2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
67 #define HASH_MASK (NR_HASH - 1)
69 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
72 * order without overlap. There may be several bio's per stripe+device, and
73 * a bio could span several devices.
74 * When walking this list for a particular stripe+device, we must never proceed
75 * beyond a bio that extends past this device, as the next bio might no longer
77 * This macro is used to determine the 'next' bio in the list, given the sector
78 * of the current stripe+device
80 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 * The following can be used to debug the driver
84 #define RAID5_PARANOIA 1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 # define CHECK_DEVLOCK()
96 #if !RAID6_USE_EMPTY_ZERO_PAGE
97 /* In .bss so it's zeroed */
98 const char raid6_empty_zero_page
[PAGE_SIZE
] __attribute__((aligned(256)));
101 static inline int raid6_next_disk(int disk
, int raid_disks
)
104 return (disk
< raid_disks
) ? disk
: 0;
107 static void return_io(struct bio
*return_bi
)
109 struct bio
*bi
= return_bi
;
111 int bytes
= bi
->bi_size
;
113 return_bi
= bi
->bi_next
;
116 bi
->bi_end_io(bi
, bytes
,
117 test_bit(BIO_UPTODATE
, &bi
->bi_flags
)
123 static void print_raid5_conf (raid5_conf_t
*conf
);
125 static void __release_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
)
127 if (atomic_dec_and_test(&sh
->count
)) {
128 BUG_ON(!list_empty(&sh
->lru
));
129 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
130 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
131 if (test_bit(STRIPE_DELAYED
, &sh
->state
)) {
132 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
133 blk_plug_device(conf
->mddev
->queue
);
134 } else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
135 sh
->bm_seq
- conf
->seq_write
> 0) {
136 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
137 blk_plug_device(conf
->mddev
->queue
);
139 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
140 list_add_tail(&sh
->lru
, &conf
->handle_list
);
142 md_wakeup_thread(conf
->mddev
->thread
);
144 BUG_ON(sh
->ops
.pending
);
145 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
146 atomic_dec(&conf
->preread_active_stripes
);
147 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
148 md_wakeup_thread(conf
->mddev
->thread
);
150 atomic_dec(&conf
->active_stripes
);
151 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
152 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
153 wake_up(&conf
->wait_for_stripe
);
154 if (conf
->retry_read_aligned
)
155 md_wakeup_thread(conf
->mddev
->thread
);
160 static void release_stripe(struct stripe_head
*sh
)
162 raid5_conf_t
*conf
= sh
->raid_conf
;
165 spin_lock_irqsave(&conf
->device_lock
, flags
);
166 __release_stripe(conf
, sh
);
167 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
170 static inline void remove_hash(struct stripe_head
*sh
)
172 pr_debug("remove_hash(), stripe %llu\n",
173 (unsigned long long)sh
->sector
);
175 hlist_del_init(&sh
->hash
);
178 static inline void insert_hash(raid5_conf_t
*conf
, struct stripe_head
*sh
)
180 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
182 pr_debug("insert_hash(), stripe %llu\n",
183 (unsigned long long)sh
->sector
);
186 hlist_add_head(&sh
->hash
, hp
);
190 /* find an idle stripe, make sure it is unhashed, and return it. */
191 static struct stripe_head
*get_free_stripe(raid5_conf_t
*conf
)
193 struct stripe_head
*sh
= NULL
;
194 struct list_head
*first
;
197 if (list_empty(&conf
->inactive_list
))
199 first
= conf
->inactive_list
.next
;
200 sh
= list_entry(first
, struct stripe_head
, lru
);
201 list_del_init(first
);
203 atomic_inc(&conf
->active_stripes
);
208 static void shrink_buffers(struct stripe_head
*sh
, int num
)
213 for (i
=0; i
<num
; i
++) {
217 sh
->dev
[i
].page
= NULL
;
222 static int grow_buffers(struct stripe_head
*sh
, int num
)
226 for (i
=0; i
<num
; i
++) {
229 if (!(page
= alloc_page(GFP_KERNEL
))) {
232 sh
->dev
[i
].page
= page
;
237 static void raid5_build_block (struct stripe_head
*sh
, int i
);
239 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int pd_idx
, int disks
)
241 raid5_conf_t
*conf
= sh
->raid_conf
;
244 BUG_ON(atomic_read(&sh
->count
) != 0);
245 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
246 BUG_ON(sh
->ops
.pending
|| sh
->ops
.ack
|| sh
->ops
.complete
);
249 pr_debug("init_stripe called, stripe %llu\n",
250 (unsigned long long)sh
->sector
);
260 for (i
= sh
->disks
; i
--; ) {
261 struct r5dev
*dev
= &sh
->dev
[i
];
263 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
264 test_bit(R5_LOCKED
, &dev
->flags
)) {
265 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
266 (unsigned long long)sh
->sector
, i
, dev
->toread
,
267 dev
->read
, dev
->towrite
, dev
->written
,
268 test_bit(R5_LOCKED
, &dev
->flags
));
272 raid5_build_block(sh
, i
);
274 insert_hash(conf
, sh
);
277 static struct stripe_head
*__find_stripe(raid5_conf_t
*conf
, sector_t sector
, int disks
)
279 struct stripe_head
*sh
;
280 struct hlist_node
*hn
;
283 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
284 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
285 if (sh
->sector
== sector
&& sh
->disks
== disks
)
287 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
291 static void unplug_slaves(mddev_t
*mddev
);
292 static void raid5_unplug_device(struct request_queue
*q
);
294 static struct stripe_head
*get_active_stripe(raid5_conf_t
*conf
, sector_t sector
, int disks
,
295 int pd_idx
, int noblock
)
297 struct stripe_head
*sh
;
299 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
301 spin_lock_irq(&conf
->device_lock
);
304 wait_event_lock_irq(conf
->wait_for_stripe
,
306 conf
->device_lock
, /* nothing */);
307 sh
= __find_stripe(conf
, sector
, disks
);
309 if (!conf
->inactive_blocked
)
310 sh
= get_free_stripe(conf
);
311 if (noblock
&& sh
== NULL
)
314 conf
->inactive_blocked
= 1;
315 wait_event_lock_irq(conf
->wait_for_stripe
,
316 !list_empty(&conf
->inactive_list
) &&
317 (atomic_read(&conf
->active_stripes
)
318 < (conf
->max_nr_stripes
*3/4)
319 || !conf
->inactive_blocked
),
321 raid5_unplug_device(conf
->mddev
->queue
)
323 conf
->inactive_blocked
= 0;
325 init_stripe(sh
, sector
, pd_idx
, disks
);
327 if (atomic_read(&sh
->count
)) {
328 BUG_ON(!list_empty(&sh
->lru
));
330 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
331 atomic_inc(&conf
->active_stripes
);
332 if (list_empty(&sh
->lru
) &&
333 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
335 list_del_init(&sh
->lru
);
338 } while (sh
== NULL
);
341 atomic_inc(&sh
->count
);
343 spin_unlock_irq(&conf
->device_lock
);
347 /* test_and_ack_op() ensures that we only dequeue an operation once */
348 #define test_and_ack_op(op, pend) \
350 if (test_bit(op, &sh->ops.pending) && \
351 !test_bit(op, &sh->ops.complete)) { \
352 if (test_and_set_bit(op, &sh->ops.ack)) \
353 clear_bit(op, &pend); \
357 clear_bit(op, &pend); \
360 /* find new work to run, do not resubmit work that is already
363 static unsigned long get_stripe_work(struct stripe_head
*sh
)
365 unsigned long pending
;
368 pending
= sh
->ops
.pending
;
370 test_and_ack_op(STRIPE_OP_BIOFILL
, pending
);
371 test_and_ack_op(STRIPE_OP_COMPUTE_BLK
, pending
);
372 test_and_ack_op(STRIPE_OP_PREXOR
, pending
);
373 test_and_ack_op(STRIPE_OP_BIODRAIN
, pending
);
374 test_and_ack_op(STRIPE_OP_POSTXOR
, pending
);
375 test_and_ack_op(STRIPE_OP_CHECK
, pending
);
376 if (test_and_clear_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
379 sh
->ops
.count
-= ack
;
380 BUG_ON(sh
->ops
.count
< 0);
386 raid5_end_read_request(struct bio
*bi
, unsigned int bytes_done
, int error
);
388 raid5_end_write_request (struct bio
*bi
, unsigned int bytes_done
, int error
);
390 static void ops_run_io(struct stripe_head
*sh
)
392 raid5_conf_t
*conf
= sh
->raid_conf
;
393 int i
, disks
= sh
->disks
;
397 for (i
= disks
; i
--; ) {
401 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
403 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
408 bi
= &sh
->dev
[i
].req
;
412 bi
->bi_end_io
= raid5_end_write_request
;
414 bi
->bi_end_io
= raid5_end_read_request
;
417 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
418 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
421 atomic_inc(&rdev
->nr_pending
);
425 if (test_bit(STRIPE_SYNCING
, &sh
->state
) ||
426 test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
) ||
427 test_bit(STRIPE_EXPAND_READY
, &sh
->state
))
428 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
430 bi
->bi_bdev
= rdev
->bdev
;
431 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
432 __FUNCTION__
, (unsigned long long)sh
->sector
,
434 atomic_inc(&sh
->count
);
435 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
436 bi
->bi_flags
= 1 << BIO_UPTODATE
;
440 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
441 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
442 bi
->bi_io_vec
[0].bv_offset
= 0;
443 bi
->bi_size
= STRIPE_SIZE
;
446 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
447 atomic_add(STRIPE_SECTORS
,
448 &rdev
->corrected_errors
);
449 generic_make_request(bi
);
452 set_bit(STRIPE_DEGRADED
, &sh
->state
);
453 pr_debug("skip op %ld on disc %d for sector %llu\n",
454 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
455 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
456 set_bit(STRIPE_HANDLE
, &sh
->state
);
461 static struct dma_async_tx_descriptor
*
462 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
463 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
466 struct page
*bio_page
;
470 if (bio
->bi_sector
>= sector
)
471 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
473 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
474 bio_for_each_segment(bvl
, bio
, i
) {
475 int len
= bio_iovec_idx(bio
, i
)->bv_len
;
479 if (page_offset
< 0) {
480 b_offset
= -page_offset
;
481 page_offset
+= b_offset
;
485 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
486 clen
= STRIPE_SIZE
- page_offset
;
491 b_offset
+= bio_iovec_idx(bio
, i
)->bv_offset
;
492 bio_page
= bio_iovec_idx(bio
, i
)->bv_page
;
494 tx
= async_memcpy(page
, bio_page
, page_offset
,
499 tx
= async_memcpy(bio_page
, page
, b_offset
,
504 if (clen
< len
) /* hit end of page */
512 static void ops_complete_biofill(void *stripe_head_ref
)
514 struct stripe_head
*sh
= stripe_head_ref
;
515 struct bio
*return_bi
= NULL
;
516 raid5_conf_t
*conf
= sh
->raid_conf
;
519 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
520 (unsigned long long)sh
->sector
);
522 /* clear completed biofills */
523 for (i
= sh
->disks
; i
--; ) {
524 struct r5dev
*dev
= &sh
->dev
[i
];
526 /* acknowledge completion of a biofill operation */
527 /* and check if we need to reply to a read request,
528 * new R5_Wantfill requests are held off until
529 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
531 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
532 struct bio
*rbi
, *rbi2
;
534 /* The access to dev->read is outside of the
535 * spin_lock_irq(&conf->device_lock), but is protected
536 * by the STRIPE_OP_BIOFILL pending bit
541 while (rbi
&& rbi
->bi_sector
<
542 dev
->sector
+ STRIPE_SECTORS
) {
543 rbi2
= r5_next_bio(rbi
, dev
->sector
);
544 spin_lock_irq(&conf
->device_lock
);
545 if (--rbi
->bi_phys_segments
== 0) {
546 rbi
->bi_next
= return_bi
;
549 spin_unlock_irq(&conf
->device_lock
);
554 clear_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.ack
);
555 clear_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.pending
);
557 return_io(return_bi
);
559 set_bit(STRIPE_HANDLE
, &sh
->state
);
563 static void ops_run_biofill(struct stripe_head
*sh
)
565 struct dma_async_tx_descriptor
*tx
= NULL
;
566 raid5_conf_t
*conf
= sh
->raid_conf
;
569 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
570 (unsigned long long)sh
->sector
);
572 for (i
= sh
->disks
; i
--; ) {
573 struct r5dev
*dev
= &sh
->dev
[i
];
574 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
576 spin_lock_irq(&conf
->device_lock
);
577 dev
->read
= rbi
= dev
->toread
;
579 spin_unlock_irq(&conf
->device_lock
);
580 while (rbi
&& rbi
->bi_sector
<
581 dev
->sector
+ STRIPE_SECTORS
) {
582 tx
= async_copy_data(0, rbi
, dev
->page
,
584 rbi
= r5_next_bio(rbi
, dev
->sector
);
589 atomic_inc(&sh
->count
);
590 async_trigger_callback(ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
, tx
,
591 ops_complete_biofill
, sh
);
594 static void ops_complete_compute5(void *stripe_head_ref
)
596 struct stripe_head
*sh
= stripe_head_ref
;
597 int target
= sh
->ops
.target
;
598 struct r5dev
*tgt
= &sh
->dev
[target
];
600 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
601 (unsigned long long)sh
->sector
);
603 set_bit(R5_UPTODATE
, &tgt
->flags
);
604 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
605 clear_bit(R5_Wantcompute
, &tgt
->flags
);
606 set_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
);
607 set_bit(STRIPE_HANDLE
, &sh
->state
);
611 static struct dma_async_tx_descriptor
*
612 ops_run_compute5(struct stripe_head
*sh
, unsigned long pending
)
614 /* kernel stack size limits the total number of disks */
615 int disks
= sh
->disks
;
616 struct page
*xor_srcs
[disks
];
617 int target
= sh
->ops
.target
;
618 struct r5dev
*tgt
= &sh
->dev
[target
];
619 struct page
*xor_dest
= tgt
->page
;
621 struct dma_async_tx_descriptor
*tx
;
624 pr_debug("%s: stripe %llu block: %d\n",
625 __FUNCTION__
, (unsigned long long)sh
->sector
, target
);
626 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
628 for (i
= disks
; i
--; )
630 xor_srcs
[count
++] = sh
->dev
[i
].page
;
632 atomic_inc(&sh
->count
);
634 if (unlikely(count
== 1))
635 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
,
636 0, NULL
, ops_complete_compute5
, sh
);
638 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
639 ASYNC_TX_XOR_ZERO_DST
, NULL
,
640 ops_complete_compute5
, sh
);
642 /* ack now if postxor is not set to be run */
643 if (tx
&& !test_bit(STRIPE_OP_POSTXOR
, &pending
))
649 static void ops_complete_prexor(void *stripe_head_ref
)
651 struct stripe_head
*sh
= stripe_head_ref
;
653 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
654 (unsigned long long)sh
->sector
);
656 set_bit(STRIPE_OP_PREXOR
, &sh
->ops
.complete
);
659 static struct dma_async_tx_descriptor
*
660 ops_run_prexor(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
662 /* kernel stack size limits the total number of disks */
663 int disks
= sh
->disks
;
664 struct page
*xor_srcs
[disks
];
665 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
667 /* existing parity data subtracted */
668 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
670 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
671 (unsigned long long)sh
->sector
);
673 for (i
= disks
; i
--; ) {
674 struct r5dev
*dev
= &sh
->dev
[i
];
675 /* Only process blocks that are known to be uptodate */
676 if (dev
->towrite
&& test_bit(R5_Wantprexor
, &dev
->flags
))
677 xor_srcs
[count
++] = dev
->page
;
680 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
681 ASYNC_TX_DEP_ACK
| ASYNC_TX_XOR_DROP_DST
, tx
,
682 ops_complete_prexor
, sh
);
687 static struct dma_async_tx_descriptor
*
688 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
690 int disks
= sh
->disks
;
691 int pd_idx
= sh
->pd_idx
, i
;
693 /* check if prexor is active which means only process blocks
694 * that are part of a read-modify-write (Wantprexor)
696 int prexor
= test_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
);
698 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
699 (unsigned long long)sh
->sector
);
701 for (i
= disks
; i
--; ) {
702 struct r5dev
*dev
= &sh
->dev
[i
];
707 if (prexor
) { /* rmw */
709 test_bit(R5_Wantprexor
, &dev
->flags
))
712 if (i
!= pd_idx
&& dev
->towrite
&&
713 test_bit(R5_LOCKED
, &dev
->flags
))
720 spin_lock(&sh
->lock
);
721 chosen
= dev
->towrite
;
723 BUG_ON(dev
->written
);
724 wbi
= dev
->written
= chosen
;
725 spin_unlock(&sh
->lock
);
727 while (wbi
&& wbi
->bi_sector
<
728 dev
->sector
+ STRIPE_SECTORS
) {
729 tx
= async_copy_data(1, wbi
, dev
->page
,
731 wbi
= r5_next_bio(wbi
, dev
->sector
);
739 static void ops_complete_postxor(void *stripe_head_ref
)
741 struct stripe_head
*sh
= stripe_head_ref
;
743 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
744 (unsigned long long)sh
->sector
);
746 set_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
);
747 set_bit(STRIPE_HANDLE
, &sh
->state
);
751 static void ops_complete_write(void *stripe_head_ref
)
753 struct stripe_head
*sh
= stripe_head_ref
;
754 int disks
= sh
->disks
, i
, pd_idx
= sh
->pd_idx
;
756 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
757 (unsigned long long)sh
->sector
);
759 for (i
= disks
; i
--; ) {
760 struct r5dev
*dev
= &sh
->dev
[i
];
761 if (dev
->written
|| i
== pd_idx
)
762 set_bit(R5_UPTODATE
, &dev
->flags
);
765 set_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.complete
);
766 set_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
);
768 set_bit(STRIPE_HANDLE
, &sh
->state
);
773 ops_run_postxor(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
775 /* kernel stack size limits the total number of disks */
776 int disks
= sh
->disks
;
777 struct page
*xor_srcs
[disks
];
779 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
780 struct page
*xor_dest
;
781 int prexor
= test_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
);
783 dma_async_tx_callback callback
;
785 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
786 (unsigned long long)sh
->sector
);
788 /* check if prexor is active which means only process blocks
789 * that are part of a read-modify-write (written)
792 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
793 for (i
= disks
; i
--; ) {
794 struct r5dev
*dev
= &sh
->dev
[i
];
796 xor_srcs
[count
++] = dev
->page
;
799 xor_dest
= sh
->dev
[pd_idx
].page
;
800 for (i
= disks
; i
--; ) {
801 struct r5dev
*dev
= &sh
->dev
[i
];
803 xor_srcs
[count
++] = dev
->page
;
807 /* check whether this postxor is part of a write */
808 callback
= test_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
) ?
