4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
43 static void arm_cpu_set_pc(CPUState
*cs
, vaddr value
)
45 ARMCPU
*cpu
= ARM_CPU(cs
);
46 CPUARMState
*env
= &cpu
->env
;
52 env
->regs
[15] = value
& ~1;
53 env
->thumb
= value
& 1;
57 static void arm_cpu_synchronize_from_tb(CPUState
*cs
, TranslationBlock
*tb
)
59 ARMCPU
*cpu
= ARM_CPU(cs
);
60 CPUARMState
*env
= &cpu
->env
;
63 * It's OK to look at env for the current mode here, because it's
64 * never possible for an AArch64 TB to chain to an AArch32 TB.
69 env
->regs
[15] = tb
->pc
;
73 static bool arm_cpu_has_work(CPUState
*cs
)
75 ARMCPU
*cpu
= ARM_CPU(cs
);
77 return (cpu
->power_state
!= PSCI_OFF
)
78 && cs
->interrupt_request
&
79 (CPU_INTERRUPT_FIQ
| CPU_INTERRUPT_HARD
80 | CPU_INTERRUPT_VFIQ
| CPU_INTERRUPT_VIRQ
81 | CPU_INTERRUPT_EXITTB
);
84 void arm_register_pre_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
87 ARMELChangeHook
*entry
= g_new0(ARMELChangeHook
, 1);
90 entry
->opaque
= opaque
;
92 QLIST_INSERT_HEAD(&cpu
->pre_el_change_hooks
, entry
, node
);
95 void arm_register_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
98 ARMELChangeHook
*entry
= g_new0(ARMELChangeHook
, 1);
101 entry
->opaque
= opaque
;
103 QLIST_INSERT_HEAD(&cpu
->el_change_hooks
, entry
, node
);
106 static void cp_reg_reset(gpointer key
, gpointer value
, gpointer opaque
)
108 /* Reset a single ARMCPRegInfo register */
109 ARMCPRegInfo
*ri
= value
;
110 ARMCPU
*cpu
= opaque
;
112 if (ri
->type
& (ARM_CP_SPECIAL
| ARM_CP_ALIAS
)) {
117 ri
->resetfn(&cpu
->env
, ri
);
121 /* A zero offset is never possible as it would be regs[0]
122 * so we use it to indicate that reset is being handled elsewhere.
123 * This is basically only used for fields in non-core coprocessors
124 * (like the pxa2xx ones).
126 if (!ri
->fieldoffset
) {
130 if (cpreg_field_is_64bit(ri
)) {
131 CPREG_FIELD64(&cpu
->env
, ri
) = ri
->resetvalue
;
133 CPREG_FIELD32(&cpu
->env
, ri
) = ri
->resetvalue
;
137 static void cp_reg_check_reset(gpointer key
, gpointer value
, gpointer opaque
)
139 /* Purely an assertion check: we've already done reset once,
140 * so now check that running the reset for the cpreg doesn't
141 * change its value. This traps bugs where two different cpregs
142 * both try to reset the same state field but to different values.
144 ARMCPRegInfo
*ri
= value
;
145 ARMCPU
*cpu
= opaque
;
146 uint64_t oldvalue
, newvalue
;
148 if (ri
->type
& (ARM_CP_SPECIAL
| ARM_CP_ALIAS
| ARM_CP_NO_RAW
)) {
152 oldvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
153 cp_reg_reset(key
, value
, opaque
);
154 newvalue
= read_raw_cp_reg(&cpu
->env
, ri
);
155 assert(oldvalue
== newvalue
);
158 static void arm_cpu_reset(DeviceState
*dev
)
160 CPUState
*s
= CPU(dev
);
161 ARMCPU
*cpu
= ARM_CPU(s
);
162 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(cpu
);
163 CPUARMState
*env
= &cpu
->env
;
165 acc
->parent_reset(dev
);
167 memset(env
, 0, offsetof(CPUARMState
, end_reset_fields
));
169 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_reset
, cpu
);
170 g_hash_table_foreach(cpu
->cp_regs
, cp_reg_check_reset
, cpu
);
172 env
->vfp
.xregs
[ARM_VFP_FPSID
] = cpu
->reset_fpsid
;
173 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = cpu
->isar
.mvfr0
;
174 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = cpu
->isar
.mvfr1
;
175 env
->vfp
.xregs
[ARM_VFP_MVFR2
] = cpu
->isar
.mvfr2
;
177 cpu
->power_state
= cpu
->start_powered_off
? PSCI_OFF
: PSCI_ON
;
178 s
->halted
= cpu
->start_powered_off
;
180 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
181 env
->iwmmxt
.cregs
[ARM_IWMMXT_wCID
] = 0x69051000 | 'Q';
184 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
185 /* 64 bit CPUs always start in 64 bit mode */
187 #if defined(CONFIG_USER_ONLY)
188 env
->pstate
= PSTATE_MODE_EL0t
;
189 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190 env
->cp15
.sctlr_el
[1] |= SCTLR_UCT
| SCTLR_UCI
| SCTLR_DZE
;
191 /* Enable all PAC keys. */
192 env
->cp15
.sctlr_el
[1] |= (SCTLR_EnIA
| SCTLR_EnIB
|
193 SCTLR_EnDA
| SCTLR_EnDB
);
194 /* and to the FP/Neon instructions */
195 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 20, 2, 3);
196 /* and to the SVE instructions */
197 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 16, 2, 3);
198 /* with reasonable vector length */
199 if (cpu_isar_feature(aa64_sve
, cpu
)) {
200 env
->vfp
.zcr_el
[1] = MIN(cpu
->sve_max_vq
- 1, 3);
203 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
204 * turning on both here will produce smaller code and otherwise
205 * make no difference to the user-level emulation.
207 * In sve_probe_page, we assume that this is set.
208 * Do not modify this without other changes.
210 env
->cp15
.tcr_el
[1].raw_tcr
= (3ULL << 37);
212 /* Reset into the highest available EL */
213 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
214 env
->pstate
= PSTATE_MODE_EL3h
;
215 } else if (arm_feature(env
, ARM_FEATURE_EL2
)) {
216 env
->pstate
= PSTATE_MODE_EL2h
;
218 env
->pstate
= PSTATE_MODE_EL1h
;
220 env
->pc
= cpu
->rvbar
;
223 #if defined(CONFIG_USER_ONLY)
224 /* Userspace expects access to cp10 and cp11 for FP/Neon */
225 env
->cp15
.cpacr_el1
= deposit64(env
->cp15
.cpacr_el1
, 20, 4, 0xf);
229 #if defined(CONFIG_USER_ONLY)
230 env
->uncached_cpsr
= ARM_CPU_MODE_USR
;
231 /* For user mode we must enable access to coprocessors */
232 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 1 << 30;
233 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
234 env
->cp15
.c15_cpar
= 3;
235 } else if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
236 env
->cp15
.c15_cpar
= 1;
241 * If the highest available EL is EL2, AArch32 will start in Hyp
242 * mode; otherwise it starts in SVC. Note that if we start in
243 * AArch64 then these values in the uncached_cpsr will be ignored.
245 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
246 !arm_feature(env
, ARM_FEATURE_EL3
)) {
247 env
->uncached_cpsr
= ARM_CPU_MODE_HYP
;
249 env
->uncached_cpsr
= ARM_CPU_MODE_SVC
;
251 env
->daif
= PSTATE_D
| PSTATE_A
| PSTATE_I
| PSTATE_F
;
253 if (arm_feature(env
, ARM_FEATURE_M
)) {
254 uint32_t initial_msp
; /* Loaded from 0x0 */
255 uint32_t initial_pc
; /* Loaded from 0x4 */
259 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
260 env
->v7m
.secure
= true;
262 /* This bit resets to 0 if security is supported, but 1 if
263 * it is not. The bit is not present in v7M, but we set it
264 * here so we can avoid having to make checks on it conditional
265 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
267 env
->v7m
.aircr
= R_V7M_AIRCR_BFHFNMINS_MASK
;
269 * Set NSACR to indicate "NS access permitted to everything";
270 * this avoids having to have all the tests of it being
271 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
272 * v8.1M the guest-visible value of NSACR in a CPU without the
273 * Security Extension is 0xcff.
275 env
->v7m
.nsacr
= 0xcff;
278 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
279 * that it resets to 1, so QEMU always does that rather than making
280 * it dependent on CPU model. In v8M it is RES1.
282 env
->v7m
.ccr
[M_REG_NS
] = R_V7M_CCR_STKALIGN_MASK
;
283 env
->v7m
.ccr
[M_REG_S
] = R_V7M_CCR_STKALIGN_MASK
;
284 if (arm_feature(env
, ARM_FEATURE_V8
)) {
285 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
286 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
287 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_NONBASETHRDENA_MASK
;
289 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
290 env
->v7m
.ccr
[M_REG_NS
] |= R_V7M_CCR_UNALIGN_TRP_MASK
;
291 env
->v7m
.ccr
[M_REG_S
] |= R_V7M_CCR_UNALIGN_TRP_MASK
;
294 if (cpu_isar_feature(aa32_vfp_simd
, cpu
)) {
295 env
->v7m
.fpccr
[M_REG_NS
] = R_V7M_FPCCR_ASPEN_MASK
;
296 env
->v7m
.fpccr
[M_REG_S
] = R_V7M_FPCCR_ASPEN_MASK
|
297 R_V7M_FPCCR_LSPEN_MASK
| R_V7M_FPCCR_S_MASK
;
299 /* Unlike A/R profile, M profile defines the reset LR value */
300 env
->regs
[14] = 0xffffffff;
302 env
->v7m
.vecbase
[M_REG_S
] = cpu
->init_svtor
& 0xffffff80;
304 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
305 vecbase
= env
->v7m
.vecbase
[env
->v7m
.secure
];
306 rom
= rom_ptr(vecbase
, 8);
308 /* Address zero is covered by ROM which hasn't yet been
309 * copied into physical memory.
311 initial_msp
= ldl_p(rom
);
312 initial_pc
= ldl_p(rom
+ 4);
314 /* Address zero not covered by a ROM blob, or the ROM blob
315 * is in non-modifiable memory and this is a second reset after
316 * it got copied into memory. In the latter case, rom_ptr
317 * will return a NULL pointer and we should use ldl_phys instead.
319 initial_msp
= ldl_phys(s
->as
, vecbase
);
320 initial_pc
= ldl_phys(s
->as
, vecbase
+ 4);
323 env
->regs
[13] = initial_msp
& 0xFFFFFFFC;
324 env
->regs
[15] = initial_pc
& ~1;
325 env
->thumb
= initial_pc
& 1;
328 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
329 * executing as AArch32 then check if highvecs are enabled and
330 * adjust the PC accordingly.
332 if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
333 env
->regs
[15] = 0xFFFF0000;
336 /* M profile requires that reset clears the exclusive monitor;
337 * A profile does not, but clearing it makes more sense than having it
338 * set with an exclusive access on address zero.
