libqtest: Inline g_assert_no_errno()
[qemu/armbru.git] / target / arm / helper.c
blobc83f7c1109caca5826010798d39500fd4bff7ad6
1 #include "qemu/osdep.h"
2 #include "target/arm/idau.h"
3 #include "trace.h"
4 #include "cpu.h"
5 #include "internals.h"
6 #include "exec/gdbstub.h"
7 #include "exec/helper-proto.h"
8 #include "qemu/host-utils.h"
9 #include "sysemu/arch_init.h"
10 #include "sysemu/sysemu.h"
11 #include "qemu/bitops.h"
12 #include "qemu/crc32c.h"
13 #include "exec/exec-all.h"
14 #include "exec/cpu_ldst.h"
15 #include "arm_ldst.h"
16 #include <zlib.h> /* For crc32 */
17 #include "exec/semihost.h"
18 #include "sysemu/kvm.h"
19 #include "fpu/softfloat.h"
20 #include "qemu/range.h"
22 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
24 #ifndef CONFIG_USER_ONLY
25 /* Cacheability and shareability attributes for a memory access */
26 typedef struct ARMCacheAttrs {
27 unsigned int attrs:8; /* as in the MAIR register encoding */
28 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
29 } ARMCacheAttrs;
31 static bool get_phys_addr(CPUARMState *env, target_ulong address,
32 MMUAccessType access_type, ARMMMUIdx mmu_idx,
33 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
34 target_ulong *page_size,
35 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
37 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
38 MMUAccessType access_type, ARMMMUIdx mmu_idx,
39 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
40 target_ulong *page_size_ptr,
41 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
43 /* Security attributes for an address, as returned by v8m_security_lookup. */
44 typedef struct V8M_SAttributes {
45 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
46 bool ns;
47 bool nsc;
48 uint8_t sregion;
49 bool srvalid;
50 uint8_t iregion;
51 bool irvalid;
52 } V8M_SAttributes;
54 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
55 MMUAccessType access_type, ARMMMUIdx mmu_idx,
56 V8M_SAttributes *sattrs);
57 #endif
59 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
61 int nregs;
63 /* VFP data registers are always little-endian. */
64 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
65 if (reg < nregs) {
66 stq_le_p(buf, *aa32_vfp_dreg(env, reg));
67 return 8;
69 if (arm_feature(env, ARM_FEATURE_NEON)) {
70 /* Aliases for Q regs. */
71 nregs += 16;
72 if (reg < nregs) {
73 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
74 stq_le_p(buf, q[0]);
75 stq_le_p(buf + 8, q[1]);
76 return 16;
79 switch (reg - nregs) {
80 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
81 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
82 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
84 return 0;
87 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
89 int nregs;
91 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
92 if (reg < nregs) {
93 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
94 return 8;
96 if (arm_feature(env, ARM_FEATURE_NEON)) {
97 nregs += 16;
98 if (reg < nregs) {
99 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
100 q[0] = ldq_le_p(buf);
101 q[1] = ldq_le_p(buf + 8);
102 return 16;
105 switch (reg - nregs) {
106 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
107 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
108 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
110 return 0;
113 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
115 switch (reg) {
116 case 0 ... 31:
117 /* 128 bit FP register */
119 uint64_t *q = aa64_vfp_qreg(env, reg);
120 stq_le_p(buf, q[0]);
121 stq_le_p(buf + 8, q[1]);
122 return 16;
124 case 32:
125 /* FPSR */
126 stl_p(buf, vfp_get_fpsr(env));
127 return 4;
128 case 33:
129 /* FPCR */
130 stl_p(buf, vfp_get_fpcr(env));
131 return 4;
132 default:
133 return 0;
137 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
139 switch (reg) {
140 case 0 ... 31:
141 /* 128 bit FP register */
143 uint64_t *q = aa64_vfp_qreg(env, reg);
144 q[0] = ldq_le_p(buf);
145 q[1] = ldq_le_p(buf + 8);
146 return 16;
148 case 32:
149 /* FPSR */
150 vfp_set_fpsr(env, ldl_p(buf));
151 return 4;
152 case 33:
153 /* FPCR */
154 vfp_set_fpcr(env, ldl_p(buf));
155 return 4;
156 default:
157 return 0;
161 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
163 assert(ri->fieldoffset);
164 if (cpreg_field_is_64bit(ri)) {
165 return CPREG_FIELD64(env, ri);
166 } else {
167 return CPREG_FIELD32(env, ri);
171 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
172 uint64_t value)
174 assert(ri->fieldoffset);
175 if (cpreg_field_is_64bit(ri)) {
176 CPREG_FIELD64(env, ri) = value;
177 } else {
178 CPREG_FIELD32(env, ri) = value;
182 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
184 return (char *)env + ri->fieldoffset;
187 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
189 /* Raw read of a coprocessor register (as needed for migration, etc). */
190 if (ri->type & ARM_CP_CONST) {
191 return ri->resetvalue;
192 } else if (ri->raw_readfn) {
193 return ri->raw_readfn(env, ri);
194 } else if (ri->readfn) {
195 return ri->readfn(env, ri);
196 } else {
197 return raw_read(env, ri);
201 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
202 uint64_t v)
204 /* Raw write of a coprocessor register (as needed for migration, etc).
205 * Note that constant registers are treated as write-ignored; the
206 * caller should check for success by whether a readback gives the
207 * value written.
209 if (ri->type & ARM_CP_CONST) {
210 return;
211 } else if (ri->raw_writefn) {
212 ri->raw_writefn(env, ri, v);
213 } else if (ri->writefn) {
214 ri->writefn(env, ri, v);
215 } else {
216 raw_write(env, ri, v);
220 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
222 ARMCPU *cpu = arm_env_get_cpu(env);
223 const ARMCPRegInfo *ri;
224 uint32_t key;
226 key = cpu->dyn_xml.cpregs_keys[reg];
227 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
228 if (ri) {
229 if (cpreg_field_is_64bit(ri)) {
230 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
231 } else {
232 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
235 return 0;
238 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
240 return 0;
243 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
245 /* Return true if the regdef would cause an assertion if you called
246 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
247 * program bug for it not to have the NO_RAW flag).
248 * NB that returning false here doesn't necessarily mean that calling
249 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
250 * read/write access functions which are safe for raw use" from "has
251 * read/write access functions which have side effects but has forgotten
252 * to provide raw access functions".
253 * The tests here line up with the conditions in read/write_raw_cp_reg()
254 * and assertions in raw_read()/raw_write().
256 if ((ri->type & ARM_CP_CONST) ||
257 ri->fieldoffset ||
258 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
259 return false;
261 return true;
264 bool write_cpustate_to_list(ARMCPU *cpu)
266 /* Write the coprocessor state from cpu->env to the (index,value) list. */
267 int i;
268 bool ok = true;
270 for (i = 0; i < cpu->cpreg_array_len; i++) {
271 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
272 const ARMCPRegInfo *ri;
274 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
275 if (!ri) {
276 ok = false;
277 continue;
279 if (ri->type & ARM_CP_NO_RAW) {
280 continue;
282 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
284 return ok;
287 bool write_list_to_cpustate(ARMCPU *cpu)
289 int i;
290 bool ok = true;
292 for (i = 0; i < cpu->cpreg_array_len; i++) {
293 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
294 uint64_t v = cpu->cpreg_values[i];
295 const ARMCPRegInfo *ri;
297 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
298 if (!ri) {
299 ok = false;
300 continue;
302 if (ri->type & ARM_CP_NO_RAW) {
303 continue;
305 /* Write value and confirm it reads back as written
306 * (to catch read-only registers and partially read-only
307 * registers where the incoming migration value doesn't match)
309 write_raw_cp_reg(&cpu->env, ri, v);
310 if (read_raw_cp_reg(&cpu->env, ri) != v) {
311 ok = false;
314 return ok;
317 static void add_cpreg_to_list(gpointer key, gpointer opaque)
319 ARMCPU *cpu = opaque;
320 uint64_t regidx;
321 const ARMCPRegInfo *ri;
323 regidx = *(uint32_t *)key;
324 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
326 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
327 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
328 /* The value array need not be initialized at this point */
329 cpu->cpreg_array_len++;
333 static void count_cpreg(gpointer key, gpointer opaque)
335 ARMCPU *cpu = opaque;
336 uint64_t regidx;
337 const ARMCPRegInfo *ri;
339 regidx = *(uint32_t *)key;
340 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
342 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
343 cpu->cpreg_array_len++;
347 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
349 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
350 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
352 if (aidx > bidx) {
353 return 1;
355 if (aidx < bidx) {
356 return -1;
358 return 0;
361 void init_cpreg_list(ARMCPU *cpu)
363 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
364 * Note that we require cpreg_tuples[] to be sorted by key ID.
366 GList *keys;
367 int arraylen;
369 keys = g_hash_table_get_keys(cpu->cp_regs);
370 keys = g_list_sort(keys, cpreg_key_compare);
372 cpu->cpreg_array_len = 0;
374 g_list_foreach(keys, count_cpreg, cpu);
376 arraylen = cpu->cpreg_array_len;
377 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
378 cpu->cpreg_values = g_new(uint64_t, arraylen);
379 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
380 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
381 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
382 cpu->cpreg_array_len = 0;
384 g_list_foreach(keys, add_cpreg_to_list, cpu);
386 assert(cpu->cpreg_array_len == arraylen);
388 g_list_free(keys);
392 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
393 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
395 * access_el3_aa32ns: Used to check AArch32 register views.
396 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
398 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
399 const ARMCPRegInfo *ri,
400 bool isread)
402 bool secure = arm_is_secure_below_el3(env);
404 assert(!arm_el_is_aa64(env, 3));
405 if (secure) {
406 return CP_ACCESS_TRAP_UNCATEGORIZED;
408 return CP_ACCESS_OK;
411 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
412 const ARMCPRegInfo *ri,
413 bool isread)
415 if (!arm_el_is_aa64(env, 3)) {
416 return access_el3_aa32ns(env, ri, isread);
418 return CP_ACCESS_OK;
421 /* Some secure-only AArch32 registers trap to EL3 if used from
422 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
423 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
424 * We assume that the .access field is set to PL1_RW.
426 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
427 const ARMCPRegInfo *ri,
428 bool isread)
430 if (arm_current_el(env) == 3) {
431 return CP_ACCESS_OK;
433 if (arm_is_secure_below_el3(env)) {
434 return CP_ACCESS_TRAP_EL3;
436 /* This will be EL1 NS and EL2 NS, which just UNDEF */
437 return CP_ACCESS_TRAP_UNCATEGORIZED;
440 /* Check for traps to "powerdown debug" registers, which are controlled
441 * by MDCR.TDOSA
443 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
444 bool isread)
446 int el = arm_current_el(env);
447 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
448 (env->cp15.mdcr_el2 & MDCR_TDE) ||
449 (env->cp15.hcr_el2 & HCR_TGE);
451 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
452 return CP_ACCESS_TRAP_EL2;
454 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
455 return CP_ACCESS_TRAP_EL3;
457 return CP_ACCESS_OK;
460 /* Check for traps to "debug ROM" registers, which are controlled
461 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
463 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
464 bool isread)
466 int el = arm_current_el(env);
467 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
468 (env->cp15.mdcr_el2 & MDCR_TDE) ||
469 (env->cp15.hcr_el2 & HCR_TGE);
471 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
472 return CP_ACCESS_TRAP_EL2;
474 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
475 return CP_ACCESS_TRAP_EL3;
477 return CP_ACCESS_OK;
480 /* Check for traps to general debug registers, which are controlled
481 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
483 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
484 bool isread)
486 int el = arm_current_el(env);
487 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
488 (env->cp15.mdcr_el2 & MDCR_TDE) ||
489 (env->cp15.hcr_el2 & HCR_TGE);
491 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
492 return CP_ACCESS_TRAP_EL2;
494 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
495 return CP_ACCESS_TRAP_EL3;
497 return CP_ACCESS_OK;
500 /* Check for traps to performance monitor registers, which are controlled
501 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
503 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
504 bool isread)
506 int el = arm_current_el(env);
508 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
509 && !arm_is_secure_below_el3(env)) {
510 return CP_ACCESS_TRAP_EL2;
512 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
513 return CP_ACCESS_TRAP_EL3;
515 return CP_ACCESS_OK;
518 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
520 ARMCPU *cpu = arm_env_get_cpu(env);
522 raw_write(env, ri, value);
523 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
526 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
528 ARMCPU *cpu = arm_env_get_cpu(env);
530 if (raw_read(env, ri) != value) {
531 /* Unlike real hardware the qemu TLB uses virtual addresses,
532 * not modified virtual addresses, so this causes a TLB flush.
534 tlb_flush(CPU(cpu));
535 raw_write(env, ri, value);
539 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
540 uint64_t value)
542 ARMCPU *cpu = arm_env_get_cpu(env);
544 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
545 && !extended_addresses_enabled(env)) {
546 /* For VMSA (when not using the LPAE long descriptor page table
547 * format) this register includes the ASID, so do a TLB flush.
548 * For PMSA it is purely a process ID and no action is needed.
550 tlb_flush(CPU(cpu));
552 raw_write(env, ri, value);
555 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
556 uint64_t value)
558 /* Invalidate all (TLBIALL) */
559 ARMCPU *cpu = arm_env_get_cpu(env);
561 tlb_flush(CPU(cpu));
564 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
565 uint64_t value)
567 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
568 ARMCPU *cpu = arm_env_get_cpu(env);
570 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
573 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
574 uint64_t value)
576 /* Invalidate by ASID (TLBIASID) */
577 ARMCPU *cpu = arm_env_get_cpu(env);
579 tlb_flush(CPU(cpu));
582 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
583 uint64_t value)
585 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
586 ARMCPU *cpu = arm_env_get_cpu(env);
588 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
591 /* IS variants of TLB operations must affect all cores */
592 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
593 uint64_t value)
595 CPUState *cs = ENV_GET_CPU(env);
597 tlb_flush_all_cpus_synced(cs);
600 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
601 uint64_t value)
603 CPUState *cs = ENV_GET_CPU(env);
605 tlb_flush_all_cpus_synced(cs);
608 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
609 uint64_t value)
611 CPUState *cs = ENV_GET_CPU(env);
613 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
616 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
617 uint64_t value)
619 CPUState *cs = ENV_GET_CPU(env);
621 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
624 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
625 uint64_t value)
627 CPUState *cs = ENV_GET_CPU(env);
629 tlb_flush_by_mmuidx(cs,
630 ARMMMUIdxBit_S12NSE1 |
631 ARMMMUIdxBit_S12NSE0 |
632 ARMMMUIdxBit_S2NS);
635 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
636 uint64_t value)
638 CPUState *cs = ENV_GET_CPU(env);
640 tlb_flush_by_mmuidx_all_cpus_synced(cs,
641 ARMMMUIdxBit_S12NSE1 |
642 ARMMMUIdxBit_S12NSE0 |
643 ARMMMUIdxBit_S2NS);
646 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
647 uint64_t value)
649 /* Invalidate by IPA. This has to invalidate any structures that
650 * contain only stage 2 translation information, but does not need
651 * to apply to structures that contain combined stage 1 and stage 2
652 * translation information.
653 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
655 CPUState *cs = ENV_GET_CPU(env);
656 uint64_t pageaddr;
658 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
659 return;
662 pageaddr = sextract64(value << 12, 0, 40);
664 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
667 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
668 uint64_t value)
670 CPUState *cs = ENV_GET_CPU(env);
671 uint64_t pageaddr;
673 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
674 return;
677 pageaddr = sextract64(value << 12, 0, 40);
679 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
680 ARMMMUIdxBit_S2NS);
683 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
684 uint64_t value)
686 CPUState *cs = ENV_GET_CPU(env);
688 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
691 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
692 uint64_t value)
694 CPUState *cs = ENV_GET_CPU(env);
696 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
699 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
700 uint64_t value)
702 CPUState *cs = ENV_GET_CPU(env);
703 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
705 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
708 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
709 uint64_t value)
711 CPUState *cs = ENV_GET_CPU(env);
712 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
714 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
715 ARMMMUIdxBit_S1E2);
718 static const ARMCPRegInfo cp_reginfo[] = {
719 /* Define the secure and non-secure FCSE identifier CP registers
720 * separately because there is no secure bank in V8 (no _EL3). This allows
721 * the secure register to be properly reset and migrated. There is also no
722 * v8 EL1 version of the register so the non-secure instance stands alone.
724 { .name = "FCSEIDR",
725 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
726 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
727 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
728 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
729 { .name = "FCSEIDR_S",
730 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
731 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
732 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
733 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
734 /* Define the secure and non-secure context identifier CP registers
735 * separately because there is no secure bank in V8 (no _EL3). This allows
736 * the secure register to be properly reset and migrated. In the
737 * non-secure case, the 32-bit register will have reset and migration
738 * disabled during registration as it is handled by the 64-bit instance.
740 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
741 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
742 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
743 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
744 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
745 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
746 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
747 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
748 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
749 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
750 REGINFO_SENTINEL
753 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
754 /* NB: Some of these registers exist in v8 but with more precise
755 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
757 /* MMU Domain access control / MPU write buffer control */
758 { .name = "DACR",
759 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
760 .access = PL1_RW, .resetvalue = 0,
761 .writefn = dacr_write, .raw_writefn = raw_write,
762 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
763 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
764 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
765 * For v6 and v5, these mappings are overly broad.
767 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
768 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
769 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
770 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
771 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
772 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
773 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
774 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
775 /* Cache maintenance ops; some of this space may be overridden later. */
776 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
777 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
778 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
779 REGINFO_SENTINEL
782 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
783 /* Not all pre-v6 cores implemented this WFI, so this is slightly
784 * over-broad.
786 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
787 .access = PL1_W, .type = ARM_CP_WFI },
788 REGINFO_SENTINEL
791 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
792 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
793 * is UNPREDICTABLE; we choose to NOP as most implementations do).
795 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
796 .access = PL1_W, .type = ARM_CP_WFI },
797 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
798 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
799 * OMAPCP will override this space.
801 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
802 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
803 .resetvalue = 0 },
804 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
805 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
806 .resetvalue = 0 },
807 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
808 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
809 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
810 .resetvalue = 0 },
811 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
812 * implementing it as RAZ means the "debug architecture version" bits
813 * will read as a reserved value, which should cause Linux to not try
814 * to use the debug hardware.
816 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
817 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
818 /* MMU TLB control. Note that the wildcarding means we cover not just
819 * the unified TLB ops but also the dside/iside/inner-shareable variants.
821 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
822 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
823 .type = ARM_CP_NO_RAW },
824 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
825 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
826 .type = ARM_CP_NO_RAW },
827 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
828 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
829 .type = ARM_CP_NO_RAW },
830 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
831 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
832 .type = ARM_CP_NO_RAW },
833 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
834 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
835 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
836 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
837 REGINFO_SENTINEL
840 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
841 uint64_t value)
843 uint32_t mask = 0;
845 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
846 if (!arm_feature(env, ARM_FEATURE_V8)) {
847 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
848 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
849 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
851 if (arm_feature(env, ARM_FEATURE_VFP)) {
852 /* VFP coprocessor: cp10 & cp11 [23:20] */
853 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
855 if (!arm_feature(env, ARM_FEATURE_NEON)) {
856 /* ASEDIS [31] bit is RAO/WI */
857 value |= (1 << 31);
860 /* VFPv3 and upwards with NEON implement 32 double precision
861 * registers (D0-D31).
863 if (!arm_feature(env, ARM_FEATURE_NEON) ||
864 !arm_feature(env, ARM_FEATURE_VFP3)) {
865 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
866 value |= (1 << 30);
869 value &= mask;
871 env->cp15.cpacr_el1 = value;
874 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
876 /* Call cpacr_write() so that we reset with the correct RAO bits set
877 * for our CPU features.
879 cpacr_write(env, ri, 0);
882 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
883 bool isread)
885 if (arm_feature(env, ARM_FEATURE_V8)) {
886 /* Check if CPACR accesses are to be trapped to EL2 */
887 if (arm_current_el(env) == 1 &&
888 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
889 return CP_ACCESS_TRAP_EL2;
890 /* Check if CPACR accesses are to be trapped to EL3 */
891 } else if (arm_current_el(env) < 3 &&
892 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
893 return CP_ACCESS_TRAP_EL3;
897 return CP_ACCESS_OK;
900 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
901 bool isread)
903 /* Check if CPTR accesses are set to trap to EL3 */
904 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
905 return CP_ACCESS_TRAP_EL3;
908 return CP_ACCESS_OK;
911 static const ARMCPRegInfo v6_cp_reginfo[] = {
912 /* prefetch by MVA in v6, NOP in v7 */
913 { .name = "MVA_prefetch",
914 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
915 .access = PL1_W, .type = ARM_CP_NOP },
916 /* We need to break the TB after ISB to execute self-modifying code
917 * correctly and also to take any pending interrupts immediately.
