2 * qemu/kvm integration, x86 specific code
4 * Copyright (C) 2006-2008 Qumranet Technologies
6 * Licensed under the terms of the GNU GPL version 2 or higher.
10 #include "config-host.h"
18 #include "libkvm-all.h"
20 #include <sys/utsname.h>
21 #include <linux/kvm_para.h>
23 #define MSR_IA32_TSC 0x10
25 static struct kvm_msr_list
*kvm_msr_list
;
26 extern unsigned int kvm_shadow_memory
;
27 static int kvm_has_msr_star
;
28 static int kvm_has_vm_hsave_pa
;
30 static int lm_capable_kernel
;
32 int kvm_qemu_create_memory_alias(uint64_t phys_start
,
36 return kvm_create_memory_alias(kvm_context
, phys_start
, len
, target_phys
);
39 int kvm_qemu_destroy_memory_alias(uint64_t phys_start
)
41 return kvm_destroy_memory_alias(kvm_context
, phys_start
);
44 int kvm_arch_qemu_create_context(void)
47 struct utsname utsname
;
50 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
52 if (kvm_shadow_memory
)
53 kvm_set_shadow_pages(kvm_context
, kvm_shadow_memory
);
55 kvm_msr_list
= kvm_get_msr_list(kvm_context
);
58 for (i
= 0; i
< kvm_msr_list
->nmsrs
; ++i
) {
59 if (kvm_msr_list
->indices
[i
] == MSR_STAR
)
61 if (kvm_msr_list
->indices
[i
] == MSR_VM_HSAVE_PA
)
62 kvm_has_vm_hsave_pa
= 1;
68 static void set_msr_entry(struct kvm_msr_entry
*entry
, uint32_t index
,
75 /* returns 0 on success, non-0 on failure */
76 static int get_msr_entry(struct kvm_msr_entry
*entry
, CPUState
*env
)
78 switch (entry
->index
) {
79 case MSR_IA32_SYSENTER_CS
:
80 env
->sysenter_cs
= entry
->data
;
82 case MSR_IA32_SYSENTER_ESP
:
83 env
->sysenter_esp
= entry
->data
;
85 case MSR_IA32_SYSENTER_EIP
:
86 env
->sysenter_eip
= entry
->data
;
89 env
->star
= entry
->data
;
93 env
->cstar
= entry
->data
;
95 case MSR_KERNELGSBASE
:
96 env
->kernelgsbase
= entry
->data
;
99 env
->fmask
= entry
->data
;
102 env
->lstar
= entry
->data
;
106 env
->tsc
= entry
->data
;
108 case MSR_VM_HSAVE_PA
:
109 env
->vm_hsave
= entry
->data
;
112 printf("Warning unknown msr index 0x%x\n", entry
->index
);
124 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
126 lhs
->selector
= rhs
->selector
;
127 lhs
->base
= rhs
->base
;
128 lhs
->limit
= rhs
->limit
;
140 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
142 unsigned flags
= rhs
->flags
;
143 lhs
->selector
= rhs
->selector
;
144 lhs
->base
= rhs
->base
;
145 lhs
->limit
= rhs
->limit
;
146 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
147 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
148 lhs
->dpl
= rhs
->selector
& 3;
149 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
150 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
151 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
152 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
153 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
157 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
159 lhs
->selector
= rhs
->selector
;
160 lhs
->base
= rhs
->base
;
161 lhs
->limit
= rhs
->limit
;
163 (rhs
->type
<< DESC_TYPE_SHIFT
)
164 | (rhs
->present
* DESC_P_MASK
)
165 | (rhs
->dpl
<< DESC_DPL_SHIFT
)
166 | (rhs
->db
<< DESC_B_SHIFT
)
167 | (rhs
->s
* DESC_S_MASK
