This commit was manufactured by cvs2svn to create tag
[python/dscho.git] / Objects / object.c
blob58121788691674b2aab6500af38a2994960fd5e5
2 /* Generic object operations; and implementation of None (NoObject) */
4 #include "Python.h"
6 #ifdef macintosh
7 #include "macglue.h"
8 #endif
10 /* just for trashcan: */
11 #include "compile.h"
12 #include "frameobject.h"
13 #include "traceback.h"
15 #if defined( Py_TRACE_REFS ) || defined( Py_REF_DEBUG )
16 DL_IMPORT(long) _Py_RefTotal;
17 #endif
19 DL_IMPORT(int) Py_DivisionWarningFlag;
21 /* Object allocation routines used by NEWOBJ and NEWVAROBJ macros.
22 These are used by the individual routines for object creation.
23 Do not call them otherwise, they do not initialize the object! */
25 #ifdef COUNT_ALLOCS
26 static PyTypeObject *type_list;
27 extern int tuple_zero_allocs, fast_tuple_allocs;
28 extern int quick_int_allocs, quick_neg_int_allocs;
29 extern int null_strings, one_strings;
30 void
31 dump_counts(void)
33 PyTypeObject *tp;
35 for (tp = type_list; tp; tp = tp->tp_next)
36 fprintf(stderr, "%s alloc'd: %d, freed: %d, max in use: %d\n",
37 tp->tp_name, tp->tp_allocs, tp->tp_frees,
38 tp->tp_maxalloc);
39 fprintf(stderr, "fast tuple allocs: %d, empty: %d\n",
40 fast_tuple_allocs, tuple_zero_allocs);
41 fprintf(stderr, "fast int allocs: pos: %d, neg: %d\n",
42 quick_int_allocs, quick_neg_int_allocs);
43 fprintf(stderr, "null strings: %d, 1-strings: %d\n",
44 null_strings, one_strings);
47 PyObject *
48 get_counts(void)
50 PyTypeObject *tp;
51 PyObject *result;
52 PyObject *v;
54 result = PyList_New(0);
55 if (result == NULL)
56 return NULL;
57 for (tp = type_list; tp; tp = tp->tp_next) {
58 v = Py_BuildValue("(siii)", tp->tp_name, tp->tp_allocs,
59 tp->tp_frees, tp->tp_maxalloc);
60 if (v == NULL) {
61 Py_DECREF(result);
62 return NULL;
64 if (PyList_Append(result, v) < 0) {
65 Py_DECREF(v);
66 Py_DECREF(result);
67 return NULL;
69 Py_DECREF(v);
71 return result;
74 void
75 inc_count(PyTypeObject *tp)
77 if (tp->tp_allocs == 0) {
78 /* first time; insert in linked list */
79 if (tp->tp_next != NULL) /* sanity check */
80 Py_FatalError("XXX inc_count sanity check");
81 tp->tp_next = type_list;
82 type_list = tp;
84 tp->tp_allocs++;
85 if (tp->tp_allocs - tp->tp_frees > tp->tp_maxalloc)
86 tp->tp_maxalloc = tp->tp_allocs - tp->tp_frees;
88 #endif
90 PyObject *
91 PyObject_Init(PyObject *op, PyTypeObject *tp)
93 if (op == NULL) {
94 PyErr_SetString(PyExc_SystemError,
95 "NULL object passed to PyObject_Init");
96 return op;
98 /* Any changes should be reflected in PyObject_INIT (objimpl.h) */
99 op->ob_type = tp;
100 _Py_NewReference(op);
101 return op;
104 PyVarObject *
105 PyObject_InitVar(PyVarObject *op, PyTypeObject *tp, int size)
107 if (op == NULL) {
108 PyErr_SetString(PyExc_SystemError,
109 "NULL object passed to PyObject_InitVar");
110 return op;
112 /* Any changes should be reflected in PyObject_INIT_VAR */
113 op->ob_size = size;
114 op->ob_type = tp;
115 _Py_NewReference((PyObject *)op);
116 return op;
119 PyObject *
120 _PyObject_New(PyTypeObject *tp)
122 PyObject *op;
123 op = (PyObject *) PyObject_MALLOC(_PyObject_SIZE(tp));
124 if (op == NULL)
125 return PyErr_NoMemory();
126 return PyObject_INIT(op, tp);
129 PyVarObject *
130 _PyObject_NewVar(PyTypeObject *tp, int nitems)
132 PyVarObject *op;
133 const size_t size = _PyObject_VAR_SIZE(tp, nitems);
134 op = (PyVarObject *) PyObject_MALLOC(size);
135 if (op == NULL)
136 return (PyVarObject *)PyErr_NoMemory();
137 return PyObject_INIT_VAR(op, tp, nitems);
140 void
141 _PyObject_Del(PyObject *op)
143 PyObject_FREE(op);
147 PyObject_Print(PyObject *op, FILE *fp, int flags)
149 int ret = 0;
150 if (PyErr_CheckSignals())
151 return -1;
152 #ifdef USE_STACKCHECK
153 if (PyOS_CheckStack()) {
154 PyErr_SetString(PyExc_MemoryError, "stack overflow");
155 return -1;
157 #endif
158 clearerr(fp); /* Clear any previous error condition */
159 if (op == NULL) {
160 fprintf(fp, "<nil>");
162 else {
163 if (op->ob_refcnt <= 0)
164 fprintf(fp, "<refcnt %u at %p>",
165 op->ob_refcnt, op);
166 else if (op->ob_type->tp_print == NULL) {
167 PyObject *s;
168 if (flags & Py_PRINT_RAW)
169 s = PyObject_Str(op);
170 else
171 s = PyObject_Repr(op);
172 if (s == NULL)
173 ret = -1;
174 else {
175 ret = PyObject_Print(s, fp, Py_PRINT_RAW);
177 Py_XDECREF(s);
179 else
180 ret = (*op->ob_type->tp_print)(op, fp, flags);
182 if (ret == 0) {
183 if (ferror(fp)) {
184 PyErr_SetFromErrno(PyExc_IOError);
185 clearerr(fp);
186 ret = -1;
189 return ret;
192 /* For debugging convenience. See Misc/gdbinit for some useful gdb hooks */
193 void _PyObject_Dump(PyObject* op)
195 if (op == NULL)
196 fprintf(stderr, "NULL\n");
197 else {
198 fprintf(stderr, "object : ");
199 (void)PyObject_Print(op, stderr, 0);
200 fprintf(stderr, "\n"
201 "type : %s\n"
202 "refcount: %d\n"
203 "address : %p\n",
204 op->ob_type==NULL ? "NULL" : op->ob_type->tp_name,
205 op->ob_refcnt,
206 op);
210 PyObject *
211 PyObject_Repr(PyObject *v)
213 if (PyErr_CheckSignals())
214 return NULL;
215 #ifdef USE_STACKCHECK
216 if (PyOS_CheckStack()) {
217 PyErr_SetString(PyExc_MemoryError, "stack overflow");
218 return NULL;
220 #endif
221 if (v == NULL)
222 return PyString_FromString("<NULL>");
223 else if (v->ob_type->tp_repr == NULL)
224 return PyString_FromFormat("<%s object at %p>",
225 v->ob_type->tp_name, v);
226 else {
227 PyObject *res;
228 res = (*v->ob_type->tp_repr)(v);
229 if (res == NULL)
230 return NULL;
231 #ifdef Py_USING_UNICODE
232 if (PyUnicode_Check(res)) {
233 PyObject* str;
234 str = PyUnicode_AsUnicodeEscapeString(res);
235 Py_DECREF(res);
236 if (str)
237 res = str;
238 else
239 return NULL;
241 #endif
242 if (!PyString_Check(res)) {
243 PyErr_Format(PyExc_TypeError,
244 "__repr__ returned non-string (type %.200s)",
245 res->ob_type->tp_name);
246 Py_DECREF(res);
247 return NULL;
249 return res;
253 PyObject *
254 PyObject_Str(PyObject *v)
256 PyObject *res;
258 if (v == NULL)
259 return PyString_FromString("<NULL>");
260 if (PyString_CheckExact(v)) {
261 Py_INCREF(v);
262 return v;
264 if (v->ob_type->tp_str == NULL)
265 return PyObject_Repr(v);
267 res = (*v->ob_type->tp_str)(v);
268 if (res == NULL)
269 return NULL;
270 #ifdef Py_USING_UNICODE
271 if (PyUnicode_Check(res)) {
272 PyObject* str;
273 str = PyUnicode_AsEncodedString(res, NULL, NULL);