340 arm_clear_exclusive(env
);
342 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 0;
345 if (arm_feature(env
, ARM_FEATURE_PMSA
)) {
346 if (cpu
->pmsav7_dregion
> 0) {
347 if (arm_feature(env
, ARM_FEATURE_V8
)) {
348 memset(env
->pmsav8
.rbar
[M_REG_NS
], 0,
349 sizeof(*env
->pmsav8
.rbar
[M_REG_NS
])
350 * cpu
->pmsav7_dregion
);
351 memset(env
->pmsav8
.rlar
[M_REG_NS
], 0,
352 sizeof(*env
->pmsav8
.rlar
[M_REG_NS
])
353 * cpu
->pmsav7_dregion
);
354 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
355 memset(env
->pmsav8
.rbar
[M_REG_S
], 0,
356 sizeof(*env
->pmsav8
.rbar
[M_REG_S
])
357 * cpu
->pmsav7_dregion
);
358 memset(env
->pmsav8
.rlar
[M_REG_S
], 0,
359 sizeof(*env
->pmsav8
.rlar
[M_REG_S
])
360 * cpu
->pmsav7_dregion
);
362 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
363 memset(env
->pmsav7
.drbar
, 0,
364 sizeof(*env
->pmsav7
.drbar
) * cpu
->pmsav7_dregion
);
365 memset(env
->pmsav7
.drsr
, 0,
366 sizeof(*env
->pmsav7
.drsr
) * cpu
->pmsav7_dregion
);
367 memset(env
->pmsav7
.dracr
, 0,
368 sizeof(*env
->pmsav7
.dracr
) * cpu
->pmsav7_dregion
);
371 env
->pmsav7
.rnr
[M_REG_NS
] = 0;
372 env
->pmsav7
.rnr
[M_REG_S
] = 0;
373 env
->pmsav8
.mair0
[M_REG_NS
] = 0;
374 env
->pmsav8
.mair0
[M_REG_S
] = 0;
375 env
->pmsav8
.mair1
[M_REG_NS
] = 0;
376 env
->pmsav8
.mair1
[M_REG_S
] = 0;
379 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
380 if (cpu
->sau_sregion
> 0) {
381 memset(env
->sau
.rbar
, 0, sizeof(*env
->sau
.rbar
) * cpu
->sau_sregion
);
382 memset(env
->sau
.rlar
, 0, sizeof(*env
->sau
.rlar
) * cpu
->sau_sregion
);
385 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
386 * the Cortex-M33 does.
391 set_flush_to_zero(1, &env
->vfp
.standard_fp_status
);
392 set_flush_inputs_to_zero(1, &env
->vfp
.standard_fp_status
);
393 set_default_nan_mode(1, &env
->vfp
.standard_fp_status
);
394 set_float_detect_tininess(float_tininess_before_rounding
,
395 &env
->vfp
.fp_status
);
396 set_float_detect_tininess(float_tininess_before_rounding
,
397 &env
->vfp
.standard_fp_status
);
398 set_float_detect_tininess(float_tininess_before_rounding
,
399 &env
->vfp
.fp_status_f16
);
400 #ifndef CONFIG_USER_ONLY
402 kvm_arm_reset_vcpu(cpu
);
406 hw_breakpoint_update_all(cpu
);
407 hw_watchpoint_update_all(cpu
);
408 arm_rebuild_hflags(env
);
411 static inline bool arm_excp_unmasked(CPUState
*cs
, unsigned int excp_idx
,
412 unsigned int target_el
,
413 unsigned int cur_el
, bool secure
,
416 CPUARMState
*env
= cs
->env_ptr
;
417 bool pstate_unmasked
;
418 bool unmasked
= false;
421 * Don't take exceptions if they target a lower EL.
422 * This check should catch any exceptions that would not be taken
425 if (cur_el
> target_el
) {
431 pstate_unmasked
= !(env
->daif
& PSTATE_F
);
435 pstate_unmasked
= !(env
->daif
& PSTATE_I
);
439 if (secure
|| !(hcr_el2
& HCR_FMO
) || (hcr_el2
& HCR_TGE
)) {
440 /* VFIQs are only taken when hypervized and non-secure. */
443 return !(env
->daif
& PSTATE_F
);
445 if (secure
|| !(hcr_el2
& HCR_IMO
) || (hcr_el2
& HCR_TGE
)) {
446 /* VIRQs are only taken when hypervized and non-secure. */
449 return !(env
->daif
& PSTATE_I
);
451 g_assert_not_reached();
455 * Use the target EL, current execution state and SCR/HCR settings to
456 * determine whether the corresponding CPSR bit is used to mask the
459 if ((target_el
> cur_el
) && (target_el
!= 1)) {
460 /* Exceptions targeting a higher EL may not be maskable */
461 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
463 * 64-bit masking rules are simple: exceptions to EL3
464 * can't be masked, and exceptions to EL2 can only be
465 * masked from Secure state. The HCR and SCR settings
466 * don't affect the masking logic, only the interrupt routing.
468 if (target_el
== 3 || !secure
) {
473 * The old 32-bit-only environment has a more complicated
474 * masking setup. HCR and SCR bits not only affect interrupt
475 * routing but also change the behaviour of masking.
482 * If FIQs are routed to EL3 or EL2 then there are cases where
483 * we override the CPSR.F in determining if the exception is
484 * masked or not. If neither of these are set then we fall back
485 * to the CPSR.F setting otherwise we further assess the state
488 hcr
= hcr_el2
& HCR_FMO
;
489 scr
= (env
->cp15
.scr_el3
& SCR_FIQ
);
492 * When EL3 is 32-bit, the SCR.FW bit controls whether the
493 * CPSR.F bit masks FIQ interrupts when taken in non-secure
494 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
495 * when non-secure but only when FIQs are only routed to EL3.
497 scr
= scr
&& !((env
->cp15
.scr_el3
& SCR_FW
) && !hcr
);
501 * When EL3 execution state is 32-bit, if HCR.IMO is set then
502 * we may override the CPSR.I masking when in non-secure state.
503 * The SCR.IRQ setting has already been taken into consideration
504 * when setting the target EL, so it does not have a further
507 hcr
= hcr_el2
& HCR_IMO
;
511 g_assert_not_reached();
514 if ((scr
|| hcr
) && !secure
) {
521 * The PSTATE bits only mask the interrupt if we have not overriden the
524 return unmasked
|| pstate_unmasked
;
527 bool arm_cpu_exec_interrupt(CPUState
*cs
, int interrupt_request
)
529 CPUClass
*cc
= CPU_GET_CLASS(cs
);
530 CPUARMState
*env
= cs
->env_ptr
;
531 uint32_t cur_el
= arm_current_el(env
);
532 bool secure
= arm_is_secure(env
);
533 uint64_t hcr_el2
= arm_hcr_el2_eff(env
);
537 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
539 if (interrupt_request
& CPU_INTERRUPT_FIQ
) {
541 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
542 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
543 cur_el
, secure
, hcr_el2
)) {
547 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
549 target_el
= arm_phys_excp_target_el(cs
, excp_idx
, cur_el
, secure
);
550 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
551 cur_el
, secure
, hcr_el2
)) {
555 if (interrupt_request
& CPU_INTERRUPT_VIRQ
) {
556 excp_idx
= EXCP_VIRQ
;
558 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
559 cur_el
, secure
, hcr_el2
)) {
563 if (interrupt_request
& CPU_INTERRUPT_VFIQ
) {
564 excp_idx
= EXCP_VFIQ
;
566 if (arm_excp_unmasked(cs
, excp_idx
, target_el
,
567 cur_el
, secure
, hcr_el2
)) {
574 cs
->exception_index
= excp_idx
;
575 env
->exception
.target_el
= target_el
;
576 cc
->do_interrupt(cs
);
580 void arm_cpu_update_virq(ARMCPU
*cpu
)
583 * Update the interrupt level for VIRQ, which is the logical OR of
584 * the HCR_EL2.VI bit and the input line level from the GIC.
586 CPUARMState
*env
= &cpu
->env
;
587 CPUState
*cs
= CPU(cpu
);
589 bool new_state
= (env
->cp15
.hcr_el2
& HCR_VI
) ||
590 (env
->irq_line_state
& CPU_INTERRUPT_VIRQ
);
592 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VIRQ
) != 0)) {
594 cpu_interrupt(cs
, CPU_INTERRUPT_VIRQ
);
596 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VIRQ
);
601 void arm_cpu_update_vfiq(ARMCPU
*cpu
)
604 * Update the interrupt level for VFIQ, which is the logical OR of
605 * the HCR_EL2.VF bit and the input line level from the GIC.
607 CPUARMState
*env
= &cpu
->env
;
608 CPUState
*cs
= CPU(cpu
);
610 bool new_state
= (env
->cp15
.hcr_el2
& HCR_VF
) ||
611 (env
->irq_line_state
& CPU_INTERRUPT_VFIQ
);
613 if (new_state
!= ((cs
->interrupt_request
& CPU_INTERRUPT_VFIQ
) != 0)) {
615 cpu_interrupt(cs
, CPU_INTERRUPT_VFIQ
);
617 cpu_reset_interrupt(cs
, CPU_INTERRUPT_VFIQ
);
622 #ifndef CONFIG_USER_ONLY
623 static void arm_cpu_set_irq(void *opaque
, int irq
, int level
)
625 ARMCPU
*cpu
= opaque
;
626 CPUARMState
*env
= &cpu
->env
;
627 CPUState
*cs
= CPU(cpu
);
628 static const int mask
[] = {
629 [ARM_CPU_IRQ
] = CPU_INTERRUPT_HARD
,
630 [ARM_CPU_FIQ
] = CPU_INTERRUPT_FIQ
,
631 [ARM_CPU_VIRQ
] = CPU_INTERRUPT_VIRQ
,
632 [ARM_CPU_VFIQ
] = CPU_INTERRUPT_VFIQ
636 env
->irq_line_state
|= mask
[irq
];
638 env
->irq_line_state
&= ~mask
[irq
];
643 assert(arm_feature(env
, ARM_FEATURE_EL2
));
644 arm_cpu_update_virq(cpu
);
647 assert(arm_feature(env
, ARM_FEATURE_EL2
));
648 arm_cpu_update_vfiq(cpu
);
653 cpu_interrupt(cs
, mask
[irq
]);
655 cpu_reset_interrupt(cs
, mask
[irq
]);
659 g_assert_not_reached();
663 static void arm_cpu_kvm_set_irq(void *opaque
, int irq
, int level
)
666 ARMCPU
*cpu
= opaque
;
667 CPUARMState
*env
= &cpu
->env
;
668 CPUState
*cs
= CPU(cpu
);
669 uint32_t linestate_bit
;
674 irq_id
= KVM_ARM_IRQ_CPU_IRQ
;
675 linestate_bit
= CPU_INTERRUPT_HARD
;
678 irq_id
= KVM_ARM_IRQ_CPU_FIQ
;
679 linestate_bit
= CPU_INTERRUPT_FIQ
;
682 g_assert_not_reached();
686 env
->irq_line_state
|= linestate_bit
;
688 env
->irq_line_state
&= ~linestate_bit
;
690 kvm_arm_set_irq(cs
->cpu_index
, KVM_ARM_IRQ_TYPE_CPU
, irq_id
, !!level
);
694 static bool arm_cpu_virtio_is_big_endian(CPUState
*cs
)
696 ARMCPU
*cpu
= ARM_CPU(cs
);
697 CPUARMState
*env
= &cpu
->env
;
699 cpu_synchronize_state(cs
);
700 return arm_cpu_data_is_big_endian(env
);
706 print_insn_thumb1(bfd_vma pc
, disassemble_info
*info
)
708 return print_insn_arm(pc
| 1, info
);
711 static void arm_disas_set_info(CPUState
*cpu
, disassemble_info
*info
)
713 ARMCPU
*ac
= ARM_CPU(cpu
);
714 CPUARMState
*env
= &ac
->env
;
718 /* We might not be compiled with the A64 disassembler
719 * because it needs a C++ compiler. Leave print_insn
720 * unset in this case to use the caller default behaviour.
