Replace -no-virtio-balloon by -balloon
[qemu-kvm/fedora.git] / hw / omap_dma.c
blobe31a14b832a3a41ed46794c59356163774c738ea
1 /*
2 * TI OMAP DMA gigacell.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
5 * Copyright (C) 2007-2008 Lauro Ramos Venancio <lauro.venancio@indt.org.br>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of
10 * the License, or (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21 #include "qemu-common.h"
22 #include "qemu-timer.h"
23 #include "omap.h"
24 #include "irq.h"
25 #include "soc_dma.h"
27 struct omap_dma_channel_s {
28 /* transfer data */
29 int burst[2];
30 int pack[2];
31 int endian[2];
32 int endian_lock[2];
33 int translate[2];
34 enum omap_dma_port port[2];
35 target_phys_addr_t addr[2];
36 omap_dma_addressing_t mode[2];
37 uint32_t elements;
38 uint16_t frames;
39 int32_t frame_index[2];
40 int16_t element_index[2];
41 int data_type;
43 /* transfer type */
44 int transparent_copy;
45 int constant_fill;
46 uint32_t color;
47 int prefetch;
49 /* auto init and linked channel data */
50 int end_prog;
51 int repeat;
52 int auto_init;
53 int link_enabled;
54 int link_next_ch;
56 /* interruption data */
57 int interrupts;
58 int status;
59 int cstatus;
61 /* state data */
62 int active;
63 int enable;
64 int sync;
65 int src_sync;
66 int pending_request;
67 int waiting_end_prog;
68 uint16_t cpc;
69 int set_update;
71 /* sync type */
72 int fs;
73 int bs;
75 /* compatibility */
76 int omap_3_1_compatible_disable;
78 qemu_irq irq;
79 struct omap_dma_channel_s *sibling;
81 struct omap_dma_reg_set_s {
82 target_phys_addr_t src, dest;
83 int frame;
84 int element;
85 int pck_element;
86 int frame_delta[2];
87 int elem_delta[2];
88 int frames;
89 int elements;
90 int pck_elements;
91 } active_set;
93 struct soc_dma_ch_s *dma;
95 /* unused parameters */
96 int write_mode;
97 int priority;
98 int interleave_disabled;
99 int type;
100 int suspend;
101 int buf_disable;
104 struct omap_dma_s {
105 struct soc_dma_s *dma;
107 struct omap_mpu_state_s *mpu;
108 omap_clk clk;
109 qemu_irq irq[4];
110 void (*intr_update)(struct omap_dma_s *s);
111 enum omap_dma_model model;
112 int omap_3_1_mapping_disabled;
114 uint32_t gcr;
115 uint32_t ocp;
116 uint32_t caps[5];
117 uint32_t irqen[4];
118 uint32_t irqstat[4];
120 int chans;
121 struct omap_dma_channel_s ch[32];
122 struct omap_dma_lcd_channel_s lcd_ch;
125 /* Interrupts */
126 #define TIMEOUT_INTR (1 << 0)
127 #define EVENT_DROP_INTR (1 << 1)
128 #define HALF_FRAME_INTR (1 << 2)
129 #define END_FRAME_INTR (1 << 3)
130 #define LAST_FRAME_INTR (1 << 4)
131 #define END_BLOCK_INTR (1 << 5)
132 #define SYNC (1 << 6)
133 #define END_PKT_INTR (1 << 7)
134 #define TRANS_ERR_INTR (1 << 8)
135 #define MISALIGN_INTR (1 << 11)
137 static inline void omap_dma_interrupts_update(struct omap_dma_s *s)
139 return s->intr_update(s);
142 static void omap_dma_channel_load(struct omap_dma_channel_s *ch)
144 struct omap_dma_reg_set_s *a = &ch->active_set;
145 int i, normal;
146 int omap_3_1 = !ch->omap_3_1_compatible_disable;
149 * TODO: verify address ranges and alignment
150 * TODO: port endianness
153 a->src = ch->addr[0];
154 a->dest = ch->addr[1];
155 a->frames = ch->frames;
156 a->elements = ch->elements;
157 a->pck_elements = ch->frame_index[!ch->src_sync];
158 a->frame = 0;
159 a->element = 0;
160 a->pck_element = 0;
162 if (unlikely(!ch->elements || !ch->frames)) {
163 printf("%s: bad DMA request\n", __FUNCTION__);
164 return;
167 for (i = 0; i < 2; i ++)
168 switch (ch->mode[i]) {
169 case constant:
170 a->elem_delta[i] = 0;
171 a->frame_delta[i] = 0;
172 break;
173 case post_incremented:
174 a->elem_delta[i] = ch->data_type;
175 a->frame_delta[i] = 0;
176 break;
177 case single_index:
178 a->elem_delta[i] = ch->data_type +
179 ch->element_index[omap_3_1 ? 0 : i] - 1;
180 a->frame_delta[i] = 0;
181 break;
182 case double_index:
183 a->elem_delta[i] = ch->data_type +
184 ch->element_index[omap_3_1 ? 0 : i] - 1;
185 a->frame_delta[i] = ch->frame_index[omap_3_1 ? 0 : i] -
186 ch->element_index[omap_3_1 ? 0 : i];
187 break;
188 default:
189 break;
192 normal = !ch->transparent_copy && !ch->constant_fill &&
193 /* FIFO is big-endian so either (ch->endian[n] == 1) OR
194 * (ch->endian_lock[n] == 1) mean no endianism conversion. */
195 (ch->endian[0] | ch->endian_lock[0]) ==
196 (ch->endian[1] | ch->endian_lock[1]);
197 for (i = 0; i < 2; i ++) {
198 /* TODO: for a->frame_delta[i] > 0 still use the fast path, just
199 * limit min_elems in omap_dma_transfer_setup to the nearest frame
200 * end. */
201 if (!a->elem_delta[i] && normal &&
202 (a->frames == 1 || !a->frame_delta[i]))
203 ch->dma->type[i] = soc_dma_access_const;
204 else if (a->elem_delta[i] == ch->data_type && normal &&
205 (a->frames == 1 || !a->frame_delta[i]))
206 ch->dma->type[i] = soc_dma_access_linear;
207 else
208 ch->dma->type[i] = soc_dma_access_other;
210 ch->dma->vaddr[i] = ch->addr[i];
212 soc_dma_ch_update(ch->dma);
215 static void omap_dma_activate_channel(struct omap_dma_s *s,
216 struct omap_dma_channel_s *ch)
218 if (!ch->active) {
219 if (ch->set_update) {
220 /* It's not clear when the active set is supposed to be
221 * loaded from registers. We're already loading it when the
222 * channel is enabled, and for some guests this is not enough
223 * but that may be also because of a race condition (no
224 * delays in qemu) in the guest code, which we're just
225 * working around here. */
226 omap_dma_channel_load(ch);
227 ch->set_update = 0;
230 ch->active = 1;
231 soc_dma_set_request(ch->dma, 1);
232 if (ch->sync)
233 ch->status |= SYNC;
237 static void omap_dma_deactivate_channel(struct omap_dma_s *s,
238 struct omap_dma_channel_s *ch)
240 /* Update cpc */
241 ch->cpc = ch->active_set.dest & 0xffff;
243 if (ch->pending_request && !ch->waiting_end_prog && ch->enable) {
244 /* Don't deactivate the channel */
245 ch->pending_request = 0;
246 return;
249 /* Don't deactive the channel if it is synchronized and the DMA request is
250 active */
251 if (ch->sync && ch->enable && (s->dma->drqbmp & (1 << ch->sync)))
252 return;
254 if (ch->active) {
255 ch->active = 0;
256 ch->status &= ~SYNC;
257 soc_dma_set_request(ch->dma, 0);
261 static void omap_dma_enable_channel(struct omap_dma_s *s,
262 struct omap_dma_channel_s *ch)
264 if (!ch->enable) {
265 ch->enable = 1;
266 ch->waiting_end_prog = 0;
267 omap_dma_channel_load(ch);
268 /* TODO: theoretically if ch->sync && ch->prefetch &&
269 * !s->dma->drqbmp[ch->sync], we should also activate and fetch
270 * from source and then stall until signalled. */
271 if ((!ch->sync) || (s->dma->drqbmp & (1 << ch->sync)))
272 omap_dma_activate_channel(s, ch);
276 static void omap_dma_disable_channel(struct omap_dma_s *s,
277 struct omap_dma_channel_s *ch)
279 if (ch->enable) {
280 ch->enable = 0;
281 /* Discard any pending request */
282 ch->pending_request = 0;
283 omap_dma_deactivate_channel(s, ch);
