e1000: Add device IDs of blade version of the 82571 quad port
[pv_ops_mirror.git] / drivers / md / raid5.c
blobf96dea975fa50d94e805c40c46be82df7cfe80bc
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
58 * Stripe cache
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
67 #define HASH_MASK (NR_HASH - 1)
69 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
72 * order without overlap. There may be several bio's per stripe+device, and
73 * a bio could span several devices.
74 * When walking this list for a particular stripe+device, we must never proceed
75 * beyond a bio that extends past this device, as the next bio might no longer
76 * be valid.
77 * This macro is used to determine the 'next' bio in the list, given the sector
78 * of the current stripe+device
80 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 * The following can be used to debug the driver
84 #define RAID5_PARANOIA 1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 #else
88 # define CHECK_DEVLOCK()
89 #endif
91 #ifdef DEBUG
92 #define inline
93 #define __inline__
94 #endif
96 #if !RAID6_USE_EMPTY_ZERO_PAGE
97 /* In .bss so it's zeroed */
98 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
99 #endif
101 static inline int raid6_next_disk(int disk, int raid_disks)
103 disk++;
104 return (disk < raid_disks) ? disk : 0;
107 static void return_io(struct bio *return_bi)
109 struct bio *bi = return_bi;
110 while (bi) {
111 int bytes = bi->bi_size;
113 return_bi = bi->bi_next;
114 bi->bi_next = NULL;
115 bi->bi_size = 0;
116 bi->bi_end_io(bi, bytes,
117 test_bit(BIO_UPTODATE, &bi->bi_flags)
118 ? 0 : -EIO);
119 bi = return_bi;
123 static void print_raid5_conf (raid5_conf_t *conf);
125 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
127 if (atomic_dec_and_test(&sh->count)) {
128 BUG_ON(!list_empty(&sh->lru));
129 BUG_ON(atomic_read(&conf->active_stripes)==0);
130 if (test_bit(STRIPE_HANDLE, &sh->state)) {
131 if (test_bit(STRIPE_DELAYED, &sh->state)) {
132 list_add_tail(&sh->lru, &conf->delayed_list);
133 blk_plug_device(conf->mddev->queue);
134 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
135 sh->bm_seq - conf->seq_write > 0) {
136 list_add_tail(&sh->lru, &conf->bitmap_list);
137 blk_plug_device(conf->mddev->queue);
138 } else {
139 clear_bit(STRIPE_BIT_DELAY, &sh->state);
140 list_add_tail(&sh->lru, &conf->handle_list);
142 md_wakeup_thread(conf->mddev->thread);
143 } else {
144 BUG_ON(sh->ops.pending);
145 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146 atomic_dec(&conf->preread_active_stripes);
147 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148 md_wakeup_thread(conf->mddev->thread);
150 atomic_dec(&conf->active_stripes);
151 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152 list_add_tail(&sh->lru, &conf->inactive_list);
153 wake_up(&conf->wait_for_stripe);
154 if (conf->retry_read_aligned)
155 md_wakeup_thread(conf->mddev->thread);
160 static void release_stripe(struct stripe_head *sh)
162 raid5_conf_t *conf = sh->raid_conf;
163 unsigned long flags;
165 spin_lock_irqsave(&conf->device_lock, flags);
166 __release_stripe(conf, sh);
167 spin_unlock_irqrestore(&conf->device_lock, flags);
170 static inline void remove_hash(struct stripe_head *sh)
172 pr_debug("remove_hash(), stripe %llu\n",
173 (unsigned long long)sh->sector);
175 hlist_del_init(&sh->hash);
178 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
180 struct hlist_head *hp = stripe_hash(conf, sh->sector);
182 pr_debug("insert_hash(), stripe %llu\n",
183 (unsigned long long)sh->sector);
185 CHECK_DEVLOCK();
186 hlist_add_head(&sh->hash, hp);
190 /* find an idle stripe, make sure it is unhashed, and return it. */
191 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
193 struct stripe_head *sh = NULL;
194 struct list_head *first;
196 CHECK_DEVLOCK();
197 if (list_empty(&conf->inactive_list))
198 goto out;
199 first = conf->inactive_list.next;
200 sh = list_entry(first, struct stripe_head, lru);
201 list_del_init(first);
202 remove_hash(sh);
203 atomic_inc(&conf->active_stripes);
204 out:
205 return sh;
208 static void shrink_buffers(struct stripe_head *sh, int num)
210 struct page *p;
211 int i;
213 for (i=0; i<num ; i++) {
214 p = sh->dev[i].page;
215 if (!p)
216 continue;
217 sh->dev[i].page = NULL;
218 put_page(p);
222 static int grow_buffers(struct stripe_head *sh, int num)
224 int i;
226 for (i=0; i<num; i++) {
227 struct page *page;
229 if (!(page = alloc_page(GFP_KERNEL))) {
230 return 1;
232 sh->dev[i].page = page;
234 return 0;
237 static void raid5_build_block (struct stripe_head *sh, int i);
239 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
241 raid5_conf_t *conf = sh->raid_conf;
242 int i;
244 BUG_ON(atomic_read(&sh->count) != 0);
245 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
246 BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
248 CHECK_DEVLOCK();
249 pr_debug("init_stripe called, stripe %llu\n",
250 (unsigned long long)sh->sector);
252 remove_hash(sh);
254 sh->sector = sector;
255 sh->pd_idx = pd_idx;
256 sh->state = 0;
258 sh->disks = disks;
260 for (i = sh->disks; i--; ) {
261 struct r5dev *dev = &sh->dev[i];
263 if (dev->toread || dev->read || dev->towrite || dev->written ||
264 test_bit(R5_LOCKED, &dev->flags)) {
265 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
266 (unsigned long long)sh->sector, i, dev->toread,
267 dev->read, dev->towrite, dev->written,
268 test_bit(R5_LOCKED, &dev->flags));
269 BUG();
271 dev->flags = 0;
272 raid5_build_block(sh, i);
274 insert_hash(conf, sh);
277 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
279 struct stripe_head *sh;
280 struct hlist_node *hn;
282 CHECK_DEVLOCK();
283 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
284 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
285 if (sh->sector == sector && sh->disks == disks)
286 return sh;
287 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
288 return NULL;
291 static void unplug_slaves(mddev_t *mddev);
292 static void raid5_unplug_device(struct request_queue *q);
294 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
295 int pd_idx, int noblock)
297 struct stripe_head *sh;
299 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
301 spin_lock_irq(&conf->device_lock);
303 do {
304 wait_event_lock_irq(conf->wait_for_stripe,
305 conf->quiesce == 0,
306 conf->device_lock, /* nothing */);
307 sh = __find_stripe(conf, sector, disks);
308 if (!sh) {
309 if (!conf->inactive_blocked)
310 sh = get_free_stripe(conf);
311 if (noblock && sh == NULL)
312 break;
313 if (!sh) {
314 conf->inactive_blocked = 1;
315 wait_event_lock_irq(conf->wait_for_stripe,
316 !list_empty(&conf->inactive_list) &&
317 (atomic_read(&conf->active_stripes)
318 < (conf->max_nr_stripes *3/4)
319 || !conf->inactive_blocked),
320 conf->device_lock,
321 raid5_unplug_device(conf->mddev->queue)
323 conf->inactive_blocked = 0;
324 } else
325 init_stripe(sh, sector, pd_idx, disks);
326 } else {
327 if (atomic_read(&sh->count)) {
328 BUG_ON(!list_empty(&sh->lru));
329 } else {
330 if (!test_bit(STRIPE_HANDLE, &sh->state))
331 atomic_inc(&conf->active_stripes);
332 if (list_empty(&sh->lru) &&
333 !test_bit(STRIPE_EXPANDING, &sh->state))
334 BUG();
335 list_del_init(&sh->lru);
338 } while (sh == NULL);
340 if (sh)
341 atomic_inc(&sh->count);
343 spin_unlock_irq(&conf->device_lock);
344 return sh;
347 /* test_and_ack_op() ensures that we only dequeue an operation once */
348 #define test_and_ack_op(op, pend) \
349 do { \
350 if (test_bit(op, &sh->ops.pending) && \
351 !test_bit(op, &sh->ops.complete)) { \
352 if (test_and_set_bit(op, &sh->ops.ack)) \
353 clear_bit(op, &pend); \
354 else \
355 ack++; \
356 } else \
357 clear_bit(op, &pend); \
358 } while (0)
360 /* find new work to run, do not resubmit work that is already
361 * in flight
363 static unsigned long get_stripe_work(struct stripe_head *sh)
365 unsigned long pending;
366 int ack = 0;
368 pending = sh->ops.pending;
370 test_and_ack_op(STRIPE_OP_BIOFILL, pending);
371 test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
372 test_and_ack_op(STRIPE_OP_PREXOR, pending);
373 test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
374 test_and_ack_op(STRIPE_OP_POSTXOR, pending);
375 test_and_ack_op(STRIPE_OP_CHECK, pending);
376 if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
377 ack++;
379 sh->ops.count -= ack;
380 BUG_ON(sh->ops.count < 0);
382 return pending;
385 static int
386 raid5_end_read_request(struct bio *bi, unsigned int bytes_done, int error);
387 static int
388 raid5_end_write_request (struct bio *bi, unsigned int bytes_done, int error);
390 static void ops_run_io(struct stripe_head *sh)
392 raid5_conf_t *conf = sh->raid_conf;
393 int i, disks = sh->disks;
395 might_sleep();
397 for (i = disks; i--; ) {
398 int rw;
399 struct bio *bi;
400 mdk_rdev_t *rdev;
401 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
402 rw = WRITE;
403 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
404 rw = READ;
405 else
406 continue;
408 bi = &sh->dev[i].req;
410 bi->bi_rw = rw;
411 if (rw == WRITE)
412 bi->bi_end_io = raid5_end_write_request;
413 else
414 bi->bi_end_io = raid5_end_read_request;
416 rcu_read_lock();
417 rdev = rcu_dereference(conf->disks[i].rdev);
418 if (rdev && test_bit(Faulty, &rdev->flags))
419 rdev = NULL;
420 if (rdev)
421 atomic_inc(&rdev->nr_pending);
422 rcu_read_unlock();
424 if (rdev) {
425 if (test_bit(STRIPE_SYNCING, &sh->state) ||
426 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
427 test_bit(STRIPE_EXPAND_READY, &sh->state))
428 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
430 bi->bi_bdev = rdev->bdev;
431 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
432 __FUNCTION__, (unsigned long long)sh->sector,
433 bi->bi_rw, i);
434 atomic_inc(&sh->count);
435 bi->bi_sector = sh->sector + rdev->data_offset;
436 bi->bi_flags = 1 << BIO_UPTODATE;
437 bi->bi_vcnt = 1;
438 bi->bi_max_vecs = 1;
439 bi->bi_idx = 0;
440 bi->bi_io_vec = &sh->dev[i].vec;
441 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
442 bi->bi_io_vec[0].bv_offset = 0;
443 bi->bi_size = STRIPE_SIZE;
444 bi->bi_next = NULL;
445 if (rw == WRITE &&
446 test_bit(R5_ReWrite, &sh->dev[i].flags))
447 atomic_add(STRIPE_SECTORS,
448 &rdev->corrected_errors);
449 generic_make_request(bi);
450 } else {
451 if (rw == WRITE)
452 set_bit(STRIPE_DEGRADED, &sh->state);
453 pr_debug("skip op %ld on disc %d for sector %llu\n",
454 bi->bi_rw, i, (unsigned long long)sh->sector);
455 clear_bit(R5_LOCKED, &sh->dev[i].flags);
456 set_bit(STRIPE_HANDLE, &sh->state);
461 static struct dma_async_tx_descriptor *
462 async_copy_data(int frombio, struct bio *bio, struct page *page,
463 sector_t sector, struct dma_async_tx_descriptor *tx)
465 struct bio_vec *bvl;
466 struct page *bio_page;
467 int i;
468 int page_offset;
470 if (bio->bi_sector >= sector)
471 page_offset = (signed)(bio->bi_sector - sector) * 512;
472 else
473 page_offset = (signed)(sector - bio->bi_sector) * -512;
474 bio_for_each_segment(bvl, bio, i) {
475 int len = bio_iovec_idx(bio, i)->bv_len;
476 int clen;
477 int b_offset = 0;
479 if (page_offset < 0) {
480 b_offset = -page_offset;
481 page_offset += b_offset;
482 len -= b_offset;
485 if (len > 0 && page_offset + len > STRIPE_SIZE)
486 clen = STRIPE_SIZE - page_offset;
487 else
488 clen = len;
490 if (clen > 0) {
491 b_offset += bio_iovec_idx(bio, i)->bv_offset;
492 bio_page = bio_iovec_idx(bio, i)->bv_page;
493 if (frombio)
494 tx = async_memcpy(page, bio_page, page_offset,
495 b_offset, clen,
496 ASYNC_TX_DEP_ACK,
497 tx, NULL, NULL);
498 else
499 tx = async_memcpy(bio_page, page, b_offset,
500 page_offset, clen,
501 ASYNC_TX_DEP_ACK,
502 tx, NULL, NULL);
504 if (clen < len) /* hit end of page */
505 break;
506 page_offset += len;
509 return tx;
512 static void ops_complete_biofill(void *stripe_head_ref)
514 struct stripe_head *sh = stripe_head_ref;
515 struct bio *return_bi = NULL;
516 raid5_conf_t *conf = sh->raid_conf;
517 int i;
519 pr_debug("%s: stripe %llu\n", __FUNCTION__,
520 (unsigned long long)sh->sector);
522 /* clear completed biofills */
523 for (i = sh->disks; i--; ) {
524 struct r5dev *dev = &sh->dev[i];
526 /* acknowledge completion of a biofill operation */
527 /* and check if we need to reply to a read request,
528 * new R5_Wantfill requests are held off until
529 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
531 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
532 struct bio *rbi, *rbi2;
534 /* The access to dev->read is outside of the
535 * spin_lock_irq(&conf->device_lock), but is protected
536 * by the STRIPE_OP_BIOFILL pending bit
538 BUG_ON(!dev->read);
539 rbi = dev->read;
540 dev->read = NULL;
541 while (rbi && rbi->bi_sector <
542 dev->sector + STRIPE_SECTORS) {
543 rbi2 = r5_next_bio(rbi, dev->sector);
544 spin_lock_irq(&conf->device_lock);
545 if (--rbi->bi_phys_segments == 0) {
546 rbi->bi_next = return_bi;
547 return_bi = rbi;
549 spin_unlock_irq(&conf->device_lock);
550 rbi = rbi2;
554 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
555 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
557 return_io(return_bi);
559 set_bit(STRIPE_HANDLE, &sh->state);
560 release_stripe(sh);
563 static void ops_run_biofill(struct stripe_head *sh)
565 struct dma_async_tx_descriptor *tx = NULL;
566 raid5_conf_t *conf = sh->raid_conf;
567 int i;
569 pr_debug("%s: stripe %llu\n", __FUNCTION__,
570 (unsigned long long)sh->sector);
572 for (i = sh->disks; i--; ) {
573 struct r5dev *dev = &sh->dev[i];
574 if (test_bit(R5_Wantfill, &dev->flags)) {
575 struct bio *rbi;
576 spin_lock_irq(&conf->device_lock);
577 dev->read = rbi = dev->toread;
578 dev->toread = NULL;
579 spin_unlock_irq(&conf->device_lock);
580 while (rbi && rbi->bi_sector <
581 dev->sector + STRIPE_SECTORS) {
582 tx = async_copy_data(0, rbi, dev->page,
583 dev->sector, tx);
584 rbi = r5_next_bio(rbi, dev->sector);
589 atomic_inc(&sh->count);
590 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
591 ops_complete_biofill, sh);
594 static void ops_complete_compute5(void *stripe_head_ref)
596 struct stripe_head *sh = stripe_head_ref;
597 int target = sh->ops.target;
598 struct r5dev *tgt = &sh->dev[target];
600 pr_debug("%s: stripe %llu\n", __FUNCTION__,
601 (unsigned long long)sh->sector);
603 set_bit(R5_UPTODATE, &tgt->flags);
604 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
605 clear_bit(R5_Wantcompute, &tgt->flags);
606 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
607 set_bit(STRIPE_HANDLE, &sh->state);
608 release_stripe(sh);
611 static struct dma_async_tx_descriptor *
612 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
614 /* kernel stack size limits the total number of disks */
615 int disks = sh->disks;
616 struct page *xor_srcs[disks];
617 int target = sh->ops.target;
618 struct r5dev *tgt = &sh->dev[target];
619 struct page *xor_dest = tgt->page;
620 int count = 0;
621 struct dma_async_tx_descriptor *tx;
622 int i;
624 pr_debug("%s: stripe %llu block: %d\n",
625 __FUNCTION__, (unsigned long long)sh->sector, target);
626 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
628 for (i = disks; i--; )
629 if (i != target)
630 xor_srcs[count++] = sh->dev[i].page;
632 atomic_inc(&sh->count);
634 if (unlikely(count == 1))
635 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
636 0, NULL, ops_complete_compute5, sh);
637 else
638 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
639 ASYNC_TX_XOR_ZERO_DST, NULL,
640 ops_complete_compute5, sh);
642 /* ack now if postxor is not set to be run */
643 if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
644 async_tx_ack(tx);
646 return tx;
649 static void ops_complete_prexor(void *stripe_head_ref)
651 struct stripe_head *sh = stripe_head_ref;
653 pr_debug("%s: stripe %llu\n", __FUNCTION__,
654 (unsigned long long)sh->sector);
656 set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
659 static struct dma_async_tx_descriptor *
660 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
662 /* kernel stack size limits the total number of disks */
663 int disks = sh->disks;
664 struct page *xor_srcs[disks];
665 int count = 0, pd_idx = sh->pd_idx, i;
667 /* existing parity data subtracted */
668 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
670 pr_debug("%s: stripe %llu\n", __FUNCTION__,
671 (unsigned long long)sh->sector);
673 for (i = disks; i--; ) {
674 struct r5dev *dev = &sh->dev[i];
675 /* Only process blocks that are known to be uptodate */
676 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
677 xor_srcs[count++] = dev->page;
680 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
681 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
682 ops_complete_prexor, sh);
684 return tx;
687 static struct dma_async_tx_descriptor *
688 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
690 int disks = sh->disks;
691 int pd_idx = sh->pd_idx, i;
693 /* check if prexor is active which means only process blocks
694 * that are part of a read-modify-write (Wantprexor)
696 int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
698 pr_debug("%s: stripe %llu\n", __FUNCTION__,
699 (unsigned long long)sh->sector);
701 for (i = disks; i--; ) {
702 struct r5dev *dev = &sh->dev[i];
703 struct bio *chosen;
704 int towrite;
706 towrite = 0;
707 if (prexor) { /* rmw */
708 if (dev->towrite &&
709 test_bit(R5_Wantprexor, &dev->flags))
710 towrite = 1;
711 } else { /* rcw */
712 if (i != pd_idx && dev->towrite &&
713 test_bit(R5_LOCKED, &dev->flags))
714 towrite = 1;
717 if (towrite) {
718 struct bio *wbi;
720 spin_lock(&sh->lock);
721 chosen = dev->towrite;
722 dev->towrite = NULL;
723 BUG_ON(dev->written);
724 wbi = dev->written = chosen;
725 spin_unlock(&sh->lock);
727 while (wbi && wbi->bi_sector <
728 dev->sector + STRIPE_SECTORS) {
729 tx = async_copy_data(1, wbi, dev->page,
730 dev->sector, tx);
731 wbi = r5_next_bio(wbi, dev->sector);
736 return tx;
739 static void ops_complete_postxor(void *stripe_head_ref)
741 struct stripe_head *sh = stripe_head_ref;
743 pr_debug("%s: stripe %llu\n", __FUNCTION__,
744 (unsigned long long)sh->sector);
746 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
747 set_bit(STRIPE_HANDLE, &sh->state);
748 release_stripe(sh);
751 static void ops_complete_write(void *stripe_head_ref)
753 struct stripe_head *sh = stripe_head_ref;
754 int disks = sh->disks, i, pd_idx = sh->pd_idx;
756 pr_debug("%s: stripe %llu\n", __FUNCTION__,
757 (unsigned long long)sh->sector);
759 for (i = disks; i--; ) {
760 struct r5dev *dev = &sh->dev[i];
761 if (dev->written || i == pd_idx)
762 set_bit(R5_UPTODATE, &dev->flags);
765 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
766 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
768 set_bit(STRIPE_HANDLE, &sh->state);
769 release_stripe(sh);
772 static void
773 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
775 /* kernel stack size limits the total number of disks */
776 int disks = sh->disks;
777 struct page *xor_srcs[disks];
779 int count = 0, pd_idx = sh->pd_idx, i;
780 struct page *xor_dest;
781 int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
782 unsigned long flags;
783 dma_async_tx_callback callback;
785 pr_debug("%s: stripe %llu\n", __FUNCTION__,
786 (unsigned long long)sh->sector);
788 /* check if prexor is active which means only process blocks
789 * that are part of a read-modify-write (written)
791 if (prexor) {
792 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
793 for (i = disks; i--; ) {
794 struct r5dev *dev = &sh->dev[i];
795 if (dev->written)
796 xor_srcs[count++] = dev->page;
798 } else {
799 xor_dest = sh->dev[pd_idx].page;
800 for (i = disks; i--; ) {
801 struct r5dev *dev = &sh->dev[i];
802 if (i != pd_idx)
803 xor_srcs[count++] = dev->page;
807 /* check whether this postxor is part of a write */
808 callback = test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending) ?
