libqtest: Inline g_assert_no_errno()
[qemu/armbru.git] / hw / arm / mps2-tz.c
blob6dd02ae47e8360a74d3aea863eaa2bb4824efb81
1 /*
2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
4 * Copyright (c) 2017 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13 * FPGA but is otherwise the same as the 2). Since the CPU itself
14 * and most of the devices are in the FPGA, the details of the board
15 * as seen by the guest depend significantly on the FPGA image.
16 * This source file covers the following FPGA images, for TrustZone cores:
17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
19 * Links to the TRM for the board itself and to the various Application
20 * Notes which document the FPGA images can be found here:
21 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
23 * Board TRM:
24 * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
25 * Application Note AN505:
26 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
28 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
29 * (ARM ECM0601256) for the details of some of the device layout:
30 * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
33 #include "qemu/osdep.h"
34 #include "qapi/error.h"
35 #include "qemu/error-report.h"
36 #include "hw/arm/arm.h"
37 #include "hw/arm/armv7m.h"
38 #include "hw/or-irq.h"
39 #include "hw/boards.h"
40 #include "exec/address-spaces.h"
41 #include "sysemu/sysemu.h"
42 #include "hw/misc/unimp.h"
43 #include "hw/char/cmsdk-apb-uart.h"
44 #include "hw/timer/cmsdk-apb-timer.h"
45 #include "hw/misc/mps2-scc.h"
46 #include "hw/misc/mps2-fpgaio.h"
47 #include "hw/misc/tz-mpc.h"
48 #include "hw/misc/tz-msc.h"
49 #include "hw/arm/iotkit.h"
50 #include "hw/dma/pl080.h"
51 #include "hw/ssi/pl022.h"
52 #include "hw/devices.h"
53 #include "net/net.h"
54 #include "hw/core/split-irq.h"
56 typedef enum MPS2TZFPGAType {
57 FPGA_AN505,
58 } MPS2TZFPGAType;
60 typedef struct {
61 MachineClass parent;
62 MPS2TZFPGAType fpga_type;
63 uint32_t scc_id;
64 } MPS2TZMachineClass;
66 typedef struct {
67 MachineState parent;
69 IoTKit iotkit;
70 MemoryRegion psram;
71 MemoryRegion ssram[3];
72 MemoryRegion ssram1_m;
73 MPS2SCC scc;
74 MPS2FPGAIO fpgaio;
75 TZPPC ppc[5];
76 TZMPC ssram_mpc[3];
77 PL022State spi[5];
78 UnimplementedDeviceState i2c[4];
79 UnimplementedDeviceState i2s_audio;
80 UnimplementedDeviceState gpio[4];
81 UnimplementedDeviceState gfx;
82 PL080State dma[4];
83 TZMSC msc[4];
84 CMSDKAPBUART uart[5];
85 SplitIRQ sec_resp_splitter;
86 qemu_or_irq uart_irq_orgate;
87 DeviceState *lan9118;
88 } MPS2TZMachineState;
90 #define TYPE_MPS2TZ_MACHINE "mps2tz"
91 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
93 #define MPS2TZ_MACHINE(obj) \
94 OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE)
95 #define MPS2TZ_MACHINE_GET_CLASS(obj) \
96 OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE)
97 #define MPS2TZ_MACHINE_CLASS(klass) \
98 OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE)
100 /* Main SYSCLK frequency in Hz */
101 #define SYSCLK_FRQ 20000000
103 /* Create an alias of an entire original MemoryRegion @orig
104 * located at @base in the memory map.
106 static void make_ram_alias(MemoryRegion *mr, const char *name,
107 MemoryRegion *orig, hwaddr base)
109 memory_region_init_alias(mr, NULL, name, orig, 0,
110 memory_region_size(orig));
111 memory_region_add_subregion(get_system_memory(), base, mr);
114 /* Most of the devices in the AN505 FPGA image sit behind
115 * Peripheral Protection Controllers. These data structures
116 * define the layout of which devices sit behind which PPCs.
117 * The devfn for each port is a function which creates, configures
118 * and initializes the device, returning the MemoryRegion which
119 * needs to be plugged into the downstream end of the PPC port.
