4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
10 #include "qemu/osdep.h"
11 #include "qemu/error-report.h"
12 #include "qapi/error.h"
15 #include "hw/arm/arm.h"
16 #include "hw/arm/linux-boot-if.h"
17 #include "sysemu/kvm.h"
18 #include "sysemu/sysemu.h"
19 #include "sysemu/numa.h"
20 #include "hw/boards.h"
21 #include "hw/loader.h"
23 #include "sysemu/device_tree.h"
24 #include "qemu/config-file.h"
25 #include "qemu/option.h"
26 #include "exec/address-spaces.h"
28 /* Kernel boot protocol is specified in the kernel docs
29 * Documentation/arm/Booting and Documentation/arm64/booting.txt
30 * They have different preferred image load offsets from system RAM base.
32 #define KERNEL_ARGS_ADDR 0x100
33 #define KERNEL_LOAD_ADDR 0x00010000
34 #define KERNEL64_LOAD_ADDR 0x00080000
36 #define ARM64_TEXT_OFFSET_OFFSET 8
37 #define ARM64_MAGIC_OFFSET 56
39 AddressSpace
*arm_boot_address_space(ARMCPU
*cpu
,
40 const struct arm_boot_info
*info
)
42 /* Return the address space to use for bootloader reads and writes.
43 * We prefer the secure address space if the CPU has it and we're
44 * going to boot the guest into it.
47 CPUState
*cs
= CPU(cpu
);
49 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
) && info
->secure_boot
) {
55 return cpu_get_address_space(cs
, asidx
);
59 FIXUP_NONE
= 0, /* do nothing */
60 FIXUP_TERMINATOR
, /* end of insns */
61 FIXUP_BOARDID
, /* overwrite with board ID number */
62 FIXUP_BOARD_SETUP
, /* overwrite with board specific setup code address */
63 FIXUP_ARGPTR
, /* overwrite with pointer to kernel args */
64 FIXUP_ENTRYPOINT
, /* overwrite with kernel entry point */
65 FIXUP_GIC_CPU_IF
, /* overwrite with GIC CPU interface address */
66 FIXUP_BOOTREG
, /* overwrite with boot register address */
67 FIXUP_DSB
, /* overwrite with correct DSB insn for cpu */
71 typedef struct ARMInsnFixup
{
76 static const ARMInsnFixup bootloader_aarch64
[] = {
77 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
78 { 0xaa1f03e1 }, /* mov x1, xzr */
79 { 0xaa1f03e2 }, /* mov x2, xzr */
80 { 0xaa1f03e3 }, /* mov x3, xzr */
81 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
82 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
83 { 0, FIXUP_ARGPTR
}, /* arg: .word @DTB Lower 32-bits */
84 { 0 }, /* .word @DTB Higher 32-bits */
85 { 0, FIXUP_ENTRYPOINT
}, /* entry: .word @Kernel Entry Lower 32-bits */
86 { 0 }, /* .word @Kernel Entry Higher 32-bits */
87 { 0, FIXUP_TERMINATOR
}
90 /* A very small bootloader: call the board-setup code (if needed),
91 * set r0-r2, then jump to the kernel.
92 * If we're not calling boot setup code then we don't copy across
93 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
96 static const ARMInsnFixup bootloader
[] = {
97 { 0xe28fe004 }, /* add lr, pc, #4 */
98 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
99 { 0, FIXUP_BOARD_SETUP
},
100 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
101 { 0xe3a00000 }, /* mov r0, #0 */
102 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
103 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
104 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
105 { 0, FIXUP_BOARDID
},
107 { 0, FIXUP_ENTRYPOINT
},
108 { 0, FIXUP_TERMINATOR
}
111 /* Handling for secondary CPU boot in a multicore system.
112 * Unlike the uniprocessor/primary CPU boot, this is platform
113 * dependent. The default code here is based on the secondary
114 * CPU boot protocol used on realview/vexpress boards, with
115 * some parameterisation to increase its flexibility.
116 * QEMU platform models for which this code is not appropriate
117 * should override write_secondary_boot and secondary_cpu_reset_hook
120 * This code enables the interrupt controllers for the secondary
121 * CPUs and then puts all the secondary CPUs into a loop waiting
122 * for an interprocessor interrupt and polling a configurable
123 * location for the kernel secondary CPU entry point.