722 #if defined(CONFIG_ARM_A64_DIS)
723 info
->print_insn
= print_insn_arm_a64
;
725 info
->cap_arch
= CS_ARCH_ARM64
;
726 info
->cap_insn_unit
= 4;
727 info
->cap_insn_split
= 4;
731 info
->print_insn
= print_insn_thumb1
;
732 info
->cap_insn_unit
= 2;
733 info
->cap_insn_split
= 4;
734 cap_mode
= CS_MODE_THUMB
;
736 info
->print_insn
= print_insn_arm
;
737 info
->cap_insn_unit
= 4;
738 info
->cap_insn_split
= 4;
739 cap_mode
= CS_MODE_ARM
;
741 if (arm_feature(env
, ARM_FEATURE_V8
)) {
742 cap_mode
|= CS_MODE_V8
;
744 if (arm_feature(env
, ARM_FEATURE_M
)) {
745 cap_mode
|= CS_MODE_MCLASS
;
747 info
->cap_arch
= CS_ARCH_ARM
;
748 info
->cap_mode
= cap_mode
;
751 sctlr_b
= arm_sctlr_b(env
);
752 if (bswap_code(sctlr_b
)) {
753 #ifdef TARGET_WORDS_BIGENDIAN
754 info
->endian
= BFD_ENDIAN_LITTLE
;
756 info
->endian
= BFD_ENDIAN_BIG
;
759 info
->flags
&= ~INSN_ARM_BE32
;
760 #ifndef CONFIG_USER_ONLY
762 info
->flags
|= INSN_ARM_BE32
;
767 #ifdef TARGET_AARCH64
769 static void aarch64_cpu_dump_state(CPUState
*cs
, FILE *f
, int flags
)
771 ARMCPU
*cpu
= ARM_CPU(cs
);
772 CPUARMState
*env
= &cpu
->env
;
773 uint32_t psr
= pstate_read(env
);
775 int el
= arm_current_el(env
);
776 const char *ns_status
;
778 qemu_fprintf(f
, " PC=%016" PRIx64
" ", env
->pc
);
779 for (i
= 0; i
< 32; i
++) {
781 qemu_fprintf(f
, " SP=%016" PRIx64
"\n", env
->xregs
[i
]);
783 qemu_fprintf(f
, "X%02d=%016" PRIx64
"%s", i
, env
->xregs
[i
],
784 (i
+ 2) % 3 ? " " : "\n");
788 if (arm_feature(env
, ARM_FEATURE_EL3
) && el
!= 3) {
789 ns_status
= env
->cp15
.scr_el3
& SCR_NS
? "NS " : "S ";
793 qemu_fprintf(f
, "PSTATE=%08x %c%c%c%c %sEL%d%c",
795 psr
& PSTATE_N
? 'N' : '-',
796 psr
& PSTATE_Z
? 'Z' : '-',
797 psr
& PSTATE_C
? 'C' : '-',
798 psr
& PSTATE_V
? 'V' : '-',
801 psr
& PSTATE_SP
? 'h' : 't');
803 if (cpu_isar_feature(aa64_bti
, cpu
)) {
804 qemu_fprintf(f
, " BTYPE=%d", (psr
& PSTATE_BTYPE
) >> 10);
806 if (!(flags
& CPU_DUMP_FPU
)) {
807 qemu_fprintf(f
, "\n");
810 if (fp_exception_el(env
, el
) != 0) {
811 qemu_fprintf(f
, " FPU disabled\n");
814 qemu_fprintf(f
, " FPCR=%08x FPSR=%08x\n",
815 vfp_get_fpcr(env
), vfp_get_fpsr(env
));
817 if (cpu_isar_feature(aa64_sve
, cpu
) && sve_exception_el(env
, el
) == 0) {
818 int j
, zcr_len
= sve_zcr_len_for_el(env
, el
);
820 for (i
= 0; i
<= FFR_PRED_NUM
; i
++) {
822 if (i
== FFR_PRED_NUM
) {
823 qemu_fprintf(f
, "FFR=");
824 /* It's last, so end the line. */
827 qemu_fprintf(f
, "P%02d=", i
);
840 /* More than one quadword per predicate. */
845 for (j
= zcr_len
/ 4; j
>= 0; j
--) {
847 if (j
* 4 + 4 <= zcr_len
+ 1) {
850 digits
= (zcr_len
% 4 + 1) * 4;
852 qemu_fprintf(f
, "%0*" PRIx64
"%s", digits
,
853 env
->vfp
.pregs
[i
].p
[j
],
854 j
? ":" : eol
? "\n" : " ");
858 for (i
= 0; i
< 32; i
++) {
860 qemu_fprintf(f
, "Z%02d=%016" PRIx64
":%016" PRIx64
"%s",
861 i
, env
->vfp
.zregs
[i
].d
[1],
862 env
->vfp
.zregs
[i
].d
[0], i
& 1 ? "\n" : " ");
863 } else if (zcr_len
== 1) {
864 qemu_fprintf(f
, "Z%02d=%016" PRIx64
":%016" PRIx64
865 ":%016" PRIx64
":%016" PRIx64
"\n",
866 i
, env
->vfp
.zregs
[i
].d
[3], env
->vfp
.zregs
[i
].d
[2],
867 env
->vfp
.zregs
[i
].d
[1], env
->vfp
.zregs
[i
].d
[0]);
869 for (j
= zcr_len
; j
>= 0; j
--) {
870 bool odd
= (zcr_len
- j
) % 2 != 0;
872 qemu_fprintf(f
, "Z%02d[%x-%x]=", i
, j
, j
- 1);
875 qemu_fprintf(f
, " [%x-%x]=", j
, j
- 1);
877 qemu_fprintf(f
, " [%x]=", j
);
880 qemu_fprintf(f
, "%016" PRIx64
":%016" PRIx64
"%s",
881 env
->vfp
.zregs
[i
].d
[j
* 2 + 1],
882 env
->vfp
.zregs
[i
].d
[j
* 2],
883 odd
|| j
== 0 ? "\n" : ":");
888 for (i
= 0; i
< 32; i
++) {
889 uint64_t *q
= aa64_vfp_qreg(env
, i
);
890 qemu_fprintf(f
, "Q%02d=%016" PRIx64
":%016" PRIx64
"%s",
891 i
, q
[1], q
[0], (i
& 1 ? "\n" : " "));
898 static inline void aarch64_cpu_dump_state(CPUState
*cs
, FILE *f
, int flags
)
900 g_assert_not_reached();
905 static void arm_cpu_dump_state(CPUState
*cs
, FILE *f
, int flags
)
907 ARMCPU
*cpu
= ARM_CPU(cs
);
908 CPUARMState
*env
= &cpu
->env
;
912 aarch64_cpu_dump_state(cs
, f
, flags
);
916 for (i
= 0; i
< 16; i
++) {
917 qemu_fprintf(f
, "R%02d=%08x", i
, env
->regs
[i
]);
919 qemu_fprintf(f
, "\n");
921 qemu_fprintf(f
, " ");
925 if (arm_feature(env
, ARM_FEATURE_M
)) {
926 uint32_t xpsr
= xpsr_read(env
);
928 const char *ns_status
= "";
930 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
931 ns_status
= env
->v7m
.secure
? "S " : "NS ";
934 if (xpsr
& XPSR_EXCP
) {
937 if (env
->v7m
.control
[env
->v7m
.secure
] & R_V7M_CONTROL_NPRIV_MASK
) {
938 mode
= "unpriv-thread";
940 mode
= "priv-thread";
944 qemu_fprintf(f
, "XPSR=%08x %c%c%c%c %c %s%s\n",
946 xpsr
& XPSR_N
? 'N' : '-',
947 xpsr
& XPSR_Z
? 'Z' : '-',
948 xpsr
& XPSR_C
? 'C' : '-',
949 xpsr
& XPSR_V
? 'V' : '-',
950 xpsr
& XPSR_T
? 'T' : 'A',
954 uint32_t psr
= cpsr_read(env
);
955 const char *ns_status
= "";
957 if (arm_feature(env
, ARM_FEATURE_EL3
) &&
958 (psr
& CPSR_M
) != ARM_CPU_MODE_MON
) {
959 ns_status
= env
->cp15
.scr_el3
& SCR_NS
? "NS " : "S ";
962 qemu_fprintf(f
, "PSR=%08x %c%c%c%c %c %s%s%d\n",
964 psr
& CPSR_N
? 'N' : '-',
965 psr
& CPSR_Z
? 'Z' : '-',
966 psr
& CPSR_C
? 'C' : '-',
967 psr
& CPSR_V
? 'V' : '-',
968 psr
& CPSR_T
? 'T' : 'A',
970 aarch32_mode_name(psr
), (psr
& 0x10) ? 32 : 26);
973 if (flags
& CPU_DUMP_FPU
) {
975 if (cpu_isar_feature(aa32_simd_r32
, cpu
)) {
977 } else if (cpu_isar_feature(aa32_vfp_simd
, cpu
)) {
980 for (i
= 0; i
< numvfpregs
; i
++) {
981 uint64_t v
= *aa32_vfp_dreg(env
, i
);
982 qemu_fprintf(f
, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64
"\n",
984 i
* 2 + 1, (uint32_t)(v
>> 32),
987 qemu_fprintf(f
, "FPSCR: %08x\n", vfp_get_fpscr(env
));
991 uint64_t arm_cpu_mp_affinity(int idx
, uint8_t clustersz
)
993 uint32_t Aff1
= idx
/ clustersz
;
994 uint32_t Aff0
= idx
% clustersz
;
995 return (Aff1
<< ARM_AFF1_SHIFT
) | Aff0
;
998 static void cpreg_hashtable_data_destroy(gpointer data
)
1001 * Destroy function for cpu->cp_regs hashtable data entries.