918 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
920 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
921 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
922 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
923 .access = PL0_W, .type = ARM_CP_NOP },
924 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
925 .access = PL0_W, .type = ARM_CP_NOP },
926 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
927 .access = PL1_RW,
928 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
929 offsetof(CPUARMState, cp15.ifar_ns) },
930 .resetvalue = 0, },
931 /* Watchpoint Fault Address Register : should actually only be present
932 * for 1136, 1176, 11MPCore.
934 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
935 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
936 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
937 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
938 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
939 .resetfn = cpacr_reset, .writefn = cpacr_write },
940 REGINFO_SENTINEL
943 /* Definitions for the PMU registers */
944 #define PMCRN_MASK 0xf800
945 #define PMCRN_SHIFT 11
946 #define PMCRD 0x8
947 #define PMCRC 0x4
948 #define PMCRE 0x1
950 static inline uint32_t pmu_num_counters(CPUARMState *env)
952 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
955 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
956 static inline uint64_t pmu_counter_mask(CPUARMState *env)
958 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
961 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
962 bool isread)
964 /* Performance monitor registers user accessibility is controlled
965 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
966 * trapping to EL2 or EL3 for other accesses.
968 int el = arm_current_el(env);
970 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
971 return CP_ACCESS_TRAP;
973 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
974 && !arm_is_secure_below_el3(env)) {
975 return CP_ACCESS_TRAP_EL2;
977 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
978 return CP_ACCESS_TRAP_EL3;
981 return CP_ACCESS_OK;
984 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
985 const ARMCPRegInfo *ri,
986 bool isread)
988 /* ER: event counter read trap control */
989 if (arm_feature(env, ARM_FEATURE_V8)
990 && arm_current_el(env) == 0
991 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
992 && isread) {
993 return CP_ACCESS_OK;
996 return pmreg_access(env, ri, isread);
999 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1000 const ARMCPRegInfo *ri,
1001 bool isread)
1003 /* SW: software increment write trap control */
1004 if (arm_feature(env, ARM_FEATURE_V8)
1005 && arm_current_el(env) == 0
1006 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1007 && !isread) {
1008 return CP_ACCESS_OK;
1011 return pmreg_access(env, ri, isread);
1014 #ifndef CONFIG_USER_ONLY
1016 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1017 const ARMCPRegInfo *ri,
1018 bool isread)
1020 /* ER: event counter read trap control */
1021 if (arm_feature(env, ARM_FEATURE_V8)
1022 && arm_current_el(env) == 0
1023 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1024 return CP_ACCESS_OK;
1027 return pmreg_access(env, ri, isread);
1030 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1031 const ARMCPRegInfo *ri,
1032 bool isread)
1034 /* CR: cycle counter read trap control */
1035 if (arm_feature(env, ARM_FEATURE_V8)
1036 && arm_current_el(env) == 0
1037 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1038 && isread) {
1039 return CP_ACCESS_OK;
1042 return pmreg_access(env, ri, isread);
1045 static inline bool arm_ccnt_enabled(CPUARMState *env)
1047 /* This does not support checking PMCCFILTR_EL0 register */
1049 if (!(env->cp15.c9_pmcr & PMCRE) || !(env->cp15.c9_pmcnten & (1 << 31))) {
1050 return false;
1053 return true;
1056 void pmccntr_sync(CPUARMState *env)
1058 uint64_t temp_ticks;
1060 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1061 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1063 if (env->cp15.c9_pmcr & PMCRD) {
1064 /* Increment once every 64 processor clock cycles */
1065 temp_ticks /= 64;
1068 if (arm_ccnt_enabled(env)) {
1069 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
1073 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1074 uint64_t value)
1076 pmccntr_sync(env);
1078 if (value & PMCRC) {
1079 /* The counter has been reset */
1080 env->cp15.c15_ccnt = 0;
1083 /* only the DP, X, D and E bits are writable */
1084 env->cp15.c9_pmcr &= ~0x39;
1085 env->cp15.c9_pmcr |= (value & 0x39);
1087 pmccntr_sync(env);
1090 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1092 uint64_t total_ticks;
1094 if (!arm_ccnt_enabled(env)) {
1095 /* Counter is disabled, do not change value */
1096 return env->cp15.c15_ccnt;
1099 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1100 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1102 if (env->cp15.c9_pmcr & PMCRD) {
1103 /* Increment once every 64 processor clock cycles */
1104 total_ticks /= 64;
1106 return total_ticks - env->cp15.c15_ccnt;
1109 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1110 uint64_t value)
1112 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1113 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1114 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1115 * accessed.
1117 env->cp15.c9_pmselr = value & 0x1f;
1120 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1121 uint64_t value)
1123 uint64_t total_ticks;
1125 if (!arm_ccnt_enabled(env)) {
1126 /* Counter is disabled, set the absolute value */
1127 env->cp15.c15_ccnt = value;
1128 return;
1131 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1132 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1134 if (env->cp15.c9_pmcr & PMCRD) {
1135 /* Increment once every 64 processor clock cycles */
1136 total_ticks /= 64;
1138 env->cp15.c15_ccnt = total_ticks - value;
1141 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1142 uint64_t value)
1144 uint64_t cur_val = pmccntr_read(env, NULL);
1146 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1149 #else /* CONFIG_USER_ONLY */
1151 void pmccntr_sync(CPUARMState *env)
1155 #endif
1157 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1158 uint64_t value)
1160 pmccntr_sync(env);
1161 env->cp15.pmccfiltr_el0 = value & 0xfc000000;
1162 pmccntr_sync(env);
1165 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1166 uint64_t value)
1168 value &= pmu_counter_mask(env);
1169 env->cp15.c9_pmcnten |= value;
1172 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1173 uint64_t value)
1175 value &= pmu_counter_mask(env);
1176 env->cp15.c9_pmcnten &= ~value;
1179 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1180 uint64_t value)
1182 env->cp15.c9_pmovsr &= ~value;
1185 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1186 uint64_t value)
1188 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1189 * PMSELR value is equal to or greater than the number of implemented
1190 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1192 if (env->cp15.c9_pmselr == 0x1f) {
1193 pmccfiltr_write(env, ri, value);
1197 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1199 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1200 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1202 if (env->cp15.c9_pmselr == 0x1f) {
1203 return env->cp15.pmccfiltr_el0;
1204 } else {
1205 return 0;
1209 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1210 uint64_t value)
1212 if (arm_feature(env, ARM_FEATURE_V8)) {
1213 env->cp15.c9_pmuserenr = value & 0xf;
1214 } else {
1215 env->cp15.c9_pmuserenr = value & 1;
1219 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1220 uint64_t value)
1222 /* We have no event counters so only the C bit can be changed */
1223 value &= pmu_counter_mask(env);
1224 env->cp15.c9_pminten |= value;
1227 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1228 uint64_t value)
1230 value &= pmu_counter_mask(env);
1231 env->cp15.c9_pminten &= ~value;
1234 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1235 uint64_t value)
1237 /* Note that even though the AArch64 view of this register has bits
1238 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1239 * architectural requirements for bits which are RES0 only in some
1240 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1241 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1243 raw_write(env, ri, value & ~0x1FULL);
1246 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1248 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1249 * For bits that vary between AArch32/64, code needs to check the
1250 * current execution mode before directly using the feature bit.
1252 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1254 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1255 valid_mask &= ~SCR_HCE;
1257 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1258 * supported if EL2 exists. The bit is UNK/SBZP when
1259 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1260 * when EL2 is unavailable.
1261 * On ARMv8, this bit is always available.
1263 if (arm_feature(env, ARM_FEATURE_V7) &&
1264 !arm_feature(env, ARM_FEATURE_V8)) {
1265 valid_mask &= ~SCR_SMD;
1269 /* Clear all-context RES0 bits. */
1270 value &= valid_mask;
1271 raw_write(env, ri, value);
1274 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1276 ARMCPU *cpu = arm_env_get_cpu(env);
1278 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1279 * bank
1281 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1282 ri->secure & ARM_CP_SECSTATE_S);
1284 return cpu->ccsidr[index];
1287 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1288 uint64_t value)
1290 raw_write(env, ri, value & 0xf);
1293 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1295 CPUState *cs = ENV_GET_CPU(env);
1296 uint64_t ret = 0;
1298 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1299 ret |= CPSR_I;
1301 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1302 ret |= CPSR_F;
1304 /* External aborts are not possible in QEMU so A bit is always clear */
1305 return ret;
1308 static const ARMCPRegInfo v7_cp_reginfo[] = {
1309 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1310 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1311 .access = PL1_W, .type = ARM_CP_NOP },
1312 /* Performance monitors are implementation defined in v7,
1313 * but with an ARM recommended set of registers, which we
1314 * follow (although we don't actually implement any counters)
1316 * Performance registers fall into three categories:
1317 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1318 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1319 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1320 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1321 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1323 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1324 .access = PL0_RW, .type = ARM_CP_ALIAS,
1325 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1326 .writefn = pmcntenset_write,
1327 .accessfn = pmreg_access,
1328 .raw_writefn = raw_write },
1329 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1330 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1331 .access = PL0_RW, .accessfn = pmreg_access,
1332 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1333 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1334 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1335 .access = PL0_RW,
1336 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1337 .accessfn = pmreg_access,
1338 .writefn = pmcntenclr_write,
1339 .type = ARM_CP_ALIAS },
1340 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1341 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1342 .access = PL0_RW, .accessfn = pmreg_access,
1343 .type = ARM_CP_ALIAS,
1344 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1345 .writefn = pmcntenclr_write },
1346 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1347 .access = PL0_RW,
1348 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1349 .accessfn = pmreg_access,
1350 .writefn = pmovsr_write,
1351 .raw_writefn = raw_write },
1352 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1353 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1354 .access = PL0_RW, .accessfn = pmreg_access,
1355 .type = ARM_CP_ALIAS,
1356 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1357 .writefn = pmovsr_write,
1358 .raw_writefn = raw_write },
1359 /* Unimplemented so WI. */
1360 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1361 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1362 #ifndef CONFIG_USER_ONLY
1363 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1364 .access = PL0_RW, .type = ARM_CP_ALIAS,
1365 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1366 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1367 .raw_writefn = raw_write},
1368 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1369 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1370 .access = PL0_RW, .accessfn = pmreg_access_selr,
1371 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1372 .writefn = pmselr_write, .raw_writefn = raw_write, },
1373 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1374 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1375 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1376 .accessfn = pmreg_access_ccntr },
1377 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1378 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1379 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1380 .type = ARM_CP_IO,
1381 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1382 #endif
1383 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1384 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1385 .writefn = pmccfiltr_write,
1386 .access = PL0_RW, .accessfn = pmreg_access,
1387 .type = ARM_CP_IO,
1388 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1389 .resetvalue = 0, },
1390 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1391 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1392 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1393 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1394 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1395 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1396 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1397 /* Unimplemented, RAZ/WI. */
1398 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1399 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1400 .accessfn = pmreg_access_xevcntr },
1401 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1402 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1403 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
1404 .resetvalue = 0,
1405 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1406 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1407 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1408 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1409 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1410 .resetvalue = 0,
1411 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1412 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1413 .access = PL1_RW, .accessfn = access_tpm,
1414 .type = ARM_CP_ALIAS | ARM_CP_IO,
1415 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1416 .resetvalue = 0,
1417 .writefn = pmintenset_write, .raw_writefn = raw_write },
1418 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1419 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1420 .access = PL1_RW, .accessfn = access_tpm,
1421 .type = ARM_CP_IO,
1422 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1423 .writefn = pmintenset_write, .raw_writefn = raw_write,
1424 .resetvalue = 0x0 },
1425 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1426 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1427 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1428 .writefn = pmintenclr_write, },
1429 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1430 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1431 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1432 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1433 .writefn = pmintenclr_write },
1434 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1435 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1436 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1437 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1438 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1439 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1440 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1441 offsetof(CPUARMState, cp15.csselr_ns) } },
1442 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1443 * just RAZ for all cores:
1445 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1446 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1447 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1448 /* Auxiliary fault status registers: these also are IMPDEF, and we
1449 * choose to RAZ/WI for all cores.
1451 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1452 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1453 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1454 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1455 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1456 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1457 /* MAIR can just read-as-written because we don't implement caches
1458 * and so don't need to care about memory attributes.
1460 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1461 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1462 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1463 .resetvalue = 0 },
1464 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1465 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1466 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1467 .resetvalue = 0 },
1468 /* For non-long-descriptor page tables these are PRRR and NMRR;
1469 * regardless they still act as reads-as-written for QEMU.
1471 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1472 * allows them to assign the correct fieldoffset based on the endianness
1473 * handled in the field definitions.
1475 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1476 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1477 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1478 offsetof(CPUARMState, cp15.mair0_ns) },
1479 .resetfn = arm_cp_reset_ignore },
1480 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1481 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1482 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1483 offsetof(CPUARMState, cp15.mair1_ns) },
1484 .resetfn = arm_cp_reset_ignore },
1485 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1486 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1487 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1488 /* 32 bit ITLB invalidates */
1489 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1490 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1491 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1492 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1493 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1494 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1495 /* 32 bit DTLB invalidates */
1496 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1497 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1498 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1499 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1500 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1501 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1502 /* 32 bit TLB invalidates */
1503 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1504 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1505 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1506 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1507 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1508 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1509 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1510 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1511 REGINFO_SENTINEL
1514 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1515 /* 32 bit TLB invalidates, Inner Shareable */
1516 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1517 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1518 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1519 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1520 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1521 .type = ARM_CP_NO_RAW, .access = PL1_W,
1522 .writefn = tlbiasid_is_write },
1523 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1524 .type = ARM_CP_NO_RAW, .access = PL1_W,
1525 .writefn = tlbimvaa_is_write },
1526 REGINFO_SENTINEL
1529 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1530 uint64_t value)
1532 value &= 1;
1533 env->teecr = value;
1536 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1537 bool isread)
1539 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1540 return CP_ACCESS_TRAP;
1542 return CP_ACCESS_OK;
1545 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1546 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1547 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1548 .resetvalue = 0,
1549 .writefn = teecr_write },
1550 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1551 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1552 .accessfn = teehbr_access, .resetvalue = 0 },
1553 REGINFO_SENTINEL
1556 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1557 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1558 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1559 .access = PL0_RW,
1560 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1561 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1562 .access = PL0_RW,
1563 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1564 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1565 .resetfn = arm_cp_reset_ignore },
1566 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1567 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1568 .access = PL0_R|PL1_W,
1569 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1570 .resetvalue = 0},
1571 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1572 .access = PL0_R|PL1_W,
1573 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1574 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1575 .resetfn = arm_cp_reset_ignore },
1576 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1577 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1578 .access = PL1_RW,
1579 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1580 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1581 .access = PL1_RW,
1582 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1583 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1584 .resetvalue = 0 },
1585 REGINFO_SENTINEL
1588 #ifndef CONFIG_USER_ONLY
1590 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1591 bool isread)
1593 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1594 * Writable only at the highest implemented exception level.
1596 int el = arm_current_el(env);
1598 switch (el) {
1599 case 0:
1600 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1601 return CP_ACCESS_TRAP;
1603 break;
1604 case 1:
1605 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1606 arm_is_secure_below_el3(env)) {
1607 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1608 return CP_ACCESS_TRAP_UNCATEGORIZED;
1610 break;
1611 case 2:
1612 case 3:
1613 break;
1616 if (!isread && el < arm_highest_el(env)) {
1617 return CP_ACCESS_TRAP_UNCATEGORIZED;
1620 return CP_ACCESS_OK;
1623 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1624 bool isread)
1626 unsigned int cur_el = arm_current_el(env);
1627 bool secure = arm_is_secure(env);
1629 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1630 if (cur_el == 0 &&
1631 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1632 return CP_ACCESS_TRAP;
1635 if (arm_feature(env, ARM_FEATURE_EL2) &&
1636 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1637 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1638 return CP_ACCESS_TRAP_EL2;
1640 return CP_ACCESS_OK;
1643 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1644 bool isread)
1646 unsigned int cur_el = arm_current_el(env);
1647 bool secure = arm_is_secure(env);
1649 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1650 * EL0[PV]TEN is zero.
1652 if (cur_el == 0 &&
1653 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1654 return CP_ACCESS_TRAP;
1657 if (arm_feature(env, ARM_FEATURE_EL2) &&
1658 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1659 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1660 return CP_ACCESS_TRAP_EL2;
1662 return CP_ACCESS_OK;
1665 static CPAccessResult gt_pct_access(CPUARMState *env,
1666 const ARMCPRegInfo *ri,
1667 bool isread)
1669 return gt_counter_access(env, GTIMER_PHYS, isread);
1672 static CPAccessResult gt_vct_access(CPUARMState *env,
1673 const ARMCPRegInfo *ri,
1674 bool isread)
1676 return gt_counter_access(env, GTIMER_VIRT, isread);
1679 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1680 bool isread)
1682 return gt_timer_access(env, GTIMER_PHYS, isread);
1685 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1686 bool isread)
1688 return gt_timer_access(env, GTIMER_VIRT, isread);
1691 static CPAccessResult gt_stimer_access(CPUARMState *env,
1692 const ARMCPRegInfo *ri,
1693 bool isread)
1695 /* The AArch64 register view of the secure physical timer is
1696 * always accessible from EL3, and configurably accessible from
1697 * Secure EL1.
1699 switch (arm_current_el(env)) {
1700 case 1:
1701 if (!arm_is_secure(env)) {
1702 return CP_ACCESS_TRAP;
1704 if (!(env->cp15.scr_el3 & SCR_ST)) {
1705 return CP_ACCESS_TRAP_EL3;
1707 return CP_ACCESS_OK;
1708 case 0:
1709 case 2:
1710 return CP_ACCESS_TRAP;
1711 case 3:
1712 return CP_ACCESS_OK;
1713 default:
1714 g_assert_not_reached();
1718 static uint64_t gt_get_countervalue(CPUARMState *env)
1720 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1723 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1725 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1727 if (gt->ctl & 1) {
1728 /* Timer enabled: calculate and set current ISTATUS, irq, and
1729 * reset timer to when ISTATUS next has to change
1731 uint64_t offset = timeridx == GTIMER_VIRT ?
1732 cpu->env.cp15.cntvoff_el2 : 0;
1733 uint64_t count = gt_get_countervalue(&cpu->env);
1734 /* Note that this must be unsigned 64 bit arithmetic: */
1735 int istatus = count - offset >= gt->cval;
1736 uint64_t nexttick;
1737 int irqstate;
1739 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1741 irqstate = (istatus && !(gt->ctl & 2));
1742 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1744 if (istatus) {
1745 /* Next transition is when count rolls back over to zero */
1746 nexttick = UINT64_MAX;
1747 } else {
1748 /* Next transition is when we hit cval */
1749 nexttick = gt->cval + offset;
1751 /* Note that the desired next expiry time might be beyond the
1752 * signed-64-bit range of a QEMUTimer -- in this case we just
1753 * set the timer for as far in the future as possible. When the
1754 * timer expires we will reset the timer for any remaining period.