809 ops_complete_write
: ops_complete_postxor
;
811 /* 1/ if we prexor'd then the dest is reused as a source
812 * 2/ if we did not prexor then we are redoing the parity
813 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
814 * for the synchronous xor case
816 flags
= ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
|
817 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
819 atomic_inc(&sh
->count
);
821 if (unlikely(count
== 1)) {
822 flags
&= ~(ASYNC_TX_XOR_DROP_DST
| ASYNC_TX_XOR_ZERO_DST
);
823 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
,
824 flags
, tx
, callback
, sh
);
826 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
827 flags
, tx
, callback
, sh
);
830 static void ops_complete_check(void *stripe_head_ref
)
832 struct stripe_head
*sh
= stripe_head_ref
;
833 int pd_idx
= sh
->pd_idx
;
835 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
836 (unsigned long long)sh
->sector
);
838 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK
, &sh
->ops
.pending
) &&
839 sh
->ops
.zero_sum_result
== 0)
840 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
842 set_bit(STRIPE_OP_CHECK
, &sh
->ops
.complete
);
843 set_bit(STRIPE_HANDLE
, &sh
->state
);
847 static void ops_run_check(struct stripe_head
*sh
)
849 /* kernel stack size limits the total number of disks */
850 int disks
= sh
->disks
;
851 struct page
*xor_srcs
[disks
];
852 struct dma_async_tx_descriptor
*tx
;
854 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
855 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
857 pr_debug("%s: stripe %llu\n", __FUNCTION__
,
858 (unsigned long long)sh
->sector
);
860 for (i
= disks
; i
--; ) {
861 struct r5dev
*dev
= &sh
->dev
[i
];
863 xor_srcs
[count
++] = dev
->page
;
866 tx
= async_xor_zero_sum(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
867 &sh
->ops
.zero_sum_result
, 0, NULL
, NULL
, NULL
);
870 set_bit(STRIPE_OP_MOD_DMA_CHECK
, &sh
->ops
.pending
);
872 clear_bit(STRIPE_OP_MOD_DMA_CHECK
, &sh
->ops
.pending
);
874 atomic_inc(&sh
->count
);
875 tx
= async_trigger_callback(ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
, tx
,
876 ops_complete_check
, sh
);
879 static void raid5_run_ops(struct stripe_head
*sh
, unsigned long pending
)
881 int overlap_clear
= 0, i
, disks
= sh
->disks
;
882 struct dma_async_tx_descriptor
*tx
= NULL
;
884 if (test_bit(STRIPE_OP_BIOFILL
, &pending
)) {
889 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &pending
))
890 tx
= ops_run_compute5(sh
, pending
);
892 if (test_bit(STRIPE_OP_PREXOR
, &pending
))
893 tx
= ops_run_prexor(sh
, tx
);
895 if (test_bit(STRIPE_OP_BIODRAIN
, &pending
)) {
896 tx
= ops_run_biodrain(sh
, tx
);
900 if (test_bit(STRIPE_OP_POSTXOR
, &pending
))
901 ops_run_postxor(sh
, tx
);
903 if (test_bit(STRIPE_OP_CHECK
, &pending
))
906 if (test_bit(STRIPE_OP_IO
, &pending
))
910 for (i
= disks
; i
--; ) {
911 struct r5dev
*dev
= &sh
->dev
[i
];
912 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
913 wake_up(&sh
->raid_conf
->wait_for_overlap
);
917 static int grow_one_stripe(raid5_conf_t
*conf
)
919 struct stripe_head
*sh
;
920 sh
= kmem_cache_alloc(conf
->slab_cache
, GFP_KERNEL
);
923 memset(sh
, 0, sizeof(*sh
) + (conf
->raid_disks
-1)*sizeof(struct r5dev
));
924 sh
->raid_conf
= conf
;
925 spin_lock_init(&sh
->lock
);
927 if (grow_buffers(sh
, conf
->raid_disks
)) {
928 shrink_buffers(sh
, conf
->raid_disks
);
929 kmem_cache_free(conf
->slab_cache
, sh
);
932 sh
->disks
= conf
->raid_disks
;
933 /* we just created an active stripe so... */
934 atomic_set(&sh
->count
, 1);
935 atomic_inc(&conf
->active_stripes
);
936 INIT_LIST_HEAD(&sh
->lru
);
941 static int grow_stripes(raid5_conf_t
*conf
, int num
)
943 struct kmem_cache
*sc
;
944 int devs
= conf
->raid_disks
;
946 sprintf(conf
->cache_name
[0], "raid5-%s", mdname(conf
->mddev
));
947 sprintf(conf
->cache_name
[1], "raid5-%s-alt", mdname(conf
->mddev
));
948 conf
->active_name
= 0;
949 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
950 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
954 conf
->slab_cache
= sc
;
955 conf
->pool_size
= devs
;
957 if (!grow_one_stripe(conf
))
962 #ifdef CONFIG_MD_RAID5_RESHAPE
963 static int resize_stripes(raid5_conf_t
*conf
, int newsize
)
965 /* Make all the stripes able to hold 'newsize' devices.
966 * New slots in each stripe get 'page' set to a new page.
968 * This happens in stages:
969 * 1/ create a new kmem_cache and allocate the required number of
971 * 2/ gather all the old stripe_heads and tranfer the pages across
972 * to the new stripe_heads. This will have the side effect of
973 * freezing the array as once all stripe_heads have been collected,
974 * no IO will be possible. Old stripe heads are freed once their
975 * pages have been transferred over, and the old kmem_cache is
976 * freed when all stripes are done.
977 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
978 * we simple return a failre status - no need to clean anything up.
979 * 4/ allocate new pages for the new slots in the new stripe_heads.
980 * If this fails, we don't bother trying the shrink the
981 * stripe_heads down again, we just leave them as they are.
982 * As each stripe_head is processed the new one is released into
985 * Once step2 is started, we cannot afford to wait for a write,
986 * so we use GFP_NOIO allocations.
988 struct stripe_head
*osh
, *nsh
;
989 LIST_HEAD(newstripes
);
990 struct disk_info
*ndisks
;
992 struct kmem_cache
*sc
;
995 if (newsize
<= conf
->pool_size
)
996 return 0; /* never bother to shrink */
998 md_allow_write(conf
->mddev
);
1001 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
1002 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
1007 for (i
= conf
->max_nr_stripes
; i
; i
--) {
1008 nsh
= kmem_cache_alloc(sc
, GFP_KERNEL
);
1012 memset(nsh
, 0, sizeof(*nsh
) + (newsize
-1)*sizeof(struct r5dev
));
1014 nsh
->raid_conf
= conf
;
1015 spin_lock_init(&nsh
->lock
);
1017 list_add(&nsh
->lru
, &newstripes
);
1020 /* didn't get enough, give up */
1021 while (!list_empty(&newstripes
)) {
1022 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1023 list_del(&nsh
->lru
);
1024 kmem_cache_free(sc
, nsh
);
1026 kmem_cache_destroy(sc
);
1029 /* Step 2 - Must use GFP_NOIO now.
1030 * OK, we have enough stripes, start collecting inactive
1031 * stripes and copying them over
1033 list_for_each_entry(nsh
, &newstripes
, lru
) {
1034 spin_lock_irq(&conf
->device_lock
);
1035 wait_event_lock_irq(conf
->wait_for_stripe
,
1036 !list_empty(&conf
->inactive_list
),
1038 unplug_slaves(conf
->mddev
)
1040 osh
= get_free_stripe(conf
);
1041 spin_unlock_irq(&conf
->device_lock
);
1042 atomic_set(&nsh
->count
, 1);
1043 for(i
=0; i
<conf
->pool_size
; i
++)
1044 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
1045 for( ; i
<newsize
; i
++)
1046 nsh
->dev
[i
].page
= NULL
;
1047 kmem_cache_free(conf
->slab_cache
, osh
);
1049 kmem_cache_destroy(conf
->slab_cache
);
1052 * At this point, we are holding all the stripes so the array
1053 * is completely stalled, so now is a good time to resize
1056 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
1058 for (i
=0; i
<conf
->raid_disks
; i
++)
1059 ndisks
[i
] = conf
->disks
[i
];
1061 conf
->disks
= ndisks
;
1065 /* Step 4, return new stripes to service */
1066 while(!list_empty(&newstripes
)) {
1067 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1068 list_del_init(&nsh
->lru
);
1069 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
1070 if (nsh
->dev
[i
].page
== NULL
) {
1071 struct page
*p
= alloc_page(GFP_NOIO
);
1072 nsh
->dev
[i
].page
= p
;
1076 release_stripe(nsh
);
1078 /* critical section pass, GFP_NOIO no longer needed */
1080 conf
->slab_cache
= sc
;
1081 conf
->active_name
= 1-conf
->active_name
;
1082 conf
->pool_size
= newsize
;
1087 static int drop_one_stripe(raid5_conf_t
*conf
)
1089 struct stripe_head
*sh
;
1091 spin_lock_irq(&conf
->device_lock
);
1092 sh
= get_free_stripe(conf
);
1093 spin_unlock_irq(&conf
->device_lock
);
1096 BUG_ON(atomic_read(&sh
->count
));
1097 shrink_buffers(sh
, conf
->pool_size
);
1098 kmem_cache_free(conf
->slab_cache
, sh
);
1099 atomic_dec(&conf
->active_stripes
);
1103 static void shrink_stripes(raid5_conf_t
*conf
)
1105 while (drop_one_stripe(conf
))
1108 if (conf
->slab_cache
)
1109 kmem_cache_destroy(conf
->slab_cache
);
1110 conf
->slab_cache
= NULL
;
1113 static int raid5_end_read_request(struct bio
* bi
, unsigned int bytes_done
,
1116 struct stripe_head
*sh
= bi
->bi_private
;
1117 raid5_conf_t
*conf
= sh
->raid_conf
;
1118 int disks
= sh
->disks
, i
;
1119 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1120 char b
[BDEVNAME_SIZE
];
1126 for (i
=0 ; i
<disks
; i
++)
1127 if (bi
== &sh
->dev
[i
].req
)
1130 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1131 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1139 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1140 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1141 rdev
= conf
->disks
[i
].rdev
;
1142 printk(KERN_INFO
"raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1143 mdname(conf
->mddev
), STRIPE_SECTORS
,
1144 (unsigned long long)sh
->sector
+ rdev
->data_offset
,
1145 bdevname(rdev
->bdev
, b
));
1146 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1147 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1149 if (atomic_read(&conf
->disks
[i
].rdev
->read_errors
))
1150 atomic_set(&conf
->disks
[i
].rdev
->read_errors
, 0);
1152 const char *bdn
= bdevname(conf
->disks
[i
].rdev
->bdev
, b
);
1154 rdev
= conf
->disks
[i
].rdev
;
1156 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1157 atomic_inc(&rdev
->read_errors
);
1158 if (conf
->mddev
->degraded
)
1159 printk(KERN_WARNING
"raid5:%s: read error not correctable (sector %llu on %s).\n",
1160 mdname(conf
->mddev
),
1161 (unsigned long long)sh
->sector
+ rdev
->data_offset
,
1163 else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
1165 printk(KERN_WARNING
"raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1166 mdname(conf
->mddev
),
1167 (unsigned long long)sh
->sector
+ rdev
->data_offset
,
1169 else if (atomic_read(&rdev
->read_errors
)
1170 > conf
->max_nr_stripes
)
1172 "raid5:%s: Too many read errors, failing device %s.\n",
1173 mdname(conf
->mddev
), bdn
);
1177 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1179 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1180 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1181 md_error(conf
->mddev
, rdev
);
1184 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1185 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1186 set_bit(STRIPE_HANDLE
, &sh
->state
);
1191 static int raid5_end_write_request (struct bio
*bi
, unsigned int bytes_done
,
1194 struct stripe_head
*sh
= bi
->bi_private
;
1195 raid5_conf_t
*conf
= sh
->raid_conf
;
1196 int disks
= sh
->disks
, i
;
1197 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1202 for (i
=0 ; i
<disks
; i
++)
1203 if (bi
== &sh
->dev
[i
].req
)
1206 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1207 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1215 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
1217 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1219 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1220 set_bit(STRIPE_HANDLE
, &sh
->state
);
1226 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
);
1228 static void raid5_build_block (struct stripe_head
*sh
, int i
)
1230 struct r5dev
*dev
= &sh
->dev
[i
];
1232 bio_init(&dev
->req
);
1233 dev
->req
.bi_io_vec
= &dev
->vec
;
1235 dev
->req
.bi_max_vecs
++;
1236 dev
->vec
.bv_page
= dev
->page
;
1237 dev
->vec
.bv_len
= STRIPE_SIZE
;
1238 dev
->vec
.bv_offset
= 0;
1240 dev
->req
.bi_sector
= sh
->sector
;
1241 dev
->req
.bi_private
= sh
;
1244 dev
->sector
= compute_blocknr(sh
, i
);
1247 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1249 char b
[BDEVNAME_SIZE
];
1250 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
1251 pr_debug("raid5: error called\n");
1253 if (!test_bit(Faulty
, &rdev
->flags
)) {
1254 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1255 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1256 unsigned long flags
;
1257 spin_lock_irqsave(&conf
->device_lock
, flags
);
1259 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1261 * if recovery was running, make sure it aborts.
1263 set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
);
1265 set_bit(Faulty
, &rdev
->flags
);
1267 "raid5: Disk failure on %s, disabling device."
1268 " Operation continuing on %d devices\n",
1269 bdevname(rdev
->bdev
,b
), conf
->raid_disks
- mddev
->degraded
);
1274 * Input: a 'big' sector number,
1275 * Output: index of the data and parity disk, and the sector # in them.
1277 static sector_t
raid5_compute_sector(sector_t r_sector
, unsigned int raid_disks
,
1278 unsigned int data_disks
, unsigned int * dd_idx
,
1279 unsigned int * pd_idx
, raid5_conf_t
*conf
)
1282 unsigned long chunk_number
;
1283 unsigned int chunk_offset
;
1284 sector_t new_sector
;
1285 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1287 /* First compute the information on this sector */
1290 * Compute the chunk number and the sector offset inside the chunk
1292 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
1293 chunk_number
= r_sector
;
1294 BUG_ON(r_sector
!= chunk_number
);
1297 * Compute the stripe number
1299 stripe
= chunk_number
/ data_disks
;
1302 * Compute the data disk and parity disk indexes inside the stripe
1304 *dd_idx
= chunk_number
% data_disks
;
1307 * Select the parity disk based on the user selected algorithm.
