 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3313 mddev
= raid_bi
->bi_bdev
->bd_disk
->queue
->queuedata
;
3314 conf
= mddev_to_conf(mddev
);
3315 rdev
= (void*)raid_bi
->bi_next
;
3316 raid_bi
->bi_next
= NULL
;
3318 rdev_dec_pending(rdev
, conf
->mddev
);
3320 if (!error
&& uptodate
) {
3321 bio_endio(raid_bi
, 0);
3322 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3323 wake_up(&conf
->wait_for_stripe
);
3328 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3330 add_bio_to_retry(raid_bi
, conf
);
3333 static int bio_fits_rdev(struct bio
*bi
)
3335 struct request_queue
*q
= bdev_get_queue(bi
->bi_bdev
);
3337 if ((bi
->bi_size
>>9) > q
->max_sectors
)
3339 blk_recount_segments(q
, bi
);
3340 if (bi
->bi_phys_segments
> q
->max_phys_segments
||
3341 bi
->bi_hw_segments
> q
->max_hw_segments
)
3344 if (q
->merge_bvec_fn
)
3345 /* it's too hard to apply the merge_bvec_fn at this stage,
3354 static int chunk_aligned_read(struct request_queue
*q
, struct bio
* raid_bio
)
3356 mddev_t
*mddev
= q
->queuedata
;
3357 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3358 const unsigned int raid_disks
= conf
->raid_disks
;
3359 const unsigned int data_disks
= raid_disks
- conf
->max_degraded
;
3360 unsigned int dd_idx
, pd_idx
;
3361 struct bio
* align_bi
;
3364 if (!in_chunk_boundary(mddev
, raid_bio
)) {
3365 pr_debug("chunk_aligned_read : non aligned\n");
3369 * use bio_clone to make a copy of the bio
3371 align_bi
= bio_clone(raid_bio
, GFP_NOIO
);
3375 * set bi_end_io to a new function, and set bi_private to the
3378 align_bi
->bi_end_io
= raid5_align_endio
;
3379 align_bi
->bi_private
= raid_bio
;
3383 align_bi
->bi_sector
= raid5_compute_sector(raid_bio
->bi_sector
,
3391 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
3392 if (rdev
&& test_bit(In_sync
, &rdev
->flags
)) {
3393 atomic_inc(&rdev
->nr_pending
);
3395 raid_bio
->bi_next
= (void*)rdev
;
3396 align_bi
->bi_bdev
= rdev
->bdev
;
3397 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3398 align_bi
->bi_sector
+= rdev
->data_offset
;
3400 if (!bio_fits_rdev(align_bi
)) {
3401 /* too big in some way */
3403 rdev_dec_pending(rdev
, mddev
);
3407 spin_lock_irq(&conf
->device_lock
);
3408 wait_event_lock_irq(conf
->wait_for_stripe
,
3410 conf
->device_lock
, /* nothing */);
3411 atomic_inc(&conf
->active_aligned_reads
);
3412 spin_unlock_irq(&conf
->device_lock
);
3414 generic_make_request(align_bi
);
3424 static int make_request(struct request_queue
*q
, struct bio
* bi
)
3426 mddev_t
*mddev
= q
->queuedata
;
3427 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3428 unsigned int dd_idx
, pd_idx
;
3429 sector_t new_sector
;
3430 sector_t logical_sector
, last_sector
;
3431 struct stripe_head
*sh
;
3432 const int rw
= bio_data_dir(bi
);
3435 if (unlikely(bio_barrier(bi
))) {
3436 bio_endio(bi
, -EOPNOTSUPP
);
3440 md_write_start(mddev
, bi
);
3442 disk_stat_inc(mddev
->gendisk
, ios
[rw
]);
3443 disk_stat_add(mddev
->gendisk
, sectors
[rw
], bio_sectors(bi
));
3446 mddev
->reshape_position
== MaxSector
&&
3447 chunk_aligned_read(q
,bi
))
3450 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3451 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
3453 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
3455 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
3457 int disks
, data_disks
;
3460 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
3461 if (likely(conf
->expand_progress
== MaxSector
))
3462 disks
= conf
->raid_disks
;
3464 /* spinlock is needed as expand_progress may be
3465 * 64bit on a 32bit platform, and so it might be
3466 * possible to see a half-updated value
3467 * Ofcourse expand_progress could change after
3468 * the lock is dropped, so once we get a reference
3469 * to the stripe that we think it is, we will have
3472 spin_lock_irq(&conf
->device_lock
);
3473 disks
= conf
->raid_disks
;
3474 if (logical_sector
>= conf
->expand_progress
)
3475 disks
= conf
->previous_raid_disks
;
3477 if (logical_sector
>= conf
->expand_lo
) {
3478 spin_unlock_irq(&conf
->device_lock
);
3483 spin_unlock_irq(&conf
->device_lock
);
3485 data_disks
= disks
- conf
->max_degraded
;
3487 new_sector
= raid5_compute_sector(logical_sector
, disks
, data_disks
,
3488 &dd_idx
, &pd_idx
, conf
);
3489 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3490 (unsigned long long)new_sector
,
3491 (unsigned long long)logical_sector
);
3493 sh
= get_active_stripe(conf
, new_sector
, disks
, pd_idx
, (bi
->bi_rw
&RWA_MASK
));
3495 if (unlikely(conf
->expand_progress
!= MaxSector
)) {
3496 /* expansion might have moved on while waiting for a
3497 * stripe, so we must do the range check again.