1756 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1757 nexttick = INT64_MAX / GTIMER_SCALE;
1759 timer_mod(cpu->gt_timer[timeridx], nexttick);
1760 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1761 } else {
1762 /* Timer disabled: ISTATUS and timer output always clear */
1763 gt->ctl &= ~4;
1764 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1765 timer_del(cpu->gt_timer[timeridx]);
1766 trace_arm_gt_recalc_disabled(timeridx);
1770 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1771 int timeridx)
1773 ARMCPU *cpu = arm_env_get_cpu(env);
1775 timer_del(cpu->gt_timer[timeridx]);
1778 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1780 return gt_get_countervalue(env);
1783 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1785 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1788 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1789 int timeridx,
1790 uint64_t value)
1792 trace_arm_gt_cval_write(timeridx, value);
1793 env->cp15.c14_timer[timeridx].cval = value;
1794 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1797 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1798 int timeridx)
1800 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1802 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1803 (gt_get_countervalue(env) - offset));
1806 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807 int timeridx,
1808 uint64_t value)
1810 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1812 trace_arm_gt_tval_write(timeridx, value);
1813 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1814 sextract64(value, 0, 32);
1815 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1818 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1819 int timeridx,
1820 uint64_t value)
1822 ARMCPU *cpu = arm_env_get_cpu(env);
1823 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1825 trace_arm_gt_ctl_write(timeridx, value);
1826 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1827 if ((oldval ^ value) & 1) {
1828 /* Enable toggled */
1829 gt_recalc_timer(cpu, timeridx);
1830 } else if ((oldval ^ value) & 2) {
1831 /* IMASK toggled: don't need to recalculate,
1832 * just set the interrupt line based on ISTATUS
1834 int irqstate = (oldval & 4) && !(value & 2);
1836 trace_arm_gt_imask_toggle(timeridx, irqstate);
1837 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1841 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1843 gt_timer_reset(env, ri, GTIMER_PHYS);
1846 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1847 uint64_t value)
1849 gt_cval_write(env, ri, GTIMER_PHYS, value);
1852 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1854 return gt_tval_read(env, ri, GTIMER_PHYS);
1857 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858 uint64_t value)
1860 gt_tval_write(env, ri, GTIMER_PHYS, value);
1863 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1864 uint64_t value)
1866 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1869 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1871 gt_timer_reset(env, ri, GTIMER_VIRT);
1874 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875 uint64_t value)
1877 gt_cval_write(env, ri, GTIMER_VIRT, value);
1880 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1882 return gt_tval_read(env, ri, GTIMER_VIRT);
1885 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1886 uint64_t value)
1888 gt_tval_write(env, ri, GTIMER_VIRT, value);
1891 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1892 uint64_t value)
1894 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1897 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1898 uint64_t value)
1900 ARMCPU *cpu = arm_env_get_cpu(env);
1902 trace_arm_gt_cntvoff_write(value);
1903 raw_write(env, ri, value);
1904 gt_recalc_timer(cpu, GTIMER_VIRT);
1907 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1909 gt_timer_reset(env, ri, GTIMER_HYP);
1912 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1913 uint64_t value)
1915 gt_cval_write(env, ri, GTIMER_HYP, value);
1918 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1920 return gt_tval_read(env, ri, GTIMER_HYP);
1923 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1924 uint64_t value)
1926 gt_tval_write(env, ri, GTIMER_HYP, value);
1929 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1930 uint64_t value)
1932 gt_ctl_write(env, ri, GTIMER_HYP, value);
1935 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1937 gt_timer_reset(env, ri, GTIMER_SEC);
1940 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1941 uint64_t value)
1943 gt_cval_write(env, ri, GTIMER_SEC, value);
1946 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1948 return gt_tval_read(env, ri, GTIMER_SEC);
1951 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1952 uint64_t value)
1954 gt_tval_write(env, ri, GTIMER_SEC, value);
1957 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1958 uint64_t value)
1960 gt_ctl_write(env, ri, GTIMER_SEC, value);
1963 void arm_gt_ptimer_cb(void *opaque)
1965 ARMCPU *cpu = opaque;
1967 gt_recalc_timer(cpu, GTIMER_PHYS);
1970 void arm_gt_vtimer_cb(void *opaque)
1972 ARMCPU *cpu = opaque;
1974 gt_recalc_timer(cpu, GTIMER_VIRT);
1977 void arm_gt_htimer_cb(void *opaque)
1979 ARMCPU *cpu = opaque;
1981 gt_recalc_timer(cpu, GTIMER_HYP);
1984 void arm_gt_stimer_cb(void *opaque)
1986 ARMCPU *cpu = opaque;
1988 gt_recalc_timer(cpu, GTIMER_SEC);
1991 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1992 /* Note that CNTFRQ is purely reads-as-written for the benefit
1993 * of software; writing it doesn't actually change the timer frequency.
1994 * Our reset value matches the fixed frequency we implement the timer at.
1996 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1997 .type = ARM_CP_ALIAS,
1998 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1999 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2001 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2002 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2003 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2004 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2005 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2007 /* overall control: mostly access permissions */
2008 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2009 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2010 .access = PL1_RW,
2011 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2012 .resetvalue = 0,
2014 /* per-timer control */
2015 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2016 .secure = ARM_CP_SECSTATE_NS,
2017 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2018 .accessfn = gt_ptimer_access,
2019 .fieldoffset = offsetoflow32(CPUARMState,
2020 cp15.c14_timer[GTIMER_PHYS].ctl),
2021 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2023 { .name = "CNTP_CTL_S",
2024 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2025 .secure = ARM_CP_SECSTATE_S,
2026 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2027 .accessfn = gt_ptimer_access,
2028 .fieldoffset = offsetoflow32(CPUARMState,
2029 cp15.c14_timer[GTIMER_SEC].ctl),
2030 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2032 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2033 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2034 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2035 .accessfn = gt_ptimer_access,
2036 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2037 .resetvalue = 0,
2038 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2040 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2041 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2042 .accessfn = gt_vtimer_access,
2043 .fieldoffset = offsetoflow32(CPUARMState,
2044 cp15.c14_timer[GTIMER_VIRT].ctl),
2045 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2047 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2048 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2049 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2050 .accessfn = gt_vtimer_access,
2051 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2052 .resetvalue = 0,
2053 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2055 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2056 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2057 .secure = ARM_CP_SECSTATE_NS,
2058 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2059 .accessfn = gt_ptimer_access,
2060 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2062 { .name = "CNTP_TVAL_S",
2063 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2064 .secure = ARM_CP_SECSTATE_S,
2065 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2066 .accessfn = gt_ptimer_access,
2067 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2069 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2070 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2071 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2072 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2073 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2075 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2076 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2077 .accessfn = gt_vtimer_access,
2078 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2080 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2081 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2082 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2083 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2084 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2086 /* The counter itself */
2087 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2088 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2089 .accessfn = gt_pct_access,
2090 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2092 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2093 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2094 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2095 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2097 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2098 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2099 .accessfn = gt_vct_access,
2100 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2102 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2103 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2104 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2105 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2107 /* Comparison value, indicating when the timer goes off */
2108 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2109 .secure = ARM_CP_SECSTATE_NS,
2110 .access = PL1_RW | PL0_R,
2111 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2112 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2113 .accessfn = gt_ptimer_access,
2114 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2116 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2117 .secure = ARM_CP_SECSTATE_S,
2118 .access = PL1_RW | PL0_R,
2119 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2120 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2121 .accessfn = gt_ptimer_access,
2122 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2124 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2125 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2126 .access = PL1_RW | PL0_R,
2127 .type = ARM_CP_IO,
2128 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2129 .resetvalue = 0, .accessfn = gt_ptimer_access,
2130 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2132 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2133 .access = PL1_RW | PL0_R,
2134 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2135 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2136 .accessfn = gt_vtimer_access,
2137 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2139 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2140 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2141 .access = PL1_RW | PL0_R,
2142 .type = ARM_CP_IO,
2143 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2144 .resetvalue = 0, .accessfn = gt_vtimer_access,
2145 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2147 /* Secure timer -- this is actually restricted to only EL3
2148 * and configurably Secure-EL1 via the accessfn.
2150 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2151 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2152 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2153 .accessfn = gt_stimer_access,
2154 .readfn = gt_sec_tval_read,
2155 .writefn = gt_sec_tval_write,
2156 .resetfn = gt_sec_timer_reset,
2158 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2159 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2160 .type = ARM_CP_IO, .access = PL1_RW,
2161 .accessfn = gt_stimer_access,
2162 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2163 .resetvalue = 0,
2164 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2166 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2167 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2168 .type = ARM_CP_IO, .access = PL1_RW,
2169 .accessfn = gt_stimer_access,
2170 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2171 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2173 REGINFO_SENTINEL
2176 #else
2178 /* In user-mode most of the generic timer registers are inaccessible
2179 * however modern kernels (4.12+) allow access to cntvct_el0
2182 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2184 /* Currently we have no support for QEMUTimer in linux-user so we
2185 * can't call gt_get_countervalue(env), instead we directly
2186 * call the lower level functions.
2188 return cpu_get_clock() / GTIMER_SCALE;
2191 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2192 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2193 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2194 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2195 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2196 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2198 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2199 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2200 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2201 .readfn = gt_virt_cnt_read,
2203 REGINFO_SENTINEL
2206 #endif
2208 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2210 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2211 raw_write(env, ri, value);
2212 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2213 raw_write(env, ri, value & 0xfffff6ff);
2214 } else {
2215 raw_write(env, ri, value & 0xfffff1ff);
2219 #ifndef CONFIG_USER_ONLY
2220 /* get_phys_addr() isn't present for user-mode-only targets */
2222 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2223 bool isread)
2225 if (ri->opc2 & 4) {
2226 /* The ATS12NSO* operations must trap to EL3 if executed in
2227 * Secure EL1 (which can only happen if EL3 is AArch64).
2228 * They are simply UNDEF if executed from NS EL1.
2229 * They function normally from EL2 or EL3.
2231 if (arm_current_el(env) == 1) {
2232 if (arm_is_secure_below_el3(env)) {
2233 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2235 return CP_ACCESS_TRAP_UNCATEGORIZED;
2238 return CP_ACCESS_OK;
2241 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2242 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2244 hwaddr phys_addr;
2245 target_ulong page_size;
2246 int prot;
2247 bool ret;
2248 uint64_t par64;
2249 bool format64 = false;
2250 MemTxAttrs attrs = {};
2251 ARMMMUFaultInfo fi = {};
2252 ARMCacheAttrs cacheattrs = {};
2254 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2255 &prot, &page_size, &fi, &cacheattrs);
2257 if (is_a64(env)) {
2258 format64 = true;
2259 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2261 * ATS1Cxx:
2262 * * TTBCR.EAE determines whether the result is returned using the
2263 * 32-bit or the 64-bit PAR format
2264 * * Instructions executed in Hyp mode always use the 64bit format
2266 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2267 * * The Non-secure TTBCR.EAE bit is set to 1
2268 * * The implementation includes EL2, and the value of HCR.VM is 1
2270 * ATS1Hx always uses the 64bit format (not supported yet).
2272 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2274 if (arm_feature(env, ARM_FEATURE_EL2)) {
2275 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2276 format64 |= env->cp15.hcr_el2 & HCR_VM;
2277 } else {
2278 format64 |= arm_current_el(env) == 2;
2283 if (format64) {
2284 /* Create a 64-bit PAR */
2285 par64 = (1 << 11); /* LPAE bit always set */
2286 if (!ret) {
2287 par64 |= phys_addr & ~0xfffULL;
2288 if (!attrs.secure) {
2289 par64 |= (1 << 9); /* NS */
2291 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2292 par64 |= cacheattrs.shareability << 7; /* SH */
2293 } else {
2294 uint32_t fsr = arm_fi_to_lfsc(&fi);
2296 par64 |= 1; /* F */
2297 par64 |= (fsr & 0x3f) << 1; /* FS */
2298 /* Note that S2WLK and FSTAGE are always zero, because we don't
2299 * implement virtualization and therefore there can't be a stage 2
2300 * fault.
2303 } else {
2304 /* fsr is a DFSR/IFSR value for the short descriptor
2305 * translation table format (with WnR always clear).
2306 * Convert it to a 32-bit PAR.
2308 if (!ret) {
2309 /* We do not set any attribute bits in the PAR */
2310 if (page_size == (1 << 24)
2311 && arm_feature(env, ARM_FEATURE_V7)) {
2312 par64 = (phys_addr & 0xff000000) | (1 << 1);
2313 } else {
2314 par64 = phys_addr & 0xfffff000;
2316 if (!attrs.secure) {
2317 par64 |= (1 << 9); /* NS */
2319 } else {
2320 uint32_t fsr = arm_fi_to_sfsc(&fi);
2322 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2323 ((fsr & 0xf) << 1) | 1;
2326 return par64;
2329 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2331 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2332 uint64_t par64;
2333 ARMMMUIdx mmu_idx;
2334 int el = arm_current_el(env);
2335 bool secure = arm_is_secure_below_el3(env);
2337 switch (ri->opc2 & 6) {
2338 case 0:
2339 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2340 switch (el) {
2341 case 3:
2342 mmu_idx = ARMMMUIdx_S1E3;
2343 break;
2344 case 2:
2345 mmu_idx = ARMMMUIdx_S1NSE1;
2346 break;
2347 case 1:
2348 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2349 break;
2350 default:
2351 g_assert_not_reached();
2353 break;
2354 case 2:
2355 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2356 switch (el) {
2357 case 3:
2358 mmu_idx = ARMMMUIdx_S1SE0;
2359 break;
2360 case 2:
2361 mmu_idx = ARMMMUIdx_S1NSE0;
2362 break;
2363 case 1:
2364 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2365 break;
2366 default:
2367 g_assert_not_reached();
2369 break;
2370 case 4:
2371 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2372 mmu_idx = ARMMMUIdx_S12NSE1;
2373 break;
2374 case 6:
2375 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2376 mmu_idx = ARMMMUIdx_S12NSE0;
2377 break;
2378 default:
2379 g_assert_not_reached();
2382 par64 = do_ats_write(env, value, access_type, mmu_idx);
2384 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2387 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2388 uint64_t value)
2390 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2391 uint64_t par64;
2393 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2395 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2398 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2399 bool isread)
2401 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2402 return CP_ACCESS_TRAP;
2404 return CP_ACCESS_OK;
2407 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2408 uint64_t value)
2410 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2411 ARMMMUIdx mmu_idx;
2412 int secure = arm_is_secure_below_el3(env);
2414 switch (ri->opc2 & 6) {
2415 case 0:
2416 switch (ri->opc1) {
2417 case 0: /* AT S1E1R, AT S1E1W */
2418 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2419 break;
2420 case 4: /* AT S1E2R, AT S1E2W */
2421 mmu_idx = ARMMMUIdx_S1E2;
2422 break;
2423 case 6: /* AT S1E3R, AT S1E3W */
2424 mmu_idx = ARMMMUIdx_S1E3;
2425 break;
2426 default:
2427 g_assert_not_reached();
2429 break;
2430 case 2: /* AT S1E0R, AT S1E0W */
2431 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2432 break;
2433 case 4: /* AT S12E1R, AT S12E1W */
2434 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2435 break;
2436 case 6: /* AT S12E0R, AT S12E0W */
2437 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2438 break;
2439 default:
2440 g_assert_not_reached();
2443 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2445 #endif
2447 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2448 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2449 .access = PL1_RW, .resetvalue = 0,
2450 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2451 offsetoflow32(CPUARMState, cp15.par_ns) },
2452 .writefn = par_write },
2453 #ifndef CONFIG_USER_ONLY
2454 /* This underdecoding is safe because the reginfo is NO_RAW. */
2455 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2456 .access = PL1_W, .accessfn = ats_access,
2457 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2458 #endif
2459 REGINFO_SENTINEL
2462 /* Return basic MPU access permission bits. */
2463 static uint32_t simple_mpu_ap_bits(uint32_t val)
2465 uint32_t ret;
2466 uint32_t mask;
2467 int i;
2468 ret = 0;
2469 mask = 3;
2470 for (i = 0; i < 16; i += 2) {
2471 ret |= (val >> i) & mask;
2472 mask <<= 2;
2474 return ret;
2477 /* Pad basic MPU access permission bits to extended format. */
2478 static uint32_t extended_mpu_ap_bits(uint32_t val)
2480 uint32_t ret;
2481 uint32_t mask;
2482 int i;
2483 ret = 0;
2484 mask = 3;
2485 for (i = 0; i < 16; i += 2) {
2486 ret |= (val & mask) << i;
2487 mask <<= 2;
2489 return ret;
2492 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2493 uint64_t value)
2495 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2498 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2500 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2503 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2504 uint64_t value)
2506 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2509 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2511 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2514 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2516 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2518 if (!u32p) {
2519 return 0;
2522 u32p += env->pmsav7.rnr[M_REG_NS];
2523 return *u32p;
2526 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2527 uint64_t value)
2529 ARMCPU *cpu = arm_env_get_cpu(env);
2530 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2532 if (!u32p) {
2533 return;
2536 u32p += env->pmsav7.rnr[M_REG_NS];
2537 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2538 *u32p = value;
2541 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2542 uint64_t value)
2544 ARMCPU *cpu = arm_env_get_cpu(env);
2545 uint32_t nrgs = cpu->pmsav7_dregion;
2547 if (value >= nrgs) {
2548 qemu_log_mask(LOG_GUEST_ERROR,
2549 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2550 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2551 return;
2554 raw_write(env, ri, value);
2557 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2558 /* Reset for all these registers is handled in arm_cpu_reset(),
2559 * because the PMSAv7 is also used by M-profile CPUs, which do
2560 * not register cpregs but still need the state to be reset.
2562 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2563 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2564 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2565 .readfn = pmsav7_read, .writefn = pmsav7_write,
2566 .resetfn = arm_cp_reset_ignore },
2567 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2568 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2569 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2570 .readfn = pmsav7_read, .writefn = pmsav7_write,
2571 .resetfn = arm_cp_reset_ignore },
2572 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2573 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2574 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2575 .readfn = pmsav7_read, .writefn = pmsav7_write,
2576 .resetfn = arm_cp_reset_ignore },
2577 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2578 .access = PL1_RW,
2579 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2580 .writefn = pmsav7_rgnr_write,
2581 .resetfn = arm_cp_reset_ignore },
2582 REGINFO_SENTINEL
2585 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2586 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2587 .access = PL1_RW, .type = ARM_CP_ALIAS,
2588 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2589 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2590 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2591 .access = PL1_RW, .type = ARM_CP_ALIAS,
2592 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2593 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2594 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2595 .access = PL1_RW,
2596 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2597 .resetvalue = 0, },
2598 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2599 .access = PL1_RW,
2600 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2601 .resetvalue = 0, },
2602 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2603 .access = PL1_RW,
2604 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2605 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2606 .access = PL1_RW,
2607 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2608 /* Protection region base and size registers */
2609 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2610 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2611 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2612 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2613 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2614 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2615 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2616 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2617 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2618 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2619 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2620 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2621 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2622 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2623 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2624 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2625 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2626 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2627 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2628 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2629 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2630 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2631 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2632 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2633 REGINFO_SENTINEL
2636 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2637 uint64_t value)
2639 TCR *tcr = raw_ptr(env, ri);
2640 int maskshift = extract32(value, 0, 3);
2642 if (!arm_feature(env, ARM_FEATURE_V8)) {
2643 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2644 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2645 * using Long-desciptor translation table format */
2646 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2647 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2648 /* In an implementation that includes the Security Extensions
2649 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2650 * Short-descriptor translation table format.
2652 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2653 } else {
2654 value &= TTBCR_N;
2658 /* Update the masks corresponding to the TCR bank being written
2659 * Note that we always calculate mask and base_mask, but
2660 * they are only used for short-descriptor tables (ie if EAE is 0);
2661 * for long-descriptor tables the TCR fields are used differently
2662 * and the mask and base_mask values are meaningless.
2664 tcr->raw_tcr = value;
2665 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2666 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2669 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2670 uint64_t value)
2672 ARMCPU *cpu = arm_env_get_cpu(env);
2674 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2675 /* With LPAE the TTBCR could result in a change of ASID
2676 * via the TTBCR.A1 bit, so do a TLB flush.
2678 tlb_flush(CPU(cpu));
2680 vmsa_ttbcr_raw_write(env, ri, value);
2683 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2685 TCR *tcr = raw_ptr(env, ri);
2687 /* Reset both the TCR as well as the masks corresponding to the bank of
2688 * the TCR being reset.
2690 tcr->raw_tcr = 0;
2691 tcr->mask = 0;
2692 tcr->base_mask = 0xffffc000u;
2695 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2696 uint64_t value)
2698 ARMCPU *cpu = arm_env_get_cpu(env);
2699 TCR *tcr = raw_ptr(env, ri);
2701 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2702 tlb_flush(CPU(cpu));
2703 tcr->raw_tcr = value;
2706 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2707 uint64_t value)
2709 /* 64 bit accesses to the TTBRs can change the ASID and so we
2710 * must flush the TLB.