1309 switch(conf
->level
) {
1311 *pd_idx
= data_disks
;
1314 switch (conf
->algorithm
) {
1315 case ALGORITHM_LEFT_ASYMMETRIC
:
1316 *pd_idx
= data_disks
- stripe
% raid_disks
;
1317 if (*dd_idx
>= *pd_idx
)
1320 case ALGORITHM_RIGHT_ASYMMETRIC
:
1321 *pd_idx
= stripe
% raid_disks
;
1322 if (*dd_idx
>= *pd_idx
)
1325 case ALGORITHM_LEFT_SYMMETRIC
:
1326 *pd_idx
= data_disks
- stripe
% raid_disks
;
1327 *dd_idx
= (*pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1329 case ALGORITHM_RIGHT_SYMMETRIC
:
1330 *pd_idx
= stripe
% raid_disks
;
1331 *dd_idx
= (*pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1334 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1340 /**** FIX THIS ****/
1341 switch (conf
->algorithm
) {
1342 case ALGORITHM_LEFT_ASYMMETRIC
:
1343 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1344 if (*pd_idx
== raid_disks
-1)
1345 (*dd_idx
)++; /* Q D D D P */
1346 else if (*dd_idx
>= *pd_idx
)
1347 (*dd_idx
) += 2; /* D D P Q D */
1349 case ALGORITHM_RIGHT_ASYMMETRIC
:
1350 *pd_idx
= stripe
% raid_disks
;
1351 if (*pd_idx
== raid_disks
-1)
1352 (*dd_idx
)++; /* Q D D D P */
1353 else if (*dd_idx
>= *pd_idx
)
1354 (*dd_idx
) += 2; /* D D P Q D */
1356 case ALGORITHM_LEFT_SYMMETRIC
:
1357 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1358 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1360 case ALGORITHM_RIGHT_SYMMETRIC
:
1361 *pd_idx
= stripe
% raid_disks
;
1362 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1365 printk (KERN_CRIT
"raid6: unsupported algorithm %d\n",
1372 * Finally, compute the new sector number
1374 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
1379 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
)
1381 raid5_conf_t
*conf
= sh
->raid_conf
;
1382 int raid_disks
= sh
->disks
;
1383 int data_disks
= raid_disks
- conf
->max_degraded
;
1384 sector_t new_sector
= sh
->sector
, check
;
1385 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1388 int chunk_number
, dummy1
, dummy2
, dd_idx
= i
;
1392 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
1393 stripe
= new_sector
;
1394 BUG_ON(new_sector
!= stripe
);
1396 if (i
== sh
->pd_idx
)
1398 switch(conf
->level
) {
1401 switch (conf
->algorithm
) {
1402 case ALGORITHM_LEFT_ASYMMETRIC
:
1403 case ALGORITHM_RIGHT_ASYMMETRIC
:
1407 case ALGORITHM_LEFT_SYMMETRIC
:
1408 case ALGORITHM_RIGHT_SYMMETRIC
:
1411 i
-= (sh
->pd_idx
+ 1);
1414 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1419 if (i
== raid6_next_disk(sh
->pd_idx
, raid_disks
))
1420 return 0; /* It is the Q disk */
1421 switch (conf
->algorithm
) {
1422 case ALGORITHM_LEFT_ASYMMETRIC
:
1423 case ALGORITHM_RIGHT_ASYMMETRIC
:
1424 if (sh
->pd_idx
== raid_disks
-1)
1425 i
--; /* Q D D D P */
1426 else if (i
> sh
->pd_idx
)
1427 i
-= 2; /* D D P Q D */
1429 case ALGORITHM_LEFT_SYMMETRIC
:
1430 case ALGORITHM_RIGHT_SYMMETRIC
:
1431 if (sh
->pd_idx
== raid_disks
-1)
1432 i
--; /* Q D D D P */
1437 i
-= (sh
->pd_idx
+ 2);
1441 printk (KERN_CRIT
"raid6: unsupported algorithm %d\n",
1447 chunk_number
= stripe
* data_disks
+ i
;
1448 r_sector
= (sector_t
)chunk_number
* sectors_per_chunk
+ chunk_offset
;
1450 check
= raid5_compute_sector (r_sector
, raid_disks
, data_disks
, &dummy1
, &dummy2
, conf
);
1451 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| dummy2
!= sh
->pd_idx
) {
1452 printk(KERN_ERR
"compute_blocknr: map not correct\n");
1461 * Copy data between a page in the stripe cache, and one or more bion
1462 * The page could align with the middle of the bio, or there could be
1463 * several bion, each with several bio_vecs, which cover part of the page
1464 * Multiple bion are linked together on bi_next. There may be extras
1465 * at the end of this list. We ignore them.
1467 static void copy_data(int frombio
, struct bio
*bio
,
1471 char *pa
= page_address(page
);
1472 struct bio_vec
*bvl
;
1476 if (bio
->bi_sector
>= sector
)
1477 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
1479 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
1480 bio_for_each_segment(bvl
, bio
, i
) {
1481 int len
= bio_iovec_idx(bio
,i
)->bv_len
;
1485 if (page_offset
< 0) {
1486 b_offset
= -page_offset
;
1487 page_offset
+= b_offset
;
1491 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
1492 clen
= STRIPE_SIZE
- page_offset
;
1496 char *ba
= __bio_kmap_atomic(bio
, i
, KM_USER0
);
1498 memcpy(pa
+page_offset
, ba
+b_offset
, clen
);
1500 memcpy(ba
+b_offset
, pa
+page_offset
, clen
);
1501 __bio_kunmap_atomic(ba
, KM_USER0
);
1503 if (clen
< len
) /* hit end of page */
1509 #define check_xor() do { \
1510 if (count == MAX_XOR_BLOCKS) { \
1511 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1516 static void compute_parity6(struct stripe_head
*sh
, int method
)
1518 raid6_conf_t
*conf
= sh
->raid_conf
;
1519 int i
, pd_idx
= sh
->pd_idx
, qd_idx
, d0_idx
, disks
= sh
->disks
, count
;
1521 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1524 qd_idx
= raid6_next_disk(pd_idx
, disks
);
1525 d0_idx
= raid6_next_disk(qd_idx
, disks
);
1527 pr_debug("compute_parity, stripe %llu, method %d\n",
1528 (unsigned long long)sh
->sector
, method
);
1531 case READ_MODIFY_WRITE
:
1532 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1533 case RECONSTRUCT_WRITE
:
1534 for (i
= disks
; i
-- ;)
1535 if ( i
!= pd_idx
&& i
!= qd_idx
&& sh
->dev
[i
].towrite
) {
1536 chosen
= sh
->dev
[i
].towrite
;
1537 sh
->dev
[i
].towrite
= NULL
;
1539 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1540 wake_up(&conf
->wait_for_overlap
);
1542 BUG_ON(sh
->dev
[i
].written
);
1543 sh
->dev
[i
].written
= chosen
;
1547 BUG(); /* Not implemented yet */
1550 for (i
= disks
; i
--;)
1551 if (sh
->dev
[i
].written
) {
1552 sector_t sector
= sh
->dev
[i
].sector
;
1553 struct bio
*wbi
= sh
->dev
[i
].written
;
1554 while (wbi
&& wbi
->bi_sector
< sector
+ STRIPE_SECTORS
) {
1555 copy_data(1, wbi
, sh
->dev
[i
].page
, sector
);
1556 wbi
= r5_next_bio(wbi
, sector
);
1559 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1560 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1564 // case RECONSTRUCT_WRITE:
1565 // case CHECK_PARITY:
1566 // case UPDATE_PARITY:
1567 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1568 /* FIX: Is this ordering of drives even remotely optimal? */
1572 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
1573 if (count
<= disks
-2 && !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1574 printk("block %d/%d not uptodate on parity calc\n", i
,count
);
1575 i
= raid6_next_disk(i
, disks
);
1576 } while ( i
!= d0_idx
);
1580 raid6_call
.gen_syndrome(disks
, STRIPE_SIZE
, ptrs
);
1583 case RECONSTRUCT_WRITE
:
1584 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1585 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1586 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1587 set_bit(R5_LOCKED
, &sh
->dev
[qd_idx
].flags
);
1590 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1591 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1597 /* Compute one missing block */
1598 static void compute_block_1(struct stripe_head
*sh
, int dd_idx
, int nozero
)
1600 int i
, count
, disks
= sh
->disks
;
1601 void *ptr
[MAX_XOR_BLOCKS
], *dest
, *p
;
1602 int pd_idx
= sh
->pd_idx
;
1603 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1605 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1606 (unsigned long long)sh
->sector
, dd_idx
);
1608 if ( dd_idx
== qd_idx
) {
1609 /* We're actually computing the Q drive */
1610 compute_parity6(sh
, UPDATE_PARITY
);
1612 dest
= page_address(sh
->dev
[dd_idx
].page
);
1613 if (!nozero
) memset(dest
, 0, STRIPE_SIZE
);
1615 for (i
= disks
; i
--; ) {
1616 if (i
== dd_idx
|| i
== qd_idx
)
1618 p
= page_address(sh
->dev
[i
].page
);
1619 if (test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1622 printk("compute_block() %d, stripe %llu, %d"
1623 " not present\n", dd_idx
,
1624 (unsigned long long)sh
->sector
, i
);
1629 xor_blocks(count
, STRIPE_SIZE
, dest
, ptr
);
1630 if (!nozero
) set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1631 else clear_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1635 /* Compute two missing blocks */
1636 static void compute_block_2(struct stripe_head
*sh
, int dd_idx1
, int dd_idx2
)
1638 int i
, count
, disks
= sh
->disks
;
1639 int pd_idx
= sh
->pd_idx
;
1640 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1641 int d0_idx
= raid6_next_disk(qd_idx
, disks
);
1644 /* faila and failb are disk numbers relative to d0_idx */
1645 /* pd_idx become disks-2 and qd_idx become disks-1 */
1646 faila
= (dd_idx1
< d0_idx
) ? dd_idx1
+(disks
-d0_idx
) : dd_idx1
-d0_idx
;
1647 failb
= (dd_idx2
< d0_idx
) ? dd_idx2
+(disks
-d0_idx
) : dd_idx2
-d0_idx
;
1649 BUG_ON(faila
== failb
);
1650 if ( failb
< faila
) { int tmp
= faila
; faila
= failb
; failb
= tmp
; }
1652 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1653 (unsigned long long)sh
->sector
, dd_idx1
, dd_idx2
, faila
, failb
);
1655 if ( failb
== disks
-1 ) {
1656 /* Q disk is one of the missing disks */
1657 if ( faila
== disks
-2 ) {
1658 /* Missing P+Q, just recompute */
1659 compute_parity6(sh
, UPDATE_PARITY
);
1662 /* We're missing D+Q; recompute D from P */
1663 compute_block_1(sh
, (dd_idx1
== qd_idx
) ? dd_idx2
: dd_idx1
, 0);
1664 compute_parity6(sh
, UPDATE_PARITY
); /* Is this necessary? */
1669 /* We're missing D+P or D+D; build pointer table */
1671 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1677 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
1678 i
= raid6_next_disk(i
, disks
);
1679 if (i
!= dd_idx1
&& i
!= dd_idx2
&&
1680 !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1681 printk("compute_2 with missing block %d/%d\n", count
, i
);
1682 } while ( i
!= d0_idx
);
1684 if ( failb
== disks
-2 ) {
1685 /* We're missing D+P. */
1686 raid6_datap_recov(disks
, STRIPE_SIZE
, faila
, ptrs
);
1688 /* We're missing D+D. */
1689 raid6_2data_recov(disks
, STRIPE_SIZE
, faila
, failb
, ptrs
);
1692 /* Both the above update both missing blocks */
1693 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx1
].flags
);
1694 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx2
].flags
);
1699 handle_write_operations5(struct stripe_head
*sh
, int rcw
, int expand
)
1701 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
1705 /* if we are not expanding this is a proper write request, and
1706 * there will be bios with new data to be drained into the
1710 set_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
);
1714 set_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
);
1717 for (i
= disks
; i
--; ) {
1718 struct r5dev
*dev
= &sh
->dev
[i
];
1721 set_bit(R5_LOCKED
, &dev
->flags
);
1723 clear_bit(R5_UPTODATE
, &dev
->flags
);
1728 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
1729 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
1731 set_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
);
1732 set_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
);
1733 set_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
);
1737 for (i
= disks
; i
--; ) {
1738 struct r5dev
*dev
= &sh
->dev
[i
];
1742 /* For a read-modify write there may be blocks that are
1743 * locked for reading while others are ready to be
1744 * written so we distinguish these blocks by the
1748 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
1749 test_bit(R5_Wantcompute
, &dev
->flags
))) {
1750 set_bit(R5_Wantprexor
, &dev
->flags
);
1751 set_bit(R5_LOCKED
, &dev
->flags
);
1752 clear_bit(R5_UPTODATE
, &dev
->flags
);
1758 /* keep the parity disk locked while asynchronous operations
1761 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1762 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1765 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1766 __FUNCTION__
, (unsigned long long)sh
->sector
,
1767 locked
, sh
->ops
.pending
);
1773 * Each stripe/dev can have one or more bion attached.
1774 * toread/towrite point to the first in a chain.
1775 * The bi_next chain must be in order.
1777 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
1780 raid5_conf_t
*conf
= sh
->raid_conf
;
1783 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1784 (unsigned long long)bi
->bi_sector
,
1785 (unsigned long long)sh
->sector
);
1788 spin_lock(&sh
->lock
);
1789 spin_lock_irq(&conf
->device_lock
);
1791 bip
= &sh
->dev
[dd_idx
].towrite
;
1792 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
1795 bip
= &sh
->dev
[dd_idx
].toread
;
1796 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
1797 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
1799 bip
= & (*bip
)->bi_next
;
1801 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
1804 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
1808 bi
->bi_phys_segments
++;
1809 spin_unlock_irq(&conf
->device_lock
);
1810 spin_unlock(&sh
->lock
);
1812 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1813 (unsigned long long)bi
->bi_sector
,
1814 (unsigned long long)sh
->sector
, dd_idx
);
1816 if (conf
->mddev
->bitmap
&& firstwrite
) {
1817 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
1819 sh
->bm_seq
= conf
->seq_flush
+1;
1820 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
1824 /* check if page is covered */
1825 sector_t sector
= sh
->dev
[dd_idx
].sector
;
1826 for (bi
=sh
->dev
[dd_idx
].towrite
;
1827 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
1828 bi
&& bi
->bi_sector
<= sector
;
1829 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
1830 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
1831 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
1833 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
1834 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
1839 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
1840 spin_unlock_irq(&conf
->device_lock
);
1841 spin_unlock(&sh
->lock
);
1845 static void end_reshape(raid5_conf_t
*conf
);
1847 static int page_is_zero(struct page
*p
)
1849 char *a
= page_address(p
);
1850 return ((*(u32
*)a
) == 0 &&
1851 memcmp(a
, a
+4, STRIPE_SIZE
-4)==0);
1854 static int stripe_to_pdidx(sector_t stripe
, raid5_conf_t
*conf
, int disks
)
1856 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1858 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
1860 raid5_compute_sector(stripe
* (disks
- conf
->max_degraded
)
1861 *sectors_per_chunk
+ chunk_offset
,
1862 disks
, disks
- conf
->max_degraded
,
1863 &dd_idx
, &pd_idx
, conf
);
1868 handle_requests_to_failed_array(raid5_conf_t
*conf
, struct stripe_head
*sh
,
1869 struct stripe_head_state
*s
, int disks
,
1870 struct bio
**return_bi
)
1873 for (i
= disks
; i
--; ) {
1877 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1880 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
1881 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
1882 /* multiple read failures in one stripe */
1883 md_error(conf
->mddev
, rdev
);
1886 spin_lock_irq(&conf
->device_lock
);
1887 /* fail all writes first */
1888 bi
= sh
->dev
[i
].towrite
;
1889 sh
->dev
[i
].towrite
= NULL
;
1895 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1896 wake_up(&conf
->wait_for_overlap
);
1898 while (bi
&& bi
->bi_sector
<
1899 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1900 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1901 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1902 if (--bi
->bi_phys_segments
== 0) {
1903 md_write_end(conf
->mddev
);
1904 bi
->bi_next
= *return_bi
;
1909 /* and fail all 'written' */
1910 bi
= sh
->dev
[i
].written
;
1911 sh
->dev
[i
].written
= NULL
;
1912 if (bi
) bitmap_end
= 1;
1913 while (bi
&& bi
->bi_sector
<
1914 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1915 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1916 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1917 if (--bi
->bi_phys_segments
== 0) {
1918 md_write_end(conf
->mddev
);
1919 bi
->bi_next
= *return_bi
;
1925 /* fail any reads if this device is non-operational and
1926 * the data has not reached the cache yet.