274 Py_DECREF(res);
275 if (str)
276 res = str;
277 else
278 return NULL;
280 #endif
281 if (!PyString_Check(res)) {
282 PyErr_Format(PyExc_TypeError,
283 "__str__ returned non-string (type %.200s)",
284 res->ob_type->tp_name);
285 Py_DECREF(res);
286 return NULL;
288 return res;
291 #ifdef Py_USING_UNICODE
292 PyObject *
293 PyObject_Unicode(PyObject *v)
295 PyObject *res;
297 if (v == NULL)
298 res = PyString_FromString("<NULL>");
299 if (PyUnicode_CheckExact(v)) {
300 Py_INCREF(v);
301 return v;
303 if (PyUnicode_Check(v)) {
304 /* For a Unicode subtype that's not a Unicode object,
305 return a true Unicode object with the same data. */
306 return PyUnicode_FromUnicode(PyUnicode_AS_UNICODE(v),
307 PyUnicode_GET_SIZE(v));
309 if (PyString_Check(v)) {
310 Py_INCREF(v);
311 res = v;
313 else {
314 PyObject *func;
315 static PyObject *unicodestr;
316 /* XXX As soon as we have a tp_unicode slot, we should
317 check this before trying the __unicode__
318 method. */
319 if (unicodestr == NULL) {
320 unicodestr= PyString_InternFromString(
321 "__unicode__");
322 if (unicodestr == NULL)
323 return NULL;
325 func = PyObject_GetAttr(v, unicodestr);
326 if (func != NULL) {
327 res = PyEval_CallObject(func, (PyObject *)NULL);
328 Py_DECREF(func);
330 else {
331 PyErr_Clear();
332 if (v->ob_type->tp_str != NULL)
333 res = (*v->ob_type->tp_str)(v);
334 else
335 res = PyObject_Repr(v);
338 if (res == NULL)
339 return NULL;
340 if (!PyUnicode_Check(res)) {
341 PyObject *str;
342 str = PyUnicode_FromEncodedObject(res, NULL, "strict");
343 Py_DECREF(res);
344 if (str)
345 res = str;
346 else
347 return NULL;
349 return res;
351 #endif
354 /* Macro to get the tp_richcompare field of a type if defined */
355 #define RICHCOMPARE(t) (PyType_HasFeature((t), Py_TPFLAGS_HAVE_RICHCOMPARE) \
356 ? (t)->tp_richcompare : NULL)
358 /* Map rich comparison operators to their swapped version, e.g. LT --> GT */
359 static int swapped_op[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE};
361 /* Try a genuine rich comparison, returning an object. Return:
362 NULL for exception;
363 NotImplemented if this particular rich comparison is not implemented or
364 undefined;
365 some object not equal to NotImplemented if it is implemented
366 (this latter object may not be a Boolean).
368 static PyObject *
369 try_rich_compare(PyObject *v, PyObject *w, int op)
371 richcmpfunc f;
372 PyObject *res;
374 if (v->ob_type != w->ob_type &&
375 PyType_IsSubtype(w->ob_type, v->ob_type) &&
376 (f = RICHCOMPARE(w->ob_type)) != NULL) {
377 res = (*f)(w, v, swapped_op[op]);
378 if (res != Py_NotImplemented)
379 return res;
380 Py_DECREF(res);
382 if ((f = RICHCOMPARE(v->ob_type)) != NULL) {
383 res = (*f)(v, w, op);
384 if (res != Py_NotImplemented)
385 return res;
386 Py_DECREF(res);
388 if ((f = RICHCOMPARE(w->ob_type)) != NULL) {
389 return (*f)(w, v, swapped_op[op]);
391 res = Py_NotImplemented;
392 Py_INCREF(res);
393 return res;
396 /* Try a genuine rich comparison, returning an int. Return:
397 -1 for exception (including the case where try_rich_compare() returns an
398 object that's not a Boolean);
399 0 if the outcome is false;
400 1 if the outcome is true;
401 2 if this particular rich comparison is not implemented or undefined.
403 static int
404 try_rich_compare_bool(PyObject *v, PyObject *w, int op)
406 PyObject *res;
407 int ok;
409 if (RICHCOMPARE(v->ob_type) == NULL && RICHCOMPARE(w->ob_type) == NULL)
410 return 2; /* Shortcut, avoid INCREF+DECREF */
411 res = try_rich_compare(v, w, op);
412 if (res == NULL)
413 return -1;
414 if (res == Py_NotImplemented) {
415 Py_DECREF(res);
416 return 2;
418 ok = PyObject_IsTrue(res);
419 Py_DECREF(res);
420 return ok;
423 /* Try rich comparisons to determine a 3-way comparison. Return:
424 -2 for an exception;
425 -1 if v < w;
426 0 if v == w;
427 1 if v > w;
428 2 if this particular rich comparison is not implemented or undefined.
430 static int
431 try_rich_to_3way_compare(PyObject *v, PyObject *w)
433 static struct { int op; int outcome; } tries[3] = {
434 /* Try this operator, and if it is true, use this outcome: */
435 {Py_EQ, 0},
436 {Py_LT, -1},
437 {Py_GT, 1},
439 int i;
441 if (RICHCOMPARE(v->ob_type) == NULL && RICHCOMPARE(w->ob_type) == NULL)
442 return 2; /* Shortcut */
444 for (i = 0; i < 3; i++) {
445 switch (try_rich_compare_bool(v, w, tries[i].op)) {
446 case -1:
447 return -2;
448 case 1:
449 return tries[i].outcome;
453 return 2;
456 /* Try a 3-way comparison, returning an int. Return:
457 -2 for an exception;
458 -1 if v < w;
459 0 if v == w;
460 1 if v > w;
461 2 if this particular 3-way comparison is not implemented or undefined.
463 static int
464 try_3way_compare(PyObject *v, PyObject *w)
466 int c;
467 cmpfunc f;
469 /* Comparisons involving instances are given to instance_compare,
470 which has the same return conventions as this function. */
472 f = v->ob_type->tp_compare;
473 if (PyInstance_Check(v))
474 return (*f)(v, w);
475 if (PyInstance_Check(w))
476 return (*w->ob_type->tp_compare)(v, w);
478 /* If both have the same (non-NULL) tp_compare, use it. */
479 if (f != NULL && f == w->ob_type->tp_compare) {
480 c = (*f)(v, w);
481 if (c < 0 && PyErr_Occurred())
482 return -1;
483 return c < 0 ? -1 : c > 0 ? 1 : 0;
486 /* If either tp_compare is _PyObject_SlotCompare, that's safe. */
487 if (f == _PyObject_SlotCompare ||
488 w->ob_type->tp_compare == _PyObject_SlotCompare)
489 return _PyObject_SlotCompare(v, w);
491 /* Try coercion; if it fails, give up */
492 c = PyNumber_CoerceEx(&v, &w);
493 if (c < 0)
494 return -2;
495 if (c > 0)
496 return 2;
498 /* Try v's comparison, if defined */
499 if ((f = v->ob_type->tp_compare) != NULL) {
500 c = (*f)(v, w);
501 Py_DECREF(v);
502 Py_DECREF(w);
503 if (c < 0 && PyErr_Occurred())
504 return -2;
505 return c < 0 ? -1 : c > 0 ? 1 : 0;
508 /* Try w's comparison, if defined */
509 if ((f = w->ob_type->tp_compare) != NULL) {
510 c = (*f)(w, v); /* swapped! */
511 Py_DECREF(v);
512 Py_DECREF(w);
513 if (c < 0 && PyErr_Occurred())
514 return -2;
515 return c < 0 ? 1 : c > 0 ? -1 : 0; /* negated! */
518 /* No comparison defined */
519 Py_DECREF(v);
520 Py_DECREF(w);
521 return 2;
524 /* Final fallback 3-way comparison, returning an int. Return:
525 -2 if an error occurred;
526 -1 if v < w;
527 0 if v == w;
528 1 if v > w.