121 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
122 const char *name, hwaddr size);
124 typedef struct PPCPortInfo {
125 const char *name;
126 MakeDevFn *devfn;
127 void *opaque;
128 hwaddr addr;
129 hwaddr size;
130 } PPCPortInfo;
132 typedef struct PPCInfo {
133 const char *name;
134 PPCPortInfo ports[TZ_NUM_PORTS];
135 } PPCInfo;
137 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
138 void *opaque,
139 const char *name, hwaddr size)
141 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
142 * and return a pointer to its MemoryRegion.
144 UnimplementedDeviceState *uds = opaque;
146 sysbus_init_child_obj(OBJECT(mms), name, uds,
147 sizeof(UnimplementedDeviceState),
148 TYPE_UNIMPLEMENTED_DEVICE);
149 qdev_prop_set_string(DEVICE(uds), "name", name);
150 qdev_prop_set_uint64(DEVICE(uds), "size", size);
151 object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal);
152 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
155 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
156 const char *name, hwaddr size)
158 CMSDKAPBUART *uart = opaque;
159 int i = uart - &mms->uart[0];
160 int rxirqno = i * 2;
161 int txirqno = i * 2 + 1;
162 int combirqno = i + 10;
163 SysBusDevice *s;
164 DeviceState *iotkitdev = DEVICE(&mms->iotkit);
165 DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
167 sysbus_init_child_obj(OBJECT(mms), name, uart, sizeof(mms->uart[0]),
168 TYPE_CMSDK_APB_UART);
169 qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
170 qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
171 object_property_set_bool(OBJECT(uart), true, "realized", &error_fatal);
172 s = SYS_BUS_DEVICE(uart);
173 sysbus_connect_irq(s, 0, qdev_get_gpio_in_named(iotkitdev,
174 "EXP_IRQ", txirqno));
175 sysbus_connect_irq(s, 1, qdev_get_gpio_in_named(iotkitdev,
176 "EXP_IRQ", rxirqno));
177 sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
178 sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
179 sysbus_connect_irq(s, 4, qdev_get_gpio_in_named(iotkitdev,
180 "EXP_IRQ", combirqno));
181 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
184 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
185 const char *name, hwaddr size)
187 MPS2SCC *scc = opaque;
188 DeviceState *sccdev;
189 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
191 object_initialize(scc, sizeof(mms->scc), TYPE_MPS2_SCC);
192 sccdev = DEVICE(scc);
193 qdev_set_parent_bus(sccdev, sysbus_get_default());
194 qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
195 qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
196 qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
197 object_property_set_bool(OBJECT(scc), true, "realized", &error_fatal);
198 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
201 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
202 const char *name, hwaddr size)
204 MPS2FPGAIO *fpgaio = opaque;
206 object_initialize(fpgaio, sizeof(mms->fpgaio), TYPE_MPS2_FPGAIO);
207 qdev_set_parent_bus(DEVICE(fpgaio), sysbus_get_default());
208 object_property_set_bool(OBJECT(fpgaio), true, "realized", &error_fatal);
209 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
212 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
213 const char *name, hwaddr size)
215 SysBusDevice *s;
216 DeviceState *iotkitdev = DEVICE(&mms->iotkit);
217 NICInfo *nd = &nd_table[0];
219 /* In hardware this is a LAN9220; the LAN9118 is software compatible
220 * except that it doesn't support the checksum-offload feature.
222 qemu_check_nic_model(nd, "lan9118");
223 mms->lan9118 = qdev_create(NULL, "lan9118");
224 qdev_set_nic_properties(mms->lan9118, nd);
225 qdev_init_nofail(mms->lan9118);
227 s = SYS_BUS_DEVICE(mms->lan9118);
228 sysbus_connect_irq(s, 0, qdev_get_gpio_in_named(iotkitdev, "EXP_IRQ", 16));
229 return sysbus_mmio_get_region(s, 0);
232 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
233 const char *name, hwaddr size)
235 TZMPC *mpc = opaque;
236 int i = mpc - &mms->ssram_mpc[0];
237 MemoryRegion *ssram = &mms->ssram[i];
238 MemoryRegion *upstream;
239 char *mpcname = g_strdup_printf("%s-mpc", name);
240 static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
241 static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };
243 memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);
245 sysbus_init_child_obj(OBJECT(mms), mpcname, mpc, sizeof(mms->ssram_mpc[0]),
246 TYPE_TZ_MPC);
247 object_property_set_link(OBJECT(mpc), OBJECT(ssram),
248 "downstream", &error_fatal);
249 object_property_set_bool(OBJECT(mpc), true, "realized", &error_fatal);
250 /* Map the upstream end of the MPC into system memory */
251 upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
252 memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
253 /* and connect its interrupt to the IoTKit */
254 qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
255 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
256 "mpcexp_status", i));
258 /* The first SSRAM is a special case as it has an alias; accesses to
259 * the alias region at 0x00400000 must also go to the MPC upstream.