1928 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
1929 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
1930 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
1931 bi
= sh
->dev
[i
].toread
;
1932 sh
->dev
[i
].toread
= NULL
;
1933 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1934 wake_up(&conf
->wait_for_overlap
);
1935 if (bi
) s
->to_read
--;
1936 while (bi
&& bi
->bi_sector
<
1937 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1938 struct bio
*nextbi
=
1939 r5_next_bio(bi
, sh
->dev
[i
].sector
);
1940 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1941 if (--bi
->bi_phys_segments
== 0) {
1942 bi
->bi_next
= *return_bi
;
1948 spin_unlock_irq(&conf
->device_lock
);
1950 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
1951 STRIPE_SECTORS
, 0, 0);
1956 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1959 static int __handle_issuing_new_read_requests5(struct stripe_head
*sh
,
1960 struct stripe_head_state
*s
, int disk_idx
, int disks
)
1962 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
1963 struct r5dev
*failed_dev
= &sh
->dev
[s
->failed_num
];
1965 /* don't schedule compute operations or reads on the parity block while
1966 * a check is in flight
1968 if ((disk_idx
== sh
->pd_idx
) &&
1969 test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
))
1972 /* is the data in this block needed, and can we get it? */
1973 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
1974 !test_bit(R5_UPTODATE
, &dev
->flags
) && (dev
->toread
||
1975 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
1976 s
->syncing
|| s
->expanding
|| (s
->failed
&&
1977 (failed_dev
->toread
|| (failed_dev
->towrite
&&
1978 !test_bit(R5_OVERWRITE
, &failed_dev
->flags
)
1980 /* 1/ We would like to get this block, possibly by computing it,
1981 * but we might not be able to.
1983 * 2/ Since parity check operations potentially make the parity
1984 * block !uptodate it will need to be refreshed before any
1985 * compute operations on data disks are scheduled.
1987 * 3/ We hold off parity block re-reads until check operations
1990 if ((s
->uptodate
== disks
- 1) &&
1991 !test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
)) {
1992 set_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
);
1993 set_bit(R5_Wantcompute
, &dev
->flags
);
1994 sh
->ops
.target
= disk_idx
;
1997 /* Careful: from this point on 'uptodate' is in the eye
1998 * of raid5_run_ops which services 'compute' operations
1999 * before writes. R5_Wantcompute flags a block that will
2000 * be R5_UPTODATE by the time it is needed for a
2001 * subsequent operation.
2004 return 0; /* uptodate + compute == disks */
2005 } else if ((s
->uptodate
< disks
- 1) &&
2006 test_bit(R5_Insync
, &dev
->flags
)) {
2007 /* Note: we hold off compute operations while checks are
2008 * in flight, but we still prefer 'compute' over 'read'
2009 * hence we only read if (uptodate < * disks-1)
2011 set_bit(R5_LOCKED
, &dev
->flags
);
2012 set_bit(R5_Wantread
, &dev
->flags
);
2013 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2016 pr_debug("Reading block %d (sync=%d)\n", disk_idx
,
2024 static void handle_issuing_new_read_requests5(struct stripe_head
*sh
,
2025 struct stripe_head_state
*s
, int disks
)
2029 /* Clear completed compute operations. Parity recovery
2030 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2031 * later on in this routine
2033 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
) &&
2034 !test_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
)) {
2035 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
);
2036 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.ack
);
2037 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
);
2040 /* look for blocks to read/compute, skip this if a compute
2041 * is already in flight, or if the stripe contents are in the
2042 * midst of changing due to a write
2044 if (!test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
) &&
2045 !test_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
) &&
2046 !test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
)) {
2047 for (i
= disks
; i
--; )
2048 if (__handle_issuing_new_read_requests5(
2049 sh
, s
, i
, disks
) == 0)
2052 set_bit(STRIPE_HANDLE
, &sh
->state
);
2055 static void handle_issuing_new_read_requests6(struct stripe_head
*sh
,
2056 struct stripe_head_state
*s
, struct r6_state
*r6s
,
2060 for (i
= disks
; i
--; ) {
2061 struct r5dev
*dev
= &sh
->dev
[i
];
2062 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2063 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2064 (dev
->toread
|| (dev
->towrite
&&
2065 !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2066 s
->syncing
|| s
->expanding
||
2068 (sh
->dev
[r6s
->failed_num
[0]].toread
||
2071 (sh
->dev
[r6s
->failed_num
[1]].toread
||
2073 /* we would like to get this block, possibly
2074 * by computing it, but we might not be able to
2076 if (s
->uptodate
== disks
-1) {
2077 pr_debug("Computing stripe %llu block %d\n",
2078 (unsigned long long)sh
->sector
, i
);
2079 compute_block_1(sh
, i
, 0);
2081 } else if ( s
->uptodate
== disks
-2 && s
->failed
>= 2 ) {
2082 /* Computing 2-failure is *very* expensive; only
2083 * do it if failed >= 2
2086 for (other
= disks
; other
--; ) {
2089 if (!test_bit(R5_UPTODATE
,
2090 &sh
->dev
[other
].flags
))
2094 pr_debug("Computing stripe %llu blocks %d,%d\n",
2095 (unsigned long long)sh
->sector
,
2097 compute_block_2(sh
, i
, other
);
2099 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2100 set_bit(R5_LOCKED
, &dev
->flags
);
2101 set_bit(R5_Wantread
, &dev
->flags
);
2103 pr_debug("Reading block %d (sync=%d)\n",
2108 set_bit(STRIPE_HANDLE
, &sh
->state
);
2112 /* handle_completed_write_requests
2113 * any written block on an uptodate or failed drive can be returned.
2114 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2115 * never LOCKED, so we don't need to test 'failed' directly.
2117 static void handle_completed_write_requests(raid5_conf_t
*conf
,
2118 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2123 for (i
= disks
; i
--; )
2124 if (sh
->dev
[i
].written
) {
2126 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2127 test_bit(R5_UPTODATE
, &dev
->flags
)) {
2128 /* We can return any write requests */
2129 struct bio
*wbi
, *wbi2
;
2131 pr_debug("Return write for disc %d\n", i
);
2132 spin_lock_irq(&conf
->device_lock
);
2134 dev
->written
= NULL
;
2135 while (wbi
&& wbi
->bi_sector
<
2136 dev
->sector
+ STRIPE_SECTORS
) {
2137 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2138 if (--wbi
->bi_phys_segments
== 0) {
2139 md_write_end(conf
->mddev
);
2140 wbi
->bi_next
= *return_bi
;
2145 if (dev
->towrite
== NULL
)
2147 spin_unlock_irq(&conf
->device_lock
);
2149 bitmap_endwrite(conf
->mddev
->bitmap
,
2152 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
2158 static void handle_issuing_new_write_requests5(raid5_conf_t
*conf
,
2159 struct stripe_head
*sh
, struct stripe_head_state
*s
, int disks
)
2161 int rmw
= 0, rcw
= 0, i
;
2162 for (i
= disks
; i
--; ) {
2163 /* would I have to read this buffer for read_modify_write */
2164 struct r5dev
*dev
= &sh
->dev
[i
];
2165 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2166 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2167 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2168 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2169 if (test_bit(R5_Insync
, &dev
->flags
))
2172 rmw
+= 2*disks
; /* cannot read it */
2174 /* Would I have to read this buffer for reconstruct_write */
2175 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
2176 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2177 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2178 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2179 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2184 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2185 (unsigned long long)sh
->sector
, rmw
, rcw
);
2186 set_bit(STRIPE_HANDLE
, &sh
->state
);
2187 if (rmw
< rcw
&& rmw
> 0)
2188 /* prefer read-modify-write, but need to get some data */
2189 for (i
= disks
; i
--; ) {
2190 struct r5dev
*dev
= &sh
->dev
[i
];
2191 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2192 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2193 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2194 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2195 test_bit(R5_Insync
, &dev
->flags
)) {
2197 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2198 pr_debug("Read_old block "
2199 "%d for r-m-w\n", i
);
2200 set_bit(R5_LOCKED
, &dev
->flags
);
2201 set_bit(R5_Wantread
, &dev
->flags
);
2202 if (!test_and_set_bit(
2203 STRIPE_OP_IO
, &sh
->ops
.pending
))
2207 set_bit(STRIPE_DELAYED
, &sh
->state
);
2208 set_bit(STRIPE_HANDLE
, &sh
->state
);
2212 if (rcw
<= rmw
&& rcw
> 0)
2213 /* want reconstruct write, but need to get some data */
2214 for (i
= disks
; i
--; ) {
2215 struct r5dev
*dev
= &sh
->dev
[i
];
2216 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2218 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2219 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2220 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2221 test_bit(R5_Insync
, &dev
->flags
)) {
2223 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2224 pr_debug("Read_old block "
2225 "%d for Reconstruct\n", i
);
2226 set_bit(R5_LOCKED
, &dev
->flags
);
2227 set_bit(R5_Wantread
, &dev
->flags
);
2228 if (!test_and_set_bit(
2229 STRIPE_OP_IO
, &sh
->ops
.pending
))
2233 set_bit(STRIPE_DELAYED
, &sh
->state
);
2234 set_bit(STRIPE_HANDLE
, &sh
->state
);
2238 /* now if nothing is locked, and if we have enough data,
2239 * we can start a write request
2241 /* since handle_stripe can be called at any time we need to handle the
2242 * case where a compute block operation has been submitted and then a
2243 * subsequent call wants to start a write request. raid5_run_ops only
2244 * handles the case where compute block and postxor are requested
2245 * simultaneously. If this is not the case then new writes need to be
2246 * held off until the compute completes.
2248 if ((s
->req_compute
||
2249 !test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
)) &&
2250 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
2251 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
2252 s
->locked
+= handle_write_operations5(sh
, rcw
== 0, 0);
2255 static void handle_issuing_new_write_requests6(raid5_conf_t
*conf
,
2256 struct stripe_head
*sh
, struct stripe_head_state
*s
,
2257 struct r6_state
*r6s
, int disks
)
2259 int rcw
= 0, must_compute
= 0, pd_idx
= sh
->pd_idx
, i
;
2260 int qd_idx
= r6s
->qd_idx
;
2261 for (i
= disks
; i
--; ) {
2262 struct r5dev
*dev
= &sh
->dev
[i
];
2263 /* Would I have to read this buffer for reconstruct_write */
2264 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2265 && i
!= pd_idx
&& i
!= qd_idx
2266 && (!test_bit(R5_LOCKED
, &dev
->flags
)
2268 !test_bit(R5_UPTODATE
, &dev
->flags
)) {
2269 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2271 pr_debug("raid6: must_compute: "
2272 "disk %d flags=%#lx\n", i
, dev
->flags
);
2277 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2278 (unsigned long long)sh
->sector
, rcw
, must_compute
);
2279 set_bit(STRIPE_HANDLE
, &sh
->state
);
2282 /* want reconstruct write, but need to get some data */
2283 for (i
= disks
; i
--; ) {
2284 struct r5dev
*dev
= &sh
->dev
[i
];
2285 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2286 && !(s
->failed
== 0 && (i
== pd_idx
|| i
== qd_idx
))
2287 && !test_bit(R5_LOCKED
, &dev
->flags
) &&
2288 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2289 test_bit(R5_Insync
, &dev
->flags
)) {
2291 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2292 pr_debug("Read_old stripe %llu "
2293 "block %d for Reconstruct\n",
2294 (unsigned long long)sh
->sector
, i
);
2295 set_bit(R5_LOCKED
, &dev
->flags
);
2296 set_bit(R5_Wantread
, &dev
->flags
);
2299 pr_debug("Request delayed stripe %llu "
2300 "block %d for Reconstruct\n",
2301 (unsigned long long)sh
->sector
, i
);
2302 set_bit(STRIPE_DELAYED
, &sh
->state
);
2303 set_bit(STRIPE_HANDLE
, &sh
->state
);
2307 /* now if nothing is locked, and if we have enough data, we can start a
2310 if (s
->locked
== 0 && rcw
== 0 &&
2311 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
2312 if (must_compute
> 0) {
2313 /* We have failed blocks and need to compute them */
2314 switch (s
->failed
) {
2318 compute_block_1(sh
, r6s
->failed_num
[0], 0);
2321 compute_block_2(sh
, r6s
->failed_num
[0],
2322 r6s
->failed_num
[1]);
2324 default: /* This request should have been failed? */
2329 pr_debug("Computing parity for stripe %llu\n",
2330 (unsigned long long)sh
->sector
);
2331 compute_parity6(sh
, RECONSTRUCT_WRITE
);
2332 /* now every locked buffer is ready to be written */
2333 for (i
= disks
; i
--; )
2334 if (test_bit(R5_LOCKED
, &sh
->dev
[i
].flags
)) {
2335 pr_debug("Writing stripe %llu block %d\n",
2336 (unsigned long long)sh
->sector
, i
);
2338 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2340 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2341 set_bit(STRIPE_INSYNC
, &sh
->state
);
2343 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2344 atomic_dec(&conf
->preread_active_stripes
);
2345 if (atomic_read(&conf
->preread_active_stripes
) <
2347 md_wakeup_thread(conf
->mddev
->thread
);
2352 static void handle_parity_checks5(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2353 struct stripe_head_state
*s
, int disks
)
2355 set_bit(STRIPE_HANDLE
, &sh
->state
);
2356 /* Take one of the following actions:
2357 * 1/ start a check parity operation if (uptodate == disks)
2358 * 2/ finish a check parity operation and act on the result
2359 * 3/ skip to the writeback section if we previously
2360 * initiated a recovery operation
2362 if (s
->failed
== 0 &&
2363 !test_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
)) {
2364 if (!test_and_set_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
)) {
2365 BUG_ON(s
->uptodate
!= disks
);
2366 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2370 test_and_clear_bit(STRIPE_OP_CHECK
, &sh
->ops
.complete
)) {
2371 clear_bit(STRIPE_OP_CHECK
, &sh
->ops
.ack
);
2372 clear_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
);
2374 if (sh
->ops
.zero_sum_result
== 0)
2375 /* parity is correct (on disc,
2376 * not in buffer any more)
2378 set_bit(STRIPE_INSYNC
, &sh
->state
);
2380 conf
->mddev
->resync_mismatches
+=
2383 MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2384 /* don't try to repair!! */
2385 set_bit(STRIPE_INSYNC
, &sh
->state
);
2387 set_bit(STRIPE_OP_COMPUTE_BLK
,
2389 set_bit(STRIPE_OP_MOD_REPAIR_PD
,
2391 set_bit(R5_Wantcompute
,
2392 &sh
->dev
[sh
->pd_idx
].flags
);
2393 sh
->ops
.target
= sh
->pd_idx
;
2401 /* check if we can clear a parity disk reconstruct */
2402 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
) &&
2403 test_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
)) {
2405 clear_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
);
2406 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
);
2407 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.ack
);
2408 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
);
2411 /* Wait for check parity and compute block operations to complete
2414 if (!test_bit(STRIPE_INSYNC
, &sh
->state
) &&
2415 !test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
) &&
2416 !test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
)) {
2418 /* either failed parity check, or recovery is happening */
2420 s
->failed_num
= sh
->pd_idx
;
2421 dev
= &sh
->dev
[s
->failed_num
];
2422 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
2423 BUG_ON(s
->uptodate
!= disks
);
2425 set_bit(R5_LOCKED
, &dev
->flags
);
2426 set_bit(R5_Wantwrite
, &dev
->flags
);
2427 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2430 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2432 set_bit(STRIPE_INSYNC
, &sh
->state
);
2437 static void handle_parity_checks6(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2438 struct stripe_head_state
*s
,
2439 struct r6_state
*r6s
, struct page
*tmp_page
,
2442 int update_p
= 0, update_q
= 0;
2444 int pd_idx
= sh
->pd_idx
;
2445 int qd_idx
= r6s
->qd_idx
;
2447 set_bit(STRIPE_HANDLE
, &sh
->state
);
2449 BUG_ON(s
->failed
> 2);
2450 BUG_ON(s
->uptodate
< disks
);
2451 /* Want to check and possibly repair P and Q.
2452 * However there could be one 'failed' device, in which
2453 * case we can only check one of them, possibly using the
2454 * other to generate missing data
2457 /* If !tmp_page, we cannot do the calculations,
2458 * but as we have set STRIPE_HANDLE, we will soon be called
2459 * by stripe_handle with a tmp_page - just wait until then.
2462 if (s
->failed
== r6s
->q_failed
) {
2463 /* The only possible failed device holds 'Q', so it
2464 * makes sense to check P (If anything else were failed,
2465 * we would have used P to recreate it).