1002 * We must free the name string because it was g_strdup()ed in
1003 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1004 * from r->name because we know we definitely allocated it.
1006 ARMCPRegInfo
*r
= data
;
1008 g_free((void *)r
->name
);
1012 static void arm_cpu_initfn(Object
*obj
)
1014 ARMCPU
*cpu
= ARM_CPU(obj
);
1016 cpu_set_cpustate_pointers(cpu
);
1017 cpu
->cp_regs
= g_hash_table_new_full(g_int_hash
, g_int_equal
,
1018 g_free
, cpreg_hashtable_data_destroy
);
1020 QLIST_INIT(&cpu
->pre_el_change_hooks
);
1021 QLIST_INIT(&cpu
->el_change_hooks
);
1023 #ifndef CONFIG_USER_ONLY
1024 /* Our inbound IRQ and FIQ lines */
1025 if (kvm_enabled()) {
1026 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1027 * the same interface as non-KVM CPUs.
1029 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_kvm_set_irq
, 4);
1031 qdev_init_gpio_in(DEVICE(cpu
), arm_cpu_set_irq
, 4);
1034 qdev_init_gpio_out(DEVICE(cpu
), cpu
->gt_timer_outputs
,
1035 ARRAY_SIZE(cpu
->gt_timer_outputs
));
1037 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->gicv3_maintenance_interrupt
,
1038 "gicv3-maintenance-interrupt", 1);
1039 qdev_init_gpio_out_named(DEVICE(cpu
), &cpu
->pmu_interrupt
,
1040 "pmu-interrupt", 1);
1043 /* DTB consumers generally don't in fact care what the 'compatible'
1044 * string is, so always provide some string and trust that a hypothetical
1045 * picky DTB consumer will also provide a helpful error message.
1047 cpu
->dtb_compatible
= "qemu,unknown";
1048 cpu
->psci_version
= 1; /* By default assume PSCI v0.1 */
1049 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_NONE
;
1051 if (tcg_enabled()) {
1052 cpu
->psci_version
= 2; /* TCG implements PSCI 0.2 */
1056 static Property arm_cpu_gt_cntfrq_property
=
1057 DEFINE_PROP_UINT64("cntfrq", ARMCPU
, gt_cntfrq_hz
,
1058 NANOSECONDS_PER_SECOND
/ GTIMER_SCALE
);
1060 static Property arm_cpu_reset_cbar_property
=
1061 DEFINE_PROP_UINT64("reset-cbar", ARMCPU
, reset_cbar
, 0);
1063 static Property arm_cpu_reset_hivecs_property
=
1064 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU
, reset_hivecs
, false);
1066 static Property arm_cpu_rvbar_property
=
1067 DEFINE_PROP_UINT64("rvbar", ARMCPU
, rvbar
, 0);
1069 #ifndef CONFIG_USER_ONLY
1070 static Property arm_cpu_has_el2_property
=
1071 DEFINE_PROP_BOOL("has_el2", ARMCPU
, has_el2
, true);
1073 static Property arm_cpu_has_el3_property
=
1074 DEFINE_PROP_BOOL("has_el3", ARMCPU
, has_el3
, true);
1077 static Property arm_cpu_cfgend_property
=
1078 DEFINE_PROP_BOOL("cfgend", ARMCPU
, cfgend
, false);
1080 static Property arm_cpu_has_vfp_property
=
1081 DEFINE_PROP_BOOL("vfp", ARMCPU
, has_vfp
, true);
1083 static Property arm_cpu_has_neon_property
=
1084 DEFINE_PROP_BOOL("neon", ARMCPU
, has_neon
, true);
1086 static Property arm_cpu_has_dsp_property
=
1087 DEFINE_PROP_BOOL("dsp", ARMCPU
, has_dsp
, true);
1089 static Property arm_cpu_has_mpu_property
=
1090 DEFINE_PROP_BOOL("has-mpu", ARMCPU
, has_mpu
, true);
1092 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1093 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1094 * the right value for that particular CPU type, and we don't want
1095 * to override that with an incorrect constant value.
1097 static Property arm_cpu_pmsav7_dregion_property
=
1098 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU
,
1100 qdev_prop_uint32
, uint32_t);
1102 static bool arm_get_pmu(Object
*obj
, Error
**errp
)
1104 ARMCPU
*cpu
= ARM_CPU(obj
);
1106 return cpu
->has_pmu
;
1109 static void arm_set_pmu(Object
*obj
, bool value
, Error
**errp
)
1111 ARMCPU
*cpu
= ARM_CPU(obj
);
1114 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1115 error_setg(errp
, "'pmu' feature not supported by KVM on this host");
1118 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
1120 unset_feature(&cpu
->env
, ARM_FEATURE_PMU
);
1122 cpu
->has_pmu
= value
;
1125 unsigned int gt_cntfrq_period_ns(ARMCPU
*cpu
)
1128 * The exact approach to calculating guest ticks is:
1130 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1131 * NANOSECONDS_PER_SECOND);
1133 * We don't do that. Rather we intentionally use integer division
1134 * truncation below and in the caller for the conversion of host monotonic
1135 * time to guest ticks to provide the exact inverse for the semantics of
1136 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1137 * it loses precision when representing frequencies where
1138 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1139 * provide an exact inverse leads to scheduling timers with negative
1140 * periods, which in turn leads to sticky behaviour in the guest.
1142 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1143 * cannot become zero.
1145 return NANOSECONDS_PER_SECOND
> cpu
->gt_cntfrq_hz
?
1146 NANOSECONDS_PER_SECOND
/ cpu
->gt_cntfrq_hz
: 1;
1149 void arm_cpu_post_init(Object
*obj
)
1151 ARMCPU
*cpu
= ARM_CPU(obj
);
1153 /* M profile implies PMSA. We have to do this here rather than
1154 * in realize with the other feature-implication checks because
1155 * we look at the PMSA bit to see if we should add some properties.
1157 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
1158 set_feature(&cpu
->env
, ARM_FEATURE_PMSA
);
1161 if (arm_feature(&cpu
->env
, ARM_FEATURE_CBAR
) ||
1162 arm_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
)) {
1163 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_cbar_property
);
1166 if (!arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
1167 qdev_property_add_static(DEVICE(obj
), &arm_cpu_reset_hivecs_property
);
1170 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1171 qdev_property_add_static(DEVICE(obj
), &arm_cpu_rvbar_property
);
1174 #ifndef CONFIG_USER_ONLY
1175 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
)) {
1176 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1177 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1179 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el3_property
);
1181 object_property_add_link(obj
, "secure-memory",
1183 (Object
**)&cpu
->secure_memory
,
1184 qdev_prop_allow_set_link_before_realize
,
1185 OBJ_PROP_LINK_STRONG
);
1188 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
)) {
1189 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_el2_property
);
1193 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMU
)) {
1194 cpu
->has_pmu
= true;
1195 object_property_add_bool(obj
, "pmu", arm_get_pmu
, arm_set_pmu
);
1199 * Allow user to turn off VFP and Neon support, but only for TCG --
1200 * KVM does not currently allow us to lie to the guest about its
1201 * ID/feature registers, so the guest always sees what the host has.
1203 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)
1204 ? cpu_isar_feature(aa64_fp_simd
, cpu
)
1205 : cpu_isar_feature(aa32_vfp
, cpu
)) {
1206 cpu
->has_vfp
= true;
1207 if (!kvm_enabled()) {
1208 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_vfp_property
);
1212 if (arm_feature(&cpu
->env
, ARM_FEATURE_NEON
)) {
1213 cpu
->has_neon
= true;
1214 if (!kvm_enabled()) {
1215 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_neon_property
);
1219 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
) &&
1220 arm_feature(&cpu
->env
, ARM_FEATURE_THUMB_DSP
)) {
1221 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_dsp_property
);
1224 if (arm_feature(&cpu
->env
, ARM_FEATURE_PMSA
)) {
1225 qdev_property_add_static(DEVICE(obj
), &arm_cpu_has_mpu_property
);
1226 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
1227 qdev_property_add_static(DEVICE(obj
),
1228 &arm_cpu_pmsav7_dregion_property
);
1232 if (arm_feature(&cpu
->env
, ARM_FEATURE_M_SECURITY
)) {
1233 object_property_add_link(obj
, "idau", TYPE_IDAU_INTERFACE
, &cpu
->idau
,
1234 qdev_prop_allow_set_link_before_realize
,
1235 OBJ_PROP_LINK_STRONG
);
1237 * M profile: initial value of the Secure VTOR. We can't just use
1238 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1239 * the property to be set after realize.
1241 object_property_add_uint32_ptr(obj
, "init-svtor",
1243 OBJ_PROP_FLAG_READWRITE
);
1246 qdev_property_add_static(DEVICE(obj
), &arm_cpu_cfgend_property
);
1248 if (arm_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
)) {
1249 qdev_property_add_static(DEVICE(cpu
), &arm_cpu_gt_cntfrq_property
);
1252 if (kvm_enabled()) {
1253 kvm_arm_add_vcpu_properties(obj
);
1256 #ifndef CONFIG_USER_ONLY
1257 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
) &&
1258 cpu_isar_feature(aa64_mte
, cpu
)) {
1259 object_property_add_link(obj
, "tag-memory",
1261 (Object
**)&cpu
->tag_memory
,
1262 qdev_prop_allow_set_link_before_realize
,
1263 OBJ_PROP_LINK_STRONG
);
1265 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
)) {
1266 object_property_add_link(obj
, "secure-tag-memory",
1268 (Object
**)&cpu
->secure_tag_memory
,
1269 qdev_prop_allow_set_link_before_realize
,
1270 OBJ_PROP_LINK_STRONG
);
1276 static void arm_cpu_finalizefn(Object
*obj
)
1278 ARMCPU
*cpu
= ARM_CPU(obj
);
1279 ARMELChangeHook
*hook
, *next
;
1281 g_hash_table_destroy(cpu
->cp_regs
);
1283 QLIST_FOREACH_SAFE(hook
, &cpu
->pre_el_change_hooks
, node
, next
) {
1284 QLIST_REMOVE(hook
, node
);
1287 QLIST_FOREACH_SAFE(hook
, &cpu
->el_change_hooks
, node
, next
) {
1288 QLIST_REMOVE(hook
, node
);
1291 #ifndef CONFIG_USER_ONLY
1292 if (cpu
->pmu_timer
) {
1293 timer_del(cpu
->pmu_timer
);
1294 timer_deinit(cpu
->pmu_timer
);
1295 timer_free(cpu
->pmu_timer
);
1300 void arm_cpu_finalize_features(ARMCPU
*cpu
, Error
**errp
)
1302 Error
*local_err
= NULL
;
1304 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1305 arm_cpu_sve_finalize(cpu
, &local_err
);
1306 if (local_err
!= NULL
) {
1307 error_propagate(errp
, local_err
);
1313 static void arm_cpu_realizefn(DeviceState
*dev
, Error
**errp
)
1315 CPUState
*cs
= CPU(dev
);
1316 ARMCPU
*cpu
= ARM_CPU(dev
);
1317 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(dev
);
1318 CPUARMState
*env
= &cpu
->env
;
1320 Error
*local_err
= NULL
;
1321 bool no_aa32
= false;
1323 /* If we needed to query the host kernel for the CPU features
1324 * then it's possible that might have failed in the initfn, but
1325 * this is the first point where we can report it.