287 static void omap_dma_channel_end_prog(struct omap_dma_s *s,
288 struct omap_dma_channel_s *ch)
290 if (ch->waiting_end_prog) {
291 ch->waiting_end_prog = 0;
292 if (!ch->sync || ch->pending_request) {
293 ch->pending_request = 0;
294 omap_dma_activate_channel(s, ch);
299 static void omap_dma_interrupts_3_1_update(struct omap_dma_s *s)
301 struct omap_dma_channel_s *ch = s->ch;
303 /* First three interrupts are shared between two channels each. */
304 if (ch[0].status | ch[6].status)
305 qemu_irq_raise(ch[0].irq);
306 if (ch[1].status | ch[7].status)
307 qemu_irq_raise(ch[1].irq);
308 if (ch[2].status | ch[8].status)
309 qemu_irq_raise(ch[2].irq);
310 if (ch[3].status)
311 qemu_irq_raise(ch[3].irq);
312 if (ch[4].status)
313 qemu_irq_raise(ch[4].irq);
314 if (ch[5].status)
315 qemu_irq_raise(ch[5].irq);
318 static void omap_dma_interrupts_3_2_update(struct omap_dma_s *s)
320 struct omap_dma_channel_s *ch = s->ch;
321 int i;
323 for (i = s->chans; i; ch ++, i --)
324 if (ch->status)
325 qemu_irq_raise(ch->irq);
328 static void omap_dma_enable_3_1_mapping(struct omap_dma_s *s)
330 s->omap_3_1_mapping_disabled = 0;
331 s->chans = 9;
332 s->intr_update = omap_dma_interrupts_3_1_update;
335 static void omap_dma_disable_3_1_mapping(struct omap_dma_s *s)
337 s->omap_3_1_mapping_disabled = 1;
338 s->chans = 16;
339 s->intr_update = omap_dma_interrupts_3_2_update;
342 static void omap_dma_process_request(struct omap_dma_s *s, int request)
344 int channel;
345 int drop_event = 0;
346 struct omap_dma_channel_s *ch = s->ch;
348 for (channel = 0; channel < s->chans; channel ++, ch ++) {
349 if (ch->enable && ch->sync == request) {
350 if (!ch->active)
351 omap_dma_activate_channel(s, ch);
352 else if (!ch->pending_request)
353 ch->pending_request = 1;
354 else {
355 /* Request collision */
356 /* Second request received while processing other request */
357 ch->status |= EVENT_DROP_INTR;
358 drop_event = 1;
363 if (drop_event)
364 omap_dma_interrupts_update(s);
367 static void omap_dma_transfer_generic(struct soc_dma_ch_s *dma)
369 uint8_t value[4];
370 struct omap_dma_channel_s *ch = dma->opaque;
371 struct omap_dma_reg_set_s *a = &ch->active_set;
372 int bytes = dma->bytes;
373 #ifdef MULTI_REQ
374 uint16_t status = ch->status;
375 #endif
377 do {
378 /* Transfer a single element */
379 /* FIXME: check the endianness */
380 if (!ch->constant_fill)
381 cpu_physical_memory_read(a->src, value, ch->data_type);
382 else
383 *(uint32_t *) value = ch->color;
385 if (!ch->transparent_copy || *(uint32_t *) value != ch->color)
386 cpu_physical_memory_write(a->dest, value, ch->data_type);
388 a->src += a->elem_delta[0];
389 a->dest += a->elem_delta[1];
390 a->element ++;
392 #ifndef MULTI_REQ
393 if (a->element == a->elements) {
394 /* End of Frame */
395 a->element = 0;
396 a->src += a->frame_delta[0];
397 a->dest += a->frame_delta[1];
398 a->frame ++;
400 /* If the channel is async, update cpc */
401 if (!ch->sync)
402 ch->cpc = a->dest & 0xffff;
404 } while ((bytes -= ch->data_type));
405 #else
406 /* If the channel is element synchronized, deactivate it */
407 if (ch->sync && !ch->fs && !ch->bs)
408 omap_dma_deactivate_channel(s, ch);
410 /* If it is the last frame, set the LAST_FRAME interrupt */
411 if (a->element == 1 && a->frame == a->frames - 1)
412 if (ch->interrupts & LAST_FRAME_INTR)
413 ch->status |= LAST_FRAME_INTR;
415 /* If the half of the frame was reached, set the HALF_FRAME
416 interrupt */
417 if (a->element == (a->elements >> 1))
418 if (ch->interrupts & HALF_FRAME_INTR)
419 ch->status |= HALF_FRAME_INTR;
421 if (ch->fs && ch->bs) {
422 a->pck_element ++;
423 /* Check if a full packet has beed transferred. */
424 if (a->pck_element == a->pck_elements) {
425 a->pck_element = 0;
427 /* Set the END_PKT interrupt */
428 if ((ch->interrupts & END_PKT_INTR) && !ch->src_sync)
429 ch->status |= END_PKT_INTR;
431 /* If the channel is packet-synchronized, deactivate it */
432 if (ch->sync)
433 omap_dma_deactivate_channel(s, ch);
437 if (a->element == a->elements) {
438 /* End of Frame */
439 a->element = 0;
440 a->src += a->frame_delta[0];
441 a->dest += a->frame_delta[1];
442 a->frame ++;
444 /* If the channel is frame synchronized, deactivate it */
445 if (ch->sync && ch->fs && !ch->bs)
446 omap_dma_deactivate_channel(s, ch);
448 /* If the channel is async, update cpc */
449 if (!ch->sync)
450 ch->cpc = a->dest & 0xffff;
452 /* Set the END_FRAME interrupt */
453 if (ch->interrupts & END_FRAME_INTR)
454 ch->status |= END_FRAME_INTR;
456 if (a->frame == a->frames) {
457 /* End of Block */
458 /* Disable the channel */
460 if (ch->omap_3_1_compatible_disable) {
461 omap_dma_disable_channel(s, ch);
462 if (ch->link_enabled)
463 omap_dma_enable_channel(s,
464 &s->ch[ch->link_next_ch]);
465 } else {
466 if (!ch->auto_init)
467 omap_dma_disable_channel(s, ch);
468 else if (ch->repeat || ch->end_prog)
469 omap_dma_channel_load(ch);
470 else {
471 ch->waiting_end_prog = 1;
472 omap_dma_deactivate_channel(s, ch);
476 if (ch->interrupts & END_BLOCK_INTR)
477 ch->status |= END_BLOCK_INTR;
480 } while (status == ch->status && ch->active);
482 omap_dma_interrupts_update(s);
483 #endif
486 enum {
487 omap_dma_intr_element_sync,
488 omap_dma_intr_last_frame,
489 omap_dma_intr_half_frame,
490 omap_dma_intr_frame,
491 omap_dma_intr_frame_sync,
492 omap_dma_intr_packet,
493 omap_dma_intr_packet_sync,
494 omap_dma_intr_block,
495 __omap_dma_intr_last,
498 static void omap_dma_transfer_setup(struct soc_dma_ch_s *dma)
500 struct omap_dma_port_if_s *src_p, *dest_p;
501 struct omap_dma_reg_set_s *a;
502 struct omap_dma_channel_s *ch = dma->opaque;
503 struct omap_dma_s *s = dma->dma->opaque;
504 int frames, min_elems, elements[__omap_dma_intr_last];
506 a = &ch->active_set;
508 src_p = &s->mpu->port[ch->port[0]];
509 dest_p = &s->mpu->port[ch->port[1]];
510 if ((!ch->constant_fill && !src_p->addr_valid(s->mpu, a->src)) ||
511 (!dest_p->addr_valid(s->mpu, a->dest))) {
512 #if 0
513 /* Bus time-out */
514 if (ch->interrupts & TIMEOUT_INTR)
515 ch->status |= TIMEOUT_INTR;
516 omap_dma_deactivate_channel(s, ch);
517 continue;
518 #endif
519 printf("%s: Bus time-out in DMA%i operation\n",
520 __FUNCTION__, dma->num);
523 min_elems = INT_MAX;
525 /* Check all the conditions that terminate the transfer starting
526 * with those that can occur the soonest. */
527 #define INTR_CHECK(cond, id, nelements) \
528 if (cond) { \
529 elements[id] = nelements; \
530 if (elements[id] < min_elems) \
531 min_elems = elements[id]; \
532 } else \
533 elements[id] = INT_MAX;
535 /* Elements */
536 INTR_CHECK(
537 ch->sync && !ch->fs && !ch->bs,
538 omap_dma_intr_element_sync,
541 /* Frames */
542 /* TODO: for transfers where entire frames can be read and written
543 * using memcpy() but a->frame_delta is non-zero, try to still do
544 * transfers using soc_dma but limit min_elems to a->elements - ...