809 ops_complete_write : ops_complete_postxor;
811 /* 1/ if we prexor'd then the dest is reused as a source
812 * 2/ if we did not prexor then we are redoing the parity
813 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
814 * for the synchronous xor case
816 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
817 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
819 atomic_inc(&sh->count);
821 if (unlikely(count == 1)) {
822 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
823 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
824 flags, tx, callback, sh);
825 } else
826 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
827 flags, tx, callback, sh);
830 static void ops_complete_check(void *stripe_head_ref)
832 struct stripe_head *sh = stripe_head_ref;
833 int pd_idx = sh->pd_idx;
835 pr_debug("%s: stripe %llu\n", __FUNCTION__,
836 (unsigned long long)sh->sector);
838 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
839 sh->ops.zero_sum_result == 0)
840 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
842 set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
843 set_bit(STRIPE_HANDLE, &sh->state);
844 release_stripe(sh);
847 static void ops_run_check(struct stripe_head *sh)
849 /* kernel stack size limits the total number of disks */
850 int disks = sh->disks;
851 struct page *xor_srcs[disks];
852 struct dma_async_tx_descriptor *tx;
854 int count = 0, pd_idx = sh->pd_idx, i;
855 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
857 pr_debug("%s: stripe %llu\n", __FUNCTION__,
858 (unsigned long long)sh->sector);
860 for (i = disks; i--; ) {
861 struct r5dev *dev = &sh->dev[i];
862 if (i != pd_idx)
863 xor_srcs[count++] = dev->page;
866 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
867 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
869 if (tx)
870 set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
871 else
872 clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
874 atomic_inc(&sh->count);
875 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
876 ops_complete_check, sh);
879 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
881 int overlap_clear = 0, i, disks = sh->disks;
882 struct dma_async_tx_descriptor *tx = NULL;
884 if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
885 ops_run_biofill(sh);
886 overlap_clear++;
889 if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
890 tx = ops_run_compute5(sh, pending);
892 if (test_bit(STRIPE_OP_PREXOR, &pending))
893 tx = ops_run_prexor(sh, tx);
895 if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
896 tx = ops_run_biodrain(sh, tx);
897 overlap_clear++;
900 if (test_bit(STRIPE_OP_POSTXOR, &pending))
901 ops_run_postxor(sh, tx);
903 if (test_bit(STRIPE_OP_CHECK, &pending))
904 ops_run_check(sh);
906 if (test_bit(STRIPE_OP_IO, &pending))
907 ops_run_io(sh);
909 if (overlap_clear)
910 for (i = disks; i--; ) {
911 struct r5dev *dev = &sh->dev[i];
912 if (test_and_clear_bit(R5_Overlap, &dev->flags))
913 wake_up(&sh->raid_conf->wait_for_overlap);
917 static int grow_one_stripe(raid5_conf_t *conf)
919 struct stripe_head *sh;
920 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
921 if (!sh)
922 return 0;
923 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
924 sh->raid_conf = conf;
925 spin_lock_init(&sh->lock);
927 if (grow_buffers(sh, conf->raid_disks)) {
928 shrink_buffers(sh, conf->raid_disks);
929 kmem_cache_free(conf->slab_cache, sh);
930 return 0;
932 sh->disks = conf->raid_disks;
933 /* we just created an active stripe so... */
934 atomic_set(&sh->count, 1);
935 atomic_inc(&conf->active_stripes);
936 INIT_LIST_HEAD(&sh->lru);
937 release_stripe(sh);
938 return 1;
941 static int grow_stripes(raid5_conf_t *conf, int num)
943 struct kmem_cache *sc;
944 int devs = conf->raid_disks;
946 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
947 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
948 conf->active_name = 0;
949 sc = kmem_cache_create(conf->cache_name[conf->active_name],
950 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
951 0, 0, NULL);
952 if (!sc)
953 return 1;
954 conf->slab_cache = sc;
955 conf->pool_size = devs;
956 while (num--)
957 if (!grow_one_stripe(conf))
958 return 1;
959 return 0;
962 #ifdef CONFIG_MD_RAID5_RESHAPE
963 static int resize_stripes(raid5_conf_t *conf, int newsize)
965 /* Make all the stripes able to hold 'newsize' devices.
966 * New slots in each stripe get 'page' set to a new page.
968 * This happens in stages:
969 * 1/ create a new kmem_cache and allocate the required number of
970 * stripe_heads.
971 * 2/ gather all the old stripe_heads and tranfer the pages across
972 * to the new stripe_heads. This will have the side effect of
973 * freezing the array as once all stripe_heads have been collected,
974 * no IO will be possible. Old stripe heads are freed once their
975 * pages have been transferred over, and the old kmem_cache is
976 * freed when all stripes are done.
977 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
978 * we simple return a failre status - no need to clean anything up.
979 * 4/ allocate new pages for the new slots in the new stripe_heads.
980 * If this fails, we don't bother trying the shrink the
981 * stripe_heads down again, we just leave them as they are.
982 * As each stripe_head is processed the new one is released into
983 * active service.
985 * Once step2 is started, we cannot afford to wait for a write,
986 * so we use GFP_NOIO allocations.
988 struct stripe_head *osh, *nsh;
989 LIST_HEAD(newstripes);
990 struct disk_info *ndisks;
991 int err = 0;
992 struct kmem_cache *sc;
993 int i;
995 if (newsize <= conf->pool_size)
996 return 0; /* never bother to shrink */
998 md_allow_write(conf->mddev);
1000 /* Step 1 */
1001 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1002 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1003 0, 0, NULL);
1004 if (!sc)
1005 return -ENOMEM;
1007 for (i = conf->max_nr_stripes; i; i--) {
1008 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1009 if (!nsh)
1010 break;
1012 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1014 nsh->raid_conf = conf;
1015 spin_lock_init(&nsh->lock);
1017 list_add(&nsh->lru, &newstripes);
1019 if (i) {
1020 /* didn't get enough, give up */
1021 while (!list_empty(&newstripes)) {
1022 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1023 list_del(&nsh->lru);
1024 kmem_cache_free(sc, nsh);
1026 kmem_cache_destroy(sc);
1027 return -ENOMEM;
1029 /* Step 2 - Must use GFP_NOIO now.
1030 * OK, we have enough stripes, start collecting inactive
1031 * stripes and copying them over
1033 list_for_each_entry(nsh, &newstripes, lru) {
1034 spin_lock_irq(&conf->device_lock);
1035 wait_event_lock_irq(conf->wait_for_stripe,
1036 !list_empty(&conf->inactive_list),
1037 conf->device_lock,
1038 unplug_slaves(conf->mddev)
1040 osh = get_free_stripe(conf);
1041 spin_unlock_irq(&conf->device_lock);
1042 atomic_set(&nsh->count, 1);
1043 for(i=0; i<conf->pool_size; i++)
1044 nsh->dev[i].page = osh->dev[i].page;
1045 for( ; i<newsize; i++)
1046 nsh->dev[i].page = NULL;
1047 kmem_cache_free(conf->slab_cache, osh);
1049 kmem_cache_destroy(conf->slab_cache);
1051 /* Step 3.
1052 * At this point, we are holding all the stripes so the array
1053 * is completely stalled, so now is a good time to resize
1054 * conf->disks.
1056 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1057 if (ndisks) {
1058 for (i=0; i<conf->raid_disks; i++)
1059 ndisks[i] = conf->disks[i];
1060 kfree(conf->disks);
1061 conf->disks = ndisks;
1062 } else
1063 err = -ENOMEM;
1065 /* Step 4, return new stripes to service */
1066 while(!list_empty(&newstripes)) {
1067 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1068 list_del_init(&nsh->lru);
1069 for (i=conf->raid_disks; i < newsize; i++)
1070 if (nsh->dev[i].page == NULL) {
1071 struct page *p = alloc_page(GFP_NOIO);
1072 nsh->dev[i].page = p;
1073 if (!p)
1074 err = -ENOMEM;
1076 release_stripe(nsh);
1078 /* critical section pass, GFP_NOIO no longer needed */
1080 conf->slab_cache = sc;
1081 conf->active_name = 1-conf->active_name;
1082 conf->pool_size = newsize;
1083 return err;
1085 #endif
1087 static int drop_one_stripe(raid5_conf_t *conf)
1089 struct stripe_head *sh;
1091 spin_lock_irq(&conf->device_lock);
1092 sh = get_free_stripe(conf);
1093 spin_unlock_irq(&conf->device_lock);
1094 if (!sh)
1095 return 0;
1096 BUG_ON(atomic_read(&sh->count));
1097 shrink_buffers(sh, conf->pool_size);
1098 kmem_cache_free(conf->slab_cache, sh);
1099 atomic_dec(&conf->active_stripes);
1100 return 1;
1103 static void shrink_stripes(raid5_conf_t *conf)
1105 while (drop_one_stripe(conf))
1108 if (conf->slab_cache)
1109 kmem_cache_destroy(conf->slab_cache);
1110 conf->slab_cache = NULL;
1113 static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
1114 int error)
1116 struct stripe_head *sh = bi->bi_private;
1117 raid5_conf_t *conf = sh->raid_conf;
1118 int disks = sh->disks, i;
1119 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1120 char b[BDEVNAME_SIZE];
1121 mdk_rdev_t *rdev;
1123 if (bi->bi_size)
1124 return 1;
1126 for (i=0 ; i<disks; i++)
1127 if (bi == &sh->dev[i].req)
1128 break;
1130 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1131 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1132 uptodate);
1133 if (i == disks) {
1134 BUG();
1135 return 0;
1138 if (uptodate) {
1139 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1140 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1141 rdev = conf->disks[i].rdev;
1142 printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1143 mdname(conf->mddev), STRIPE_SECTORS,
1144 (unsigned long long)sh->sector + rdev->data_offset,
1145 bdevname(rdev->bdev, b));
1146 clear_bit(R5_ReadError, &sh->dev[i].flags);
1147 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1149 if (atomic_read(&conf->disks[i].rdev->read_errors))
1150 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1151 } else {
1152 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1153 int retry = 0;
1154 rdev = conf->disks[i].rdev;
1156 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1157 atomic_inc(&rdev->read_errors);
1158 if (conf->mddev->degraded)
1159 printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
1160 mdname(conf->mddev),
1161 (unsigned long long)sh->sector + rdev->data_offset,
1162 bdn);
1163 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1164 /* Oh, no!!! */
1165 printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1166 mdname(conf->mddev),
1167 (unsigned long long)sh->sector + rdev->data_offset,
1168 bdn);
1169 else if (atomic_read(&rdev->read_errors)
1170 > conf->max_nr_stripes)
1171 printk(KERN_WARNING
1172 "raid5:%s: Too many read errors, failing device %s.\n",
1173 mdname(conf->mddev), bdn);
1174 else
1175 retry = 1;
1176 if (retry)
1177 set_bit(R5_ReadError, &sh->dev[i].flags);
1178 else {
1179 clear_bit(R5_ReadError, &sh->dev[i].flags);
1180 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1181 md_error(conf->mddev, rdev);
1184 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1185 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1186 set_bit(STRIPE_HANDLE, &sh->state);
1187 release_stripe(sh);
1188 return 0;
1191 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
1192 int error)
1194 struct stripe_head *sh = bi->bi_private;
1195 raid5_conf_t *conf = sh->raid_conf;
1196 int disks = sh->disks, i;
1197 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1199 if (bi->bi_size)
1200 return 1;
1202 for (i=0 ; i<disks; i++)
1203 if (bi == &sh->dev[i].req)
1204 break;
1206 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1207 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1208 uptodate);
1209 if (i == disks) {
1210 BUG();
1211 return 0;
1214 if (!uptodate)
1215 md_error(conf->mddev, conf->disks[i].rdev);
1217 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1219 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1220 set_bit(STRIPE_HANDLE, &sh->state);
1221 release_stripe(sh);
1222 return 0;
1226 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1228 static void raid5_build_block (struct stripe_head *sh, int i)
1230 struct r5dev *dev = &sh->dev[i];
1232 bio_init(&dev->req);
1233 dev->req.bi_io_vec = &dev->vec;
1234 dev->req.bi_vcnt++;
1235 dev->req.bi_max_vecs++;
1236 dev->vec.bv_page = dev->page;
1237 dev->vec.bv_len = STRIPE_SIZE;
1238 dev->vec.bv_offset = 0;
1240 dev->req.bi_sector = sh->sector;
1241 dev->req.bi_private = sh;
1243 dev->flags = 0;
1244 dev->sector = compute_blocknr(sh, i);
1247 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1249 char b[BDEVNAME_SIZE];
1250 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1251 pr_debug("raid5: error called\n");
1253 if (!test_bit(Faulty, &rdev->flags)) {
1254 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1255 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1256 unsigned long flags;
1257 spin_lock_irqsave(&conf->device_lock, flags);
1258 mddev->degraded++;
1259 spin_unlock_irqrestore(&conf->device_lock, flags);
1261 * if recovery was running, make sure it aborts.
1263 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1265 set_bit(Faulty, &rdev->flags);
1266 printk (KERN_ALERT
1267 "raid5: Disk failure on %s, disabling device."
1268 " Operation continuing on %d devices\n",
1269 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1274 * Input: a 'big' sector number,
1275 * Output: index of the data and parity disk, and the sector # in them.