125 #define DSB_INSN 0xf57ff04f
126 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
128 static const ARMInsnFixup smpboot
[] = {
129 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
130 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
131 { 0xe3a01001 }, /* mov r1, #1 */
132 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
133 { 0xe3a010ff }, /* mov r1, #0xff */
134 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
135 { 0, FIXUP_DSB
}, /* dsb */
136 { 0xe320f003 }, /* wfi */
137 { 0xe5901000 }, /* ldr r1, [r0] */
138 { 0xe1110001 }, /* tst r1, r1 */
139 { 0x0afffffb }, /* beq <wfi> */
140 { 0xe12fff11 }, /* bx r1 */
141 { 0, FIXUP_GIC_CPU_IF
}, /* gic_cpu_if: .word 0x.... */
142 { 0, FIXUP_BOOTREG
}, /* bootreg_addr: .word 0x.... */
143 { 0, FIXUP_TERMINATOR
}
146 static void write_bootloader(const char *name
, hwaddr addr
,
147 const ARMInsnFixup
*insns
, uint32_t *fixupcontext
,
150 /* Fix up the specified bootloader fragment and write it into
151 * guest memory using rom_add_blob_fixed(). fixupcontext is
152 * an array giving the values to write in for the fixup types
153 * which write a value into the code array.
159 while (insns
[len
].fixup
!= FIXUP_TERMINATOR
) {
163 code
= g_new0(uint32_t, len
);
165 for (i
= 0; i
< len
; i
++) {
166 uint32_t insn
= insns
[i
].insn
;
167 FixupType fixup
= insns
[i
].fixup
;
173 case FIXUP_BOARD_SETUP
:
175 case FIXUP_ENTRYPOINT
:
176 case FIXUP_GIC_CPU_IF
:
179 insn
= fixupcontext
[fixup
];
184 code
[i
] = tswap32(insn
);
187 rom_add_blob_fixed_as(name
, code
, len
* sizeof(uint32_t), addr
, as
);
192 static void default_write_secondary(ARMCPU
*cpu
,
193 const struct arm_boot_info
*info
)
195 uint32_t fixupcontext
[FIXUP_MAX
];
196 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
198 fixupcontext
[FIXUP_GIC_CPU_IF
] = info
->gic_cpu_if_addr
;
199 fixupcontext
[FIXUP_BOOTREG
] = info
->smp_bootreg_addr
;
200 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
201 fixupcontext
[FIXUP_DSB
] = DSB_INSN
;
203 fixupcontext
[FIXUP_DSB
] = CP15_DSB_INSN
;
206 write_bootloader("smpboot", info
->smp_loader_start
,
207 smpboot
, fixupcontext
, as
);
210 void arm_write_secure_board_setup_dummy_smc(ARMCPU
*cpu
,
211 const struct arm_boot_info
*info
,
214 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
216 uint32_t mvbar_blob
[] = {
217 /* mvbar_addr: secure monitor vectors
218 * Default unimplemented and unused vectors to spin. Makes it
219 * easier to debug (as opposed to the CPU running away).
221 0xeafffffe, /* (spin) */
222 0xeafffffe, /* (spin) */
223 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
224 0xeafffffe, /* (spin) */
225 0xeafffffe, /* (spin) */
226 0xeafffffe, /* (spin) */
227 0xeafffffe, /* (spin) */
228 0xeafffffe, /* (spin) */
230 uint32_t board_setup_blob
[] = {
231 /* board setup addr */
232 0xe3a00e00 + (mvbar_addr
>> 4), /* mov r0, #mvbar_addr */
233 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
234 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
235 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
236 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
237 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
238 0xe1600070, /* smc #0 ;call monitor to flush SCR */
239 0xe1a0f001, /* mov pc, r1 ;return */
242 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
243 assert((mvbar_addr
& 0x1f) == 0 && (mvbar_addr
>> 4) < 0x100);
245 /* check that these blobs don't overlap */
246 assert((mvbar_addr
+ sizeof(mvbar_blob
) <= info
->board_setup_addr
)
247 || (info
->board_setup_addr
+ sizeof(board_setup_blob
) <= mvbar_addr
));
249 for (n
= 0; n
< ARRAY_SIZE(mvbar_blob
); n
++) {
250 mvbar_blob
[n
] = tswap32(mvbar_blob
[n
]);
252 rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob
, sizeof(mvbar_blob
),
255 for (n
= 0; n
< ARRAY_SIZE(board_setup_blob
); n
++) {
256 board_setup_blob
[n
] = tswap32(board_setup_blob
[n
]);
258 rom_add_blob_fixed_as("board-setup", board_setup_blob
,
259 sizeof(board_setup_blob
), info
->board_setup_addr
, as
);
262 static void default_reset_secondary(ARMCPU
*cpu
,
263 const struct arm_boot_info
*info
)
265 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
266 CPUState
*cs
= CPU(cpu