545 * See also the TODO in omap_dma_channel_load. */
546 INTR_CHECK(
547 (ch->interrupts & LAST_FRAME_INTR) &&
548 ((a->frame < a->frames - 1) || !a->element),
549 omap_dma_intr_last_frame,
550 (a->frames - a->frame - 2) * a->elements +
551 (a->elements - a->element + 1))
552 INTR_CHECK(
553 ch->interrupts & HALF_FRAME_INTR,
554 omap_dma_intr_half_frame,
555 (a->elements >> 1) +
556 (a->element >= (a->elements >> 1) ? a->elements : 0) -
557 a->element)
558 INTR_CHECK(
559 ch->sync && ch->fs && (ch->interrupts & END_FRAME_INTR),
560 omap_dma_intr_frame,
561 a->elements - a->element)
562 INTR_CHECK(
563 ch->sync && ch->fs && !ch->bs,
564 omap_dma_intr_frame_sync,
565 a->elements - a->element)
567 /* Packets */
568 INTR_CHECK(
569 ch->fs && ch->bs &&
570 (ch->interrupts & END_PKT_INTR) && !ch->src_sync,
571 omap_dma_intr_packet,
572 a->pck_elements - a->pck_element)
573 INTR_CHECK(
574 ch->fs && ch->bs && ch->sync,
575 omap_dma_intr_packet_sync,
576 a->pck_elements - a->pck_element)
578 /* Blocks */
579 INTR_CHECK(
581 omap_dma_intr_block,
582 (a->frames - a->frame - 1) * a->elements +
583 (a->elements - a->element))
585 dma->bytes = min_elems * ch->data_type;
587 /* Set appropriate interrupts and/or deactivate channels */
589 #ifdef MULTI_REQ
590 /* TODO: should all of this only be done if dma->update, and otherwise
591 * inside omap_dma_transfer_generic below - check what's faster. */
592 if (dma->update) {
593 #endif
595 /* If the channel is element synchronized, deactivate it */
596 if (min_elems == elements[omap_dma_intr_element_sync])
597 omap_dma_deactivate_channel(s, ch);
599 /* If it is the last frame, set the LAST_FRAME interrupt */
600 if (min_elems == elements[omap_dma_intr_last_frame])
601 ch->status |= LAST_FRAME_INTR;
603 /* If exactly half of the frame was reached, set the HALF_FRAME
604 interrupt */
605 if (min_elems == elements[omap_dma_intr_half_frame])
606 ch->status |= HALF_FRAME_INTR;
608 /* If a full packet has been transferred, set the END_PKT interrupt */
609 if (min_elems == elements[omap_dma_intr_packet])
610 ch->status |= END_PKT_INTR;
612 /* If the channel is packet-synchronized, deactivate it */
613 if (min_elems == elements[omap_dma_intr_packet_sync])
614 omap_dma_deactivate_channel(s, ch);
616 /* If the channel is frame synchronized, deactivate it */
617 if (min_elems == elements[omap_dma_intr_frame_sync])
618 omap_dma_deactivate_channel(s, ch);
620 /* Set the END_FRAME interrupt */
621 if (min_elems == elements[omap_dma_intr_frame])
622 ch->status |= END_FRAME_INTR;
624 if (min_elems == elements[omap_dma_intr_block]) {
625 /* End of Block */
626 /* Disable the channel */
628 if (ch->omap_3_1_compatible_disable) {
629 omap_dma_disable_channel(s, ch);
630 if (ch->link_enabled)
631 omap_dma_enable_channel(s, &s->ch[ch->link_next_ch]);
632 } else {
633 if (!ch->auto_init)
634 omap_dma_disable_channel(s, ch);
635 else if (ch->repeat || ch->end_prog)
636 omap_dma_channel_load(ch);
637 else {
638 ch->waiting_end_prog = 1;
639 omap_dma_deactivate_channel(s, ch);
643 if (ch->interrupts & END_BLOCK_INTR)
644 ch->status |= END_BLOCK_INTR;
647 /* Update packet number */
648 if (ch->fs && ch->bs) {
649 a->pck_element += min_elems;
650 a->pck_element %= a->pck_elements;
653 /* TODO: check if we really need to update anything here or perhaps we
654 * can skip part of this. */
655 #ifndef MULTI_REQ
656 if (dma->update) {
657 #endif
658 a->element += min_elems;
660 frames = a->element / a->elements;
661 a->element = a->element % a->elements;
662 a->frame += frames;
663 a->src += min_elems * a->elem_delta[0] + frames * a->frame_delta[0];
664 a->dest += min_elems * a->elem_delta[1] + frames * a->frame_delta[1];
666 /* If the channel is async, update cpc */
667 if (!ch->sync && frames)
668 ch->cpc = a->dest & 0xffff;
670 /* TODO: if the destination port is IMIF or EMIFF, set the dirty
671 * bits on it. */
674 omap_dma_interrupts_update(s);
677 void omap_dma_reset(struct soc_dma_s *dma)
679 int i;
680 struct omap_dma_s *s = dma->opaque;
682 soc_dma_reset(s->dma);
683 if (s->model < omap_dma_4)
684 s->gcr = 0x0004;
685 else
686 s->gcr = 0x00010010;
687 s->ocp = 0x00000000;
688 memset(&s->irqstat, 0, sizeof(s->irqstat));
689 memset(&s->irqen, 0, sizeof(s->irqen));
690 s->lcd_ch.src = emiff;
691 s->lcd_ch.condition = 0;
692 s->lcd_ch.interrupts = 0;
693 s->lcd_ch.dual = 0;
694 if (s->model < omap_dma_4)
695 omap_dma_enable_3_1_mapping(s);
696 for (i = 0; i < s->chans; i ++) {
697 s->ch[i].suspend = 0;
698 s->ch[i].prefetch = 0;
699 s->ch[i].buf_disable = 0;
700 s->ch[i].src_sync = 0;
701 memset(&s->ch[i].burst, 0, sizeof(s->ch[i].burst));
702 memset(&s->ch[i].port, 0, sizeof(s->ch[i].port));
703 memset(&s->ch[i].mode, 0, sizeof(s->ch[i].mode));
704 memset(&s->ch[i].frame_index, 0, sizeof(s->ch[i].frame_index));
705 memset(&s->ch[i].element_index, 0, sizeof(s->ch[i].element_index));
706 memset(&s->ch[i].endian, 0, sizeof(s->ch[i].endian));
707 memset(&s->ch[i].endian_lock, 0, sizeof(s->ch[i].endian_lock));
708 memset(&s->ch[i].translate, 0, sizeof(s->ch[i].translate));
709 s->ch[i].write_mode = 0;
710 s->ch[i].data_type = 0;
711 s->ch[i].transparent_copy = 0;
712 s->ch[i].constant_fill = 0;
713 s->ch[i].color = 0x00000000;
714 s->ch[i].end_prog = 0;
715 s->ch[i].repeat = 0;
716 s->ch[i].auto_init = 0;
717 s->ch[i].link_enabled = 0;
718 if (s->model < omap_dma_4)
719 s->ch[i].interrupts = 0x0003;
720 else
721 s->ch[i].interrupts = 0x0000;
722 s->ch[i].status = 0;
723 s->ch[i].cstatus = 0;
724 s->ch[i].active = 0;
725 s->ch[i].enable = 0;
726 s->ch[i].sync = 0;
727 s->ch[i].pending_request = 0;
728 s->ch[i].waiting_end_prog = 0;
729 s->ch[i].cpc = 0x0000;
730 s->ch[i].fs = 0;
731 s->ch[i].bs = 0;
732 s->ch[i].omap_3_1_compatible_disable = 0;
733 memset(&s->ch[i].active_set, 0, sizeof(s->ch[i].active_set));
734 s->ch[i].priority = 0;
735 s->ch[i].interleave_disabled = 0;
736 s->ch[i].type = 0;
740 static int omap_dma_ch_reg_read(struct omap_dma_s *s,
741 struct omap_dma_channel_s *ch, int reg, uint16_t *value)
743 switch (reg) {
744 case 0x00: /* SYS_DMA_CSDP_CH0 */
745 *value = (ch->burst[1] << 14) |
746 (ch->pack[1] << 13) |
747 (ch->port[1] << 9) |
748 (ch->burst[0] << 7) |
749 (ch->pack[0] << 6) |
750 (ch->port[0] << 2) |
751 (ch->data_type >> 1);
752 break;
754 case 0x02: /* SYS_DMA_CCR_CH0 */
755 if (s->model <= omap_dma_3_1)
756 *value = 0 << 10; /* FIFO_FLUSH reads as 0 */
757 else
758 *value = ch->omap_3_1_compatible_disable << 10;
759 *value |= (ch->mode[1] << 14) |
760 (ch->mode[0] << 12) |
761 (ch->end_prog << 11) |
762 (ch->repeat << 9) |
763 (ch->auto_init << 8) |
764 (ch->enable << 7) |
765 (ch->priority << 6) |
