2 /* Generic object operations; and implementation of None (NoObject) */
5 #include "sliceobject.h" /* For PyEllipsis_Type */
12 Py_ssize_t _Py_RefTotal
;
18 Py_ssize_t total
= _Py_RefTotal
;
19 /* ignore the references to the dummy object of the dicts and sets
20 because they are not reliable and not useful (now that the
21 hash table code is well-tested) */
24 total
-= o
->ob_refcnt
;
27 total
-= o
->ob_refcnt
;
30 #endif /* Py_REF_DEBUG */
32 int Py_DivisionWarningFlag
;
34 /* Object allocation routines used by NEWOBJ and NEWVAROBJ macros.
35 These are used by the individual routines for object creation.
36 Do not call them otherwise, they do not initialize the object! */
39 /* Head of circular doubly-linked list of all objects. These are linked
40 * together via the _ob_prev and _ob_next members of a PyObject, which
41 * exist only in a Py_TRACE_REFS build.
43 static PyObject refchain
= {&refchain
, &refchain
};
45 /* Insert op at the front of the list of all objects. If force is true,
46 * op is added even if _ob_prev and _ob_next are non-NULL already. If
47 * force is false amd _ob_prev or _ob_next are non-NULL, do nothing.
48 * force should be true if and only if op points to freshly allocated,
49 * uninitialized memory, or you've unlinked op from the list and are
50 * relinking it into the front.
51 * Note that objects are normally added to the list via _Py_NewReference,
52 * which is called by PyObject_Init. Not all objects are initialized that
53 * way, though; exceptions include statically allocated type objects, and
54 * statically allocated singletons (like Py_True and Py_None).
57 _Py_AddToAllObjects(PyObject
*op
, int force
)
61 /* If it's initialized memory, op must be in or out of
62 * the list unambiguously.
64 assert((op
->_ob_prev
== NULL
) == (op
->_ob_next
== NULL
));
67 if (force
|| op
->_ob_prev
== NULL
) {
68 op
->_ob_next
= refchain
._ob_next
;
69 op
->_ob_prev
= &refchain
;
70 refchain
._ob_next
->_ob_prev
= op
;
71 refchain
._ob_next
= op
;
74 #endif /* Py_TRACE_REFS */
77 static PyTypeObject
*type_list
;
78 /* All types are added to type_list, at least when
79 they get one object created. That makes them
80 immortal, which unfortunately contributes to
81 garbage itself. If unlist_types_without_objects
82 is set, they will be removed from the type_list
83 once the last object is deallocated. */
84 int unlist_types_without_objects
;
85 extern int tuple_zero_allocs
, fast_tuple_allocs
;
86 extern int quick_int_allocs
, quick_neg_int_allocs
;
87 extern int null_strings
, one_strings
;
93 for (tp
= type_list
; tp
; tp
= tp
->tp_next
)
94 fprintf(f
, "%s alloc'd: %d, freed: %d, max in use: %d\n",
95 tp
->tp_name
, tp
->tp_allocs
, tp
->tp_frees
,
97 fprintf(f
, "fast tuple allocs: %d, empty: %d\n",
98 fast_tuple_allocs
, tuple_zero_allocs
);
99 fprintf(f
, "fast int allocs: pos: %d, neg: %d\n",
100 quick_int_allocs
, quick_neg_int_allocs
);
101 fprintf(f
, "null strings: %d, 1-strings: %d\n",
102 null_strings
, one_strings
);
112 result
= PyList_New(0);
115 for (tp
= type_list
; tp
; tp
= tp
->tp_next
) {
116 v
= Py_BuildValue("(snnn)", tp
->tp_name
, tp
->tp_allocs
,
117 tp
->tp_frees
, tp
->tp_maxalloc
);
122 if (PyList_Append(result
, v
) < 0) {
133 inc_count(PyTypeObject
*tp
)
135 if (tp
->tp_next
== NULL
&& tp
->tp_prev
== NULL
) {
136 /* first time; insert in linked list */
137 if (tp
->tp_next
!= NULL
) /* sanity check */
138 Py_FatalError("XXX inc_count sanity check");
140 type_list
->tp_prev
= tp
;
141 tp
->tp_next
= type_list
;
142 /* Note that as of Python 2.2, heap-allocated type objects
143 * can go away, but this code requires that they stay alive
144 * until program exit. That's why we're careful with
145 * refcounts here. type_list gets a new reference to tp,
146 * while ownership of the reference type_list used to hold
147 * (if any) was transferred to tp->tp_next in the line above.
148 * tp is thus effectively immortal after this.
153 /* Also insert in the doubly-linked list of all objects,
154 * if not already there.