3498 * Expansion could still move past after this
3499 * test, but as we are holding a reference to
3500 * 'sh', we know that if that happens,
3501 * STRIPE_EXPANDING will get set and the expansion
3502 * won't proceed until we finish with the stripe.
3505 spin_lock_irq(&conf
->device_lock
);
3506 if (logical_sector
< conf
->expand_progress
&&
3507 disks
== conf
->previous_raid_disks
)
3508 /* mismatch, need to try again */
3510 spin_unlock_irq(&conf
->device_lock
);
3516 /* FIXME what if we get a false positive because these
3517 * are being updated.
3519 if (logical_sector
>= mddev
->suspend_lo
&&
3520 logical_sector
< mddev
->suspend_hi
) {
3526 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
3527 !add_stripe_bio(sh
, bi
, dd_idx
, (bi
->bi_rw
&RW_MASK
))) {
3528 /* Stripe is busy expanding or
3529 * add failed due to overlap. Flush everything
3532 raid5_unplug_device(mddev
->queue
);
3537 finish_wait(&conf
->wait_for_overlap
, &w
);
3538 handle_stripe(sh
, NULL
);
3541 /* cannot get stripe for read-ahead, just give-up */
3542 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3543 finish_wait(&conf
->wait_for_overlap
, &w
);
3548 spin_lock_irq(&conf
->device_lock
);
3549 remaining
= --bi
->bi_phys_segments
;
3550 spin_unlock_irq(&conf
->device_lock
);
3551 if (remaining
== 0) {
3554 md_write_end(mddev
);
3557 test_bit(BIO_UPTODATE
, &bi
->bi_flags
)
3563 static sector_t
reshape_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
)
3565 /* reshaping is quite different to recovery/resync so it is
3566 * handled quite separately ... here.
3568 * On each call to sync_request, we gather one chunk worth of
3569 * destination stripes and flag them as expanding.
3570 * Then we find all the source stripes and request reads.
3571 * As the reads complete, handle_stripe will copy the data
3572 * into the destination stripe and release that stripe.
3574 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3575 struct stripe_head
*sh
;
3577 sector_t first_sector
, last_sector
;
3578 int raid_disks
= conf
->previous_raid_disks
;
3579 int data_disks
= raid_disks
- conf
->max_degraded
;
3580 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
3583 sector_t writepos
, safepos
, gap
;
3585 if (sector_nr
== 0 &&
3586 conf
->expand_progress
!= 0) {
3587 /* restarting in the middle, skip the initial sectors */
3588 sector_nr
= conf
->expand_progress
;
3589 sector_div(sector_nr
, new_data_disks
);
3594 /* we update the metadata when there is more than 3Meg
3595 * in the block range (that is rather arbitrary, should
3596 * probably be time based) or when the data about to be
3597 * copied would over-write the source of the data at
3598 * the front of the range.
3599 * i.e. one new_stripe forward from expand_progress new_maps
3600 * to after where expand_lo old_maps to
3602 writepos
= conf
->expand_progress
+
3603 conf
->chunk_size
/512*(new_data_disks
);
3604 sector_div(writepos
, new_data_disks
);
3605 safepos
= conf
->expand_lo
;
3606 sector_div(safepos
, data_disks
);
3607 gap
= conf
->expand_progress
- conf
->expand_lo
;
3609 if (writepos
>= safepos
||
3610 gap
> (new_data_disks
)*3000*2 /*3Meg*/) {
3611 /* Cannot proceed until we've updated the superblock... */
3612 wait_event(conf
->wait_for_overlap
,
3613 atomic_read(&conf
->reshape_stripes
)==0);
3614 mddev
->reshape_position
= conf
->expand_progress
;
3615 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3616 md_wakeup_thread(mddev
->thread
);
3617 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
3618 kthread_should_stop());
3619 spin_lock_irq(&conf
->device_lock
);
3620 conf
->expand_lo
= mddev
->reshape_position
;
3621 spin_unlock_irq(&conf
->device_lock
);
3622 wake_up(&conf
->wait_for_overlap
);
3625 for (i
=0; i
< conf
->chunk_size
/512; i
+= STRIPE_SECTORS
) {
3628 pd_idx
= stripe_to_pdidx(sector_nr
+i
, conf
, conf
->raid_disks
);
3629 sh
= get_active_stripe(conf
, sector_nr
+i
,
3630 conf
->raid_disks
, pd_idx
, 0);
3631 set_bit(STRIPE_EXPANDING
, &sh
->state
);
3632 atomic_inc(&conf
->reshape_stripes
);
3633 /* If any of this stripe is beyond the end of the old
3634 * array, then we need to zero those blocks
3636 for (j
=sh
->disks
; j
--;) {
3638 if (j
== sh
->pd_idx
)
3640 if (conf
->level
== 6 &&
3641 j
== raid6_next_disk(sh
->pd_idx
, sh
->disks
))
3643 s
= compute_blocknr(sh
, j
);
3644 if (s
< (mddev
->array_size
<<1)) {
3648 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
3649 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
3650 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
3653 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3654 set_bit(STRIPE_HANDLE
, &sh
->state
);
3658 spin_lock_irq(&conf
->device_lock
);
3659 conf
->expand_progress
= (sector_nr
+ i
) * new_data_disks
;
3660 spin_unlock_irq(&conf
->device_lock
);
3661 /* Ok, those stripe are ready. We can start scheduling
3662 * reads on the source stripes.