766 (ch->fs << 5) | ch->sync;
767 break;
769 case 0x04: /* SYS_DMA_CICR_CH0 */
770 *value = ch->interrupts;
771 break;
773 case 0x06: /* SYS_DMA_CSR_CH0 */
774 *value = ch->status;
775 ch->status &= SYNC;
776 if (!ch->omap_3_1_compatible_disable && ch->sibling) {
777 *value |= (ch->sibling->status & 0x3f) << 6;
778 ch->sibling->status &= SYNC;
780 qemu_irq_lower(ch->irq);
781 break;
783 case 0x08: /* SYS_DMA_CSSA_L_CH0 */
784 *value = ch->addr[0] & 0x0000ffff;
785 break;
787 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
788 *value = ch->addr[0] >> 16;
789 break;
791 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
792 *value = ch->addr[1] & 0x0000ffff;
793 break;
795 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
796 *value = ch->addr[1] >> 16;
797 break;
799 case 0x10: /* SYS_DMA_CEN_CH0 */
800 *value = ch->elements;
801 break;
803 case 0x12: /* SYS_DMA_CFN_CH0 */
804 *value = ch->frames;
805 break;
807 case 0x14: /* SYS_DMA_CFI_CH0 */
808 *value = ch->frame_index[0];
809 break;
811 case 0x16: /* SYS_DMA_CEI_CH0 */
812 *value = ch->element_index[0];
813 break;
815 case 0x18: /* SYS_DMA_CPC_CH0 or DMA_CSAC */
816 if (ch->omap_3_1_compatible_disable)
817 *value = ch->active_set.src & 0xffff; /* CSAC */
818 else
819 *value = ch->cpc;
820 break;
822 case 0x1a: /* DMA_CDAC */
823 *value = ch->active_set.dest & 0xffff; /* CDAC */
824 break;
826 case 0x1c: /* DMA_CDEI */
827 *value = ch->element_index[1];
828 break;
830 case 0x1e: /* DMA_CDFI */
831 *value = ch->frame_index[1];
832 break;
834 case 0x20: /* DMA_COLOR_L */
835 *value = ch->color & 0xffff;
836 break;
838 case 0x22: /* DMA_COLOR_U */
839 *value = ch->color >> 16;
840 break;
842 case 0x24: /* DMA_CCR2 */
843 *value = (ch->bs << 2) |
844 (ch->transparent_copy << 1) |
845 ch->constant_fill;
846 break;
848 case 0x28: /* DMA_CLNK_CTRL */
849 *value = (ch->link_enabled << 15) |
850 (ch->link_next_ch & 0xf);
851 break;
853 case 0x2a: /* DMA_LCH_CTRL */
854 *value = (ch->interleave_disabled << 15) |
855 ch->type;
856 break;
858 default:
859 return 1;
861 return 0;
864 static int omap_dma_ch_reg_write(struct omap_dma_s *s,
865 struct omap_dma_channel_s *ch, int reg, uint16_t value)
867 switch (reg) {
868 case 0x00: /* SYS_DMA_CSDP_CH0 */
869 ch->burst[1] = (value & 0xc000) >> 14;
870 ch->pack[1] = (value & 0x2000) >> 13;
871 ch->port[1] = (enum omap_dma_port) ((value & 0x1e00) >> 9);
872 ch->burst[0] = (value & 0x0180) >> 7;
873 ch->pack[0] = (value & 0x0040) >> 6;
874 ch->port[0] = (enum omap_dma_port) ((value & 0x003c) >> 2);
875 ch->data_type = 1 << (value & 3);
876 if (ch->port[0] >= __omap_dma_port_last)
877 printf("%s: invalid DMA port %i\n", __FUNCTION__,
878 ch->port[0]);
879 if (ch->port[1] >= __omap_dma_port_last)
880 printf("%s: invalid DMA port %i\n", __FUNCTION__,
881 ch->port[1]);
882 if ((value & 3) == 3)
883 printf("%s: bad data_type for DMA channel\n", __FUNCTION__);
884 break;
886 case 0x02: /* SYS_DMA_CCR_CH0 */
887 ch->mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14);
888 ch->mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12);
889 ch->end_prog = (value & 0x0800) >> 11;
890 if (s->model >= omap_dma_3_2)
891 ch->omap_3_1_compatible_disable = (value >> 10) & 0x1;
892 ch->repeat = (value & 0x0200) >> 9;
893 ch->auto_init = (value & 0x0100) >> 8;
894 ch->priority = (value & 0x0040) >> 6;
895 ch->fs = (value & 0x0020) >> 5;
896 ch->sync = value & 0x001f;
898 if (value & 0x0080)
899 omap_dma_enable_channel(s, ch);
900 else
901 omap_dma_disable_channel(s, ch);
903 if (ch->end_prog)
904 omap_dma_channel_end_prog(s, ch);
906 break;
908 case 0x04: /* SYS_DMA_CICR_CH0 */
909 ch->interrupts = value & 0x3f;
910 break;
912 case 0x06: /* SYS_DMA_CSR_CH0 */
913 OMAP_RO_REG((target_phys_addr_t) reg);
914 break;
916 case 0x08: /* SYS_DMA_CSSA_L_CH0 */
917 ch->addr[0] &= 0xffff0000;
918 ch->addr[0] |= value;
919 break;
921 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
922 ch->addr[0] &= 0x0000ffff;
923 ch->addr[0] |= (uint32_t) value << 16;
924 break;
926 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
927 ch->addr[1] &= 0xffff0000;
928 ch->addr[1] |= value;
929 break;
931 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
932 ch->addr[1] &= 0x0000ffff;
933 ch->addr[1] |= (uint32_t) value << 16;
934 break;
936 case 0x10: /* SYS_DMA_CEN_CH0 */
937 ch->elements = value;
938 break;
940 case 0x12: /* SYS_DMA_CFN_CH0 */
941 ch->frames = value;
942 break;
944 case 0x14: /* SYS_DMA_CFI_CH0 */
945 ch->frame_index[0] = (int16_t) value;
946 break;
948 case 0x16: /* SYS_DMA_CEI_CH0 */
949 ch->element_index[0] = (int16_t) value;
950 break;
952 case 0x18: /* SYS_DMA_CPC_CH0 or DMA_CSAC */
953 OMAP_RO_REG((target_phys_addr_t) reg);
954 break;
956 case 0x1c: /* DMA_CDEI */
957 ch->element_index[1] = (int16_t) value;
958 break;
960 case 0x1e: /* DMA_CDFI */
961 ch->frame_index[1] = (int16_t) value;
962 break;
964 case 0x20: /* DMA_COLOR_L */
965 ch->color &= 0xffff0000;
966 ch->color |= value;
967 break;
969 case 0x22: /* DMA_COLOR_U */
970 ch->color &= 0xffff;
971 ch->color |= value << 16;
972 break;
974 case 0x24: /* DMA_CCR2 */
975 ch->bs = (value >> 2) & 0x1;
976 ch->transparent_copy = (value >> 1) & 0x1;
977 ch->constant_fill = value & 0x1;
978 break;
980 case 0x28: /* DMA_CLNK_CTRL */
981 ch->link_enabled = (value >> 15) & 0x1;
982 if (value & (1 << 14)) { /* Stop_Lnk */
983 ch->link_enabled = 0;
984 omap_dma_disable_channel(s, ch);
986 ch->link_next_ch = value & 0x1f;
987 break;
989 case 0x2a: /* DMA_LCH_CTRL */
990 ch->interleave_disabled = (value >> 15) & 0x1;
991 ch->type = value & 0xf;
992 break;
994 default:
995 return 1;
997 return 0;
1000 static int omap_dma_3_2_lcd_write(struct omap_dma_lcd_channel_s *s, int offset,
1001 uint16_t value)
1003 switch (offset) {
1004 case 0xbc0: /* DMA_LCD_CSDP */
1005 s->brust_f2 = (value >> 14) & 0x3;
1006 s->pack_f2 = (value >> 13) & 0x1;
1007 s->data_type_f2 = (1 << ((value >> 11) & 0x3));
1008 s->brust_f1 = (value >> 7) & 0x3;
1009 s->pack_f1 = (value >> 6) & 0x1;
1010 s->data_type_f1 = (1 << ((value >> 0) & 0x3));
1011 break;
1013 case 0xbc2: /* DMA_LCD_CCR */
1014 s->mode_f2 = (value >> 14) & 0x3;
1015 s->mode_f1 = (value >> 12) & 0x3;
1016 s->end_prog = (value >> 11) & 0x1;
1017 s->omap_3_1_compatible_disable = (value >> 10) & 0x1;
1018 s->repeat = (value >> 9) & 0x1;
1019 s->auto_init = (value >> 8) & 0x1;
1020 s->running = (value >> 7) & 0x1;
1021 s->priority = (value >> 6) & 0x1;
1022 s->bs = (value >> 4) & 0x1;
1023 break;
1025 case 0xbc4: /* DMA_LCD_CTRL */
1026 s->dst = (value >> 8) & 0x1;
1027 s->src = ((value >> 6) & 0x3) << 1;
1028 s->condition = 0;