156 _Py_AddToAllObjects((PyObject
*)tp
, 0);
160 if (tp
->tp_allocs
- tp
->tp_frees
> tp
->tp_maxalloc
)
161 tp
->tp_maxalloc
= tp
->tp_allocs
- tp
->tp_frees
;
164 void dec_count(PyTypeObject
*tp
)
167 if (unlist_types_without_objects
&&
168 tp
->tp_allocs
== tp
->tp_frees
) {
169 /* unlink the type from type_list */
171 tp
->tp_prev
->tp_next
= tp
->tp_next
;
173 type_list
= tp
->tp_next
;
175 tp
->tp_next
->tp_prev
= tp
->tp_prev
;
176 tp
->tp_next
= tp
->tp_prev
= NULL
;
184 /* Log a fatal error; doesn't return. */
186 _Py_NegativeRefcount(const char *fname
, int lineno
, PyObject
*op
)
190 PyOS_snprintf(buf
, sizeof(buf
),
191 "%s:%i object at %p has negative ref count "
192 "%" PY_FORMAT_SIZE_T
"d",
193 fname
, lineno
, op
, op
->ob_refcnt
);
197 #endif /* Py_REF_DEBUG */
200 Py_IncRef(PyObject
*o
)
206 Py_DecRef(PyObject
*o
)
212 PyObject_Init(PyObject
*op
, PyTypeObject
*tp
)
215 return PyErr_NoMemory();
216 /* Any changes should be reflected in PyObject_INIT (objimpl.h) */
218 _Py_NewReference(op
);
223 PyObject_InitVar(PyVarObject
*op
, PyTypeObject
*tp
, Py_ssize_t size
)
226 return (PyVarObject
*) PyErr_NoMemory();
227 /* Any changes should be reflected in PyObject_INIT_VAR */
230 _Py_NewReference((PyObject
*)op
);
235 _PyObject_New(PyTypeObject
*tp
)
238 op
= (PyObject
*) PyObject_MALLOC(_PyObject_SIZE(tp
));
240 return PyErr_NoMemory();
241 return PyObject_INIT(op
, tp
);
245 _PyObject_NewVar(PyTypeObject
*tp
, Py_ssize_t nitems
)
248 const size_t size
= _PyObject_VAR_SIZE(tp
, nitems
);
249 op
= (PyVarObject
*) PyObject_MALLOC(size
);
251 return (PyVarObject
*)PyErr_NoMemory();
252 return PyObject_INIT_VAR(op
, tp
, nitems
);
255 /* Implementation of PyObject_Print with recursion checking */
257 internal_print(PyObject
*op
, FILE *fp
, int flags
, int nesting
)
261 PyErr_SetString(PyExc_RuntimeError
, "print recursion");
264 if (PyErr_CheckSignals())
266 #ifdef USE_STACKCHECK
267 if (PyOS_CheckStack()) {
268 PyErr_SetString(PyExc_MemoryError
, "stack overflow");
272 clearerr(fp
); /* Clear any previous error condition */
274 Py_BEGIN_ALLOW_THREADS
275 fprintf(fp
, "<nil>");
279 if (op
->ob_refcnt
<= 0)
280 /* XXX(twouters) cast refcount to long until %zd is
281 universally available */
282 Py_BEGIN_ALLOW_THREADS
283 fprintf(fp
, "<refcnt %ld at %p>",
284 (long)op
->ob_refcnt
, op
);
288 if (flags
& Py_PRINT_RAW
)
289 s
= PyObject_Str(op
);
291 s
= PyObject_Repr(op
);
294 else if (PyString_Check(s
)) {
295 fwrite(PyString_AS_STRING(s
), 1,
296 PyString_GET_SIZE(s
), fp
);
298 else if (PyUnicode_Check(s
)) {
300 t
= _PyUnicode_AsDefaultEncodedString(s
, NULL
);
304 fwrite(PyString_AS_STRING(t
), 1,
305 PyString_GET_SIZE(t
), fp
);
309 PyErr_Format(PyExc_TypeError
,
310 "str() or repr() returned '%.100s'",
311 s
->ob_type
->tp_name
);
319 PyErr_SetFromErrno(PyExc_IOError
);
328 PyObject_Print(PyObject
*op
, FILE *fp
, int flags
)
330 return internal_print(op
, fp
, flags
, 0);
333 /* For debugging convenience. Set a breakpoint here and call it from your DLL */
340 /* For debugging convenience. See Misc/gdbinit for some useful gdb hooks */
342 _PyObject_Dump(PyObject
* op
)
345 fprintf(stderr
, "NULL\n");
347 fprintf(stderr
, "object : ");
348 (void)PyObject_Print(op
, stderr
, 0);
349 /* XXX(twouters) cast refcount to long until %zd is
350 universally available */
355 Py_TYPE(op
)==NULL
? "NULL" : Py_TYPE(op
)->tp_name
,
362 PyObject_Repr(PyObject
*v
)
365 if (PyErr_CheckSignals())
367 #ifdef USE_STACKCHECK
368 if (PyOS_CheckStack()) {
369 PyErr_SetString(PyExc_MemoryError
, "stack overflow");
374 return PyUnicode_FromString("<NULL>");
375 if (Py_TYPE(v
)->tp_repr
== NULL
)
376 return PyUnicode_FromFormat("<%s object at %p>",
377 v
->ob_type
->tp_name
, v
);
378 res
= (*v
->ob_type
->tp_repr
)(v
);
379 if (res
!= NULL
&& !PyUnicode_Check(res
)) {
380 PyErr_Format(PyExc_TypeError
,
381 "__repr__ returned non-string (type %.200s)",
382 res
->ob_type
->tp_name
);
390 PyObject_Str(PyObject
*v
)
393 if (PyErr_CheckSignals())
395 #ifdef USE_STACKCHECK
396 if (PyOS_CheckStack()) {
397 PyErr_SetString(PyExc_MemoryError
, "stack overflow");
402 return PyUnicode_FromString("<NULL>");
403 if (PyUnicode_CheckExact(v
)) {
407 if (Py_TYPE(v
)->tp_str
== NULL
)
408 return PyObject_Repr(v
);
410 /* It is possible for a type to have a tp_str representation that loops
412 if (Py_EnterRecursiveCall(" while getting the str of an object"))
414 res
= (*Py_TYPE(v
)->tp_str
)(v
);
415 Py_LeaveRecursiveCall();
418 if (!PyUnicode_Check(res
)) {
419 PyErr_Format(PyExc_TypeError
,
420 "__str__ returned non-string (type %.200s)",
421 Py_TYPE(res
)->tp_name
);
429 /* The new comparison philosophy is: we completely separate three-way
430 comparison from rich comparison. That is, PyObject_Compare() and
431 PyObject_Cmp() *just* use the tp_compare slot. And PyObject_RichCompare()
432 and PyObject_RichCompareBool() *just* use the tp_richcompare slot.
434 See (*) below for practical amendments.
436 IOW, only cmp() uses tp_compare; the comparison operators (==, !=, <=, <,
437 >=, >) only use tp_richcompare. Note that list.sort() only uses <.