)
168 | (rhs
->l
<< DESC_L_SHIFT
)
169 | (rhs
->g
* DESC_G_MASK
)
170 | (rhs
->avl
* DESC_AVL_MASK
);
173 void kvm_arch_load_regs(CPUState
*env
)
175 struct kvm_regs regs
;
177 struct kvm_sregs sregs
;
178 struct kvm_msr_entry msrs
[MSR_COUNT
];
181 regs
.rax
= env
->regs
[R_EAX
];
182 regs
.rbx
= env
->regs
[R_EBX
];
183 regs
.rcx
= env
->regs
[R_ECX
];
184 regs
.rdx
= env
->regs
[R_EDX
];
185 regs
.rsi
= env
->regs
[R_ESI
];
186 regs
.rdi
= env
->regs
[R_EDI
];
187 regs
.rsp
= env
->regs
[R_ESP
];
188 regs
.rbp
= env
->regs
[R_EBP
];
190 regs
.r8
= env
->regs
[8];
191 regs
.r9
= env
->regs
[9];
192 regs
.r10
= env
->regs
[10];
193 regs
.r11
= env
->regs
[11];
194 regs
.r12
= env
->regs
[12];
195 regs
.r13
= env
->regs
[13];
196 regs
.r14
= env
->regs
[14];
197 regs
.r15
= env
->regs
[15];
200 regs
.rflags
= env
->eflags
;
203 kvm_set_regs(kvm_context
, env
->cpu_index
, ®s
);
205 memset(&fpu
, 0, sizeof fpu
);
206 fpu
.fsw
= env
->fpus
& ~(7 << 11);
207 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
209 for (i
= 0; i
< 8; ++i
)
210 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
211 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
212 memcpy(fpu
.xmm
, env
->xmm_regs
, sizeof env
->xmm_regs
);
213 fpu
.mxcsr
= env
->mxcsr
;
214 kvm_set_fpu(kvm_context
, env
->cpu_index
, &fpu
);
216 memcpy(sregs
.interrupt_bitmap
, env
->interrupt_bitmap
, sizeof(sregs
.interrupt_bitmap
));
218 if ((env
->eflags
& VM_MASK
)) {
219 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
220 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
221 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
222 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
223 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
224 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
226 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
227 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
228 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
229 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
230 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
231 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
233 if (env
->cr
[0] & CR0_PE_MASK
) {
234 /* force ss cpl to cs cpl */
235 sregs
.ss
.selector
= (sregs
.ss
.selector
& ~3) |
236 (sregs
.cs
.selector
& 3);
237 sregs
.ss
.dpl
= sregs
.ss
.selector
& 3;
241 set_seg(&sregs
.tr
, &env
->tr
);
242 set_seg(&sregs
.ldt
, &env
->ldt
);
244 sregs
.idt
.limit
= env
->idt
.limit
;
245 sregs
.idt
.base
= env
->idt
.base
;
246 sregs
.gdt
.limit
= env
->gdt
.limit
;
247 sregs
.gdt
.base
= env
->gdt
.base
;
249 sregs
.cr0
= env
->cr
[0];
250 sregs
.cr2
= env
->cr
[2];
251 sregs
.cr3
= env
->cr
[3];
252 sregs
.cr4
= env
->cr
[4];
254 sregs
.cr8
= cpu_get_apic_tpr(env
);
255 sregs
.apic_base
= cpu_get_apic_base(env
);
257 sregs
.efer
= env
->efer
;
259 kvm_set_sregs(kvm_context
, env
->cpu_index
, &sregs
);
263 set_msr_entry(&msrs
[n
++], MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
264 set_msr_entry(&msrs
[n
++], MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
265 set_msr_entry(&msrs
[n
++], MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
266 if (kvm_has_msr_star
)
267 set_msr_entry(&msrs
[n
++], MSR_STAR
, env
->star
);
268 if (kvm_has_vm_hsave_pa
)
269 set_msr_entry(&msrs
[n
++], MSR_VM_HSAVE_PA
, env
->vm_hsave
);
271 if (lm_capable_kernel
) {
272 set_msr_entry(&msrs
[n
++], MSR_CSTAR
, env
->cstar
);
273 set_msr_entry(&msrs
[n
++], MSR_KERNELGSBASE
, env
->kernelgsbase
);
274 set_msr_entry(&msrs
[n
++], MSR_FMASK
, env
->fmask
);
275 set_msr_entry(&msrs
[n
++], MSR_LSTAR
, env
->lstar
);
279 rc
= kvm_set_msrs(kvm_context
, env
->cpu_index
, msrs
, n
);
281 perror("kvm_set_msrs FAILED");
284 void kvm_load_tsc(CPUState
*env
)
287 struct kvm_msr_entry msr
;
289 set_msr_entry(&msr
, MSR_IA32_TSC
, env
->tsc
);
291 rc
= kvm_set_msrs(kvm_context
, env
->cpu_index
, &msr
, 1);
293 perror("kvm_set_tsc FAILED.\n");
296 void kvm_save_mpstate(CPUState
*env
)
298 #ifdef KVM_CAP_MP_STATE
300 struct kvm_mp_state mp_state
;
302 r
= kvm_get_mpstate(kvm_context
, env
->cpu_index
, &mp_state
);
306 env
->mp_state
= mp_state
.mp_state
;
310 void kvm_load_mpstate(CPUState
*env
)
312 #ifdef KVM_CAP_MP_STATE
313 struct kvm_mp_state mp_state
= { .mp_state
= env
->mp_state
};
316 * -1 indicates that the host did not support GET_MP_STATE ioctl,
319 if (env
->mp_state
!= -1)
320 kvm_set_mpstate(kvm_context
, env
->cpu_index
, &mp_state
);
324 void kvm_arch_save_regs(CPUState
*env
)
326 struct kvm_regs regs
;
328 struct kvm_sregs sregs
;
329 struct kvm_msr_entry msrs
[MSR_COUNT
];
333 kvm_get_regs(kvm_context
, env
->cpu_index
, ®s
);
335 env
->regs
[R_EAX
] = regs
.rax
;
336 env
->regs
[R_EBX
] = regs
.rbx
;
337 env
->regs
[R_ECX
] = regs
.rcx
;
338 env
->regs
[R_EDX
] = regs
.rdx
;
339 env
->regs
[R_ESI
] = regs
.rsi
;
340 env
->regs
[R_EDI
] = regs
.rdi
;
341 env
->regs
[R_ESP
] = regs
.rsp
;
342 env
->regs
[R_EBP
] = regs
.rbp
;
344 env
->regs
[8] = regs
.r8
;
345 env
->regs
[9] = regs
.r9
;
346 env
->regs
[10] = regs
.r10
;
347 env
->regs
[11] = regs
.r11
;
348 env
->regs
[12] = regs
.r12
;
349 env
->regs
[13] = regs
.r13
;
350 env
->regs
[14] = regs
.r14
;
351 env
->regs
[15] = regs
.r15
;
354 env
->eflags
= regs
.rflags
;
357 kvm_get_fpu(kvm_context
, env
->cpu_index
, &fpu
);
358 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
361 for (i
= 0; i
< 8; ++i
)
362 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
363 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
364 memcpy(env
->xmm_regs
, fpu
.xmm
, sizeof env
->xmm_regs
);
365 env
->mxcsr
= fpu
.mxcsr
;
367 kvm_get_sregs(kvm_context
, env
->cpu_index
, &sregs
);
369 memcpy(env
->interrupt_bitmap
, sregs
.interrupt_bitmap
, sizeof(env
->interrupt_bitmap
));
371 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
372 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
373 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
374 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
375 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
376 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
378 get_seg(&env
->tr
, &sregs
.tr
);
379 get_seg(&env
->ldt
, &sregs
.ldt
);
381 env
->idt
.limit