2467 compute_block_1(sh
, pd_idx
, 1);
2468 if (!page_is_zero(sh
->dev
[pd_idx
].page
)) {
2469 compute_block_1(sh
, pd_idx
, 0);
2473 if (!r6s
->q_failed
&& s
->failed
< 2) {
2474 /* q is not failed, and we didn't use it to generate
2475 * anything, so it makes sense to check it
2477 memcpy(page_address(tmp_page
),
2478 page_address(sh
->dev
[qd_idx
].page
),
2480 compute_parity6(sh
, UPDATE_PARITY
);
2481 if (memcmp(page_address(tmp_page
),
2482 page_address(sh
->dev
[qd_idx
].page
),
2483 STRIPE_SIZE
) != 0) {
2484 clear_bit(STRIPE_INSYNC
, &sh
->state
);
2488 if (update_p
|| update_q
) {
2489 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2490 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2491 /* don't try to repair!! */
2492 update_p
= update_q
= 0;
2495 /* now write out any block on a failed drive,
2496 * or P or Q if they need it
2499 if (s
->failed
== 2) {
2500 dev
= &sh
->dev
[r6s
->failed_num
[1]];
2502 set_bit(R5_LOCKED
, &dev
->flags
);
2503 set_bit(R5_Wantwrite
, &dev
->flags
);
2505 if (s
->failed
>= 1) {
2506 dev
= &sh
->dev
[r6s
->failed_num
[0]];
2508 set_bit(R5_LOCKED
, &dev
->flags
);
2509 set_bit(R5_Wantwrite
, &dev
->flags
);
2513 dev
= &sh
->dev
[pd_idx
];
2515 set_bit(R5_LOCKED
, &dev
->flags
);
2516 set_bit(R5_Wantwrite
, &dev
->flags
);
2519 dev
= &sh
->dev
[qd_idx
];
2521 set_bit(R5_LOCKED
, &dev
->flags
);
2522 set_bit(R5_Wantwrite
, &dev
->flags
);
2524 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2526 set_bit(STRIPE_INSYNC
, &sh
->state
);
2530 static void handle_stripe_expansion(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2531 struct r6_state
*r6s
)
2535 /* We have read all the blocks in this stripe and now we need to
2536 * copy some of them into a target stripe for expand.
2538 struct dma_async_tx_descriptor
*tx
= NULL
;
2539 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2540 for (i
= 0; i
< sh
->disks
; i
++)
2541 if (i
!= sh
->pd_idx
&& (!r6s
|| i
!= r6s
->qd_idx
)) {
2542 int dd_idx
, pd_idx
, j
;
2543 struct stripe_head
*sh2
;
2545 sector_t bn
= compute_blocknr(sh
, i
);
2546 sector_t s
= raid5_compute_sector(bn
, conf
->raid_disks
,
2548 conf
->max_degraded
, &dd_idx
,
2550 sh2
= get_active_stripe(conf
, s
, conf
->raid_disks
,
2553 /* so far only the early blocks of this stripe
2554 * have been requested. When later blocks
2555 * get requested, we will try again
2558 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
2559 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
2560 /* must have already done this block */
2561 release_stripe(sh2
);
2565 /* place all the copies on one channel */
2566 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
2567 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
2568 ASYNC_TX_DEP_ACK
, tx
, NULL
, NULL
);
2570 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
2571 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
2572 for (j
= 0; j
< conf
->raid_disks
; j
++)
2573 if (j
!= sh2
->pd_idx
&&
2574 (!r6s
|| j
!= raid6_next_disk(sh2
->pd_idx
,
2576 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
2578 if (j
== conf
->raid_disks
) {
2579 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
2580 set_bit(STRIPE_HANDLE
, &sh2
->state
);
2582 release_stripe(sh2
);
2585 /* done submitting copies, wait for them to complete */
2588 dma_wait_for_async_tx(tx
);
2593 * handle_stripe - do things to a stripe.
2595 * We lock the stripe and then examine the state of various bits
2596 * to see what needs to be done.
2598 * return some read request which now have data
2599 * return some write requests which are safely on disc
2600 * schedule a read on some buffers
2601 * schedule a write of some buffers
2602 * return confirmation of parity correctness
2604 * buffers are taken off read_list or write_list, and bh_cache buffers
2605 * get BH_Lock set before the stripe lock is released.
2609 static void handle_stripe5(struct stripe_head
*sh
)
2611 raid5_conf_t
*conf
= sh
->raid_conf
;
2612 int disks
= sh
->disks
, i
;
2613 struct bio
*return_bi
= NULL
;
2614 struct stripe_head_state s
;
2616 unsigned long pending
= 0;
2618 memset(&s
, 0, sizeof(s
));
2619 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2620 "ops=%lx:%lx:%lx\n", (unsigned long long)sh
->sector
, sh
->state
,
2621 atomic_read(&sh
->count
), sh
->pd_idx
,
2622 sh
->ops
.pending
, sh
->ops
.ack
, sh
->ops
.complete
);
2624 spin_lock(&sh
->lock
);
2625 clear_bit(STRIPE_HANDLE
, &sh
->state
);
2626 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2628 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2629 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2630 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2631 /* Now to look around and see what can be done */
2634 for (i
=disks
; i
--; ) {
2636 struct r5dev
*dev
= &sh
->dev
[i
];
2637 clear_bit(R5_Insync
, &dev
->flags
);
2639 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2640 "written %p\n", i
, dev
->flags
, dev
->toread
, dev
->read
,
2641 dev
->towrite
, dev
->written
);
2643 /* maybe we can request a biofill operation
2645 * new wantfill requests are only permitted while
2646 * STRIPE_OP_BIOFILL is clear
2648 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
2649 !test_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.pending
))
2650 set_bit(R5_Wantfill
, &dev
->flags
);
2652 /* now count some things */
2653 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
2654 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
2655 if (test_bit(R5_Wantcompute
, &dev
->flags
)) s
.compute
++;
2657 if (test_bit(R5_Wantfill
, &dev
->flags
))
2659 else if (dev
->toread
)
2663 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
2668 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2669 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
2670 /* The ReadError flag will just be confusing now */
2671 clear_bit(R5_ReadError
, &dev
->flags
);
2672 clear_bit(R5_ReWrite
, &dev
->flags
);
2674 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
2675 || test_bit(R5_ReadError
, &dev
->flags
)) {
2679 set_bit(R5_Insync
, &dev
->flags
);
2683 if (s
.to_fill
&& !test_and_set_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.pending
))
2686 pr_debug("locked=%d uptodate=%d to_read=%d"
2687 " to_write=%d failed=%d failed_num=%d\n",
2688 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
,
2689 s
.failed
, s
.failed_num
);
2690 /* check if the array has lost two devices and, if so, some requests might
2693 if (s
.failed
> 1 && s
.to_read
+s
.to_write
+s
.written
)
2694 handle_requests_to_failed_array(conf
, sh
, &s
, disks
,
2696 if (s
.failed
> 1 && s
.syncing
) {
2697 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
2698 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2702 /* might be able to return some write requests if the parity block
2703 * is safe, or on a failed drive
2705 dev
= &sh
->dev
[sh
->pd_idx
];
2707 ((test_bit(R5_Insync
, &dev
->flags
) &&
2708 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2709 test_bit(R5_UPTODATE
, &dev
->flags
)) ||
2710 (s
.failed
== 1 && s
.failed_num
== sh
->pd_idx
)))
2711 handle_completed_write_requests(conf
, sh
, disks
, &return_bi
);
2713 /* Now we might consider reading some blocks, either to check/generate
2714 * parity, or to satisfy requests
2715 * or to load a block that is being partially written.
2717 if (s
.to_read
|| s
.non_overwrite
||
2718 (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
||
2719 test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
))
2720 handle_issuing_new_read_requests5(sh
, &s
, disks
);
2722 /* Now we check to see if any write operations have recently
2726 /* leave prexor set until postxor is done, allows us to distinguish
2727 * a rmw from a rcw during biodrain
2729 if (test_bit(STRIPE_OP_PREXOR
, &sh
->ops
.complete
) &&
2730 test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
)) {
2732 clear_bit(STRIPE_OP_PREXOR
, &sh
->ops
.complete
);
2733 clear_bit(STRIPE_OP_PREXOR
, &sh
->ops
.ack
);
2734 clear_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
);
2736 for (i
= disks
; i
--; )
2737 clear_bit(R5_Wantprexor
, &sh
->dev
[i
].flags
);
2740 /* if only POSTXOR is set then this is an 'expand' postxor */
2741 if (test_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.complete
) &&
2742 test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
)) {
2744 clear_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.complete
);
2745 clear_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.ack
);
2746 clear_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
);
2748 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
);
2749 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.ack
);
2750 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
);
2752 /* All the 'written' buffers and the parity block are ready to
2753 * be written back to disk
2755 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
2756 for (i
= disks
; i
--; ) {
2758 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
2759 (i
== sh
->pd_idx
|| dev
->written
)) {
2760 pr_debug("Writing block %d\n", i
);
2761 set_bit(R5_Wantwrite
, &dev
->flags
);
2762 if (!test_and_set_bit(
2763 STRIPE_OP_IO
, &sh
->ops
.pending
))
2765 if (!test_bit(R5_Insync
, &dev
->flags
) ||
2766 (i
== sh
->pd_idx
&& s
.failed
== 0))
2767 set_bit(STRIPE_INSYNC
, &sh
->state
);
2770 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2771 atomic_dec(&conf
->preread_active_stripes
);
2772 if (atomic_read(&conf
->preread_active_stripes
) <
2774 md_wakeup_thread(conf
->mddev
->thread
);
2778 /* Now to consider new write requests and what else, if anything
2779 * should be read. We do not handle new writes when:
2780 * 1/ A 'write' operation (copy+xor) is already in flight.
2781 * 2/ A 'check' operation is in flight, as it may clobber the parity
2784 if (s
.to_write
&& !test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
) &&
2785 !test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
))
2786 handle_issuing_new_write_requests5(conf
, sh
, &s
, disks
);
2788 /* maybe we need to check and possibly fix the parity for this stripe
2789 * Any reads will already have been scheduled, so we just see if enough
2790 * data is available. The parity check is held off while parity
2791 * dependent operations are in flight.
2793 if ((s
.syncing
&& s
.locked
== 0 &&
2794 !test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
) &&
2795 !test_bit(STRIPE_INSYNC
, &sh
->state
)) ||
2796 test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
) ||
2797 test_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
))
2798 handle_parity_checks5(conf
, sh
, &s
, disks
);
2800 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
2801 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
2802 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2805 /* If the failed drive is just a ReadError, then we might need to progress
2806 * the repair/check process
2808 if (s
.failed
== 1 && !conf
->mddev
->ro
&&
2809 test_bit(R5_ReadError
, &sh
->dev
[s
.failed_num
].flags
)
2810 && !test_bit(R5_LOCKED
, &sh
->dev
[s
.failed_num
].flags
)
2811 && test_bit(R5_UPTODATE
, &sh
->dev
[s
.failed_num
].flags
)
2813 dev
= &sh
->dev
[s
.failed_num
];
2814 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
2815 set_bit(R5_Wantwrite
, &dev
->flags
);
2816 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2818 set_bit(R5_ReWrite
, &dev
->flags
);
2819 set_bit(R5_LOCKED
, &dev
->flags
);
2822 /* let's read it back */
2823 set_bit(R5_Wantread
, &dev
->flags
);
2824 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2826 set_bit(R5_LOCKED
, &dev
->flags
);
2831 /* Finish postxor operations initiated by the expansion
2834 if (test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
) &&
2835 !test_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
)) {
2837 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
2839 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
);
2840 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.ack
);
2841 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
);
2843 for (i
= conf
->raid_disks
; i
--; ) {
2844 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2845 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2850 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
2851 !test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
)) {
2852 /* Need to write out all blocks after computing parity */
2853 sh
->disks
= conf
->raid_disks
;
2854 sh
->pd_idx
= stripe_to_pdidx(sh
->sector
, conf
,
2856 s
.locked
+= handle_write_operations5(sh
, 1, 1);
2857 } else if (s
.expanded
&&
2858 !test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
)) {
2859 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2860 atomic_dec(&conf
->reshape_stripes
);
2861 wake_up(&conf
->wait_for_overlap
);
2862 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
2865 if (s
.expanding
&& s
.locked
== 0)
2866 handle_stripe_expansion(conf
, sh
, NULL
);
2869 pending
= get_stripe_work(sh
);
2871 spin_unlock(&sh
->lock
);
2874 raid5_run_ops(sh
, pending
);
2876 return_io(return_bi
);
2880 static void handle_stripe6(struct stripe_head
*sh
, struct page
*tmp_page
)
2882 raid6_conf_t
*conf
= sh
->raid_conf
;
2883 int disks
= sh
->disks
;
2884 struct bio
*return_bi
= NULL
;
2885 int i
, pd_idx
= sh
->pd_idx
;
2886 struct stripe_head_state s
;
2887 struct r6_state r6s
;
2888 struct r5dev
*dev
, *pdev
, *qdev
;
2890 r6s
.qd_idx
= raid6_next_disk(pd_idx
, disks
);
2891 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2892 "pd_idx=%d, qd_idx=%d\n",
2893 (unsigned long long)sh
->sector
, sh
->state
,
2894 atomic_read(&sh
->count
), pd_idx
, r6s
.qd_idx
);
2895 memset(&s
, 0, sizeof(s
));
2897 spin_lock(&sh
->lock
);
2898 clear_bit(STRIPE_HANDLE
, &sh
->state
);
2899 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2901 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2902 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2903 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2904 /* Now to look around and see what can be done */
2907 for (i
=disks
; i
--; ) {
2910 clear_bit(R5_Insync
, &dev
->flags
);
2912 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2913 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
2914 /* maybe we can reply to a read */
2915 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
) {
2916 struct bio
*rbi
, *rbi2
;
2917 pr_debug("Return read for disc %d\n", i
);
2918 spin_lock_irq(&conf
->device_lock
);
2921 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
2922 wake_up(&conf
->wait_for_overlap
);
2923 spin_unlock_irq(&conf
->device_lock
);
2924 while (rbi
&& rbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
2925 copy_data(0, rbi
, dev
->page
, dev
->sector
);
2926 rbi2
= r5_next_bio(rbi
, dev
->sector
);
2927 spin_lock_irq(&conf
->device_lock
);
2928 if (--rbi
->bi_phys_segments
== 0) {
2929 rbi
->bi_next
= return_bi
;
2932 spin_unlock_irq(&conf
->device_lock
);
2937 /* now count some things */
2938 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
2939 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
2946 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
2951 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2952 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
2953 /* The ReadError flag will just be confusing now */
2954 clear_bit(R5_ReadError
, &dev
->flags
);
2955 clear_bit(R5_ReWrite
, &dev
->flags
);
2957 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
2958 || test_bit(R5_ReadError
, &dev
->flags
)) {
2960 r6s
.failed_num
[s
.failed
] = i
;
2963 set_bit(R5_Insync
, &dev
->flags
);
2966 pr_debug("locked=%d uptodate=%d to_read=%d"
2967 " to_write=%d failed=%d failed_num=%d,%d\n",
2968 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
2969 r6s
.failed_num
[0], r6s
.failed_num
[1]);
2970 /* check if the array has lost >2 devices and, if so, some requests
2971 * might need to be failed
2973 if (s
.failed
> 2 && s
.to_read
+s
.to_write
+s
.written
)
2974 handle_requests_to_failed_array(conf
, sh
, &s
, disks
,
2976 if (s
.failed
> 2 && s
.syncing
) {
2977 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
2978 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2983 * might be able to return some write requests if the parity blocks
2984 * are safe, or on a failed drive
2986 pdev
= &sh
->dev
[pd_idx
];
2987 r6s
.p_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == pd_idx
)
2988 || (s
.failed
>= 2 && r6s
.failed_num
[1] == pd_idx
);
2989 qdev
= &sh
->dev
[r6s
.qd_idx
];
2990 r6s
.q_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == r6s
.qd_idx
)
2991 || (s
.failed
>= 2 && r6s
.failed_num
[1] == r6s
.qd_idx
);
2994 ( r6s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
2995 && !test_bit(R5_LOCKED
, &pdev
->flags
)
2996 && test_bit(R5_UPTODATE
, &pdev
->flags
)))) &&
2997 ( r6s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
2998 && !test_bit(R5_LOCKED
, &qdev
->flags
)
2999 && test_bit(R5_UPTODATE
, &qdev
->flags
)))))
3000 handle_completed_write_requests(conf
, sh
, disks
, &return_bi
);
3002 /* Now we might consider reading some blocks, either to check/generate
3003 * parity, or to satisfy requests
3004 * or to load a block that is being partially written.