2712 if (cpreg_field_is_64bit(ri)) {
2713 ARMCPU *cpu = arm_env_get_cpu(env);
2715 tlb_flush(CPU(cpu));
2717 raw_write(env, ri, value);
2720 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2721 uint64_t value)
2723 ARMCPU *cpu = arm_env_get_cpu(env);
2724 CPUState *cs = CPU(cpu);
2726 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2727 if (raw_read(env, ri) != value) {
2728 tlb_flush_by_mmuidx(cs,
2729 ARMMMUIdxBit_S12NSE1 |
2730 ARMMMUIdxBit_S12NSE0 |
2731 ARMMMUIdxBit_S2NS);
2732 raw_write(env, ri, value);
2736 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2737 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2738 .access = PL1_RW, .type = ARM_CP_ALIAS,
2739 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2740 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2741 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2742 .access = PL1_RW, .resetvalue = 0,
2743 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2744 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2745 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2746 .access = PL1_RW, .resetvalue = 0,
2747 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2748 offsetof(CPUARMState, cp15.dfar_ns) } },
2749 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2750 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2751 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2752 .resetvalue = 0, },
2753 REGINFO_SENTINEL
2756 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2757 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2758 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2759 .access = PL1_RW,
2760 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2761 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2762 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2763 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2764 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2765 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2766 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2767 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2768 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2769 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2770 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2771 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2772 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2773 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2774 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2775 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2776 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2777 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2778 .raw_writefn = vmsa_ttbcr_raw_write,
2779 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2780 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2781 REGINFO_SENTINEL
2784 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2785 uint64_t value)
2787 env->cp15.c15_ticonfig = value & 0xe7;
2788 /* The OS_TYPE bit in this register changes the reported CPUID! */
2789 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2790 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2793 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2794 uint64_t value)
2796 env->cp15.c15_threadid = value & 0xffff;
2799 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2800 uint64_t value)
2802 /* Wait-for-interrupt (deprecated) */
2803 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2806 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2807 uint64_t value)
2809 /* On OMAP there are registers indicating the max/min index of dcache lines
2810 * containing a dirty line; cache flush operations have to reset these.
2812 env->cp15.c15_i_max = 0x000;
2813 env->cp15.c15_i_min = 0xff0;
2816 static const ARMCPRegInfo omap_cp_reginfo[] = {
2817 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2818 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2819 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2820 .resetvalue = 0, },
2821 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2822 .access = PL1_RW, .type = ARM_CP_NOP },
2823 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2824 .access = PL1_RW,
2825 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2826 .writefn = omap_ticonfig_write },
2827 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2828 .access = PL1_RW,
2829 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2830 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2831 .access = PL1_RW, .resetvalue = 0xff0,
2832 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2833 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2834 .access = PL1_RW,
2835 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2836 .writefn = omap_threadid_write },
2837 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2838 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2839 .type = ARM_CP_NO_RAW,
2840 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2841 /* TODO: Peripheral port remap register:
2842 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2843 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2844 * when MMU is off.
2846 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2847 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2848 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2849 .writefn = omap_cachemaint_write },
2850 { .name = "C9", .cp = 15, .crn = 9,
2851 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2852 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2853 REGINFO_SENTINEL
2856 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2857 uint64_t value)
2859 env->cp15.c15_cpar = value & 0x3fff;
2862 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2863 { .name = "XSCALE_CPAR",
2864 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2865 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2866 .writefn = xscale_cpar_write, },
2867 { .name = "XSCALE_AUXCR",
2868 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2869 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2870 .resetvalue = 0, },
2871 /* XScale specific cache-lockdown: since we have no cache we NOP these
2872 * and hope the guest does not really rely on cache behaviour.
2874 { .name = "XSCALE_LOCK_ICACHE_LINE",
2875 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2876 .access = PL1_W, .type = ARM_CP_NOP },
2877 { .name = "XSCALE_UNLOCK_ICACHE",
2878 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2879 .access = PL1_W, .type = ARM_CP_NOP },
2880 { .name = "XSCALE_DCACHE_LOCK",
2881 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2882 .access = PL1_RW, .type = ARM_CP_NOP },
2883 { .name = "XSCALE_UNLOCK_DCACHE",
2884 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2885 .access = PL1_W, .type = ARM_CP_NOP },
2886 REGINFO_SENTINEL
2889 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2890 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2891 * implementation of this implementation-defined space.
2892 * Ideally this should eventually disappear in favour of actually
2893 * implementing the correct behaviour for all cores.
2895 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2896 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2897 .access = PL1_RW,
2898 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2899 .resetvalue = 0 },
2900 REGINFO_SENTINEL
2903 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2904 /* Cache status: RAZ because we have no cache so it's always clean */
2905 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2906 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2907 .resetvalue = 0 },
2908 REGINFO_SENTINEL
2911 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2912 /* We never have a a block transfer operation in progress */
2913 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2914 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2915 .resetvalue = 0 },
2916 /* The cache ops themselves: these all NOP for QEMU */
2917 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2918 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2919 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2920 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2921 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2922 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2923 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2924 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2925 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2926 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2927 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2928 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2929 REGINFO_SENTINEL
2932 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2933 /* The cache test-and-clean instructions always return (1 << 30)
2934 * to indicate that there are no dirty cache lines.
2936 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2937 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2938 .resetvalue = (1 << 30) },
2939 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2940 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2941 .resetvalue = (1 << 30) },
2942 REGINFO_SENTINEL
2945 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2946 /* Ignore ReadBuffer accesses */
2947 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2948 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2949 .access = PL1_RW, .resetvalue = 0,
2950 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2951 REGINFO_SENTINEL
2954 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2956 ARMCPU *cpu = arm_env_get_cpu(env);
2957 unsigned int cur_el = arm_current_el(env);
2958 bool secure = arm_is_secure(env);
2960 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2961 return env->cp15.vpidr_el2;
2963 return raw_read(env, ri);
2966 static uint64_t mpidr_read_val(CPUARMState *env)
2968 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2969 uint64_t mpidr = cpu->mp_affinity;
2971 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2972 mpidr |= (1U << 31);
2973 /* Cores which are uniprocessor (non-coherent)
2974 * but still implement the MP extensions set
2975 * bit 30. (For instance, Cortex-R5).
2977 if (cpu->mp_is_up) {
2978 mpidr |= (1u << 30);
2981 return mpidr;
2984 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2986 unsigned int cur_el = arm_current_el(env);
2987 bool secure = arm_is_secure(env);
2989 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2990 return env->cp15.vmpidr_el2;
2992 return mpidr_read_val(env);
2995 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2996 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2997 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2998 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2999 REGINFO_SENTINEL
3002 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3003 /* NOP AMAIR0/1 */
3004 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3005 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3006 .access = PL1_RW, .type = ARM_CP_CONST,
3007 .resetvalue = 0 },
3008 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3009 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3010 .access = PL1_RW, .type = ARM_CP_CONST,
3011 .resetvalue = 0 },
3012 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3013 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3014 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3015 offsetof(CPUARMState, cp15.par_ns)} },
3016 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3017 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3018 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3019 offsetof(CPUARMState, cp15.ttbr0_ns) },
3020 .writefn = vmsa_ttbr_write, },
3021 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3022 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3023 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3024 offsetof(CPUARMState, cp15.ttbr1_ns) },
3025 .writefn = vmsa_ttbr_write, },
3026 REGINFO_SENTINEL
3029 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3031 return vfp_get_fpcr(env);
3034 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3035 uint64_t value)
3037 vfp_set_fpcr(env, value);
3040 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3042 return vfp_get_fpsr(env);
3045 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3046 uint64_t value)
3048 vfp_set_fpsr(env, value);
3051 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3052 bool isread)
3054 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3055 return CP_ACCESS_TRAP;
3057 return CP_ACCESS_OK;
3060 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3061 uint64_t value)
3063 env->daif = value & PSTATE_DAIF;
3066 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3067 const ARMCPRegInfo *ri,
3068 bool isread)
3070 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3071 * SCTLR_EL1.UCI is set.
3073 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3074 return CP_ACCESS_TRAP;
3076 return CP_ACCESS_OK;
3079 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3080 * Page D4-1736 (DDI0487A.b)
3083 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3084 uint64_t value)
3086 CPUState *cs = ENV_GET_CPU(env);
3088 if (arm_is_secure_below_el3(env)) {
3089 tlb_flush_by_mmuidx(cs,
3090 ARMMMUIdxBit_S1SE1 |
3091 ARMMMUIdxBit_S1SE0);
3092 } else {
3093 tlb_flush_by_mmuidx(cs,
3094 ARMMMUIdxBit_S12NSE1 |
3095 ARMMMUIdxBit_S12NSE0);
3099 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3100 uint64_t value)
3102 CPUState *cs = ENV_GET_CPU(env);
3103 bool sec = arm_is_secure_below_el3(env);
3105 if (sec) {
3106 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3107 ARMMMUIdxBit_S1SE1 |
3108 ARMMMUIdxBit_S1SE0);
3109 } else {
3110 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3111 ARMMMUIdxBit_S12NSE1 |
3112 ARMMMUIdxBit_S12NSE0);
3116 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3117 uint64_t value)
3119 /* Note that the 'ALL' scope must invalidate both stage 1 and
3120 * stage 2 translations, whereas most other scopes only invalidate
3121 * stage 1 translations.
3123 ARMCPU *cpu = arm_env_get_cpu(env);
3124 CPUState *cs = CPU(cpu);
3126 if (arm_is_secure_below_el3(env)) {
3127 tlb_flush_by_mmuidx(cs,
3128 ARMMMUIdxBit_S1SE1 |
3129 ARMMMUIdxBit_S1SE0);
3130 } else {
3131 if (arm_feature(env, ARM_FEATURE_EL2)) {
3132 tlb_flush_by_mmuidx(cs,
3133 ARMMMUIdxBit_S12NSE1 |
3134 ARMMMUIdxBit_S12NSE0 |
3135 ARMMMUIdxBit_S2NS);
3136 } else {
3137 tlb_flush_by_mmuidx(cs,
3138 ARMMMUIdxBit_S12NSE1 |
3139 ARMMMUIdxBit_S12NSE0);
3144 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3145 uint64_t value)
3147 ARMCPU *cpu = arm_env_get_cpu(env);
3148 CPUState *cs = CPU(cpu);
3150 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3153 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3154 uint64_t value)
3156 ARMCPU *cpu = arm_env_get_cpu(env);
3157 CPUState *cs = CPU(cpu);
3159 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3162 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3163 uint64_t value)
3165 /* Note that the 'ALL' scope must invalidate both stage 1 and
3166 * stage 2 translations, whereas most other scopes only invalidate
3167 * stage 1 translations.
3169 CPUState *cs = ENV_GET_CPU(env);
3170 bool sec = arm_is_secure_below_el3(env);
3171 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3173 if (sec) {
3174 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3175 ARMMMUIdxBit_S1SE1 |
3176 ARMMMUIdxBit_S1SE0);
3177 } else if (has_el2) {
3178 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3179 ARMMMUIdxBit_S12NSE1 |
3180 ARMMMUIdxBit_S12NSE0 |
3181 ARMMMUIdxBit_S2NS);
3182 } else {
3183 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3184 ARMMMUIdxBit_S12NSE1 |
3185 ARMMMUIdxBit_S12NSE0);
3189 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3190 uint64_t value)
3192 CPUState *cs = ENV_GET_CPU(env);
3194 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3197 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3198 uint64_t value)
3200 CPUState *cs = ENV_GET_CPU(env);
3202 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3205 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3206 uint64_t value)
3208 /* Invalidate by VA, EL1&0 (AArch64 version).
3209 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3210 * since we don't support flush-for-specific-ASID-only or
3211 * flush-last-level-only.
3213 ARMCPU *cpu = arm_env_get_cpu(env);
3214 CPUState *cs = CPU(cpu);
3215 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3217 if (arm_is_secure_below_el3(env)) {
3218 tlb_flush_page_by_mmuidx(cs, pageaddr,
3219 ARMMMUIdxBit_S1SE1 |
3220 ARMMMUIdxBit_S1SE0);
3221 } else {
3222 tlb_flush_page_by_mmuidx(cs, pageaddr,
3223 ARMMMUIdxBit_S12NSE1 |
3224 ARMMMUIdxBit_S12NSE0);
3228 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3229 uint64_t value)
3231 /* Invalidate by VA, EL2
3232 * Currently handles both VAE2 and VALE2, since we don't support
3233 * flush-last-level-only.
3235 ARMCPU *cpu = arm_env_get_cpu(env);
3236 CPUState *cs = CPU(cpu);
3237 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3239 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3242 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3243 uint64_t value)
3245 /* Invalidate by VA, EL3
3246 * Currently handles both VAE3 and VALE3, since we don't support
3247 * flush-last-level-only.
3249 ARMCPU *cpu = arm_env_get_cpu(env);
3250 CPUState *cs = CPU(cpu);
3251 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3253 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3256 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3257 uint64_t value)
3259 ARMCPU *cpu = arm_env_get_cpu(env);
3260 CPUState *cs = CPU(cpu);
3261 bool sec = arm_is_secure_below_el3(env);
3262 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3264 if (sec) {
3265 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3266 ARMMMUIdxBit_S1SE1 |
3267 ARMMMUIdxBit_S1SE0);
3268 } else {
3269 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3270 ARMMMUIdxBit_S12NSE1 |
3271 ARMMMUIdxBit_S12NSE0);
3275 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3276 uint64_t value)
3278 CPUState *cs = ENV_GET_CPU(env);
3279 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3281 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3282 ARMMMUIdxBit_S1E2);
3285 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3286 uint64_t value)
3288 CPUState *cs = ENV_GET_CPU(env);
3289 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3291 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3292 ARMMMUIdxBit_S1E3);
3295 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3296 uint64_t value)
3298 /* Invalidate by IPA. This has to invalidate any structures that
3299 * contain only stage 2 translation information, but does not need
3300 * to apply to structures that contain combined stage 1 and stage 2
3301 * translation information.
3302 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3304 ARMCPU *cpu = arm_env_get_cpu(env);
3305 CPUState *cs = CPU(cpu);
3306 uint64_t pageaddr;
3308 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3309 return;
3312 pageaddr = sextract64(value << 12, 0, 48);
3314 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3317 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3318 uint64_t value)
3320 CPUState *cs = ENV_GET_CPU(env);
3321 uint64_t pageaddr;
3323 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3324 return;
3327 pageaddr = sextract64(value << 12, 0, 48);
3329 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3330 ARMMMUIdxBit_S2NS);
3333 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3334 bool isread)
3336 /* We don't implement EL2, so the only control on DC ZVA is the
3337 * bit in the SCTLR which can prohibit access for EL0.
3339 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3340 return CP_ACCESS_TRAP;
3342 return CP_ACCESS_OK;
3345 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3347 ARMCPU *cpu = arm_env_get_cpu(env);
3348 int dzp_bit = 1 << 4;
3350 /* DZP indicates whether DC ZVA access is allowed */
3351 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3352 dzp_bit = 0;
3354 return cpu->dcz_blocksize | dzp_bit;
3357 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3358 bool isread)
3360 if (!(env->pstate & PSTATE_SP)) {
3361 /* Access to SP_EL0 is undefined if it's being used as
3362 * the stack pointer.
3364 return CP_ACCESS_TRAP_UNCATEGORIZED;
3366 return CP_ACCESS_OK;
3369 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3371 return env->pstate & PSTATE_SP;
3374 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3376 update_spsel(env, val);
3379 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3380 uint64_t value)
3382 ARMCPU *cpu = arm_env_get_cpu(env);
3384 if (raw_read(env, ri) == value) {
3385 /* Skip the TLB flush if nothing actually changed; Linux likes
3386 * to do a lot of pointless SCTLR writes.
3388 return;
3391 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3392 /* M bit is RAZ/WI for PMSA with no MPU implemented */
3393 value &= ~SCTLR_M;
3396 raw_write(env, ri, value);
3397 /* ??? Lots of these bits are not implemented. */
3398 /* This may enable/disable the MMU, so do a TLB flush. */
3399 tlb_flush(CPU(cpu));
3402 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3403 bool isread)
3405 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3406 return CP_ACCESS_TRAP_FP_EL2;
3408 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3409 return CP_ACCESS_TRAP_FP_EL3;
3411 return CP_ACCESS_OK;
3414 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3415 uint64_t value)
3417 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3420 static const ARMCPRegInfo v8_cp_reginfo[] = {
3421 /* Minimal set of EL0-visible registers. This will need to be expanded
3422 * significantly for system emulation of AArch64 CPUs.