= sregs
.idt
.limit
;
382 env
->idt
.base
= sregs
.idt
.base
;
383 env
->gdt
.limit
= sregs
.gdt
.limit
;
384 env
->gdt
.base
= sregs
.gdt
.base
;
386 env
->cr
[0] = sregs
.cr0
;
387 env
->cr
[2] = sregs
.cr2
;
388 env
->cr
[3] = sregs
.cr3
;
389 env
->cr
[4] = sregs
.cr4
;
391 cpu_set_apic_base(env
, sregs
.apic_base
);
393 env
->efer
= sregs
.efer
;
394 //cpu_set_apic_tpr(env, sregs.cr8);
396 #define HFLAG_COPY_MASK ~( \
397 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
398 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
399 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
400 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
404 hflags
= (env
->segs
[R_CS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
405 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
406 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
407 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
408 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
409 hflags
|= (env
->cr
[4] & CR4_OSFXSR_MASK
) <<
410 (HF_OSFXSR_SHIFT
- CR4_OSFXSR_SHIFT
);
412 if (env
->efer
& MSR_EFER_LMA
) {
413 hflags
|= HF_LMA_MASK
;
416 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
417 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
419 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
420 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
421 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
422 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
423 if (!(env
->cr
[0] & CR0_PE_MASK
) ||
424 (env
->eflags
& VM_MASK
) ||
425 !(hflags
& HF_CS32_MASK
)) {
426 hflags
|= HF_ADDSEG_MASK
;
428 hflags
|= ((env
->segs
[R_DS
].base
|
429 env
->segs
[R_ES
].base
|
430 env
->segs
[R_SS
].base
) != 0) <<
434 env
->hflags
= (env
->hflags
& HFLAG_COPY_MASK
) | hflags
;
438 msrs
[n
++].index
= MSR_IA32_SYSENTER_CS
;
439 msrs
[n
++].index
= MSR_IA32_SYSENTER_ESP
;
440 msrs
[n
++].index
= MSR_IA32_SYSENTER_EIP
;
441 if (kvm_has_msr_star
)
442 msrs
[n
++].index
= MSR_STAR
;
443 msrs
[n
++].index
= MSR_IA32_TSC
;
444 if (kvm_has_vm_hsave_pa
)
445 msrs
[n
++].index
= MSR_VM_HSAVE_PA
;
447 if (lm_capable_kernel
) {
448 msrs
[n
++].index
= MSR_CSTAR
;
449 msrs
[n
++].index
= MSR_KERNELGSBASE
;
450 msrs
[n
++].index
= MSR_FMASK
;
451 msrs
[n
++].index
= MSR_LSTAR
;
454 rc
= kvm_get_msrs(kvm_context
, env
->cpu_index
, msrs
, n
);
456 perror("kvm_get_msrs FAILED");
459 n
= rc
; /* actual number of MSRs */
460 for (i
=0 ; i
<n
; i
++) {
461 if (get_msr_entry(&msrs
[i
], env
))
467 static void do_cpuid_ent(struct kvm_cpuid_entry2
*e
, uint32_t function
,
468 uint32_t count
, CPUState
*env
)
470 env
->regs
[R_EAX
] = function
;
471 env
->regs
[R_ECX
] = count
;
472 qemu_kvm_cpuid_on_env(env
);
473 e
->function
= function
;
476 e
->eax
= env
->regs
[R_EAX
];
477 e
->ebx
= env
->regs
[R_EBX
];
478 e
->ecx
= env
->regs
[R_ECX
];
479 e
->edx
= env
->regs
[R_EDX
];
482 struct kvm_para_features
{
485 } para_features
[] = {
486 #ifdef KVM_CAP_CLOCKSOURCE
487 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
489 #ifdef KVM_CAP_NOP_IO_DELAY
490 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