3006 if (s
.to_read
|| s
.non_overwrite
|| (s
.to_write
&& s
.failed
) ||
3007 (s
.syncing
&& (s
.uptodate
< disks
)) || s
.expanding
)
3008 handle_issuing_new_read_requests6(sh
, &s
, &r6s
, disks
);
3010 /* now to consider writing and what else, if anything should be read */
3012 handle_issuing_new_write_requests6(conf
, sh
, &s
, &r6s
, disks
);
3014 /* maybe we need to check and possibly fix the parity for this stripe
3015 * Any reads will already have been scheduled, so we just see if enough
3018 if (s
.syncing
&& s
.locked
== 0 && !test_bit(STRIPE_INSYNC
, &sh
->state
))
3019 handle_parity_checks6(conf
, sh
, &s
, &r6s
, tmp_page
, disks
);
3021 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3022 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
3023 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3026 /* If the failed drives are just a ReadError, then we might need
3027 * to progress the repair/check process
3029 if (s
.failed
<= 2 && !conf
->mddev
->ro
)
3030 for (i
= 0; i
< s
.failed
; i
++) {
3031 dev
= &sh
->dev
[r6s
.failed_num
[i
]];
3032 if (test_bit(R5_ReadError
, &dev
->flags
)
3033 && !test_bit(R5_LOCKED
, &dev
->flags
)
3034 && test_bit(R5_UPTODATE
, &dev
->flags
)
3036 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3037 set_bit(R5_Wantwrite
, &dev
->flags
);
3038 set_bit(R5_ReWrite
, &dev
->flags
);
3039 set_bit(R5_LOCKED
, &dev
->flags
);
3041 /* let's read it back */
3042 set_bit(R5_Wantread
, &dev
->flags
);
3043 set_bit(R5_LOCKED
, &dev
->flags
);
3048 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
3049 /* Need to write out all blocks after computing P&Q */
3050 sh
->disks
= conf
->raid_disks
;
3051 sh
->pd_idx
= stripe_to_pdidx(sh
->sector
, conf
,
3053 compute_parity6(sh
, RECONSTRUCT_WRITE
);
3054 for (i
= conf
->raid_disks
; i
-- ; ) {
3055 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3057 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3059 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3060 } else if (s
.expanded
) {
3061 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3062 atomic_dec(&conf
->reshape_stripes
);
3063 wake_up(&conf
->wait_for_overlap
);
3064 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3067 if (s
.expanding
&& s
.locked
== 0)
3068 handle_stripe_expansion(conf
, sh
, &r6s
);
3070 spin_unlock(&sh
->lock
);
3072 return_io(return_bi
);
3074 for (i
=disks
; i
-- ;) {
3078 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
3080 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
3085 bi
= &sh
->dev
[i
].req
;
3089 bi
->bi_end_io
= raid5_end_write_request
;
3091 bi
->bi_end_io
= raid5_end_read_request
;
3094 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3095 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
3098 atomic_inc(&rdev
->nr_pending
);
3102 if (s
.syncing
|| s
.expanding
|| s
.expanded
)
3103 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
3105 bi
->bi_bdev
= rdev
->bdev
;
3106 pr_debug("for %llu schedule op %ld on disc %d\n",
3107 (unsigned long long)sh
->sector
, bi
->bi_rw
, i
);
3108 atomic_inc(&sh
->count
);
3109 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
3110 bi
->bi_flags
= 1 << BIO_UPTODATE
;
3112 bi
->bi_max_vecs
= 1;
3114 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
3115 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
3116 bi
->bi_io_vec
[0].bv_offset
= 0;
3117 bi
->bi_size
= STRIPE_SIZE
;
3120 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
3121 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
3122 generic_make_request(bi
);
3125 set_bit(STRIPE_DEGRADED
, &sh
->state
);
3126 pr_debug("skip op %ld on disc %d for sector %llu\n",
3127 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
3128 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3129 set_bit(STRIPE_HANDLE
, &sh
->state
);
3134 static void handle_stripe(struct stripe_head
*sh
, struct page
*tmp_page
)
3136 if (sh
->raid_conf
->level
== 6)
3137 handle_stripe6(sh
, tmp_page
);
3144 static void raid5_activate_delayed(raid5_conf_t
*conf
)
3146 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
3147 while (!list_empty(&conf
->delayed_list
)) {
3148 struct list_head
*l
= conf
->delayed_list
.next
;
3149 struct stripe_head
*sh
;
3150 sh
= list_entry(l
, struct stripe_head
, lru
);
3152 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3153 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3154 atomic_inc(&conf
->preread_active_stripes
);
3155 list_add_tail(&sh
->lru
, &conf
->handle_list
);
3160 static void activate_bit_delay(raid5_conf_t
*conf
)
3162 /* device_lock is held */
3163 struct list_head head
;
3164 list_add(&head
, &conf
->bitmap_list
);
3165 list_del_init(&conf
->bitmap_list
);
3166 while (!list_empty(&head
)) {
3167 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
3168 list_del_init(&sh
->lru
);
3169 atomic_inc(&sh
->count
);
3170 __release_stripe(conf
, sh
);
3174 static void unplug_slaves(mddev_t
*mddev
)
3176 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3180 for (i
=0; i
<mddev
->raid_disks
; i
++) {
3181 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3182 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
3183 struct request_queue
*r_queue
= bdev_get_queue(rdev
->bdev
);
3185 atomic_inc(&rdev
->nr_pending
);
3188 if (r_queue
->unplug_fn
)
3189 r_queue
->unplug_fn(r_queue
);
3191 rdev_dec_pending(rdev
, mddev
);
3198 static void raid5_unplug_device(struct request_queue
*q
)
3200 mddev_t
*mddev
= q
->queuedata
;
3201 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3202 unsigned long flags
;
3204 spin_lock_irqsave(&conf
->device_lock
, flags
);
3206 if (blk_remove_plug(q
)) {
3208 raid5_activate_delayed(conf
);
3210 md_wakeup_thread(mddev
->thread
);
3212 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3214 unplug_slaves(mddev
);
3217 static int raid5_issue_flush(struct request_queue
*q
, struct gendisk
*disk
,
3218 sector_t
*error_sector
)
3220 mddev_t
*mddev
= q
->queuedata
;
3221 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3225 for (i
=0; i
<mddev
->raid_disks
&& ret
== 0; i
++) {
3226 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3227 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
3228 struct block_device
*bdev
= rdev
->bdev
;
3229 struct request_queue
*r_queue
= bdev_get_queue(bdev
);
3231 if (!r_queue
->issue_flush_fn
)
3234 atomic_inc(&rdev
->nr_pending
);
3236 ret
= r_queue
->issue_flush_fn(r_queue
, bdev
->bd_disk
,
3238 rdev_dec_pending(rdev
, mddev
);
3247 static int raid5_congested(void *data
, int bits
)
3249 mddev_t
*mddev
= data
;
3250 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3252 /* No difference between reads and writes. Just check
3253 * how busy the stripe_cache is
3255 if (conf
->inactive_blocked
)
3259 if (list_empty_careful(&conf
->inactive_list
))
3265 /* We want read requests to align with chunks where possible,
3266 * but write requests don't need to.
3268 static int raid5_mergeable_bvec(struct request_queue
*q
, struct bio
*bio
, struct bio_vec
*biovec
)
3270 mddev_t
*mddev
= q
->queuedata
;
3271 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3273 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
3274 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3276 if (bio_data_dir(bio
) == WRITE
)
3277 return biovec
->bv_len
; /* always allow writes to be mergeable */
3279 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
3280 if (max
< 0) max
= 0;
3281 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
3282 return biovec
->bv_len
;
3288 static int in_chunk_boundary(mddev_t
*mddev
, struct bio
*bio
)
3290 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3291 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
3292 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3294 return chunk_sectors
>=
3295 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
3299 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3300 * later sampled by raid5d.
3302 static void add_bio_to_retry(struct bio
*bi
,raid5_conf_t
*conf
)
3304 unsigned long flags
;
3306 spin_lock_irqsave(&conf
->device_lock
, flags
);
3308 bi
->bi_next
= conf
->retry_read_aligned_list
;
3309 conf
->retry_read_aligned_list
= bi
;
3311 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3312 md_wakeup_thread(conf
->mddev
->thread
);
3316 static struct bio
*remove_bio_from_retry(raid5_conf_t
*conf
)
3320 bi
= conf
->retry_read_aligned
;
3322 conf
->retry_read_aligned
= NULL
;
3325 bi
= conf
->retry_read_aligned_list
;
3327 conf
->retry_read_aligned_list
= bi
->bi_next
;
3329 bi
->bi_phys_segments
= 1; /* biased count of active stripes */
3330 bi
->bi_hw_segments
= 0; /* count of processed stripes */
3338 * The "raid5_align_endio" should check if the read succeeded and if it
3339 * did, call bio_endio on the original bio (having bio_put the new bio
3341 * If the read failed..
3343 static int raid5_align_endio(struct bio
*bi
, unsigned int bytes
, int error
)
3345 struct bio
* raid_bi
= bi
->bi_private
;
3348 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3355 mddev
= raid_bi
->bi_bdev
->bd_disk
->queue
->queuedata
;
3356 conf
= mddev_to_conf(mddev
);
3357 rdev
= (void*)raid_bi
->bi_next
;
3358 raid_bi
->bi_next
= NULL
;
3360 rdev_dec_pending(rdev
, conf
->mddev
);
3362 if (!error
&& uptodate
) {
3363 bio_endio(raid_bi
, bytes
, 0);
3364 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3365 wake_up(&conf
->wait_for_stripe
);
3370 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3372 add_bio_to_retry(raid_bi
, conf
);
3376 static int bio_fits_rdev(struct bio
*bi
)
3378 struct request_queue
*q
= bdev_get_queue(bi
->bi_bdev
);
3380 if ((bi
->bi_size
>>9) > q
->max_sectors
)
3382 blk_recount_segments(q
, bi
);
3383 if (bi
->bi_phys_segments
> q
->max_phys_segments
||
3384 bi
->bi_hw_segments
> q
->max_hw_segments
)
3387 if (q
->merge_bvec_fn
)
3388 /* it's too hard to apply the merge_bvec_fn at this stage,
3397 static int chunk_aligned_read(struct request_queue
*q
, struct bio
* raid_bio
)
3399 mddev_t
*mddev
= q
->queuedata
;
3400 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3401 const unsigned int raid_disks
= conf
->raid_disks
;
3402 const unsigned int data_disks
= raid_disks
- conf
->max_degraded
;
3403 unsigned int dd_idx
, pd_idx
;
3404 struct bio
* align_bi
;
3407 if (!in_chunk_boundary(mddev
, raid_bio
)) {
3408 pr_debug("chunk_aligned_read : non aligned\n");
3412 * use bio_clone to make a copy of the bio
3414 align_bi
= bio_clone(raid_bio
, GFP_NOIO
);
3418 * set bi_end_io to a new function, and set bi_private to the
3421 align_bi
->bi_end_io
= raid5_align_endio
;
3422 align_bi
->bi_private
= raid_bio
;
3426 align_bi
->bi_sector
= raid5_compute_sector(raid_bio
->bi_sector
,
3434 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
3435 if (rdev
&& test_bit(In_sync
, &rdev
->flags
)) {
3436 atomic_inc(&rdev
->nr_pending
);
3438 raid_bio
->bi_next
= (void*)rdev
;
3439 align_bi
->bi_bdev
= rdev
->bdev
;
3440 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3441 align_bi
->bi_sector
+= rdev
->data_offset
;
3443 if (!bio_fits_rdev(align_bi
)) {
3444 /* too big in some way */
3446 rdev_dec_pending(rdev
, mddev
);
3450 spin_lock_irq(&conf
->device_lock
);
3451 wait_event_lock_irq(conf
->wait_for_stripe
,
3453 conf
->device_lock
, /* nothing */);
3454 atomic_inc(&conf
->active_aligned_reads
);
3455 spin_unlock_irq(&conf
->device_lock
);
3457 generic_make_request(align_bi
);
3467 static int make_request(struct request_queue
*q
, struct bio
* bi
)
3469 mddev_t
*mddev
= q
->queuedata
;
3470 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3471 unsigned int dd_idx
, pd_idx
;
3472 sector_t new_sector
;
3473 sector_t logical_sector
, last_sector
;
3474 struct stripe_head
*sh
;
3475 const int rw
= bio_data_dir(bi
);
3478 if (unlikely(bio_barrier(bi
))) {
3479 bio_endio(bi
, bi
->bi_size
, -EOPNOTSUPP
);
3483 md_write_start(mddev
, bi
);
3485 disk_stat_inc(mddev
->gendisk
, ios
[rw
]);
3486 disk_stat_add(mddev
->gendisk
, sectors
[rw
], bio_sectors(bi
));
3489 mddev
->reshape_position
== MaxSector
&&
3490 chunk_aligned_read(q
,bi
))
3493 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3494 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
3496 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
3498 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
3500 int disks
, data_disks
;
3503 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
3504 if (likely(conf
->expand_progress
== MaxSector
))
3505 disks
= conf
->raid_disks
;
3507 /* spinlock is needed as expand_progress may be
3508 * 64bit on a 32bit platform, and so it might be
3509 * possible to see a half-updated value
3510 * Ofcourse expand_progress could change after
3511 * the lock is dropped, so once we get a reference
3512 * to the stripe that we think it is, we will have
3515 spin_lock_irq(&conf
->device_lock
);
3516 disks
= conf
->raid_disks
;
3517 if (logical_sector
>= conf
->expand_progress
)
3518 disks
= conf
->previous_raid_disks
;
3520 if (logical_sector
>= conf
->expand_lo
) {
3521 spin_unlock_irq(&conf
->device_lock
);
3526 spin_unlock_irq(&conf
->device_lock
);
3528 data_disks
= disks
- conf
->max_degraded
;
3530 new_sector
= raid5_compute_sector(logical_sector
, disks
, data_disks
,
3531 &dd_idx
, &pd_idx
, conf
);
3532 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3533 (unsigned long long)new_sector
,
3534 (unsigned long long)logical_sector
);
3536 sh
= get_active_stripe(conf
, new_sector
, disks
, pd_idx
, (bi
->bi_rw
&RWA_MASK
));
3538 if (unlikely(conf
->expand_progress
!= MaxSector
)) {
3539 /* expansion might have moved on while waiting for a
3540 * stripe, so we must do the range check again.
3541 * Expansion could still move past after this
3542 * test, but as we are holding a reference to
3543 * 'sh', we know that if that happens,
3544 * STRIPE_EXPANDING will get set and the expansion
3545 * won't proceed until we finish with the stripe.
3548 spin_lock_irq(&conf
->device_lock
);
3549 if (logical_sector
< conf
->expand_progress
&&
3550 disks
== conf
->previous_raid_disks
)
3551 /* mismatch, need to try again */
3553 spin_unlock_irq(&conf
->device_lock
);
3559 /* FIXME what if we get a false positive because these
3560 * are being updated.
3562 if (logical_sector
>= mddev
->suspend_lo
&&
3563 logical_sector
< mddev
->suspend_hi
) {
3569 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
3570 !add_stripe_bio(sh
, bi
, dd_idx
, (bi
->bi_rw
&RW_MASK
))) {
3571 /* Stripe is busy expanding or
3572 * add failed due to overlap. Flush everything
3575 raid5_unplug_device(mddev
->queue
);
3580 finish_wait(&conf
->wait_for_overlap
, &w
);
3581 handle_stripe(sh
, NULL
);
3584 /* cannot get stripe for read-ahead, just give-up */
3585 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3586 finish_wait(&conf
->wait_for_overlap
, &w
);
3591 spin_lock_irq(&conf
->device_lock
);
3592 remaining
= --bi
->bi_phys_segments
;
3593 spin_unlock_irq(&conf
->device_lock
);
3594 if (remaining
== 0) {
3595 int bytes
= bi
->bi_size
;
3598 md_write_end(mddev
);
3600 bi
->bi_end_io(bi
, bytes
,
3601 test_bit(BIO_UPTODATE
, &bi
->bi_flags
)
3607 static sector_t
reshape_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
)
3609 /* reshaping is quite different to recovery/resync so it is
3610 * handled quite separately ... here.
3612 * On each call to sync_request, we gather one chunk worth of
3613 * destination stripes and flag them as expanding.
3614 * Then we find all the source stripes and request reads.
3615 * As the reads complete, handle_stripe will copy the data
3616 * into the destination stripe and release that stripe.
3618 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3619 struct stripe_head
*sh
;
3621 sector_t first_sector
, last_sector
;
3622 int raid_disks
= conf
->previous_raid_disks
;
3623 int data_disks
= raid_disks
- conf
->max_degraded
;
3624 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
3627 sector_t writepos
, safepos
, gap
;
3629 if (sector_nr
== 0 &&
3630 conf
->expand_progress
!= 0) {
3631 /* restarting in the middle, skip the initial sectors */
3632 sector_nr
= conf
->expand_progress
;
3633 sector_div(sector_nr
, new_data_disks
);
3638 /* we update the metadata when there is more than 3Meg
3639 * in the block range (that is rather arbitrary, should
3640 * probably be time based) or when the data about to be
3641 * copied would over-write the source of the data at
3642 * the front of the range.