261 if (i == 0) {
262 make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
265 g_free(mpcname);
266 /* Return the register interface MR for our caller to map behind the PPC */
267 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
270 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
271 const char *name, hwaddr size)
273 PL080State *dma = opaque;
274 int i = dma - &mms->dma[0];
275 SysBusDevice *s;
276 char *mscname = g_strdup_printf("%s-msc", name);
277 TZMSC *msc = &mms->msc[i];
278 DeviceState *iotkitdev = DEVICE(&mms->iotkit);
279 MemoryRegion *msc_upstream;
280 MemoryRegion *msc_downstream;
283 * Each DMA device is a PL081 whose transaction master interface
284 * is guarded by a Master Security Controller. The downstream end of
285 * the MSC connects to the IoTKit AHB Slave Expansion port, so the
286 * DMA devices can see all devices and memory that the CPU does.
288 sysbus_init_child_obj(OBJECT(mms), mscname, msc, sizeof(*msc), TYPE_TZ_MSC);
289 msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
290 object_property_set_link(OBJECT(msc), OBJECT(msc_downstream),
291 "downstream", &error_fatal);
292 object_property_set_link(OBJECT(msc), OBJECT(mms),
293 "idau", &error_fatal);
294 object_property_set_bool(OBJECT(msc), true, "realized", &error_fatal);
296 qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
297 qdev_get_gpio_in_named(iotkitdev,
298 "mscexp_status", i));
299 qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
300 qdev_get_gpio_in_named(DEVICE(msc),
301 "irq_clear", 0));
302 qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
303 qdev_get_gpio_in_named(DEVICE(msc),
304 "cfg_nonsec", 0));
305 qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
306 ARRAY_SIZE(mms->ppc) + i,
307 qdev_get_gpio_in_named(DEVICE(msc),
308 "cfg_sec_resp", 0));
309 msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
311 sysbus_init_child_obj(OBJECT(mms), name, dma, sizeof(*dma), TYPE_PL081);
312 object_property_set_link(OBJECT(dma), OBJECT(msc_upstream),
313 "downstream", &error_fatal);
314 object_property_set_bool(OBJECT(dma), true, "realized", &error_fatal);
316 s = SYS_BUS_DEVICE(dma);
317 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
318 sysbus_connect_irq(s, 0, qdev_get_gpio_in_named(iotkitdev,
319 "EXP_IRQ", 58 + i * 3));
320 sysbus_connect_irq(s, 1, qdev_get_gpio_in_named(iotkitdev,
321 "EXP_IRQ", 56 + i * 3));
322 sysbus_connect_irq(s, 2, qdev_get_gpio_in_named(iotkitdev,
323 "EXP_IRQ", 57 + i * 3));
325 return sysbus_mmio_get_region(s, 0);
328 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
329 const char *name, hwaddr size)
332 * The AN505 has five PL022 SPI controllers.
333 * One of these should have the LCD controller behind it; the others
334 * are connected only to the FPGA's "general purpose SPI connector"
335 * or "shield" expansion connectors.
336 * Note that if we do implement devices behind SPI, the chip select
337 * lines are set via the "MISC" register in the MPS2 FPGAIO device.
339 PL022State *spi = opaque;
340 int i = spi - &mms->spi[0];
341 DeviceState *iotkitdev = DEVICE(&mms->iotkit);
342 SysBusDevice *s;
344 sysbus_init_child_obj(OBJECT(mms), name, spi, sizeof(mms->spi[0]),
345 TYPE_PL022);
346 object_property_set_bool(OBJECT(spi), true, "realized", &error_fatal);
347 s = SYS_BUS_DEVICE(spi);
348 sysbus_connect_irq(s, 0,
349 qdev_get_gpio_in_named(iotkitdev, "EXP_IRQ", 51 + i));
350 return sysbus_mmio_get_region(s, 0);
353 static void mps2tz_common_init(MachineState *machine)
355 MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
356 MachineClass *mc = MACHINE_GET_CLASS(machine);
357 MemoryRegion *system_memory = get_system_memory();
358 DeviceState *iotkitdev;
359 DeviceState *dev_splitter;
360 int i;
362 if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
363 error_report("This board can only be used with CPU %s",
364 mc->default_cpu_type);
365 exit(1);
368 sysbus_init_child_obj(OBJECT(machine), "iotkit", &mms->iotkit,
369 sizeof(mms->iotkit), TYPE_IOTKIT);
370 iotkitdev = DEVICE(&mms->iotkit);
371 object_property_set_link(OBJECT(&mms->iotkit), OBJECT(system_memory),
372 "memory", &error_abort);
373 qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", 92);
374 qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ);
375 object_property_set_bool(OBJECT(&mms->iotkit), true, "realized",
376 &error_fatal);
378 /* The sec_resp_cfg output from the IoTKit must be split into multiple
379 * lines, one for each of the PPCs we create here, plus one per MSC.