492 #ifdef KVM_CAP_PV_MMU
493 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
495 #ifdef KVM_CAP_CR3_CACHE
496 { KVM_CAP_CR3_CACHE
, KVM_FEATURE_CR3_CACHE
},
501 static int get_para_features(kvm_context_t kvm_context
)
505 for (i
= 0; i
< ARRAY_SIZE(para_features
)-1; i
++) {
506 if (kvm_check_extension(kvm_context
, para_features
[i
].cap
))
507 features
|= (1 << para_features
[i
].feature
);
513 static void kvm_trim_features(uint32_t *features
, uint32_t supported
)
518 for (i
= 0; i
< 32; ++i
) {
520 if ((*features
& mask
) && !(supported
& mask
)) {
526 int kvm_arch_qemu_init_env(CPUState
*cenv
)
528 struct kvm_cpuid_entry2 cpuid_ent
[100];
529 #ifdef KVM_CPUID_SIGNATURE
530 struct kvm_cpuid_entry2
*pv_ent
;
531 uint32_t signature
[3];
535 uint32_t i
, j
, limit
;
537 qemu_kvm_load_lapic(cenv
);
541 #ifdef KVM_CPUID_SIGNATURE
542 /* Paravirtualization CPUIDs */
543 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
544 pv_ent
= &cpuid_ent
[cpuid_nent
++];
545 memset(pv_ent
, 0, sizeof(*pv_ent
));
546 pv_ent
->function
= KVM_CPUID_SIGNATURE
;
548 pv_ent
->ebx
= signature
[0];
549 pv_ent
->ecx
= signature
[1];
550 pv_ent
->edx
= signature
[2];
552 pv_ent
= &cpuid_ent
[cpuid_nent
++];
553 memset(pv_ent
, 0, sizeof(*pv_ent
));
554 pv_ent
->function
= KVM_CPUID_FEATURES
;
555 pv_ent
->eax
= get_para_features(kvm_context
);
558 copy
.regs
[R_EAX
] = 0;
559 qemu_kvm_cpuid_on_env(©
);
560 limit
= copy
.regs
[R_EAX
];
562 for (i
= 0; i
<= limit
; ++i
) {
563 if (i
== 4 || i
== 0xb || i
== 0xd) {
565 do_cpuid_ent(&cpuid_ent
[cpuid_nent
], i
, j
, ©
);
567 cpuid_ent
[cpuid_nent
].flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
568 cpuid_ent
[cpuid_nent
].index
= j
;
572 if (i
== 4 && copy
.regs
[R_EAX
] == 0)
574 if (i
== 0xb && !(copy
.regs
[R_ECX
] & 0xff00))
576 if (i
== 0xd && copy
.regs
[R_EAX
] == 0)
580 do_cpuid_ent(&cpuid_ent
[cpuid_nent
++], i
, 0, ©
);
583 copy
.regs
[R_EAX
] = 0x80000000;
584 qemu_kvm_cpuid_on_env(©
);
585 limit
= copy
.regs
[R_EAX
];
587 for (i
= 0x80000000; i
<= limit
; ++i
)
588 do_cpuid_ent(&cpuid_ent
[cpuid_nent
++], i
, 0, ©
);
590 kvm_setup_cpuid2(kvm_context
, cenv
->cpu_index
, cpuid_nent
, cpuid_ent
);
592 kvm_trim_features(&cenv
->cpuid_features
,
593 kvm_arch_get_supported_cpuid(cenv
, 1, R_EDX
));
594 kvm_trim_features(&cenv
->cpuid_ext_features
,
595 kvm_arch_get_supported_cpuid(cenv
, 1, R_ECX
));
596 kvm_trim_features(&cenv
->cpuid_ext2_features
,
597 kvm_arch_get_supported_cpuid(cenv
, 0x80000001, R_EDX
));
598 kvm_trim_features(&cenv
->cpuid_ext3_features
,
599 kvm_arch_get_supported_cpuid(cenv
, 0x80000001, R_ECX
));
604 int kvm_arch_halt(void *opaque
, int vcpu
)
606 CPUState
*env
= cpu_single_env
;
608 if (!((env
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
609 (env
->eflags
& IF_MASK
)) &&
610 !(env
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
612 env
->exception_index
= EXCP_HLT
;
617 void kvm_arch_pre_kvm_run(void *opaque
, CPUState
*env
)
619 if (!kvm_irqchip_in_kernel(kvm_context
))
620 kvm_set_cr8(kvm_context
, env
->cpu_index
, cpu_get_apic_tpr(env
));