3643 * i.e. one new_stripe forward from expand_progress new_maps
3644 * to after where expand_lo old_maps to
3646 writepos
= conf
->expand_progress
+
3647 conf
->chunk_size
/512*(new_data_disks
);
3648 sector_div(writepos
, new_data_disks
);
3649 safepos
= conf
->expand_lo
;
3650 sector_div(safepos
, data_disks
);
3651 gap
= conf
->expand_progress
- conf
->expand_lo
;
3653 if (writepos
>= safepos
||
3654 gap
> (new_data_disks
)*3000*2 /*3Meg*/) {
3655 /* Cannot proceed until we've updated the superblock... */
3656 wait_event(conf
->wait_for_overlap
,
3657 atomic_read(&conf
->reshape_stripes
)==0);
3658 mddev
->reshape_position
= conf
->expand_progress
;
3659 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3660 md_wakeup_thread(mddev
->thread
);
3661 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
3662 kthread_should_stop());
3663 spin_lock_irq(&conf
->device_lock
);
3664 conf
->expand_lo
= mddev
->reshape_position
;
3665 spin_unlock_irq(&conf
->device_lock
);
3666 wake_up(&conf
->wait_for_overlap
);
3669 for (i
=0; i
< conf
->chunk_size
/512; i
+= STRIPE_SECTORS
) {
3672 pd_idx
= stripe_to_pdidx(sector_nr
+i
, conf
, conf
->raid_disks
);
3673 sh
= get_active_stripe(conf
, sector_nr
+i
,
3674 conf
->raid_disks
, pd_idx
, 0);
3675 set_bit(STRIPE_EXPANDING
, &sh
->state
);
3676 atomic_inc(&conf
->reshape_stripes
);
3677 /* If any of this stripe is beyond the end of the old
3678 * array, then we need to zero those blocks
3680 for (j
=sh
->disks
; j
--;) {
3682 if (j
== sh
->pd_idx
)
3684 if (conf
->level
== 6 &&
3685 j
== raid6_next_disk(sh
->pd_idx
, sh
->disks
))
3687 s
= compute_blocknr(sh
, j
);
3688 if (s
< (mddev
->array_size
<<1)) {
3692 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
3693 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
3694 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
3697 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3698 set_bit(STRIPE_HANDLE
, &sh
->state
);
3702 spin_lock_irq(&conf
->device_lock
);
3703 conf
->expand_progress
= (sector_nr
+ i
) * new_data_disks
;
3704 spin_unlock_irq(&conf
->device_lock
);
3705 /* Ok, those stripe are ready. We can start scheduling
3706 * reads on the source stripes.
3707 * The source stripes are determined by mapping the first and last
3708 * block on the destination stripes.
3711 raid5_compute_sector(sector_nr
*(new_data_disks
),
3712 raid_disks
, data_disks
,
3713 &dd_idx
, &pd_idx
, conf
);
3715 raid5_compute_sector((sector_nr
+conf
->chunk_size
/512)
3716 *(new_data_disks
) -1,
3717 raid_disks
, data_disks
,
3718 &dd_idx
, &pd_idx
, conf
);
3719 if (last_sector
>= (mddev
->size
<<1))
3720 last_sector
= (mddev
->size
<<1)-1;
3721 while (first_sector
<= last_sector
) {
3722 pd_idx
= stripe_to_pdidx(first_sector
, conf
,
3723 conf
->previous_raid_disks
);
3724 sh
= get_active_stripe(conf
, first_sector
,
3725 conf
->previous_raid_disks
, pd_idx
, 0);
3726 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3727 set_bit(STRIPE_HANDLE
, &sh
->state
);
3729 first_sector
+= STRIPE_SECTORS
;
3731 return conf
->chunk_size
>>9;
3734 /* FIXME go_faster isn't used */
3735 static inline sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
3737 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3738 struct stripe_head
*sh
;
3740 int raid_disks
= conf
->raid_disks
;
3741 sector_t max_sector
= mddev
->size
<< 1;
3743 int still_degraded
= 0;
3746 if (sector_nr
>= max_sector
) {
3747 /* just being told to finish up .. nothing much to do */
3748 unplug_slaves(mddev
);
3749 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
3754 if (mddev
->curr_resync
< max_sector
) /* aborted */
3755 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
3757 else /* completed sync */
3759 bitmap_close_sync(mddev
->bitmap
);
3764 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
3765 return reshape_request(mddev
, sector_nr
, skipped
);
3767 /* if there is too many failed drives and we are trying
3768 * to resync, then assert that we are finished, because there is
3769 * nothing we can do.
3771 if (mddev
->degraded
>= conf
->max_degraded
&&
3772 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3773 sector_t rv
= (mddev
->size
<< 1) - sector_nr
;
3777 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
3778 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
3779 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
3780 /* we can skip this block, and probably more */
3781 sync_blocks
/= STRIPE_SECTORS
;
3783 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
3786 pd_idx
= stripe_to_pdidx(sector_nr
, conf
, raid_disks
);
3787 sh
= get_active_stripe(conf
, sector_nr
, raid_disks
, pd_idx
, 1);
3789 sh
= get_active_stripe(conf
, sector_nr
, raid_disks
, pd_idx
, 0);
3790 /* make sure we don't swamp the stripe cache if someone else
3791 * is trying to get access
3793 schedule_timeout_uninterruptible(1);
3795 /* Need to check if array will still be degraded after recovery/resync
3796 * We don't need to check the 'failed' flag as when that gets set,
3799 for (i
=0; i
<mddev
->raid_disks
; i
++)
3800 if (conf
->disks
[i
].rdev
== NULL
)
3803 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
3805 spin_lock(&sh
->lock
);
3806 set_bit(STRIPE_SYNCING
, &sh
->state
);
3807 clear_bit(STRIPE_INSYNC
, &sh
->state
);
3808 spin_unlock(&sh
->lock
);
3810 handle_stripe(sh
, NULL
);
3813 return STRIPE_SECTORS
;
3816 static int retry_aligned_read(raid5_conf_t
*conf
, struct bio
*raid_bio
)
3818 /* We may not be able to submit a whole bio at once as there
3819 * may not be enough stripe_heads available.
3820 * We cannot pre-allocate enough stripe_heads as we may need
3821 * more than exist in the cache (if we allow ever large chunks).
3822 * So we do one stripe head at a time and record in
3823 * ->bi_hw_segments how many have been done.
3825 * We *know* that this entire raid_bio is in one chunk, so
3826 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3828 struct stripe_head
*sh
;
3830 sector_t sector
, logical_sector
, last_sector
;
3835 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3836 sector
= raid5_compute_sector( logical_sector
,
3838 conf
->raid_disks
- conf
->max_degraded
,
3842 last_sector
= raid_bio
->bi_sector
+ (raid_bio
->bi_size
>>9);
3844 for (; logical_sector
< last_sector
;
3845 logical_sector
+= STRIPE_SECTORS
,
3846 sector
+= STRIPE_SECTORS
,
3849 if (scnt
< raid_bio
->bi_hw_segments
)
3850 /* already done this stripe */
3853 sh
= get_active_stripe(conf
, sector
, conf
->raid_disks
, pd_idx
, 1);
3856 /* failed to get a stripe - must wait */
3857 raid_bio
->bi_hw_segments
= scnt
;
3858 conf
->retry_read_aligned
= raid_bio
;
3862 set_bit(R5_ReadError
, &sh
->dev
[dd_idx
].flags
);
3863 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
3865 raid_bio
->bi_hw_segments
= scnt
;
3866 conf
->retry_read_aligned
= raid_bio
;
3870 handle_stripe(sh
, NULL
);
3874 spin_lock_irq(&conf
->device_lock
);
3875 remaining
= --raid_bio
->bi_phys_segments
;
3876 spin_unlock_irq(&conf
->device_lock
);
3877 if (remaining
== 0) {
3878 int bytes
= raid_bio
->bi_size
;
3880 raid_bio
->bi_size
= 0;
3881 raid_bio
->bi_end_io(raid_bio
, bytes
,
3882 test_bit(BIO_UPTODATE
, &raid_bio
->bi_flags
)
3885 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3886 wake_up(&conf
->wait_for_stripe
);
3893 * This is our raid5 kernel thread.
3895 * We scan the hash table for stripes which can be handled now.
3896 * During the scan, completed stripes are saved for us by the interrupt
3897 * handler, so that they will not have to wait for our next wakeup.
3899 static void raid5d (mddev_t
*mddev
)
3901 struct stripe_head
*sh
;
3902 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3905 pr_debug("+++ raid5d active\n");
3907 md_check_recovery(mddev
);
3910 spin_lock_irq(&conf
->device_lock
);
3912 struct list_head
*first
;
3915 if (conf
->seq_flush
!= conf
->seq_write
) {
3916 int seq
= conf
->seq_flush
;
3917 spin_unlock_irq(&conf
->device_lock
);
3918 bitmap_unplug(mddev
->bitmap
);
3919 spin_lock_irq(&conf
->device_lock
);
3920 conf
->seq_write
= seq
;
3921 activate_bit_delay(conf
);
3924 if (list_empty(&conf
->handle_list
) &&
3925 atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
&&
3926 !blk_queue_plugged(mddev
->queue
) &&
3927 !list_empty(&conf
->delayed_list
))
3928 raid5_activate_delayed(conf
);
3930 while ((bio
= remove_bio_from_retry(conf
))) {
3932 spin_unlock_irq(&conf
->device_lock
);
3933 ok
= retry_aligned_read(conf
, bio
);
3934 spin_lock_irq(&conf
->device_lock
);
3940 if (list_empty(&conf
->handle_list
)) {
3941 async_tx_issue_pending_all();
3945 first
= conf
->handle_list
.next
;
3946 sh
= list_entry(first
, struct stripe_head
, lru
);
3948 list_del_init(first
);
3949 atomic_inc(&sh
->count
);
3950 BUG_ON(atomic_read(&sh
->count
)!= 1);
3951 spin_unlock_irq(&conf
->device_lock
);
3954 handle_stripe(sh
, conf
->spare_page
);
3957 spin_lock_irq(&conf
->device_lock
);
3959 pr_debug("%d stripes handled\n", handled
);
3961 spin_unlock_irq(&conf
->device_lock
);
3963 unplug_slaves(mddev
);
3965 pr_debug("--- raid5d inactive\n");
3969 raid5_show_stripe_cache_size(mddev_t
*mddev
, char *page
)
3971 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3973 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
3979 raid5_store_stripe_cache_size(mddev_t
*mddev
, const char *page
, size_t len
)
3981 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3984 if (len
>= PAGE_SIZE
)
3989 new = simple_strtoul(page
, &end
, 10);
3990 if (!*page
|| (*end
&& *end
!= '\n') )
3992 if (new <= 16 || new > 32768)
3994 while (new < conf
->max_nr_stripes
) {
3995 if (drop_one_stripe(conf
))
3996 conf
->max_nr_stripes
--;
4000 md_allow_write(mddev
);
4001 while (new > conf
->max_nr_stripes
) {
4002 if (grow_one_stripe(conf
))
4003 conf
->max_nr_stripes
++;
4009 static struct md_sysfs_entry
4010 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
4011 raid5_show_stripe_cache_size
,
4012 raid5_store_stripe_cache_size
);
4015 stripe_cache_active_show(mddev_t
*mddev
, char *page
)
4017 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4019 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
4024 static struct md_sysfs_entry
4025 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
4027 static struct attribute
*raid5_attrs
[] = {
4028 &raid5_stripecache_size
.attr
,
4029 &raid5_stripecache_active
.attr
,
4032 static struct attribute_group raid5_attrs_group
= {
4034 .attrs
= raid5_attrs
,
4037 static int run(mddev_t
*mddev
)
4040 int raid_disk
, memory
;
4042 struct disk_info
*disk
;
4043 struct list_head
*tmp
;
4044 int working_disks
= 0;
4046 if (mddev
->level
!= 5 && mddev
->level
!= 4 && mddev
->level
!= 6) {
4047 printk(KERN_ERR
"raid5: %s: raid level not set to 4/5/6 (%d)\n",
4048 mdname(mddev
), mddev
->level
);
4052 if (mddev
->reshape_position
!= MaxSector
) {
4053 /* Check that we can continue the reshape.
4054 * Currently only disks can change, it must
4055 * increase, and we must be past the point where
4056 * a stripe over-writes itself
4058 sector_t here_new
, here_old
;
4060 int max_degraded
= (mddev
->level
== 5 ? 1 : 2);
4062 if (mddev
->new_level
!= mddev
->level
||
4063 mddev
->new_layout
!= mddev
->layout
||
4064 mddev
->new_chunk
!= mddev
->chunk_size
) {
4065 printk(KERN_ERR
"raid5: %s: unsupported reshape "
4066 "required - aborting.\n",
4070 if (mddev
->delta_disks
<= 0) {
4071 printk(KERN_ERR
"raid5: %s: unsupported reshape "
4072 "(reduce disks) required - aborting.\n",
4076 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4077 /* reshape_position must be on a new-stripe boundary, and one
4078 * further up in new geometry must map after here in old
4081 here_new
= mddev
->reshape_position
;
4082 if (sector_div(here_new
, (mddev
->chunk_size
>>9)*
4083 (mddev
->raid_disks
- max_degraded
))) {
4084 printk(KERN_ERR
"raid5: reshape_position not "
4085 "on a stripe boundary\n");
4088 /* here_new is the stripe we will write to */
4089 here_old
= mddev
->reshape_position
;
4090 sector_div(here_old
, (mddev
->chunk_size
>>9)*
4091 (old_disks
-max_degraded
));
4092 /* here_old is the first stripe that we might need to read
4094 if (here_new
>= here_old
) {
4095 /* Reading from the same stripe as writing to - bad */
4096 printk(KERN_ERR
"raid5: reshape_position too early for "
4097 "auto-recovery - aborting.\n");
4100 printk(KERN_INFO
"raid5: reshape will continue\n");
4101 /* OK, we should be able to continue; */
4105 mddev
->private = kzalloc(sizeof (raid5_conf_t
), GFP_KERNEL
);
4106 if ((conf
= mddev
->private) == NULL
)
4108 if (mddev
->reshape_position
== MaxSector
) {
4109 conf
->previous_raid_disks
= conf
->raid_disks
= mddev
->raid_disks
;
4111 conf
->raid_disks
= mddev
->raid_disks
;
4112 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4115 conf
->disks
= kzalloc(conf
->raid_disks
* sizeof(struct disk_info
),
4120 conf
->mddev
= mddev
;
4122 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
4125 if (mddev
->level
== 6) {
4126 conf
->spare_page
= alloc_page(GFP_KERNEL
);
4127 if (!conf
->spare_page
)
4130 spin_lock_init(&conf
->device_lock
);
4131 init_waitqueue_head(&conf
->wait_for_stripe
);
4132 init_waitqueue_head(&conf
->wait_for_overlap
);
4133 INIT_LIST_HEAD(&conf
->handle_list
);
4134 INIT_LIST_HEAD(&conf
->delayed_list
);
4135 INIT_LIST_HEAD(&conf
->bitmap_list
);
4136 INIT_LIST_HEAD(&conf
->inactive_list
);
4137 atomic_set(&conf
->active_stripes
, 0);
4138 atomic_set(&conf
->preread_active_stripes
, 0);
4139 atomic_set(&conf
->active_aligned_reads
, 0);
4141 pr_debug("raid5: run(%s) called.\n", mdname(mddev
));
4143 ITERATE_RDEV(mddev
,rdev
,tmp
) {
4144 raid_disk
= rdev
->raid_disk
;
4145 if (raid_disk
>= conf
->raid_disks
4148 disk
= conf
->disks
+ raid_disk
;
4152 if (test_bit(In_sync
, &rdev
->flags
)) {
4153 char b
[BDEVNAME_SIZE
];
4154 printk(KERN_INFO
"raid5: device %s operational as raid"
4155 " disk %d\n", bdevname(rdev
->bdev
,b
),
4162 * 0 for a fully functional array, 1 or 2 for a degraded array.