);
268 address_space_stl_notdirty(as
, info
->smp_bootreg_addr
,
269 0, MEMTXATTRS_UNSPECIFIED
, NULL
);
270 cpu_set_pc(cs
, info
->smp_loader_start
);
273 static inline bool have_dtb(const struct arm_boot_info
*info
)
275 return info
->dtb_filename
|| info
->get_dtb
;
278 #define WRITE_WORD(p, value) do { \
279 address_space_stl_notdirty(as, p, value, \
280 MEMTXATTRS_UNSPECIFIED, NULL); \
284 static void set_kernel_args(const struct arm_boot_info
*info
, AddressSpace
*as
)
286 int initrd_size
= info
->initrd_size
;
287 hwaddr base
= info
->loader_start
;
290 p
= base
+ KERNEL_ARGS_ADDR
;
293 WRITE_WORD(p
, 0x54410001);
295 WRITE_WORD(p
, 0x1000);
298 /* TODO: handle multiple chips on one ATAG list */
300 WRITE_WORD(p
, 0x54410002);
301 WRITE_WORD(p
, info
->ram_size
);
302 WRITE_WORD(p
, info
->loader_start
);
306 WRITE_WORD(p
, 0x54420005);
307 WRITE_WORD(p
, info
->initrd_start
);
308 WRITE_WORD(p
, initrd_size
);
310 if (info
->kernel_cmdline
&& *info
->kernel_cmdline
) {
314 cmdline_size
= strlen(info
->kernel_cmdline
);
315 address_space_write(as
, p
+ 8, MEMTXATTRS_UNSPECIFIED
,
316 (const uint8_t *)info
->kernel_cmdline
,
318 cmdline_size
= (cmdline_size
>> 2) + 1;
319 WRITE_WORD(p
, cmdline_size
+ 2);
320 WRITE_WORD(p
, 0x54410009);
321 p
+= cmdline_size
* 4;
323 if (info
->atag_board
) {
326 uint8_t atag_board_buf
[0x1000];
328 atag_board_len
= (info
->atag_board(info
, atag_board_buf
) + 3) & ~3;
329 WRITE_WORD(p
, (atag_board_len
+ 8) >> 2);
330 WRITE_WORD(p
, 0x414f4d50);
331 address_space_write(as
, p
, MEMTXATTRS_UNSPECIFIED
,
332 atag_board_buf
, atag_board_len
);
340 static void set_kernel_args_old(const struct arm_boot_info
*info
,
345 int initrd_size
= info
->initrd_size
;
346 hwaddr base
= info
->loader_start
;
348 /* see linux/include/asm-arm/setup.h */
349 p
= base
+ KERNEL_ARGS_ADDR
;
353 WRITE_WORD(p
, info
->ram_size
/ 4096);
356 #define FLAG_READONLY 1
357 #define FLAG_RDLOAD 4
358 #define FLAG_RDPROMPT 8
360 WRITE_WORD(p
, FLAG_READONLY
| FLAG_RDLOAD
| FLAG_RDPROMPT
);
362 WRITE_WORD(p
, (31 << 8) | 0); /* /dev/mtdblock0 */
371 /* memc_control_reg */
373 /* unsigned char sounddefault */
374 /* unsigned char adfsdrives */
375 /* unsigned char bytes_per_char_h */
376 /* unsigned char bytes_per_char_v */
378 /* pages_in_bank[4] */
387 WRITE_WORD(p
, info
->initrd_start
);
392 WRITE_WORD(p
, initrd_size
);
397 /* system_serial_low */
399 /* system_serial_high */
403 /* zero unused fields */
404 while (p
< base
+ KERNEL_ARGS_ADDR
+ 256 + 1024) {
407 s
= info
->kernel_cmdline
;
409 address_space_write(as
, p
, MEMTXATTRS_UNSPECIFIED
,
410 (const uint8_t *)s
, strlen(s
) + 1);
416 static void fdt_add_psci_node(void *fdt
)
418 uint32_t cpu_suspend_fn
;
422 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(0));
423 const char *psci_method
;
424 int64_t psci_conduit
;
427 psci_conduit
= object_property_get_int(OBJECT(armcpu
),
430 switch (psci_conduit
) {
431 case QEMU_PSCI_CONDUIT_DISABLED
:
433 case QEMU_PSCI_CONDUIT_HVC
:
436 case QEMU_PSCI_CONDUIT_SMC
:
440 g_assert_not_reached();
444 * If /psci node is present in provided DTB, assume that no fixup
445 * is necessary and all PSCI configuration should be taken as-is
447 rc
= fdt_path_offset(fdt
, "/psci");
452 qemu_fdt_add_subnode(fdt
, "/psci");
453 if (armcpu
->psci_version
== 2) {
454 const char comp
[] = "arm,psci-0.2\0arm,psci";
455 qemu_fdt_setprop(fdt
, "/psci", "compatible", comp
, sizeof(comp
));
457 cpu_off_fn
= QEMU_PSCI_0_2_FN_CPU_OFF
;
458 if (arm_feature(&armcpu
->env
, ARM_FEATURE_AARCH64
)) {
459 cpu_suspend_fn
= QEMU_PSCI_0_2_FN64_CPU_SUSPEND
;
460 cpu_on_fn
= QEMU_PSCI_0_2_FN64_CPU_ON
;
461 migrate_fn
= QEMU_PSCI_0_2_FN64_MIGRATE
;
463 cpu_suspend_fn
= QEMU_PSCI_0_2_FN_CPU_SUSPEND
;
464 cpu_on_fn
= QEMU_PSCI_0_2_FN_CPU_ON
;
465 migrate_fn
= QEMU_PSCI_0_2_FN_MIGRATE
;
468 qemu_fdt_setprop_string(fdt
, "/psci", "compatible", "arm,psci");
470 cpu_suspend_fn
= QEMU_PSCI_0_1_FN_CPU_SUSPEND
;
471 cpu_off_fn
= QEMU_PSCI_0_1_FN_CPU_OFF
;
472 cpu_on_fn
= QEMU_PSCI_0_1_FN_CPU_ON
;
473 migrate_fn
= QEMU_PSCI_0_1_FN_MIGRATE
;
476 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
477 * to the instruction that should be used to invoke PSCI functions.