439 (And yes, eventually we'll rip out cmp() and tp_compare.)
441 The calling conventions are different: tp_compare only gets called with two
442 objects of the appropriate type; tp_richcompare gets called with a first
443 argument of the appropriate type and a second object of an arbitrary type.
444 We never do any kind of coercion.
446 The return conventions are also different.
448 The tp_compare slot should return a C int, as follows:
450 -1 if a < b or if an exception occurred
454 No other return values are allowed. PyObject_Compare() has the same
457 The tp_richcompare slot should return an object, as follows:
459 NULL if an exception occurred
460 NotImplemented if the requested comparison is not implemented
461 any other false value if the requested comparison is false
462 any other true value if the requested comparison is true
464 The PyObject_RichCompare[Bool]() wrappers raise TypeError when they get
467 (*) Practical amendments:
469 - If rich comparison returns NotImplemented, == and != are decided by
470 comparing the object pointer (i.e. falling back to the base object
473 - If three-way comparison is not implemented, it falls back on rich
474 comparison (but not the other way around!).
479 static PyObject
*do_richcompare(PyObject
*v
, PyObject
*w
, int op
);
481 /* Perform a three-way comparison, raising TypeError if three-way comparison
484 do_compare(PyObject
*v
, PyObject
*w
)
489 if (v
->ob_type
== w
->ob_type
&&
490 (f
= v
->ob_type
->tp_compare
) != NULL
) {
494 /* Now try three-way compare before giving up. This is intentionally
495 elaborate; if you have a it will raise TypeError if it detects two
496 objects that aren't ordered with respect to each other. */
497 ok
= PyObject_RichCompareBool(v
, w
, Py_LT
);
499 return -1; /* Error */
501 return -1; /* Less than */
502 ok
= PyObject_RichCompareBool(v
, w
, Py_GT
);
504 return -1; /* Error */
506 return 1; /* Greater than */
507 ok
= PyObject_RichCompareBool(v
, w
, Py_EQ
);
509 return -1; /* Error */
511 return 0; /* Equal */
514 PyErr_Format(PyExc_TypeError
,
515 "unorderable types: '%.100s' != '%.100s'",
517 w
->ob_type
->tp_name
);
521 /* Perform a three-way comparison. This wraps do_compare() with a check for
522 NULL arguments and a recursion check. */
524 PyObject_Compare(PyObject
*v
, PyObject
*w
)
528 if (v
== NULL
|| w
== NULL
) {
529 if (!PyErr_Occurred())
530 PyErr_BadInternalCall();
533 if (Py_EnterRecursiveCall(" in cmp"))
535 res
= do_compare(v
, w
);
536 Py_LeaveRecursiveCall();
537 return res
< 0 ? -1 : res
;
540 /* Map rich comparison operators to their swapped version, e.g. LT <--> GT */
541 int _Py_SwappedOp
[] = {Py_GT
, Py_GE
, Py_EQ
, Py_NE
, Py_LT
, Py_LE
};
543 static char *opstrings
[] = {"<", "<=", "==", "!=", ">", ">="};
545 /* Perform a rich comparison, raising TypeError when the requested comparison
546 operator is not supported. */
548 do_richcompare(PyObject
*v
, PyObject
*w
, int op
)
553 if (v
->ob_type
!= w
->ob_type
&&
554 PyType_IsSubtype(w
->ob_type
, v
->ob_type
) &&
555 (f
= w
->ob_type
->tp_richcompare
) != NULL
) {
556 res
= (*f
)(w
, v
, _Py_SwappedOp
[op
]);
557 if (res
!= Py_NotImplemented
)
561 if ((f
= v
->ob_type
->tp_richcompare
) != NULL
) {
562 res
= (*f
)(v
, w
, op
);
563 if (res
!= Py_NotImplemented
)
567 if ((f
= w
->ob_type
->tp_richcompare
) != NULL
) {
568 res
= (*f
)(w
, v
, _Py_SwappedOp
[op
]);
569 if (res
!= Py_NotImplemented
)
573 /* If neither object implements it, provide a sensible default
574 for == and !=, but raise an exception for ordering. */
577 res
= (v
== w
) ? Py_True
: Py_False
;
580 res
= (v
!= w
) ? Py_True
: Py_False
;
583 /* XXX Special-case None so it doesn't show as NoneType() */
584 PyErr_Format(PyExc_TypeError
,
585 "unorderable types: %.100s() %s %.100s()",
588 w
->ob_type
->tp_name
);
595 /* Perform a rich comparison with object result. This wraps do_richcompare()
596 with a check for NULL arguments and a recursion check. */
599 PyObject_RichCompare(PyObject
*v
, PyObject
*w
, int op
)
603 assert(Py_LT
<= op
&& op
<= Py_GE
);
604 if (v
== NULL
|| w
== NULL
) {
605 if (!PyErr_Occurred())
606 PyErr_BadInternalCall();
609 if (Py_EnterRecursiveCall(" in cmp"))
611 res
= do_richcompare(v
, w
, op
);
612 Py_LeaveRecursiveCall();
616 /* Perform a rich comparison with integer result. This wraps
617 PyObject_RichCompare(), returning -1 for error, 0 for false, 1 for true. */
619 PyObject_RichCompareBool(PyObject
*v
, PyObject
*w
, int op
)
624 res
= PyObject_RichCompare(v
, w
, op
);
627 if (PyBool_Check(res
))
628 ok
= (res
== Py_True
);
630 ok
= PyObject_IsTrue(res
);
635 /* Turn the result of a three-way comparison into the result expected by a
638 Py_CmpToRich(int op
, int cmp
)
643 if (PyErr_Occurred())
668 res
= ok
? Py_True
: Py_False
;
673 /* Set of hash utility functions to help maintaining the invariant that
674 if a==b then hash(a)==hash(b)
676 All the utility functions (_Py_Hash*()) return "-1" to signify an error.
680 _Py_HashDouble(double v
)
682 double intpart
, fractpart
;
685 long x
; /* the final hash value */
686 /* This is designed so that Python numbers of different types
687 * that compare equal hash to the same value; otherwise comparisons
688 * of mapping keys will turn out weird.