3424 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3425 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3426 .access = PL0_RW, .type = ARM_CP_NZCV },
3427 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3428 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3429 .type = ARM_CP_NO_RAW,
3430 .access = PL0_RW, .accessfn = aa64_daif_access,
3431 .fieldoffset = offsetof(CPUARMState, daif),
3432 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3433 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3434 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3435 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3436 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3437 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3438 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3439 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3440 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3441 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3442 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3443 .access = PL0_R, .type = ARM_CP_NO_RAW,
3444 .readfn = aa64_dczid_read },
3445 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3446 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3447 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3448 #ifndef CONFIG_USER_ONLY
3449 /* Avoid overhead of an access check that always passes in user-mode */
3450 .accessfn = aa64_zva_access,
3451 #endif
3453 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3454 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3455 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3456 /* Cache ops: all NOPs since we don't emulate caches */
3457 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3458 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3459 .access = PL1_W, .type = ARM_CP_NOP },
3460 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3461 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3462 .access = PL1_W, .type = ARM_CP_NOP },
3463 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3464 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3465 .access = PL0_W, .type = ARM_CP_NOP,
3466 .accessfn = aa64_cacheop_access },
3467 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3468 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3469 .access = PL1_W, .type = ARM_CP_NOP },
3470 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3471 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3472 .access = PL1_W, .type = ARM_CP_NOP },
3473 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3474 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3475 .access = PL0_W, .type = ARM_CP_NOP,
3476 .accessfn = aa64_cacheop_access },
3477 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3478 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3479 .access = PL1_W, .type = ARM_CP_NOP },
3480 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3481 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3482 .access = PL0_W, .type = ARM_CP_NOP,
3483 .accessfn = aa64_cacheop_access },
3484 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3485 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3486 .access = PL0_W, .type = ARM_CP_NOP,
3487 .accessfn = aa64_cacheop_access },
3488 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3489 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3490 .access = PL1_W, .type = ARM_CP_NOP },
3491 /* TLBI operations */
3492 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3493 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3494 .access = PL1_W, .type = ARM_CP_NO_RAW,
3495 .writefn = tlbi_aa64_vmalle1is_write },
3496 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3497 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3498 .access = PL1_W, .type = ARM_CP_NO_RAW,
3499 .writefn = tlbi_aa64_vae1is_write },
3500 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3501 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3502 .access = PL1_W, .type = ARM_CP_NO_RAW,
3503 .writefn = tlbi_aa64_vmalle1is_write },
3504 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3505 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3506 .access = PL1_W, .type = ARM_CP_NO_RAW,
3507 .writefn = tlbi_aa64_vae1is_write },
3508 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3509 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3510 .access = PL1_W, .type = ARM_CP_NO_RAW,
3511 .writefn = tlbi_aa64_vae1is_write },
3512 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3513 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3514 .access = PL1_W, .type = ARM_CP_NO_RAW,
3515 .writefn = tlbi_aa64_vae1is_write },
3516 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3517 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3518 .access = PL1_W, .type = ARM_CP_NO_RAW,
3519 .writefn = tlbi_aa64_vmalle1_write },
3520 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3521 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3522 .access = PL1_W, .type = ARM_CP_NO_RAW,
3523 .writefn = tlbi_aa64_vae1_write },
3524 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3525 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3526 .access = PL1_W, .type = ARM_CP_NO_RAW,
3527 .writefn = tlbi_aa64_vmalle1_write },
3528 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3529 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3530 .access = PL1_W, .type = ARM_CP_NO_RAW,
3531 .writefn = tlbi_aa64_vae1_write },
3532 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3533 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3534 .access = PL1_W, .type = ARM_CP_NO_RAW,
3535 .writefn = tlbi_aa64_vae1_write },
3536 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3537 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3538 .access = PL1_W, .type = ARM_CP_NO_RAW,
3539 .writefn = tlbi_aa64_vae1_write },
3540 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3541 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3542 .access = PL2_W, .type = ARM_CP_NO_RAW,
3543 .writefn = tlbi_aa64_ipas2e1is_write },
3544 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3545 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3546 .access = PL2_W, .type = ARM_CP_NO_RAW,
3547 .writefn = tlbi_aa64_ipas2e1is_write },
3548 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3549 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3550 .access = PL2_W, .type = ARM_CP_NO_RAW,
3551 .writefn = tlbi_aa64_alle1is_write },
3552 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3553 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3554 .access = PL2_W, .type = ARM_CP_NO_RAW,
3555 .writefn = tlbi_aa64_alle1is_write },
3556 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3557 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3558 .access = PL2_W, .type = ARM_CP_NO_RAW,
3559 .writefn = tlbi_aa64_ipas2e1_write },
3560 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3561 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3562 .access = PL2_W, .type = ARM_CP_NO_RAW,
3563 .writefn = tlbi_aa64_ipas2e1_write },
3564 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3565 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3566 .access = PL2_W, .type = ARM_CP_NO_RAW,
3567 .writefn = tlbi_aa64_alle1_write },
3568 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3569 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3570 .access = PL2_W, .type = ARM_CP_NO_RAW,
3571 .writefn = tlbi_aa64_alle1is_write },
3572 #ifndef CONFIG_USER_ONLY
3573 /* 64 bit address translation operations */
3574 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3575 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3576 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3577 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3578 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3579 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3580 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3581 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3582 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3583 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3584 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3585 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3586 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3587 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3588 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3589 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3590 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3591 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3592 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3593 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3594 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3595 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3596 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3597 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3598 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3599 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3600 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3601 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3602 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3603 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3604 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3605 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3606 .type = ARM_CP_ALIAS,
3607 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3608 .access = PL1_RW, .resetvalue = 0,
3609 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3610 .writefn = par_write },
3611 #endif
3612 /* TLB invalidate last level of translation table walk */
3613 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3614 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3615 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3616 .type = ARM_CP_NO_RAW, .access = PL1_W,
3617 .writefn = tlbimvaa_is_write },
3618 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3619 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3620 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3621 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3622 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3623 .type = ARM_CP_NO_RAW, .access = PL2_W,
3624 .writefn = tlbimva_hyp_write },
3625 { .name = "TLBIMVALHIS",
3626 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3627 .type = ARM_CP_NO_RAW, .access = PL2_W,
3628 .writefn = tlbimva_hyp_is_write },
3629 { .name = "TLBIIPAS2",
3630 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3631 .type = ARM_CP_NO_RAW, .access = PL2_W,
3632 .writefn = tlbiipas2_write },
3633 { .name = "TLBIIPAS2IS",
3634 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3635 .type = ARM_CP_NO_RAW, .access = PL2_W,
3636 .writefn = tlbiipas2_is_write },
3637 { .name = "TLBIIPAS2L",
3638 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3639 .type = ARM_CP_NO_RAW, .access = PL2_W,
3640 .writefn = tlbiipas2_write },
3641 { .name = "TLBIIPAS2LIS",
3642 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3643 .type = ARM_CP_NO_RAW, .access = PL2_W,
3644 .writefn = tlbiipas2_is_write },
3645 /* 32 bit cache operations */
3646 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3647 .type = ARM_CP_NOP, .access = PL1_W },
3648 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3649 .type = ARM_CP_NOP, .access = PL1_W },
3650 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3651 .type = ARM_CP_NOP, .access = PL1_W },
3652 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3653 .type = ARM_CP_NOP, .access = PL1_W },
3654 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3655 .type = ARM_CP_NOP, .access = PL1_W },
3656 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3657 .type = ARM_CP_NOP, .access = PL1_W },
3658 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3659 .type = ARM_CP_NOP, .access = PL1_W },
3660 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3661 .type = ARM_CP_NOP, .access = PL1_W },
3662 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3663 .type = ARM_CP_NOP, .access = PL1_W },
3664 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3665 .type = ARM_CP_NOP, .access = PL1_W },
3666 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3667 .type = ARM_CP_NOP, .access = PL1_W },
3668 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3669 .type = ARM_CP_NOP, .access = PL1_W },
3670 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3671 .type = ARM_CP_NOP, .access = PL1_W },
3672 /* MMU Domain access control / MPU write buffer control */
3673 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3674 .access = PL1_RW, .resetvalue = 0,
3675 .writefn = dacr_write, .raw_writefn = raw_write,
3676 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3677 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3678 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3679 .type = ARM_CP_ALIAS,
3680 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3681 .access = PL1_RW,
3682 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3683 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3684 .type = ARM_CP_ALIAS,
3685 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3686 .access = PL1_RW,
3687 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3688 /* We rely on the access checks not allowing the guest to write to the
3689 * state field when SPSel indicates that it's being used as the stack
3690 * pointer.
3692 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3693 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3694 .access = PL1_RW, .accessfn = sp_el0_access,
3695 .type = ARM_CP_ALIAS,
3696 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3697 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3698 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3699 .access = PL2_RW, .type = ARM_CP_ALIAS,
3700 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3701 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3702 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3703 .type = ARM_CP_NO_RAW,
3704 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3705 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3706 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3707 .type = ARM_CP_ALIAS,
3708 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3709 .access = PL2_RW, .accessfn = fpexc32_access },
3710 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3711 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3712 .access = PL2_RW, .resetvalue = 0,
3713 .writefn = dacr_write, .raw_writefn = raw_write,
3714 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3715 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3716 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3717 .access = PL2_RW, .resetvalue = 0,
3718 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3719 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3720 .type = ARM_CP_ALIAS,
3721 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3722 .access = PL2_RW,
3723 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3724 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3725 .type = ARM_CP_ALIAS,
3726 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3727 .access = PL2_RW,
3728 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3729 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3730 .type = ARM_CP_ALIAS,
3731 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3732 .access = PL2_RW,
3733 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3734 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3735 .type = ARM_CP_ALIAS,
3736 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3737 .access = PL2_RW,
3738 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3739 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3740 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3741 .resetvalue = 0,
3742 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3743 { .name = "SDCR", .type = ARM_CP_ALIAS,
3744 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3745 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3746 .writefn = sdcr_write,
3747 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3748 REGINFO_SENTINEL
3751 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3752 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3753 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
3754 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3755 .access = PL2_RW,
3756 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3757 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
3758 .type = ARM_CP_NO_RAW,
3759 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3760 .access = PL2_RW,
3761 .type = ARM_CP_CONST, .resetvalue = 0 },
3762 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
3763 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3764 .access = PL2_RW,
3765 .type = ARM_CP_CONST, .resetvalue = 0 },
3766 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3767 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3768 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3769 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3770 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3771 .access = PL2_RW, .type = ARM_CP_CONST,
3772 .resetvalue = 0 },
3773 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3774 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3775 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3776 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3777 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3778 .access = PL2_RW, .type = ARM_CP_CONST,
3779 .resetvalue = 0 },
3780 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
3781 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3782 .access = PL2_RW, .type = ARM_CP_CONST,
3783 .resetvalue = 0 },
3784 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3785 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3786 .access = PL2_RW, .type = ARM_CP_CONST,
3787 .resetvalue = 0 },
3788 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3789 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3790 .access = PL2_RW, .type = ARM_CP_CONST,
3791 .resetvalue = 0 },
3792 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3793 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3794 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3795 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3796 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3797 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3798 .type = ARM_CP_CONST, .resetvalue = 0 },
3799 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3800 .cp = 15, .opc1 = 6, .crm = 2,
3801 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3802 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3803 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3804 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3805 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3806 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3807 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3808 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3809 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3810 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3811 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3812 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3813 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3814 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3815 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3816 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3817 .resetvalue = 0 },
3818 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3819 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3820 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3821 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3822 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3823 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3824 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3825 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3826 .resetvalue = 0 },
3827 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3828 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3829 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3830 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3831 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3832 .resetvalue = 0 },
3833 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3834 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3835 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3836 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3837 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3838 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3839 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3840 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3841 .access = PL2_RW, .accessfn = access_tda,
3842 .type = ARM_CP_CONST, .resetvalue = 0 },
3843 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3844 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3845 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3846 .type = ARM_CP_CONST, .resetvalue = 0 },
3847 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3848 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3849 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3850 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
3851 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3852 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3853 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
3854 .type = ARM_CP_CONST,
3855 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
3856 .access = PL2_RW, .resetvalue = 0 },
3857 REGINFO_SENTINEL
3860 /* Ditto, but for registers which exist in ARMv8 but not v7 */
3861 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
3862 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
3863 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
3864 .access = PL2_RW,
3865 .type = ARM_CP_CONST, .resetvalue = 0 },
3866 REGINFO_SENTINEL
3869 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3871 ARMCPU *cpu = arm_env_get_cpu(env);
3872 uint64_t valid_mask = HCR_MASK;
3874 if (arm_feature(env, ARM_FEATURE_EL3)) {
3875 valid_mask &= ~HCR_HCD;
3876 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3877 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3878 * However, if we're using the SMC PSCI conduit then QEMU is
3879 * effectively acting like EL3 firmware and so the guest at
3880 * EL2 should retain the ability to prevent EL1 from being
3881 * able to make SMC calls into the ersatz firmware, so in
3882 * that case HCR.TSC should be read/write.
3884 valid_mask &= ~HCR_TSC;
3887 /* Clear RES0 bits. */
3888 value &= valid_mask;
3890 /* These bits change the MMU setup:
3891 * HCR_VM enables stage 2 translation
3892 * HCR_PTW forbids certain page-table setups
3893 * HCR_DC Disables stage1 and enables stage2 translation
3895 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3896 tlb_flush(CPU(cpu));
3898 env->cp15.hcr_el2 = value;
3901 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
3902 uint64_t value)
3904 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
3905 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
3906 hcr_write(env, NULL, value);
3909 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
3910 uint64_t value)
3912 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
3913 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
3914 hcr_write(env, NULL, value);
3917 static const ARMCPRegInfo el2_cp_reginfo[] = {
3918 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3919 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3920 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3921 .writefn = hcr_write },
3922 { .name = "HCR", .state = ARM_CP_STATE_AA32,
3923 .type = ARM_CP_ALIAS,
3924 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3925 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3926 .writefn = hcr_writelow },
3927 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3928 .type = ARM_CP_ALIAS,
3929 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3930 .access = PL2_RW,
3931 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3932 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
3933 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3934 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3935 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
3936 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3937 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3938 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
3939 .type = ARM_CP_ALIAS,
3940 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
3941 .access = PL2_RW,
3942 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
3943 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3944 .type = ARM_CP_ALIAS,
3945 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3946 .access = PL2_RW,
3947 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3948 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
3949 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3950 .access = PL2_RW, .writefn = vbar_write,
3951 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3952 .resetvalue = 0 },
3953 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3954 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3955 .access = PL3_RW, .type = ARM_CP_ALIAS,
3956 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3957 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3958 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3959 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3960 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3961 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3962 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3963 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3964 .resetvalue = 0 },
3965 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3966 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3967 .access = PL2_RW, .type = ARM_CP_ALIAS,
3968 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3969 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3970 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3971 .access = PL2_RW, .type = ARM_CP_CONST,
3972 .resetvalue = 0 },
3973 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3974 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
3975 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3976 .access = PL2_RW, .type = ARM_CP_CONST,
3977 .resetvalue = 0 },
3978 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3979 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3980 .access = PL2_RW, .type = ARM_CP_CONST,
3981 .resetvalue = 0 },
3982 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3983 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3984 .access = PL2_RW, .type = ARM_CP_CONST,
3985 .resetvalue = 0 },
3986 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3987 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3988 .access = PL2_RW,
3989 /* no .writefn needed as this can't cause an ASID change;
3990 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3992 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3993 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3994 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3995 .type = ARM_CP_ALIAS,
3996 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3997 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3998 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3999 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4000 .access = PL2_RW,
4001 /* no .writefn needed as this can't cause an ASID change;
4002 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4004 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4005 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4006 .cp = 15, .opc1 = 6, .crm = 2,
4007 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4008 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4009 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4010 .writefn = vttbr_write },
4011 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4012 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4013 .access = PL2_RW, .writefn = vttbr_write,
4014 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4015 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4016 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4017 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4018 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4019 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4020 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4021 .access = PL2_RW, .resetvalue = 0,
4022 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4023 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4024 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4025 .access = PL2_RW, .resetvalue = 0,
4026 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4027 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4028 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4029 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4030 { .name = "TLBIALLNSNH",
4031 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4032 .type = ARM_CP_NO_RAW, .access = PL2_W,
4033 .writefn = tlbiall_nsnh_write },
4034 { .name = "TLBIALLNSNHIS",
4035 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4036 .type = ARM_CP_NO_RAW, .access = PL2_W,
4037 .writefn = tlbiall_nsnh_is_write },
4038 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4039 .type = ARM_CP_NO_RAW, .access = PL2_W,
4040 .writefn = tlbiall_hyp_write },
4041 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4042 .type = ARM_CP_NO_RAW, .access = PL2_W,
4043 .writefn = tlbiall_hyp_is_write },
4044 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4045 .type = ARM_CP_NO_RAW, .access = PL2_W,
4046 .writefn = tlbimva_hyp_write },
4047 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4048 .type = ARM_CP_NO_RAW, .access = PL2_W,
4049 .writefn = tlbimva_hyp_is_write },
4050 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4051 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4052 .type = ARM_CP_NO_RAW, .access = PL2_W,
4053 .writefn = tlbi_aa64_alle2_write },
4054 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4055 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4056 .type = ARM_CP_NO_RAW, .access = PL2_W,
4057 .writefn = tlbi_aa64_vae2_write },
4058 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4059 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4060 .access = PL2_W, .type = ARM_CP_NO_RAW,
4061 .writefn = tlbi_aa64_vae2_write },
4062 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4063 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4064 .access = PL2_W, .type = ARM_CP_NO_RAW,
4065 .writefn = tlbi_aa64_alle2is_write },
4066 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4067 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4068 .type = ARM_CP_NO_RAW, .access = PL2_W,
4069 .writefn = tlbi_aa64_vae2is_write },
4070 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4071 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4072 .access = PL2_W, .type = ARM_CP_NO_RAW,
4073 .writefn = tlbi_aa64_vae2is_write },
4074 #ifndef CONFIG_USER_ONLY
4075 /* Unlike the other EL2-related AT operations, these must
4076 * UNDEF from EL3 if EL2 is not implemented, which is why we
4077 * define them here rather than with the rest of the AT ops.
4079 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4080 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4081 .access = PL2_W, .accessfn = at_s1e2_access,
4082 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4083 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4084 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4085 .access = PL2_W, .accessfn = at_s1e2_access,
4086 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4087 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4088 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4089 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4090 * to behave as if SCR.NS was 1.
4092 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4093 .access = PL2_W,
4094 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4095 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4096 .access = PL2_W,
4097 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4098 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4099 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4100 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4101 * reset values as IMPDEF. We choose to reset to 3 to comply with
4102 * both ARMv7 and ARMv8.
4104 .access = PL2_RW, .resetvalue = 3,
4105 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4106 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4107 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4108 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4109 .writefn = gt_cntvoff_write,
4110 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4111 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4112 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4113 .writefn = gt_cntvoff_write,
4114 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4115 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4116 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4117 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4118 .type = ARM_CP_IO, .access = PL2_RW,
4119 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4120 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4121 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4122 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4123 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4124 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4125 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4126 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4127 .resetfn = gt_hyp_timer_reset,
4128 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4129 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4130 .type = ARM_CP_IO,
4131 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4132 .access = PL2_RW,
4133 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4134 .resetvalue = 0,
4135 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4136 #endif
4137 /* The only field of MDCR_EL2 that has a defined architectural reset value
4138 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4139 * don't impelment any PMU event counters, so using zero as a reset
4140 * value for MDCR_EL2 is okay
4142 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4143 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4144 .access = PL2_RW, .resetvalue = 0,
4145 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4146 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4147 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4148 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4149 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4150 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4151 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4152 .access = PL2_RW,
4153 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4154 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4155 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4156 .access = PL2_RW,
4157 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4158 REGINFO_SENTINEL
4161 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
4162 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4163 .type = ARM_CP_ALIAS,
4164 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4165 .access = PL2_RW,
4166 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
4167 .writefn = hcr_writehigh },
4168 REGINFO_SENTINEL
4171 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4172 bool isread)
4174 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4175 * At Secure EL1 it traps to EL3.
4177 if (arm_current_el(env) == 3) {
4178 return CP_ACCESS_OK;
4180 if (arm_is_secure_below_el3(env)) {
4181 return CP_ACCESS_TRAP_EL3;
4183 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4184 if (isread) {
4185 return CP_ACCESS_OK;
4187 return CP_ACCESS_TRAP_UNCATEGORIZED;
4190 static const ARMCPRegInfo el3_cp_reginfo[] = {
4191 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4192 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4193 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4194 .resetvalue = 0, .writefn = scr_write },
4195 { .name = "SCR", .type = ARM_CP_ALIAS,
4196 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4197 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4198 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4199 .writefn = scr_write },
4200 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4201 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4202 .access = PL3_RW, .resetvalue = 0,
4203 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4204 { .name = "SDER",
4205 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4206 .access = PL3_RW, .resetvalue = 0,
4207 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4208 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4209 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4210 .writefn = vbar_write, .resetvalue = 0,
4211 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4212 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4213 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4214 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4215 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4216 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4217 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4218 .access = PL3_RW,
4219 /* no .writefn needed as this can't cause an ASID change;
4220 * we must provide a .raw_writefn and .resetfn because we handle
4221 * reset and migration for the AArch32 TTBCR(S), which might be
4222 * using mask and base_mask.
4224 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4225 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4226 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4227 .type = ARM_CP_ALIAS,
4228 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4229 .access = PL3_RW,
4230 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4231 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4232 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4233 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4234 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4235 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4236 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4237 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4238 .type = ARM_CP_ALIAS,
4239 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4240 .access = PL3_RW,
4241 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4242 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4243 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4244 .access = PL3_RW, .writefn = vbar_write,
4245 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4246 .resetvalue = 0 },
4247 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4248 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4249 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4250 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4251 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4252 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4253 .access = PL3_RW, .resetvalue = 0,
4254 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4255 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4256 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4257 .access = PL3_RW, .type = ARM_CP_CONST,
4258 .resetvalue = 0 },
4259 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4260 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4261 .access = PL3_RW, .type = ARM_CP_CONST,
4262 .resetvalue = 0 },
4263 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4264 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4265 .access = PL3_RW, .type = ARM_CP_CONST,
4266 .resetvalue = 0 },
4267 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4268 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4269 .access = PL3_W, .type = ARM_CP_NO_RAW,
4270 .writefn = tlbi_aa64_alle3is_write },
4271 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4272 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4273 .access = PL3_W, .type = ARM_CP_NO_RAW,
4274 .writefn = tlbi_aa64_vae3is_write },
4275 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4276 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4277 .access = PL3_W, .type = ARM_CP_NO_RAW,
4278 .writefn = tlbi_aa64_vae3is_write },
4279 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4280 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4281 .access = PL3_W, .type = ARM_CP_NO_RAW,
4282 .writefn = tlbi_aa64_alle3_write },
4283 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4284 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4285 .access = PL3_W, .type = ARM_CP_NO_RAW,
4286 .writefn = tlbi_aa64_vae3_write },
4287 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4288 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4289 .access = PL3_W, .type = ARM_CP_NO_RAW,
4290 .writefn = tlbi_aa64_vae3_write },
4291 REGINFO_SENTINEL
4294 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4295 bool isread)
4297 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4298 * but the AArch32 CTR has its own reginfo struct)
4300 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4301 return CP_ACCESS_TRAP;
4303 return CP_ACCESS_OK;
4306 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4307 uint64_t value)
4309 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4310 * read via a bit in OSLSR_EL1.
4312 int oslock;
4314 if (ri->state == ARM_CP_STATE_AA32) {
4315 oslock = (value == 0xC5ACCE55);
4316 } else {
4317 oslock = value & 1;
4320 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4323 static const ARMCPRegInfo debug_cp_reginfo[] = {
4324 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4325 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4326 * unlike DBGDRAR it is never accessible from EL0.
4327 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4328 * accessor.