3663 * The source stripes are determined by mapping the first and last
3664 * block on the destination stripes.
3667 raid5_compute_sector(sector_nr
*(new_data_disks
),
3668 raid_disks
, data_disks
,
3669 &dd_idx
, &pd_idx
, conf
);
3671 raid5_compute_sector((sector_nr
+conf
->chunk_size
/512)
3672 *(new_data_disks
) -1,
3673 raid_disks
, data_disks
,
3674 &dd_idx
, &pd_idx
, conf
);
3675 if (last_sector
>= (mddev
->size
<<1))
3676 last_sector
= (mddev
->size
<<1)-1;
3677 while (first_sector
<= last_sector
) {
3678 pd_idx
= stripe_to_pdidx(first_sector
, conf
,
3679 conf
->previous_raid_disks
);
3680 sh
= get_active_stripe(conf
, first_sector
,
3681 conf
->previous_raid_disks
, pd_idx
, 0);
3682 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3683 set_bit(STRIPE_HANDLE
, &sh
->state
);
3685 first_sector
+= STRIPE_SECTORS
;
3687 return conf
->chunk_size
>>9;
3690 /* FIXME go_faster isn't used */
3691 static inline sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
3693 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3694 struct stripe_head
*sh
;
3696 int raid_disks
= conf
->raid_disks
;
3697 sector_t max_sector
= mddev
->size
<< 1;
3699 int still_degraded
= 0;
3702 if (sector_nr
>= max_sector
) {
3703 /* just being told to finish up .. nothing much to do */
3704 unplug_slaves(mddev
);
3705 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
3710 if (mddev
->curr_resync
< max_sector
) /* aborted */
3711 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
3713 else /* completed sync */
3715 bitmap_close_sync(mddev
->bitmap
);
3720 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
3721 return reshape_request(mddev
, sector_nr
, skipped
);
3723 /* if there is too many failed drives and we are trying
3724 * to resync, then assert that we are finished, because there is
3725 * nothing we can do.
3727 if (mddev
->degraded
>= conf
->max_degraded
&&
3728 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3729 sector_t rv
= (mddev
->size
<< 1) - sector_nr
;
3733 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
3734 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
3735 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
3736 /* we can skip this block, and probably more */
3737 sync_blocks
/= STRIPE_SECTORS
;
3739 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
3742 pd_idx
= stripe_to_pdidx(sector_nr
, conf
, raid_disks
);
3743 sh
= get_active_stripe(conf
, sector_nr
, raid_disks
, pd_idx
, 1);
3745 sh
= get_active_stripe(conf
, sector_nr
, raid_disks
, pd_idx
, 0);
3746 /* make sure we don't swamp the stripe cache if someone else
3747 * is trying to get access
3749 schedule_timeout_uninterruptible(1);
3751 /* Need to check if array will still be degraded after recovery/resync
3752 * We don't need to check the 'failed' flag as when that gets set,
3755 for (i
=0; i
<mddev
->raid_disks
; i
++)
3756 if (conf
->disks
[i
].rdev
== NULL
)
3759 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
3761 spin_lock(&sh
->lock
);
3762 set_bit(STRIPE_SYNCING
, &sh
->state
);
3763 clear_bit(STRIPE_INSYNC
, &sh
->state
);
3764 spin_unlock(&sh
->lock
);
3766 handle_stripe(sh
, NULL
);
3769 return STRIPE_SECTORS
;
3772 static int retry_aligned_read(raid5_conf_t
*conf
, struct bio
*raid_bio
)
3774 /* We may not be able to submit a whole bio at once as there
3775 * may not be enough stripe_heads available.
3776 * We cannot pre-allocate enough stripe_heads as we may need
3777 * more than exist in the cache (if we allow ever large chunks).
3778 * So we do one stripe head at a time and record in
3779 * ->bi_hw_segments how many have been done.
3781 * We *know* that this entire raid_bio is in one chunk, so
3782 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3784 struct stripe_head
*sh
;
3786 sector_t sector
, logical_sector
, last_sector
;
3791 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3792 sector
= raid5_compute_sector( logical_sector
,
3794 conf
->raid_disks
- conf
->max_degraded
,
3798 last_sector
= raid_bio
->bi_sector
+ (raid_bio
->bi_size
>>9);
3800 for (; logical_sector
< last_sector
;
3801 logical_sector
+= STRIPE_SECTORS
,
3802 sector
+= STRIPE_SECTORS
,
3805 if (scnt
< raid_bio
->bi_hw_segments
)
3806 /* already done this stripe */
3809 sh
= get_active_stripe(conf
, sector
, conf
->raid_disks
, pd_idx
, 1);
3812 /* failed to get a stripe - must wait */
3813 raid_bio
->bi_hw_segments
= scnt
;
3814 conf
->retry_read_aligned
= raid_bio
;
3818 set_bit(R5_ReadError
, &sh
->dev
[dd_idx
].flags
);
3819 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
3821 raid_bio
->bi_hw_segments
= scnt
;
3822 conf
->retry_read_aligned
= raid_bio
;
3826 handle_stripe(sh
, NULL
);
3830 spin_lock_irq(&conf
->device_lock
);
3831 remaining
= --raid_bio
->bi_phys_segments
;
3832 spin_unlock_irq(&conf
->device_lock
);
3833 if (remaining
== 0) {
3835 raid_bio
->bi_end_io(raid_bio
,
3836 test_bit(BIO_UPTODATE
, &raid_bio
->bi_flags
)
3839 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3840 wake_up(&conf
->wait_for_stripe
);
3847 * This is our raid5 kernel thread.