1277 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1278 unsigned int data_disks, unsigned int * dd_idx,
1279 unsigned int * pd_idx, raid5_conf_t *conf)
1281 long stripe;
1282 unsigned long chunk_number;
1283 unsigned int chunk_offset;
1284 sector_t new_sector;
1285 int sectors_per_chunk = conf->chunk_size >> 9;
1287 /* First compute the information on this sector */
1290 * Compute the chunk number and the sector offset inside the chunk
1292 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1293 chunk_number = r_sector;
1294 BUG_ON(r_sector != chunk_number);
1297 * Compute the stripe number
1299 stripe = chunk_number / data_disks;
1302 * Compute the data disk and parity disk indexes inside the stripe
1304 *dd_idx = chunk_number % data_disks;
1307 * Select the parity disk based on the user selected algorithm.
1309 switch(conf->level) {
1310 case 4:
1311 *pd_idx = data_disks;
1312 break;
1313 case 5:
1314 switch (conf->algorithm) {
1315 case ALGORITHM_LEFT_ASYMMETRIC:
1316 *pd_idx = data_disks - stripe % raid_disks;
1317 if (*dd_idx >= *pd_idx)
1318 (*dd_idx)++;
1319 break;
1320 case ALGORITHM_RIGHT_ASYMMETRIC:
1321 *pd_idx = stripe % raid_disks;
1322 if (*dd_idx >= *pd_idx)
1323 (*dd_idx)++;
1324 break;
1325 case ALGORITHM_LEFT_SYMMETRIC:
1326 *pd_idx = data_disks - stripe % raid_disks;
1327 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1328 break;
1329 case ALGORITHM_RIGHT_SYMMETRIC:
1330 *pd_idx = stripe % raid_disks;
1331 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1332 break;
1333 default:
1334 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1335 conf->algorithm);
1337 break;
1338 case 6:
1340 /**** FIX THIS ****/
1341 switch (conf->algorithm) {
1342 case ALGORITHM_LEFT_ASYMMETRIC:
1343 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1344 if (*pd_idx == raid_disks-1)
1345 (*dd_idx)++; /* Q D D D P */
1346 else if (*dd_idx >= *pd_idx)
1347 (*dd_idx) += 2; /* D D P Q D */
1348 break;
1349 case ALGORITHM_RIGHT_ASYMMETRIC:
1350 *pd_idx = stripe % raid_disks;
1351 if (*pd_idx == raid_disks-1)
1352 (*dd_idx)++; /* Q D D D P */
1353 else if (*dd_idx >= *pd_idx)
1354 (*dd_idx) += 2; /* D D P Q D */
1355 break;
1356 case ALGORITHM_LEFT_SYMMETRIC:
1357 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1358 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1359 break;
1360 case ALGORITHM_RIGHT_SYMMETRIC:
1361 *pd_idx = stripe % raid_disks;
1362 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1363 break;
1364 default:
1365 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1366 conf->algorithm);
1368 break;
1372 * Finally, compute the new sector number
1374 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1375 return new_sector;
1379 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1381 raid5_conf_t *conf = sh->raid_conf;
1382 int raid_disks = sh->disks;
1383 int data_disks = raid_disks - conf->max_degraded;
1384 sector_t new_sector = sh->sector, check;
1385 int sectors_per_chunk = conf->chunk_size >> 9;
1386 sector_t stripe;
1387 int chunk_offset;
1388 int chunk_number, dummy1, dummy2, dd_idx = i;
1389 sector_t r_sector;
1392 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1393 stripe = new_sector;
1394 BUG_ON(new_sector != stripe);
1396 if (i == sh->pd_idx)
1397 return 0;
1398 switch(conf->level) {
1399 case 4: break;
1400 case 5:
1401 switch (conf->algorithm) {
1402 case ALGORITHM_LEFT_ASYMMETRIC:
1403 case ALGORITHM_RIGHT_ASYMMETRIC:
1404 if (i > sh->pd_idx)
1405 i--;
1406 break;
1407 case ALGORITHM_LEFT_SYMMETRIC:
1408 case ALGORITHM_RIGHT_SYMMETRIC:
1409 if (i < sh->pd_idx)
1410 i += raid_disks;
1411 i -= (sh->pd_idx + 1);
1412 break;
1413 default:
1414 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1415 conf->algorithm);
1417 break;
1418 case 6:
1419 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1420 return 0; /* It is the Q disk */
1421 switch (conf->algorithm) {
1422 case ALGORITHM_LEFT_ASYMMETRIC:
1423 case ALGORITHM_RIGHT_ASYMMETRIC:
1424 if (sh->pd_idx == raid_disks-1)
1425 i--; /* Q D D D P */
1426 else if (i > sh->pd_idx)
1427 i -= 2; /* D D P Q D */
1428 break;
1429 case ALGORITHM_LEFT_SYMMETRIC:
1430 case ALGORITHM_RIGHT_SYMMETRIC:
1431 if (sh->pd_idx == raid_disks-1)
1432 i--; /* Q D D D P */
1433 else {
1434 /* D D P Q D */
1435 if (i < sh->pd_idx)
1436 i += raid_disks;
1437 i -= (sh->pd_idx + 2);
1439 break;
1440 default:
1441 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1442 conf->algorithm);
1444 break;
1447 chunk_number = stripe * data_disks + i;
1448 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1450 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1451 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1452 printk(KERN_ERR "compute_blocknr: map not correct\n");
1453 return 0;
1455 return r_sector;
1461 * Copy data between a page in the stripe cache, and one or more bion
1462 * The page could align with the middle of the bio, or there could be
1463 * several bion, each with several bio_vecs, which cover part of the page
1464 * Multiple bion are linked together on bi_next. There may be extras
1465 * at the end of this list. We ignore them.
1467 static void copy_data(int frombio, struct bio *bio,
1468 struct page *page,
1469 sector_t sector)
1471 char *pa = page_address(page);
1472 struct bio_vec *bvl;
1473 int i;
1474 int page_offset;
1476 if (bio->bi_sector >= sector)
1477 page_offset = (signed)(bio->bi_sector - sector) * 512;
1478 else
1479 page_offset = (signed)(sector - bio->bi_sector) * -512;
1480 bio_for_each_segment(bvl, bio, i) {
1481 int len = bio_iovec_idx(bio,i)->bv_len;
1482 int clen;
1483 int b_offset = 0;
1485 if (page_offset < 0) {
1486 b_offset = -page_offset;
1487 page_offset += b_offset;
1488 len -= b_offset;
1491 if (len > 0 && page_offset + len > STRIPE_SIZE)
1492 clen = STRIPE_SIZE - page_offset;
1493 else clen = len;
1495 if (clen > 0) {
1496 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1497 if (frombio)
1498 memcpy(pa+page_offset, ba+b_offset, clen);
1499 else
1500 memcpy(ba+b_offset, pa+page_offset, clen);
1501 __bio_kunmap_atomic(ba, KM_USER0);
1503 if (clen < len) /* hit end of page */
1504 break;
1505 page_offset += len;
1509 #define check_xor() do { \
1510 if (count == MAX_XOR_BLOCKS) { \
1511 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1512 count = 0; \
1514 } while(0)
1516 static void compute_parity6(struct stripe_head *sh, int method)
1518 raid6_conf_t *conf = sh->raid_conf;
1519 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1520 struct bio *chosen;
1521 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1522 void *ptrs[disks];
1524 qd_idx = raid6_next_disk(pd_idx, disks);
1525 d0_idx = raid6_next_disk(qd_idx, disks);
1527 pr_debug("compute_parity, stripe %llu, method %d\n",
1528 (unsigned long long)sh->sector, method);
1530 switch(method) {
1531 case READ_MODIFY_WRITE:
1532 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1533 case RECONSTRUCT_WRITE:
1534 for (i= disks; i-- ;)
1535 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1536 chosen = sh->dev[i].towrite;
1537 sh->dev[i].towrite = NULL;
1539 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1540 wake_up(&conf->wait_for_overlap);
1542 BUG_ON(sh->dev[i].written);
1543 sh->dev[i].written = chosen;
1545 break;
1546 case CHECK_PARITY:
1547 BUG(); /* Not implemented yet */
1550 for (i = disks; i--;)
1551 if (sh->dev[i].written) {
1552 sector_t sector = sh->dev[i].sector;
1553 struct bio *wbi = sh->dev[i].written;
1554 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1555 copy_data(1, wbi, sh->dev[i].page, sector);
1556 wbi = r5_next_bio(wbi, sector);
1559 set_bit(R5_LOCKED, &sh->dev[i].flags);
1560 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1563 // switch(method) {
1564 // case RECONSTRUCT_WRITE:
1565 // case CHECK_PARITY:
1566 // case UPDATE_PARITY:
1567 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1568 /* FIX: Is this ordering of drives even remotely optimal? */
1569 count = 0;
1570 i = d0_idx;
1571 do {
1572 ptrs[count++] = page_address(sh->dev[i].page);
1573 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1574 printk("block %d/%d not uptodate on parity calc\n", i,count);
1575 i = raid6_next_disk(i, disks);
1576 } while ( i != d0_idx );
1577 // break;
1578 // }
1580 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1582 switch(method) {
1583 case RECONSTRUCT_WRITE:
1584 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1585 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1586 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1587 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1588 break;
1589 case UPDATE_PARITY:
1590 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1591 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1592 break;
1597 /* Compute one missing block */
1598 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1600 int i, count, disks = sh->disks;
1601 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1602 int pd_idx = sh->pd_idx;
1603 int qd_idx = raid6_next_disk(pd_idx, disks);
1605 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1606 (unsigned long long)sh->sector, dd_idx);
1608 if ( dd_idx == qd_idx ) {
1609 /* We're actually computing the Q drive */
1610 compute_parity6(sh, UPDATE_PARITY);
1611 } else {
1612 dest = page_address(sh->dev[dd_idx].page);
1613 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1614 count = 0;
1615 for (i = disks ; i--; ) {
1616 if (i == dd_idx || i == qd_idx)
1617 continue;
1618 p = page_address(sh->dev[i].page);
1619 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1620 ptr[count++] = p;
1621 else
1622 printk("compute_block() %d, stripe %llu, %d"
1623 " not present\n", dd_idx,
1624 (unsigned long long)sh->sector, i);
1626 check_xor();
1628 if (count)
1629 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1630 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1631 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1635 /* Compute two missing blocks */
1636 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1638 int i, count, disks = sh->disks;
1639 int pd_idx = sh->pd_idx;
1640 int qd_idx = raid6_next_disk(pd_idx, disks);
1641 int d0_idx = raid6_next_disk(qd_idx, disks);
1642 int faila, failb;
1644 /* faila and failb are disk numbers relative to d0_idx */
1645 /* pd_idx become disks-2 and qd_idx become disks-1 */
1646 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1647 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1649 BUG_ON(faila == failb);
1650 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1652 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1653 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1655 if ( failb == disks-1 ) {
1656 /* Q disk is one of the missing disks */
1657 if ( faila == disks-2 ) {
1658 /* Missing P+Q, just recompute */
1659 compute_parity6(sh, UPDATE_PARITY);
1660 return;
1661 } else {
1662 /* We're missing D+Q; recompute D from P */
1663 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1664 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1665 return;
1669 /* We're missing D+P or D+D; build pointer table */
1671 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1672 void *ptrs[disks];
1674 count = 0;
1675 i = d0_idx;
1676 do {
1677 ptrs[count++] = page_address(sh->dev[i].page);
1678 i = raid6_next_disk(i, disks);
1679 if (i != dd_idx1 && i != dd_idx2 &&
1680 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1681 printk("compute_2 with missing block %d/%d\n", count, i);
1682 } while ( i != d0_idx );
1684 if ( failb == disks-2 ) {
1685 /* We're missing D+P. */
1686 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1687 } else {
1688 /* We're missing D+D. */
1689 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1692 /* Both the above update both missing blocks */
1693 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1694 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1698 static int
1699 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1701 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1702 int locked = 0;
1704 if (rcw) {
1705 /* if we are not expanding this is a proper write request, and
1706 * there will be bios with new data to be drained into the
1707 * stripe cache
1709 if (!expand) {
1710 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1711 sh->ops.count++;
1714 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1715 sh->ops.count++;
1717 for (i = disks; i--; ) {
1718 struct r5dev *dev = &sh->dev[i];
1720 if (dev->towrite) {
1721 set_bit(R5_LOCKED, &dev->flags);
1722 if (!expand)
1723 clear_bit(R5_UPTODATE, &dev->flags);
1724 locked++;
1727 } else {
1728 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1729 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1731 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1732 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1733 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1735 sh->ops.count += 3;
1737 for (i = disks; i--; ) {
1738 struct r5dev *dev = &sh->dev[i];
1739 if (i == pd_idx)
1740 continue;
1742 /* For a read-modify write there may be blocks that are
1743 * locked for reading while others are ready to be
1744 * written so we distinguish these blocks by the
1745 * R5_Wantprexor bit
1747 if (dev->towrite &&
1748 (test_bit(R5_UPTODATE, &dev->flags) ||
1749 test_bit(R5_Wantcompute, &dev->flags))) {
1750 set_bit(R5_Wantprexor, &dev->flags);
1751 set_bit(R5_LOCKED, &dev->flags);
1752 clear_bit(R5_UPTODATE, &dev->flags);
1753 locked++;
1758 /* keep the parity disk locked while asynchronous operations
1759 * are in flight
1761 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1762 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1763 locked++;
1765 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1766 __FUNCTION__, (unsigned long long)sh->sector,
1767 locked, sh->ops.pending);
1769 return locked;
1773 * Each stripe/dev can have one or more bion attached.
1774 * toread/towrite point to the first in a chain.
1775 * The bi_next chain must be in order.
1777 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1779 struct bio **bip;
1780 raid5_conf_t *conf = sh->raid_conf;
1781 int firstwrite=0;
1783 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1784 (unsigned long long)bi->bi_sector,
1785 (unsigned long long)sh->sector);
1788 spin_lock(&sh->lock);
1789 spin_lock_irq(&conf->device_lock);
1790 if (forwrite) {
1791 bip = &sh->dev[dd_idx].towrite;
1792 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1793 firstwrite = 1;
1794 } else
1795 bip = &sh->dev[dd_idx].toread;
1796 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1797 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1798 goto overlap;
1799 bip = & (*bip)->bi_next;
1801 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1802 goto overlap;
1804 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1805 if (*bip)
1806 bi->bi_next = *bip;
1807 *bip = bi;
1808 bi->bi_phys_segments ++;
1809 spin_unlock_irq(&conf->device_lock);
1810 spin_unlock(&sh->lock);
1812 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1813 (unsigned long long)bi->bi_sector,
1814 (unsigned long long)sh->sector, dd_idx);
1816 if (conf->mddev->bitmap && firstwrite) {
1817 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1818 STRIPE_SECTORS, 0);
1819 sh->bm_seq = conf->seq_flush+1;
1820 set_bit(STRIPE_BIT_DELAY, &sh->state);
1823 if (forwrite) {
1824 /* check if page is covered */
1825 sector_t sector = sh->dev[dd_idx].sector;
1826 for (bi=sh->dev[dd_idx].towrite;
1827 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1828 bi && bi->bi_sector <= sector;
1829 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1830 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1831 sector = bi->bi_sector + (bi->bi_size>>9);
1833 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1834 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1836 return 1;
1838 overlap:
1839 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1840 spin_unlock_irq(&conf->device_lock);
1841 spin_unlock(&sh->lock);
1842 return 0;
1845 static void end_reshape(raid5_conf_t *conf);
1847 static int page_is_zero(struct page *p)
1849 char *a = page_address(p);
1850 return ((*(u32*)a) == 0 &&
1851 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1854 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1856 int sectors_per_chunk = conf->chunk_size >> 9;
1857 int pd_idx, dd_idx;
1858 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1860 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1861 *sectors_per_chunk + chunk_offset,
1862 disks, disks - conf->max_degraded,
1863 &dd_idx, &pd_idx, conf);
1864 return pd_idx;
1867 static void
1868 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1869 struct stripe_head_state *s, int disks,
1870 struct bio **return_bi)
1872 int i;
1873 for (i = disks; i--; ) {
1874 struct bio *bi;
1875 int bitmap_end = 0;
1877 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1878 mdk_rdev_t *rdev;
1879 rcu_read_lock();
1880 rdev = rcu_dereference(conf->disks[i].rdev);
1881 if (rdev && test_bit(In_sync, &rdev->flags))
1882 /* multiple read failures in one stripe */
1883 md_error(conf->mddev, rdev);
1884 rcu_read_unlock();
1886 spin_lock_irq(&conf->device_lock);
1887 /* fail all writes first */
1888 bi = sh->dev[i].towrite;
1889 sh->dev[i].towrite = NULL;
1890 if (bi) {
1891 s->to_write--;
1892 bitmap_end = 1;
1895 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1896 wake_up(&conf->wait_for_overlap);
1898 while (bi && bi->bi_sector <
1899 sh->dev[i].sector + STRIPE_SECTORS) {
1900 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1901 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1902 if (--bi->bi_phys_segments == 0) {
1903 md_write_end(conf->mddev);
1904 bi->bi_next = *return_bi;
1905 *return_bi = bi;
1907 bi = nextbi;
1909 /* and fail all 'written' */
1910 bi = sh->dev[i].written;
1911 sh->dev[i].written = NULL;
1912 if (bi) bitmap_end = 1;
1913 while (bi && bi->bi_sector <
1914 sh->dev[i].sector + STRIPE_SECTORS) {
1915 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1916 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1917 if (--bi->bi_phys_segments == 0) {
1918 md_write_end(conf->mddev);
1919 bi->bi_next = *return_bi;
1920 *return_bi = bi;
1922 bi = bi2;
1925 /* fail any reads if this device is non-operational and
1926 * the data has not reached the cache yet.