478 * However, the device tree binding uses 'method' instead, so that is
479 * what we should use here.
481 qemu_fdt_setprop_string(fdt
, "/psci", "method", psci_method
);
483 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_suspend", cpu_suspend_fn
);
484 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_off", cpu_off_fn
);
485 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_on", cpu_on_fn
);
486 qemu_fdt_setprop_cell(fdt
, "/psci", "migrate", migrate_fn
);
489 int arm_load_dtb(hwaddr addr
, const struct arm_boot_info
*binfo
,
490 hwaddr addr_limit
, AddressSpace
*as
)
494 uint32_t acells
, scells
;
497 hwaddr mem_base
, mem_len
;
501 if (binfo
->dtb_filename
) {
503 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, binfo
->dtb_filename
);
505 fprintf(stderr
, "Couldn't open dtb file %s\n", binfo
->dtb_filename
);
509 fdt
= load_device_tree(filename
, &size
);
511 fprintf(stderr
, "Couldn't open dtb file %s\n", filename
);
517 fdt
= binfo
->get_dtb(binfo
, &size
);
519 fprintf(stderr
, "Board was unable to create a dtb blob\n");
524 if (addr_limit
> addr
&& size
> (addr_limit
- addr
)) {
525 /* Installing the device tree blob at addr would exceed addr_limit.
526 * Whether this constitutes failure is up to the caller to decide,
527 * so just return 0 as size, i.e., no error.
533 acells
= qemu_fdt_getprop_cell(fdt
, "/", "#address-cells",
535 scells
= qemu_fdt_getprop_cell(fdt
, "/", "#size-cells",
537 if (acells
== 0 || scells
== 0) {
538 fprintf(stderr
, "dtb file invalid (#address-cells or #size-cells 0)\n");
542 if (scells
< 2 && binfo
->ram_size
>= (1ULL << 32)) {
543 /* This is user error so deserves a friendlier error message
544 * than the failure of setprop_sized_cells would provide
546 fprintf(stderr
, "qemu: dtb file not compatible with "
551 /* nop all root nodes matching /memory or /memory@unit-address */
552 node_path
= qemu_fdt_node_unit_path(fdt
, "memory", &err
);
554 error_report_err(err
);
557 while (node_path
[n
]) {
558 if (g_str_has_prefix(node_path
[n
], "/memory")) {
559 qemu_fdt_nop_node(fdt
, node_path
[n
]);
563 g_strfreev(node_path
);
565 if (nb_numa_nodes
> 0) {
566 mem_base
= binfo
->loader_start
;
567 for (i
= 0; i
< nb_numa_nodes
; i
++) {
568 mem_len
= numa_info
[i
].node_mem
;
569 nodename
= g_strdup_printf("/memory@%" PRIx64
, mem_base
);
570 qemu_fdt_add_subnode(fdt
, nodename
);
571 qemu_fdt_setprop_string(fdt
, nodename
, "device_type", "memory");
572 rc
= qemu_fdt_setprop_sized_cells(fdt
, nodename
, "reg",
576 fprintf(stderr
, "couldn't set %s/reg for node %d\n", nodename
,
581 qemu_fdt_setprop_cell(fdt
, nodename
, "numa-node-id", i
);
586 nodename
= g_strdup_printf("/memory@%" PRIx64
, binfo
->loader_start
);
587 qemu_fdt_add_subnode(fdt
, nodename
);
588 qemu_fdt_setprop_string(fdt
, nodename
, "device_type", "memory");
590 rc
= qemu_fdt_setprop_sized_cells(fdt
, nodename
, "reg",
591 acells
, binfo
->loader_start
,
592 scells
, binfo
->ram_size
);
594 fprintf(stderr
, "couldn't set %s reg\n", nodename
);
600 rc
= fdt_path_offset(fdt
, "/chosen");
602 qemu_fdt_add_subnode(fdt
, "/chosen");
605 if (binfo
->kernel_cmdline
&& *binfo
->kernel_cmdline
) {
606 rc
= qemu_fdt_setprop_string(fdt
, "/chosen", "bootargs",
607 binfo
->kernel_cmdline
);
609 fprintf(stderr
, "couldn't set /chosen/bootargs\n");
614 if (binfo
->initrd_size
) {
615 rc
= qemu_fdt_setprop_cell(fdt
, "/chosen", "linux,initrd-start",
616 binfo
->initrd_start
);
618 fprintf(stderr
, "couldn't set /chosen/linux,initrd-start\n");
622 rc
= qemu_fdt_setprop_cell(fdt
, "/chosen", "linux,initrd-end",
623 binfo
->initrd_start
+ binfo
->initrd_size
);
625 fprintf(stderr
, "couldn't set /chosen/linux,initrd-end\n");
630 fdt_add_psci_node(fdt
);
632 if (binfo
->modify_dtb
) {
633 binfo
->modify_dtb(binfo
, fdt
);
636 qemu_fdt_dumpdtb(fdt
, size
);
638 /* Put the DTB into the memory map as a ROM image: this will ensure
639 * the DTB is copied again upon reset, even if addr points into RAM.