1029 /* Assume no bus errors and thus no BUS_ERROR irq bits. */
1030 s->interrupts = (value >> 1) & 1;
1031 s->dual = value & 1;
1032 break;
1034 case 0xbc8: /* TOP_B1_L */
1035 s->src_f1_top &= 0xffff0000;
1036 s->src_f1_top |= 0x0000ffff & value;
1037 break;
1039 case 0xbca: /* TOP_B1_U */
1040 s->src_f1_top &= 0x0000ffff;
1041 s->src_f1_top |= value << 16;
1042 break;
1044 case 0xbcc: /* BOT_B1_L */
1045 s->src_f1_bottom &= 0xffff0000;
1046 s->src_f1_bottom |= 0x0000ffff & value;
1047 break;
1049 case 0xbce: /* BOT_B1_U */
1050 s->src_f1_bottom &= 0x0000ffff;
1051 s->src_f1_bottom |= (uint32_t) value << 16;
1052 break;
1054 case 0xbd0: /* TOP_B2_L */
1055 s->src_f2_top &= 0xffff0000;
1056 s->src_f2_top |= 0x0000ffff & value;
1057 break;
1059 case 0xbd2: /* TOP_B2_U */
1060 s->src_f2_top &= 0x0000ffff;
1061 s->src_f2_top |= (uint32_t) value << 16;
1062 break;
1064 case 0xbd4: /* BOT_B2_L */
1065 s->src_f2_bottom &= 0xffff0000;
1066 s->src_f2_bottom |= 0x0000ffff & value;
1067 break;
1069 case 0xbd6: /* BOT_B2_U */
1070 s->src_f2_bottom &= 0x0000ffff;
1071 s->src_f2_bottom |= (uint32_t) value << 16;
1072 break;
1074 case 0xbd8: /* DMA_LCD_SRC_EI_B1 */
1075 s->element_index_f1 = value;
1076 break;
1078 case 0xbda: /* DMA_LCD_SRC_FI_B1_L */
1079 s->frame_index_f1 &= 0xffff0000;
1080 s->frame_index_f1 |= 0x0000ffff & value;
1081 break;
1083 case 0xbf4: /* DMA_LCD_SRC_FI_B1_U */
1084 s->frame_index_f1 &= 0x0000ffff;
1085 s->frame_index_f1 |= (uint32_t) value << 16;
1086 break;
1088 case 0xbdc: /* DMA_LCD_SRC_EI_B2 */
1089 s->element_index_f2 = value;
1090 break;
1092 case 0xbde: /* DMA_LCD_SRC_FI_B2_L */
1093 s->frame_index_f2 &= 0xffff0000;
1094 s->frame_index_f2 |= 0x0000ffff & value;
1095 break;
1097 case 0xbf6: /* DMA_LCD_SRC_FI_B2_U */
1098 s->frame_index_f2 &= 0x0000ffff;
1099 s->frame_index_f2 |= (uint32_t) value << 16;
1100 break;
1102 case 0xbe0: /* DMA_LCD_SRC_EN_B1 */
1103 s->elements_f1 = value;
1104 break;
1106 case 0xbe4: /* DMA_LCD_SRC_FN_B1 */
1107 s->frames_f1 = value;
1108 break;
1110 case 0xbe2: /* DMA_LCD_SRC_EN_B2 */
1111 s->elements_f2 = value;
1112 break;
1114 case 0xbe6: /* DMA_LCD_SRC_FN_B2 */
1115 s->frames_f2 = value;
1116 break;
1118 case 0xbea: /* DMA_LCD_LCH_CTRL */
1119 s->lch_type = value & 0xf;
1120 break;
1122 default:
1123 return 1;
1125 return 0;
1128 static int omap_dma_3_2_lcd_read(struct omap_dma_lcd_channel_s *s, int offset,
1129 uint16_t *ret)
1131 switch (offset) {
1132 case 0xbc0: /* DMA_LCD_CSDP */
1133 *ret = (s->brust_f2 << 14) |
1134 (s->pack_f2 << 13) |
1135 ((s->data_type_f2 >> 1) << 11) |
1136 (s->brust_f1 << 7) |
1137 (s->pack_f1 << 6) |
1138 ((s->data_type_f1 >> 1) << 0);
1139 break;
1141 case 0xbc2: /* DMA_LCD_CCR */
1142 *ret = (s->mode_f2 << 14) |
1143 (s->mode_f1 << 12) |
1144 (s->end_prog << 11) |
1145 (s->omap_3_1_compatible_disable << 10) |
1146 (s->repeat << 9) |
1147 (s->auto_init << 8) |
1148 (s->running << 7) |
1149 (s->priority << 6) |
1150 (s->bs << 4);
1151 break;
1153 case 0xbc4: /* DMA_LCD_CTRL */
1154 qemu_irq_lower(s->irq);
1155 *ret = (s->dst << 8) |
1156 ((s->src & 0x6) << 5) |
1157 (s->condition << 3) |
1158 (s->interrupts << 1) |
1159 s->dual;
1160 break;
1162 case 0xbc8: /* TOP_B1_L */
1163 *ret = s->src_f1_top & 0xffff;
1164 break;
1166 case 0xbca: /* TOP_B1_U */
1167 *ret = s->src_f1_top >> 16;
1168 break;
1170 case 0xbcc: /* BOT_B1_L */
1171 *ret = s->src_f1_bottom & 0xffff;
1172 break;
1174 case 0xbce: /* BOT_B1_U */
1175 *ret = s->src_f1_bottom >> 16;
1176 break;
1178 case 0xbd0: /* TOP_B2_L */
1179 *ret = s->src_f2_top & 0xffff;
1180 break;
1182 case 0xbd2: /* TOP_B2_U */
1183 *ret = s->src_f2_top >> 16;
1184 break;
1186 case 0xbd4: /* BOT_B2_L */
1187 *ret = s->src_f2_bottom & 0xffff;
1188 break;
1190 case 0xbd6: /* BOT_B2_U */
1191 *ret = s->src_f2_bottom >> 16;
1192 break;
1194 case 0xbd8: /* DMA_LCD_SRC_EI_B1 */
1195 *ret = s->element_index_f1;
1196 break;
1198 case 0xbda: /* DMA_LCD_SRC_FI_B1_L */
1199 *ret = s->frame_index_f1 & 0xffff;
1200 break;
1202 case 0xbf4: /* DMA_LCD_SRC_FI_B1_U */
1203 *ret = s->frame_index_f1 >> 16;
1204 break;
1206 case 0xbdc: /* DMA_LCD_SRC_EI_B2 */
1207 *ret = s->element_index_f2;
1208 break;
1210 case 0xbde: /* DMA_LCD_SRC_FI_B2_L */
1211 *ret = s->frame_index_f2 & 0xffff;
1212 break;
1214 case 0xbf6: /* DMA_LCD_SRC_FI_B2_U */
1215 *ret = s->frame_index_f2 >> 16;
1216 break;
1218 case 0xbe0: /* DMA_LCD_SRC_EN_B1 */
1219 *ret = s->elements_f1;
1220 break;
1222 case 0xbe4: /* DMA_LCD_SRC_FN_B1 */
1223 *ret = s->frames_f1;
1224 break;
1226 case 0xbe2: /* DMA_LCD_SRC_EN_B2 */
1227 *ret = s->elements_f2;
1228 break;
1230 case 0xbe6: /* DMA_LCD_SRC_FN_B2 */
1231 *ret = s->frames_f2;
1232 break;
1234 case 0xbea: /* DMA_LCD_LCH_CTRL */
1235 *ret = s->lch_type;
1236 break;
1238 default:
1239 return 1;
1241 return 0;
1244 static int omap_dma_3_1_lcd_write(struct omap_dma_lcd_channel_s *s, int offset,
1245 uint16_t value)
1247 switch (offset) {
1248 case 0x300: /* SYS_DMA_LCD_CTRL */
1249 s->src = (value & 0x40) ? imif : emiff;
1250 s->condition = 0;
1251 /* Assume no bus errors and thus no BUS_ERROR irq bits. */
1252 s->interrupts = (value >> 1) & 1;
1253 s->dual = value & 1;
1254 break;
1256 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
1257 s->src_f1_top &= 0xffff0000;
1258 s->src_f1_top |= 0x0000ffff & value;
1259 break;
1261 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
1262 s->src_f1_top &= 0x0000ffff;
1263 s->src_f1_top |= value << 16;
1264 break;
1266 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
1267 s->src_f1_bottom &= 0xffff0000;
1268 s->src_f1_bottom |= 0x0000ffff & value;
1269 break;
1271 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
1272 s->src_f1_bottom &= 0x0000ffff;
1273 s->src_f1_bottom |= value << 16;
1274 break;
1276 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
1277 s->src_f2_top &= 0xffff0000;
1278 s->src_f2_top |= 0x0000ffff & value;
1279 break;
1281 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
1282 s->src_f2_top &= 0x0000ffff;
1283 s->src_f2_top |= value << 16;
1284 break;
1286 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
1287 s->src_f2_bottom &= 0xffff0000;
1288 s->src_f2_bottom |= 0x0000ffff & value;
1289 break;
1291 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
1292 s->src_f2_bottom &= 0x0000ffff;
1293 s->src_f2_bottom |= value << 16;
1294 break;
1296 default:
1297 return 1;
1299 return 0;
1302 static int omap_dma_3_1_lcd_read(struct omap_dma_lcd_channel_s *s, int offset,
1303 uint16_t *ret)
1305 int i;
1307 switch (offset) {
1308 case 0x300: /* SYS_DMA_LCD_CTRL */
1309 i = s->condition;
1310 s->condition = 0;
1311 qemu_irq_lower(s->irq);