530 static int
531 default_3way_compare(PyObject *v, PyObject *w)
533 int c;
534 char *vname, *wname;
536 if (v->ob_type == w->ob_type) {
537 /* When comparing these pointers, they must be cast to
538 * integer types (i.e. Py_uintptr_t, our spelling of C9X's
539 * uintptr_t). ANSI specifies that pointer compares other
540 * than == and != to non-related structures are undefined.
542 Py_uintptr_t vv = (Py_uintptr_t)v;
543 Py_uintptr_t ww = (Py_uintptr_t)w;
544 return (vv < ww) ? -1 : (vv > ww) ? 1 : 0;
547 #ifdef Py_USING_UNICODE
548 /* Special case for Unicode */
549 if (PyUnicode_Check(v) || PyUnicode_Check(w)) {
550 c = PyUnicode_Compare(v, w);
551 if (!PyErr_Occurred())
552 return c;
553 /* TypeErrors are ignored: if Unicode coercion fails due
554 to one of the arguments not having the right type, we
555 continue as defined by the coercion protocol (see
556 above). Luckily, decoding errors are reported as
557 ValueErrors and are not masked by this technique. */
558 if (!PyErr_ExceptionMatches(PyExc_TypeError))
559 return -2;
560 PyErr_Clear();
562 #endif
564 /* None is smaller than anything */
565 if (v == Py_None)
566 return -1;
567 if (w == Py_None)
568 return 1;
570 /* different type: compare type names */
571 if (v->ob_type->tp_as_number)
572 vname = "";
573 else
574 vname = v->ob_type->tp_name;
575 if (w->ob_type->tp_as_number)
576 wname = "";
577 else
578 wname = w->ob_type->tp_name;
579 c = strcmp(vname, wname);
580 if (c < 0)
581 return -1;
582 if (c > 0)
583 return 1;
584 /* Same type name, or (more likely) incomparable numeric types */
585 return ((Py_uintptr_t)(v->ob_type) < (
586 Py_uintptr_t)(w->ob_type)) ? -1 : 1;
589 #define CHECK_TYPES(o) PyType_HasFeature((o)->ob_type, Py_TPFLAGS_CHECKTYPES)
591 /* Do a 3-way comparison, by hook or by crook. Return:
592 -2 for an exception;
593 -1 if v < w;
594 0 if v == w;
595 1 if v > w;
596 If the object implements a tp_compare function, it returns
597 whatever this function returns (whether with an exception or not).
599 static int
600 do_cmp(PyObject *v, PyObject *w)
602 int c;
603 cmpfunc f;
605 if (v->ob_type == w->ob_type
606 && (f = v->ob_type->tp_compare) != NULL) {
607 c = (*f)(v, w);
608 if (c != 2 || !PyInstance_Check(v))
609 return c;
611 c = try_rich_to_3way_compare(v, w);
612 if (c < 2)
613 return c;
614 c = try_3way_compare(v, w);
615 if (c < 2)
616 return c;
617 return default_3way_compare(v, w);
620 /* compare_nesting is incremented before calling compare (for
621 some types) and decremented on exit. If the count exceeds the
622 nesting limit, enable code to detect circular data structures.
624 This is a tunable parameter that should only affect the performance
625 of comparisons, nothing else. Setting it high makes comparing deeply
626 nested non-cyclical data structures faster, but makes comparing cyclical
627 data structures slower.
629 #define NESTING_LIMIT 20
631 static int compare_nesting = 0;
633 static PyObject*
634 get_inprogress_dict(void)
636 static PyObject *key;
637 PyObject *tstate_dict, *inprogress;
639 if (key == NULL) {
640 key = PyString_InternFromString("cmp_state");
641 if (key == NULL)
642 return NULL;
645 tstate_dict = PyThreadState_GetDict();
646 if (tstate_dict == NULL) {
647 PyErr_BadInternalCall();
648 return NULL;
651 inprogress = PyDict_GetItem(tstate_dict, key);
652 if (inprogress == NULL) {
653 inprogress = PyDict_New();
654 if (inprogress == NULL)
655 return NULL;
656 if (PyDict_SetItem(tstate_dict, key, inprogress) == -1) {
657 Py_DECREF(inprogress);
658 return NULL;
660 Py_DECREF(inprogress);
663 return inprogress;
666 static PyObject *
667 check_recursion(PyObject *v, PyObject *w, int op)
669 PyObject *inprogress;
670 PyObject *token;
671 Py_uintptr_t iv = (Py_uintptr_t)v;
672 Py_uintptr_t iw = (Py_uintptr_t)w;
673 PyObject *x, *y, *z;
675 inprogress = get_inprogress_dict();
676 if (inprogress == NULL)
677 return NULL;
679 token = PyTuple_New(3);
680 if (token == NULL)
681 return NULL;
683 if (iv <= iw) {
684 PyTuple_SET_ITEM(token, 0, x = PyLong_FromVoidPtr((void *)v));
685 PyTuple_SET_ITEM(token, 1, y = PyLong_FromVoidPtr((void *)w));
686 if (op >= 0)
687 op = swapped_op[op];
688 } else {
689 PyTuple_SET_ITEM(token, 0, x = PyLong_FromVoidPtr((void *)w));
690 PyTuple_SET_ITEM(token, 1, y = PyLong_FromVoidPtr((void *)v));
692 PyTuple_SET_ITEM(token, 2, z = PyInt_FromLong((long)op));
693 if (x == NULL || y == NULL || z == NULL) {
694 Py_DECREF(token);
695 return NULL;
698 if (PyDict_GetItem(inprogress, token) != NULL) {
699 Py_DECREF(token);
700 return Py_None; /* Without INCREF! */
703 if (PyDict_SetItem(inprogress, token, token) < 0) {
704 Py_DECREF(token);
705 return NULL;
708 return token;
711 static void
712 delete_token(PyObject *token)
714 PyObject *inprogress;
716 if (token == NULL || token == Py_None)
717 return;
718 inprogress = get_inprogress_dict();
719 if (inprogress == NULL)
720 PyErr_Clear();
721 else
722 PyDict_DelItem(inprogress, token);
723 Py_DECREF(token);
726 /* Compare v to w. Return
727 -1 if v < w or exception (PyErr_Occurred() true in latter case).
728 0 if v == w.
729 1 if v > w.
730 XXX The docs (C API manual) say the return value is undefined in case
731 XXX of error.
734 PyObject_Compare(PyObject *v, PyObject *w)
736 PyTypeObject *vtp;
737 int result;
739 #if defined(USE_STACKCHECK)
740 if (PyOS_CheckStack()) {
741 PyErr_SetString(PyExc_MemoryError, "Stack overflow");
742 return -1;
744 #endif
745 if (v == NULL || w == NULL) {
746 PyErr_BadInternalCall();
747 return -1;
749 if (v == w)
750 return 0;
751 vtp = v->ob_type;
752 compare_nesting++;
753 if (compare_nesting > NESTING_LIMIT &&
754 (vtp->tp_as_mapping
755 || (vtp->tp_as_sequence
756 && !PyString_Check(v)
757 && !PyTuple_Check(v)))) {
758 /* try to detect circular data structures */
759 PyObject *token = check_recursion(v, w, -1);
761 if (token == NULL) {
762 result = -1;
764 else if (token == Py_None) {
765 /* already comparing these objects. assume
766 they're equal until shown otherwise */
767 result = 0;
769 else {
770 result = do_cmp(v, w);
771 delete_token(token);
774 else {
775 result = do_cmp(v, w);
777 compare_nesting--;
778 return result < 0 ? -1 : result;
781 /* Return (new reference to) Py_True or Py_False. */
782 static PyObject *
783 convert_3way_to_object(int op, int c)
785 PyObject *result;
786 switch (op) {
787 case Py_LT: c = c < 0; break;
788 case Py_LE: c = c <= 0; break;
789 case Py_EQ: c = c == 0; break;
790 case Py_NE: c = c != 0; break;
791 case Py_GT: c = c > 0; break;
792 case Py_GE: c = c >= 0; break;
794 result = c ? Py_True : Py_False;
795 Py_INCREF(result);
796 return result;
799 /* We want a rich comparison but don't have one. Try a 3-way cmp instead.