1327 if (cpu
->host_cpu_probe_failed
) {
1328 if (!kvm_enabled()) {
1329 error_setg(errp
, "The 'host' CPU type can only be used with KVM");
1331 error_setg(errp
, "Failed to retrieve host CPU features");
1336 #ifndef CONFIG_USER_ONLY
1337 /* The NVIC and M-profile CPU are two halves of a single piece of
1338 * hardware; trying to use one without the other is a command line
1339 * error and will result in segfaults if not caught here.
1341 if (arm_feature(env
, ARM_FEATURE_M
)) {
1343 error_setg(errp
, "This board cannot be used with Cortex-M CPUs");
1348 error_setg(errp
, "This board can only be used with Cortex-M CPUs");
1356 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
1357 if (!cpu
->gt_cntfrq_hz
) {
1358 error_setg(errp
, "Invalid CNTFRQ: %"PRId64
"Hz",
1362 scale
= gt_cntfrq_period_ns(cpu
);
1364 scale
= GTIMER_SCALE
;
1367 cpu
->gt_timer
[GTIMER_PHYS
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1368 arm_gt_ptimer_cb
, cpu
);
1369 cpu
->gt_timer
[GTIMER_VIRT
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1370 arm_gt_vtimer_cb
, cpu
);
1371 cpu
->gt_timer
[GTIMER_HYP
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1372 arm_gt_htimer_cb
, cpu
);
1373 cpu
->gt_timer
[GTIMER_SEC
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1374 arm_gt_stimer_cb
, cpu
);
1375 cpu
->gt_timer
[GTIMER_HYPVIRT
] = timer_new(QEMU_CLOCK_VIRTUAL
, scale
,
1376 arm_gt_hvtimer_cb
, cpu
);
1380 cpu_exec_realizefn(cs
, &local_err
);
1381 if (local_err
!= NULL
) {
1382 error_propagate(errp
, local_err
);
1386 arm_cpu_finalize_features(cpu
, &local_err
);
1387 if (local_err
!= NULL
) {
1388 error_propagate(errp
, local_err
);
1392 if (arm_feature(env
, ARM_FEATURE_AARCH64
) &&
1393 cpu
->has_vfp
!= cpu
->has_neon
) {
1395 * This is an architectural requirement for AArch64; AArch32 is
1396 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1399 "AArch64 CPUs must have both VFP and Neon or neither");
1403 if (!cpu
->has_vfp
) {
1407 t
= cpu
->isar
.id_aa64isar1
;
1408 t
= FIELD_DP64(t
, ID_AA64ISAR1
, JSCVT
, 0);
1409 cpu
->isar
.id_aa64isar1
= t
;
1411 t
= cpu
->isar
.id_aa64pfr0
;
1412 t
= FIELD_DP64(t
, ID_AA64PFR0
, FP
, 0xf);
1413 cpu
->isar
.id_aa64pfr0
= t
;
1415 u
= cpu
->isar
.id_isar6
;
1416 u
= FIELD_DP32(u
, ID_ISAR6
, JSCVT
, 0);
1417 cpu
->isar
.id_isar6
= u
;
1419 u
= cpu
->isar
.mvfr0
;
1420 u
= FIELD_DP32(u
, MVFR0
, FPSP
, 0);
1421 u
= FIELD_DP32(u
, MVFR0
, FPDP
, 0);
1422 u
= FIELD_DP32(u
, MVFR0
, FPTRAP
, 0);
1423 u
= FIELD_DP32(u
, MVFR0
, FPDIVIDE
, 0);
1424 u
= FIELD_DP32(u
, MVFR0
, FPSQRT
, 0);
1425 u
= FIELD_DP32(u
, MVFR0
, FPSHVEC
, 0);
1426 u
= FIELD_DP32(u
, MVFR0
, FPROUND
, 0);
1427 cpu
->isar
.mvfr0
= u
;
1429 u
= cpu
->isar
.mvfr1
;
1430 u
= FIELD_DP32(u
, MVFR1
, FPFTZ
, 0);
1431 u
= FIELD_DP32(u
, MVFR1
, FPDNAN
, 0);
1432 u
= FIELD_DP32(u
, MVFR1
, FPHP
, 0);
1433 cpu
->isar
.mvfr1
= u
;
1435 u
= cpu
->isar
.mvfr2
;
1436 u
= FIELD_DP32(u
, MVFR2
, FPMISC
, 0);
1437 cpu
->isar
.mvfr2
= u
;
1440 if (!cpu
->has_neon
) {
1444 unset_feature(env
, ARM_FEATURE_NEON
);
1446 t
= cpu
->isar
.id_aa64isar0
;
1447 t
= FIELD_DP64(t
, ID_AA64ISAR0
, DP
, 0);
1448 cpu
->isar
.id_aa64isar0
= t
;
1450 t
= cpu
->isar
.id_aa64isar1
;
1451 t
= FIELD_DP64(t
, ID_AA64ISAR1
, FCMA
, 0);
1452 cpu
->isar
.id_aa64isar1
= t
;
1454 t
= cpu
->isar
.id_aa64pfr0
;
1455 t
= FIELD_DP64(t
, ID_AA64PFR0
, ADVSIMD
, 0xf);
1456 cpu
->isar
.id_aa64pfr0
= t
;
1458 u
= cpu
->isar
.id_isar5
;
1459 u
= FIELD_DP32(u
, ID_ISAR5
, RDM
, 0);
1460 u
= FIELD_DP32(u
, ID_ISAR5
, VCMA
, 0);
1461 cpu
->isar
.id_isar5
= u
;
1463 u
= cpu
->isar
.id_isar6
;
1464 u
= FIELD_DP32(u
, ID_ISAR6
, DP
, 0);
1465 u
= FIELD_DP32(u
, ID_ISAR6
, FHM
, 0);
1466 cpu
->isar
.id_isar6
= u
;
1468 u
= cpu
->isar
.mvfr1
;
1469 u
= FIELD_DP32(u
, MVFR1
, SIMDLS
, 0);
1470 u
= FIELD_DP32(u
, MVFR1
, SIMDINT
, 0);
1471 u
= FIELD_DP32(u
, MVFR1
, SIMDSP
, 0);
1472 u
= FIELD_DP32(u
, MVFR1
, SIMDHP
, 0);
1473 cpu
->isar
.mvfr1
= u
;
1475 u
= cpu
->isar
.mvfr2
;
1476 u
= FIELD_DP32(u
, MVFR2
, SIMDMISC
, 0);
1477 cpu
->isar
.mvfr2
= u
;
1480 if (!cpu
->has_neon
&& !cpu
->has_vfp
) {
1484 t
= cpu
->isar
.id_aa64isar0
;
1485 t
= FIELD_DP64(t
, ID_AA64ISAR0
, FHM
, 0);
1486 cpu
->isar
.id_aa64isar0
= t
;
1488 t
= cpu
->isar
.id_aa64isar1
;
1489 t
= FIELD_DP64(t
, ID_AA64ISAR1
, FRINTTS
, 0);
1490 cpu
->isar
.id_aa64isar1
= t
;
1492 u
= cpu
->isar
.mvfr0
;
1493 u
= FIELD_DP32(u
, MVFR0
, SIMDREG
, 0);
1494 cpu
->isar
.mvfr0
= u
;
1496 /* Despite the name, this field covers both VFP and Neon */
1497 u
= cpu
->isar
.mvfr1
;
1498 u
= FIELD_DP32(u
, MVFR1
, SIMDFMAC
, 0);
1499 cpu
->isar
.mvfr1
= u
;
1502 if (arm_feature(env
, ARM_FEATURE_M
) && !cpu
->has_dsp
) {
1505 unset_feature(env
, ARM_FEATURE_THUMB_DSP
);
1507 u
= cpu
->isar
.id_isar1
;
1508 u
= FIELD_DP32(u
, ID_ISAR1
, EXTEND
, 1);
1509 cpu
->isar
.id_isar1
= u
;
1511 u
= cpu
->isar
.id_isar2
;
1512 u
= FIELD_DP32(u
, ID_ISAR2
, MULTU
, 1);
1513 u
= FIELD_DP32(u
, ID_ISAR2
, MULTS
, 1);
1514 cpu
->isar
.id_isar2
= u
;
1516 u
= cpu
->isar
.id_isar3
;
1517 u
= FIELD_DP32(u
, ID_ISAR3
, SIMD
, 1);
1518 u
= FIELD_DP32(u
, ID_ISAR3
, SATURATE
, 0);
1519 cpu
->isar
.id_isar3
= u
;
1522 /* Some features automatically imply others: */
1523 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1524 if (arm_feature(env
, ARM_FEATURE_M
)) {
1525 set_feature(env
, ARM_FEATURE_V7
);
1527 set_feature(env
, ARM_FEATURE_V7VE
);
1532 * There exist AArch64 cpus without AArch32 support. When KVM
1533 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1534 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1535 * As a general principle, we also do not make ID register
1536 * consistency checks anywhere unless using TCG, because only
1537 * for TCG would a consistency-check failure be a QEMU bug.
1539 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1540 no_aa32
= !cpu_isar_feature(aa64_aa32
, cpu
);
1543 if (arm_feature(env
, ARM_FEATURE_V7VE
)) {
1544 /* v7 Virtualization Extensions. In real hardware this implies
1545 * EL2 and also the presence of the Security Extensions.
1546 * For QEMU, for backwards-compatibility we implement some
1547 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1548 * include the various other features that V7VE implies.
1549 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1550 * Security Extensions is ARM_FEATURE_EL3.
1552 assert(!tcg_enabled() || no_aa32
||
1553 cpu_isar_feature(aa32_arm_div
, cpu
));
1554 set_feature(env
, ARM_FEATURE_LPAE
);
1555 set_feature(env
, ARM_FEATURE_V7
);
1557 if (arm_feature(env
, ARM_FEATURE_V7
)) {
1558 set_feature(env
, ARM_FEATURE_VAPA
);
1559 set_feature(env
, ARM_FEATURE_THUMB2
);
1560 set_feature(env
, ARM_FEATURE_MPIDR
);
1561 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1562 set_feature(env
, ARM_FEATURE_V6K
);
1564 set_feature(env
, ARM_FEATURE_V6
);
1567 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1568 * non-EL3 configs. This is needed by some legacy boards.