1312 *ret = ((s->src == imif) << 6) | (i << 3) |
1313 (s->interrupts << 1) | s->dual;
1314 break;
1316 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
1317 *ret = s->src_f1_top & 0xffff;
1318 break;
1320 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
1321 *ret = s->src_f1_top >> 16;
1322 break;
1324 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
1325 *ret = s->src_f1_bottom & 0xffff;
1326 break;
1328 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
1329 *ret = s->src_f1_bottom >> 16;
1330 break;
1332 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
1333 *ret = s->src_f2_top & 0xffff;
1334 break;
1336 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
1337 *ret = s->src_f2_top >> 16;
1338 break;
1340 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
1341 *ret = s->src_f2_bottom & 0xffff;
1342 break;
1344 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
1345 *ret = s->src_f2_bottom >> 16;
1346 break;
1348 default:
1349 return 1;
1351 return 0;
1354 static int omap_dma_sys_write(struct omap_dma_s *s, int offset, uint16_t value)
1356 switch (offset) {
1357 case 0x400: /* SYS_DMA_GCR */
1358 s->gcr = value;
1359 break;
1361 case 0x404: /* DMA_GSCR */
1362 if (value & 0x8)
1363 omap_dma_disable_3_1_mapping(s);
1364 else
1365 omap_dma_enable_3_1_mapping(s);
1366 break;
1368 case 0x408: /* DMA_GRST */
1369 if (value & 0x1)
1370 omap_dma_reset(s->dma);
1371 break;
1373 default:
1374 return 1;
1376 return 0;
1379 static int omap_dma_sys_read(struct omap_dma_s *s, int offset,
1380 uint16_t *ret)
1382 switch (offset) {
1383 case 0x400: /* SYS_DMA_GCR */
1384 *ret = s->gcr;
1385 break;
1387 case 0x404: /* DMA_GSCR */
1388 *ret = s->omap_3_1_mapping_disabled << 3;
1389 break;
1391 case 0x408: /* DMA_GRST */
1392 *ret = 0;
1393 break;
1395 case 0x442: /* DMA_HW_ID */
1396 case 0x444: /* DMA_PCh2_ID */
1397 case 0x446: /* DMA_PCh0_ID */
1398 case 0x448: /* DMA_PCh1_ID */
1399 case 0x44a: /* DMA_PChG_ID */
1400 case 0x44c: /* DMA_PChD_ID */
1401 *ret = 1;
1402 break;
1404 case 0x44e: /* DMA_CAPS_0_U */
1405 *ret = (s->caps[0] >> 16) & 0xffff;
1406 break;
1407 case 0x450: /* DMA_CAPS_0_L */
1408 *ret = (s->caps[0] >> 0) & 0xffff;
1409 break;
1411 case 0x452: /* DMA_CAPS_1_U */
1412 *ret = (s->caps[1] >> 16) & 0xffff;
1413 break;
1414 case 0x454: /* DMA_CAPS_1_L */
1415 *ret = (s->caps[1] >> 0) & 0xffff;
1416 break;
1418 case 0x456: /* DMA_CAPS_2 */
1419 *ret = s->caps[2];
1420 break;
1422 case 0x458: /* DMA_CAPS_3 */
1423 *ret = s->caps[3];
1424 break;
1426 case 0x45a: /* DMA_CAPS_4 */
1427 *ret = s->caps[4];
1428 break;
1430 case 0x460: /* DMA_PCh2_SR */
1431 case 0x480: /* DMA_PCh0_SR */
1432 case 0x482: /* DMA_PCh1_SR */
1433 case 0x4c0: /* DMA_PChD_SR_0 */
1434 printf("%s: Physical Channel Status Registers not implemented.\n",
1435 __FUNCTION__);
1436 *ret = 0xff;
1437 break;
1439 default:
1440 return 1;
1442 return 0;
1445 static uint32_t omap_dma_read(void *opaque, target_phys_addr_t addr)
1447 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1448 int reg, ch;
1449 uint16_t ret;
1451 switch (addr) {
1452 case 0x300 ... 0x3fe:
1453 if (s->model <= omap_dma_3_1 || !s->omap_3_1_mapping_disabled) {
1454 if (omap_dma_3_1_lcd_read(&s->lcd_ch, addr, &ret))
1455 break;
1456 return ret;
1458 /* Fall through. */
1459 case 0x000 ... 0x2fe:
1460 reg = addr & 0x3f;
1461 ch = (addr >> 6) & 0x0f;
1462 if (omap_dma_ch_reg_read(s, &s->ch[ch], reg, &ret))
1463 break;
1464 return ret;
1466 case 0x404 ... 0x4fe:
1467 if (s->model <= omap_dma_3_1)
1468 break;
1469 /* Fall through. */
1470 case 0x400:
1471 if (omap_dma_sys_read(s, addr, &ret))
1472 break;
1473 return ret;
1475 case 0xb00 ... 0xbfe:
1476 if (s->model == omap_dma_3_2 && s->omap_3_1_mapping_disabled) {
1477 if (omap_dma_3_2_lcd_read(&s->lcd_ch, addr, &ret))
1478 break;
1479 return ret;
1481 break;
1484 OMAP_BAD_REG(addr);
1485 return 0;
1488 static void omap_dma_write(void *opaque, target_phys_addr_t addr,
1489 uint32_t value)
1491 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1492 int reg, ch;
1494 switch (addr) {
1495 case 0x300 ... 0x3fe:
1496 if (s->model <= omap_dma_3_1 || !s->omap_3_1_mapping_disabled) {
1497 if (omap_dma_3_1_lcd_write(&s->lcd_ch, addr, value))
1498 break;
1499 return;
1501 /* Fall through. */
1502 case 0x000 ... 0x2fe:
1503 reg = addr & 0x3f;
1504 ch = (addr >> 6) & 0x0f;
1505 if (omap_dma_ch_reg_write(s, &s->ch[ch], reg, value))
1506 break;
1507 return;
1509 case 0x404 ... 0x4fe:
1510 if (s->model <= omap_dma_3_1)
1511 break;
1512 case 0x400:
1513 /* Fall through. */
1514 if (omap_dma_sys_write(s, addr, value))
1515 break;
1516 return;
1518 case 0xb00 ... 0xbfe:
1519 if (s->model == omap_dma_3_2 && s->omap_3_1_mapping_disabled) {
1520 if (omap_dma_3_2_lcd_write(&s->lcd_ch, addr, value))
1521 break;
1522 return;
1524 break;
1527 OMAP_BAD_REG(addr);
1530 static CPUReadMemoryFunc *omap_dma_readfn[] = {
1531 omap_badwidth_read16,
1532 omap_dma_read,
1533 omap_badwidth_read16,
1536 static CPUWriteMemoryFunc *omap_dma_writefn[] = {
1537 omap_badwidth_write16,
1538 omap_dma_write,
1539 omap_badwidth_write16,
1542 static void omap_dma_request(void *opaque, int drq, int req)
1544 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1545 /* The request pins are level triggered in QEMU. */
1546 if (req) {
1547 if (~s->dma->drqbmp & (1 << drq)) {
1548 s->dma->drqbmp |= 1 << drq;
1549 omap_dma_process_request(s, drq);
1551 } else
1552 s->dma->drqbmp &= ~(1 << drq);
1555 /* XXX: this won't be needed once soc_dma knows about clocks. */
1556 static void omap_dma_clk_update(void *opaque, int line, int on)
1558 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1559 int i;
1561 s->dma->freq = omap_clk_getrate(s->clk);
1563 for (i = 0; i < s->chans; i ++)
1564 if (s->ch[i].active)
1565 soc_dma_set_request(s->ch[i].dma, on);
1568 static void omap_dma_setcaps(struct omap_dma_s *s)
1570 switch (s->model) {
1571 default:
1572 case omap_dma_3_1:
1573 break;
1574 case omap_dma_3_2:
1575 case omap_dma_4:
1576 /* XXX Only available for sDMA */
1577 s->caps[0] =
1578 (1 << 19) | /* Constant Fill Capability */
1579 (1 << 18); /* Transparent BLT Capability */
1580 s->caps[1] =
1581 (1 << 1); /* 1-bit palettized capability (DMA 3.2 only) */
1582 s->caps[2] =
1583 (1 << 8) | /* SEPARATE_SRC_AND_DST_INDEX_CPBLTY */
1584 (1 << 7) | /* DST_DOUBLE_INDEX_ADRS_CPBLTY */
1585 (1 << 6) | /* DST_SINGLE_INDEX_ADRS_CPBLTY */
1586 (1 << 5) | /* DST_POST_INCRMNT_ADRS_CPBLTY */
1587 (1 << 4) | /* DST_CONST_ADRS_CPBLTY */
1588 (1 << 3) | /* SRC_DOUBLE_INDEX_ADRS_CPBLTY */
1589 (1 << 2) | /* SRC_SINGLE_INDEX_ADRS_CPBLTY */
1590 (1 << 1) | /* SRC_POST_INCRMNT_ADRS_CPBLTY */