800 Return
801 NULL if error
802 Py_True if v op w
803 Py_False if not (v op w)
805 static PyObject *
806 try_3way_to_rich_compare(PyObject *v, PyObject *w, int op)
808 int c;
810 c = try_3way_compare(v, w);
811 if (c >= 2)
812 c = default_3way_compare(v, w);
813 if (c <= -2)
814 return NULL;
815 return convert_3way_to_object(op, c);
818 /* Do rich comparison on v and w. Return
819 NULL if error
820 Else a new reference to an object other than Py_NotImplemented, usually(?):
821 Py_True if v op w
822 Py_False if not (v op w)
824 static PyObject *
825 do_richcmp(PyObject *v, PyObject *w, int op)
827 PyObject *res;
829 res = try_rich_compare(v, w, op);
830 if (res != Py_NotImplemented)
831 return res;
832 Py_DECREF(res);
834 return try_3way_to_rich_compare(v, w, op);
837 /* Return:
838 NULL for exception;
839 some object not equal to NotImplemented if it is implemented
840 (this latter object may not be a Boolean).
842 PyObject *
843 PyObject_RichCompare(PyObject *v, PyObject *w, int op)
845 PyObject *res;
847 assert(Py_LT <= op && op <= Py_GE);
849 compare_nesting++;
850 if (compare_nesting > NESTING_LIMIT &&
851 (v->ob_type->tp_as_mapping
852 || (v->ob_type->tp_as_sequence
853 && !PyString_Check(v)
854 && !PyTuple_Check(v)))) {
856 /* try to detect circular data structures */
857 PyObject *token = check_recursion(v, w, op);
858 if (token == NULL) {
859 res = NULL;
860 goto Done;
862 else if (token == Py_None) {
863 /* already comparing these objects with this operator.
864 assume they're equal until shown otherwise */
865 if (op == Py_EQ)
866 res = Py_True;
867 else if (op == Py_NE)
868 res = Py_False;
869 else {
870 PyErr_SetString(PyExc_ValueError,
871 "can't order recursive values");
872 res = NULL;
874 Py_XINCREF(res);
876 else {
877 res = do_richcmp(v, w, op);
878 delete_token(token);
880 goto Done;
883 /* No nesting extremism.
884 If the types are equal, and not old-style instances, try to
885 get out cheap (don't bother with coercions etc.). */
886 if (v->ob_type == w->ob_type && !PyInstance_Check(v)) {
887 cmpfunc fcmp;
888 richcmpfunc frich = RICHCOMPARE(v->ob_type);
889 /* If the type has richcmp, try it first. try_rich_compare
890 tries it two-sided, which is not needed since we've a
891 single type only. */
892 if (frich != NULL) {
893 res = (*frich)(v, w, op);
894 if (res != Py_NotImplemented)
895 goto Done;
896 Py_DECREF(res);
898 /* No richcmp, or this particular richmp not implemented.
899 Try 3-way cmp. */
900 fcmp = v->ob_type->tp_compare;
901 if (fcmp != NULL) {
902 int c = (*fcmp)(v, w);
903 if (c < 0 && PyErr_Occurred()) {
904 res = NULL;
905 goto Done;
907 res = convert_3way_to_object(op, c);
908 goto Done;
912 /* Fast path not taken, or couldn't deliver a useful result. */
913 res = do_richcmp(v, w, op);
914 Done:
915 compare_nesting--;
916 return res;
919 /* Return -1 if error; 1 if v op w; 0 if not (v op w). */
921 PyObject_RichCompareBool(PyObject *v, PyObject *w, int op)
923 PyObject *res = PyObject_RichCompare(v, w, op);
924 int ok;
926 if (res == NULL)
927 return -1;
928 ok = PyObject_IsTrue(res);
929 Py_DECREF(res);
930 return ok;
933 /* Set of hash utility functions to help maintaining the invariant that
934 iff a==b then hash(a)==hash(b)
936 All the utility functions (_Py_Hash*()) return "-1" to signify an error.
939 long
940 _Py_HashDouble(double v)
942 double intpart, fractpart;
943 int expo;
944 long hipart;
945 long x; /* the final hash value */
946 /* This is designed so that Python numbers of different types
947 * that compare equal hash to the same value; otherwise comparisons
948 * of mapping keys will turn out weird.
951 #ifdef MPW /* MPW C modf expects pointer to extended as second argument */
953 extended e;
954 fractpart = modf(v, &e);
955 intpart = e;
957 #else
958 fractpart = modf(v, &intpart);
959 #endif
960 if (fractpart == 0.0) {
961 /* This must return the same hash as an equal int or long. */
962 if (intpart > LONG_MAX || -intpart > LONG_MAX) {
963 /* Convert to long and use its hash. */
964 PyObject *plong; /* converted to Python long */
965 if (Py_IS_INFINITY(intpart))
966 /* can't convert to long int -- arbitrary */
967 v = v < 0 ? -271828.0 : 314159.0;
968 plong = PyLong_FromDouble(v);
969 if (plong == NULL)
970 return -1;
971 x = PyObject_Hash(plong);
972 Py_DECREF(plong);
973 return x;
975 /* Fits in a C long == a Python int, so is its own hash. */
976 x = (long)intpart;
977 if (x == -1)
978 x = -2;
979 return x;
981 /* The fractional part is non-zero, so we don't have to worry about
982 * making this match the hash of some other type.
983 * Use frexp to get at the bits in the double.
984 * Since the VAX D double format has 56 mantissa bits, which is the
985 * most of any double format in use, each of these parts may have as
986 * many as (but no more than) 56 significant bits.
987 * So, assuming sizeof(long) >= 4, each part can be broken into two
988 * longs; frexp and multiplication are used to do that.
989 * Also, since the Cray double format has 15 exponent bits, which is
990 * the most of any double format in use, shifting the exponent field
991 * left by 15 won't overflow a long (again assuming sizeof(long) >= 4).