691 fractpart
= modf(v
, &intpart
);
692 if (fractpart
== 0.0) {
693 /* This must return the same hash as an equal int or long. */
694 if (intpart
> LONG_MAX
|| -intpart
> LONG_MAX
) {
695 /* Convert to long and use its hash. */
696 PyObject
*plong
; /* converted to Python long */
697 if (Py_IS_INFINITY(intpart
))
698 /* can't convert to long int -- arbitrary */
699 v
= v
< 0 ? -271828.0 : 314159.0;
700 plong
= PyLong_FromDouble(v
);
703 x
= PyObject_Hash(plong
);
707 /* Fits in a C long == a Python int, so is its own hash. */
713 /* The fractional part is non-zero, so we don't have to worry about
714 * making this match the hash of some other type.
715 * Use frexp to get at the bits in the double.
716 * Since the VAX D double format has 56 mantissa bits, which is the
717 * most of any double format in use, each of these parts may have as
718 * many as (but no more than) 56 significant bits.
719 * So, assuming sizeof(long) >= 4, each part can be broken into two
720 * longs; frexp and multiplication are used to do that.
721 * Also, since the Cray double format has 15 exponent bits, which is
722 * the most of any double format in use, shifting the exponent field
723 * left by 15 won't overflow a long (again assuming sizeof(long) >= 4).
726 v
*= 2147483648.0; /* 2**31 */
727 hipart
= (long)v
; /* take the top 32 bits */
728 v
= (v
- (double)hipart
) * 2147483648.0; /* get the next 32 bits */
729 x
= hipart
+ (long)v
+ (expo
<< 15);
736 _Py_HashPointer(void *p
)
738 #if SIZEOF_LONG >= SIZEOF_VOID_P
741 /* convert to a Python long and hash that */
745 if ((longobj
= PyLong_FromVoidPtr(p
)) == NULL
) {
749 x
= PyObject_Hash(longobj
);
759 PyObject_Hash(PyObject
*v
)
761 PyTypeObject
*tp
= v
->ob_type
;
762 if (tp
->tp_hash
!= NULL
)
763 return (*tp
->tp_hash
)(v
);
764 /* Otherwise, the object can't be hashed */
765 PyErr_Format(PyExc_TypeError
, "unhashable type: '%.200s'",
766 v
->ob_type
->tp_name
);
771 PyObject_GetAttrString(PyObject
*v
, const char *name
)
775 if (Py_TYPE(v
)->tp_getattr
!= NULL
)
776 return (*Py_TYPE(v
)->tp_getattr
)(v
, (char*)name
);
777 w
= PyUnicode_InternFromString(name
);
780 res
= PyObject_GetAttr(v
, w
);
786 PyObject_HasAttrString(PyObject
*v
, const char *name
)
788 PyObject
*res
= PyObject_GetAttrString(v
, name
);
798 PyObject_SetAttrString(PyObject
*v
, const char *name
, PyObject
*w
)
803 if (Py_TYPE(v
)->tp_setattr
!= NULL
)
804 return (*Py_TYPE(v
)->tp_setattr
)(v
, (char*)name
, w
);
805 s
= PyUnicode_InternFromString(name
);
808 res
= PyObject_SetAttr(v
, s
, w
);
814 PyObject_GetAttr(PyObject
*v
, PyObject
*name
)
816 PyTypeObject
*tp
= Py_TYPE(v
);
818 if (!PyUnicode_Check(name
)) {
819 PyErr_Format(PyExc_TypeError
,
820 "attribute name must be string, not '%.200s'",
821 name
->ob_type
->tp_name
);
824 if (tp
->tp_getattro
!= NULL
)
825 return (*tp
->tp_getattro
)(v
, name
);
826 if (tp
->tp_getattr
!= NULL
)
827 return (*tp
->tp_getattr
)(v
, PyUnicode_AsString(name
));
828 PyErr_Format(PyExc_AttributeError
,
829 "'%.50s' object has no attribute '%U'",
835 PyObject_HasAttr(PyObject
*v
, PyObject
*name
)
837 PyObject
*res
= PyObject_GetAttr(v
, name
);
847 PyObject_SetAttr(PyObject
*v
, PyObject
*name
, PyObject
*value
)
849 PyTypeObject
*tp
= Py_TYPE(v
);
852 if (!PyUnicode_Check(name
)) {
853 PyErr_Format(PyExc_TypeError
,
854 "attribute name must be string, not '%.200s'",
855 name
->ob_type
->tp_name
);
860 PyUnicode_InternInPlace(&name
);
861 if (tp
->tp_setattro
!= NULL
) {
862 err
= (*tp
->tp_setattro
)(v
, name
, value
);
866 if (tp
->tp_setattr
!= NULL
) {
867 err
= (*tp
->tp_setattr
)(v
, PyUnicode_AsString(name
), value
);
872 assert(name
->ob_refcnt
>= 1);
873 if (tp
->tp_getattr
== NULL
&& tp
->tp_getattro
== NULL
)
874 PyErr_Format(PyExc_TypeError
,