1928 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1929 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1930 test_bit(R5_ReadError, &sh->dev[i].flags))) {
1931 bi = sh->dev[i].toread;
1932 sh->dev[i].toread = NULL;
1933 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1934 wake_up(&conf->wait_for_overlap);
1935 if (bi) s->to_read--;
1936 while (bi && bi->bi_sector <
1937 sh->dev[i].sector + STRIPE_SECTORS) {
1938 struct bio *nextbi =
1939 r5_next_bio(bi, sh->dev[i].sector);
1940 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1941 if (--bi->bi_phys_segments == 0) {
1942 bi->bi_next = *return_bi;
1943 *return_bi = bi;
1945 bi = nextbi;
1948 spin_unlock_irq(&conf->device_lock);
1949 if (bitmap_end)
1950 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1951 STRIPE_SECTORS, 0, 0);
1956 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1957 * to process
1959 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1960 struct stripe_head_state *s, int disk_idx, int disks)
1962 struct r5dev *dev = &sh->dev[disk_idx];
1963 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1965 /* don't schedule compute operations or reads on the parity block while
1966 * a check is in flight
1968 if ((disk_idx == sh->pd_idx) &&
1969 test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1970 return ~0;
1972 /* is the data in this block needed, and can we get it? */
1973 if (!test_bit(R5_LOCKED, &dev->flags) &&
1974 !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1975 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1976 s->syncing || s->expanding || (s->failed &&
1977 (failed_dev->toread || (failed_dev->towrite &&
1978 !test_bit(R5_OVERWRITE, &failed_dev->flags)
1979 ))))) {
1980 /* 1/ We would like to get this block, possibly by computing it,
1981 * but we might not be able to.
1983 * 2/ Since parity check operations potentially make the parity
1984 * block !uptodate it will need to be refreshed before any
1985 * compute operations on data disks are scheduled.
1987 * 3/ We hold off parity block re-reads until check operations
1988 * have quiesced.
1990 if ((s->uptodate == disks - 1) &&
1991 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
1992 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1993 set_bit(R5_Wantcompute, &dev->flags);
1994 sh->ops.target = disk_idx;
1995 s->req_compute = 1;
1996 sh->ops.count++;
1997 /* Careful: from this point on 'uptodate' is in the eye
1998 * of raid5_run_ops which services 'compute' operations
1999 * before writes. R5_Wantcompute flags a block that will
2000 * be R5_UPTODATE by the time it is needed for a
2001 * subsequent operation.
2003 s->uptodate++;
2004 return 0; /* uptodate + compute == disks */
2005 } else if ((s->uptodate < disks - 1) &&
2006 test_bit(R5_Insync, &dev->flags)) {
2007 /* Note: we hold off compute operations while checks are
2008 * in flight, but we still prefer 'compute' over 'read'
2009 * hence we only read if (uptodate < * disks-1)
2011 set_bit(R5_LOCKED, &dev->flags);
2012 set_bit(R5_Wantread, &dev->flags);
2013 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2014 sh->ops.count++;
2015 s->locked++;
2016 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2017 s->syncing);
2021 return ~0;
2024 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2025 struct stripe_head_state *s, int disks)
2027 int i;
2029 /* Clear completed compute operations. Parity recovery
2030 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2031 * later on in this routine
2033 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2034 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2035 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2036 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2037 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2040 /* look for blocks to read/compute, skip this if a compute
2041 * is already in flight, or if the stripe contents are in the
2042 * midst of changing due to a write
2044 if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2045 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2046 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2047 for (i = disks; i--; )
2048 if (__handle_issuing_new_read_requests5(
2049 sh, s, i, disks) == 0)
2050 break;
2052 set_bit(STRIPE_HANDLE, &sh->state);
2055 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2056 struct stripe_head_state *s, struct r6_state *r6s,
2057 int disks)
2059 int i;
2060 for (i = disks; i--; ) {
2061 struct r5dev *dev = &sh->dev[i];
2062 if (!test_bit(R5_LOCKED, &dev->flags) &&
2063 !test_bit(R5_UPTODATE, &dev->flags) &&
2064 (dev->toread || (dev->towrite &&
2065 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2066 s->syncing || s->expanding ||
2067 (s->failed >= 1 &&
2068 (sh->dev[r6s->failed_num[0]].toread ||
2069 s->to_write)) ||
2070 (s->failed >= 2 &&
2071 (sh->dev[r6s->failed_num[1]].toread ||
2072 s->to_write)))) {
2073 /* we would like to get this block, possibly
2074 * by computing it, but we might not be able to
2076 if (s->uptodate == disks-1) {
2077 pr_debug("Computing stripe %llu block %d\n",
2078 (unsigned long long)sh->sector, i);
2079 compute_block_1(sh, i, 0);
2080 s->uptodate++;
2081 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2082 /* Computing 2-failure is *very* expensive; only
2083 * do it if failed >= 2
2085 int other;
2086 for (other = disks; other--; ) {
2087 if (other == i)
2088 continue;
2089 if (!test_bit(R5_UPTODATE,
2090 &sh->dev[other].flags))
2091 break;
2093 BUG_ON(other < 0);
2094 pr_debug("Computing stripe %llu blocks %d,%d\n",
2095 (unsigned long long)sh->sector,
2096 i, other);
2097 compute_block_2(sh, i, other);
2098 s->uptodate += 2;
2099 } else if (test_bit(R5_Insync, &dev->flags)) {
2100 set_bit(R5_LOCKED, &dev->flags);
2101 set_bit(R5_Wantread, &dev->flags);
2102 s->locked++;
2103 pr_debug("Reading block %d (sync=%d)\n",
2104 i, s->syncing);
2108 set_bit(STRIPE_HANDLE, &sh->state);
2112 /* handle_completed_write_requests
2113 * any written block on an uptodate or failed drive can be returned.
2114 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2115 * never LOCKED, so we don't need to test 'failed' directly.
2117 static void handle_completed_write_requests(raid5_conf_t *conf,
2118 struct stripe_head *sh, int disks, struct bio **return_bi)
2120 int i;
2121 struct r5dev *dev;
2123 for (i = disks; i--; )
2124 if (sh->dev[i].written) {
2125 dev = &sh->dev[i];
2126 if (!test_bit(R5_LOCKED, &dev->flags) &&
2127 test_bit(R5_UPTODATE, &dev->flags)) {
2128 /* We can return any write requests */
2129 struct bio *wbi, *wbi2;
2130 int bitmap_end = 0;
2131 pr_debug("Return write for disc %d\n", i);
2132 spin_lock_irq(&conf->device_lock);
2133 wbi = dev->written;
2134 dev->written = NULL;
2135 while (wbi && wbi->bi_sector <
2136 dev->sector + STRIPE_SECTORS) {
2137 wbi2 = r5_next_bio(wbi, dev->sector);
2138 if (--wbi->bi_phys_segments == 0) {
2139 md_write_end(conf->mddev);
2140 wbi->bi_next = *return_bi;
2141 *return_bi = wbi;
2143 wbi = wbi2;
2145 if (dev->towrite == NULL)
2146 bitmap_end = 1;
2147 spin_unlock_irq(&conf->device_lock);
2148 if (bitmap_end)
2149 bitmap_endwrite(conf->mddev->bitmap,
2150 sh->sector,
2151 STRIPE_SECTORS,
2152 !test_bit(STRIPE_DEGRADED, &sh->state),
2158 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2159 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2161 int rmw = 0, rcw = 0, i;
2162 for (i = disks; i--; ) {
2163 /* would I have to read this buffer for read_modify_write */
2164 struct r5dev *dev = &sh->dev[i];
2165 if ((dev->towrite || i == sh->pd_idx) &&
2166 !test_bit(R5_LOCKED, &dev->flags) &&
2167 !(test_bit(R5_UPTODATE, &dev->flags) ||
2168 test_bit(R5_Wantcompute, &dev->flags))) {
2169 if (test_bit(R5_Insync, &dev->flags))
2170 rmw++;
2171 else
2172 rmw += 2*disks; /* cannot read it */
2174 /* Would I have to read this buffer for reconstruct_write */
2175 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2176 !test_bit(R5_LOCKED, &dev->flags) &&
2177 !(test_bit(R5_UPTODATE, &dev->flags) ||
2178 test_bit(R5_Wantcompute, &dev->flags))) {
2179 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2180 else
2181 rcw += 2*disks;
2184 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2185 (unsigned long long)sh->sector, rmw, rcw);
2186 set_bit(STRIPE_HANDLE, &sh->state);
2187 if (rmw < rcw && rmw > 0)
2188 /* prefer read-modify-write, but need to get some data */
2189 for (i = disks; i--; ) {
2190 struct r5dev *dev = &sh->dev[i];
2191 if ((dev->towrite || i == sh->pd_idx) &&
2192 !test_bit(R5_LOCKED, &dev->flags) &&
2193 !(test_bit(R5_UPTODATE, &dev->flags) ||
2194 test_bit(R5_Wantcompute, &dev->flags)) &&
2195 test_bit(R5_Insync, &dev->flags)) {
2196 if (
2197 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2198 pr_debug("Read_old block "
2199 "%d for r-m-w\n", i);
2200 set_bit(R5_LOCKED, &dev->flags);
2201 set_bit(R5_Wantread, &dev->flags);
2202 if (!test_and_set_bit(
2203 STRIPE_OP_IO, &sh->ops.pending))
2204 sh->ops.count++;
2205 s->locked++;
2206 } else {
2207 set_bit(STRIPE_DELAYED, &sh->state);
2208 set_bit(STRIPE_HANDLE, &sh->state);
2212 if (rcw <= rmw && rcw > 0)
2213 /* want reconstruct write, but need to get some data */
2214 for (i = disks; i--; ) {
2215 struct r5dev *dev = &sh->dev[i];
2216 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2217 i != sh->pd_idx &&
2218 !test_bit(R5_LOCKED, &dev->flags) &&
2219 !(test_bit(R5_UPTODATE, &dev->flags) ||
2220 test_bit(R5_Wantcompute, &dev->flags)) &&
2221 test_bit(R5_Insync, &dev->flags)) {
2222 if (
2223 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2224 pr_debug("Read_old block "
2225 "%d for Reconstruct\n", i);
2226 set_bit(R5_LOCKED, &dev->flags);
2227 set_bit(R5_Wantread, &dev->flags);
2228 if (!test_and_set_bit(
2229 STRIPE_OP_IO, &sh->ops.pending))
2230 sh->ops.count++;
2231 s->locked++;
2232 } else {
2233 set_bit(STRIPE_DELAYED, &sh->state);
2234 set_bit(STRIPE_HANDLE, &sh->state);
2238 /* now if nothing is locked, and if we have enough data,
2239 * we can start a write request
2241 /* since handle_stripe can be called at any time we need to handle the
2242 * case where a compute block operation has been submitted and then a
2243 * subsequent call wants to start a write request. raid5_run_ops only
2244 * handles the case where compute block and postxor are requested
2245 * simultaneously. If this is not the case then new writes need to be
2246 * held off until the compute completes.
2248 if ((s->req_compute ||
2249 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2250 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2251 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2252 s->locked += handle_write_operations5(sh, rcw == 0, 0);
2255 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2256 struct stripe_head *sh, struct stripe_head_state *s,
2257 struct r6_state *r6s, int disks)
2259 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2260 int qd_idx = r6s->qd_idx;
2261 for (i = disks; i--; ) {
2262 struct r5dev *dev = &sh->dev[i];
2263 /* Would I have to read this buffer for reconstruct_write */
2264 if (!test_bit(R5_OVERWRITE, &dev->flags)
2265 && i != pd_idx && i != qd_idx
2266 && (!test_bit(R5_LOCKED, &dev->flags)
2267 ) &&
2268 !test_bit(R5_UPTODATE, &dev->flags)) {
2269 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2270 else {
2271 pr_debug("raid6: must_compute: "
2272 "disk %d flags=%#lx\n", i, dev->flags);
2273 must_compute++;
2277 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2278 (unsigned long long)sh->sector, rcw, must_compute);
2279 set_bit(STRIPE_HANDLE, &sh->state);
2281 if (rcw > 0)
2282 /* want reconstruct write, but need to get some data */
2283 for (i = disks; i--; ) {
2284 struct r5dev *dev = &sh->dev[i];
2285 if (!test_bit(R5_OVERWRITE, &dev->flags)
2286 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2287 && !test_bit(R5_LOCKED, &dev->flags) &&
2288 !test_bit(R5_UPTODATE, &dev->flags) &&
2289 test_bit(R5_Insync, &dev->flags)) {
2290 if (
2291 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2292 pr_debug("Read_old stripe %llu "
2293 "block %d for Reconstruct\n",
2294 (unsigned long long)sh->sector, i);
2295 set_bit(R5_LOCKED, &dev->flags);
2296 set_bit(R5_Wantread, &dev->flags);
2297 s->locked++;
2298 } else {
2299 pr_debug("Request delayed stripe %llu "
2300 "block %d for Reconstruct\n",
2301 (unsigned long long)sh->sector, i);
2302 set_bit(STRIPE_DELAYED, &sh->state);
2303 set_bit(STRIPE_HANDLE, &sh->state);
2307 /* now if nothing is locked, and if we have enough data, we can start a
2308 * write request
2310 if (s->locked == 0 && rcw == 0 &&
2311 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2312 if (must_compute > 0) {
2313 /* We have failed blocks and need to compute them */
2314 switch (s->failed) {
2315 case 0:
2316 BUG();
2317 case 1:
2318 compute_block_1(sh, r6s->failed_num[0], 0);
2319 break;
2320 case 2:
2321 compute_block_2(sh, r6s->failed_num[0],
2322 r6s->failed_num[1]);
2323 break;
2324 default: /* This request should have been failed? */
2325 BUG();
2329 pr_debug("Computing parity for stripe %llu\n",
2330 (unsigned long long)sh->sector);
2331 compute_parity6(sh, RECONSTRUCT_WRITE);
2332 /* now every locked buffer is ready to be written */
2333 for (i = disks; i--; )
2334 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2335 pr_debug("Writing stripe %llu block %d\n",
2336 (unsigned long long)sh->sector, i);
2337 s->locked++;
2338 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2340 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2341 set_bit(STRIPE_INSYNC, &sh->state);
2343 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2344 atomic_dec(&conf->preread_active_stripes);
2345 if (atomic_read(&conf->preread_active_stripes) <
2346 IO_THRESHOLD)
2347 md_wakeup_thread(conf->mddev->thread);
2352 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2353 struct stripe_head_state *s, int disks)
2355 set_bit(STRIPE_HANDLE, &sh->state);
2356 /* Take one of the following actions:
2357 * 1/ start a check parity operation if (uptodate == disks)
2358 * 2/ finish a check parity operation and act on the result
2359 * 3/ skip to the writeback section if we previously
2360 * initiated a recovery operation
2362 if (s->failed == 0 &&
2363 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2364 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2365 BUG_ON(s->uptodate != disks);
2366 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2367 sh->ops.count++;
2368 s->uptodate--;
2369 } else if (
2370 test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2371 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2372 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2374 if (sh->ops.zero_sum_result == 0)
2375 /* parity is correct (on disc,
2376 * not in buffer any more)
2378 set_bit(STRIPE_INSYNC, &sh->state);
2379 else {
2380 conf->mddev->resync_mismatches +=
2381 STRIPE_SECTORS;
2382 if (test_bit(
2383 MD_RECOVERY_CHECK, &conf->mddev->recovery))
2384 /* don't try to repair!! */
2385 set_bit(STRIPE_INSYNC, &sh->state);
2386 else {
2387 set_bit(STRIPE_OP_COMPUTE_BLK,
2388 &sh->ops.pending);
2389 set_bit(STRIPE_OP_MOD_REPAIR_PD,
2390 &sh->ops.pending);
2391 set_bit(R5_Wantcompute,
2392 &sh->dev[sh->pd_idx].flags);
2393 sh->ops.target = sh->pd_idx;
2394 sh->ops.count++;
2395 s->uptodate++;
2401 /* check if we can clear a parity disk reconstruct */
2402 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2403 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2405 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2406 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2407 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2408 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2411 /* Wait for check parity and compute block operations to complete
2412 * before write-back
2414 if (!test_bit(STRIPE_INSYNC, &sh->state) &&
2415 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2416 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2417 struct r5dev *dev;
2418 /* either failed parity check, or recovery is happening */
2419 if (s->failed == 0)
2420 s->failed_num = sh->pd_idx;
2421 dev = &sh->dev[s->failed_num];
2422 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2423 BUG_ON(s->uptodate != disks);
2425 set_bit(R5_LOCKED, &dev->flags);
2426 set_bit(R5_Wantwrite, &dev->flags);
2427 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2428 sh->ops.count++;
2430 clear_bit(STRIPE_DEGRADED, &sh->state);
2431 s->locked++;
2432 set_bit(STRIPE_INSYNC, &sh->state);
2437 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2438 struct stripe_head_state *s,
2439 struct r6_state *r6s, struct page *tmp_page,
2440 int disks)
2442 int update_p = 0, update_q = 0;
2443 struct r5dev *dev;
2444 int pd_idx = sh->pd_idx;
2445 int qd_idx = r6s->qd_idx;
2447 set_bit(STRIPE_HANDLE, &sh->state);
2449 BUG_ON(s->failed > 2);
2450 BUG_ON(s->uptodate < disks);
2451 /* Want to check and possibly repair P and Q.
2452 * However there could be one 'failed' device, in which
2453 * case we can only check one of them, possibly using the
2454 * other to generate missing data
2457 /* If !tmp_page, we cannot do the calculations,
2458 * but as we have set STRIPE_HANDLE, we will soon be called
2459 * by stripe_handle with a tmp_page - just wait until then.