3849 * We scan the hash table for stripes which can be handled now.
3850 * During the scan, completed stripes are saved for us by the interrupt
3851 * handler, so that they will not have to wait for our next wakeup.
3853 static void raid5d (mddev_t
*mddev
)
3855 struct stripe_head
*sh
;
3856 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3859 pr_debug("+++ raid5d active\n");
3861 md_check_recovery(mddev
);
3864 spin_lock_irq(&conf
->device_lock
);
3866 struct list_head
*first
;
3869 if (conf
->seq_flush
!= conf
->seq_write
) {
3870 int seq
= conf
->seq_flush
;
3871 spin_unlock_irq(&conf
->device_lock
);
3872 bitmap_unplug(mddev
->bitmap
);
3873 spin_lock_irq(&conf
->device_lock
);
3874 conf
->seq_write
= seq
;
3875 activate_bit_delay(conf
);
3878 if (list_empty(&conf
->handle_list
) &&
3879 atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
&&
3880 !blk_queue_plugged(mddev
->queue
) &&
3881 !list_empty(&conf
->delayed_list
))
3882 raid5_activate_delayed(conf
);
3884 while ((bio
= remove_bio_from_retry(conf
))) {
3886 spin_unlock_irq(&conf
->device_lock
);
3887 ok
= retry_aligned_read(conf
, bio
);
3888 spin_lock_irq(&conf
->device_lock
);
3894 if (list_empty(&conf
->handle_list
)) {
3895 async_tx_issue_pending_all();
3899 first
= conf
->handle_list
.next
;
3900 sh
= list_entry(first
, struct stripe_head
, lru
);
3902 list_del_init(first
);
3903 atomic_inc(&sh
->count
);
3904 BUG_ON(atomic_read(&sh
->count
)!= 1);
3905 spin_unlock_irq(&conf
->device_lock
);
3908 handle_stripe(sh
, conf
->spare_page
);
3911 spin_lock_irq(&conf
->device_lock
);
3913 pr_debug("%d stripes handled\n", handled
);
3915 spin_unlock_irq(&conf
->device_lock
);
3917 unplug_slaves(mddev
);
3919 pr_debug("--- raid5d inactive\n");
3923 raid5_show_stripe_cache_size(mddev_t
*mddev
, char *page
)
3925 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3927 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
3933 raid5_store_stripe_cache_size(mddev_t
*mddev
, const char *page
, size_t len
)
3935 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3938 if (len
>= PAGE_SIZE
)
3943 new = simple_strtoul(page
, &end
, 10);
3944 if (!*page
|| (*end
&& *end
!= '\n') )
3946 if (new <= 16 || new > 32768)
3948 while (new < conf
->max_nr_stripes
) {
3949 if (drop_one_stripe(conf
))
3950 conf
->max_nr_stripes
--;
3954 md_allow_write(mddev
);
3955 while (new > conf
->max_nr_stripes
) {
3956 if (grow_one_stripe(conf
))
3957 conf
->max_nr_stripes
++;
3963 static struct md_sysfs_entry
3964 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
3965 raid5_show_stripe_cache_size
,
3966 raid5_store_stripe_cache_size
);
3969 stripe_cache_active_show(mddev_t
*mddev
, char *page
)
3971 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3973 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
3978 static struct md_sysfs_entry
3979 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
3981 static struct attribute
*raid5_attrs
[] = {
3982 &raid5_stripecache_size
.attr
,
3983 &raid5_stripecache_active
.attr
,
3986 static struct attribute_group raid5_attrs_group
= {
3988 .attrs
= raid5_attrs
,
3991 static int run(mddev_t
*mddev
)
3994 int raid_disk
, memory
;
3996 struct disk_info
*disk
;
3997 struct list_head
*tmp
;
3998 int working_disks
= 0;
4000 if (mddev
->level
!= 5 && mddev
->level
!= 4 && mddev
->level
!= 6) {
4001 printk(KERN_ERR
"raid5: %s: raid level not set to 4/5/6 (%d)\n",
4002 mdname(mddev
), mddev
->level
);
4006 if (mddev
->reshape_position
!= MaxSector
) {
4007 /* Check that we can continue the reshape.