623 void kvm_arch_post_kvm_run(void *opaque
, CPUState
*env
)
625 int vcpu
= env
->cpu_index
;
627 cpu_single_env
= env
;
629 env
->eflags
= kvm_get_interrupt_flag(kvm_context
, vcpu
)
630 ? env
->eflags
| IF_MASK
: env
->eflags
& ~IF_MASK
;
632 cpu_set_apic_tpr(env
, kvm_get_cr8(kvm_context
, vcpu
));
633 cpu_set_apic_base(env
, kvm_get_apic_base(kvm_context
, vcpu
));
636 int kvm_arch_has_work(CPUState
*env
)
638 if (env
->exit_request
||
639 ((env
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
640 (env
->eflags
& IF_MASK
)) ||
641 (env
->interrupt_request
& CPU_INTERRUPT_NMI
))
646 int kvm_arch_try_push_interrupts(void *opaque
)
648 CPUState
*env
= cpu_single_env
;
651 if (kvm_is_ready_for_interrupt_injection(kvm_context
, env
->cpu_index
) &&
652 (env
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
653 (env
->eflags
& IF_MASK
)) {
654 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
655 irq
= cpu_get_pic_interrupt(env
);
657 r
= kvm_inject_irq(kvm_context
, env
->cpu_index
, irq
);
659 printf("cpu %d fail inject %x\n", env
->cpu_index
, irq
);
663 return (env
->interrupt_request
& CPU_INTERRUPT_HARD
) != 0;
666 #ifdef KVM_CAP_USER_NMI
667 void kvm_arch_push_nmi(void *opaque
)
669 CPUState
*env
= cpu_single_env
;
672 if (likely(!(env
->interrupt_request
& CPU_INTERRUPT_NMI
)))
675 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
676 r
= kvm_inject_nmi(kvm_context
, env
->cpu_index
);
678 printf("cpu %d fail inject NMI\n", env
->cpu_index
);
680 #endif /* KVM_CAP_USER_NMI */
682 void kvm_arch_update_regs_for_sipi(CPUState
*env
)
684 SegmentCache cs
= env
->segs
[R_CS
];
686 kvm_arch_save_regs(env
);
687 env
->segs
[R_CS
] = cs
;
689 kvm_arch_load_regs(env
);
692 int handle_tpr_access(void *opaque
, int vcpu
,
693 uint64_t rip
, int is_write
)
695 kvm_tpr_access_report(cpu_single_env
, rip
, is_write
);
699 void kvm_arch_cpu_reset(CPUState
*env
)
701 kvm_arch_load_regs(env
);
702 if (env
->cpu_index
!= 0) {
703 if (kvm_irqchip_in_kernel(kvm_context
)) {
704 #ifdef KVM_CAP_MP_STATE
705 kvm_reset_mpstate(kvm_context
, env
->cpu_index
);
708 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
710 env
->exception_index
= EXCP_HLT
;
715 int kvm_arch_insert_sw_breakpoint(CPUState
*env
, struct kvm_sw_breakpoint
*bp
)
719 if (cpu_memory_rw_debug(env
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
720 cpu_memory_rw_debug(env
, bp
->pc
, &int3
, 1, 1))
725 int kvm_arch_remove_sw_breakpoint(CPUState
*env
, struct kvm_sw_breakpoint
*bp
)
729 if (cpu_memory_rw_debug(env
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
730 cpu_memory_rw_debug(env
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1))
735 #ifdef KVM_CAP_SET_GUEST_DEBUG
742 static int nb_hw_breakpoint
;
744 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
748 for (n
= 0; n
< nb_hw_breakpoint
; n
++)
749 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
750 (hw_breakpoint
[n
].len
== len
|| len
== -1))
755 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
756 target_ulong len
, int type
)
759 case GDB_BREAKPOINT_HW
:
762 case GDB_WATCHPOINT_WRITE
:
763 case GDB_WATCHPOINT_ACCESS
:
770 if (addr
& (len
- 1))
781 if (nb_hw_breakpoint
== 4)
784 if (find_hw_breakpoint(addr
, len
, type
) >= 0)
787 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
788 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
789 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
795 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
796 target_ulong len
, int type
)
800 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
805 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
810 void kvm_arch_remove_all_hw_breakpoints(void)
812 nb_hw_breakpoint
= 0;
815 static CPUWatchpoint hw_watchpoint
;
817 int kvm_arch_debug(struct kvm_debug_exit_arch
*arch_info
)
822 if (arch_info
->exception
== 1) {
823 if (arch_info
->dr6
& (1 << 14)) {
824 if (cpu_single_env
->singlestep_enabled
)
827 for (n
= 0; n
< 4; n
++)
828 if (arch_info
->dr6
& (1 << n
))
829 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
835 cpu_single_env
->watchpoint_hit
= &hw_watchpoint
;
836 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
837 hw_watchpoint
.flags
= BP_MEM_WRITE
;
841 cpu_single_env
->watchpoint_hit
= &hw_watchpoint
;
842 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
843 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
847 } else if (kvm_find_sw_breakpoint(arch_info
->pc
))
851 kvm_update_guest_debug(cpu_single_env
,
852 (arch_info
->exception
== 1) ?
853 KVM_GUESTDBG_INJECT_DB
: KVM_GUESTDBG_INJECT_BP
);
858 void kvm_arch_update_guest_debug(CPUState
*env
, struct kvm_guest_debug
*dbg
)
860 const uint8_t type_code
[] = {
861 [GDB_BREAKPOINT_HW
] = 0x0,
862 [GDB_WATCHPOINT_WRITE
] = 0x1,
863 [GDB_WATCHPOINT_ACCESS
] = 0x3
865 const uint8_t len_code
[] = {
866 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
870 if (!TAILQ_EMPTY(&kvm_sw_breakpoints
))
871 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
873 if (nb_hw_breakpoint
> 0) {
874 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
875 dbg
->arch
.debugreg
[7] = 0x0600;
876 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
877 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
878 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
879 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
880 (len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
886 void kvm_arch_do_ioperm(void *_data
)
888 struct ioperm_data
*data
= _data
;
889 ioperm(data
->start_port
, data
->num
, data
->turn_on
);
893 * Setup x86 specific IRQ routing
895 int kvm_arch_init_irq_routing(void)
899 if (kvm_irqchip
&& kvm_has_gsi_routing(kvm_context
)) {
900 kvm_clear_gsi_routes(kvm_context
);
901 for (i
= 0; i
< 8; ++i
) {
904 r
= kvm_add_irq_route(kvm_context
, i
, KVM_IRQCHIP_PIC_MASTER
, i
);
908 for (i
= 8; i
< 16; ++i
) {
909 r
= kvm_add_irq_route(kvm_context
, i
, KVM_IRQCHIP_PIC_SLAVE
, i
- 8);
913 for (i
= 0; i
< 24; ++i
) {
914 r
= kvm_add_irq_route(kvm_context
, i
, KVM_IRQCHIP_IOAPIC
, i
);
918 kvm_commit_irq_routes(kvm_context
);
923 uint32_t kvm_arch_get_supported_cpuid(CPUState
*env
, uint32_t function
,
926 return kvm_get_supported_cpuid(kvm_context
, function
, reg
);