2461 if (tmp_page) {
2462 if (s->failed == r6s->q_failed) {
2463 /* The only possible failed device holds 'Q', so it
2464 * makes sense to check P (If anything else were failed,
2465 * we would have used P to recreate it).
2467 compute_block_1(sh, pd_idx, 1);
2468 if (!page_is_zero(sh->dev[pd_idx].page)) {
2469 compute_block_1(sh, pd_idx, 0);
2470 update_p = 1;
2473 if (!r6s->q_failed && s->failed < 2) {
2474 /* q is not failed, and we didn't use it to generate
2475 * anything, so it makes sense to check it
2477 memcpy(page_address(tmp_page),
2478 page_address(sh->dev[qd_idx].page),
2479 STRIPE_SIZE);
2480 compute_parity6(sh, UPDATE_PARITY);
2481 if (memcmp(page_address(tmp_page),
2482 page_address(sh->dev[qd_idx].page),
2483 STRIPE_SIZE) != 0) {
2484 clear_bit(STRIPE_INSYNC, &sh->state);
2485 update_q = 1;
2488 if (update_p || update_q) {
2489 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2490 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2491 /* don't try to repair!! */
2492 update_p = update_q = 0;
2495 /* now write out any block on a failed drive,
2496 * or P or Q if they need it
2499 if (s->failed == 2) {
2500 dev = &sh->dev[r6s->failed_num[1]];
2501 s->locked++;
2502 set_bit(R5_LOCKED, &dev->flags);
2503 set_bit(R5_Wantwrite, &dev->flags);
2505 if (s->failed >= 1) {
2506 dev = &sh->dev[r6s->failed_num[0]];
2507 s->locked++;
2508 set_bit(R5_LOCKED, &dev->flags);
2509 set_bit(R5_Wantwrite, &dev->flags);
2512 if (update_p) {
2513 dev = &sh->dev[pd_idx];
2514 s->locked++;
2515 set_bit(R5_LOCKED, &dev->flags);
2516 set_bit(R5_Wantwrite, &dev->flags);
2518 if (update_q) {
2519 dev = &sh->dev[qd_idx];
2520 s->locked++;
2521 set_bit(R5_LOCKED, &dev->flags);
2522 set_bit(R5_Wantwrite, &dev->flags);
2524 clear_bit(STRIPE_DEGRADED, &sh->state);
2526 set_bit(STRIPE_INSYNC, &sh->state);
2530 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2531 struct r6_state *r6s)
2533 int i;
2535 /* We have read all the blocks in this stripe and now we need to
2536 * copy some of them into a target stripe for expand.
2538 struct dma_async_tx_descriptor *tx = NULL;
2539 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2540 for (i = 0; i < sh->disks; i++)
2541 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2542 int dd_idx, pd_idx, j;
2543 struct stripe_head *sh2;
2545 sector_t bn = compute_blocknr(sh, i);
2546 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2547 conf->raid_disks -
2548 conf->max_degraded, &dd_idx,
2549 &pd_idx, conf);
2550 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2551 pd_idx, 1);
2552 if (sh2 == NULL)
2553 /* so far only the early blocks of this stripe
2554 * have been requested. When later blocks
2555 * get requested, we will try again
2557 continue;
2558 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2559 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2560 /* must have already done this block */
2561 release_stripe(sh2);
2562 continue;
2565 /* place all the copies on one channel */
2566 tx = async_memcpy(sh2->dev[dd_idx].page,
2567 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2568 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2570 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2571 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2572 for (j = 0; j < conf->raid_disks; j++)
2573 if (j != sh2->pd_idx &&
2574 (!r6s || j != raid6_next_disk(sh2->pd_idx,
2575 sh2->disks)) &&
2576 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2577 break;
2578 if (j == conf->raid_disks) {
2579 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2580 set_bit(STRIPE_HANDLE, &sh2->state);
2582 release_stripe(sh2);
2585 /* done submitting copies, wait for them to complete */
2586 if (tx) {
2587 async_tx_ack(tx);
2588 dma_wait_for_async_tx(tx);
2593 * handle_stripe - do things to a stripe.
2595 * We lock the stripe and then examine the state of various bits
2596 * to see what needs to be done.
2597 * Possible results:
2598 * return some read request which now have data
2599 * return some write requests which are safely on disc
2600 * schedule a read on some buffers
2601 * schedule a write of some buffers
2602 * return confirmation of parity correctness
2604 * buffers are taken off read_list or write_list, and bh_cache buffers
2605 * get BH_Lock set before the stripe lock is released.
2609 static void handle_stripe5(struct stripe_head *sh)
2611 raid5_conf_t *conf = sh->raid_conf;
2612 int disks = sh->disks, i;
2613 struct bio *return_bi = NULL;
2614 struct stripe_head_state s;
2615 struct r5dev *dev;
2616 unsigned long pending = 0;
2618 memset(&s, 0, sizeof(s));
2619 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2620 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2621 atomic_read(&sh->count), sh->pd_idx,
2622 sh->ops.pending, sh->ops.ack, sh->ops.complete);
2624 spin_lock(&sh->lock);
2625 clear_bit(STRIPE_HANDLE, &sh->state);
2626 clear_bit(STRIPE_DELAYED, &sh->state);
2628 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2629 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2630 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2631 /* Now to look around and see what can be done */
2633 rcu_read_lock();
2634 for (i=disks; i--; ) {
2635 mdk_rdev_t *rdev;
2636 struct r5dev *dev = &sh->dev[i];
2637 clear_bit(R5_Insync, &dev->flags);
2639 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2640 "written %p\n", i, dev->flags, dev->toread, dev->read,
2641 dev->towrite, dev->written);
2643 /* maybe we can request a biofill operation
2645 * new wantfill requests are only permitted while
2646 * STRIPE_OP_BIOFILL is clear
2648 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2649 !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2650 set_bit(R5_Wantfill, &dev->flags);
2652 /* now count some things */
2653 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2654 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2655 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2657 if (test_bit(R5_Wantfill, &dev->flags))
2658 s.to_fill++;
2659 else if (dev->toread)
2660 s.to_read++;
2661 if (dev->towrite) {
2662 s.to_write++;
2663 if (!test_bit(R5_OVERWRITE, &dev->flags))
2664 s.non_overwrite++;
2666 if (dev->written)
2667 s.written++;
2668 rdev = rcu_dereference(conf->disks[i].rdev);
2669 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2670 /* The ReadError flag will just be confusing now */
2671 clear_bit(R5_ReadError, &dev->flags);
2672 clear_bit(R5_ReWrite, &dev->flags);
2674 if (!rdev || !test_bit(In_sync, &rdev->flags)
2675 || test_bit(R5_ReadError, &dev->flags)) {
2676 s.failed++;
2677 s.failed_num = i;
2678 } else
2679 set_bit(R5_Insync, &dev->flags);
2681 rcu_read_unlock();
2683 if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2684 sh->ops.count++;
2686 pr_debug("locked=%d uptodate=%d to_read=%d"
2687 " to_write=%d failed=%d failed_num=%d\n",
2688 s.locked, s.uptodate, s.to_read, s.to_write,
2689 s.failed, s.failed_num);
2690 /* check if the array has lost two devices and, if so, some requests might
2691 * need to be failed
2693 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2694 handle_requests_to_failed_array(conf, sh, &s, disks,
2695 &return_bi);
2696 if (s.failed > 1 && s.syncing) {
2697 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2698 clear_bit(STRIPE_SYNCING, &sh->state);
2699 s.syncing = 0;
2702 /* might be able to return some write requests if the parity block
2703 * is safe, or on a failed drive
2705 dev = &sh->dev[sh->pd_idx];
2706 if ( s.written &&
2707 ((test_bit(R5_Insync, &dev->flags) &&
2708 !test_bit(R5_LOCKED, &dev->flags) &&
2709 test_bit(R5_UPTODATE, &dev->flags)) ||
2710 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2711 handle_completed_write_requests(conf, sh, disks, &return_bi);
2713 /* Now we might consider reading some blocks, either to check/generate
2714 * parity, or to satisfy requests
2715 * or to load a block that is being partially written.
2717 if (s.to_read || s.non_overwrite ||
2718 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2719 test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2720 handle_issuing_new_read_requests5(sh, &s, disks);
2722 /* Now we check to see if any write operations have recently
2723 * completed
2726 /* leave prexor set until postxor is done, allows us to distinguish
2727 * a rmw from a rcw during biodrain
2729 if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2730 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2732 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2733 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2734 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2736 for (i = disks; i--; )
2737 clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2740 /* if only POSTXOR is set then this is an 'expand' postxor */
2741 if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2742 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2744 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2745 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2746 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2748 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2749 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2750 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2752 /* All the 'written' buffers and the parity block are ready to
2753 * be written back to disk
2755 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2756 for (i = disks; i--; ) {
2757 dev = &sh->dev[i];
2758 if (test_bit(R5_LOCKED, &dev->flags) &&
2759 (i == sh->pd_idx || dev->written)) {
2760 pr_debug("Writing block %d\n", i);
2761 set_bit(R5_Wantwrite, &dev->flags);
2762 if (!test_and_set_bit(
2763 STRIPE_OP_IO, &sh->ops.pending))
2764 sh->ops.count++;
2765 if (!test_bit(R5_Insync, &dev->flags) ||
2766 (i == sh->pd_idx && s.failed == 0))
2767 set_bit(STRIPE_INSYNC, &sh->state);
2770 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2771 atomic_dec(&conf->preread_active_stripes);
2772 if (atomic_read(&conf->preread_active_stripes) <
2773 IO_THRESHOLD)
2774 md_wakeup_thread(conf->mddev->thread);
2778 /* Now to consider new write requests and what else, if anything
2779 * should be read. We do not handle new writes when:
2780 * 1/ A 'write' operation (copy+xor) is already in flight.
2781 * 2/ A 'check' operation is in flight, as it may clobber the parity
2782 * block.
2784 if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2785 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2786 handle_issuing_new_write_requests5(conf, sh, &s, disks);
2788 /* maybe we need to check and possibly fix the parity for this stripe
2789 * Any reads will already have been scheduled, so we just see if enough
2790 * data is available. The parity check is held off while parity
2791 * dependent operations are in flight.
2793 if ((s.syncing && s.locked == 0 &&
2794 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2795 !test_bit(STRIPE_INSYNC, &sh->state)) ||
2796 test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2797 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2798 handle_parity_checks5(conf, sh, &s, disks);
2800 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2801 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2802 clear_bit(STRIPE_SYNCING, &sh->state);
2805 /* If the failed drive is just a ReadError, then we might need to progress
2806 * the repair/check process
2808 if (s.failed == 1 && !conf->mddev->ro &&
2809 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2810 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2811 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2813 dev = &sh->dev[s.failed_num];
2814 if (!test_bit(R5_ReWrite, &dev->flags)) {
2815 set_bit(R5_Wantwrite, &dev->flags);
2816 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2817 sh->ops.count++;
2818 set_bit(R5_ReWrite, &dev->flags);
2819 set_bit(R5_LOCKED, &dev->flags);
2820 s.locked++;
2821 } else {
2822 /* let's read it back */
2823 set_bit(R5_Wantread, &dev->flags);
2824 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2825 sh->ops.count++;
2826 set_bit(R5_LOCKED, &dev->flags);
2827 s.locked++;
2831 /* Finish postxor operations initiated by the expansion
2832 * process
2834 if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2835 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2837 clear_bit(STRIPE_EXPANDING, &sh->state);
2839 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2840 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2841 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2843 for (i = conf->raid_disks; i--; ) {
2844 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2845 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2846 sh->ops.count++;
2850 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2851 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2852 /* Need to write out all blocks after computing parity */
2853 sh->disks = conf->raid_disks;
2854 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2855 conf->raid_disks);
2856 s.locked += handle_write_operations5(sh, 1, 1);
2857 } else if (s.expanded &&
2858 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2859 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2860 atomic_dec(&conf->reshape_stripes);
2861 wake_up(&conf->wait_for_overlap);
2862 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2865 if (s.expanding && s.locked == 0)
2866 handle_stripe_expansion(conf, sh, NULL);
2868 if (sh->ops.count)
2869 pending = get_stripe_work(sh);
2871 spin_unlock(&sh->lock);
2873 if (pending)
2874 raid5_run_ops(sh, pending);
2876 return_io(return_bi);
2880 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2882 raid6_conf_t *conf = sh->raid_conf;
2883 int disks = sh->disks;
2884 struct bio *return_bi = NULL;
2885 int i, pd_idx = sh->pd_idx;
2886 struct stripe_head_state s;
2887 struct r6_state r6s;
2888 struct r5dev *dev, *pdev, *qdev;
2890 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2891 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2892 "pd_idx=%d, qd_idx=%d\n",
2893 (unsigned long long)sh->sector, sh->state,
2894 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2895 memset(&s, 0, sizeof(s));
2897 spin_lock(&sh->lock);
2898 clear_bit(STRIPE_HANDLE, &sh->state);
2899 clear_bit(STRIPE_DELAYED, &sh->state);
2901 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2902 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2903 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2904 /* Now to look around and see what can be done */
2906 rcu_read_lock();
2907 for (i=disks; i--; ) {
2908 mdk_rdev_t *rdev;
2909 dev = &sh->dev[i];
2910 clear_bit(R5_Insync, &dev->flags);
2912 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2913 i, dev->flags, dev->toread, dev->towrite, dev->written);
2914 /* maybe we can reply to a read */
2915 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2916 struct bio *rbi, *rbi2;
2917 pr_debug("Return read for disc %d\n", i);
2918 spin_lock_irq(&conf->device_lock);
2919 rbi = dev->toread;
2920 dev->toread = NULL;
2921 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2922 wake_up(&conf->wait_for_overlap);
2923 spin_unlock_irq(&conf->device_lock);
2924 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2925 copy_data(0, rbi, dev->page, dev->sector);
2926 rbi2 = r5_next_bio(rbi, dev->sector);
2927 spin_lock_irq(&conf->device_lock);
2928 if (--rbi->bi_phys_segments == 0) {
2929 rbi->bi_next = return_bi;
2930 return_bi = rbi;
2932 spin_unlock_irq(&conf->device_lock);
2933 rbi = rbi2;
2937 /* now count some things */
2938 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2939 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2942 if (dev->toread)
2943 s.to_read++;
2944 if (dev->towrite) {
2945 s.to_write++;
2946 if (!test_bit(R5_OVERWRITE, &dev->flags))
2947 s.non_overwrite++;
2949 if (dev->written)
2950 s.written++;
2951 rdev = rcu_dereference(conf->disks[i].rdev);
2952 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2953 /* The ReadError flag will just be confusing now */
2954 clear_bit(R5_ReadError, &dev->flags);
2955 clear_bit(R5_ReWrite, &dev->flags);
2957 if (!rdev || !test_bit(In_sync, &rdev->flags)
2958 || test_bit(R5_ReadError, &dev->flags)) {
2959 if (s.failed < 2)
2960 r6s.failed_num[s.failed] = i;
2961 s.failed++;
2962 } else
2963 set_bit(R5_Insync, &dev->flags);
2965 rcu_read_unlock();
2966 pr_debug("locked=%d uptodate=%d to_read=%d"
2967 " to_write=%d failed=%d failed_num=%d,%d\n",
2968 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2969 r6s.failed_num[0], r6s.failed_num[1]);
2970 /* check if the array has lost >2 devices and, if so, some requests
2971 * might need to be failed
2973 if (s.failed > 2 && s.to_read+s.to_write+s.written)
2974 handle_requests_to_failed_array(conf, sh, &s, disks,
2975 &return_bi);
2976 if (s.failed > 2 && s.syncing) {
2977 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2978 clear_bit(STRIPE_SYNCING, &sh->state);
2979 s.syncing = 0;
2983 * might be able to return some write requests if the parity blocks
2984 * are safe, or on a failed drive
2986 pdev = &sh->dev[pd_idx];
2987 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2988 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2989 qdev = &sh->dev[r6s.qd_idx];
2990 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2991 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2993 if ( s.written &&
2994 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
2995 && !test_bit(R5_LOCKED, &pdev->flags)
2996 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2997 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
2998 && !test_bit(R5_LOCKED, &qdev->flags)
2999 && test_bit(R5_UPTODATE, &qdev->flags)))))
3000 handle_completed_write_requests(conf, sh, disks, &return_bi);
3002 /* Now we might consider reading some blocks, either to check/generate
3003 * parity, or to satisfy requests
3004 * or to load a block that is being partially written.