4164 mddev
->degraded
= conf
->raid_disks
- working_disks
;
4165 conf
->mddev
= mddev
;
4166 conf
->chunk_size
= mddev
->chunk_size
;
4167 conf
->level
= mddev
->level
;
4168 if (conf
->level
== 6)
4169 conf
->max_degraded
= 2;
4171 conf
->max_degraded
= 1;
4172 conf
->algorithm
= mddev
->layout
;
4173 conf
->max_nr_stripes
= NR_STRIPES
;
4174 conf
->expand_progress
= mddev
->reshape_position
;
4176 /* device size must be a multiple of chunk size */
4177 mddev
->size
&= ~(mddev
->chunk_size
/1024 -1);
4178 mddev
->resync_max_sectors
= mddev
->size
<< 1;
4180 if (conf
->level
== 6 && conf
->raid_disks
< 4) {
4181 printk(KERN_ERR
"raid6: not enough configured devices for %s (%d, minimum 4)\n",
4182 mdname(mddev
), conf
->raid_disks
);
4185 if (!conf
->chunk_size
|| conf
->chunk_size
% 4) {
4186 printk(KERN_ERR
"raid5: invalid chunk size %d for %s\n",
4187 conf
->chunk_size
, mdname(mddev
));
4190 if (conf
->algorithm
> ALGORITHM_RIGHT_SYMMETRIC
) {
4192 "raid5: unsupported parity algorithm %d for %s\n",
4193 conf
->algorithm
, mdname(mddev
));
4196 if (mddev
->degraded
> conf
->max_degraded
) {
4197 printk(KERN_ERR
"raid5: not enough operational devices for %s"
4198 " (%d/%d failed)\n",
4199 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
4203 if (mddev
->degraded
> 0 &&
4204 mddev
->recovery_cp
!= MaxSector
) {
4205 if (mddev
->ok_start_degraded
)
4207 "raid5: starting dirty degraded array: %s"
4208 "- data corruption possible.\n",
4212 "raid5: cannot start dirty degraded array for %s\n",
4219 mddev
->thread
= md_register_thread(raid5d
, mddev
, "%s_raid5");
4220 if (!mddev
->thread
) {
4222 "raid5: couldn't allocate thread for %s\n",
4227 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
4228 conf
->raid_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
4229 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
4231 "raid5: couldn't allocate %dkB for buffers\n", memory
);
4232 shrink_stripes(conf
);
4233 md_unregister_thread(mddev
->thread
);
4236 printk(KERN_INFO
"raid5: allocated %dkB for %s\n",
4237 memory
, mdname(mddev
));
4239 if (mddev
->degraded
== 0)
4240 printk("raid5: raid level %d set %s active with %d out of %d"
4241 " devices, algorithm %d\n", conf
->level
, mdname(mddev
),
4242 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
4245 printk(KERN_ALERT
"raid5: raid level %d set %s active with %d"
4246 " out of %d devices, algorithm %d\n", conf
->level
,
4247 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
4248 mddev
->raid_disks
, conf
->algorithm
);
4250 print_raid5_conf(conf
);
4252 if (conf
->expand_progress
!= MaxSector
) {
4253 printk("...ok start reshape thread\n");
4254 conf
->expand_lo
= conf
->expand_progress
;
4255 atomic_set(&conf
->reshape_stripes
, 0);
4256 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4257 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4258 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4259 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4260 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4264 /* read-ahead size must cover two whole stripes, which is
4265 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4268 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4269 int stripe
= data_disks
*
4270 (mddev
->chunk_size
/ PAGE_SIZE
);
4271 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4272 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4275 /* Ok, everything is just fine now */
4276 if (sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
4278 "raid5: failed to create sysfs attributes for %s\n",
4281 mddev
->queue
->unplug_fn
= raid5_unplug_device
;
4282 mddev
->queue
->issue_flush_fn
= raid5_issue_flush
;
4283 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
4284 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
4286 mddev
->array_size
= mddev
->size
* (conf
->previous_raid_disks
-
4287 conf
->max_degraded
);
4289 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
4294 print_raid5_conf(conf
);
4295 safe_put_page(conf
->spare_page
);
4297 kfree(conf
->stripe_hashtbl
);
4300 mddev
->private = NULL
;
4301 printk(KERN_ALERT
"raid5: failed to run raid set %s\n", mdname(mddev
));
4307 static int stop(mddev_t
*mddev
)
4309 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4311 md_unregister_thread(mddev
->thread
);
4312 mddev
->thread
= NULL
;
4313 shrink_stripes(conf
);
4314 kfree(conf
->stripe_hashtbl
);
4315 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
4316 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
4317 sysfs_remove_group(&mddev
->kobj
, &raid5_attrs_group
);
4320 mddev
->private = NULL
;
4325 static void print_sh (struct seq_file
*seq
, struct stripe_head
*sh
)
4329 seq_printf(seq
, "sh %llu, pd_idx %d, state %ld.\n",
4330 (unsigned long long)sh
->sector
, sh
->pd_idx
, sh
->state
);
4331 seq_printf(seq
, "sh %llu, count %d.\n",
4332 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
));
4333 seq_printf(seq
, "sh %llu, ", (unsigned long long)sh
->sector
);
4334 for (i
= 0; i
< sh
->disks
; i
++) {
4335 seq_printf(seq
, "(cache%d: %p %ld) ",
4336 i
, sh
->dev
[i
].page
, sh
->dev
[i
].flags
);
4338 seq_printf(seq
, "\n");
4341 static void printall (struct seq_file
*seq
, raid5_conf_t
*conf
)
4343 struct stripe_head
*sh
;
4344 struct hlist_node
*hn
;
4347 spin_lock_irq(&conf
->device_lock
);
4348 for (i
= 0; i
< NR_HASH
; i
++) {
4349 hlist_for_each_entry(sh
, hn
, &conf
->stripe_hashtbl
[i
], hash
) {
4350 if (sh
->raid_conf
!= conf
)
4355 spin_unlock_irq(&conf
->device_lock
);
4359 static void status (struct seq_file
*seq
, mddev_t
*mddev
)
4361 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4364 seq_printf (seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
, mddev
->chunk_size
>> 10, mddev
->layout
);
4365 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
4366 for (i
= 0; i
< conf
->raid_disks
; i
++)
4367 seq_printf (seq
, "%s",
4368 conf
->disks
[i
].rdev
&&
4369 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
4370 seq_printf (seq
, "]");
4372 seq_printf (seq
, "\n");
4373 printall(seq
, conf
);
4377 static void print_raid5_conf (raid5_conf_t
*conf
)
4380 struct disk_info
*tmp
;
4382 printk("RAID5 conf printout:\n");
4384 printk("(conf==NULL)\n");
4387 printk(" --- rd:%d wd:%d\n", conf
->raid_disks
,
4388 conf
->raid_disks
- conf
->mddev
->degraded
);
4390 for (i
= 0; i
< conf
->raid_disks
; i
++) {
4391 char b
[BDEVNAME_SIZE
];
4392 tmp
= conf
->disks
+ i
;
4394 printk(" disk %d, o:%d, dev:%s\n",
4395 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
4396 bdevname(tmp
->rdev
->bdev
,b
));
4400 static int raid5_spare_active(mddev_t
*mddev
)
4403 raid5_conf_t
*conf
= mddev
->private;
4404 struct disk_info
*tmp
;
4406 for (i
= 0; i
< conf
->raid_disks
; i
++) {
4407 tmp
= conf
->disks
+ i
;
4409 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
4410 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
4411 unsigned long flags
;
4412 spin_lock_irqsave(&conf
->device_lock
, flags
);
4414 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4417 print_raid5_conf(conf
);
4421 static int raid5_remove_disk(mddev_t
*mddev
, int number
)
4423 raid5_conf_t
*conf
= mddev
->private;
4426 struct disk_info
*p
= conf
->disks
+ number
;
4428 print_raid5_conf(conf
);
4431 if (test_bit(In_sync
, &rdev
->flags
) ||
4432 atomic_read(&rdev
->nr_pending
)) {
4438 if (atomic_read(&rdev
->nr_pending
)) {
4439 /* lost the race, try later */
4446 print_raid5_conf(conf
);
4450 static int raid5_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
4452 raid5_conf_t
*conf
= mddev
->private;
4455 struct disk_info
*p
;
4457 if (mddev
->degraded
> conf
->max_degraded
)
4458 /* no point adding a device */
4462 * find the disk ... but prefer rdev->saved_raid_disk
4465 if (rdev
->saved_raid_disk
>= 0 &&
4466 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
4467 disk
= rdev
->saved_raid_disk
;
4470 for ( ; disk
< conf
->raid_disks
; disk
++)
4471 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
4472 clear_bit(In_sync
, &rdev
->flags
);
4473 rdev
->raid_disk
= disk
;
4475 if (rdev
->saved_raid_disk
!= disk
)
4477 rcu_assign_pointer(p
->rdev
, rdev
);
4480 print_raid5_conf(conf
);
4484 static int raid5_resize(mddev_t
*mddev
, sector_t sectors
)
4486 /* no resync is happening, and there is enough space
4487 * on all devices, so we can resize.
4488 * We need to make sure resync covers any new space.
4489 * If the array is shrinking we should possibly wait until
4490 * any io in the removed space completes, but it hardly seems
4493 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4495 sectors
&= ~((sector_t
)mddev
->chunk_size
/512 - 1);
4496 mddev
->array_size
= (sectors
* (mddev
->raid_disks
-conf
->max_degraded
))>>1;
4497 set_capacity(mddev
->gendisk
, mddev
->array_size
<< 1);
4499 if (sectors
/2 > mddev
->size
&& mddev
->recovery_cp
== MaxSector
) {
4500 mddev
->recovery_cp
= mddev
->size
<< 1;
4501 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4503 mddev
->size
= sectors
/2;
4504 mddev
->resync_max_sectors
= sectors
;
4508 #ifdef CONFIG_MD_RAID5_RESHAPE
4509 static int raid5_check_reshape(mddev_t
*mddev
)
4511 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4514 if (mddev
->delta_disks
< 0 ||
4515 mddev
->new_level
!= mddev
->level
)
4516 return -EINVAL
; /* Cannot shrink array or change level yet */
4517 if (mddev
->delta_disks
== 0)
4518 return 0; /* nothing to do */
4520 /* Can only proceed if there are plenty of stripe_heads.
4521 * We need a minimum of one full stripe,, and for sensible progress
4522 * it is best to have about 4 times that.
4523 * If we require 4 times, then the default 256 4K stripe_heads will
4524 * allow for chunk sizes up to 256K, which is probably OK.
4525 * If the chunk size is greater, user-space should request more
4526 * stripe_heads first.
4528 if ((mddev
->chunk_size
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
||
4529 (mddev
->new_chunk
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
) {
4530 printk(KERN_WARNING
"raid5: reshape: not enough stripes. Needed %lu\n",
4531 (mddev
->chunk_size
/ STRIPE_SIZE
)*4);
4535 err
= resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
4539 if (mddev
->degraded
> conf
->max_degraded
)
4541 /* looks like we might be able to manage this */
4545 static int raid5_start_reshape(mddev_t
*mddev
)
4547 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4549 struct list_head
*rtmp
;
4551 int added_devices
= 0;
4552 unsigned long flags
;
4554 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4557 ITERATE_RDEV(mddev
, rdev
, rtmp
)
4558 if (rdev
->raid_disk
< 0 &&
4559 !test_bit(Faulty
, &rdev
->flags
))
4562 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
4563 /* Not enough devices even to make a degraded array
4568 atomic_set(&conf
->reshape_stripes
, 0);
4569 spin_lock_irq(&conf
->device_lock
);
4570 conf
->previous_raid_disks
= conf
->raid_disks
;
4571 conf
->raid_disks
+= mddev
->delta_disks
;
4572 conf
->expand_progress
= 0;
4573 conf
->expand_lo
= 0;
4574 spin_unlock_irq(&conf
->device_lock
);
4576 /* Add some new drives, as many as will fit.
4577 * We know there are enough to make the newly sized array work.
4579 ITERATE_RDEV(mddev
, rdev
, rtmp
)
4580 if (rdev
->raid_disk
< 0 &&
4581 !test_bit(Faulty
, &rdev
->flags
)) {
4582 if (raid5_add_disk(mddev
, rdev
)) {
4584 set_bit(In_sync
, &rdev
->flags
);
4586 rdev
->recovery_offset
= 0;
4587 sprintf(nm
, "rd%d", rdev
->raid_disk
);
4588 if (sysfs_create_link(&mddev
->kobj
,
4591 "raid5: failed to create "
4592 " link %s for %s\n",
4598 spin_lock_irqsave(&conf
->device_lock
, flags
);
4599 mddev
->degraded
= (conf
->raid_disks
- conf
->previous_raid_disks
) - added_devices
;
4600 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4601 mddev
->raid_disks
= conf
->raid_disks
;
4602 mddev
->reshape_position
= 0;
4603 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4605 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4606 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4607 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4608 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4609 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4611 if (!mddev
->sync_thread
) {
4612 mddev
->recovery
= 0;
4613 spin_lock_irq(&conf
->device_lock
);
4614 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
4615 conf
->expand_progress
= MaxSector
;
4616 spin_unlock_irq(&conf
->device_lock
);
4619 md_wakeup_thread(mddev
->sync_thread
);
4620 md_new_event(mddev
);
4625 static void end_reshape(raid5_conf_t
*conf
)
4627 struct block_device
*bdev
;
4629 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
4630 conf
->mddev
->array_size
= conf
->mddev
->size
*
4631 (conf
->raid_disks
- conf
->max_degraded
);
4632 set_capacity(conf
->mddev
->gendisk
, conf
->mddev
->array_size
<< 1);
4633 conf
->mddev
->changed
= 1;
4635 bdev
= bdget_disk(conf
->mddev
->gendisk
, 0);
4637 mutex_lock(&bdev
->bd_inode
->i_mutex
);
4638 i_size_write(bdev
->bd_inode
, (loff_t
)conf
->mddev
->array_size
<< 10);
4639 mutex_unlock(&bdev
->bd_inode
->i_mutex
);
4642 spin_lock_irq(&conf
->device_lock
);
4643 conf
->expand_progress
= MaxSector
;
4644 spin_unlock_irq(&conf
->device_lock
);
4645 conf
->mddev
->reshape_position
= MaxSector
;
4647 /* read-ahead size must cover two whole stripes, which is
4648 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4651 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4652 int stripe
= data_disks
*
4653 (conf
->mddev
->chunk_size
/ PAGE_SIZE
);
4654 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4655 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4660 static void raid5_quiesce(mddev_t
*mddev
, int state
)
4662 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4665 case 2: /* resume for a suspend */
4666 wake_up(&conf
->wait_for_overlap
);
4669 case 1: /* stop all writes */
4670 spin_lock_irq(&conf
->device_lock
);
4672 wait_event_lock_irq(conf
->wait_for_stripe
,
4673 atomic_read(&conf
->active_stripes
) == 0 &&
4674 atomic_read(&conf
->active_aligned_reads
) == 0,
4675 conf
->device_lock
, /* nothing */);
4676 spin_unlock_irq(&conf
->device_lock
);
4679 case 0: /* re-enable writes */
4680 spin_lock_irq(&conf
->device_lock
);
4682 wake_up(&conf
->wait_for_stripe
);
4683 wake_up(&conf
->wait_for_overlap
);
4684 spin_unlock_irq(&conf
->device_lock
);
4689 static struct mdk_personality raid6_personality
=
4693 .owner
= THIS_MODULE
,
4694 .make_request
= make_request
,
4698 .error_handler
= error
,
4699 .hot_add_disk
= raid5_add_disk
,
4700 .hot_remove_disk
= raid5_remove_disk
,
4701 .spare_active
= raid5_spare_active
,
4702 .sync_request
= sync_request
,
4703 .resize
= raid5_resize
,
4704 #ifdef CONFIG_MD_RAID5_RESHAPE
4705 .check_reshape
= raid5_check_reshape
,
4706 .start_reshape
= raid5_start_reshape
,
4708 .quiesce
= raid5_quiesce
,
4710 static struct mdk_personality raid5_personality
=
4714 .owner
= THIS_MODULE
,
4715 .make_request
= make_request
,
4719 .error_handler
= error
,
4720 .hot_add_disk
= raid5_add_disk
,
4721 .hot_remove_disk
= raid5_remove_disk
,
4722 .spare_active
= raid5_spare_active
,
4723 .sync_request
= sync_request
,
4724 .resize
= raid5_resize
,
4725 #ifdef CONFIG_MD_RAID5_RESHAPE
4726 .check_reshape
= raid5_check_reshape
,
4727 .start_reshape
= raid5_start_reshape
,
4729 .quiesce
= raid5_quiesce
,
4732 static struct mdk_personality raid4_personality
=
4736 .owner
= THIS_MODULE
,
4737 .make_request
= make_request
,
4741 .error_handler
= error
,
4742 .hot_add_disk
= raid5_add_disk
,
4743 .hot_remove_disk
= raid5_remove_disk
,
4744 .spare_active
= raid5_spare_active
,
4745 .sync_request
= sync_request
,
4746 .resize
= raid5_resize
,
4747 #ifdef CONFIG_MD_RAID5_RESHAPE
4748 .check_reshape
= raid5_check_reshape
,
4749 .start_reshape
= raid5_start_reshape
,
4751 .quiesce
= raid5_quiesce
,
4754 static int __init
raid5_init(void)
4758 e
= raid6_select_algo();
4761 register_md_personality(&raid6_personality
);
4762 register_md_personality(&raid5_personality
);
4763 register_md_personality(&raid4_personality
);
4767 static void raid5_exit(void)
4769 unregister_md_personality(&raid6_personality
);
4770 unregister_md_personality(&raid5_personality
);
4771 unregister_md_personality(&raid4_personality
);
4774 module_init(raid5_init
);
4775 module_exit(raid5_exit
);
4776 MODULE_LICENSE("GPL");
4777 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4778 MODULE_ALIAS("md-raid5");
4779 MODULE_ALIAS("md-raid4");
4780 MODULE_ALIAS("md-level-5");
4781 MODULE_ALIAS("md-level-4");
4782 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4783 MODULE_ALIAS("md-raid6");
4784 MODULE_ALIAS("md-level-6");
4786 /* This used to be two separate modules, they were: */
4787 MODULE_ALIAS("raid5");
4788 MODULE_ALIAS("raid6");