1570 set_feature(env
, ARM_FEATURE_VBAR
);
1572 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
1573 set_feature(env
, ARM_FEATURE_V6
);
1574 set_feature(env
, ARM_FEATURE_MVFR
);
1576 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1577 set_feature(env
, ARM_FEATURE_V5
);
1578 if (!arm_feature(env
, ARM_FEATURE_M
)) {
1579 assert(!tcg_enabled() || no_aa32
||
1580 cpu_isar_feature(aa32_jazelle
, cpu
));
1581 set_feature(env
, ARM_FEATURE_AUXCR
);
1584 if (arm_feature(env
, ARM_FEATURE_V5
)) {
1585 set_feature(env
, ARM_FEATURE_V4T
);
1587 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1588 set_feature(env
, ARM_FEATURE_V7MP
);
1589 set_feature(env
, ARM_FEATURE_PXN
);
1591 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
1592 set_feature(env
, ARM_FEATURE_CBAR
);
1594 if (arm_feature(env
, ARM_FEATURE_THUMB2
) &&
1595 !arm_feature(env
, ARM_FEATURE_M
)) {
1596 set_feature(env
, ARM_FEATURE_THUMB_DSP
);
1600 * We rely on no XScale CPU having VFP so we can use the same bits in the
1601 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1603 assert(arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
) ||
1604 !cpu_isar_feature(aa32_vfp_simd
, cpu
) ||
1605 !arm_feature(env
, ARM_FEATURE_XSCALE
));
1607 if (arm_feature(env
, ARM_FEATURE_V7
) &&
1608 !arm_feature(env
, ARM_FEATURE_M
) &&
1609 !arm_feature(env
, ARM_FEATURE_PMSA
)) {
1610 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1615 /* For CPUs which might have tiny 1K pages, or which have an
1616 * MPU and might have small region sizes, stick with 1K pages.
1620 if (!set_preferred_target_page_bits(pagebits
)) {
1621 /* This can only ever happen for hotplugging a CPU, or if
1622 * the board code incorrectly creates a CPU which it has
1623 * promised via minimum_page_size that it will not.
1625 error_setg(errp
, "This CPU requires a smaller page size than the "
1630 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1631 * We don't support setting cluster ID ([16..23]) (known as Aff2
1632 * in later ARM ARM versions), or any of the higher affinity level fields,
1633 * so these bits always RAZ.
1635 if (cpu
->mp_affinity
== ARM64_AFFINITY_INVALID
) {
1636 cpu
->mp_affinity
= arm_cpu_mp_affinity(cs
->cpu_index
,
1637 ARM_DEFAULT_CPUS_PER_CLUSTER
);
1640 if (cpu
->reset_hivecs
) {
1641 cpu
->reset_sctlr
|= (1 << 13);
1645 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
1646 cpu
->reset_sctlr
|= SCTLR_EE
;
1648 cpu
->reset_sctlr
|= SCTLR_B
;
1652 if (!cpu
->has_el3
) {
1653 /* If the has_el3 CPU property is disabled then we need to disable the
1656 unset_feature(env
, ARM_FEATURE_EL3
);
1658 /* Disable the security extension feature bits in the processor feature
1659 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1661 cpu
->id_pfr1
&= ~0xf0;
1662 cpu
->isar
.id_aa64pfr0
&= ~0xf000;
1665 if (!cpu
->has_el2
) {
1666 unset_feature(env
, ARM_FEATURE_EL2
);
1669 if (!cpu
->has_pmu
) {
1670 unset_feature(env
, ARM_FEATURE_PMU
);
1672 if (arm_feature(env
, ARM_FEATURE_PMU
)) {
1675 if (!kvm_enabled()) {
1676 arm_register_pre_el_change_hook(cpu
, &pmu_pre_el_change
, 0);
1677 arm_register_el_change_hook(cpu
, &pmu_post_el_change
, 0);
1680 #ifndef CONFIG_USER_ONLY
1681 cpu
->pmu_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, arm_pmu_timer_cb
,
1685 cpu
->isar
.id_aa64dfr0
=
1686 FIELD_DP64(cpu
->isar
.id_aa64dfr0
, ID_AA64DFR0
, PMUVER
, 0);
1687 cpu
->isar
.id_dfr0
= FIELD_DP32(cpu
->isar
.id_dfr0
, ID_DFR0
, PERFMON
, 0);
1692 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
1693 /* Disable the hypervisor feature bits in the processor feature
1694 * registers if we don't have EL2. These are id_pfr1[15:12] and
1695 * id_aa64pfr0_el1[11:8].
1697 cpu
->isar
.id_aa64pfr0
&= ~0xf00;
1698 cpu
->id_pfr1
&= ~0xf000;
1701 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1702 * to false or by setting pmsav7-dregion to 0.
1704 if (!cpu
->has_mpu
) {
1705 cpu
->pmsav7_dregion
= 0;
1707 if (cpu
->pmsav7_dregion
== 0) {
1708 cpu
->has_mpu
= false;
1711 if (arm_feature(env
, ARM_FEATURE_PMSA
) &&
1712 arm_feature(env
, ARM_FEATURE_V7
)) {
1713 uint32_t nr
= cpu
->pmsav7_dregion
;
1716 error_setg(errp
, "PMSAv7 MPU #regions invalid %" PRIu32
, nr
);
1721 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1723 env
->pmsav8
.rbar
[M_REG_NS
] = g_new0(uint32_t, nr
);
1724 env
->pmsav8
.rlar
[M_REG_NS
] = g_new0(uint32_t, nr
);
1725 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1726 env
->pmsav8
.rbar
[M_REG_S
] = g_new0(uint32_t, nr
);
1727 env
->pmsav8
.rlar
[M_REG_S
] = g_new0(uint32_t, nr
);
1730 env
->pmsav7
.drbar
= g_new0(uint32_t, nr
);
1731 env
->pmsav7
.drsr
= g_new0(uint32_t, nr
);
1732 env
->pmsav7
.dracr
= g_new0(uint32_t, nr
);
1737 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
1738 uint32_t nr
= cpu
->sau_sregion
;
1741 error_setg(errp
, "v8M SAU #regions invalid %" PRIu32
, nr
);
1746 env
->sau
.rbar
= g_new0(uint32_t, nr
);
1747 env
->sau
.rlar
= g_new0(uint32_t, nr
);
1751 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
1752 set_feature(env
, ARM_FEATURE_VBAR
);
1755 register_cp_regs_for_features(cpu
);
1756 arm_cpu_register_gdb_regs_for_features(cpu
);
1758 init_cpreg_list(cpu
);
1760 #ifndef CONFIG_USER_ONLY
1761 MachineState
*ms
= MACHINE(qdev_get_machine());
1762 unsigned int smp_cpus
= ms
->smp
.cpus
;
1763 bool has_secure
= cpu
->has_el3
|| arm_feature(env
, ARM_FEATURE_M_SECURITY
);
1766 * We must set cs->num_ases to the final value before
1767 * the first call to cpu_address_space_init.
1769 if (cpu
->tag_memory
!= NULL
) {
1770 cs
->num_ases
= 3 + has_secure
;
1772 cs
->num_ases
= 1 + has_secure
;
1776 if (!cpu
->secure_memory
) {
1777 cpu
->secure_memory
= cs
->memory
;
1779 cpu_address_space_init(cs
, ARMASIdx_S
, "cpu-secure-memory",
1780 cpu
->secure_memory
);
1783 if (cpu
->tag_memory
!= NULL
) {
1784 cpu_address_space_init(cs
, ARMASIdx_TagNS
, "cpu-tag-memory",
1787 cpu_address_space_init(cs
, ARMASIdx_TagS
, "cpu-tag-memory",
1788 cpu
->secure_tag_memory
);
1790 } else if (cpu_isar_feature(aa64_mte
, cpu
)) {
1792 * Since there is no tag memory, we can't meaningfully support MTE
1793 * to its fullest. To avoid problems later, when we would come to
1794 * use the tag memory, downgrade support to insns only.
1796 cpu
->isar
.id_aa64pfr1
=
1797 FIELD_DP64(cpu
->isar
.id_aa64pfr1
, ID_AA64PFR1
, MTE
, 1);
1800 cpu_address_space_init(cs
, ARMASIdx_NS
, "cpu-memory", cs
->memory
);
1802 /* No core_count specified, default to smp_cpus. */
1803 if (cpu
->core_count
== -1) {
1804 cpu
->core_count
= smp_cpus
;
1808 if (tcg_enabled()) {
1809 int dcz_blocklen
= 4 << cpu
->dcz_blocksize
;
1812 * We only support DCZ blocklen that fits on one page.
1814 * Architectually this is always true. However TARGET_PAGE_SIZE
1815 * is variable and, for compatibility with -machine virt-2.7,
1816 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1817 * But even then, while the largest architectural DCZ blocklen
1818 * is 2KiB, no cpu actually uses such a large blocklen.
1820 assert(dcz_blocklen
<= TARGET_PAGE_SIZE
);
1823 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1824 * both nibbles of each byte storing tag data may be written at once.
1825 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1827 if (cpu_isar_feature(aa64_mte
, cpu
)) {
1828 assert(dcz_blocklen
>= 2 * TAG_GRANULE
);
1835 acc
->parent_realize(dev
, errp
);
1838 static ObjectClass
*arm_cpu_class_by_name(const char *cpu_model
)
1843 const char *cpunamestr
;
1845 cpuname
= g_strsplit(cpu_model
, ",", 1);
1846 cpunamestr
= cpuname
[0];
1847 #ifdef CONFIG_USER_ONLY
1848 /* For backwards compatibility usermode emulation allows "-cpu any",
1849 * which has the same semantics as "-cpu max".