4008 * Currently only disks can change, it must
4009 * increase, and we must be past the point where
4010 * a stripe over-writes itself
4012 sector_t here_new
, here_old
;
4014 int max_degraded
= (mddev
->level
== 5 ? 1 : 2);
4016 if (mddev
->new_level
!= mddev
->level
||
4017 mddev
->new_layout
!= mddev
->layout
||
4018 mddev
->new_chunk
!= mddev
->chunk_size
) {
4019 printk(KERN_ERR
"raid5: %s: unsupported reshape "
4020 "required - aborting.\n",
4024 if (mddev
->delta_disks
<= 0) {
4025 printk(KERN_ERR
"raid5: %s: unsupported reshape "
4026 "(reduce disks) required - aborting.\n",
4030 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4031 /* reshape_position must be on a new-stripe boundary, and one
4032 * further up in new geometry must map after here in old
4035 here_new
= mddev
->reshape_position
;
4036 if (sector_div(here_new
, (mddev
->chunk_size
>>9)*
4037 (mddev
->raid_disks
- max_degraded
))) {
4038 printk(KERN_ERR
"raid5: reshape_position not "
4039 "on a stripe boundary\n");
4042 /* here_new is the stripe we will write to */
4043 here_old
= mddev
->reshape_position
;
4044 sector_div(here_old
, (mddev
->chunk_size
>>9)*
4045 (old_disks
-max_degraded
));
4046 /* here_old is the first stripe that we might need to read
4048 if (here_new
>= here_old
) {
4049 /* Reading from the same stripe as writing to - bad */
4050 printk(KERN_ERR
"raid5: reshape_position too early for "
4051 "auto-recovery - aborting.\n");
4054 printk(KERN_INFO
"raid5: reshape will continue\n");
4055 /* OK, we should be able to continue; */
4059 mddev
->private = kzalloc(sizeof (raid5_conf_t
), GFP_KERNEL
);
4060 if ((conf
= mddev
->private) == NULL
)
4062 if (mddev
->reshape_position
== MaxSector
) {
4063 conf
->previous_raid_disks
= conf
->raid_disks
= mddev
->raid_disks
;
4065 conf
->raid_disks
= mddev
->raid_disks
;
4066 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4069 conf
->disks
= kzalloc(conf
->raid_disks
* sizeof(struct disk_info
),
4074 conf
->mddev
= mddev
;
4076 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
4079 if (mddev
->level
== 6) {
4080 conf
->spare_page
= alloc_page(GFP_KERNEL
);
4081 if (!conf
->spare_page
)
4084 spin_lock_init(&conf
->device_lock
);
4085 init_waitqueue_head(&conf
->wait_for_stripe
);
4086 init_waitqueue_head(&conf
->wait_for_overlap
);
4087 INIT_LIST_HEAD(&conf
->handle_list
);
4088 INIT_LIST_HEAD(&conf
->delayed_list
);
4089 INIT_LIST_HEAD(&conf
->bitmap_list
);
4090 INIT_LIST_HEAD(&conf
->inactive_list
);
4091 atomic_set(&conf
->active_stripes
, 0);
4092 atomic_set(&conf
->preread_active_stripes
, 0);
4093 atomic_set(&conf
->active_aligned_reads
, 0);
4095 pr_debug("raid5: run(%s) called.\n", mdname(mddev
));
4097 ITERATE_RDEV(mddev
,rdev
,tmp
) {
4098 raid_disk
= rdev
->raid_disk
;
4099 if (raid_disk
>= conf
->raid_disks
4102 disk
= conf
->disks
+ raid_disk
;
4106 if (test_bit(In_sync
, &rdev
->flags
)) {
4107 char b
[BDEVNAME_SIZE
];
4108 printk(KERN_INFO
"raid5: device %s operational as raid"
4109 " disk %d\n", bdevname(rdev
->bdev
,b
),
4116 * 0 for a fully functional array, 1 or 2 for a degraded array.
4118 mddev
->degraded
= conf
->raid_disks
- working_disks
;
4119 conf
->mddev
= mddev
;
4120 conf
->chunk_size
= mddev
->chunk_size
;
4121 conf
->level
= mddev
->level
;
4122 if (conf
->level
== 6)
4123 conf
->max_degraded
= 2;
4125 conf
->max_degraded
= 1;
4126 conf
->algorithm
= mddev
->layout
;
4127 conf
->max_nr_stripes
= NR_STRIPES
;
4128 conf
->expand_progress
= mddev
->reshape_position
;
4130 /* device size must be a multiple of chunk size */
4131 mddev
->size
&= ~(mddev
->chunk_size
/1024 -1);
4132 mddev
->resync_max_sectors
= mddev
->size
<< 1;
4134 if (conf
->level
== 6 && conf
->raid_disks
< 4) {
4135 printk(KERN_ERR
"raid6: not enough configured devices for %s (%d, minimum 4)\n",
4136 mdname(mddev
), conf
->raid_disks
);
4139 if (!conf
->chunk_size
|| conf
->chunk_size
% 4) {
4140 printk(KERN_ERR
"raid5: invalid chunk size %d for %s\n",
4141 conf
->chunk_size
, mdname(mddev
));
4144 if (conf
->algorithm
> ALGORITHM_RIGHT_SYMMETRIC
) {
4146 "raid5: unsupported parity algorithm %d for %s\n",
4147 conf
->algorithm
, mdname(mddev
));
4150 if (mddev
->degraded
> conf
->max_degraded
) {
4151 printk(KERN_ERR
"raid5: not enough operational devices for %s"
4152 " (%d/%d failed)\n",
4153 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
4157 if (mddev
->degraded
> 0 &&
4158 mddev
->recovery_cp
!= MaxSector
) {
4159 if (mddev
->ok_start_degraded
)
4161 "raid5: starting dirty degraded array: %s"
4162 "- data corruption possible.\n",
4166 "raid5: cannot start dirty degraded array for %s\n",
4173 mddev
->thread
= md_register_thread(raid5d
, mddev
, "%s_raid5");
4174 if (!mddev
->thread
) {
4176 "raid5: couldn't allocate thread for %s\n",
4181 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
4182 conf
->raid_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
4183 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
4185 "raid5: couldn't allocate %dkB for buffers\n", memory
);
4186 shrink_stripes(conf
);
4187 md_unregister_thread(mddev
->thread
);
4190 printk(KERN_INFO
"raid5: allocated %dkB for %s\n",
4191 memory
, mdname(mddev
));
4193 if (mddev
->degraded
== 0)
4194 printk("raid5: raid level %d set %s active with %d out of %d"
4195 " devices, algorithm %d\n", conf
->level
, mdname(mddev
),
4196 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
4199 printk(KERN_ALERT
"raid5: raid level %d set %s active with %d"
4200 " out of %d devices, algorithm %d\n", conf
->level
,
4201 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
4202 mddev
->raid_disks
, conf
->algorithm
);
4204 print_raid5_conf(conf
);
4206 if (conf
->expand_progress