3006 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3007 (s.syncing && (s.uptodate < disks)) || s.expanding)
3008 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3010 /* now to consider writing and what else, if anything should be read */
3011 if (s.to_write)
3012 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3014 /* maybe we need to check and possibly fix the parity for this stripe
3015 * Any reads will already have been scheduled, so we just see if enough
3016 * data is available
3018 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3019 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3021 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3022 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3023 clear_bit(STRIPE_SYNCING, &sh->state);
3026 /* If the failed drives are just a ReadError, then we might need
3027 * to progress the repair/check process
3029 if (s.failed <= 2 && !conf->mddev->ro)
3030 for (i = 0; i < s.failed; i++) {
3031 dev = &sh->dev[r6s.failed_num[i]];
3032 if (test_bit(R5_ReadError, &dev->flags)
3033 && !test_bit(R5_LOCKED, &dev->flags)
3034 && test_bit(R5_UPTODATE, &dev->flags)
3036 if (!test_bit(R5_ReWrite, &dev->flags)) {
3037 set_bit(R5_Wantwrite, &dev->flags);
3038 set_bit(R5_ReWrite, &dev->flags);
3039 set_bit(R5_LOCKED, &dev->flags);
3040 } else {
3041 /* let's read it back */
3042 set_bit(R5_Wantread, &dev->flags);
3043 set_bit(R5_LOCKED, &dev->flags);
3048 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3049 /* Need to write out all blocks after computing P&Q */
3050 sh->disks = conf->raid_disks;
3051 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3052 conf->raid_disks);
3053 compute_parity6(sh, RECONSTRUCT_WRITE);
3054 for (i = conf->raid_disks ; i-- ; ) {
3055 set_bit(R5_LOCKED, &sh->dev[i].flags);
3056 s.locked++;
3057 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3059 clear_bit(STRIPE_EXPANDING, &sh->state);
3060 } else if (s.expanded) {
3061 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3062 atomic_dec(&conf->reshape_stripes);
3063 wake_up(&conf->wait_for_overlap);
3064 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3067 if (s.expanding && s.locked == 0)
3068 handle_stripe_expansion(conf, sh, &r6s);
3070 spin_unlock(&sh->lock);
3072 return_io(return_bi);
3074 for (i=disks; i-- ;) {
3075 int rw;
3076 struct bio *bi;
3077 mdk_rdev_t *rdev;
3078 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3079 rw = WRITE;
3080 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3081 rw = READ;
3082 else
3083 continue;
3085 bi = &sh->dev[i].req;
3087 bi->bi_rw = rw;
3088 if (rw == WRITE)
3089 bi->bi_end_io = raid5_end_write_request;
3090 else
3091 bi->bi_end_io = raid5_end_read_request;
3093 rcu_read_lock();
3094 rdev = rcu_dereference(conf->disks[i].rdev);
3095 if (rdev && test_bit(Faulty, &rdev->flags))
3096 rdev = NULL;
3097 if (rdev)
3098 atomic_inc(&rdev->nr_pending);
3099 rcu_read_unlock();
3101 if (rdev) {
3102 if (s.syncing || s.expanding || s.expanded)
3103 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3105 bi->bi_bdev = rdev->bdev;
3106 pr_debug("for %llu schedule op %ld on disc %d\n",
3107 (unsigned long long)sh->sector, bi->bi_rw, i);
3108 atomic_inc(&sh->count);
3109 bi->bi_sector = sh->sector + rdev->data_offset;
3110 bi->bi_flags = 1 << BIO_UPTODATE;
3111 bi->bi_vcnt = 1;
3112 bi->bi_max_vecs = 1;
3113 bi->bi_idx = 0;
3114 bi->bi_io_vec = &sh->dev[i].vec;
3115 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3116 bi->bi_io_vec[0].bv_offset = 0;
3117 bi->bi_size = STRIPE_SIZE;
3118 bi->bi_next = NULL;
3119 if (rw == WRITE &&
3120 test_bit(R5_ReWrite, &sh->dev[i].flags))
3121 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3122 generic_make_request(bi);
3123 } else {
3124 if (rw == WRITE)
3125 set_bit(STRIPE_DEGRADED, &sh->state);
3126 pr_debug("skip op %ld on disc %d for sector %llu\n",
3127 bi->bi_rw, i, (unsigned long long)sh->sector);
3128 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3129 set_bit(STRIPE_HANDLE, &sh->state);
3134 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3136 if (sh->raid_conf->level == 6)
3137 handle_stripe6(sh, tmp_page);
3138 else
3139 handle_stripe5(sh);
3144 static void raid5_activate_delayed(raid5_conf_t *conf)
3146 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3147 while (!list_empty(&conf->delayed_list)) {
3148 struct list_head *l = conf->delayed_list.next;
3149 struct stripe_head *sh;
3150 sh = list_entry(l, struct stripe_head, lru);
3151 list_del_init(l);
3152 clear_bit(STRIPE_DELAYED, &sh->state);
3153 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3154 atomic_inc(&conf->preread_active_stripes);
3155 list_add_tail(&sh->lru, &conf->handle_list);
3160 static void activate_bit_delay(raid5_conf_t *conf)
3162 /* device_lock is held */
3163 struct list_head head;
3164 list_add(&head, &conf->bitmap_list);
3165 list_del_init(&conf->bitmap_list);
3166 while (!list_empty(&head)) {
3167 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3168 list_del_init(&sh->lru);
3169 atomic_inc(&sh->count);
3170 __release_stripe(conf, sh);
3174 static void unplug_slaves(mddev_t *mddev)
3176 raid5_conf_t *conf = mddev_to_conf(mddev);
3177 int i;
3179 rcu_read_lock();
3180 for (i=0; i<mddev->raid_disks; i++) {
3181 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3182 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3183 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3185 atomic_inc(&rdev->nr_pending);
3186 rcu_read_unlock();
3188 if (r_queue->unplug_fn)
3189 r_queue->unplug_fn(r_queue);
3191 rdev_dec_pending(rdev, mddev);
3192 rcu_read_lock();
3195 rcu_read_unlock();
3198 static void raid5_unplug_device(struct request_queue *q)
3200 mddev_t *mddev = q->queuedata;
3201 raid5_conf_t *conf = mddev_to_conf(mddev);
3202 unsigned long flags;
3204 spin_lock_irqsave(&conf->device_lock, flags);
3206 if (blk_remove_plug(q)) {
3207 conf->seq_flush++;
3208 raid5_activate_delayed(conf);
3210 md_wakeup_thread(mddev->thread);
3212 spin_unlock_irqrestore(&conf->device_lock, flags);
3214 unplug_slaves(mddev);
3217 static int raid5_issue_flush(struct request_queue *q, struct gendisk *disk,
3218 sector_t *error_sector)
3220 mddev_t *mddev = q->queuedata;
3221 raid5_conf_t *conf = mddev_to_conf(mddev);
3222 int i, ret = 0;
3224 rcu_read_lock();
3225 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
3226 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3227 if (rdev && !test_bit(Faulty, &rdev->flags)) {
3228 struct block_device *bdev = rdev->bdev;
3229 struct request_queue *r_queue = bdev_get_queue(bdev);
3231 if (!r_queue->issue_flush_fn)
3232 ret = -EOPNOTSUPP;
3233 else {
3234 atomic_inc(&rdev->nr_pending);
3235 rcu_read_unlock();
3236 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
3237 error_sector);
3238 rdev_dec_pending(rdev, mddev);
3239 rcu_read_lock();
3243 rcu_read_unlock();
3244 return ret;
3247 static int raid5_congested(void *data, int bits)
3249 mddev_t *mddev = data;
3250 raid5_conf_t *conf = mddev_to_conf(mddev);
3252 /* No difference between reads and writes. Just check
3253 * how busy the stripe_cache is
3255 if (conf->inactive_blocked)
3256 return 1;
3257 if (conf->quiesce)
3258 return 1;
3259 if (list_empty_careful(&conf->inactive_list))
3260 return 1;
3262 return 0;
3265 /* We want read requests to align with chunks where possible,
3266 * but write requests don't need to.
3268 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3270 mddev_t *mddev = q->queuedata;
3271 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3272 int max;
3273 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3274 unsigned int bio_sectors = bio->bi_size >> 9;
3276 if (bio_data_dir(bio) == WRITE)
3277 return biovec->bv_len; /* always allow writes to be mergeable */
3279 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3280 if (max < 0) max = 0;
3281 if (max <= biovec->bv_len && bio_sectors == 0)
3282 return biovec->bv_len;
3283 else
3284 return max;
3288 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3290 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3291 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3292 unsigned int bio_sectors = bio->bi_size >> 9;
3294 return chunk_sectors >=
3295 ((sector & (chunk_sectors - 1)) + bio_sectors);
3299 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3300 * later sampled by raid5d.
3302 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3304 unsigned long flags;
3306 spin_lock_irqsave(&conf->device_lock, flags);
3308 bi->bi_next = conf->retry_read_aligned_list;
3309 conf->retry_read_aligned_list = bi;
3311 spin_unlock_irqrestore(&conf->device_lock, flags);
3312 md_wakeup_thread(conf->mddev->thread);
3316 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3318 struct bio *bi;
3320 bi = conf->retry_read_aligned;
3321 if (bi) {
3322 conf->retry_read_aligned = NULL;
3323 return bi;
3325 bi = conf->retry_read_aligned_list;
3326 if(bi) {
3327 conf->retry_read_aligned_list = bi->bi_next;
3328 bi->bi_next = NULL;
3329 bi->bi_phys_segments = 1; /* biased count of active stripes */
3330 bi->bi_hw_segments = 0; /* count of processed stripes */
3333 return bi;
3338 * The "raid5_align_endio" should check if the read succeeded and if it
3339 * did, call bio_endio on the original bio (having bio_put the new bio
3340 * first).
3341 * If the read failed..
3343 static int raid5_align_endio(struct bio *bi, unsigned int bytes, int error)
3345 struct bio* raid_bi = bi->bi_private;
3346 mddev_t *mddev;
3347 raid5_conf_t *conf;
3348 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3349 mdk_rdev_t *rdev;
3351 if (bi->bi_size)
3352 return 1;
3353 bio_put(bi);
3355 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3356 conf = mddev_to_conf(mddev);
3357 rdev = (void*)raid_bi->bi_next;
3358 raid_bi->bi_next = NULL;
3360 rdev_dec_pending(rdev, conf->mddev);
3362 if (!error && uptodate) {
3363 bio_endio(raid_bi, bytes, 0);
3364 if (atomic_dec_and_test(&conf->active_aligned_reads))
3365 wake_up(&conf->wait_for_stripe);
3366 return 0;
3370 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3372 add_bio_to_retry(raid_bi, conf);
3373 return 0;
3376 static int bio_fits_rdev(struct bio *bi)
3378 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3380 if ((bi->bi_size>>9) > q->max_sectors)
3381 return 0;
3382 blk_recount_segments(q, bi);
3383 if (bi->bi_phys_segments > q->max_phys_segments ||
3384 bi->bi_hw_segments > q->max_hw_segments)
3385 return 0;
3387 if (q->merge_bvec_fn)
3388 /* it's too hard to apply the merge_bvec_fn at this stage,
3389 * just just give up
3391 return 0;
3393 return 1;
3397 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3399 mddev_t *mddev = q->queuedata;
3400 raid5_conf_t *conf = mddev_to_conf(mddev);
3401 const unsigned int raid_disks = conf->raid_disks;
3402 const unsigned int data_disks = raid_disks - conf->max_degraded;
3403 unsigned int dd_idx, pd_idx;
3404 struct bio* align_bi;
3405 mdk_rdev_t *rdev;
3407 if (!in_chunk_boundary(mddev, raid_bio)) {
3408 pr_debug("chunk_aligned_read : non aligned\n");
3409 return 0;
3412 * use bio_clone to make a copy of the bio
3414 align_bi = bio_clone(raid_bio, GFP_NOIO);
3415 if (!align_bi)
3416 return 0;
3418 * set bi_end_io to a new function, and set bi_private to the
3419 * original bio.
3421 align_bi->bi_end_io = raid5_align_endio;
3422 align_bi->bi_private = raid_bio;
3424 * compute position
3426 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3427 raid_disks,
3428 data_disks,
3429 &dd_idx,
3430 &pd_idx,
3431 conf);
3433 rcu_read_lock();
3434 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3435 if (rdev && test_bit(In_sync, &rdev->flags)) {
3436 atomic_inc(&rdev->nr_pending);
3437 rcu_read_unlock();
3438 raid_bio->bi_next = (void*)rdev;
3439 align_bi->bi_bdev = rdev->bdev;
3440 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3441 align_bi->bi_sector += rdev->data_offset;
3443 if (!bio_fits_rdev(align_bi)) {
3444 /* too big in some way */
3445 bio_put(align_bi);
3446 rdev_dec_pending(rdev, mddev);
3447 return 0;
3450 spin_lock_irq(&conf->device_lock);
3451 wait_event_lock_irq(conf->wait_for_stripe,
3452 conf->quiesce == 0,
3453 conf->device_lock, /* nothing */);
3454 atomic_inc(&conf->active_aligned_reads);
3455 spin_unlock_irq(&conf->device_lock);
3457 generic_make_request(align_bi);
3458 return 1;
3459 } else {
3460 rcu_read_unlock();
3461 bio_put(align_bi);
3462 return 0;
3467 static int make_request(struct request_queue *q, struct bio * bi)
3469 mddev_t *mddev = q->queuedata;
3470 raid5_conf_t *conf = mddev_to_conf(mddev);
3471 unsigned int dd_idx, pd_idx;
3472 sector_t new_sector;
3473 sector_t logical_sector, last_sector;
3474 struct stripe_head *sh;
3475 const int rw = bio_data_dir(bi);
3476 int remaining;
3478 if (unlikely(bio_barrier(bi))) {
3479 bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
3480 return 0;
3483 md_write_start(mddev, bi);
3485 disk_stat_inc(mddev->gendisk, ios[rw]);
3486 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3488 if (rw == READ &&
3489 mddev->reshape_position == MaxSector &&
3490 chunk_aligned_read(q,bi))
3491 return 0;
3493 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3494 last_sector = bi->bi_sector + (bi->bi_size>>9);
3495 bi->bi_next = NULL;
3496 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3498 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3499 DEFINE_WAIT(w);
3500 int disks, data_disks;
3502 retry:
3503 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3504 if (likely(conf->expand_progress == MaxSector))
3505 disks = conf->raid_disks;
3506 else {
3507 /* spinlock is needed as expand_progress may be
3508 * 64bit on a 32bit platform, and so it might be
3509 * possible to see a half-updated value
3510 * Ofcourse expand_progress could change after
3511 * the lock is dropped, so once we get a reference
3512 * to the stripe that we think it is, we will have
3513 * to check again.
3515 spin_lock_irq(&conf->device_lock);
3516 disks = conf->raid_disks;
3517 if (logical_sector >= conf->expand_progress)
3518 disks = conf->previous_raid_disks;
3519 else {
3520 if (logical_sector >= conf->expand_lo) {
3521 spin_unlock_irq(&conf->device_lock);
3522 schedule();
3523 goto retry;
3526 spin_unlock_irq(&conf->device_lock);
3528 data_disks = disks - conf->max_degraded;
3530 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3531 &dd_idx, &pd_idx, conf);
3532 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3533 (unsigned long long)new_sector,
3534 (unsigned long long)logical_sector);
3536 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3537 if (sh) {
3538 if (unlikely(conf->expand_progress != MaxSector)) {
3539 /* expansion might have moved on while waiting for a
3540 * stripe, so we must do the range check again.
3541 * Expansion could still move past after this
3542 * test, but as we are holding a reference to
3543 * 'sh', we know that if that happens,
3544 * STRIPE_EXPANDING will get set and the expansion
3545 * won't proceed until we finish with the stripe.
3547 int must_retry = 0;
3548 spin_lock_irq(&conf->device_lock);
3549 if (logical_sector < conf->expand_progress &&
3550 disks == conf->previous_raid_disks)
3551 /* mismatch, need to try again */
3552 must_retry = 1;
3553 spin_unlock_irq(&conf->device_lock);
3554 if (must_retry) {
3555 release_stripe(sh);
3556 goto retry;
3559 /* FIXME what if we get a false positive because these
3560 * are being updated.
3562 if (logical_sector >= mddev->suspend_lo &&
3563 logical_sector < mddev->suspend_hi) {
3564 release_stripe(sh);
3565 schedule();
3566 goto retry;
3569 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3570 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3571 /* Stripe is busy expanding or
3572 * add failed due to overlap. Flush everything
3573 * and wait a while
3575 raid5_unplug_device(mddev->queue);
3576 release_stripe(sh);
3577 schedule();
3578 goto retry;
3580 finish_wait(&conf->wait_for_overlap, &w);
3581 handle_stripe(sh, NULL);
3582 release_stripe(sh);
3583 } else {
3584 /* cannot get stripe for read-ahead, just give-up */
3585 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3586 finish_wait(&conf->wait_for_overlap, &w);
3587 break;
3591 spin_lock_irq(&conf->device_lock);
3592 remaining = --bi->bi_phys_segments;
3593 spin_unlock_irq(&conf->device_lock);
3594 if (remaining == 0) {
3595 int bytes = bi->bi_size;
3597 if ( rw == WRITE )
3598 md_write_end(mddev);
3599 bi->bi_size = 0;
3600 bi->bi_end_io(bi, bytes,
3601 test_bit(BIO_UPTODATE, &bi->bi_flags)
3602 ? 0 : -EIO);
3604 return 0;
3607 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3609 /* reshaping is quite different to recovery/resync so it is
3610 * handled quite separately ... here.
3612 * On each call to sync_request, we gather one chunk worth of
3613 * destination stripes and flag them as expanding.
3614 * Then we find all the source stripes and request reads.
3615 * As the reads complete, handle_stripe will copy the data
3616 * into the destination stripe and release that stripe.
3618 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3619 struct stripe_head *sh;
3620 int pd_idx;
3621 sector_t first_sector, last_sector;
3622 int raid_disks = conf->previous_raid_disks;
3623 int data_disks = raid_disks - conf->max_degraded;
3624 int new_data_disks = conf->raid_disks - conf->max_degraded;
3625 int i;
3626 int dd_idx;
3627 sector_t writepos, safepos, gap;
3629 if (sector_nr == 0 &&
3630 conf->expand_progress != 0) {
3631 /* restarting in the middle, skip the initial sectors */
3632 sector_nr = conf->expand_progress;
3633 sector_div(sector_nr, new_data_disks);
3634 *skipped = 1;
3635 return sector_nr;
3638 /* we update the metadata when there is more than 3Meg
3639 * in the block range (that is rather arbitrary, should
3640 * probably be time based) or when the data about to be
3641 * copied would over-write the source of the data at
3642 * the front of the range.