1851 if (!strcmp(cpunamestr
, "any")) {
1855 typename
= g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr
);
1856 oc
= object_class_by_name(typename
);
1857 g_strfreev(cpuname
);
1859 if (!oc
|| !object_class_dynamic_cast(oc
, TYPE_ARM_CPU
) ||
1860 object_class_is_abstract(oc
)) {
1866 /* CPU models. These are not needed for the AArch64 linux-user build. */
1867 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1869 static const ARMCPRegInfo cortexa8_cp_reginfo
[] = {
1870 { .name
= "L2LOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 0,
1871 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1872 { .name
= "L2AUXCR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 2,
1873 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1877 static void cortex_a8_initfn(Object
*obj
)
1879 ARMCPU
*cpu
= ARM_CPU(obj
);
1881 cpu
->dtb_compatible
= "arm,cortex-a8";
1882 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1883 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1884 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1885 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
1886 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1887 cpu
->midr
= 0x410fc080;
1888 cpu
->reset_fpsid
= 0x410330c0;
1889 cpu
->isar
.mvfr0
= 0x11110222;
1890 cpu
->isar
.mvfr1
= 0x00011111;
1891 cpu
->ctr
= 0x82048004;
1892 cpu
->reset_sctlr
= 0x00c50078;
1893 cpu
->id_pfr0
= 0x1031;
1894 cpu
->id_pfr1
= 0x11;
1895 cpu
->isar
.id_dfr0
= 0x400;
1897 cpu
->isar
.id_mmfr0
= 0x31100003;
1898 cpu
->isar
.id_mmfr1
= 0x20000000;
1899 cpu
->isar
.id_mmfr2
= 0x01202000;
1900 cpu
->isar
.id_mmfr3
= 0x11;
1901 cpu
->isar
.id_isar0
= 0x00101111;
1902 cpu
->isar
.id_isar1
= 0x12112111;
1903 cpu
->isar
.id_isar2
= 0x21232031;
1904 cpu
->isar
.id_isar3
= 0x11112131;
1905 cpu
->isar
.id_isar4
= 0x00111142;
1906 cpu
->isar
.dbgdidr
= 0x15141000;
1907 cpu
->clidr
= (1 << 27) | (2 << 24) | 3;
1908 cpu
->ccsidr
[0] = 0xe007e01a; /* 16k L1 dcache. */
1909 cpu
->ccsidr
[1] = 0x2007e01a; /* 16k L1 icache. */
1910 cpu
->ccsidr
[2] = 0xf0000000; /* No L2 icache. */
1911 cpu
->reset_auxcr
= 2;
1912 define_arm_cp_regs(cpu
, cortexa8_cp_reginfo
);
1915 static const ARMCPRegInfo cortexa9_cp_reginfo
[] = {
1916 /* power_control should be set to maximum latency. Again,
1917 * default to 0 and set by private hook
1919 { .name
= "A9_PWRCTL", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
1920 .access
= PL1_RW
, .resetvalue
= 0,
1921 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_power_control
) },
1922 { .name
= "A9_DIAG", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 1,
1923 .access
= PL1_RW
, .resetvalue
= 0,
1924 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_diagnostic
) },
1925 { .name
= "A9_PWRDIAG", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 2,
1926 .access
= PL1_RW
, .resetvalue
= 0,
1927 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_power_diagnostic
) },
1928 { .name
= "NEONBUSY", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
1929 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1930 /* TLB lockdown control */
1931 { .name
= "TLB_LOCKR", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 5, .opc2
= 2,
1932 .access
= PL1_W
, .resetvalue
= 0, .type
= ARM_CP_NOP
},
1933 { .name
= "TLB_LOCKW", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 5, .opc2
= 4,
1934 .access
= PL1_W
, .resetvalue
= 0, .type
= ARM_CP_NOP
},
1935 { .name
= "TLB_VA", .cp
= 15, .crn
= 15, .crm
= 5, .opc1
= 5, .opc2
= 2,
1936 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1937 { .name
= "TLB_PA", .cp
= 15, .crn
= 15, .crm
= 6, .opc1
= 5, .opc2
= 2,
1938 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1939 { .name
= "TLB_ATTR", .cp
= 15, .crn
= 15, .crm
= 7, .opc1
= 5, .opc2
= 2,
1940 .access
= PL1_RW
, .resetvalue
= 0, .type
= ARM_CP_CONST
},
1944 static void cortex_a9_initfn(Object
*obj
)
1946 ARMCPU
*cpu
= ARM_CPU(obj
);
1948 cpu
->dtb_compatible
= "arm,cortex-a9";
1949 set_feature(&cpu
->env
, ARM_FEATURE_V7
);
1950 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
1951 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
1952 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
1953 /* Note that A9 supports the MP extensions even for
1954 * A9UP and single-core A9MP (which are both different
1955 * and valid configurations; we don't model A9UP).
1957 set_feature(&cpu
->env
, ARM_FEATURE_V7MP
);
1958 set_feature(&cpu
->env
, ARM_FEATURE_CBAR
);
1959 cpu
->midr
= 0x410fc090;
1960 cpu
->reset_fpsid
= 0x41033090;
1961 cpu
->isar
.mvfr0
= 0x11110222;
1962 cpu
->isar
.mvfr1
= 0x01111111;
1963 cpu
->ctr
= 0x80038003;
1964 cpu
->reset_sctlr
= 0x00c50078;
1965 cpu
->id_pfr0
= 0x1031;
1966 cpu
->id_pfr1
= 0x11;
1967 cpu
->isar
.id_dfr0
= 0x000;
1969 cpu
->isar
.id_mmfr0
= 0x00100103;
1970 cpu
->isar
.id_mmfr1
= 0x20000000;
1971 cpu
->isar
.id_mmfr2
= 0x01230000;
1972 cpu
->isar
.id_mmfr3
= 0x00002111;
1973 cpu
->isar
.id_isar0
= 0x00101111;
1974 cpu
->isar
.id_isar1
= 0x13112111;
1975 cpu
->isar
.id_isar2
= 0x21232041;
1976 cpu
->isar
.id_isar3
= 0x11112131;
1977 cpu
->isar
.id_isar4
= 0x00111142;
1978 cpu
->isar
.dbgdidr
= 0x35141000;
1979 cpu
->clidr
= (1 << 27) | (1 << 24) | 3;
1980 cpu
->ccsidr
[0] = 0xe00fe019; /* 16k L1 dcache. */
1981 cpu
->ccsidr
[1] = 0x200fe019; /* 16k L1 icache. */
1982 define_arm_cp_regs(cpu
, cortexa9_cp_reginfo
);
1985 #ifndef CONFIG_USER_ONLY
1986 static uint64_t a15_l2ctlr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1988 MachineState
*ms
= MACHINE(qdev_get_machine());
1990 /* Linux wants the number of processors from here.
1991 * Might as well set the interrupt-controller bit too.
1993 return ((ms
->smp
.cpus
- 1) << 24) | (1 << 23);
1997 static const ARMCPRegInfo cortexa15_cp_reginfo
[] = {
1998 #ifndef CONFIG_USER_ONLY
1999 { .name
= "L2CTLR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 2,
2000 .access
= PL1_RW
, .resetvalue
= 0, .readfn
= a15_l2ctlr_read
,
2001 .writefn
= arm_cp_write_ignore
, },
2003 { .name
= "L2ECTLR", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 1, .opc2
= 3,
2004 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2008 static void cortex_a7_initfn(Object
*obj
)
2010 ARMCPU
*cpu
= ARM_CPU(obj
);
2012 cpu
->dtb_compatible
= "arm,cortex-a7";
2013 set_feature(&cpu
->env
, ARM_FEATURE_V7VE
);
2014 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
2015 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
2016 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
2017 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
2018 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
2019 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
2020 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
2021 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
2022 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A7
;
2023 cpu
->midr
= 0x410fc075;
2024 cpu
->reset_fpsid
= 0x41023075;
2025 cpu
->isar
.mvfr0
= 0x10110222;
2026 cpu
->isar
.mvfr1
= 0x11111111;
2027 cpu
->ctr
= 0x84448003;
2028 cpu
->reset_sctlr
= 0x00c50078;
2029 cpu
->id_pfr0
= 0x00001131;
2030 cpu
->id_pfr1
= 0x00011011;
2031 cpu
->isar
.id_dfr0
= 0x02010555;
2032 cpu
->id_afr0
= 0x00000000;
2033 cpu
->isar
.id_mmfr0
= 0x10101105;
2034 cpu
->isar
.id_mmfr1
= 0x40000000;
2035 cpu
->isar
.id_mmfr2
= 0x01240000;
2036 cpu
->isar
.id_mmfr3
= 0x02102211;
2037 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2038 * table 4-41 gives 0x02101110, which includes the arm div insns.
2040 cpu
->isar
.id_isar0
= 0x02101110;
2041 cpu
->isar
.id_isar1
= 0x13112111;
2042 cpu
->isar
.id_isar2
= 0x21232041;
2043 cpu
->isar
.id_isar3
= 0x11112131;
2044 cpu
->isar
.id_isar4
= 0x10011142;
2045 cpu
->isar
.dbgdidr
= 0x3515f005;
2046 cpu
->clidr
= 0x0a200023;
2047 cpu
->ccsidr
[0] = 0x701fe00a; /* 32K L1 dcache */
2048 cpu
->ccsidr
[1] = 0x201fe00a; /* 32K L1 icache */
2049 cpu
->ccsidr
[2] = 0x711fe07a; /* 4096K L2 unified cache */
2050 define_arm_cp_regs(cpu
, cortexa15_cp_reginfo
); /* Same as A15 */
2053 static void cortex_a15_initfn(Object
*obj
)
2055 ARMCPU
*cpu
= ARM_CPU(obj
);
2057 cpu
->dtb_compatible
= "arm,cortex-a15";
2058 set_feature(&cpu
->env
, ARM_FEATURE_V7VE
);
2059 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
2060 set_feature(&cpu
->env
, ARM_FEATURE_THUMB2EE
);
2061 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
2062 set_feature(&cpu
->env
, ARM_FEATURE_DUMMY_C15_REGS
);
2063 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
2064 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
2065 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
2066 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
2067 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A15
;
2068 cpu
->midr
= 0x412fc0f1;
2069 cpu
->reset_fpsid
= 0x410430f0;
2070 cpu
->isar
.mvfr0
= 0x10110222;
2071 cpu
->isar
.mvfr1
= 0x11111111;
2072 cpu
->ctr
= 0x8444c004;
2073 cpu
->reset_sctlr
= 0x00c50078;
2074 cpu
->id_pfr0
= 0x00001131;
2075 cpu
->id_pfr1
= 0x00011011;
2076 cpu
->isar
.id_dfr0
= 0x02010555;
2077 cpu
->id_afr0
= 0x00000000;
2078 cpu
->isar
.id_mmfr0
= 0x10201105;
2079 cpu
->isar
.id_mmfr1
= 0x20000000;
2080 cpu
->isar
.id_mmfr2
= 0x01240000;
2081 cpu
->isar
.id_mmfr3
= 0x02102211;
2082 cpu
->isar
.id_isar0
= 0x02101110;
2083 cpu
->isar
.id_isar1
= 0x13112111;
2084 cpu
->isar
.id_isar2
= 0x21232041;
2085 cpu
->isar
.id_isar3
= 0x11112131;
2086 cpu
->isar
.id_isar4
= 0x10011142;
2087 cpu
->isar
.dbgdidr
= 0x3515f021;
2088 cpu
->clidr
= 0x0a200023;
2089 cpu
->ccsidr
[0] = 0x701fe00a; /* 32K L1 dcache */
2090 cpu
->ccsidr
[1] = 0x201fe00a; /* 32K L1 icache */
2091 cpu
->ccsidr
[2] = 0x711fe07a; /* 4096K L2 unified cache */
2092 define_arm_cp_regs(cpu
, cortexa15_cp_reginfo
);
2095 #ifndef TARGET_AARCH64
2096 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2097 * otherwise, a CPU with as many features enabled as our emulation supports.