!= MaxSector
) {
4207 printk("...ok start reshape thread\n");
4208 conf
->expand_lo
= conf
->expand_progress
;
4209 atomic_set(&conf
->reshape_stripes
, 0);
4210 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4211 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4212 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4213 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4214 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4218 /* read-ahead size must cover two whole stripes, which is
4219 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4222 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4223 int stripe
= data_disks
*
4224 (mddev
->chunk_size
/ PAGE_SIZE
);
4225 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4226 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4229 /* Ok, everything is just fine now */
4230 if (sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
4232 "raid5: failed to create sysfs attributes for %s\n",
4235 mddev
->queue
->unplug_fn
= raid5_unplug_device
;
4236 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
4237 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
4239 mddev
->array_size
= mddev
->size
* (conf
->previous_raid_disks
-
4240 conf
->max_degraded
);
4242 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
4247 print_raid5_conf(conf
);
4248 safe_put_page(conf
->spare_page
);
4250 kfree(conf
->stripe_hashtbl
);
4253 mddev
->private = NULL
;
4254 printk(KERN_ALERT
"raid5: failed to run raid set %s\n", mdname(mddev
));
4260 static int stop(mddev_t
*mddev
)
4262 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4264 md_unregister_thread(mddev
->thread
);
4265 mddev
->thread
= NULL
;
4266 shrink_stripes(conf
);
4267 kfree(conf
->stripe_hashtbl
);
4268 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
4269 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
4270 sysfs_remove_group(&mddev
->kobj
, &raid5_attrs_group
);
4273 mddev
->private = NULL
;
4278 static void print_sh (struct seq_file
*seq
, struct stripe_head
*sh
)
4282 seq_printf(seq
, "sh %llu, pd_idx %d, state %ld.\n",
4283 (unsigned long long)sh
->sector
, sh
->pd_idx
, sh
->state
);
4284 seq_printf(seq
, "sh %llu, count %d.\n",
4285 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
));
4286 seq_printf(seq
, "sh %llu, ", (unsigned long long)sh
->sector
);
4287 for (i
= 0; i
< sh
->disks
; i
++) {
4288 seq_printf(seq
, "(cache%d: %p %ld) ",
4289 i
, sh
->dev
[i
].page
, sh
->dev
[i
].flags
);
4291 seq_printf(seq
, "\n");
4294 static void printall (struct seq_file
*seq
, raid5_conf_t
*conf
)
4296 struct stripe_head
*sh
;
4297 struct hlist_node
*hn
;
4300 spin_lock_irq(&conf
->device_lock
);
4301 for (i
= 0; i
< NR_HASH
; i
++) {
4302 hlist_for_each_entry(sh
, hn
, &conf
->stripe_hashtbl
[i
], hash
) {
4303 if (sh
->raid_conf
!= conf
)
4308 spin_unlock_irq(&conf
->device_lock
);
4312 static void status (struct seq_file
*seq
, mddev_t
*mddev
)
4314 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4317 seq_printf (seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
, mddev
->chunk_size
>> 10, mddev
->layout
);
4318 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
4319 for (i
= 0; i
< conf
->raid_disks
; i
++)
4320 seq_printf (seq
, "%s",
4321 conf
->disks
[i
].rdev
&&
4322 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
4323 seq_printf (seq
, "]");
4325 seq_printf (seq
, "\n");
4326 printall(seq
, conf
);
4330 static void print_raid5_conf (raid5_conf_t
*conf
)
4333 struct disk_info
*tmp
;
4335 printk("RAID5 conf printout:\n");
4337 printk("(conf==NULL)\n");
4340 printk(" --- rd:%d wd:%d\n", conf
->raid_disks
,
4341 conf
->raid_disks
- conf
->mddev
->degraded
);
4343 for (i
= 0; i
< conf
->raid_disks
; i
++) {
4344 char b
[BDEVNAME_SIZE
];
4345 tmp
= conf
->disks
+ i
;
4347 printk(" disk %d, o:%d, dev:%s\n",
4348 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
4349 bdevname(tmp
->rdev
->bdev
,b
));
4353 static int raid5_spare_active(mddev_t
*mddev
)
4356 raid5_conf_t
*conf
= mddev
->private;
4357 struct disk_info
*tmp
;
4359 for (i
= 0; i
< conf
->raid_disks
; i
++) {
4360 tmp
= conf
->disks
+ i
;
4362 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
4363 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
4364 unsigned long flags
;
4365 spin_lock_irqsave(&conf
->device_lock
, flags
);
4367 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4370 print_raid5_conf(conf
);
4374 static int raid5_remove_disk(mddev_t
*mddev
, int number
)
4376 raid5_conf_t
*conf
= mddev
->private;
4379 struct disk_info
*p
= conf
->disks
+ number
;
4381 print_raid5_conf(conf
);
4384 if (test_bit(In_sync
, &rdev
->flags
) ||
4385 atomic_read(&rdev
->nr_pending
)) {
4391 if (atomic_read(&rdev
->nr_pending
)) {
4392 /* lost the race, try later */
4399 print_raid5_conf(conf
);
4403 static int raid5_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
4405 raid5_conf_t
*conf
= mddev
->private;
4408 struct disk_info
*p
;
4410 if (mddev
->degraded
> conf
->max_degraded
)
4411 /* no point adding a device */
4415 * find the disk ... but prefer rdev->saved_raid_disk
4418 if (rdev
->saved_raid_disk
>= 0 &&
4419 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
4420 disk
= rdev
->saved_raid_disk
;
4423 for ( ; disk
< conf
->raid_disks
; disk
++)
4424 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
4425 clear_bit(In_sync
, &rdev
->flags
);
4426 rdev
->raid_disk
= disk
;
4428 if (rdev
->saved_raid_disk
!= disk
)
4430 rcu_assign_pointer(p
->rdev
, rdev
);
4433 print_raid5_conf(conf
);
4437 static int raid5_resize(mddev_t
*mddev
, sector_t sectors
)
4439 /* no resync is happening, and there is enough space
4440 * on all devices, so we can resize.