993 v = frexp(v, &expo);
994 v *= 2147483648.0; /* 2**31 */
995 hipart = (long)v; /* take the top 32 bits */
996 v = (v - (double)hipart) * 2147483648.0; /* get the next 32 bits */
997 x = hipart + (long)v + (expo << 15);
998 if (x == -1)
999 x = -2;
1000 return x;
1003 long
1004 _Py_HashPointer(void *p)
1006 #if SIZEOF_LONG >= SIZEOF_VOID_P
1007 return (long)p;
1008 #else
1009 /* convert to a Python long and hash that */
1010 PyObject* longobj;
1011 long x;
1013 if ((longobj = PyLong_FromVoidPtr(p)) == NULL) {
1014 x = -1;
1015 goto finally;
1017 x = PyObject_Hash(longobj);
1019 finally:
1020 Py_XDECREF(longobj);
1021 return x;
1022 #endif
1026 long
1027 PyObject_Hash(PyObject *v)
1029 PyTypeObject *tp = v->ob_type;
1030 if (tp->tp_hash != NULL)
1031 return (*tp->tp_hash)(v);
1032 if (tp->tp_compare == NULL && RICHCOMPARE(tp) == NULL) {
1033 return _Py_HashPointer(v); /* Use address as hash value */
1035 /* If there's a cmp but no hash defined, the object can't be hashed */
1036 PyErr_SetString(PyExc_TypeError, "unhashable type");
1037 return -1;
1040 PyObject *
1041 PyObject_GetAttrString(PyObject *v, char *name)
1043 PyObject *w, *res;
1045 if (v->ob_type->tp_getattr != NULL)
1046 return (*v->ob_type->tp_getattr)(v, name);
1047 w = PyString_InternFromString(name);
1048 if (w == NULL)
1049 return NULL;
1050 res = PyObject_GetAttr(v, w);
1051 Py_XDECREF(w);
1052 return res;
1056 PyObject_HasAttrString(PyObject *v, char *name)
1058 PyObject *res = PyObject_GetAttrString(v, name);
1059 if (res != NULL) {
1060 Py_DECREF(res);
1061 return 1;
1063 PyErr_Clear();
1064 return 0;
1068 PyObject_SetAttrString(PyObject *v, char *name, PyObject *w)
1070 PyObject *s;
1071 int res;
1073 if (v->ob_type->tp_setattr != NULL)
1074 return (*v->ob_type->tp_setattr)(v, name, w);
1075 s = PyString_InternFromString(name);
1076 if (s == NULL)
1077 return -1;
1078 res = PyObject_SetAttr(v, s, w);
1079 Py_XDECREF(s);
1080 return res;
1083 PyObject *
1084 PyObject_GetAttr(PyObject *v, PyObject *name)
1086 PyTypeObject *tp = v->ob_type;
1088 #ifdef Py_USING_UNICODE
1089 /* The Unicode to string conversion is done here because the
1090 existing tp_getattro slots expect a string object as name
1091 and we wouldn't want to break those. */
1092 if (PyUnicode_Check(name)) {
1093 name = _PyUnicode_AsDefaultEncodedString(name, NULL);
1094 if (name == NULL)
1095 return NULL;
1097 else
1098 #endif
1099 if (!PyString_Check(name)) {
1100 PyErr_SetString(PyExc_TypeError,
1101 "attribute name must be string");
1102 return NULL;
1104 if (tp->tp_getattro != NULL)
1105 return (*tp->tp_getattro)(v, name);
1106 if (tp->tp_getattr != NULL)
1107 return (*tp->tp_getattr)(v, PyString_AS_STRING(name));
1108 PyErr_Format(PyExc_AttributeError,
1109 "'%.50s' object has no attribute '%.400s'",
1110 tp->tp_name, PyString_AS_STRING(name));
1111 return NULL;
1115 PyObject_HasAttr(PyObject *v, PyObject *name)
1117 PyObject *res = PyObject_GetAttr(v, name);
1118 if (res != NULL) {
1119 Py_DECREF(res);
1120 return 1;
1122 PyErr_Clear();
1123 return 0;
1127 PyObject_SetAttr(PyObject *v, PyObject *name, PyObject *value)
1129 PyTypeObject *tp = v->ob_type;
1130 int err;
1132 #ifdef Py_USING_UNICODE
1133 /* The Unicode to string conversion is done here because the
1134 existing tp_setattro slots expect a string object as name
1135 and we wouldn't want to break those. */
1136 if (PyUnicode_Check(name)) {
1137 name = PyUnicode_AsEncodedString(name, NULL, NULL);
1138 if (name == NULL)
1139 return -1;
1141 else
1142 #endif
1143 if (!PyString_Check(name)){
1144 PyErr_SetString(PyExc_TypeError,
1145 "attribute name must be string");
1146 return -1;
1148 else
1149 Py_INCREF(name);
1151 PyString_InternInPlace(&name);
1152 if (tp->tp_setattro != NULL) {
1153 err = (*tp->tp_setattro)(v, name, value);
1154 Py_DECREF(name);
1155 return err;
1157 if (tp->tp_setattr != NULL) {
1158 err = (*tp->tp_setattr)(v, PyString_AS_STRING(name), value);
1159 Py_DECREF(name);
1160 return err;
1162 Py_DECREF(name);
1163 if (tp->tp_getattr == NULL && tp->tp_getattro == NULL)
1164 PyErr_Format(PyExc_TypeError,
1165 "'%.100s' object has no attributes "
1166 "(%s .%.100s)",
1167 tp->tp_name,
1168 value==NULL ? "del" : "assign to",
1169 PyString_AS_STRING(name));
1170 else
1171 PyErr_Format(PyExc_TypeError,
1172 "'%.100s' object has only read-only attributes "
1173 "(%s .%.100s)",
1174 tp->tp_name,
1175 value==NULL ? "del" : "assign to",
1176 PyString_AS_STRING(name));
1177 return -1;
1180 /* Helper to get a pointer to an object's __dict__ slot, if any */
1182 PyObject **
1183 _PyObject_GetDictPtr(PyObject *obj)
1185 long dictoffset;
1186 PyTypeObject *tp = obj->ob_type;
1188 if (!(tp->tp_flags & Py_TPFLAGS_HAVE_CLASS))
1189 return NULL;
1190 dictoffset = tp->tp_dictoffset;
1191 if (dictoffset == 0)
1192 return NULL;
1193 if (dictoffset < 0) {
1194 const size_t size = _PyObject_VAR_SIZE(tp,
1195 ((PyVarObject *)obj)->ob_size);
1196 dictoffset += (long)size;
1197 assert(dictoffset > 0);
1198 assert(dictoffset % SIZEOF_VOID_P == 0);
1200 return (PyObject **) ((char *)obj + dictoffset);
1203 /* Generic GetAttr functions - put these in your tp_[gs]etattro slot */
1205 PyObject *
1206 PyObject_GenericGetAttr(PyObject *obj, PyObject *name)
1208 PyTypeObject *tp = obj->ob_type;
1209 PyObject *descr;
1210 PyObject *res = NULL;
1211 descrgetfunc f;
1212 PyObject **dictptr;
1214 #ifdef Py_USING_UNICODE
1215 /* The Unicode to string conversion is done here because the
1216 existing tp_setattro slots expect a string object as name
1217 and we wouldn't want to break those. */
1218 if (PyUnicode_Check(name)) {
1219 name = PyUnicode_AsEncodedString(name, NULL, NULL);
1220 if (name == NULL)
1221 return NULL;
1223 else
1224 #endif
1225 if (!PyString_Check(name)){
1226 PyErr_SetString(PyExc_TypeError,
1227 "attribute name must be string");
1228 return NULL;
1230 else
1231 Py_INCREF(name);
1233 if (tp->tp_dict == NULL) {
1234 if (PyType_Ready(tp) < 0)
1235 goto done;
1238 descr = _PyType_Lookup(tp, name);
1239 f = NULL;
1240 if (descr != NULL) {
1241 f = descr->ob_type->tp_descr_get;
1242 if (f != NULL && PyDescr_IsData(descr)) {
1243 res = f(descr, obj, (PyObject *)obj->ob_type);
1244 goto done;
1248 dictptr = _PyObject_GetDictPtr(obj);
1249 if (dictptr != NULL) {
1250 PyObject *dict = *dictptr;
1251 if (dict != NULL) {
1252 res = PyDict_GetItem(dict, name);
1253 if (res != NULL) {
1254 Py_INCREF(res);
1255 goto done;
1260 if (f != NULL) {
1261 res = f(descr, obj, (PyObject *)obj->ob_type);
1262 goto done;
1265 if (descr != NULL) {
1266 Py_INCREF(descr);
1267 res = descr;
1268 goto done;
1271 PyErr_Format(PyExc_AttributeError,
1272 "'%.50s' object has no attribute '%.400s'",
1273 tp->tp_name, PyString_AS_STRING(name));
1274 done:
1275 Py_DECREF(name);
1276 return res;
1280 PyObject_GenericSetAttr(PyObject *obj, PyObject *name, PyObject *value)
1282 PyTypeObject *tp = obj->ob_type;
1283 PyObject *descr;
1284 descrsetfunc f;
1285 PyObject **dictptr;
1286 int res = -1;
1288 #ifdef Py_USING_UNICODE
1289 /* The Unicode to string conversion is done here because the
1290 existing tp_setattro slots expect a string object as name
1291 and we wouldn't want to break those. */
1292 if (PyUnicode_Check(name)) {
1293 name = PyUnicode_AsEncodedString(name, NULL, NULL);
1294 if (name == NULL)
1295 return -1;
1297 else
1298 #endif
1299 if (!PyString_Check(name)){
1300 PyErr_SetString(PyExc_TypeError,
1301 "attribute name must be string");
1302 return -1;
1304 else
1305 Py_INCREF(name);
1307 if (tp->tp_dict == NULL) {
1308 if (PyType_Ready(tp) < 0)
1309 goto done;
1312 descr = _PyType_Lookup(tp, name);
1313 f = NULL;
1314 if (descr != NULL) {
1315 f = descr->ob_type->tp_descr_set;
1316 if (f != NULL && PyDescr_IsData(descr)) {
1317 res = f(descr, obj, value);
1318 goto done;
1322 dictptr = _PyObject_GetDictPtr(obj);
1323 if (dictptr != NULL) {
1324 PyObject *dict = *dictptr;
1325 if (dict == NULL && value != NULL) {
1326 dict = PyDict_New();
1327 if (dict == NULL)
1328 goto done;
1329 *dictptr = dict;
1331 if (dict != NULL) {
1332 if (value == NULL)
1333 res = PyDict_DelItem(dict, name);
1334 else
1335 res = PyDict_SetItem(dict, name, value);
1336 if (res < 0 && PyErr_ExceptionMatches(PyExc_KeyError))
1337 PyErr_SetObject(PyExc_AttributeError, name);
1338 goto done;
1342 if (f != NULL) {
1343 res = f(descr, obj, value);
1344 goto done;
1347 if (descr == NULL) {
1348 PyErr_Format(PyExc_AttributeError,
1349 "'%.50s' object has no attribute '%.400s'",
1350 tp->tp_name, PyString_AS_STRING(name));
1351 goto done;
1354 PyErr_Format(PyExc_AttributeError,
1355 "'%.50s' object attribute '%.400s' is read-only",
1356 tp->tp_name, PyString_AS_STRING(name));
1357 done:
1358 Py_DECREF(name);
1359 return res;
1362 /* Test a value used as condition, e.g., in a for or if statement.