2098 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2099 * this only needs to handle 32 bits.
2101 static void arm_max_initfn(Object
*obj
)
2103 ARMCPU
*cpu
= ARM_CPU(obj
);
2105 if (kvm_enabled()) {
2106 kvm_arm_set_cpu_features_from_host(cpu
);
2108 cortex_a15_initfn(obj
);
2110 /* old-style VFP short-vector support */
2111 cpu
->isar
.mvfr0
= FIELD_DP32(cpu
->isar
.mvfr0
, MVFR0
, FPSHVEC
, 1);
2113 #ifdef CONFIG_USER_ONLY
2114 /* We don't set these in system emulation mode for the moment,
2115 * since we don't correctly set (all of) the ID registers to
2118 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
2122 t
= cpu
->isar
.id_isar5
;
2123 t
= FIELD_DP32(t
, ID_ISAR5
, AES
, 2);
2124 t
= FIELD_DP32(t
, ID_ISAR5
, SHA1
, 1);
2125 t
= FIELD_DP32(t
, ID_ISAR5
, SHA2
, 1);
2126 t
= FIELD_DP32(t
, ID_ISAR5
, CRC32
, 1);
2127 t
= FIELD_DP32(t
, ID_ISAR5
, RDM
, 1);
2128 t
= FIELD_DP32(t
, ID_ISAR5
, VCMA
, 1);
2129 cpu
->isar
.id_isar5
= t
;
2131 t
= cpu
->isar
.id_isar6
;
2132 t
= FIELD_DP32(t
, ID_ISAR6
, JSCVT
, 1);
2133 t
= FIELD_DP32(t
, ID_ISAR6
, DP
, 1);
2134 t
= FIELD_DP32(t
, ID_ISAR6
, FHM
, 1);
2135 t
= FIELD_DP32(t
, ID_ISAR6
, SB
, 1);
2136 t
= FIELD_DP32(t
, ID_ISAR6
, SPECRES
, 1);
2137 cpu
->isar
.id_isar6
= t
;
2139 t
= cpu
->isar
.mvfr1
;
2140 t
= FIELD_DP32(t
, MVFR1
, FPHP
, 2); /* v8.0 FP support */
2141 cpu
->isar
.mvfr1
= t
;
2143 t
= cpu
->isar
.mvfr2
;
2144 t
= FIELD_DP32(t
, MVFR2
, SIMDMISC
, 3); /* SIMD MaxNum */
2145 t
= FIELD_DP32(t
, MVFR2
, FPMISC
, 4); /* FP MaxNum */
2146 cpu
->isar
.mvfr2
= t
;
2148 t
= cpu
->isar
.id_mmfr3
;
2149 t
= FIELD_DP32(t
, ID_MMFR3
, PAN
, 2); /* ATS1E1 */
2150 cpu
->isar
.id_mmfr3
= t
;
2152 t
= cpu
->isar
.id_mmfr4
;
2153 t
= FIELD_DP32(t
, ID_MMFR4
, HPDS
, 1); /* AA32HPD */
2154 t
= FIELD_DP32(t
, ID_MMFR4
, AC2
, 1); /* ACTLR2, HACTLR2 */
2155 t
= FIELD_DP32(t
, ID_MMFR4
, CNP
, 1); /* TTCNP */
2156 t
= FIELD_DP32(t
, ID_MMFR4
, XNX
, 1); /* TTS2UXN */
2157 cpu
->isar
.id_mmfr4
= t
;
2164 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2166 static const ARMCPUInfo arm_cpus
[] = {
2167 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2168 { .name
= "cortex-a7", .initfn
= cortex_a7_initfn
},
2169 { .name
= "cortex-a8", .initfn
= cortex_a8_initfn
},
2170 { .name
= "cortex-a9", .initfn
= cortex_a9_initfn
},
2171 { .name
= "cortex-a15", .initfn
= cortex_a15_initfn
},
2172 #ifndef TARGET_AARCH64
2173 { .name
= "max", .initfn
= arm_max_initfn
},
2175 #ifdef CONFIG_USER_ONLY
2176 { .name
= "any", .initfn
= arm_max_initfn
},
2181 static Property arm_cpu_properties
[] = {
2182 DEFINE_PROP_BOOL("start-powered-off", ARMCPU
, start_powered_off
, false),
2183 DEFINE_PROP_UINT32("psci-conduit", ARMCPU
, psci_conduit
, 0),
2184 DEFINE_PROP_UINT64("midr", ARMCPU
, midr
, 0),
2185 DEFINE_PROP_UINT64("mp-affinity", ARMCPU
,
2186 mp_affinity
, ARM64_AFFINITY_INVALID
),
2187 DEFINE_PROP_INT32("node-id", ARMCPU
, node_id
, CPU_UNSET_NUMA_NODE_ID
),
2188 DEFINE_PROP_INT32("core-count", ARMCPU
, core_count
, -1),
2189 DEFINE_PROP_END_OF_LIST()
2192 static gchar
*arm_gdb_arch_name(CPUState
*cs
)
2194 ARMCPU
*cpu
= ARM_CPU(cs
);
2195 CPUARMState
*env
= &cpu
->env
;
2197 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
2198 return g_strdup("iwmmxt");
2200 return g_strdup("arm");
2203 static void arm_cpu_class_init(ObjectClass
*oc
, void *data
)
2205 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
2206 CPUClass
*cc
= CPU_CLASS(acc
);
2207 DeviceClass
*dc
= DEVICE_CLASS(oc
);
2209 device_class_set_parent_realize(dc
, arm_cpu_realizefn
,
2210 &acc
->parent_realize
);
2212 device_class_set_props(dc
, arm_cpu_properties
);
2213 device_class_set_parent_reset(dc
, arm_cpu_reset
, &acc
->parent_reset
);
2215 cc
->class_by_name
= arm_cpu_class_by_name
;
2216 cc
->has_work
= arm_cpu_has_work
;
2217 cc
->cpu_exec_interrupt
= arm_cpu_exec_interrupt
;
2218 cc
->dump_state
= arm_cpu_dump_state
;
2219 cc
->set_pc
= arm_cpu_set_pc
;
2220 cc
->synchronize_from_tb
= arm_cpu_synchronize_from_tb
;
2221 cc
->gdb_read_register
= arm_cpu_gdb_read_register
;
2222 cc
->gdb_write_register
= arm_cpu_gdb_write_register
;
2223 #ifndef CONFIG_USER_ONLY
2224 cc
->do_interrupt
= arm_cpu_do_interrupt
;
2225 cc
->get_phys_page_attrs_debug
= arm_cpu_get_phys_page_attrs_debug
;
2226 cc
->asidx_from_attrs
= arm_asidx_from_attrs
;
2227 cc
->vmsd
= &vmstate_arm_cpu
;
2228 cc
->virtio_is_big_endian
= arm_cpu_virtio_is_big_endian
;
2229 cc
->write_elf64_note
= arm_cpu_write_elf64_note
;
2230 cc
->write_elf32_note
= arm_cpu_write_elf32_note
;
2232 cc
->gdb_num_core_regs
= 26;
2233 cc
->gdb_core_xml_file
= "arm-core.xml";
2234 cc
->gdb_arch_name
= arm_gdb_arch_name
;
2235 cc
->gdb_get_dynamic_xml
= arm_gdb_get_dynamic_xml
;
2236 cc
->gdb_stop_before_watchpoint
= true;
2237 cc
->disas_set_info
= arm_disas_set_info
;
2239 cc
->tcg_initialize
= arm_translate_init
;
2240 cc
->tlb_fill
= arm_cpu_tlb_fill
;
2241 cc
->debug_excp_handler
= arm_debug_excp_handler
;
2242 cc
->debug_check_watchpoint
= arm_debug_check_watchpoint
;
2243 cc
->do_unaligned_access
= arm_cpu_do_unaligned_access
;
2244 #if !defined(CONFIG_USER_ONLY)
2245 cc
->do_transaction_failed
= arm_cpu_do_transaction_failed
;
2246 cc
->adjust_watchpoint_address
= arm_adjust_watchpoint_address
;
2247 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2252 static void arm_host_initfn(Object
*obj
)
2254 ARMCPU
*cpu
= ARM_CPU(obj
);
2256 kvm_arm_set_cpu_features_from_host(cpu
);
2257 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
2258 aarch64_add_sve_properties(obj
);
2260 arm_cpu_post_init(obj
);
2263 static const TypeInfo host_arm_cpu_type_info
= {
2264 .name
= TYPE_ARM_HOST_CPU
,
2265 #ifdef TARGET_AARCH64
2266 .parent
= TYPE_AARCH64_CPU
,
2268 .parent
= TYPE_ARM_CPU
,
2270 .instance_init
= arm_host_initfn
,
2275 static void arm_cpu_instance_init(Object
*obj
)
2277 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(obj
);
2279 acc
->info
->initfn(obj
);
2280 arm_cpu_post_init(obj
);
2283 static void cpu_register_class_init(ObjectClass
*oc
, void *data
)
2285 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
2290 void arm_cpu_register(const ARMCPUInfo
*info
)
2292 TypeInfo type_info
= {
2293 .parent
= TYPE_ARM_CPU
,
2294 .instance_size
= sizeof(ARMCPU
),
2295 .instance_init
= arm_cpu_instance_init
,
2296 .class_size
= sizeof(ARMCPUClass
),
2297 .class_init
= info
->class_init
?: cpu_register_class_init
,
2298 .class_data
= (void *)info
,
2301 type_info
.name
= g_strdup_printf("%s-" TYPE_ARM_CPU
, info
->name
);
2302 type_register(&type_info
);
2303 g_free((void *)type_info
.name
);
2306 static const TypeInfo arm_cpu_type_info
= {
2307 .name
= TYPE_ARM_CPU
,
2309 .instance_size
= sizeof(ARMCPU
),
2310 .instance_init
= arm_cpu_initfn
,
2311 .instance_finalize
= arm_cpu_finalizefn
,
2313 .class_size
= sizeof(ARMCPUClass
),
2314 .class_init
= arm_cpu_class_init
,
2317 static const TypeInfo idau_interface_type_info
= {
2318 .name
= TYPE_IDAU_INTERFACE
,
2319 .parent
= TYPE_INTERFACE
,
2320 .class_size
= sizeof(IDAUInterfaceClass
),
2323 static void arm_cpu_register_types(void)
2325 const size_t cpu_count
= ARRAY_SIZE(arm_cpus
);
2327 type_register_static(&arm_cpu_type_info
);
2330 type_register_static(&host_arm_cpu_type_info
);
2336 type_register_static(&idau_interface_type_info
);
2337 for (i
= 0; i
< cpu_count
; ++i
) {
2338 arm_cpu_register(&arm_cpus
[i
]);
2343 type_init(arm_cpu_register_types
)