875 "'%.100s' object has no attributes "
878 value
==NULL
? "del" : "assign to",
881 PyErr_Format(PyExc_TypeError
,
882 "'%.100s' object has only read-only attributes "
885 value
==NULL
? "del" : "assign to",
890 /* Helper to get a pointer to an object's __dict__ slot, if any */
893 _PyObject_GetDictPtr(PyObject
*obj
)
895 Py_ssize_t dictoffset
;
896 PyTypeObject
*tp
= Py_TYPE(obj
);
898 dictoffset
= tp
->tp_dictoffset
;
901 if (dictoffset
< 0) {
905 tsize
= ((PyVarObject
*)obj
)->ob_size
;
908 size
= _PyObject_VAR_SIZE(tp
, tsize
);
910 dictoffset
+= (long)size
;
911 assert(dictoffset
> 0);
912 assert(dictoffset
% SIZEOF_VOID_P
== 0);
914 return (PyObject
**) ((char *)obj
+ dictoffset
);
918 PyObject_SelfIter(PyObject
*obj
)
924 /* Generic GetAttr functions - put these in your tp_[gs]etattro slot */
927 PyObject_GenericGetAttr(PyObject
*obj
, PyObject
*name
)
929 PyTypeObject
*tp
= Py_TYPE(obj
);
930 PyObject
*descr
= NULL
;
931 PyObject
*res
= NULL
;
933 Py_ssize_t dictoffset
;
936 if (!PyUnicode_Check(name
)){
937 PyErr_Format(PyExc_TypeError
,
938 "attribute name must be string, not '%.200s'",
939 name
->ob_type
->tp_name
);
945 if (tp
->tp_dict
== NULL
) {
946 if (PyType_Ready(tp
) < 0)
950 #if 0 /* XXX this is not quite _PyType_Lookup anymore */
951 /* Inline _PyType_Lookup */
954 PyObject
*mro
, *base
, *dict
;
956 /* Look in tp_dict of types in MRO */
959 assert(PyTuple_Check(mro
));
960 n
= PyTuple_GET_SIZE(mro
);
961 for (i
= 0; i
< n
; i
++) {
962 base
= PyTuple_GET_ITEM(mro
, i
);
963 assert(PyType_Check(base
));
964 dict
= ((PyTypeObject
*)base
)->tp_dict
;
965 assert(dict
&& PyDict_Check(dict
));
966 descr
= PyDict_GetItem(dict
, name
);
972 descr
= _PyType_Lookup(tp
, name
);
979 f
= descr
->ob_type
->tp_descr_get
;
980 if (f
!= NULL
&& PyDescr_IsData(descr
)) {
981 res
= f(descr
, obj
, (PyObject
*)obj
->ob_type
);
987 /* Inline _PyObject_GetDictPtr */
988 dictoffset
= tp
->tp_dictoffset
;
989 if (dictoffset
!= 0) {
991 if (dictoffset
< 0) {
995 tsize
= ((PyVarObject
*)obj
)->ob_size
;
998 size
= _PyObject_VAR_SIZE(tp
, tsize
);
1000 dictoffset
+= (long)size
;
1001 assert(dictoffset
> 0);
1002 assert(dictoffset
% SIZEOF_VOID_P
== 0);
1004 dictptr
= (PyObject
**) ((char *)obj
+ dictoffset
);
1008 res
= PyDict_GetItem(dict
, name
);
1020 res
= f(descr
, obj
, (PyObject
*)Py_TYPE(obj
));
1025 if (descr
!= NULL
) {
1027 /* descr was already increfed above */
1031 PyErr_Format(PyExc_AttributeError
,
1032 "'%.50s' object has no attribute '%.400s'",
1033 tp
->tp_name
, PyUnicode_AsString(name
));
1040 PyObject_GenericSetAttr(PyObject
*obj
, PyObject
*name
, PyObject
*value
)
1042 PyTypeObject
*tp
= Py_TYPE(obj
);
1048 if (!PyUnicode_Check(name
)){
1049 PyErr_Format(PyExc_TypeError
,
1050 "attribute name must be string, not '%.200s'",
1051 name
->ob_type
->tp_name
);
1057 if (tp
->tp_dict
== NULL
) {
1058 if (PyType_Ready(tp
) < 0)
1062 descr
= _PyType_Lookup(tp
, name
);
1064 if (descr
!= NULL
) {
1065 f
= descr
->ob_type
->tp_descr_set
;
1066 if (f
!= NULL
&& PyDescr_IsData(descr
)) {
1067 res
= f(descr
, obj
, value
);
1072 dictptr
= _PyObject_GetDictPtr(obj
);
1073 if (dictptr
!= NULL
) {
1074 PyObject
*dict
= *dictptr
;
1075 if (dict
== NULL
&& value
!= NULL
) {
1076 dict
= PyDict_New();
1084 res
= PyDict_DelItem(dict
, name
);
1086 res
= PyDict_SetItem(dict
, name
, value
);
1087 if (res
< 0 && PyErr_ExceptionMatches(PyExc_KeyError
))
1088 PyErr_SetObject(PyExc_AttributeError
, name
);
1095 res
= f(descr
, obj
, value
);
1099 if (descr
== NULL
) {
1100 PyErr_Format(PyExc_AttributeError
,
1101 "'%.100s' object has no attribute '%U'",
1106 PyErr_Format(PyExc_AttributeError
,
1107 "'%.50s' object attribute '%U' is read-only",
1114 /* Test a value used as condition, e.g., in a for or if statement.