1591 (1 << 0); /* SRC_CONST_ADRS_CPBLTY */
1592 s->caps[3] =
1593 (1 << 6) | /* BLOCK_SYNCHR_CPBLTY (DMA 4 only) */
1594 (1 << 7) | /* PKT_SYNCHR_CPBLTY (DMA 4 only) */
1595 (1 << 5) | /* CHANNEL_CHAINING_CPBLTY */
1596 (1 << 4) | /* LCh_INTERLEAVE_CPBLTY */
1597 (1 << 3) | /* AUTOINIT_REPEAT_CPBLTY (DMA 3.2 only) */
1598 (1 << 2) | /* AUTOINIT_ENDPROG_CPBLTY (DMA 3.2 only) */
1599 (1 << 1) | /* FRAME_SYNCHR_CPBLTY */
1600 (1 << 0); /* ELMNT_SYNCHR_CPBLTY */
1601 s->caps[4] =
1602 (1 << 7) | /* PKT_INTERRUPT_CPBLTY (DMA 4 only) */
1603 (1 << 6) | /* SYNC_STATUS_CPBLTY */
1604 (1 << 5) | /* BLOCK_INTERRUPT_CPBLTY */
1605 (1 << 4) | /* LAST_FRAME_INTERRUPT_CPBLTY */
1606 (1 << 3) | /* FRAME_INTERRUPT_CPBLTY */
1607 (1 << 2) | /* HALF_FRAME_INTERRUPT_CPBLTY */
1608 (1 << 1) | /* EVENT_DROP_INTERRUPT_CPBLTY */
1609 (1 << 0); /* TIMEOUT_INTERRUPT_CPBLTY (DMA 3.2 only) */
1610 break;
1614 struct soc_dma_s *omap_dma_init(target_phys_addr_t base, qemu_irq *irqs,
1615 qemu_irq lcd_irq, struct omap_mpu_state_s *mpu, omap_clk clk,
1616 enum omap_dma_model model)
1618 int iomemtype, num_irqs, memsize, i;
1619 struct omap_dma_s *s = (struct omap_dma_s *)
1620 qemu_mallocz(sizeof(struct omap_dma_s));
1622 if (model <= omap_dma_3_1) {
1623 num_irqs = 6;
1624 memsize = 0x800;
1625 } else {
1626 num_irqs = 16;
1627 memsize = 0xc00;
1629 s->model = model;
1630 s->mpu = mpu;
1631 s->clk = clk;
1632 s->lcd_ch.irq = lcd_irq;
1633 s->lcd_ch.mpu = mpu;
1635 s->dma = soc_dma_init((model <= omap_dma_3_1) ? 9 : 16);
1636 s->dma->freq = omap_clk_getrate(clk);
1637 s->dma->transfer_fn = omap_dma_transfer_generic;
1638 s->dma->setup_fn = omap_dma_transfer_setup;
1639 s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 32);
1640 s->dma->opaque = s;
1642 while (num_irqs --)
1643 s->ch[num_irqs].irq = irqs[num_irqs];
1644 for (i = 0; i < 3; i ++) {
1645 s->ch[i].sibling = &s->ch[i + 6];
1646 s->ch[i + 6].sibling = &s->ch[i];
1648 for (i = (model <= omap_dma_3_1) ? 8 : 15; i >= 0; i --) {
1649 s->ch[i].dma = &s->dma->ch[i];
1650 s->dma->ch[i].opaque = &s->ch[i];
1653 omap_dma_setcaps(s);
1654 omap_clk_adduser(s->clk, qemu_allocate_irqs(omap_dma_clk_update, s, 1)[0]);
1655 omap_dma_reset(s->dma);
1656 omap_dma_clk_update(s, 0, 1);
1658 iomemtype = cpu_register_io_memory(omap_dma_readfn,
1659 omap_dma_writefn, s);
1660 cpu_register_physical_memory(base, memsize, iomemtype);
1662 mpu->drq = s->dma->drq;
1664 return s->dma;
1667 static void omap_dma_interrupts_4_update(struct omap_dma_s *s)
1669 struct omap_dma_channel_s *ch = s->ch;
1670 uint32_t bmp, bit;
1672 for (bmp = 0, bit = 1; bit; ch ++, bit <<= 1)
1673 if (ch->status) {
1674 bmp |= bit;
1675 ch->cstatus |= ch->status;
1676 ch->status = 0;
1678 if ((s->irqstat[0] |= s->irqen[0] & bmp))
1679 qemu_irq_raise(s->irq[0]);
1680 if ((s->irqstat[1] |= s->irqen[1] & bmp))
1681 qemu_irq_raise(s->irq[1]);
1682 if ((s->irqstat[2] |= s->irqen[2] & bmp))
1683 qemu_irq_raise(s->irq[2]);
1684 if ((s->irqstat[3] |= s->irqen[3] & bmp))
1685 qemu_irq_raise(s->irq[3]);
1688 static uint32_t omap_dma4_read(void *opaque, target_phys_addr_t addr)
1690 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1691 int irqn = 0, chnum;
1692 struct omap_dma_channel_s *ch;
1694 switch (addr) {
1695 case 0x00: /* DMA4_REVISION */
1696 return 0x40;
1698 case 0x14: /* DMA4_IRQSTATUS_L3 */
1699 irqn ++;
1700 case 0x10: /* DMA4_IRQSTATUS_L2 */
1701 irqn ++;
1702 case 0x0c: /* DMA4_IRQSTATUS_L1 */
1703 irqn ++;
1704 case 0x08: /* DMA4_IRQSTATUS_L0 */
1705 return s->irqstat[irqn];
1707 case 0x24: /* DMA4_IRQENABLE_L3 */
1708 irqn ++;
1709 case 0x20: /* DMA4_IRQENABLE_L2 */
1710 irqn ++;
1711 case 0x1c: /* DMA4_IRQENABLE_L1 */
1712 irqn ++;
1713 case 0x18: /* DMA4_IRQENABLE_L0 */
1714 return s->irqen[irqn];
1716 case 0x28: /* DMA4_SYSSTATUS */
1717 return 1; /* RESETDONE */
1719 case 0x2c: /* DMA4_OCP_SYSCONFIG */
1720 return s->ocp;
1722 case 0x64: /* DMA4_CAPS_0 */
1723 return s->caps[0];
1724 case 0x6c: /* DMA4_CAPS_2 */
1725 return s->caps[2];
1726 case 0x70: /* DMA4_CAPS_3 */
1727 return s->caps[3];
1728 case 0x74: /* DMA4_CAPS_4 */
1729 return s->caps[4];
1731 case 0x78: /* DMA4_GCR */
1732 return s->gcr;
1734 case 0x80 ... 0xfff:
1735 addr -= 0x80;
1736 chnum = addr / 0x60;
1737 ch = s->ch + chnum;
1738 addr -= chnum * 0x60;
1739 break;
1741 default:
1742 OMAP_BAD_REG(addr);
1743 return 0;
1746 /* Per-channel registers */
1747 switch (addr) {
1748 case 0x00: /* DMA4_CCR */
1749 return (ch->buf_disable << 25) |
1750 (ch->src_sync << 24) |
1751 (ch->prefetch << 23) |
1752 ((ch->sync & 0x60) << 14) |
1753 (ch->bs << 18) |
1754 (ch->transparent_copy << 17) |
1755 (ch->constant_fill << 16) |
1756 (ch->mode[1] << 14) |
1757 (ch->mode[0] << 12) |
1758 (0 << 10) | (0 << 9) |
1759 (ch->suspend << 8) |
1760 (ch->enable << 7) |
1761 (ch->priority << 6) |
1762 (ch->fs << 5) | (ch->sync & 0x1f);
1764 case 0x04: /* DMA4_CLNK_CTRL */
1765 return (ch->link_enabled << 15) | ch->link_next_ch;
1767 case 0x08: /* DMA4_CICR */
1768 return ch->interrupts;
1770 case 0x0c: /* DMA4_CSR */
1771 return ch->cstatus;
1773 case 0x10: /* DMA4_CSDP */
1774 return (ch->endian[0] << 21) |
1775 (ch->endian_lock[0] << 20) |
1776 (ch->endian[1] << 19) |
1777 (ch->endian_lock[1] << 18) |
1778 (ch->write_mode << 16) |
1779 (ch->burst[1] << 14) |
1780 (ch->pack[1] << 13) |
1781 (ch->translate[1] << 9) |
1782 (ch->burst[0] << 7) |
1783 (ch->pack[0] << 6) |
1784 (ch->translate[0] << 2) |
1785 (ch->data_type >> 1);
1787 case 0x14: /* DMA4_CEN */
1788 return ch->elements;
1790 case 0x18: /* DMA4_CFN */
1791 return ch->frames;
1793 case 0x1c: /* DMA4_CSSA */
1794 return ch->addr[0];
1796 case 0x20: /* DMA4_CDSA */
1797 return ch->addr[1];
1799 case 0x24: /* DMA4_CSEI */
1800 return ch->element_index[0];
1802 case 0x28: /* DMA4_CSFI */
1803 return ch->frame_index[0];
1805 case 0x2c: /* DMA4_CDEI */
1806 return ch->element_index[1];
1808 case 0x30: /* DMA4_CDFI */
1809 return ch->frame_index[1];
1811 case 0x34: /* DMA4_CSAC */
1812 return ch->active_set.src & 0xffff;
1814 case 0x38: /* DMA4_CDAC */
1815 return ch->active_set.dest & 0xffff;
1817 case 0x3c: /* DMA4_CCEN */
1818 return ch->active_set.element;
1820 case 0x40: /* DMA4_CCFN */
1821 return ch->active_set.frame;
1823 case 0x44: /* DMA4_COLOR */
1824 /* XXX only in sDMA */
1825 return ch->color;
1827 default:
1828 OMAP_BAD_REG(addr);
1829 return 0;
1833 static void omap_dma4_write(void *opaque, target_phys_addr_t addr,
1834 uint32_t value)
1836 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1837 int chnum, irqn = 0;
1838 struct omap_dma_channel_s *ch;
1840 switch (addr) {
1841 case 0x14: /* DMA4_IRQSTATUS_L3 */
1842 irqn ++;