381 object_initialize(&mms->sec_resp_splitter, sizeof(mms->sec_resp_splitter),
382 TYPE_SPLIT_IRQ);
383 object_property_add_child(OBJECT(machine), "sec-resp-splitter",
384 OBJECT(&mms->sec_resp_splitter), &error_abort);
385 object_property_set_int(OBJECT(&mms->sec_resp_splitter),
386 ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
387 "num-lines", &error_fatal);
388 object_property_set_bool(OBJECT(&mms->sec_resp_splitter), true,
389 "realized", &error_fatal);
390 dev_splitter = DEVICE(&mms->sec_resp_splitter);
391 qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
392 qdev_get_gpio_in(dev_splitter, 0));
394 /* The IoTKit sets up much of the memory layout, including
395 * the aliases between secure and non-secure regions in the
396 * address space. The FPGA itself contains:
398 * 0x00000000..0x003fffff SSRAM1
399 * 0x00400000..0x007fffff alias of SSRAM1
400 * 0x28000000..0x283fffff 4MB SSRAM2 + SSRAM3
401 * 0x40100000..0x4fffffff AHB Master Expansion 1 interface devices
402 * 0x80000000..0x80ffffff 16MB PSRAM
405 /* The FPGA images have an odd combination of different RAMs,
406 * because in hardware they are different implementations and
407 * connected to different buses, giving varying performance/size
408 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
409 * call the 16MB our "system memory", as it's the largest lump.
411 memory_region_allocate_system_memory(&mms->psram,
412 NULL, "mps.ram", 0x01000000);
413 memory_region_add_subregion(system_memory, 0x80000000, &mms->psram);
415 /* The overflow IRQs for all UARTs are ORed together.
416 * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
417 * Create the OR gate for this.
419 object_initialize(&mms->uart_irq_orgate, sizeof(mms->uart_irq_orgate),
420 TYPE_OR_IRQ);
421 object_property_add_child(OBJECT(mms), "uart-irq-orgate",
422 OBJECT(&mms->uart_irq_orgate), &error_abort);
423 object_property_set_int(OBJECT(&mms->uart_irq_orgate), 10, "num-lines",
424 &error_fatal);
425 object_property_set_bool(OBJECT(&mms->uart_irq_orgate), true,
426 "realized", &error_fatal);
427 qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
428 qdev_get_gpio_in_named(iotkitdev, "EXP_IRQ", 15));
430 /* Most of the devices in the FPGA are behind Peripheral Protection
431 * Controllers. The required order for initializing things is:
432 * + initialize the PPC
433 * + initialize, configure and realize downstream devices
434 * + connect downstream device MemoryRegions to the PPC
435 * + realize the PPC
436 * + map the PPC's MemoryRegions to the places in the address map
437 * where the downstream devices should appear
438 * + wire up the PPC's control lines to the IoTKit object
441 const PPCInfo ppcs[] = { {
442 .name = "apb_ppcexp0",
443 .ports = {
444 { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
445 { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
446 { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
448 }, {
449 .name = "apb_ppcexp1",
450 .ports = {
451 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000 },
452 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000 },
453 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000 },
454 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000 },
455 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000 },
456 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
457 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
458 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
459 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
460 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
461 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40207000, 0x1000 },
462 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40208000, 0x1000 },
463 { "i2c2", make_unimp_dev, &mms->i2c[2], 0x4020c000, 0x1000 },
464 { "i2c3", make_unimp_dev, &mms->i2c[3], 0x4020d000, 0x1000 },
466 }, {
467 .name = "apb_ppcexp2",
468 .ports = {
469 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
470 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
471 0x40301000, 0x1000 },
472 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
474 }, {
475 .name = "ahb_ppcexp0",
476 .ports = {
477 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
478 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
479 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
480 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