1115 Return -1 if an error occurred */
1118 PyObject_IsTrue(PyObject
*v
)
1127 else if (v
->ob_type
->tp_as_number
!= NULL
&&
1128 v
->ob_type
->tp_as_number
->nb_bool
!= NULL
)
1129 res
= (*v
->ob_type
->tp_as_number
->nb_bool
)(v
);
1130 else if (v
->ob_type
->tp_as_mapping
!= NULL
&&
1131 v
->ob_type
->tp_as_mapping
->mp_length
!= NULL
)
1132 res
= (*v
->ob_type
->tp_as_mapping
->mp_length
)(v
);
1133 else if (v
->ob_type
->tp_as_sequence
!= NULL
&&
1134 v
->ob_type
->tp_as_sequence
->sq_length
!= NULL
)
1135 res
= (*v
->ob_type
->tp_as_sequence
->sq_length
)(v
);
1138 /* if it is negative, it should be either -1 or -2 */
1139 return (res
> 0) ? 1 : Py_SAFE_DOWNCAST(res
, Py_ssize_t
, int);
1142 /* equivalent of 'not v'
1143 Return -1 if an error occurred */
1146 PyObject_Not(PyObject
*v
)
1149 res
= PyObject_IsTrue(v
);
1155 /* Test whether an object can be called */
1158 PyCallable_Check(PyObject
*x
)
1162 return x
->ob_type
->tp_call
!= NULL
;
1165 /* ------------------------- PyObject_Dir() helpers ------------------------- */
1167 /* Helper for PyObject_Dir.
1168 Merge the __dict__ of aclass into dict, and recursively also all
1169 the __dict__s of aclass's base classes. The order of merging isn't
1170 defined, as it's expected that only the final set of dict keys is
1172 Return 0 on success, -1 on error.
1176 merge_class_dict(PyObject
* dict
, PyObject
* aclass
)
1178 PyObject
*classdict
;
1181 assert(PyDict_Check(dict
));
1184 /* Merge in the type's dict (if any). */
1185 classdict
= PyObject_GetAttrString(aclass
, "__dict__");
1186 if (classdict
== NULL
)
1189 int status
= PyDict_Update(dict
, classdict
);
1190 Py_DECREF(classdict
);
1195 /* Recursively merge in the base types' (if any) dicts. */
1196 bases
= PyObject_GetAttrString(aclass
, "__bases__");
1200 /* We have no guarantee that bases is a real tuple */
1202 n
= PySequence_Size(bases
); /* This better be right */
1206 for (i
= 0; i
< n
; i
++) {
1208 PyObject
*base
= PySequence_GetItem(bases
, i
);
1213 status
= merge_class_dict(dict
, base
);
1226 /* Helper for PyObject_Dir without arguments: returns the local scope. */
1231 PyObject
*locals
= PyEval_GetLocals();
1233 if (locals
== NULL
) {
1234 PyErr_SetString(PyExc_SystemError
, "frame does not exist");
1238 names
= PyMapping_Keys(locals
);
1241 if (!PyList_Check(names
)) {
1242 PyErr_Format(PyExc_TypeError
,
1243 "dir(): expected keys() of locals to be a list, "
1244 "not '%.200s'", Py_TYPE(names
)->tp_name
);
1248 /* the locals don't need to be DECREF'd */
1252 /* Helper for PyObject_Dir of type objects: returns __dict__ and __bases__.
1253 We deliberately don't suck up its __class__, as methods belonging to the
1254 metaclass would probably be more confusing than helpful.
1257 _specialized_dir_type(PyObject
*obj
)
1259 PyObject
*result
= NULL
;
1260 PyObject
*dict
= PyDict_New();
1262 if (dict
!= NULL
&& merge_class_dict(dict
, obj
) == 0)
1263 result
= PyDict_Keys(dict
);
1269 /* Helper for PyObject_Dir of module objects: returns the module's __dict__. */
1271 _specialized_dir_module(PyObject
*obj
)
1273 PyObject
*result
= NULL
;
1274 PyObject
*dict
= PyObject_GetAttrString(obj
, "__dict__");
1277 if (PyDict_Check(dict
))
1278 result
= PyDict_Keys(dict
);
1280 PyErr_Format(PyExc_TypeError
,
1281 "%.200s.__dict__ is not a dictionary",
1282 PyModule_GetName(obj
));
1290 /* Helper for PyObject_Dir of generic objects: returns __dict__, __class__,
1291 and recursively up the __class__.__bases__ chain.
1294 _generic_dir(PyObject
*obj
)
1296 PyObject
*result
= NULL
;
1297 PyObject
*dict
= NULL
;
1298 PyObject
*itsclass
= NULL
;
1300 /* Get __dict__ (which may or may not be a real dict...) */
1301 dict
= PyObject_GetAttrString(obj
, "__dict__");
1304 dict
= PyDict_New();
1306 else if (!PyDict_Check(dict
)) {
1308 dict
= PyDict_New();
1311 /* Copy __dict__ to avoid mutating it. */
1312 PyObject
*temp
= PyDict_Copy(dict
);
1320 /* Merge in attrs reachable from its class. */
1321 itsclass
= PyObject_GetAttrString(obj
, "__class__");
1322 if (itsclass
== NULL
)
1323 /* XXX(tomer): Perhaps fall back to obj->ob_type if no
1324 __class__ exists? */
1327 if (merge_class_dict(dict
, itsclass
) != 0)
1331 result
= PyDict_Keys(dict
);
1334 Py_XDECREF(itsclass
);
1339 /* Helper for PyObject_Dir: object introspection.
1340 This calls one of the above specialized versions if no __dir__ method
1343 _dir_object(PyObject
*obj
)
1345 PyObject
* result
= NULL
;
1346 PyObject
* dirfunc
= PyObject_GetAttrString((PyObject
*)obj
->ob_type
,
1350 if (dirfunc
== NULL
) {
1351 /* use default implementation */
1353 if (PyModule_Check(obj
))
1354 result
= _specialized_dir_module(obj
);
1355 else if (PyType_Check(obj
))
1356 result
= _specialized_dir_type(obj
);
1358 result
= _generic_dir(obj
);
1362 result
= PyObject_CallFunctionObjArgs(dirfunc
, obj
, NULL
);
1367 /* result must be a list */
1368 /* XXX(gbrandl): could also check if all items are strings */
1369 if (!PyList_Check(result
)) {
1370 PyErr_Format(PyExc_TypeError
,
1371 "__dir__() must return a list, not %.200s",
1372 Py_TYPE(result
)->tp_name
);
1381 /* Implementation of dir() -- if obj is NULL, returns the names in the current
1382 (local) scope. Otherwise, performs introspection of the object: returns a
1383 sorted list of attribute names (supposedly) accessible from the object
1386 PyObject_Dir(PyObject
*obj
)
1391 /* no object -- introspect the locals */
1392 result
= _dir_locals();
1394 /* object -- introspect the object */
1395 result
= _dir_object(obj
);
1397 assert(result
== NULL
|| PyList_Check(result
));
1399 if (result
!= NULL
&& PyList_Sort(result
) != 0) {
1400 /* sorting the list failed */
1409 NoObject is usable as a non-NULL undefined value, used by the macro None.
1410 There is (and should be!) no way to create other objects of this type,
1411 so there is exactly one (which is indestructible, by the way).