1843 case 0x10: /* DMA4_IRQSTATUS_L2 */
1844 irqn ++;
1845 case 0x0c: /* DMA4_IRQSTATUS_L1 */
1846 irqn ++;
1847 case 0x08: /* DMA4_IRQSTATUS_L0 */
1848 s->irqstat[irqn] &= ~value;
1849 if (!s->irqstat[irqn])
1850 qemu_irq_lower(s->irq[irqn]);
1851 return;
1853 case 0x24: /* DMA4_IRQENABLE_L3 */
1854 irqn ++;
1855 case 0x20: /* DMA4_IRQENABLE_L2 */
1856 irqn ++;
1857 case 0x1c: /* DMA4_IRQENABLE_L1 */
1858 irqn ++;
1859 case 0x18: /* DMA4_IRQENABLE_L0 */
1860 s->irqen[irqn] = value;
1861 return;
1863 case 0x2c: /* DMA4_OCP_SYSCONFIG */
1864 if (value & 2) /* SOFTRESET */
1865 omap_dma_reset(s->dma);
1866 s->ocp = value & 0x3321;
1867 if (((s->ocp >> 12) & 3) == 3) /* MIDLEMODE */
1868 fprintf(stderr, "%s: invalid DMA power mode\n", __FUNCTION__);
1869 return;
1871 case 0x78: /* DMA4_GCR */
1872 s->gcr = value & 0x00ff00ff;
1873 if ((value & 0xff) == 0x00) /* MAX_CHANNEL_FIFO_DEPTH */
1874 fprintf(stderr, "%s: wrong FIFO depth in GCR\n", __FUNCTION__);
1875 return;
1877 case 0x80 ... 0xfff:
1878 addr -= 0x80;
1879 chnum = addr / 0x60;
1880 ch = s->ch + chnum;
1881 addr -= chnum * 0x60;
1882 break;
1884 case 0x00: /* DMA4_REVISION */
1885 case 0x28: /* DMA4_SYSSTATUS */
1886 case 0x64: /* DMA4_CAPS_0 */
1887 case 0x6c: /* DMA4_CAPS_2 */
1888 case 0x70: /* DMA4_CAPS_3 */
1889 case 0x74: /* DMA4_CAPS_4 */
1890 OMAP_RO_REG(addr);
1891 return;
1893 default:
1894 OMAP_BAD_REG(addr);
1895 return;
1898 /* Per-channel registers */
1899 switch (addr) {
1900 case 0x00: /* DMA4_CCR */
1901 ch->buf_disable = (value >> 25) & 1;
1902 ch->src_sync = (value >> 24) & 1; /* XXX For CamDMA must be 1 */
1903 if (ch->buf_disable && !ch->src_sync)
1904 fprintf(stderr, "%s: Buffering disable is not allowed in "
1905 "destination synchronised mode\n", __FUNCTION__);
1906 ch->prefetch = (value >> 23) & 1;
1907 ch->bs = (value >> 18) & 1;
1908 ch->transparent_copy = (value >> 17) & 1;
1909 ch->constant_fill = (value >> 16) & 1;
1910 ch->mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14);
1911 ch->mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12);
1912 ch->suspend = (value & 0x0100) >> 8;
1913 ch->priority = (value & 0x0040) >> 6;
1914 ch->fs = (value & 0x0020) >> 5;
1915 if (ch->fs && ch->bs && ch->mode[0] && ch->mode[1])
1916 fprintf(stderr, "%s: For a packet transfer at least one port "
1917 "must be constant-addressed\n", __FUNCTION__);
1918 ch->sync = (value & 0x001f) | ((value >> 14) & 0x0060);
1919 /* XXX must be 0x01 for CamDMA */
1921 if (value & 0x0080)
1922 omap_dma_enable_channel(s, ch);
1923 else
1924 omap_dma_disable_channel(s, ch);
1926 break;
1928 case 0x04: /* DMA4_CLNK_CTRL */
1929 ch->link_enabled = (value >> 15) & 0x1;
1930 ch->link_next_ch = value & 0x1f;
1931 break;
1933 case 0x08: /* DMA4_CICR */
1934 ch->interrupts = value & 0x09be;
1935 break;
1937 case 0x0c: /* DMA4_CSR */
1938 ch->cstatus &= ~value;
1939 break;
1941 case 0x10: /* DMA4_CSDP */
1942 ch->endian[0] =(value >> 21) & 1;
1943 ch->endian_lock[0] =(value >> 20) & 1;
1944 ch->endian[1] =(value >> 19) & 1;
1945 ch->endian_lock[1] =(value >> 18) & 1;
1946 if (ch->endian[0] != ch->endian[1])
1947 fprintf(stderr, "%s: DMA endiannes conversion enable attempt\n",
1948 __FUNCTION__);
1949 ch->write_mode = (value >> 16) & 3;
1950 ch->burst[1] = (value & 0xc000) >> 14;
1951 ch->pack[1] = (value & 0x2000) >> 13;
1952 ch->translate[1] = (value & 0x1e00) >> 9;
1953 ch->burst[0] = (value & 0x0180) >> 7;
1954 ch->pack[0] = (value & 0x0040) >> 6;
1955 ch->translate[0] = (value & 0x003c) >> 2;
1956 if (ch->translate[0] | ch->translate[1])
1957 fprintf(stderr, "%s: bad MReqAddressTranslate sideband signal\n",
1958 __FUNCTION__);
1959 ch->data_type = 1 << (value & 3);
1960 if ((value & 3) == 3)
1961 printf("%s: bad data_type for DMA channel\n", __FUNCTION__);
1962 break;
1964 case 0x14: /* DMA4_CEN */
1965 ch->set_update = 1;
1966 ch->elements = value & 0xffffff;
1967 break;
1969 case 0x18: /* DMA4_CFN */
1970 ch->frames = value & 0xffff;
1971 ch->set_update = 1;
1972 break;
1974 case 0x1c: /* DMA4_CSSA */
1975 ch->addr[0] = (target_phys_addr_t) (uint32_t) value;
1976 ch->set_update = 1;
1977 break;
1979 case 0x20: /* DMA4_CDSA */
1980 ch->addr[1] = (target_phys_addr_t) (uint32_t) value;
1981 ch->set_update = 1;
1982 break;
1984 case 0x24: /* DMA4_CSEI */
1985 ch->element_index[0] = (int16_t) value;
1986 ch->set_update = 1;
1987 break;
1989 case 0x28: /* DMA4_CSFI */
1990 ch->frame_index[0] = (int32_t) value;
1991 ch->set_update = 1;
1992 break;
1994 case 0x2c: /* DMA4_CDEI */
1995 ch->element_index[1] = (int16_t) value;
1996 ch->set_update = 1;
1997 break;
1999 case 0x30: /* DMA4_CDFI */
2000 ch->frame_index[1] = (int32_t) value;
2001 ch->set_update = 1;
2002 break;
2004 case 0x44: /* DMA4_COLOR */
2005 /* XXX only in sDMA */
2006 ch->color = value;
2007 break;
2009 case 0x34: /* DMA4_CSAC */
2010 case 0x38: /* DMA4_CDAC */
2011 case 0x3c: /* DMA4_CCEN */
2012 case 0x40: /* DMA4_CCFN */
2013 OMAP_RO_REG(addr);
2014 break;
2016 default:
2017 OMAP_BAD_REG(addr);
2021 static CPUReadMemoryFunc *omap_dma4_readfn[] = {
2022 omap_badwidth_read16,
2023 omap_dma4_read,
2024 omap_dma4_read,
2027 static CPUWriteMemoryFunc *omap_dma4_writefn[] = {
2028 omap_badwidth_write16,
2029 omap_dma4_write,
2030 omap_dma4_write,
2033 struct soc_dma_s *omap_dma4_init(target_phys_addr_t base, qemu_irq *irqs,
2034 struct omap_mpu_state_s *mpu, int fifo,
2035 int chans, omap_clk iclk, omap_clk fclk)
2037 int iomemtype, i;
2038 struct omap_dma_s *s = (struct omap_dma_s *)
2039 qemu_mallocz(sizeof(struct omap_dma_s));
2041 s->model = omap_dma_4;
2042 s->chans = chans;
2043 s->mpu = mpu;
2044 s->clk = fclk;
2046 s->dma = soc_dma_init(s->chans);
2047 s->dma->freq = omap_clk_getrate(fclk);
2048 s->dma->transfer_fn = omap_dma_transfer_generic;
2049 s->dma->setup_fn = omap_dma_transfer_setup;
2050 s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 64);
2051 s->dma->opaque = s;
2052 for (i = 0; i < s->chans; i ++) {
2053 s->ch[i].dma = &s->dma->ch[i];
2054 s->dma->ch[i].opaque = &s->ch[i];
2057 memcpy(&s->irq, irqs, sizeof(s->irq));
2058 s->intr_update = omap_dma_interrupts_4_update;
2060 omap_dma_setcaps(s);
2061 omap_clk_adduser(s->clk, qemu_allocate_irqs(omap_dma_clk_update, s, 1)[0]);
2062 omap_dma_reset(s->dma);
2063 omap_dma_clk_update(s, 0, !!s->dma->freq);
2065 iomemtype = cpu_register_io_memory(omap_dma4_readfn,
2066 omap_dma4_writefn, s);
2067 cpu_register_physical_memory(base, 0x1000, iomemtype);
2069 mpu->drq = s->dma->drq;
2071 return s->dma;
2074 struct omap_dma_lcd_channel_s *omap_dma_get_lcdch(struct soc_dma_s *dma)
2076 struct omap_dma_s *s = dma->opaque;
2078 return &s->lcd_ch;