641 rom_add_blob_fixed_as("dtb", fdt
, size
, addr
, as
);
652 static void do_cpu_reset(void *opaque
)
654 ARMCPU
*cpu
= opaque
;
655 CPUState
*cs
= CPU(cpu
);
656 CPUARMState
*env
= &cpu
->env
;
657 const struct arm_boot_info
*info
= env
->boot_info
;
661 if (!info
->is_linux
) {
663 /* Jump to the entry point. */
664 uint64_t entry
= info
->entry
;
666 switch (info
->endianness
) {
667 case ARM_ENDIANNESS_LE
:
668 env
->cp15
.sctlr_el
[1] &= ~SCTLR_E0E
;
669 for (i
= 1; i
< 4; ++i
) {
670 env
->cp15
.sctlr_el
[i
] &= ~SCTLR_EE
;
672 env
->uncached_cpsr
&= ~CPSR_E
;
674 case ARM_ENDIANNESS_BE8
:
675 env
->cp15
.sctlr_el
[1] |= SCTLR_E0E
;
676 for (i
= 1; i
< 4; ++i
) {
677 env
->cp15
.sctlr_el
[i
] |= SCTLR_EE
;
679 env
->uncached_cpsr
|= CPSR_E
;
681 case ARM_ENDIANNESS_BE32
:
682 env
->cp15
.sctlr_el
[1] |= SCTLR_B
;
684 case ARM_ENDIANNESS_UNKNOWN
:
685 break; /* Board's decision */
687 g_assert_not_reached();
691 env
->thumb
= info
->entry
& 1;
694 cpu_set_pc(cs
, entry
);
696 /* If we are booting Linux then we need to check whether we are
697 * booting into secure or non-secure state and adjust the state
698 * accordingly. Out of reset, ARM is defined to be in secure state
699 * (SCR.NS = 0), we change that here if non-secure boot has been
702 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
703 /* AArch64 is defined to come out of reset into EL3 if enabled.
704 * If we are booting Linux then we need to adjust our EL as
705 * Linux expects us to be in EL2 or EL1. AArch32 resets into
706 * SVC, which Linux expects, so no privilege/exception level to
710 env
->cp15
.scr_el3
|= SCR_RW
;
711 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
712 env
->cp15
.hcr_el2
|= HCR_RW
;
713 env
->pstate
= PSTATE_MODE_EL2h
;
715 env
->pstate
= PSTATE_MODE_EL1h
;
717 /* AArch64 kernels never boot in secure mode */
718 assert(!info
->secure_boot
);
719 /* This hook is only supported for AArch32 currently:
720 * bootloader_aarch64[] will not call the hook, and
721 * the code above has already dropped us into EL2 or EL1.
723 assert(!info
->secure_board_setup
);
726 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
727 /* If we have EL2 then Linux expects the HVC insn to work */
728 env
->cp15
.scr_el3
|= SCR_HCE
;
731 /* Set to non-secure if not a secure boot */
732 if (!info
->secure_boot
&&
733 (cs
!= first_cpu
|| !info
->secure_board_setup
)) {
734 /* Linux expects non-secure state */
735 env
->cp15
.scr_el3
|= SCR_NS
;
739 if (!env
->aarch64
&& !info
->secure_boot
&&
740 arm_feature(env
, ARM_FEATURE_EL2
)) {
742 * This is an AArch32 boot not to Secure state, and
743 * we have Hyp mode available, so boot the kernel into
744 * Hyp mode. This is not how the CPU comes out of reset,
745 * so we need to manually put it there.