1363 Return -1 if an error occurred */
1366 PyObject_IsTrue(PyObject *v)
1368 int res;
1369 if (v == Py_None)
1370 res = 0;
1371 else if (v->ob_type->tp_as_number != NULL &&
1372 v->ob_type->tp_as_number->nb_nonzero != NULL)
1373 res = (*v->ob_type->tp_as_number->nb_nonzero)(v);
1374 else if (v->ob_type->tp_as_mapping != NULL &&
1375 v->ob_type->tp_as_mapping->mp_length != NULL)
1376 res = (*v->ob_type->tp_as_mapping->mp_length)(v);
1377 else if (v->ob_type->tp_as_sequence != NULL &&
1378 v->ob_type->tp_as_sequence->sq_length != NULL)
1379 res = (*v->ob_type->tp_as_sequence->sq_length)(v);
1380 else
1381 res = 1;
1382 if (res > 0)
1383 res = 1;
1384 return res;
1387 /* equivalent of 'not v'
1388 Return -1 if an error occurred */
1391 PyObject_Not(PyObject *v)
1393 int res;
1394 res = PyObject_IsTrue(v);
1395 if (res < 0)
1396 return res;
1397 return res == 0;
1400 /* Coerce two numeric types to the "larger" one.
1401 Increment the reference count on each argument.
1402 Return value:
1403 -1 if an error occurred;
1404 0 if the coercion succeeded (and then the reference counts are increased);
1405 1 if no coercion is possible (and no error is raised).
1408 PyNumber_CoerceEx(PyObject **pv, PyObject **pw)
1410 register PyObject *v = *pv;
1411 register PyObject *w = *pw;
1412 int res;
1414 if (v->ob_type == w->ob_type && !PyInstance_Check(v)) {
1415 Py_INCREF(v);
1416 Py_INCREF(w);
1417 return 0;
1419 if (v->ob_type->tp_as_number && v->ob_type->tp_as_number->nb_coerce) {
1420 res = (*v->ob_type->tp_as_number->nb_coerce)(pv, pw);
1421 if (res <= 0)
1422 return res;
1424 if (w->ob_type->tp_as_number && w->ob_type->tp_as_number->nb_coerce) {
1425 res = (*w->ob_type->tp_as_number->nb_coerce)(pw, pv);
1426 if (res <= 0)
1427 return res;
1429 return 1;
1432 /* Coerce two numeric types to the "larger" one.
1433 Increment the reference count on each argument.
1434 Return -1 and raise an exception if no coercion is possible
1435 (and then no reference count is incremented).
1438 PyNumber_Coerce(PyObject **pv, PyObject **pw)
1440 int err = PyNumber_CoerceEx(pv, pw);
1441 if (err <= 0)
1442 return err;
1443 PyErr_SetString(PyExc_TypeError, "number coercion failed");
1444 return -1;
1448 /* Test whether an object can be called */
1451 PyCallable_Check(PyObject *x)
1453 if (x == NULL)
1454 return 0;
1455 if (PyInstance_Check(x)) {
1456 PyObject *call = PyObject_GetAttrString(x, "__call__");
1457 if (call == NULL) {
1458 PyErr_Clear();
1459 return 0;
1461 /* Could test recursively but don't, for fear of endless
1462 recursion if some joker sets self.__call__ = self */
1463 Py_DECREF(call);
1464 return 1;
1466 else {
1467 return x->ob_type->tp_call != NULL;
1471 /* Helper for PyObject_Dir.
1472 Merge the __dict__ of aclass into dict, and recursively also all
1473 the __dict__s of aclass's base classes. The order of merging isn't
1474 defined, as it's expected that only the final set of dict keys is
1475 interesting.
1476 Return 0 on success, -1 on error.
1479 static int
1480 merge_class_dict(PyObject* dict, PyObject* aclass)
1482 PyObject *classdict;
1483 PyObject *bases;
1485 assert(PyDict_Check(dict));
1486 assert(aclass);
1488 /* Merge in the type's dict (if any). */
1489 classdict = PyObject_GetAttrString(aclass, "__dict__");
1490 if (classdict == NULL)
1491 PyErr_Clear();
1492 else {
1493 int status = PyDict_Update(dict, classdict);
1494 Py_DECREF(classdict);
1495 if (status < 0)
1496 return -1;
1499 /* Recursively merge in the base types' (if any) dicts. */
1500 bases = PyObject_GetAttrString(aclass, "__bases__");
1501 if (bases == NULL)
1502 PyErr_Clear();
1503 else {
1504 int i, n;
1505 assert(PyTuple_Check(bases));
1506 n = PyTuple_GET_SIZE(bases);
1507 for (i = 0; i < n; i++) {
1508 PyObject *base = PyTuple_GET_ITEM(bases, i);
1509 if (merge_class_dict(dict, base) < 0) {
1510 Py_DECREF(bases);
1511 return -1;
1514 Py_DECREF(bases);
1516 return 0;
1519 /* Helper for PyObject_Dir.
1520 If obj has an attr named attrname that's a list, merge its string
1521 elements into keys of dict.
1522 Return 0 on success, -1 on error. Errors due to not finding the attr,
1523 or the attr not being a list, are suppressed.
1526 static int
1527 merge_list_attr(PyObject* dict, PyObject* obj, char *attrname)
1529 PyObject *list;
1530 int result = 0;
1532 assert(PyDict_Check(dict));
1533 assert(obj);
1534 assert(attrname);
1536 list = PyObject_GetAttrString(obj, attrname);
1537 if (list == NULL)
1538 PyErr_Clear();
1540 else if (PyList_Check(list)) {
1541 int i;
1542 for (i = 0; i < PyList_GET_SIZE(list); ++i) {
1543 PyObject *item = PyList_GET_ITEM(list, i);
1544 if (PyString_Check(item)) {
1545 result = PyDict_SetItem(dict, item, Py_None);
1546 if (result < 0)
1547 break;
1552 Py_XDECREF(list);
1553 return result;
1556 /* Like __builtin__.dir(arg). See bltinmodule.c's builtin_dir for the
1557 docstring, which should be kept in synch with this implementation. */
1559 PyObject *
1560 PyObject_Dir(PyObject *arg)
1562 /* Set exactly one of these non-NULL before the end. */
1563 PyObject *result = NULL; /* result list */
1564 PyObject *masterdict = NULL; /* result is masterdict.keys() */
1566 /* If NULL arg, return the locals. */
1567 if (arg == NULL) {
1568 PyObject *locals = PyEval_GetLocals();
1569 if (locals == NULL)
1570 goto error;
1571 result = PyDict_Keys(locals);
1572 if (result == NULL)
1573 goto error;
1576 /* Elif this is some form of module, we only want its dict. */
1577 else if (PyModule_Check(arg)) {
1578 masterdict = PyObject_GetAttrString(arg, "__dict__");
1579 if (masterdict == NULL)
1580 goto error;
1581 if (!PyDict_Check(masterdict)) {
1582 PyErr_SetString(PyExc_TypeError,
1583 "module.__dict__ is not a dictionary");
1584 goto error;
1588 /* Elif some form of type or class, grab its dict and its bases.