3643 * i.e. one new_stripe forward from expand_progress new_maps
3644 * to after where expand_lo old_maps to
3646 writepos = conf->expand_progress +
3647 conf->chunk_size/512*(new_data_disks);
3648 sector_div(writepos, new_data_disks);
3649 safepos = conf->expand_lo;
3650 sector_div(safepos, data_disks);
3651 gap = conf->expand_progress - conf->expand_lo;
3653 if (writepos >= safepos ||
3654 gap > (new_data_disks)*3000*2 /*3Meg*/) {
3655 /* Cannot proceed until we've updated the superblock... */
3656 wait_event(conf->wait_for_overlap,
3657 atomic_read(&conf->reshape_stripes)==0);
3658 mddev->reshape_position = conf->expand_progress;
3659 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3660 md_wakeup_thread(mddev->thread);
3661 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3662 kthread_should_stop());
3663 spin_lock_irq(&conf->device_lock);
3664 conf->expand_lo = mddev->reshape_position;
3665 spin_unlock_irq(&conf->device_lock);
3666 wake_up(&conf->wait_for_overlap);
3669 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3670 int j;
3671 int skipped = 0;
3672 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3673 sh = get_active_stripe(conf, sector_nr+i,
3674 conf->raid_disks, pd_idx, 0);
3675 set_bit(STRIPE_EXPANDING, &sh->state);
3676 atomic_inc(&conf->reshape_stripes);
3677 /* If any of this stripe is beyond the end of the old
3678 * array, then we need to zero those blocks
3680 for (j=sh->disks; j--;) {
3681 sector_t s;
3682 if (j == sh->pd_idx)
3683 continue;
3684 if (conf->level == 6 &&
3685 j == raid6_next_disk(sh->pd_idx, sh->disks))
3686 continue;
3687 s = compute_blocknr(sh, j);
3688 if (s < (mddev->array_size<<1)) {
3689 skipped = 1;
3690 continue;
3692 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3693 set_bit(R5_Expanded, &sh->dev[j].flags);
3694 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3696 if (!skipped) {
3697 set_bit(STRIPE_EXPAND_READY, &sh->state);
3698 set_bit(STRIPE_HANDLE, &sh->state);
3700 release_stripe(sh);
3702 spin_lock_irq(&conf->device_lock);
3703 conf->expand_progress = (sector_nr + i) * new_data_disks;
3704 spin_unlock_irq(&conf->device_lock);
3705 /* Ok, those stripe are ready. We can start scheduling
3706 * reads on the source stripes.
3707 * The source stripes are determined by mapping the first and last
3708 * block on the destination stripes.
3710 first_sector =
3711 raid5_compute_sector(sector_nr*(new_data_disks),
3712 raid_disks, data_disks,
3713 &dd_idx, &pd_idx, conf);
3714 last_sector =
3715 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3716 *(new_data_disks) -1,
3717 raid_disks, data_disks,
3718 &dd_idx, &pd_idx, conf);
3719 if (last_sector >= (mddev->size<<1))
3720 last_sector = (mddev->size<<1)-1;
3721 while (first_sector <= last_sector) {
3722 pd_idx = stripe_to_pdidx(first_sector, conf,
3723 conf->previous_raid_disks);
3724 sh = get_active_stripe(conf, first_sector,
3725 conf->previous_raid_disks, pd_idx, 0);
3726 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3727 set_bit(STRIPE_HANDLE, &sh->state);
3728 release_stripe(sh);
3729 first_sector += STRIPE_SECTORS;
3731 return conf->chunk_size>>9;
3734 /* FIXME go_faster isn't used */
3735 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3737 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3738 struct stripe_head *sh;
3739 int pd_idx;
3740 int raid_disks = conf->raid_disks;
3741 sector_t max_sector = mddev->size << 1;
3742 int sync_blocks;
3743 int still_degraded = 0;
3744 int i;
3746 if (sector_nr >= max_sector) {
3747 /* just being told to finish up .. nothing much to do */
3748 unplug_slaves(mddev);
3749 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3750 end_reshape(conf);
3751 return 0;
3754 if (mddev->curr_resync < max_sector) /* aborted */
3755 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3756 &sync_blocks, 1);
3757 else /* completed sync */
3758 conf->fullsync = 0;
3759 bitmap_close_sync(mddev->bitmap);
3761 return 0;
3764 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3765 return reshape_request(mddev, sector_nr, skipped);
3767 /* if there is too many failed drives and we are trying
3768 * to resync, then assert that we are finished, because there is
3769 * nothing we can do.
3771 if (mddev->degraded >= conf->max_degraded &&
3772 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3773 sector_t rv = (mddev->size << 1) - sector_nr;
3774 *skipped = 1;
3775 return rv;
3777 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3778 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3779 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3780 /* we can skip this block, and probably more */
3781 sync_blocks /= STRIPE_SECTORS;
3782 *skipped = 1;
3783 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3786 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3787 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3788 if (sh == NULL) {
3789 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3790 /* make sure we don't swamp the stripe cache if someone else
3791 * is trying to get access
3793 schedule_timeout_uninterruptible(1);
3795 /* Need to check if array will still be degraded after recovery/resync
3796 * We don't need to check the 'failed' flag as when that gets set,
3797 * recovery aborts.
3799 for (i=0; i<mddev->raid_disks; i++)
3800 if (conf->disks[i].rdev == NULL)
3801 still_degraded = 1;
3803 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3805 spin_lock(&sh->lock);
3806 set_bit(STRIPE_SYNCING, &sh->state);
3807 clear_bit(STRIPE_INSYNC, &sh->state);
3808 spin_unlock(&sh->lock);
3810 handle_stripe(sh, NULL);
3811 release_stripe(sh);
3813 return STRIPE_SECTORS;
3816 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3818 /* We may not be able to submit a whole bio at once as there
3819 * may not be enough stripe_heads available.
3820 * We cannot pre-allocate enough stripe_heads as we may need
3821 * more than exist in the cache (if we allow ever large chunks).
3822 * So we do one stripe head at a time and record in
3823 * ->bi_hw_segments how many have been done.
3825 * We *know* that this entire raid_bio is in one chunk, so
3826 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3828 struct stripe_head *sh;
3829 int dd_idx, pd_idx;
3830 sector_t sector, logical_sector, last_sector;
3831 int scnt = 0;
3832 int remaining;
3833 int handled = 0;
3835 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3836 sector = raid5_compute_sector( logical_sector,
3837 conf->raid_disks,
3838 conf->raid_disks - conf->max_degraded,
3839 &dd_idx,
3840 &pd_idx,
3841 conf);
3842 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3844 for (; logical_sector < last_sector;
3845 logical_sector += STRIPE_SECTORS,
3846 sector += STRIPE_SECTORS,
3847 scnt++) {
3849 if (scnt < raid_bio->bi_hw_segments)
3850 /* already done this stripe */
3851 continue;
3853 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3855 if (!sh) {
3856 /* failed to get a stripe - must wait */
3857 raid_bio->bi_hw_segments = scnt;
3858 conf->retry_read_aligned = raid_bio;
3859 return handled;
3862 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3863 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3864 release_stripe(sh);
3865 raid_bio->bi_hw_segments = scnt;
3866 conf->retry_read_aligned = raid_bio;
3867 return handled;
3870 handle_stripe(sh, NULL);
3871 release_stripe(sh);
3872 handled++;
3874 spin_lock_irq(&conf->device_lock);
3875 remaining = --raid_bio->bi_phys_segments;
3876 spin_unlock_irq(&conf->device_lock);
3877 if (remaining == 0) {
3878 int bytes = raid_bio->bi_size;
3880 raid_bio->bi_size = 0;
3881 raid_bio->bi_end_io(raid_bio, bytes,
3882 test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
3883 ? 0 : -EIO);
3885 if (atomic_dec_and_test(&conf->active_aligned_reads))
3886 wake_up(&conf->wait_for_stripe);
3887 return handled;
3893 * This is our raid5 kernel thread.
3895 * We scan the hash table for stripes which can be handled now.
3896 * During the scan, completed stripes are saved for us by the interrupt
3897 * handler, so that they will not have to wait for our next wakeup.
3899 static void raid5d (mddev_t *mddev)
3901 struct stripe_head *sh;
3902 raid5_conf_t *conf = mddev_to_conf(mddev);
3903 int handled;
3905 pr_debug("+++ raid5d active\n");
3907 md_check_recovery(mddev);
3909 handled = 0;
3910 spin_lock_irq(&conf->device_lock);
3911 while (1) {
3912 struct list_head *first;
3913 struct bio *bio;
3915 if (conf->seq_flush != conf->seq_write) {
3916 int seq = conf->seq_flush;
3917 spin_unlock_irq(&conf->device_lock);
3918 bitmap_unplug(mddev->bitmap);
3919 spin_lock_irq(&conf->device_lock);
3920 conf->seq_write = seq;
3921 activate_bit_delay(conf);
3924 if (list_empty(&conf->handle_list) &&
3925 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
3926 !blk_queue_plugged(mddev->queue) &&
3927 !list_empty(&conf->delayed_list))
3928 raid5_activate_delayed(conf);
3930 while ((bio = remove_bio_from_retry(conf))) {
3931 int ok;
3932 spin_unlock_irq(&conf->device_lock);
3933 ok = retry_aligned_read(conf, bio);
3934 spin_lock_irq(&conf->device_lock);
3935 if (!ok)
3936 break;
3937 handled++;
3940 if (list_empty(&conf->handle_list)) {
3941 async_tx_issue_pending_all();
3942 break;
3945 first = conf->handle_list.next;
3946 sh = list_entry(first, struct stripe_head, lru);
3948 list_del_init(first);
3949 atomic_inc(&sh->count);
3950 BUG_ON(atomic_read(&sh->count)!= 1);
3951 spin_unlock_irq(&conf->device_lock);
3953 handled++;
3954 handle_stripe(sh, conf->spare_page);
3955 release_stripe(sh);
3957 spin_lock_irq(&conf->device_lock);
3959 pr_debug("%d stripes handled\n", handled);
3961 spin_unlock_irq(&conf->device_lock);
3963 unplug_slaves(mddev);
3965 pr_debug("--- raid5d inactive\n");
3968 static ssize_t
3969 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3971 raid5_conf_t *conf = mddev_to_conf(mddev);
3972 if (conf)
3973 return sprintf(page, "%d\n", conf->max_nr_stripes);
3974 else
3975 return 0;
3978 static ssize_t
3979 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3981 raid5_conf_t *conf = mddev_to_conf(mddev);
3982 char *end;
3983 int new;
3984 if (len >= PAGE_SIZE)
3985 return -EINVAL;
3986 if (!conf)
3987 return -ENODEV;
3989 new = simple_strtoul(page, &end, 10);
3990 if (!*page || (*end && *end != '\n') )
3991 return -EINVAL;
3992 if (new <= 16 || new > 32768)
3993 return -EINVAL;
3994 while (new < conf->max_nr_stripes) {
3995 if (drop_one_stripe(conf))
3996 conf->max_nr_stripes--;
3997 else
3998 break;
4000 md_allow_write(mddev);
4001 while (new > conf->max_nr_stripes) {
4002 if (grow_one_stripe(conf))
4003 conf->max_nr_stripes++;
4004 else break;
4006 return len;
4009 static struct md_sysfs_entry
4010 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4011 raid5_show_stripe_cache_size,
4012 raid5_store_stripe_cache_size);
4014 static ssize_t
4015 stripe_cache_active_show(mddev_t *mddev, char *page)
4017 raid5_conf_t *conf = mddev_to_conf(mddev);
4018 if (conf)
4019 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4020 else
4021 return 0;
4024 static struct md_sysfs_entry
4025 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4027 static struct attribute *raid5_attrs[] = {
4028 &raid5_stripecache_size.attr,
4029 &raid5_stripecache_active.attr,
4030 NULL,
4032 static struct attribute_group raid5_attrs_group = {
4033 .name = NULL,
4034 .attrs = raid5_attrs,
4037 static int run(mddev_t *mddev)
4039 raid5_conf_t *conf;
4040 int raid_disk, memory;
4041 mdk_rdev_t *rdev;
4042 struct disk_info *disk;
4043 struct list_head *tmp;
4044 int working_disks = 0;
4046 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4047 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4048 mdname(mddev), mddev->level);
4049 return -EIO;
4052 if (mddev->reshape_position != MaxSector) {
4053 /* Check that we can continue the reshape.
4054 * Currently only disks can change, it must
4055 * increase, and we must be past the point where
4056 * a stripe over-writes itself
4058 sector_t here_new, here_old;
4059 int old_disks;
4060 int max_degraded = (mddev->level == 5 ? 1 : 2);
4062 if (mddev->new_level != mddev->level ||
4063 mddev->new_layout != mddev->layout ||
4064 mddev->new_chunk != mddev->chunk_size) {
4065 printk(KERN_ERR "raid5: %s: unsupported reshape "
4066 "required - aborting.\n",
4067 mdname(mddev));
4068 return -EINVAL;
4070 if (mddev->delta_disks <= 0) {
4071 printk(KERN_ERR "raid5: %s: unsupported reshape "
4072 "(reduce disks) required - aborting.\n",
4073 mdname(mddev));
4074 return -EINVAL;
4076 old_disks = mddev->raid_disks - mddev->delta_disks;
4077 /* reshape_position must be on a new-stripe boundary, and one
4078 * further up in new geometry must map after here in old
4079 * geometry.
4081 here_new = mddev->reshape_position;
4082 if (sector_div(here_new, (mddev->chunk_size>>9)*
4083 (mddev->raid_disks - max_degraded))) {
4084 printk(KERN_ERR "raid5: reshape_position not "
4085 "on a stripe boundary\n");
4086 return -EINVAL;
4088 /* here_new is the stripe we will write to */
4089 here_old = mddev->reshape_position;
4090 sector_div(here_old, (mddev->chunk_size>>9)*
4091 (old_disks-max_degraded));
4092 /* here_old is the first stripe that we might need to read
4093 * from */
4094 if (here_new >= here_old) {
4095 /* Reading from the same stripe as writing to - bad */
4096 printk(KERN_ERR "raid5: reshape_position too early for "
4097 "auto-recovery - aborting.\n");
4098 return -EINVAL;
4100 printk(KERN_INFO "raid5: reshape will continue\n");
4101 /* OK, we should be able to continue; */
4105 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4106 if ((conf = mddev->private) == NULL)
4107 goto abort;
4108 if (mddev->reshape_position == MaxSector) {
4109 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4110 } else {
4111 conf->raid_disks = mddev->raid_disks;
4112 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4115 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4116 GFP_KERNEL);
4117 if (!conf->disks)
4118 goto abort;
4120 conf->mddev = mddev;
4122 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4123 goto abort;
4125 if (mddev->level == 6) {
4126 conf->spare_page = alloc_page(GFP_KERNEL);
4127 if (!conf->spare_page)
4128 goto abort;
4130 spin_lock_init(&conf->device_lock);
4131 init_waitqueue_head(&conf->wait_for_stripe);
4132 init_waitqueue_head(&conf->wait_for_overlap);
4133 INIT_LIST_HEAD(&conf->handle_list);
4134 INIT_LIST_HEAD(&conf->delayed_list);
4135 INIT_LIST_HEAD(&conf->bitmap_list);
4136 INIT_LIST_HEAD(&conf->inactive_list);
4137 atomic_set(&conf->active_stripes, 0);
4138 atomic_set(&conf->preread_active_stripes, 0);
4139 atomic_set(&conf->active_aligned_reads, 0);
4141 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4143 ITERATE_RDEV(mddev,rdev,tmp) {
4144 raid_disk = rdev->raid_disk;
4145 if (raid_disk >= conf->raid_disks
4146 || raid_disk < 0)
4147 continue;
4148 disk = conf->disks + raid_disk;
4150 disk->rdev = rdev;
4152 if (test_bit(In_sync, &rdev->flags)) {
4153 char b[BDEVNAME_SIZE];
4154 printk(KERN_INFO "raid5: device %s operational as raid"
4155 " disk %d\n", bdevname(rdev->bdev,b),
4156 raid_disk);
4157 working_disks++;
4162 * 0 for a fully functional array, 1 or 2 for a degraded array.