1412 (XXX This type and the type of NotImplemented below should be unified.)
1417 none_repr(PyObject
*op
)
1419 return PyUnicode_FromString("None");
1424 none_dealloc(PyObject
* ignore
)
1426 /* This should never get called, but we also don't want to SEGV if
1427 * we accidently decref None out of existance.
1429 Py_FatalError("deallocating None");
1433 static PyTypeObject PyNone_Type
= {
1434 PyVarObject_HEAD_INIT(&PyType_Type
, 0)
1438 none_dealloc
, /*tp_dealloc*/ /*never called*/
1443 none_repr
, /*tp_repr*/
1445 0, /*tp_as_sequence*/
1446 0, /*tp_as_mapping*/
1450 PyObject _Py_NoneStruct
= {
1451 _PyObject_EXTRA_INIT
1455 /* NotImplemented is an object that can be used to signal that an
1456 operation is not implemented for the given type combination. */
1459 NotImplemented_repr(PyObject
*op
)
1461 return PyUnicode_FromString("NotImplemented");
1464 static PyTypeObject PyNotImplemented_Type
= {
1465 PyVarObject_HEAD_INIT(&PyType_Type
, 0)
1466 "NotImplementedType",
1469 none_dealloc
, /*tp_dealloc*/ /*never called*/
1474 NotImplemented_repr
, /*tp_repr*/
1476 0, /*tp_as_sequence*/
1477 0, /*tp_as_mapping*/
1481 PyObject _Py_NotImplementedStruct
= {
1482 _PyObject_EXTRA_INIT
1483 1, &PyNotImplemented_Type
1487 _Py_ReadyTypes(void)
1489 if (PyType_Ready(&PyType_Type
) < 0)
1490 Py_FatalError("Can't initialize 'type'");
1492 if (PyType_Ready(&_PyWeakref_RefType
) < 0)
1493 Py_FatalError("Can't initialize 'weakref'");
1495 if (PyType_Ready(&PyBool_Type
) < 0)
1496 Py_FatalError("Can't initialize 'bool'");
1498 if (PyType_Ready(&PyBytes_Type
) < 0)
1499 Py_FatalError("Can't initialize 'bytes'");
1501 if (PyType_Ready(&PyString_Type
) < 0)
1502 Py_FatalError("Can't initialize 'str'");
1504 if (PyType_Ready(&PyList_Type
) < 0)
1505 Py_FatalError("Can't initialize 'list'");
1507 if (PyType_Ready(&PyNone_Type
) < 0)
1508 Py_FatalError("Can't initialize type(None)");
1510 if (PyType_Ready(Py_Ellipsis
->ob_type
) < 0)
1511 Py_FatalError("Can't initialize type(Ellipsis)");
1513 if (PyType_Ready(&PyNotImplemented_Type
) < 0)
1514 Py_FatalError("Can't initialize type(NotImplemented)");
1516 if (PyType_Ready(&PyCode_Type
) < 0)
1517 Py_FatalError("Can't initialize 'code'");
1519 if (PyType_Ready(&PyStdPrinter_Type
) < 0)
1520 Py_FatalError("Can't initialize StdPrinter");
1524 #ifdef Py_TRACE_REFS
1527 _Py_NewReference(PyObject
*op
)
1531 _Py_AddToAllObjects(op
, 1);
1532 _Py_INC_TPALLOCS(op
);
1536 _Py_ForgetReference(register PyObject
*op
)
1538 #ifdef SLOW_UNREF_CHECK
1539 register PyObject
*p
;
1541 if (op
->ob_refcnt
< 0)
1542 Py_FatalError("UNREF negative refcnt");
1543 if (op
== &refchain
||
1544 op
->_ob_prev
->_ob_next
!= op
|| op
->_ob_next
->_ob_prev
!= op
) {
1545 fprintf(stderr
, "* ob\n");
1547 fprintf(stderr
, "* op->_ob_prev->_ob_next\n");
1548 _PyObject_Dump(op
->_ob_prev
->_ob_next
);
1549 fprintf(stderr
, "* op->_ob_next->_ob_prev\n");
1550 _PyObject_Dump(op
->_ob_next
->_ob_prev
);
1551 Py_FatalError("UNREF invalid object");
1553 #ifdef SLOW_UNREF_CHECK
1554 for (p
= refchain
._ob_next
; p
!= &refchain
; p
= p
->_ob_next
) {
1558 if (p
== &refchain
) /* Not found */
1559 Py_FatalError("UNREF unknown object");
1561 op
->_ob_next
->_ob_prev
= op
->_ob_prev
;
1562 op
->_ob_prev
->_ob_next
= op
->_ob_next
;
1563 op
->_ob_next
= op
->_ob_prev
= NULL
;
1564 _Py_INC_TPFREES(op
);
1568 _Py_Dealloc(PyObject
*op
)
1570 destructor dealloc
= Py_TYPE(op
)->tp_dealloc
;
1571 _Py_ForgetReference(op
);
1575 /* Print all live objects. Because PyObject_Print is called, the
1576 * interpreter must be in a healthy state.