1589 We deliberately don't suck up its __class__, as methods belonging
1590 to the metaclass would probably be more confusing than helpful. */
1591 else if (PyType_Check(arg) || PyClass_Check(arg)) {
1592 masterdict = PyDict_New();
1593 if (masterdict == NULL)
1594 goto error;
1595 if (merge_class_dict(masterdict, arg) < 0)
1596 goto error;
1599 /* Else look at its dict, and the attrs reachable from its class. */
1600 else {
1601 PyObject *itsclass;
1602 /* Create a dict to start with. CAUTION: Not everything
1603 responding to __dict__ returns a dict! */
1604 masterdict = PyObject_GetAttrString(arg, "__dict__");
1605 if (masterdict == NULL) {
1606 PyErr_Clear();
1607 masterdict = PyDict_New();
1609 else if (!PyDict_Check(masterdict)) {
1610 Py_DECREF(masterdict);
1611 masterdict = PyDict_New();
1613 else {
1614 /* The object may have returned a reference to its
1615 dict, so copy it to avoid mutating it. */
1616 PyObject *temp = PyDict_Copy(masterdict);
1617 Py_DECREF(masterdict);
1618 masterdict = temp;
1620 if (masterdict == NULL)
1621 goto error;
1623 /* Merge in __members__ and __methods__ (if any).
1624 XXX Would like this to go away someday; for now, it's
1625 XXX needed to get at im_self etc of method objects. */
1626 if (merge_list_attr(masterdict, arg, "__members__") < 0)
1627 goto error;
1628 if (merge_list_attr(masterdict, arg, "__methods__") < 0)
1629 goto error;
1631 /* Merge in attrs reachable from its class.
1632 CAUTION: Not all objects have a __class__ attr. */
1633 itsclass = PyObject_GetAttrString(arg, "__class__");
1634 if (itsclass == NULL)
1635 PyErr_Clear();
1636 else {
1637 int status = merge_class_dict(masterdict, itsclass);
1638 Py_DECREF(itsclass);
1639 if (status < 0)
1640 goto error;
1644 assert((result == NULL) ^ (masterdict == NULL));
1645 if (masterdict != NULL) {
1646 /* The result comes from its keys. */
1647 assert(result == NULL);
1648 result = PyDict_Keys(masterdict);
1649 if (result == NULL)
1650 goto error;
1653 assert(result);
1654 if (PyList_Sort(result) != 0)
1655 goto error;
1656 else
1657 goto normal_return;
1659 error:
1660 Py_XDECREF(result);
1661 result = NULL;
1662 /* fall through */
1663 normal_return:
1664 Py_XDECREF(masterdict);
1665 return result;
1669 NoObject is usable as a non-NULL undefined value, used by the macro None.
1670 There is (and should be!) no way to create other objects of this type,
1671 so there is exactly one (which is indestructible, by the way).
1672 (XXX This type and the type of NotImplemented below should be unified.)
1675 /* ARGSUSED */
1676 static PyObject *
1677 none_repr(PyObject *op)
1679 return PyString_FromString("None");
1682 /* ARGUSED */
1683 static void
1684 none_dealloc(PyObject* ignore)
1686 /* This should never get called, but we also don't want to SEGV if
1687 * we accidently decref None out of existance.
1689 abort();
1693 static PyTypeObject PyNone_Type = {
1694 PyObject_HEAD_INIT(&PyType_Type)
1696 "NoneType",
1699 (destructor)none_dealloc, /*tp_dealloc*/ /*never called*/
1700 0, /*tp_print*/
1701 0, /*tp_getattr*/
1702 0, /*tp_setattr*/
1703 0, /*tp_compare*/
1704 (reprfunc)none_repr, /*tp_repr*/
1705 0, /*tp_as_number*/
1706 0, /*tp_as_sequence*/
1707 0, /*tp_as_mapping*/
1708 0, /*tp_hash */
1711 PyObject _Py_NoneStruct = {
1712 PyObject_HEAD_INIT(&PyNone_Type)
1715 /* NotImplemented is an object that can be used to signal that an
1716 operation is not implemented for the given type combination. */
1718 static PyObject *
1719 NotImplemented_repr(PyObject *op)
1721 return PyString_FromString("NotImplemented");
1724 static PyTypeObject PyNotImplemented_Type = {
1725 PyObject_HEAD_INIT(&PyType_Type)
1727 "NotImplementedType",
1730 (destructor)none_dealloc, /*tp_dealloc*/ /*never called*/
1731 0, /*tp_print*/
1732 0, /*tp_getattr*/
1733 0, /*tp_setattr*/
1734 0, /*tp_compare*/
1735 (reprfunc)NotImplemented_repr, /*tp_repr*/
1736 0, /*tp_as_number*/
1737 0, /*tp_as_sequence*/
1738 0, /*tp_as_mapping*/
1739 0, /*tp_hash */
1742 PyObject _Py_NotImplementedStruct = {
1743 PyObject_HEAD_INIT(&PyNotImplemented_Type)
1746 void
1747 _Py_ReadyTypes(void)
1749 if (PyType_Ready(&PyType_Type) < 0)
1750 Py_FatalError("Can't initialize 'type'");
1752 if (PyType_Ready(&PyList_Type) < 0)
1753 Py_FatalError("Can't initialize 'list'");
1755 if (PyType_Ready(&PyNone_Type) < 0)
1756 Py_FatalError("Can't initialize type(None)");
1758 if (PyType_Ready(&PyNotImplemented_Type) < 0)
1759 Py_FatalError("Can't initialize type(NotImplemented)");
1763 #ifdef Py_TRACE_REFS
1765 static PyObject refchain = {&refchain, &refchain};
1767 void
1768 _Py_ResetReferences(void)
1770 refchain._ob_prev = refchain._ob_next = &refchain;
1771 _Py_RefTotal = 0;
1774 void
1775 _Py_NewReference(PyObject *op)
1777 _Py_RefTotal++;
1778 op->ob_refcnt = 1;
1779 op->_ob_next = refchain._ob_next;
1780 op->_ob_prev = &refchain;
1781 refchain._ob_next->_ob_prev = op;
1782 refchain._ob_next = op;
1783 #ifdef COUNT_ALLOCS
1784 inc_count(op->ob_type);
1785 #endif
1788 void
1789 _Py_ForgetReference(register PyObject *op)
1791 #ifdef SLOW_UNREF_CHECK
1792 register PyObject *p;
1793 #endif
1794 if (op->ob_refcnt < 0)
1795 Py_FatalError("UNREF negative refcnt");
1796 if (op == &refchain ||
1797 op->_ob_prev->_ob_next != op || op->_ob_next->_ob_prev != op)
1798 Py_FatalError("UNREF invalid object");
1799 #ifdef SLOW_UNREF_CHECK
1800 for (p = refchain._ob_next; p != &refchain; p = p->_ob_next) {
1801 if (p == op)
1802 break;
1804 if (p == &refchain) /* Not found */
1805 Py_FatalError("UNREF unknown object");
1806 #endif
1807 op->_ob_next->_ob_prev = op->_ob_prev;
1808 op->_ob_prev->_ob_next = op->_ob_next;
1809 op->_ob_next = op->_ob_prev = NULL;
1810 #ifdef COUNT_ALLOCS
1811 op->ob_type->tp_frees++;
1812 #endif
1815 void
1816 _Py_Dealloc(PyObject *op)
1818 destructor dealloc = op->ob_type->tp_dealloc;
1819 _Py_ForgetReference(op);
1820 (*dealloc)(op);
1823 void
1824 _Py_PrintReferences(FILE *fp)