4441 * We need to make sure resync covers any new space.
4442 * If the array is shrinking we should possibly wait until
4443 * any io in the removed space completes, but it hardly seems
4446 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4448 sectors
&= ~((sector_t
)mddev
->chunk_size
/512 - 1);
4449 mddev
->array_size
= (sectors
* (mddev
->raid_disks
-conf
->max_degraded
))>>1;
4450 set_capacity(mddev
->gendisk
, mddev
->array_size
<< 1);
4452 if (sectors
/2 > mddev
->size
&& mddev
->recovery_cp
== MaxSector
) {
4453 mddev
->recovery_cp
= mddev
->size
<< 1;
4454 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4456 mddev
->size
= sectors
/2;
4457 mddev
->resync_max_sectors
= sectors
;
4461 #ifdef CONFIG_MD_RAID5_RESHAPE
4462 static int raid5_check_reshape(mddev_t
*mddev
)
4464 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4467 if (mddev
->delta_disks
< 0 ||
4468 mddev
->new_level
!= mddev
->level
)
4469 return -EINVAL
; /* Cannot shrink array or change level yet */
4470 if (mddev
->delta_disks
== 0)
4471 return 0; /* nothing to do */
4473 /* Can only proceed if there are plenty of stripe_heads.
4474 * We need a minimum of one full stripe,, and for sensible progress
4475 * it is best to have about 4 times that.
4476 * If we require 4 times, then the default 256 4K stripe_heads will
4477 * allow for chunk sizes up to 256K, which is probably OK.
4478 * If the chunk size is greater, user-space should request more
4479 * stripe_heads first.
4481 if ((mddev
->chunk_size
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
||
4482 (mddev
->new_chunk
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
) {
4483 printk(KERN_WARNING
"raid5: reshape: not enough stripes. Needed %lu\n",
4484 (mddev
->chunk_size
/ STRIPE_SIZE
)*4);
4488 err
= resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
4492 if (mddev
->degraded
> conf
->max_degraded
)
4494 /* looks like we might be able to manage this */
4498 static int raid5_start_reshape(mddev_t
*mddev
)
4500 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4502 struct list_head
*rtmp
;
4504 int added_devices
= 0;
4505 unsigned long flags
;
4507 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4510 ITERATE_RDEV(mddev
, rdev
, rtmp
)
4511 if (rdev
->raid_disk
< 0 &&
4512 !test_bit(Faulty
, &rdev
->flags
))
4515 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
4516 /* Not enough devices even to make a degraded array
4521 atomic_set(&conf
->reshape_stripes
, 0);
4522 spin_lock_irq(&conf
->device_lock
);
4523 conf
->previous_raid_disks
= conf
->raid_disks
;
4524 conf
->raid_disks
+= mddev
->delta_disks
;
4525 conf
->expand_progress
= 0;
4526 conf
->expand_lo
= 0;
4527 spin_unlock_irq(&conf
->device_lock
);
4529 /* Add some new drives, as many as will fit.
4530 * We know there are enough to make the newly sized array work.