747 cpsr_write(env
, ARM_CPU_MODE_HYP
, CPSR_M
, CPSRWriteRaw
);
750 if (cs
== first_cpu
) {
751 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
753 cpu_set_pc(cs
, info
->loader_start
);
755 if (!have_dtb(info
)) {
757 set_kernel_args_old(info
, as
);
759 set_kernel_args(info
, as
);
763 info
->secondary_cpu_reset_hook(cpu
, info
);
770 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
772 * @fw_cfg: The firmware config instance to store the data in.
773 * @size_key: The firmware config key to store the size of the loaded
774 * data under, with fw_cfg_add_i32().
775 * @data_key: The firmware config key to store the loaded data under,
776 * with fw_cfg_add_bytes().
777 * @image_name: The name of the image file to load. If it is NULL, the
778 * function returns without doing anything.
779 * @try_decompress: Whether the image should be decompressed (gunzipped) before
780 * adding it to fw_cfg. If decompression fails, the image is
783 * In case of failure, the function prints an error message to stderr and the
784 * process exits with status 1.
786 static void load_image_to_fw_cfg(FWCfgState
*fw_cfg
, uint16_t size_key
,
787 uint16_t data_key
, const char *image_name
,
793 if (image_name
== NULL
) {
797 if (try_decompress
) {
798 size
= load_image_gzipped_buffer(image_name
,
799 LOAD_IMAGE_MAX_GUNZIP_BYTES
, &data
);
802 if (size
== (size_t)-1) {
806 if (!g_file_get_contents(image_name
, &contents
, &length
, NULL
)) {
807 error_report("failed to load \"%s\"", image_name
);
811 data
= (uint8_t *)contents
;
814 fw_cfg_add_i32(fw_cfg
, size_key
, size
);
815 fw_cfg_add_bytes(fw_cfg
, data_key
, data
, size
);
818 static int do_arm_linux_init(Object
*obj
, void *opaque
)
820 if (object_dynamic_cast(obj
, TYPE_ARM_LINUX_BOOT_IF
)) {
821 ARMLinuxBootIf
*albif
= ARM_LINUX_BOOT_IF(obj
);
822 ARMLinuxBootIfClass
*albifc
= ARM_LINUX_BOOT_IF_GET_CLASS(obj
);
823 struct arm_boot_info
*info
= opaque
;
825 if (albifc
->arm_linux_init
) {
826 albifc
->arm_linux_init(albif
, info
->secure_boot
);
832 static int64_t arm_load_elf(struct arm_boot_info
*info
, uint64_t *pentry
,
833 uint64_t *lowaddr
, uint64_t *highaddr
,
834 int elf_machine
, AddressSpace
*as
)
847 load_elf_hdr(info
->kernel_filename
, &elf_header
, &elf_is64
, &err
);
854 big_endian
= elf_header
.h64
.e_ident
[EI_DATA
] == ELFDATA2MSB
;
855 info
->endianness
= big_endian
? ARM_ENDIANNESS_BE8
858 big_endian
= elf_header
.h32
.e_ident
[EI_DATA
] == ELFDATA2MSB
;
860 if (bswap32(elf_header
.h32
.e_flags
) & EF_ARM_BE8
) {
861 info
->endianness
= ARM_ENDIANNESS_BE8
;
863 info
->endianness
= ARM_ENDIANNESS_BE32
;
864 /* In BE32, the CPU has a different view of the per-byte
865 * address map than the rest of the system. BE32 ELF files
866 * are organised such that they can be programmed through
867 * the CPU's per-word byte-reversed view of the world. QEMU
868 * however loads ELF files independently of the CPU. So
869 * tell the ELF loader to byte reverse the data for us.
874 info
->endianness
= ARM_ENDIANNESS_LE
;
878 ret
= load_elf_as(info
->kernel_filename
, NULL
, NULL
,
879 pentry
, lowaddr
, highaddr
, big_endian
, elf_machine
,
882 /* The header loaded but the image didn't */
889 static uint64_t load_aarch64_image(const char *filename
, hwaddr mem_base
,
890 hwaddr
*entry
, AddressSpace
*as
)
892 hwaddr kernel_load_offset
= KERNEL64_LOAD_ADDR
;
896 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
897 size
= load_image_gzipped_buffer(filename
, LOAD_IMAGE_MAX_GUNZIP_BYTES
,
903 /* Load as raw file otherwise */
904 if (!g_file_get_contents(filename
, (char **)&buffer
, &len
, NULL
)) {
910 /* check the arm64 magic header value -- very old kernels may not have it */
911 if (size
> ARM64_MAGIC_OFFSET
+ 4 &&
912 memcmp(buffer
+ ARM64_MAGIC_OFFSET
, "ARM\x64", 4) == 0) {
915 /* The arm64 Image header has text_offset and image_size fields at 8 and
916 * 16 bytes into the Image header, respectively. The text_offset field
917 * is only valid if the image_size is non-zero.