1826 PyObject *op;
1827 fprintf(fp, "Remaining objects:\n");
1828 for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) {
1829 fprintf(fp, "[%d] ", op->ob_refcnt);
1830 if (PyObject_Print(op, fp, 0) != 0)
1831 PyErr_Clear();
1832 putc('\n', fp);
1836 PyObject *
1837 _Py_GetObjects(PyObject *self, PyObject *args)
1839 int i, n;
1840 PyObject *t = NULL;
1841 PyObject *res, *op;
1843 if (!PyArg_ParseTuple(args, "i|O", &n, &t))
1844 return NULL;
1845 op = refchain._ob_next;
1846 res = PyList_New(0);
1847 if (res == NULL)
1848 return NULL;
1849 for (i = 0; (n == 0 || i < n) && op != &refchain; i++) {
1850 while (op == self || op == args || op == res || op == t ||
1851 (t != NULL && op->ob_type != (PyTypeObject *) t)) {
1852 op = op->_ob_next;
1853 if (op == &refchain)
1854 return res;
1856 if (PyList_Append(res, op) < 0) {
1857 Py_DECREF(res);
1858 return NULL;
1860 op = op->_ob_next;
1862 return res;
1865 #endif
1868 /* Hack to force loading of cobject.o */
1869 PyTypeObject *_Py_cobject_hack = &PyCObject_Type;
1872 /* Hack to force loading of abstract.o */
1873 int (*_Py_abstract_hack)(PyObject *) = &PyObject_Size;
1876 /* Python's malloc wrappers (see pymem.h) */
1878 void *
1879 PyMem_Malloc(size_t nbytes)
1881 #if _PyMem_EXTRA > 0
1882 if (nbytes == 0)
1883 nbytes = _PyMem_EXTRA;
1884 #endif
1885 return PyMem_MALLOC(nbytes);
1888 void *
1889 PyMem_Realloc(void *p, size_t nbytes)
1891 #if _PyMem_EXTRA > 0
1892 if (nbytes == 0)
1893 nbytes = _PyMem_EXTRA;
1894 #endif
1895 return PyMem_REALLOC(p, nbytes);
1898 void
1899 PyMem_Free(void *p)
1901 PyMem_FREE(p);
1905 /* Python's object malloc wrappers (see objimpl.h) */
1907 void *
1908 PyObject_Malloc(size_t nbytes)
1910 return PyObject_MALLOC(nbytes);
1913 void *
1914 PyObject_Realloc(void *p, size_t nbytes)
1916 return PyObject_REALLOC(p, nbytes);
1919 void
1920 PyObject_Free(void *p)
1922 PyObject_FREE(p);
1926 /* These methods are used to control infinite recursion in repr, str, print,
1927 etc. Container objects that may recursively contain themselves,
1928 e.g. builtin dictionaries and lists, should used Py_ReprEnter() and
1929 Py_ReprLeave() to avoid infinite recursion.
1931 Py_ReprEnter() returns 0 the first time it is called for a particular
1932 object and 1 every time thereafter. It returns -1 if an exception
1933 occurred. Py_ReprLeave() has no return value.
1935 See dictobject.c and listobject.c for examples of use.
1938 #define KEY "Py_Repr"
1941 Py_ReprEnter(PyObject *obj)
1943 PyObject *dict;
1944 PyObject *list;
1945 int i;
1947 dict = PyThreadState_GetDict();
1948 if (dict == NULL)
1949 return -1;
1950 list = PyDict_GetItemString(dict, KEY);
1951 if (list == NULL) {
1952 list = PyList_New(0);
1953 if (list == NULL)
1954 return -1;
1955 if (PyDict_SetItemString(dict, KEY, list) < 0)
1956 return -1;
1957 Py_DECREF(list);
1959 i = PyList_GET_SIZE(list);
1960 while (--i >= 0) {
1961 if (PyList_GET_ITEM(list, i) == obj)
1962 return 1;
1964 PyList_Append(list, obj);
1965 return 0;
1968 void
1969 Py_ReprLeave(PyObject *obj)
1971 PyObject *dict;
1972 PyObject *list;
1973 int i;
1975 dict = PyThreadState_GetDict();
1976 if (dict == NULL)
1977 return;
1978 list = PyDict_GetItemString(dict, KEY);
1979 if (list == NULL || !PyList_Check(list))
1980 return;
1981 i = PyList_GET_SIZE(list);
1982 /* Count backwards because we always expect obj to be list[-1] */
1983 while (--i >= 0) {
1984 if (PyList_GET_ITEM(list, i) == obj) {
1985 PyList_SetSlice(list, i, i + 1, NULL);
1986 break;
1992 trashcan
1993 CT 2k0130
1994 non-recursively destroy nested objects
1996 CT 2k0223
1997 everything is now done in a macro.
1999 CT 2k0305
2000 modified to use functions, after Tim Peter's suggestion.
2002 CT 2k0309
2003 modified to restore a possible error.
2005 CT 2k0325
2006 added better safe than sorry check for threadstate
2008 CT 2k0422
2009 complete rewrite. We now build a chain via ob_type
2010 and save the limited number of types in ob_refcnt.
2011 This is perfect since we don't need any memory.
2012 A patch for free-threading would need just a lock.
2015 #define Py_TRASHCAN_TUPLE 1
2016 #define Py_TRASHCAN_LIST 2
2017 #define Py_TRASHCAN_DICT 3
2018 #define Py_TRASHCAN_FRAME 4
2019 #define Py_TRASHCAN_TRACEBACK 5
2020 /* extend here if other objects want protection */
2022 int _PyTrash_delete_nesting = 0;
2024 PyObject * _PyTrash_delete_later = NULL;
2026 void
2027 _PyTrash_deposit_object(PyObject *op)
2029 int typecode;
2031 if (PyTuple_Check(op))
2032 typecode = Py_TRASHCAN_TUPLE;
2033 else if (PyList_Check(op))
2034 typecode = Py_TRASHCAN_LIST;
2035 else if (PyDict_Check(op))
2036 typecode = Py_TRASHCAN_DICT;
2037 else if (PyFrame_Check(op))
2038 typecode = Py_TRASHCAN_FRAME;
2039 else if (PyTraceBack_Check(op))
2040 typecode = Py_TRASHCAN_TRACEBACK;
2041 else /* We have a bug here -- those are the only types in GC */ {
2042 Py_FatalError("Type not supported in GC -- internal bug");
2043 return; /* pacify compiler -- execution never here */
2045 op->ob_refcnt = typecode;
2047 op->ob_type = (PyTypeObject*)_PyTrash_delete_later;
2048 _PyTrash_delete_later = op;
2051 void
2052 _PyTrash_destroy_chain(void)
2054 while (_PyTrash_delete_later) {
2055 PyObject *shredder = _PyTrash_delete_later;
2056 _PyTrash_delete_later = (PyObject*) shredder->ob_type;
2058 switch (shredder->ob_refcnt) {
2059 case Py_TRASHCAN_TUPLE:
2060 shredder->ob_type = &PyTuple_Type;
2061 break;
2062 case Py_TRASHCAN_LIST:
2063 shredder->ob_type = &PyList_Type;
2064 break;
2065 case Py_TRASHCAN_DICT:
2066 shredder->ob_type = &PyDict_Type;
2067 break;
2068 case Py_TRASHCAN_FRAME:
2069 shredder->ob_type = &PyFrame_Type;
2070 break;
2071 case Py_TRASHCAN_TRACEBACK:
2072 shredder->ob_type = &PyTraceBack_Type;
2073 break;
2075 _Py_NewReference(shredder);
2077 ++_PyTrash_delete_nesting;
2078 Py_DECREF(shredder);
2079 --_PyTrash_delete_nesting;
2083 #ifdef WITH_PYMALLOC
2084 #include "obmalloc.c"
2085 #endif