4164 mddev->degraded = conf->raid_disks - working_disks;
4165 conf->mddev = mddev;
4166 conf->chunk_size = mddev->chunk_size;
4167 conf->level = mddev->level;
4168 if (conf->level == 6)
4169 conf->max_degraded = 2;
4170 else
4171 conf->max_degraded = 1;
4172 conf->algorithm = mddev->layout;
4173 conf->max_nr_stripes = NR_STRIPES;
4174 conf->expand_progress = mddev->reshape_position;
4176 /* device size must be a multiple of chunk size */
4177 mddev->size &= ~(mddev->chunk_size/1024 -1);
4178 mddev->resync_max_sectors = mddev->size << 1;
4180 if (conf->level == 6 && conf->raid_disks < 4) {
4181 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4182 mdname(mddev), conf->raid_disks);
4183 goto abort;
4185 if (!conf->chunk_size || conf->chunk_size % 4) {
4186 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4187 conf->chunk_size, mdname(mddev));
4188 goto abort;
4190 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4191 printk(KERN_ERR
4192 "raid5: unsupported parity algorithm %d for %s\n",
4193 conf->algorithm, mdname(mddev));
4194 goto abort;
4196 if (mddev->degraded > conf->max_degraded) {
4197 printk(KERN_ERR "raid5: not enough operational devices for %s"
4198 " (%d/%d failed)\n",
4199 mdname(mddev), mddev->degraded, conf->raid_disks);
4200 goto abort;
4203 if (mddev->degraded > 0 &&
4204 mddev->recovery_cp != MaxSector) {
4205 if (mddev->ok_start_degraded)
4206 printk(KERN_WARNING
4207 "raid5: starting dirty degraded array: %s"
4208 "- data corruption possible.\n",
4209 mdname(mddev));
4210 else {
4211 printk(KERN_ERR
4212 "raid5: cannot start dirty degraded array for %s\n",
4213 mdname(mddev));
4214 goto abort;
4219 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4220 if (!mddev->thread) {
4221 printk(KERN_ERR
4222 "raid5: couldn't allocate thread for %s\n",
4223 mdname(mddev));
4224 goto abort;
4227 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4228 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4229 if (grow_stripes(conf, conf->max_nr_stripes)) {
4230 printk(KERN_ERR
4231 "raid5: couldn't allocate %dkB for buffers\n", memory);
4232 shrink_stripes(conf);
4233 md_unregister_thread(mddev->thread);
4234 goto abort;
4235 } else
4236 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4237 memory, mdname(mddev));
4239 if (mddev->degraded == 0)
4240 printk("raid5: raid level %d set %s active with %d out of %d"
4241 " devices, algorithm %d\n", conf->level, mdname(mddev),
4242 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4243 conf->algorithm);
4244 else
4245 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4246 " out of %d devices, algorithm %d\n", conf->level,
4247 mdname(mddev), mddev->raid_disks - mddev->degraded,
4248 mddev->raid_disks, conf->algorithm);
4250 print_raid5_conf(conf);
4252 if (conf->expand_progress != MaxSector) {
4253 printk("...ok start reshape thread\n");
4254 conf->expand_lo = conf->expand_progress;
4255 atomic_set(&conf->reshape_stripes, 0);
4256 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4257 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4258 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4259 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4260 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4261 "%s_reshape");
4264 /* read-ahead size must cover two whole stripes, which is
4265 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4268 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4269 int stripe = data_disks *
4270 (mddev->chunk_size / PAGE_SIZE);
4271 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4272 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4275 /* Ok, everything is just fine now */
4276 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4277 printk(KERN_WARNING
4278 "raid5: failed to create sysfs attributes for %s\n",
4279 mdname(mddev));
4281 mddev->queue->unplug_fn = raid5_unplug_device;
4282 mddev->queue->issue_flush_fn = raid5_issue_flush;
4283 mddev->queue->backing_dev_info.congested_data = mddev;
4284 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4286 mddev->array_size = mddev->size * (conf->previous_raid_disks -
4287 conf->max_degraded);
4289 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4291 return 0;
4292 abort:
4293 if (conf) {
4294 print_raid5_conf(conf);
4295 safe_put_page(conf->spare_page);
4296 kfree(conf->disks);
4297 kfree(conf->stripe_hashtbl);
4298 kfree(conf);
4300 mddev->private = NULL;
4301 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4302 return -EIO;
4307 static int stop(mddev_t *mddev)
4309 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4311 md_unregister_thread(mddev->thread);
4312 mddev->thread = NULL;
4313 shrink_stripes(conf);
4314 kfree(conf->stripe_hashtbl);
4315 mddev->queue->backing_dev_info.congested_fn = NULL;
4316 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4317 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4318 kfree(conf->disks);
4319 kfree(conf);
4320 mddev->private = NULL;
4321 return 0;
4324 #ifdef DEBUG
4325 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4327 int i;
4329 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4330 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4331 seq_printf(seq, "sh %llu, count %d.\n",
4332 (unsigned long long)sh->sector, atomic_read(&sh->count));
4333 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4334 for (i = 0; i < sh->disks; i++) {
4335 seq_printf(seq, "(cache%d: %p %ld) ",
4336 i, sh->dev[i].page, sh->dev[i].flags);
4338 seq_printf(seq, "\n");
4341 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4343 struct stripe_head *sh;
4344 struct hlist_node *hn;
4345 int i;
4347 spin_lock_irq(&conf->device_lock);
4348 for (i = 0; i < NR_HASH; i++) {
4349 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4350 if (sh->raid_conf != conf)
4351 continue;
4352 print_sh(seq, sh);
4355 spin_unlock_irq(&conf->device_lock);
4357 #endif
4359 static void status (struct seq_file *seq, mddev_t *mddev)
4361 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4362 int i;
4364 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4365 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4366 for (i = 0; i < conf->raid_disks; i++)
4367 seq_printf (seq, "%s",
4368 conf->disks[i].rdev &&
4369 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4370 seq_printf (seq, "]");
4371 #ifdef DEBUG
4372 seq_printf (seq, "\n");
4373 printall(seq, conf);
4374 #endif
4377 static void print_raid5_conf (raid5_conf_t *conf)
4379 int i;
4380 struct disk_info *tmp;
4382 printk("RAID5 conf printout:\n");
4383 if (!conf) {
4384 printk("(conf==NULL)\n");
4385 return;
4387 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4388 conf->raid_disks - conf->mddev->degraded);
4390 for (i = 0; i < conf->raid_disks; i++) {
4391 char b[BDEVNAME_SIZE];
4392 tmp = conf->disks + i;
4393 if (tmp->rdev)
4394 printk(" disk %d, o:%d, dev:%s\n",
4395 i, !test_bit(Faulty, &tmp->rdev->flags),
4396 bdevname(tmp->rdev->bdev,b));
4400 static int raid5_spare_active(mddev_t *mddev)
4402 int i;
4403 raid5_conf_t *conf = mddev->private;
4404 struct disk_info *tmp;
4406 for (i = 0; i < conf->raid_disks; i++) {
4407 tmp = conf->disks + i;
4408 if (tmp->rdev
4409 && !test_bit(Faulty, &tmp->rdev->flags)
4410 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4411 unsigned long flags;
4412 spin_lock_irqsave(&conf->device_lock, flags);
4413 mddev->degraded--;
4414 spin_unlock_irqrestore(&conf->device_lock, flags);
4417 print_raid5_conf(conf);
4418 return 0;
4421 static int raid5_remove_disk(mddev_t *mddev, int number)
4423 raid5_conf_t *conf = mddev->private;
4424 int err = 0;
4425 mdk_rdev_t *rdev;
4426 struct disk_info *p = conf->disks + number;
4428 print_raid5_conf(conf);
4429 rdev = p->rdev;
4430 if (rdev) {
4431 if (test_bit(In_sync, &rdev->flags) ||
4432 atomic_read(&rdev->nr_pending)) {
4433 err = -EBUSY;
4434 goto abort;
4436 p->rdev = NULL;
4437 synchronize_rcu();
4438 if (atomic_read(&rdev->nr_pending)) {
4439 /* lost the race, try later */
4440 err = -EBUSY;
4441 p->rdev = rdev;
4444 abort:
4446 print_raid5_conf(conf);
4447 return err;
4450 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4452 raid5_conf_t *conf = mddev->private;
4453 int found = 0;
4454 int disk;
4455 struct disk_info *p;
4457 if (mddev->degraded > conf->max_degraded)
4458 /* no point adding a device */
4459 return 0;
4462 * find the disk ... but prefer rdev->saved_raid_disk
4463 * if possible.
4465 if (rdev->saved_raid_disk >= 0 &&
4466 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4467 disk = rdev->saved_raid_disk;
4468 else
4469 disk = 0;
4470 for ( ; disk < conf->raid_disks; disk++)
4471 if ((p=conf->disks + disk)->rdev == NULL) {
4472 clear_bit(In_sync, &rdev->flags);
4473 rdev->raid_disk = disk;
4474 found = 1;
4475 if (rdev->saved_raid_disk != disk)
4476 conf->fullsync = 1;
4477 rcu_assign_pointer(p->rdev, rdev);
4478 break;
4480 print_raid5_conf(conf);
4481 return found;
4484 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4486 /* no resync is happening, and there is enough space
4487 * on all devices, so we can resize.
4488 * We need to make sure resync covers any new space.
4489 * If the array is shrinking we should possibly wait until
4490 * any io in the removed space completes, but it hardly seems
4491 * worth it.
4493 raid5_conf_t *conf = mddev_to_conf(mddev);
4495 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4496 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4497 set_capacity(mddev->gendisk, mddev->array_size << 1);
4498 mddev->changed = 1;
4499 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4500 mddev->recovery_cp = mddev->size << 1;
4501 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4503 mddev->size = sectors /2;
4504 mddev->resync_max_sectors = sectors;
4505 return 0;
4508 #ifdef CONFIG_MD_RAID5_RESHAPE
4509 static int raid5_check_reshape(mddev_t *mddev)
4511 raid5_conf_t *conf = mddev_to_conf(mddev);
4512 int err;
4514 if (mddev->delta_disks < 0 ||
4515 mddev->new_level != mddev->level)
4516 return -EINVAL; /* Cannot shrink array or change level yet */
4517 if (mddev->delta_disks == 0)
4518 return 0; /* nothing to do */
4520 /* Can only proceed if there are plenty of stripe_heads.
4521 * We need a minimum of one full stripe,, and for sensible progress
4522 * it is best to have about 4 times that.
4523 * If we require 4 times, then the default 256 4K stripe_heads will
4524 * allow for chunk sizes up to 256K, which is probably OK.
4525 * If the chunk size is greater, user-space should request more
4526 * stripe_heads first.
4528 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4529 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4530 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4531 (mddev->chunk_size / STRIPE_SIZE)*4);
4532 return -ENOSPC;
4535 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4536 if (err)
4537 return err;
4539 if (mddev->degraded > conf->max_degraded)
4540 return -EINVAL;
4541 /* looks like we might be able to manage this */
4542 return 0;
4545 static int raid5_start_reshape(mddev_t *mddev)
4547 raid5_conf_t *conf = mddev_to_conf(mddev);
4548 mdk_rdev_t *rdev;
4549 struct list_head *rtmp;
4550 int spares = 0;
4551 int added_devices = 0;
4552 unsigned long flags;
4554 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4555 return -EBUSY;
4557 ITERATE_RDEV(mddev, rdev, rtmp)
4558 if (rdev->raid_disk < 0 &&
4559 !test_bit(Faulty, &rdev->flags))
4560 spares++;
4562 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4563 /* Not enough devices even to make a degraded array
4564 * of that size
4566 return -EINVAL;
4568 atomic_set(&conf->reshape_stripes, 0);
4569 spin_lock_irq(&conf->device_lock);
4570 conf->previous_raid_disks = conf->raid_disks;
4571 conf->raid_disks += mddev->delta_disks;
4572 conf->expand_progress = 0;
4573 conf->expand_lo = 0;
4574 spin_unlock_irq(&conf->device_lock);
4576 /* Add some new drives, as many as will fit.
4577 * We know there are enough to make the newly sized array work.
4579 ITERATE_RDEV(mddev, rdev, rtmp)
4580 if (rdev->raid_disk < 0 &&
4581 !test_bit(Faulty, &rdev->flags)) {
4582 if (raid5_add_disk(mddev, rdev)) {
4583 char nm[20];
4584 set_bit(In_sync, &rdev->flags);
4585 added_devices++;
4586 rdev->recovery_offset = 0;
4587 sprintf(nm, "rd%d", rdev->raid_disk);
4588 if (sysfs_create_link(&mddev->kobj,
4589 &rdev->kobj, nm))
4590 printk(KERN_WARNING
4591 "raid5: failed to create "
4592 " link %s for %s\n",
4593 nm, mdname(mddev));
4594 } else
4595 break;
4598 spin_lock_irqsave(&conf->device_lock, flags);
4599 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4600 spin_unlock_irqrestore(&conf->device_lock, flags);
4601 mddev->raid_disks = conf->raid_disks;
4602 mddev->reshape_position = 0;
4603 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4605 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4606 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4607 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4608 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4609 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4610 "%s_reshape");
4611 if (!mddev->sync_thread) {
4612 mddev->recovery = 0;
4613 spin_lock_irq(&conf->device_lock);
4614 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4615 conf->expand_progress = MaxSector;
4616 spin_unlock_irq(&conf->device_lock);
4617 return -EAGAIN;
4619 md_wakeup_thread(mddev->sync_thread);
4620 md_new_event(mddev);
4621 return 0;
4623 #endif
4625 static void end_reshape(raid5_conf_t *conf)
4627 struct block_device *bdev;
4629 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4630 conf->mddev->array_size = conf->mddev->size *
4631 (conf->raid_disks - conf->max_degraded);
4632 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4633 conf->mddev->changed = 1;
4635 bdev = bdget_disk(conf->mddev->gendisk, 0);
4636 if (bdev) {
4637 mutex_lock(&bdev->bd_inode->i_mutex);
4638 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4639 mutex_unlock(&bdev->bd_inode->i_mutex);
4640 bdput(bdev);
4642 spin_lock_irq(&conf->device_lock);
4643 conf->expand_progress = MaxSector;
4644 spin_unlock_irq(&conf->device_lock);
4645 conf->mddev->reshape_position = MaxSector;
4647 /* read-ahead size must cover two whole stripes, which is
4648 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4651 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4652 int stripe = data_disks *
4653 (conf->mddev->chunk_size / PAGE_SIZE);
4654 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4655 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4660 static void raid5_quiesce(mddev_t *mddev, int state)
4662 raid5_conf_t *conf = mddev_to_conf(mddev);
4664 switch(state) {
4665 case 2: /* resume for a suspend */
4666 wake_up(&conf->wait_for_overlap);
4667 break;
4669 case 1: /* stop all writes */
4670 spin_lock_irq(&conf->device_lock);
4671 conf->quiesce = 1;
4672 wait_event_lock_irq(conf->wait_for_stripe,
4673 atomic_read(&conf->active_stripes) == 0 &&
4674 atomic_read(&conf->active_aligned_reads) == 0,
4675 conf->device_lock, /* nothing */);
4676 spin_unlock_irq(&conf->device_lock);
4677 break;
4679 case 0: /* re-enable writes */
4680 spin_lock_irq(&conf->device_lock);
4681 conf->quiesce = 0;
4682 wake_up(&conf->wait_for_stripe);
4683 wake_up(&conf->wait_for_overlap);
4684 spin_unlock_irq(&conf->device_lock);
4685 break;
4689 static struct mdk_personality raid6_personality =
4691 .name = "raid6",
4692 .level = 6,
4693 .owner = THIS_MODULE,
4694 .make_request = make_request,
4695 .run = run,
4696 .stop = stop,
4697 .status = status,
4698 .error_handler = error,
4699 .hot_add_disk = raid5_add_disk,
4700 .hot_remove_disk= raid5_remove_disk,
4701 .spare_active = raid5_spare_active,
4702 .sync_request = sync_request,
4703 .resize = raid5_resize,
4704 #ifdef CONFIG_MD_RAID5_RESHAPE
4705 .check_reshape = raid5_check_reshape,
4706 .start_reshape = raid5_start_reshape,
4707 #endif
4708 .quiesce = raid5_quiesce,
4710 static struct mdk_personality raid5_personality =
4712 .name = "raid5",
4713 .level = 5,
4714 .owner = THIS_MODULE,
4715 .make_request = make_request,
4716 .run = run,
4717 .stop = stop,
4718 .status = status,
4719 .error_handler = error,
4720 .hot_add_disk = raid5_add_disk,
4721 .hot_remove_disk= raid5_remove_disk,
4722 .spare_active = raid5_spare_active,
4723 .sync_request = sync_request,
4724 .resize = raid5_resize,
4725 #ifdef CONFIG_MD_RAID5_RESHAPE
4726 .check_reshape = raid5_check_reshape,
4727 .start_reshape = raid5_start_reshape,
4728 #endif
4729 .quiesce = raid5_quiesce,
4732 static struct mdk_personality raid4_personality =
4734 .name = "raid4",
4735 .level = 4,
4736 .owner = THIS_MODULE,
4737 .make_request = make_request,
4738 .run = run,
4739 .stop = stop,
4740 .status = status,
4741 .error_handler = error,
4742 .hot_add_disk = raid5_add_disk,
4743 .hot_remove_disk= raid5_remove_disk,
4744 .spare_active = raid5_spare_active,
4745 .sync_request = sync_request,
4746 .resize = raid5_resize,
4747 #ifdef CONFIG_MD_RAID5_RESHAPE
4748 .check_reshape = raid5_check_reshape,
4749 .start_reshape = raid5_start_reshape,
4750 #endif
4751 .quiesce = raid5_quiesce,
4754 static int __init raid5_init(void)
4756 int e;
4758 e = raid6_select_algo();
4759 if ( e )
4760 return e;
4761 register_md_personality(&raid6_personality);
4762 register_md_personality(&raid5_personality);
4763 register_md_personality(&raid4_personality);
4764 return 0;
4767 static void raid5_exit(void)
4769 unregister_md_personality(&raid6_personality);
4770 unregister_md_personality(&raid5_personality);
4771 unregister_md_personality(&raid4_personality);
4774 module_init(raid5_init);
4775 module_exit(raid5_exit);
4776 MODULE_LICENSE("GPL");
4777 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4778 MODULE_ALIAS("md-raid5");
4779 MODULE_ALIAS("md-raid4");
4780 MODULE_ALIAS("md-level-5");
4781 MODULE_ALIAS("md-level-4");
4782 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4783 MODULE_ALIAS("md-raid6");
4784 MODULE_ALIAS("md-level-6");
4786 /* This used to be two separate modules, they were: */
4787 MODULE_ALIAS("raid5");
4788 MODULE_ALIAS("raid6");