919 memcpy(&hdrvals
, buffer
+ ARM64_TEXT_OFFSET_OFFSET
, sizeof(hdrvals
));
920 if (hdrvals
[1] != 0) {
921 kernel_load_offset
= le64_to_cpu(hdrvals
[0]);
925 *entry
= mem_base
+ kernel_load_offset
;
926 rom_add_blob_fixed_as(filename
, buffer
, size
, *entry
, as
);
933 void arm_load_kernel(ARMCPU
*cpu
, struct arm_boot_info
*info
)
939 uint64_t elf_entry
, elf_low_addr
, elf_high_addr
;
942 static const ARMInsnFixup
*primary_loader
;
943 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
945 /* CPU objects (unlike devices) are not automatically reset on system
946 * reset, so we must always register a handler to do so. If we're
947 * actually loading a kernel, the handler is also responsible for
948 * arranging that we start it correctly.
950 for (cs
= first_cpu
; cs
; cs
= CPU_NEXT(cs
)) {
951 qemu_register_reset(do_cpu_reset
, ARM_CPU(cs
));
954 /* The board code is not supposed to set secure_board_setup unless
955 * running its code in secure mode is actually possible, and KVM
956 * doesn't support secure.
958 assert(!(info
->secure_board_setup
&& kvm_enabled()));
960 info
->dtb_filename
= qemu_opt_get(qemu_get_machine_opts(), "dtb");
963 /* Load the kernel. */
964 if (!info
->kernel_filename
|| info
->firmware_loaded
) {
966 if (have_dtb(info
)) {
967 /* If we have a device tree blob, but no kernel to supply it to (or
968 * the kernel is supposed to be loaded by the bootloader), copy the
969 * DTB to the base of RAM for the bootloader to pick up.
971 info
->dtb_start
= info
->loader_start
;
974 if (info
->kernel_filename
) {
976 bool try_decompressing_kernel
;
978 fw_cfg
= fw_cfg_find();
979 try_decompressing_kernel
= arm_feature(&cpu
->env
,
980 ARM_FEATURE_AARCH64
);
982 /* Expose the kernel, the command line, and the initrd in fw_cfg.
983 * We don't process them here at all, it's all left to the
986 load_image_to_fw_cfg(fw_cfg
,
987 FW_CFG_KERNEL_SIZE
, FW_CFG_KERNEL_DATA
,
988 info
->kernel_filename
,
989 try_decompressing_kernel
);
990 load_image_to_fw_cfg(fw_cfg
,
991 FW_CFG_INITRD_SIZE
, FW_CFG_INITRD_DATA
,
992 info
->initrd_filename
, false);
994 if (info
->kernel_cmdline
) {
995 fw_cfg_add_i32(fw_cfg
, FW_CFG_CMDLINE_SIZE
,
996 strlen(info
->kernel_cmdline
) + 1);
997 fw_cfg_add_string(fw_cfg
, FW_CFG_CMDLINE_DATA
,
998 info
->kernel_cmdline
);
1002 /* We will start from address 0 (typically a boot ROM image) in the
1003 * same way as hardware.
1008 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
1009 primary_loader
= bootloader_aarch64
;
1010 elf_machine
= EM_AARCH64
;
1012 primary_loader
= bootloader
;
1013 if (!info
->write_board_setup
) {
1014 primary_loader
+= BOOTLOADER_NO_BOARD_SETUP_OFFSET
;
1016 elf_machine
= EM_ARM
;
1019 if (!info
->secondary_cpu_reset_hook
) {
1020 info
->secondary_cpu_reset_hook
= default_reset_secondary
;
1022 if (!info
->write_secondary_boot
) {
1023 info
->write_secondary_boot
= default_write_secondary
;
1026 if (info
->nb_cpus
== 0)
1029 /* We want to put the initrd far enough into RAM that when the
1030 * kernel is uncompressed it will not clobber the initrd. However
1031 * on boards without much RAM we must ensure that we still leave
1032 * enough room for a decent sized initrd, and on boards with large
1033 * amounts of RAM we must avoid the initrd being so far up in RAM
1034 * that it is outside lowmem and inaccessible to the kernel.
1035 * So for boards with less than 256MB of RAM we put the initrd
1036 * halfway into RAM, and for boards with 256MB of RAM or more we put
1037 * the initrd at 128MB.
1039 info
->initrd_start
= info
->loader_start
+
1040 MIN(info
->ram_size
/ 2, 128 * 1024 * 1024);
1042 /* Assume that raw images are linux kernels, and ELF images are not. */
1043 kernel_size
= arm_load_elf(info
, &elf_entry
, &elf_low_addr
,
1044 &elf_high_addr
, elf_machine
, as
);
1045 if (kernel_size
> 0 && have_dtb(info
)) {
1046 /* If there is still some room left at the base of RAM, try and put
1047 * the DTB there like we do for images loaded with -bios or -pflash.