4330 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4331 .access = PL0_R, .accessfn = access_tdra,
4332 .type = ARM_CP_CONST, .resetvalue = 0 },
4333 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4334 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4335 .access = PL1_R, .accessfn = access_tdra,
4336 .type = ARM_CP_CONST, .resetvalue = 0 },
4337 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4338 .access = PL0_R, .accessfn = access_tdra,
4339 .type = ARM_CP_CONST, .resetvalue = 0 },
4340 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4341 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4342 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4343 .access = PL1_RW, .accessfn = access_tda,
4344 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4345 .resetvalue = 0 },
4346 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4347 * We don't implement the configurable EL0 access.
4349 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4350 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4351 .type = ARM_CP_ALIAS,
4352 .access = PL1_R, .accessfn = access_tda,
4353 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4354 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4355 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4356 .access = PL1_W, .type = ARM_CP_NO_RAW,
4357 .accessfn = access_tdosa,
4358 .writefn = oslar_write },
4359 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4360 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4361 .access = PL1_R, .resetvalue = 10,
4362 .accessfn = access_tdosa,
4363 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4364 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4365 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4366 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4367 .access = PL1_RW, .accessfn = access_tdosa,
4368 .type = ARM_CP_NOP },
4369 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4370 * implement vector catch debug events yet.
4372 { .name = "DBGVCR",
4373 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4374 .access = PL1_RW, .accessfn = access_tda,
4375 .type = ARM_CP_NOP },
4376 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4377 * to save and restore a 32-bit guest's DBGVCR)
4379 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4380 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4381 .access = PL2_RW, .accessfn = access_tda,
4382 .type = ARM_CP_NOP },
4383 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4384 * Channel but Linux may try to access this register. The 32-bit
4385 * alias is DBGDCCINT.
4387 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4388 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4389 .access = PL1_RW, .accessfn = access_tda,
4390 .type = ARM_CP_NOP },
4391 REGINFO_SENTINEL
4394 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4395 /* 64 bit access versions of the (dummy) debug registers */
4396 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4397 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4398 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4399 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4400 REGINFO_SENTINEL
4403 /* Return the exception level to which exceptions should be taken
4404 * via SVEAccessTrap. If an exception should be routed through
4405 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
4406 * take care of raising that exception.
4407 * C.f. the ARM pseudocode function CheckSVEEnabled.
4409 int sve_exception_el(CPUARMState *env, int el)
4411 #ifndef CONFIG_USER_ONLY
4412 if (el <= 1) {
4413 bool disabled = false;
4415 /* The CPACR.ZEN controls traps to EL1:
4416 * 0, 2 : trap EL0 and EL1 accesses
4417 * 1 : trap only EL0 accesses
4418 * 3 : trap no accesses
4420 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
4421 disabled = true;
4422 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
4423 disabled = el == 0;
4425 if (disabled) {
4426 /* route_to_el2 */
4427 return (arm_feature(env, ARM_FEATURE_EL2)
4428 && !arm_is_secure(env)
4429 && (env->cp15.hcr_el2 & HCR_TGE) ? 2 : 1);
4432 /* Check CPACR.FPEN. */
4433 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
4434 disabled = true;
4435 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
4436 disabled = el == 0;
4438 if (disabled) {
4439 return 0;
4443 /* CPTR_EL2. Since TZ and TFP are positive,
4444 * they will be zero when EL2 is not present.
4446 if (el <= 2 && !arm_is_secure_below_el3(env)) {
4447 if (env->cp15.cptr_el[2] & CPTR_TZ) {
4448 return 2;
4450 if (env->cp15.cptr_el[2] & CPTR_TFP) {
4451 return 0;
4455 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
4456 if (arm_feature(env, ARM_FEATURE_EL3)
4457 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
4458 return 3;
4460 #endif
4461 return 0;
4465 * Given that SVE is enabled, return the vector length for EL.
4467 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
4469 ARMCPU *cpu = arm_env_get_cpu(env);
4470 uint32_t zcr_len = cpu->sve_max_vq - 1;
4472 if (el <= 1) {
4473 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
4475 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
4476 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
4478 if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
4479 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
4481 return zcr_len;
4484 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4485 uint64_t value)
4487 int cur_el = arm_current_el(env);
4488 int old_len = sve_zcr_len_for_el(env, cur_el);
4489 int new_len;
4491 /* Bits other than [3:0] are RAZ/WI. */
4492 raw_write(env, ri, value & 0xf);
4495 * Because we arrived here, we know both FP and SVE are enabled;
4496 * otherwise we would have trapped access to the ZCR_ELn register.
4498 new_len = sve_zcr_len_for_el(env, cur_el);
4499 if (new_len < old_len) {
4500 aarch64_sve_narrow_vq(env, new_len + 1);
4504 static const ARMCPRegInfo zcr_el1_reginfo = {
4505 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
4506 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
4507 .access = PL1_RW, .type = ARM_CP_SVE,
4508 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
4509 .writefn = zcr_write, .raw_writefn = raw_write
4512 static const ARMCPRegInfo zcr_el2_reginfo = {
4513 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4514 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4515 .access = PL2_RW, .type = ARM_CP_SVE,
4516 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
4517 .writefn = zcr_write, .raw_writefn = raw_write
4520 static const ARMCPRegInfo zcr_no_el2_reginfo = {
4521 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4522 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4523 .access = PL2_RW, .type = ARM_CP_SVE,
4524 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
4527 static const ARMCPRegInfo zcr_el3_reginfo = {
4528 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
4529 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
4530 .access = PL3_RW, .type = ARM_CP_SVE,
4531 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
4532 .writefn = zcr_write, .raw_writefn = raw_write
4535 void hw_watchpoint_update(ARMCPU *cpu, int n)
4537 CPUARMState *env = &cpu->env;
4538 vaddr len = 0;
4539 vaddr wvr = env->cp15.dbgwvr[n];
4540 uint64_t wcr = env->cp15.dbgwcr[n];
4541 int mask;
4542 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4544 if (env->cpu_watchpoint[n]) {
4545 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4546 env->cpu_watchpoint[n] = NULL;
4549 if (!extract64(wcr, 0, 1)) {
4550 /* E bit clear : watchpoint disabled */
4551 return;
4554 switch (extract64(wcr, 3, 2)) {
4555 case 0:
4556 /* LSC 00 is reserved and must behave as if the wp is disabled */
4557 return;
4558 case 1:
4559 flags |= BP_MEM_READ;
4560 break;
4561 case 2:
4562 flags |= BP_MEM_WRITE;
4563 break;
4564 case 3:
4565 flags |= BP_MEM_ACCESS;
4566 break;
4569 /* Attempts to use both MASK and BAS fields simultaneously are
4570 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4571 * thus generating a watchpoint for every byte in the masked region.
4573 mask = extract64(wcr, 24, 4);
4574 if (mask == 1 || mask == 2) {
4575 /* Reserved values of MASK; we must act as if the mask value was
4576 * some non-reserved value, or as if the watchpoint were disabled.
4577 * We choose the latter.
4579 return;
4580 } else if (mask) {
4581 /* Watchpoint covers an aligned area up to 2GB in size */
4582 len = 1ULL << mask;
4583 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4584 * whether the watchpoint fires when the unmasked bits match; we opt
4585 * to generate the exceptions.
4587 wvr &= ~(len - 1);
4588 } else {
4589 /* Watchpoint covers bytes defined by the byte address select bits */
4590 int bas = extract64(wcr, 5, 8);
4591 int basstart;
4593 if (bas == 0) {
4594 /* This must act as if the watchpoint is disabled */
4595 return;
4598 if (extract64(wvr, 2, 1)) {
4599 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4600 * ignored, and BAS[3:0] define which bytes to watch.
4602 bas &= 0xf;
4604 /* The BAS bits are supposed to be programmed to indicate a contiguous
4605 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4606 * we fire for each byte in the word/doubleword addressed by the WVR.
4607 * We choose to ignore any non-zero bits after the first range of 1s.
4609 basstart = ctz32(bas);
4610 len = cto32(bas >> basstart);
4611 wvr += basstart;
4614 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4615 &env->cpu_watchpoint[n]);
4618 void hw_watchpoint_update_all(ARMCPU *cpu)
4620 int i;
4621 CPUARMState *env = &cpu->env;
4623 /* Completely clear out existing QEMU watchpoints and our array, to
4624 * avoid possible stale entries following migration load.
4626 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4627 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4629 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4630 hw_watchpoint_update(cpu, i);
4634 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4635 uint64_t value)
4637 ARMCPU *cpu = arm_env_get_cpu(env);
4638 int i = ri->crm;
4640 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4641 * register reads and behaves as if values written are sign extended.
4642 * Bits [1:0] are RES0.
4644 value = sextract64(value, 0, 49) & ~3ULL;
4646 raw_write(env, ri, value);
4647 hw_watchpoint_update(cpu, i);
4650 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4651 uint64_t value)
4653 ARMCPU *cpu = arm_env_get_cpu(env);
4654 int i = ri->crm;
4656 raw_write(env, ri, value);
4657 hw_watchpoint_update(cpu, i);
4660 void hw_breakpoint_update(ARMCPU *cpu, int n)
4662 CPUARMState *env = &cpu->env;
4663 uint64_t bvr = env->cp15.dbgbvr[n];
4664 uint64_t bcr = env->cp15.dbgbcr[n];
4665 vaddr addr;
4666 int bt;
4667 int flags = BP_CPU;
4669 if (env->cpu_breakpoint[n]) {
4670 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4671 env->cpu_breakpoint[n] = NULL;
4674 if (!extract64(bcr, 0, 1)) {
4675 /* E bit clear : watchpoint disabled */
4676 return;
4679 bt = extract64(bcr, 20, 4);
4681 switch (bt) {
4682 case 4: /* unlinked address mismatch (reserved if AArch64) */
4683 case 5: /* linked address mismatch (reserved if AArch64) */
4684 qemu_log_mask(LOG_UNIMP,
4685 "arm: address mismatch breakpoint types not implemented\n");
4686 return;
4687 case 0: /* unlinked address match */
4688 case 1: /* linked address match */
4690 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4691 * we behave as if the register was sign extended. Bits [1:0] are
4692 * RES0. The BAS field is used to allow setting breakpoints on 16
4693 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4694 * a bp will fire if the addresses covered by the bp and the addresses
4695 * covered by the insn overlap but the insn doesn't start at the
4696 * start of the bp address range. We choose to require the insn and
4697 * the bp to have the same address. The constraints on writing to
4698 * BAS enforced in dbgbcr_write mean we have only four cases:
4699 * 0b0000 => no breakpoint
4700 * 0b0011 => breakpoint on addr
4701 * 0b1100 => breakpoint on addr + 2
4702 * 0b1111 => breakpoint on addr
4703 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4705 int bas = extract64(bcr, 5, 4);
4706 addr = sextract64(bvr, 0, 49) & ~3ULL;
4707 if (bas == 0) {
4708 return;
4710 if (bas == 0xc) {
4711 addr += 2;
4713 break;
4715 case 2: /* unlinked context ID match */
4716 case 8: /* unlinked VMID match (reserved if no EL2) */
4717 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4718 qemu_log_mask(LOG_UNIMP,
4719 "arm: unlinked context breakpoint types not implemented\n");
4720 return;
4721 case 9: /* linked VMID match (reserved if no EL2) */
4722 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4723 case 3: /* linked context ID match */
4724 default:
4725 /* We must generate no events for Linked context matches (unless
4726 * they are linked to by some other bp/wp, which is handled in
4727 * updates for the linking bp/wp). We choose to also generate no events
4728 * for reserved values.
4730 return;
4733 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4736 void hw_breakpoint_update_all(ARMCPU *cpu)
4738 int i;
4739 CPUARMState *env = &cpu->env;
4741 /* Completely clear out existing QEMU breakpoints and our array, to
4742 * avoid possible stale entries following migration load.
4744 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4745 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4747 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4748 hw_breakpoint_update(cpu, i);
4752 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4753 uint64_t value)
4755 ARMCPU *cpu = arm_env_get_cpu(env);
4756 int i = ri->crm;
4758 raw_write(env, ri, value);
4759 hw_breakpoint_update(cpu, i);
4762 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4763 uint64_t value)
4765 ARMCPU *cpu = arm_env_get_cpu(env);
4766 int i = ri->crm;
4768 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4769 * copy of BAS[0].
4771 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4772 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4774 raw_write(env, ri, value);
4775 hw_breakpoint_update(cpu, i);
4778 static void define_debug_regs(ARMCPU *cpu)
4780 /* Define v7 and v8 architectural debug registers.
4781 * These are just dummy implementations for now.
4783 int i;
4784 int wrps, brps, ctx_cmps;
4785 ARMCPRegInfo dbgdidr = {
4786 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4787 .access = PL0_R, .accessfn = access_tda,
4788 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4791 /* Note that all these register fields hold "number of Xs minus 1". */
4792 brps = extract32(cpu->dbgdidr, 24, 4);
4793 wrps = extract32(cpu->dbgdidr, 28, 4);
4794 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4796 assert(ctx_cmps <= brps);
4798 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4799 * of the debug registers such as number of breakpoints;
4800 * check that if they both exist then they agree.
4802 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4803 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4804 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4805 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4808 define_one_arm_cp_reg(cpu, &dbgdidr);
4809 define_arm_cp_regs(cpu, debug_cp_reginfo);
4811 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4812 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4815 for (i = 0; i < brps + 1; i++) {
4816 ARMCPRegInfo dbgregs[] = {
4817 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4818 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4819 .access = PL1_RW, .accessfn = access_tda,
4820 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4821 .writefn = dbgbvr_write, .raw_writefn = raw_write
4823 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4824 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4825 .access = PL1_RW, .accessfn = access_tda,
4826 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4827 .writefn = dbgbcr_write, .raw_writefn = raw_write
4829 REGINFO_SENTINEL
4831 define_arm_cp_regs(cpu, dbgregs);
4834 for (i = 0; i < wrps + 1; i++) {
4835 ARMCPRegInfo dbgregs[] = {
4836 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4837 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4838 .access = PL1_RW, .accessfn = access_tda,
4839 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4840 .writefn = dbgwvr_write, .raw_writefn = raw_write
4842 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4843 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4844 .access = PL1_RW, .accessfn = access_tda,
4845 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4846 .writefn = dbgwcr_write, .raw_writefn = raw_write
4848 REGINFO_SENTINEL
4850 define_arm_cp_regs(cpu, dbgregs);
4854 /* We don't know until after realize whether there's a GICv3
4855 * attached, and that is what registers the gicv3 sysregs.
4856 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
4857 * at runtime.
4859 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
4861 ARMCPU *cpu = arm_env_get_cpu(env);
4862 uint64_t pfr1 = cpu->id_pfr1;
4864 if (env->gicv3state) {
4865 pfr1 |= 1 << 28;
4867 return pfr1;
4870 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
4872 ARMCPU *cpu = arm_env_get_cpu(env);
4873 uint64_t pfr0 = cpu->id_aa64pfr0;
4875 if (env->gicv3state) {
4876 pfr0 |= 1 << 24;
4878 return pfr0;
4881 void register_cp_regs_for_features(ARMCPU *cpu)
4883 /* Register all the coprocessor registers based on feature bits */
4884 CPUARMState *env = &cpu->env;
4885 if (arm_feature(env, ARM_FEATURE_M)) {
4886 /* M profile has no coprocessor registers */
4887 return;
4890 define_arm_cp_regs(cpu, cp_reginfo);
4891 if (!arm_feature(env, ARM_FEATURE_V8)) {
4892 /* Must go early as it is full of wildcards that may be
4893 * overridden by later definitions.
4895 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4898 if (arm_feature(env, ARM_FEATURE_V6)) {
4899 /* The ID registers all have impdef reset values */
4900 ARMCPRegInfo v6_idregs[] = {
4901 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4902 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4903 .access = PL1_R, .type = ARM_CP_CONST,
4904 .resetvalue = cpu->id_pfr0 },
4905 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
4906 * the value of the GIC field until after we define these regs.
4908 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4909 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4910 .access = PL1_R, .type = ARM_CP_NO_RAW,
4911 .readfn = id_pfr1_read,
4912 .writefn = arm_cp_write_ignore },
4913 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4914 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4915 .access = PL1_R, .type = ARM_CP_CONST,
4916 .resetvalue = cpu->id_dfr0 },
4917 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4918 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4919 .access = PL1_R, .type = ARM_CP_CONST,
4920 .resetvalue = cpu->id_afr0 },
4921 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4922 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4923 .access = PL1_R, .type = ARM_CP_CONST,
4924 .resetvalue = cpu->id_mmfr0 },
4925 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4926 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4927 .access = PL1_R, .type = ARM_CP_CONST,
4928 .resetvalue = cpu->id_mmfr1 },
4929 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4930 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4931 .access = PL1_R, .type = ARM_CP_CONST,
4932 .resetvalue = cpu->id_mmfr2 },
4933 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4934 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4935 .access = PL1_R, .type = ARM_CP_CONST,
4936 .resetvalue = cpu->id_mmfr3 },
4937 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4938 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4939 .access = PL1_R, .type = ARM_CP_CONST,
4940 .resetvalue = cpu->id_isar0 },
4941 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4942 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4943 .access = PL1_R, .type = ARM_CP_CONST,
4944 .resetvalue = cpu->id_isar1 },
4945 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4946 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4947 .access = PL1_R, .type = ARM_CP_CONST,
4948 .resetvalue = cpu->id_isar2 },
4949 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4950 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4951 .access = PL1_R, .type = ARM_CP_CONST,
4952 .resetvalue = cpu->id_isar3 },
4953 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4954 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4955 .access = PL1_R, .type = ARM_CP_CONST,
4956 .resetvalue = cpu->id_isar4 },
4957 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4958 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4959 .access = PL1_R, .type = ARM_CP_CONST,
4960 .resetvalue = cpu->id_isar5 },
4961 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4962 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4963 .access = PL1_R, .type = ARM_CP_CONST,
4964 .resetvalue = cpu->id_mmfr4 },
4965 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
4966 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4967 .access = PL1_R, .type = ARM_CP_CONST,
4968 .resetvalue = cpu->id_isar6 },
4969 REGINFO_SENTINEL
4971 define_arm_cp_regs(cpu, v6_idregs);
4972 define_arm_cp_regs(cpu, v6_cp_reginfo);
4973 } else {
4974 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4976 if (arm_feature(env, ARM_FEATURE_V6K)) {
4977 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4979 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4980 !arm_feature(env, ARM_FEATURE_PMSA)) {
4981 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4983 if (arm_feature(env, ARM_FEATURE_V7)) {
4984 /* v7 performance monitor control register: same implementor
4985 * field as main ID register, and we implement only the cycle
4986 * count register.
4988 #ifndef CONFIG_USER_ONLY
4989 ARMCPRegInfo pmcr = {
4990 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4991 .access = PL0_RW,
4992 .type = ARM_CP_IO | ARM_CP_ALIAS,
4993 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4994 .accessfn = pmreg_access, .writefn = pmcr_write,
4995 .raw_writefn = raw_write,
4997 ARMCPRegInfo pmcr64 = {
4998 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4999 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
5000 .access = PL0_RW, .accessfn = pmreg_access,
5001 .type = ARM_CP_IO,
5002 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
5003 .resetvalue = cpu->midr & 0xff000000,
5004 .writefn = pmcr_write, .raw_writefn = raw_write,
5006 define_one_arm_cp_reg(cpu, &pmcr);
5007 define_one_arm_cp_reg(cpu, &pmcr64);
5008 #endif
5009 ARMCPRegInfo clidr = {
5010 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
5011 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
5012 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
5014 define_one_arm_cp_reg(cpu, &clidr);
5015 define_arm_cp_regs(cpu, v7_cp_reginfo);
5016 define_debug_regs(cpu);
5017 } else {
5018 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
5020 if (arm_feature(env, ARM_FEATURE_V8)) {
5021 /* AArch64 ID registers, which all have impdef reset values.
5022 * Note that within the ID register ranges the unused slots
5023 * must all RAZ, not UNDEF; future architecture versions may
5024 * define new registers here.
5026 ARMCPRegInfo v8_idregs[] = {
5027 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
5028 * know the right value for the GIC field until after we
5029 * define these regs.