1579 _Py_PrintReferences(FILE *fp
)
1582 fprintf(fp
, "Remaining objects:\n");
1583 for (op
= refchain
._ob_next
; op
!= &refchain
; op
= op
->_ob_next
) {
1584 fprintf(fp
, "%p [%" PY_FORMAT_SIZE_T
"d] ", op
, op
->ob_refcnt
);
1585 if (PyObject_Print(op
, fp
, 0) != 0)
1591 /* Print the addresses of all live objects. Unlike _Py_PrintReferences, this
1592 * doesn't make any calls to the Python C API, so is always safe to call.
1595 _Py_PrintReferenceAddresses(FILE *fp
)
1598 fprintf(fp
, "Remaining object addresses:\n");
1599 for (op
= refchain
._ob_next
; op
!= &refchain
; op
= op
->_ob_next
)
1600 fprintf(fp
, "%p [%" PY_FORMAT_SIZE_T
"d] %s\n", op
,
1601 op
->ob_refcnt
, Py_TYPE(op
)->tp_name
);
1605 _Py_GetObjects(PyObject
*self
, PyObject
*args
)
1611 if (!PyArg_ParseTuple(args
, "i|O", &n
, &t
))
1613 op
= refchain
._ob_next
;
1614 res
= PyList_New(0);
1617 for (i
= 0; (n
== 0 || i
< n
) && op
!= &refchain
; i
++) {
1618 while (op
== self
|| op
== args
|| op
== res
|| op
== t
||
1619 (t
!= NULL
&& Py_TYPE(op
) != (PyTypeObject
*) t
)) {
1621 if (op
== &refchain
)
1624 if (PyList_Append(res
, op
) < 0) {
1636 /* Hack to force loading of cobject.o */
1637 PyTypeObject
*_Py_cobject_hack
= &PyCObject_Type
;
1640 /* Hack to force loading of abstract.o */
1641 Py_ssize_t (*_Py_abstract_hack
)(PyObject
*) = PyObject_Size
;
1644 /* Python's malloc wrappers (see pymem.h) */
1647 PyMem_Malloc(size_t nbytes
)
1649 return PyMem_MALLOC(nbytes
);
1653 PyMem_Realloc(void *p
, size_t nbytes
)
1655 return PyMem_REALLOC(p
, nbytes
);
1665 /* These methods are used to control infinite recursion in repr, str, print,
1666 etc. Container objects that may recursively contain themselves,
1667 e.g. builtin dictionaries and lists, should used Py_ReprEnter() and
1668 Py_ReprLeave() to avoid infinite recursion.
1670 Py_ReprEnter() returns 0 the first time it is called for a particular
1671 object and 1 every time thereafter. It returns -1 if an exception
1672 occurred. Py_ReprLeave() has no return value.
1674 See dictobject.c and listobject.c for examples of use.
1677 #define KEY "Py_Repr"
1680 Py_ReprEnter(PyObject
*obj
)
1686 dict
= PyThreadState_GetDict();
1689 list
= PyDict_GetItemString(dict
, KEY
);
1691 list
= PyList_New(0);
1694 if (PyDict_SetItemString(dict
, KEY
, list
) < 0)
1698 i
= PyList_GET_SIZE(list
);
1700 if (PyList_GET_ITEM(list
, i
) == obj
)
1703 PyList_Append(list
, obj
);
1708 Py_ReprLeave(PyObject
*obj
)
1714 dict
= PyThreadState_GetDict();
1717 list
= PyDict_GetItemString(dict
, KEY
);
1718 if (list
== NULL
|| !PyList_Check(list
))
1720 i
= PyList_GET_SIZE(list
);
1721 /* Count backwards because we always expect obj to be list[-1] */
1723 if (PyList_GET_ITEM(list
, i
) == obj
) {
1724 PyList_SetSlice(list
, i
, i
+ 1, NULL
);
1730 /* Trashcan support. */
1732 /* Current call-stack depth of tp_dealloc calls. */
1733 int _PyTrash_delete_nesting
= 0;
1735 /* List of objects that still need to be cleaned up, singly linked via their
1736 * gc headers' gc_prev pointers.
1738 PyObject
*_PyTrash_delete_later
= NULL
;
1740 /* Add op to the _PyTrash_delete_later list. Called when the current
1741 * call-stack depth gets large. op must be a currently untracked gc'ed
1742 * object, with refcount 0. Py_DECREF must already have been called on it.
1745 _PyTrash_deposit_object(PyObject
*op
)
1747 assert(PyObject_IS_GC(op
));
1748 assert(_Py_AS_GC(op
)->gc
.gc_refs
== _PyGC_REFS_UNTRACKED
);
1749 assert(op
->ob_refcnt
== 0);
1750 _Py_AS_GC(op
)->gc
.gc_prev
= (PyGC_Head
*)_PyTrash_delete_later
;
1751 _PyTrash_delete_later
= op
;
1754 /* Dealloccate all the objects in the _PyTrash_delete_later list. Called when
1755 * the call-stack unwinds again.
1758 _PyTrash_destroy_chain(void)
1760 while (_PyTrash_delete_later
) {
1761 PyObject
*op
= _PyTrash_delete_later
;
1762 destructor dealloc
= Py_TYPE(op
)->tp_dealloc
;
1764 _PyTrash_delete_later
=
1765 (PyObject
*) _Py_AS_GC(op
)->gc
.gc_prev
;
1767 /* Call the deallocator directly. This used to try to
1768 * fool Py_DECREF into calling it indirectly, but
1769 * Py_DECREF was already called on this object, and in
1770 * assorted non-release builds calling Py_DECREF again ends
1771 * up distorting allocation statistics.
1773 assert(op
->ob_refcnt
== 0);
1774 ++_PyTrash_delete_nesting
;
1776 --_PyTrash_delete_nesting
;