1049 if (elf_low_addr
> info
->loader_start
1050 || elf_high_addr
< info
->loader_start
) {
1051 /* Set elf_low_addr as address limit for arm_load_dtb if it may be
1052 * pointing into RAM, otherwise pass '0' (no limit)
1054 if (elf_low_addr
< info
->loader_start
) {
1057 info
->dtb_start
= info
->loader_start
;
1058 info
->dtb_limit
= elf_low_addr
;
1062 if (kernel_size
< 0) {
1063 kernel_size
= load_uimage_as(info
->kernel_filename
, &entry
, NULL
,
1064 &is_linux
, NULL
, NULL
, as
);
1066 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
) && kernel_size
< 0) {
1067 kernel_size
= load_aarch64_image(info
->kernel_filename
,
1068 info
->loader_start
, &entry
, as
);
1070 } else if (kernel_size
< 0) {
1072 entry
= info
->loader_start
+ KERNEL_LOAD_ADDR
;
1073 kernel_size
= load_image_targphys_as(info
->kernel_filename
, entry
,
1074 info
->ram_size
- KERNEL_LOAD_ADDR
,
1078 if (kernel_size
< 0) {
1079 error_report("could not load kernel '%s'", info
->kernel_filename
);
1082 info
->entry
= entry
;
1084 uint32_t fixupcontext
[FIXUP_MAX
];
1086 if (info
->initrd_filename
) {
1087 initrd_size
= load_ramdisk_as(info
->initrd_filename
,
1089 info
->ram_size
- info
->initrd_start
,
1091 if (initrd_size
< 0) {
1092 initrd_size
= load_image_targphys_as(info
->initrd_filename
,
1098 if (initrd_size
< 0) {
1099 error_report("could not load initrd '%s'",
1100 info
->initrd_filename
);
1106 info
->initrd_size
= initrd_size
;
1108 fixupcontext
[FIXUP_BOARDID
] = info
->board_id
;
1109 fixupcontext
[FIXUP_BOARD_SETUP
] = info
->board_setup_addr
;
1111 /* for device tree boot, we pass the DTB directly in r2. Otherwise
1112 * we point to the kernel args.
1114 if (have_dtb(info
)) {
1117 if (elf_machine
== EM_AARCH64
) {
1119 * Some AArch64 kernels on early bootup map the fdt region as
1121 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1123 * Let's play safe and prealign it to 2MB to give us some space.
1125 align
= 2 * 1024 * 1024;
1128 * Some 32bit kernels will trash anything in the 4K page the
1129 * initrd ends in, so make sure the DTB isn't caught up in that.
1134 /* Place the DTB after the initrd in memory with alignment. */
1135 info
->dtb_start
= QEMU_ALIGN_UP(info
->initrd_start
+ initrd_size
,
1137 fixupcontext
[FIXUP_ARGPTR
] = info
->dtb_start
;
1139 fixupcontext
[FIXUP_ARGPTR
] = info
->loader_start
+ KERNEL_ARGS_ADDR
;
1140 if (info
->ram_size
>= (1ULL << 32)) {
1141 error_report("RAM size must be less than 4GB to boot"
1142 " Linux kernel using ATAGS (try passing a device tree"
1147 fixupcontext
[FIXUP_ENTRYPOINT
] = entry
;
1149 write_bootloader("bootloader", info
->loader_start
,
1150 primary_loader
, fixupcontext
, as
);
1152 if (info
->nb_cpus
> 1) {
1153 info
->write_secondary_boot(cpu
, info
);
1155 if (info
->write_board_setup
) {
1156 info
->write_board_setup(cpu
, info
);
1159 /* Notify devices which need to fake up firmware initialization
1160 * that we're doing a direct kernel boot.
1162 object_child_foreach_recursive(object_get_root(),
1163 do_arm_linux_init
, info
);
1165 info
->is_linux
= is_linux
;
1167 for (cs
= first_cpu
; cs
; cs
= CPU_NEXT(cs
)) {
1168 ARM_CPU(cs
)->env
.boot_info
= info
;
1171 if (!info
->skip_dtb_autoload
&& have_dtb(info
)) {
1172 if (arm_load_dtb(info
->dtb_start
, info
, info
->dtb_limit
, as
) < 0) {
1178 static const TypeInfo arm_linux_boot_if_info
= {
1179 .name
= TYPE_ARM_LINUX_BOOT_IF
,
1180 .parent
= TYPE_INTERFACE
,
1181 .class_size
= sizeof(ARMLinuxBootIfClass
),
1184 static void arm_linux_boot_register_types(void)
1186 type_register_static(&arm_linux_boot_if_info
);
1189 type_init(arm_linux_boot_register_types
)