5031 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
5032 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
5033 .access = PL1_R, .type = ARM_CP_NO_RAW,
5034 .readfn = id_aa64pfr0_read,
5035 .writefn = arm_cp_write_ignore },
5036 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
5037 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
5038 .access = PL1_R, .type = ARM_CP_CONST,
5039 .resetvalue = cpu->id_aa64pfr1},
5040 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5041 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
5042 .access = PL1_R, .type = ARM_CP_CONST,
5043 .resetvalue = 0 },
5044 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5045 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
5046 .access = PL1_R, .type = ARM_CP_CONST,
5047 .resetvalue = 0 },
5048 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
5049 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
5050 .access = PL1_R, .type = ARM_CP_CONST,
5051 /* At present, only SVEver == 0 is defined anyway. */
5052 .resetvalue = 0 },
5053 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
5055 .access = PL1_R, .type = ARM_CP_CONST,
5056 .resetvalue = 0 },
5057 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5058 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
5059 .access = PL1_R, .type = ARM_CP_CONST,
5060 .resetvalue = 0 },
5061 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5062 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
5063 .access = PL1_R, .type = ARM_CP_CONST,
5064 .resetvalue = 0 },
5065 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
5066 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
5067 .access = PL1_R, .type = ARM_CP_CONST,
5068 .resetvalue = cpu->id_aa64dfr0 },
5069 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
5070 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
5071 .access = PL1_R, .type = ARM_CP_CONST,
5072 .resetvalue = cpu->id_aa64dfr1 },
5073 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5074 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
5075 .access = PL1_R, .type = ARM_CP_CONST,
5076 .resetvalue = 0 },
5077 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5078 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
5079 .access = PL1_R, .type = ARM_CP_CONST,
5080 .resetvalue = 0 },
5081 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
5082 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
5083 .access = PL1_R, .type = ARM_CP_CONST,
5084 .resetvalue = cpu->id_aa64afr0 },
5085 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
5086 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
5087 .access = PL1_R, .type = ARM_CP_CONST,
5088 .resetvalue = cpu->id_aa64afr1 },
5089 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5090 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
5091 .access = PL1_R, .type = ARM_CP_CONST,
5092 .resetvalue = 0 },
5093 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5094 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
5095 .access = PL1_R, .type = ARM_CP_CONST,
5096 .resetvalue = 0 },
5097 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
5098 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
5099 .access = PL1_R, .type = ARM_CP_CONST,
5100 .resetvalue = cpu->id_aa64isar0 },
5101 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
5102 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
5103 .access = PL1_R, .type = ARM_CP_CONST,
5104 .resetvalue = cpu->id_aa64isar1 },
5105 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5106 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
5107 .access = PL1_R, .type = ARM_CP_CONST,
5108 .resetvalue = 0 },
5109 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5110 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
5111 .access = PL1_R, .type = ARM_CP_CONST,
5112 .resetvalue = 0 },
5113 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5114 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
5115 .access = PL1_R, .type = ARM_CP_CONST,
5116 .resetvalue = 0 },
5117 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5118 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
5119 .access = PL1_R, .type = ARM_CP_CONST,
5120 .resetvalue = 0 },
5121 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5122 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
5123 .access = PL1_R, .type = ARM_CP_CONST,
5124 .resetvalue = 0 },
5125 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5126 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
5127 .access = PL1_R, .type = ARM_CP_CONST,
5128 .resetvalue = 0 },
5129 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
5130 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5131 .access = PL1_R, .type = ARM_CP_CONST,
5132 .resetvalue = cpu->id_aa64mmfr0 },
5133 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
5134 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
5135 .access = PL1_R, .type = ARM_CP_CONST,
5136 .resetvalue = cpu->id_aa64mmfr1 },
5137 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5138 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
5139 .access = PL1_R, .type = ARM_CP_CONST,
5140 .resetvalue = 0 },
5141 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5142 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
5143 .access = PL1_R, .type = ARM_CP_CONST,
5144 .resetvalue = 0 },
5145 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5146 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
5147 .access = PL1_R, .type = ARM_CP_CONST,
5148 .resetvalue = 0 },
5149 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5150 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
5151 .access = PL1_R, .type = ARM_CP_CONST,
5152 .resetvalue = 0 },
5153 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5154 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
5155 .access = PL1_R, .type = ARM_CP_CONST,
5156 .resetvalue = 0 },
5157 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5158 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
5159 .access = PL1_R, .type = ARM_CP_CONST,
5160 .resetvalue = 0 },
5161 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
5162 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
5163 .access = PL1_R, .type = ARM_CP_CONST,
5164 .resetvalue = cpu->mvfr0 },
5165 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
5166 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
5167 .access = PL1_R, .type = ARM_CP_CONST,
5168 .resetvalue = cpu->mvfr1 },
5169 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
5170 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
5171 .access = PL1_R, .type = ARM_CP_CONST,
5172 .resetvalue = cpu->mvfr2 },
5173 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5174 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
5175 .access = PL1_R, .type = ARM_CP_CONST,
5176 .resetvalue = 0 },
5177 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5178 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
5179 .access = PL1_R, .type = ARM_CP_CONST,
5180 .resetvalue = 0 },
5181 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5182 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
5183 .access = PL1_R, .type = ARM_CP_CONST,
5184 .resetvalue = 0 },
5185 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5186 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
5187 .access = PL1_R, .type = ARM_CP_CONST,
5188 .resetvalue = 0 },
5189 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5190 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
5191 .access = PL1_R, .type = ARM_CP_CONST,
5192 .resetvalue = 0 },
5193 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
5194 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
5195 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5196 .resetvalue = cpu->pmceid0 },
5197 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
5198 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
5199 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5200 .resetvalue = cpu->pmceid0 },
5201 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
5202 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
5203 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5204 .resetvalue = cpu->pmceid1 },
5205 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
5206 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
5207 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5208 .resetvalue = cpu->pmceid1 },
5209 REGINFO_SENTINEL
5211 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
5212 if (!arm_feature(env, ARM_FEATURE_EL3) &&
5213 !arm_feature(env, ARM_FEATURE_EL2)) {
5214 ARMCPRegInfo rvbar = {
5215 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
5216 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5217 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
5219 define_one_arm_cp_reg(cpu, &rvbar);
5221 define_arm_cp_regs(cpu, v8_idregs);
5222 define_arm_cp_regs(cpu, v8_cp_reginfo);
5224 if (arm_feature(env, ARM_FEATURE_EL2)) {
5225 uint64_t vmpidr_def = mpidr_read_val(env);
5226 ARMCPRegInfo vpidr_regs[] = {
5227 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
5228 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5229 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5230 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
5231 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
5232 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
5233 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5234 .access = PL2_RW, .resetvalue = cpu->midr,
5235 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5236 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
5237 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5238 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5239 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
5240 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
5241 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
5242 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5243 .access = PL2_RW,
5244 .resetvalue = vmpidr_def,
5245 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
5246 REGINFO_SENTINEL
5248 define_arm_cp_regs(cpu, vpidr_regs);
5249 define_arm_cp_regs(cpu, el2_cp_reginfo);
5250 if (arm_feature(env, ARM_FEATURE_V8)) {
5251 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
5253 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
5254 if (!arm_feature(env, ARM_FEATURE_EL3)) {
5255 ARMCPRegInfo rvbar = {
5256 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
5257 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
5258 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
5260 define_one_arm_cp_reg(cpu, &rvbar);
5262 } else {
5263 /* If EL2 is missing but higher ELs are enabled, we need to
5264 * register the no_el2 reginfos.
5266 if (arm_feature(env, ARM_FEATURE_EL3)) {
5267 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
5268 * of MIDR_EL1 and MPIDR_EL1.
5270 ARMCPRegInfo vpidr_regs[] = {
5271 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5272 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5273 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5274 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
5275 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5276 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5277 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5278 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5279 .type = ARM_CP_NO_RAW,
5280 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
5281 REGINFO_SENTINEL
5283 define_arm_cp_regs(cpu, vpidr_regs);
5284 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
5285 if (arm_feature(env, ARM_FEATURE_V8)) {
5286 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
5290 if (arm_feature(env, ARM_FEATURE_EL3)) {
5291 define_arm_cp_regs(cpu, el3_cp_reginfo);
5292 ARMCPRegInfo el3_regs[] = {
5293 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
5294 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
5295 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
5296 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
5297 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
5298 .access = PL3_RW,
5299 .raw_writefn = raw_write, .writefn = sctlr_write,
5300 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
5301 .resetvalue = cpu->reset_sctlr },
5302 REGINFO_SENTINEL
5305 define_arm_cp_regs(cpu, el3_regs);
5307 /* The behaviour of NSACR is sufficiently various that we don't
5308 * try to describe it in a single reginfo:
5309 * if EL3 is 64 bit, then trap to EL3 from S EL1,
5310 * reads as constant 0xc00 from NS EL1 and NS EL2
5311 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
5312 * if v7 without EL3, register doesn't exist
5313 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
5315 if (arm_feature(env, ARM_FEATURE_EL3)) {
5316 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5317 ARMCPRegInfo nsacr = {
5318 .name = "NSACR", .type = ARM_CP_CONST,
5319 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5320 .access = PL1_RW, .accessfn = nsacr_access,
5321 .resetvalue = 0xc00
5323 define_one_arm_cp_reg(cpu, &nsacr);
5324 } else {
5325 ARMCPRegInfo nsacr = {
5326 .name = "NSACR",
5327 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5328 .access = PL3_RW | PL1_R,
5329 .resetvalue = 0,
5330 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
5332 define_one_arm_cp_reg(cpu, &nsacr);
5334 } else {
5335 if (arm_feature(env, ARM_FEATURE_V8)) {
5336 ARMCPRegInfo nsacr = {
5337 .name = "NSACR", .type = ARM_CP_CONST,
5338 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5339 .access = PL1_R,
5340 .resetvalue = 0xc00
5342 define_one_arm_cp_reg(cpu, &nsacr);
5346 if (arm_feature(env, ARM_FEATURE_PMSA)) {
5347 if (arm_feature(env, ARM_FEATURE_V6)) {
5348 /* PMSAv6 not implemented */
5349 assert(arm_feature(env, ARM_FEATURE_V7));
5350 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5351 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
5352 } else {
5353 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
5355 } else {
5356 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5357 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
5359 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
5360 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
5362 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
5363 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
5365 if (arm_feature(env, ARM_FEATURE_VAPA)) {
5366 define_arm_cp_regs(cpu, vapa_cp_reginfo);
5368 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5369 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5371 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5372 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5374 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5375 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5377 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5378 define_arm_cp_regs(cpu, omap_cp_reginfo);
5380 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5381 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5383 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5384 define_arm_cp_regs(cpu, xscale_cp_reginfo);
5386 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5387 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5389 if (arm_feature(env, ARM_FEATURE_LPAE)) {
5390 define_arm_cp_regs(cpu, lpae_cp_reginfo);
5392 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5393 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5394 * be read-only (ie write causes UNDEF exception).
5397 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5398 /* Pre-v8 MIDR space.
5399 * Note that the MIDR isn't a simple constant register because
5400 * of the TI925 behaviour where writes to another register can
5401 * cause the MIDR value to change.
5403 * Unimplemented registers in the c15 0 0 0 space default to
5404 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5405 * and friends override accordingly.
5407 { .name = "MIDR",
5408 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5409 .access = PL1_R, .resetvalue = cpu->midr,
5410 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5411 .readfn = midr_read,
5412 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5413 .type = ARM_CP_OVERRIDE },
5414 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5415 { .name = "DUMMY",
5416 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5417 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5418 { .name = "DUMMY",
5419 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5420 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5421 { .name = "DUMMY",
5422 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5423 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5424 { .name = "DUMMY",
5425 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5426 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5427 { .name = "DUMMY",
5428 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5429 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5430 REGINFO_SENTINEL
5432 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5433 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5434 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5435 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5436 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5437 .readfn = midr_read },
5438 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5439 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5440 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5441 .access = PL1_R, .resetvalue = cpu->midr },
5442 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5443 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5444 .access = PL1_R, .resetvalue = cpu->midr },
5445 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5446 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5447 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5448 REGINFO_SENTINEL
5450 ARMCPRegInfo id_cp_reginfo[] = {
5451 /* These are common to v8 and pre-v8 */
5452 { .name = "CTR",
5453 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5454 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5455 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5456 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5457 .access = PL0_R, .accessfn = ctr_el0_access,
5458 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5459 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5460 { .name = "TCMTR",
5461 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5462 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5463 REGINFO_SENTINEL
5465 /* TLBTR is specific to VMSA */
5466 ARMCPRegInfo id_tlbtr_reginfo = {
5467 .name = "TLBTR",
5468 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5469 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5471 /* MPUIR is specific to PMSA V6+ */
5472 ARMCPRegInfo id_mpuir_reginfo = {
5473 .name = "MPUIR",
5474 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5475 .access = PL1_R, .type = ARM_CP_CONST,
5476 .resetvalue = cpu->pmsav7_dregion << 8
5478 ARMCPRegInfo crn0_wi_reginfo = {
5479 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5480 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5481 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5483 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5484 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5485 ARMCPRegInfo *r;
5486 /* Register the blanket "writes ignored" value first to cover the
5487 * whole space. Then update the specific ID registers to allow write
5488 * access, so that they ignore writes rather than causing them to
5489 * UNDEF.
5491 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5492 for (r = id_pre_v8_midr_cp_reginfo;
5493 r->type != ARM_CP_SENTINEL; r++) {
5494 r->access = PL1_RW;
5496 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5497 r->access = PL1_RW;
5499 id_mpuir_reginfo.access = PL1_RW;
5500 id_tlbtr_reginfo.access = PL1_RW;
5502 if (arm_feature(env, ARM_FEATURE_V8)) {
5503 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5504 } else {
5505 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5507 define_arm_cp_regs(cpu, id_cp_reginfo);
5508 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5509 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5510 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5511 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5515 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5516 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5519 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5520 ARMCPRegInfo auxcr_reginfo[] = {
5521 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5522 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5523 .access = PL1_RW, .type = ARM_CP_CONST,
5524 .resetvalue = cpu->reset_auxcr },
5525 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5526 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5527 .access = PL2_RW, .type = ARM_CP_CONST,
5528 .resetvalue = 0 },
5529 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5530 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5531 .access = PL3_RW, .type = ARM_CP_CONST,
5532 .resetvalue = 0 },
5533 REGINFO_SENTINEL
5535 define_arm_cp_regs(cpu, auxcr_reginfo);
5536 if (arm_feature(env, ARM_FEATURE_V8)) {
5537 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
5538 ARMCPRegInfo hactlr2_reginfo = {
5539 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
5540 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
5541 .access = PL2_RW, .type = ARM_CP_CONST,
5542 .resetvalue = 0
5544 define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
5548 if (arm_feature(env, ARM_FEATURE_CBAR)) {
5549 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5550 /* 32 bit view is [31:18] 0...0 [43:32]. */
5551 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5552 | extract64(cpu->reset_cbar, 32, 12);
5553 ARMCPRegInfo cbar_reginfo[] = {
5554 { .name = "CBAR",
5555 .type = ARM_CP_CONST,
5556 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5557 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5558 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5559 .type = ARM_CP_CONST,
5560 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5561 .access = PL1_R, .resetvalue = cbar32 },
5562 REGINFO_SENTINEL
5564 /* We don't implement a r/w 64 bit CBAR currently */
5565 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5566 define_arm_cp_regs(cpu, cbar_reginfo);
5567 } else {
5568 ARMCPRegInfo cbar = {
5569 .name = "CBAR",
5570 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5571 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5572 .fieldoffset = offsetof(CPUARMState,
5573 cp15.c15_config_base_address)
5575 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5576 cbar.access = PL1_R;
5577 cbar.fieldoffset = 0;
5578 cbar.type = ARM_CP_CONST;
5580 define_one_arm_cp_reg(cpu, &cbar);
5584 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5585 ARMCPRegInfo vbar_cp_reginfo[] = {
5586 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5587 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5588 .access = PL1_RW, .writefn = vbar_write,
5589 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5590 offsetof(CPUARMState, cp15.vbar_ns) },
5591 .resetvalue = 0 },
5592 REGINFO_SENTINEL
5594 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5597 /* Generic registers whose values depend on the implementation */
5599 ARMCPRegInfo sctlr = {
5600 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5601 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5602 .access = PL1_RW,
5603 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5604 offsetof(CPUARMState, cp15.sctlr_ns) },
5605 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5606 .raw_writefn = raw_write,
5608 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5609 /* Normally we would always end the TB on an SCTLR write, but Linux
5610 * arch/arm/mach-pxa/sleep.S expects two instructions following
5611 * an MMU enable to execute from cache. Imitate this behaviour.
5613 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5615 define_one_arm_cp_reg(cpu, &sctlr);
5618 if (arm_feature(env, ARM_FEATURE_SVE)) {
5619 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
5620 if (arm_feature(env, ARM_FEATURE_EL2)) {
5621 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
5622 } else {
5623 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
5625 if (arm_feature(env, ARM_FEATURE_EL3)) {
5626 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
5631 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5633 CPUState *cs = CPU(cpu);
5634 CPUARMState *env = &cpu->env;
5636 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5637 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5638 aarch64_fpu_gdb_set_reg,
5639 34, "aarch64-fpu.xml", 0);
5640 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5641 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5642 51, "arm-neon.xml", 0);
5643 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5644 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5645 35, "arm-vfp3.xml", 0);
5646 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5647 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5648 19, "arm-vfp.xml", 0);
5650 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
5651 arm_gen_dynamic_xml(cs),
5652 "system-registers.xml", 0);
5655 /* Sort alphabetically by type name, except for "any". */
5656 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5658 ObjectClass *class_a = (ObjectClass *)a;
5659 ObjectClass *class_b = (ObjectClass *)b;
5660 const char *name_a, *name_b;
5662 name_a = object_class_get_name(class_a);
5663 name_b = object_class_get_name(class_b);
5664 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5665 return 1;
5666 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5667 return -1;
5668 } else {
5669 return strcmp(name_a, name_b);
5673 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5675 ObjectClass *oc = data;
5676 CPUListState *s = user_data;
5677 const char *typename;
5678 char *name;
5680 typename = object_class_get_name(oc);
5681 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5682 (*s->cpu_fprintf)(s->file, " %s\n",
5683 name);
5684 g_free(name);
5687 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5689 CPUListState s = {
5690 .file = f,
5691 .cpu_fprintf = cpu_fprintf,
5693 GSList *list;
5695 list = object_class_get_list(TYPE_ARM_CPU, false);
5696 list = g_slist_sort(list, arm_cpu_list_compare);
5697 (*cpu_fprintf)(f, "Available CPUs:\n");
5698 g_slist_foreach(list, arm_cpu_list_entry, &s);
5699 g_slist_free(list);
5702 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5704 ObjectClass *oc = data;
5705 CpuDefinitionInfoList **cpu_list = user_data;
5706 CpuDefinitionInfoList *entry;
5707 CpuDefinitionInfo *info;
5708 const char *typename;
5710 typename = object_class_get_name(oc);
5711 info = g_malloc0(sizeof(*info));
5712 info->name = g_strndup(typename,
5713 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5714 info->q_typename = g_strdup(typename);
5716 entry = g_malloc0(sizeof(*entry));
5717 entry->value = info;
5718 entry->next = *cpu_list;
5719 *cpu_list = entry;
5722 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5724 CpuDefinitionInfoList *cpu_list = NULL;
5725 GSList *list;
5727 list = object_class_get_list(TYPE_ARM_CPU, false);
5728 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5729 g_slist_free(list);
5731 return cpu_list;
5734 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5735 void *opaque, int state, int secstate,
5736 int crm, int opc1, int opc2,
5737 const char *name)
5739 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5740 * add a single reginfo struct to the hash table.
5742 uint32_t *key = g_new(uint32_t, 1);
5743 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5744 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5745 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5747 r2->name = g_strdup(name);
5748 /* Reset the secure state to the specific incoming state. This is
5749 * necessary as the register may have been defined with both states.
5751 r2->secure = secstate;
5753 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5754 /* Register is banked (using both entries in array).
5755 * Overwriting fieldoffset as the array is only used to define
5756 * banked registers but later only fieldoffset is used.
5758 r2->fieldoffset = r->bank_fieldoffsets[ns];
5761 if (state == ARM_CP_STATE_AA32) {
5762 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5763 /* If the register is banked then we don't need to migrate or
5764 * reset the 32-bit instance in certain cases:
5766 * 1) If the register has both 32-bit and 64-bit instances then we
5767 * can count on the 64-bit instance taking care of the
5768 * non-secure bank.
5769 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5770 * taking care of the secure bank. This requires that separate
5771 * 32 and 64-bit definitions are provided.