4532 ITERATE_RDEV(mddev
, rdev
, rtmp
)
4533 if (rdev
->raid_disk
< 0 &&
4534 !test_bit(Faulty
, &rdev
->flags
)) {
4535 if (raid5_add_disk(mddev
, rdev
)) {
4537 set_bit(In_sync
, &rdev
->flags
);
4539 rdev
->recovery_offset
= 0;
4540 sprintf(nm
, "rd%d", rdev
->raid_disk
);
4541 if (sysfs_create_link(&mddev
->kobj
,
4544 "raid5: failed to create "
4545 " link %s for %s\n",
4551 spin_lock_irqsave(&conf
->device_lock
, flags
);
4552 mddev
->degraded
= (conf
->raid_disks
- conf
->previous_raid_disks
) - added_devices
;
4553 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4554 mddev
->raid_disks
= conf
->raid_disks
;
4555 mddev
->reshape_position
= 0;
4556 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4558 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4559 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4560 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4561 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4562 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4564 if (!mddev
->sync_thread
) {
4565 mddev
->recovery
= 0;
4566 spin_lock_irq(&conf
->device_lock
);
4567 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
4568 conf
->expand_progress
= MaxSector
;
4569 spin_unlock_irq(&conf
->device_lock
);
4572 md_wakeup_thread(mddev
->sync_thread
);
4573 md_new_event(mddev
);
4578 static void end_reshape(raid5_conf_t
*conf
)
4580 struct block_device
*bdev
;
4582 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
4583 conf
->mddev
->array_size
= conf
->mddev
->size
*
4584 (conf
->raid_disks
- conf
->max_degraded
);
4585 set_capacity(conf
->mddev
->gendisk
, conf
->mddev
->array_size
<< 1);
4586 conf
->mddev
->changed
= 1;
4588 bdev
= bdget_disk(conf
->mddev
->gendisk
, 0);
4590 mutex_lock(&bdev
->bd_inode
->i_mutex
);
4591 i_size_write(bdev
->bd_inode
, (loff_t
)conf
->mddev
->array_size
<< 10);
4592 mutex_unlock(&bdev
->bd_inode
->i_mutex
);
4595 spin_lock_irq(&conf
->device_lock
);
4596 conf
->expand_progress
= MaxSector
;
4597 spin_unlock_irq(&conf
->device_lock
);
4598 conf
->mddev
->reshape_position
= MaxSector
;
4600 /* read-ahead size must cover two whole stripes, which is
4601 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4604 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4605 int stripe
= data_disks
*
4606 (conf
->mddev
->chunk_size
/ PAGE_SIZE
);
4607 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4608 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4613 static void raid5_quiesce(mddev_t
*mddev
, int state
)
4615 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4618 case 2: /* resume for a suspend */
4619 wake_up(&conf
->wait_for_overlap
);
4622 case 1: /* stop all writes */
4623 spin_lock_irq(&conf
->device_lock
);
4625 wait_event_lock_irq(conf
->wait_for_stripe
,
4626 atomic_read(&conf
->active_stripes
) == 0 &&
4627 atomic_read(&conf
->active_aligned_reads
) == 0,
4628 conf
->device_lock
, /* nothing */);
4629 spin_unlock_irq(&conf
->device_lock
);
4632 case 0: /* re-enable writes */
4633 spin_lock_irq(&conf
->device_lock
);
4635 wake_up(&conf
->wait_for_stripe
);
4636 wake_up(&conf
->wait_for_overlap
);
4637 spin_unlock_irq(&conf
->device_lock
);
4642 static struct mdk_personality raid6_personality
=
4646 .owner
= THIS_MODULE
,
4647 .make_request
= make_request
,
4651 .error_handler
= error
,
4652 .hot_add_disk
= raid5_add_disk
,
4653 .hot_remove_disk
= raid5_remove_disk
,
4654 .spare_active
= raid5_spare_active
,
4655 .sync_request
= sync_request
,
4656 .resize
= raid5_resize
,
4657 #ifdef CONFIG_MD_RAID5_RESHAPE
4658 .check_reshape
= raid5_check_reshape
,
4659 .start_reshape
= raid5_start_reshape
,
4661 .quiesce
= raid5_quiesce
,
4663 static struct mdk_personality raid5_personality
=
4667 .owner
= THIS_MODULE
,
4668 .make_request
= make_request
,
4672 .error_handler
= error
,
4673 .hot_add_disk
= raid5_add_disk
,
4674 .hot_remove_disk
= raid5_remove_disk
,
4675 .spare_active
= raid5_spare_active
,
4676 .sync_request
= sync_request
,
4677 .resize
= raid5_resize
,
4678 #ifdef CONFIG_MD_RAID5_RESHAPE
4679 .check_reshape
= raid5_check_reshape
,
4680 .start_reshape
= raid5_start_reshape
,
4682 .quiesce
= raid5_quiesce
,
4685 static struct mdk_personality raid4_personality
=
4689 .owner
= THIS_MODULE
,
4690 .make_request
= make_request
,
4694 .error_handler
= error
,
4695 .hot_add_disk
= raid5_add_disk
,
4696 .hot_remove_disk
= raid5_remove_disk
,
4697 .spare_active
= raid5_spare_active
,
4698 .sync_request
= sync_request
,
4699 .resize
= raid5_resize
,
4700 #ifdef CONFIG_MD_RAID5_RESHAPE
4701 .check_reshape
= raid5_check_reshape
,
4702 .start_reshape
= raid5_start_reshape
,
4704 .quiesce
= raid5_quiesce
,
4707 static int __init
raid5_init(void)
4711 e
= raid6_select_algo();
4714 register_md_personality(&raid6_personality
);
4715 register_md_personality(&raid5_personality
);
4716 register_md_personality(&raid4_personality
);
4720 static void raid5_exit(void)
4722 unregister_md_personality(&raid6_personality
);
4723 unregister_md_personality(&raid5_personality
);
4724 unregister_md_personality(&raid4_personality
);
4727 module_init(raid5_init
);
4728 module_exit(raid5_exit
);
4729 MODULE_LICENSE("GPL");
4730 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4731 MODULE_ALIAS("md-raid5");
4732 MODULE_ALIAS("md-raid4");
4733 MODULE_ALIAS("md-level-5");
4734 MODULE_ALIAS("md-level-4");
4735 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4736 MODULE_ALIAS("md-raid6");
4737 MODULE_ALIAS("md-level-6");
4739 /* This used to be two separate modules, they were: */
4740 MODULE_ALIAS("raid5");
4741 MODULE_ALIAS("raid6");