481 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
482 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
484 }, {
485 .name = "ahb_ppcexp1",
486 .ports = {
487 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 },
488 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 },
489 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 },
490 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 },
495 for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
496 const PPCInfo *ppcinfo = &ppcs[i];
497 TZPPC *ppc = &mms->ppc[i];
498 DeviceState *ppcdev;
499 int port;
500 char *gpioname;
502 sysbus_init_child_obj(OBJECT(machine), ppcinfo->name, ppc,
503 sizeof(TZPPC), TYPE_TZ_PPC);
504 ppcdev = DEVICE(ppc);
506 for (port = 0; port < TZ_NUM_PORTS; port++) {
507 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
508 MemoryRegion *mr;
509 char *portname;
511 if (!pinfo->devfn) {
512 continue;
515 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
516 portname = g_strdup_printf("port[%d]", port);
517 object_property_set_link(OBJECT(ppc), OBJECT(mr),
518 portname, &error_fatal);
519 g_free(portname);
522 object_property_set_bool(OBJECT(ppc), true, "realized", &error_fatal);
524 for (port = 0; port < TZ_NUM_PORTS; port++) {
525 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
527 if (!pinfo->devfn) {
528 continue;
530 sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
532 gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
533 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
534 qdev_get_gpio_in_named(ppcdev,
535 "cfg_nonsec",
536 port));
537 g_free(gpioname);
538 gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
539 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
540 qdev_get_gpio_in_named(ppcdev,
541 "cfg_ap", port));
542 g_free(gpioname);
545 gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
546 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
547 qdev_get_gpio_in_named(ppcdev,
548 "irq_enable", 0));
549 g_free(gpioname);
550 gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
551 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
552 qdev_get_gpio_in_named(ppcdev,
553 "irq_clear", 0));
554 g_free(gpioname);
555 gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
556 qdev_connect_gpio_out_named(ppcdev, "irq", 0,
557 qdev_get_gpio_in_named(iotkitdev,
558 gpioname, 0));
559 g_free(gpioname);
561 qdev_connect_gpio_out(dev_splitter, i,
562 qdev_get_gpio_in_named(ppcdev,
563 "cfg_sec_resp", 0));
566 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
568 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
571 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
572 int *iregion, bool *exempt, bool *ns, bool *nsc)
575 * The MPS2 TZ FPGA images have IDAUs in them which are connected to
576 * the Master Security Controllers. Thes have the same logic as
577 * is used by the IoTKit for the IDAU connected to the CPU, except
578 * that MSCs don't care about the NSC attribute.
580 int region = extract32(address, 28, 4);
582 *ns = !(region & 1);
583 *nsc = false;
584 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
585 *exempt = (address & 0xeff00000) == 0xe0000000;
586 *iregion = region;
589 static void mps2tz_class_init(ObjectClass *oc, void *data)
591 MachineClass *mc = MACHINE_CLASS(oc);
592 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
594 mc->init = mps2tz_common_init;
595 mc->max_cpus = 1;
596 iic->check = mps2_tz_idau_check;
599 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
601 MachineClass *mc = MACHINE_CLASS(oc);
602 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
604 mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
605 mmc->fpga_type = FPGA_AN505;
606 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
607 mmc->scc_id = 0x41045050;
610 static const TypeInfo mps2tz_info = {
611 .name = TYPE_MPS2TZ_MACHINE,
612 .parent = TYPE_MACHINE,
613 .abstract = true,
614 .instance_size = sizeof(MPS2TZMachineState),
615 .class_size = sizeof(MPS2TZMachineClass),
616 .class_init = mps2tz_class_init,
617 .interfaces = (InterfaceInfo[]) {
618 { TYPE_IDAU_INTERFACE },
623 static const TypeInfo mps2tz_an505_info = {
624 .name = TYPE_MPS2TZ_AN505_MACHINE,
625 .parent = TYPE_MPS2TZ_MACHINE,
626 .class_init = mps2tz_an505_class_init,
629 static void mps2tz_machine_init(void)
631 type_register_static(&mps2tz_info);
632 type_register_static(&mps2tz_an505_info);
635 type_init(mps2tz_machine_init);