5773 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5774 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5775 r2->type |= ARM_CP_ALIAS;
5777 } else if ((secstate != r->secure) && !ns) {
5778 /* The register is not banked so we only want to allow migration of
5779 * the non-secure instance.
5781 r2->type |= ARM_CP_ALIAS;
5784 if (r->state == ARM_CP_STATE_BOTH) {
5785 /* We assume it is a cp15 register if the .cp field is left unset.
5787 if (r2->cp == 0) {
5788 r2->cp = 15;
5791 #ifdef HOST_WORDS_BIGENDIAN
5792 if (r2->fieldoffset) {
5793 r2->fieldoffset += sizeof(uint32_t);
5795 #endif
5798 if (state == ARM_CP_STATE_AA64) {
5799 /* To allow abbreviation of ARMCPRegInfo
5800 * definitions, we treat cp == 0 as equivalent to
5801 * the value for "standard guest-visible sysreg".
5802 * STATE_BOTH definitions are also always "standard
5803 * sysreg" in their AArch64 view (the .cp value may
5804 * be non-zero for the benefit of the AArch32 view).
5806 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5807 r2->cp = CP_REG_ARM64_SYSREG_CP;
5809 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5810 r2->opc0, opc1, opc2);
5811 } else {
5812 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5814 if (opaque) {
5815 r2->opaque = opaque;
5817 /* reginfo passed to helpers is correct for the actual access,
5818 * and is never ARM_CP_STATE_BOTH:
5820 r2->state = state;
5821 /* Make sure reginfo passed to helpers for wildcarded regs
5822 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5824 r2->crm = crm;
5825 r2->opc1 = opc1;
5826 r2->opc2 = opc2;
5827 /* By convention, for wildcarded registers only the first
5828 * entry is used for migration; the others are marked as
5829 * ALIAS so we don't try to transfer the register
5830 * multiple times. Special registers (ie NOP/WFI) are
5831 * never migratable and not even raw-accessible.
5833 if ((r->type & ARM_CP_SPECIAL)) {
5834 r2->type |= ARM_CP_NO_RAW;
5836 if (((r->crm == CP_ANY) && crm != 0) ||
5837 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5838 ((r->opc2 == CP_ANY) && opc2 != 0)) {
5839 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
5842 /* Check that raw accesses are either forbidden or handled. Note that
5843 * we can't assert this earlier because the setup of fieldoffset for
5844 * banked registers has to be done first.
5846 if (!(r2->type & ARM_CP_NO_RAW)) {
5847 assert(!raw_accessors_invalid(r2));
5850 /* Overriding of an existing definition must be explicitly
5851 * requested.
5853 if (!(r->type & ARM_CP_OVERRIDE)) {
5854 ARMCPRegInfo *oldreg;
5855 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5856 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5857 fprintf(stderr, "Register redefined: cp=%d %d bit "
5858 "crn=%d crm=%d opc1=%d opc2=%d, "
5859 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5860 r2->crn, r2->crm, r2->opc1, r2->opc2,
5861 oldreg->name, r2->name);
5862 g_assert_not_reached();
5865 g_hash_table_insert(cpu->cp_regs, key, r2);
5869 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5870 const ARMCPRegInfo *r, void *opaque)
5872 /* Define implementations of coprocessor registers.
5873 * We store these in a hashtable because typically
5874 * there are less than 150 registers in a space which
5875 * is 16*16*16*8*8 = 262144 in size.
5876 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5877 * If a register is defined twice then the second definition is
5878 * used, so this can be used to define some generic registers and
5879 * then override them with implementation specific variations.
5880 * At least one of the original and the second definition should
5881 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5882 * against accidental use.
5884 * The state field defines whether the register is to be
5885 * visible in the AArch32 or AArch64 execution state. If the
5886 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5887 * reginfo structure for the AArch32 view, which sees the lower
5888 * 32 bits of the 64 bit register.
5890 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5891 * be wildcarded. AArch64 registers are always considered to be 64
5892 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5893 * the register, if any.
5895 int crm, opc1, opc2, state;
5896 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5897 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5898 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5899 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5900 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5901 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5902 /* 64 bit registers have only CRm and Opc1 fields */
5903 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5904 /* op0 only exists in the AArch64 encodings */
5905 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5906 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5907 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5908 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5909 * encodes a minimum access level for the register. We roll this
5910 * runtime check into our general permission check code, so check
5911 * here that the reginfo's specified permissions are strict enough
5912 * to encompass the generic architectural permission check.
5914 if (r->state != ARM_CP_STATE_AA32) {
5915 int mask = 0;
5916 switch (r->opc1) {
5917 case 0: case 1: case 2:
5918 /* min_EL EL1 */
5919 mask = PL1_RW;
5920 break;
5921 case 3:
5922 /* min_EL EL0 */
5923 mask = PL0_RW;
5924 break;
5925 case 4:
5926 /* min_EL EL2 */
5927 mask = PL2_RW;
5928 break;
5929 case 5:
5930 /* unallocated encoding, so not possible */
5931 assert(false);
5932 break;
5933 case 6:
5934 /* min_EL EL3 */
5935 mask = PL3_RW;
5936 break;
5937 case 7:
5938 /* min_EL EL1, secure mode only (we don't check the latter) */
5939 mask = PL1_RW;
5940 break;
5941 default:
5942 /* broken reginfo with out-of-range opc1 */
5943 assert(false);
5944 break;
5946 /* assert our permissions are not too lax (stricter is fine) */
5947 assert((r->access & ~mask) == 0);
5950 /* Check that the register definition has enough info to handle
5951 * reads and writes if they are permitted.
5953 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5954 if (r->access & PL3_R) {
5955 assert((r->fieldoffset ||
5956 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5957 r->readfn);
5959 if (r->access & PL3_W) {
5960 assert((r->fieldoffset ||
5961 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5962 r->writefn);
5965 /* Bad type field probably means missing sentinel at end of reg list */
5966 assert(cptype_valid(r->type));
5967 for (crm = crmmin; crm <= crmmax; crm++) {
5968 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5969 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5970 for (state = ARM_CP_STATE_AA32;
5971 state <= ARM_CP_STATE_AA64; state++) {
5972 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5973 continue;
5975 if (state == ARM_CP_STATE_AA32) {
5976 /* Under AArch32 CP registers can be common
5977 * (same for secure and non-secure world) or banked.
5979 char *name;
5981 switch (r->secure) {
5982 case ARM_CP_SECSTATE_S:
5983 case ARM_CP_SECSTATE_NS:
5984 add_cpreg_to_hashtable(cpu, r, opaque, state,
5985 r->secure, crm, opc1, opc2,
5986 r->name);
5987 break;
5988 default:
5989 name = g_strdup_printf("%s_S", r->name);
5990 add_cpreg_to_hashtable(cpu, r, opaque, state,
5991 ARM_CP_SECSTATE_S,
5992 crm, opc1, opc2, name);
5993 g_free(name);
5994 add_cpreg_to_hashtable(cpu, r, opaque, state,
5995 ARM_CP_SECSTATE_NS,
5996 crm, opc1, opc2, r->name);
5997 break;
5999 } else {
6000 /* AArch64 registers get mapped to non-secure instance
6001 * of AArch32 */
6002 add_cpreg_to_hashtable(cpu, r, opaque, state,
6003 ARM_CP_SECSTATE_NS,
6004 crm, opc1, opc2, r->name);
6012 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
6013 const ARMCPRegInfo *regs, void *opaque)
6015 /* Define a whole list of registers */
6016 const ARMCPRegInfo *r;
6017 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
6018 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
6022 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
6024 return g_hash_table_lookup(cpregs, &encoded_cp);
6027 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
6028 uint64_t value)
6030 /* Helper coprocessor write function for write-ignore registers */
6033 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
6035 /* Helper coprocessor write function for read-as-zero registers */
6036 return 0;
6039 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
6041 /* Helper coprocessor reset function for do-nothing-on-reset registers */
6044 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
6046 /* Return true if it is not valid for us to switch to
6047 * this CPU mode (ie all the UNPREDICTABLE cases in
6048 * the ARM ARM CPSRWriteByInstr pseudocode).
6051 /* Changes to or from Hyp via MSR and CPS are illegal. */
6052 if (write_type == CPSRWriteByInstr &&
6053 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
6054 mode == ARM_CPU_MODE_HYP)) {
6055 return 1;
6058 switch (mode) {
6059 case ARM_CPU_MODE_USR:
6060 return 0;
6061 case ARM_CPU_MODE_SYS:
6062 case ARM_CPU_MODE_SVC:
6063 case ARM_CPU_MODE_ABT:
6064 case ARM_CPU_MODE_UND:
6065 case ARM_CPU_MODE_IRQ:
6066 case ARM_CPU_MODE_FIQ:
6067 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
6068 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
6070 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
6071 * and CPS are treated as illegal mode changes.
6073 if (write_type == CPSRWriteByInstr &&
6074 (env->cp15.hcr_el2 & HCR_TGE) &&
6075 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
6076 !arm_is_secure_below_el3(env)) {
6077 return 1;
6079 return 0;
6080 case ARM_CPU_MODE_HYP:
6081 return !arm_feature(env, ARM_FEATURE_EL2)
6082 || arm_current_el(env) < 2 || arm_is_secure(env);
6083 case ARM_CPU_MODE_MON:
6084 return arm_current_el(env) < 3;
6085 default:
6086 return 1;
6090 uint32_t cpsr_read(CPUARMState *env)
6092 int ZF;
6093 ZF = (env->ZF == 0);
6094 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
6095 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
6096 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
6097 | ((env->condexec_bits & 0xfc) << 8)
6098 | (env->GE << 16) | (env->daif & CPSR_AIF);
6101 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
6102 CPSRWriteType write_type)
6104 uint32_t changed_daif;
6106 if (mask & CPSR_NZCV) {
6107 env->ZF = (~val) & CPSR_Z;
6108 env->NF = val;
6109 env->CF = (val >> 29) & 1;
6110 env->VF = (val << 3) & 0x80000000;
6112 if (mask & CPSR_Q)
6113 env->QF = ((val & CPSR_Q) != 0);
6114 if (mask & CPSR_T)
6115 env->thumb = ((val & CPSR_T) != 0);
6116 if (mask & CPSR_IT_0_1) {
6117 env->condexec_bits &= ~3;
6118 env->condexec_bits |= (val >> 25) & 3;
6120 if (mask & CPSR_IT_2_7) {
6121 env->condexec_bits &= 3;
6122 env->condexec_bits |= (val >> 8) & 0xfc;
6124 if (mask & CPSR_GE) {
6125 env->GE = (val >> 16) & 0xf;
6128 /* In a V7 implementation that includes the security extensions but does
6129 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
6130 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
6131 * bits respectively.
6133 * In a V8 implementation, it is permitted for privileged software to
6134 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
6136 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6137 arm_feature(env, ARM_FEATURE_EL3) &&
6138 !arm_feature(env, ARM_FEATURE_EL2) &&
6139 !arm_is_secure(env)) {
6141 changed_daif = (env->daif ^ val) & mask;
6143 if (changed_daif & CPSR_A) {
6144 /* Check to see if we are allowed to change the masking of async
6145 * abort exceptions from a non-secure state.
6147 if (!(env->cp15.scr_el3 & SCR_AW)) {
6148 qemu_log_mask(LOG_GUEST_ERROR,
6149 "Ignoring attempt to switch CPSR_A flag from "
6150 "non-secure world with SCR.AW bit clear\n");
6151 mask &= ~CPSR_A;
6155 if (changed_daif & CPSR_F) {
6156 /* Check to see if we are allowed to change the masking of FIQ
6157 * exceptions from a non-secure state.
6159 if (!(env->cp15.scr_el3 & SCR_FW)) {
6160 qemu_log_mask(LOG_GUEST_ERROR,
6161 "Ignoring attempt to switch CPSR_F flag from "
6162 "non-secure world with SCR.FW bit clear\n");
6163 mask &= ~CPSR_F;
6166 /* Check whether non-maskable FIQ (NMFI) support is enabled.
6167 * If this bit is set software is not allowed to mask
6168 * FIQs, but is allowed to set CPSR_F to 0.
6170 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
6171 (val & CPSR_F)) {
6172 qemu_log_mask(LOG_GUEST_ERROR,
6173 "Ignoring attempt to enable CPSR_F flag "
6174 "(non-maskable FIQ [NMFI] support enabled)\n");
6175 mask &= ~CPSR_F;
6180 env->daif &= ~(CPSR_AIF & mask);
6181 env->daif |= val & CPSR_AIF & mask;
6183 if (write_type != CPSRWriteRaw &&
6184 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
6185 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
6186 /* Note that we can only get here in USR mode if this is a
6187 * gdb stub write; for this case we follow the architectural
6188 * behaviour for guest writes in USR mode of ignoring an attempt
6189 * to switch mode. (Those are caught by translate.c for writes
6190 * triggered by guest instructions.)
6192 mask &= ~CPSR_M;
6193 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
6194 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
6195 * v7, and has defined behaviour in v8:
6196 * + leave CPSR.M untouched
6197 * + allow changes to the other CPSR fields
6198 * + set PSTATE.IL
6199 * For user changes via the GDB stub, we don't set PSTATE.IL,
6200 * as this would be unnecessarily harsh for a user error.
6202 mask &= ~CPSR_M;
6203 if (write_type != CPSRWriteByGDBStub &&
6204 arm_feature(env, ARM_FEATURE_V8)) {
6205 mask |= CPSR_IL;
6206 val |= CPSR_IL;
6208 } else {
6209 switch_mode(env, val & CPSR_M);
6212 mask &= ~CACHED_CPSR_BITS;
6213 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
6216 /* Sign/zero extend */
6217 uint32_t HELPER(sxtb16)(uint32_t x)
6219 uint32_t res;
6220 res = (uint16_t)(int8_t)x;
6221 res |= (uint32_t)(int8_t)(x >> 16) << 16;
6222 return res;
6225 uint32_t HELPER(uxtb16)(uint32_t x)
6227 uint32_t res;
6228 res = (uint16_t)(uint8_t)x;
6229 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
6230 return res;
6233 int32_t HELPER(sdiv)(int32_t num, int32_t den)
6235 if (den == 0)
6236 return 0;
6237 if (num == INT_MIN && den == -1)
6238 return INT_MIN;
6239 return num / den;
6242 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
6244 if (den == 0)
6245 return 0;
6246 return num / den;
6249 uint32_t HELPER(rbit)(uint32_t x)
6251 return revbit32(x);
6254 #if defined(CONFIG_USER_ONLY)
6256 /* These should probably raise undefined insn exceptions. */
6257 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
6259 ARMCPU *cpu = arm_env_get_cpu(env);
6261 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
6264 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
6266 ARMCPU *cpu = arm_env_get_cpu(env);
6268 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
6269 return 0;
6272 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6274 /* translate.c should never generate calls here in user-only mode */
6275 g_assert_not_reached();
6278 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6280 /* translate.c should never generate calls here in user-only mode */
6281 g_assert_not_reached();
6284 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
6286 /* The TT instructions can be used by unprivileged code, but in
6287 * user-only emulation we don't have the MPU.
6288 * Luckily since we know we are NonSecure unprivileged (and that in
6289 * turn means that the A flag wasn't specified), all the bits in the
6290 * register must be zero:
6291 * IREGION: 0 because IRVALID is 0
6292 * IRVALID: 0 because NS
6293 * S: 0 because NS
6294 * NSRW: 0 because NS
6295 * NSR: 0 because NS
6296 * RW: 0 because unpriv and A flag not set
6297 * R: 0 because unpriv and A flag not set
6298 * SRVALID: 0 because NS
6299 * MRVALID: 0 because unpriv and A flag not set
6300 * SREGION: 0 becaus SRVALID is 0
6301 * MREGION: 0 because MRVALID is 0
6303 return 0;
6306 void switch_mode(CPUARMState *env, int mode)
6308 ARMCPU *cpu = arm_env_get_cpu(env);
6310 if (mode != ARM_CPU_MODE_USR) {
6311 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
6315 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6316 uint32_t cur_el, bool secure)
6318 return 1;
6321 void aarch64_sync_64_to_32(CPUARMState *env)
6323 g_assert_not_reached();
6326 #else
6328 void switch_mode(CPUARMState *env, int mode)
6330 int old_mode;
6331 int i;
6333 old_mode = env->uncached_cpsr & CPSR_M;
6334 if (mode == old_mode)
6335 return;
6337 if (old_mode == ARM_CPU_MODE_FIQ) {
6338 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
6339 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
6340 } else if (mode == ARM_CPU_MODE_FIQ) {
6341 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
6342 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
6345 i = bank_number(old_mode);
6346 env->banked_r13[i] = env->regs[13];
6347 env->banked_r14[i] = env->regs[14];
6348 env->banked_spsr[i] = env->spsr;
6350 i = bank_number(mode);
6351 env->regs[13] = env->banked_r13[i];
6352 env->regs[14] = env->banked_r14[i];
6353 env->spsr = env->banked_spsr[i];
6356 /* Physical Interrupt Target EL Lookup Table
6358 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
6360 * The below multi-dimensional table is used for looking up the target
6361 * exception level given numerous condition criteria. Specifically, the
6362 * target EL is based on SCR and HCR routing controls as well as the
6363 * currently executing EL and secure state.
6365 * Dimensions:
6366 * target_el_table[2][2][2][2][2][4]
6367 * | | | | | +--- Current EL
6368 * | | | | +------ Non-secure(0)/Secure(1)
6369 * | | | +--------- HCR mask override
6370 * | | +------------ SCR exec state control
6371 * | +--------------- SCR mask override
6372 * +------------------ 32-bit(0)/64-bit(1) EL3
6374 * The table values are as such:
6375 * 0-3 = EL0-EL3
6376 * -1 = Cannot occur
6378 * The ARM ARM target EL table includes entries indicating that an "exception
6379 * is not taken". The two cases where this is applicable are:
6380 * 1) An exception is taken from EL3 but the SCR does not have the exception
6381 * routed to EL3.
6382 * 2) An exception is taken from EL2 but the HCR does not have the exception
6383 * routed to EL2.
6384 * In these two cases, the below table contain a target of EL1. This value is
6385 * returned as it is expected that the consumer of the table data will check
6386 * for "target EL >= current EL" to ensure the exception is not taken.
6388 * SCR HCR
6389 * 64 EA AMO From
6390 * BIT IRQ IMO Non-secure Secure
6391 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
6393 static const int8_t target_el_table[2][2][2][2][2][4] = {
6394 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6395 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
6396 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6397 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
6398 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6399 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
6400 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6401 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
6402 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
6403 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
6404 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
6405 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
6406 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6407 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
6408 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6409 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
6413 * Determine the target EL for physical exceptions
6415 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6416 uint32_t cur_el, bool secure)
6418 CPUARMState *env = cs->env_ptr;
6419 int rw;
6420 int scr;
6421 int hcr;
6422 int target_el;
6423 /* Is the highest EL AArch64? */
6424 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6426 if (arm_feature(env, ARM_FEATURE_EL3)) {
6427 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6428 } else {
6429 /* Either EL2 is the highest EL (and so the EL2 register width
6430 * is given by is64); or there is no EL2 or EL3, in which case
6431 * the value of 'rw' does not affect the table lookup anyway.
6433 rw = is64;
6436 switch (excp_idx) {
6437 case EXCP_IRQ:
6438 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6439 hcr = arm_hcr_el2_imo(env);
6440 break;
6441 case EXCP_FIQ:
6442 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6443 hcr = arm_hcr_el2_fmo(env);
6444 break;
6445 default:
6446 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6447 hcr = arm_hcr_el2_amo(env);
6448 break;
6451 /* If HCR.TGE is set then HCR is treated as being 1 */
6452 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6454 /* Perform a table-lookup for the target EL given the current state */
6455 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6457 assert(target_el > 0);
6459 return target_el;
6462 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
6463 ARMMMUIdx mmu_idx, bool ignfault)
6465 CPUState *cs = CPU(cpu);
6466 CPUARMState *env = &cpu->env;
6467 MemTxAttrs attrs = {};
6468 MemTxResult txres;
6469 target_ulong page_size;
6470 hwaddr physaddr;
6471 int prot;
6472 ARMMMUFaultInfo fi;
6473 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6474 int exc;
6475 bool exc_secure;
6477 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
6478 &attrs, &prot, &page_size, &fi, NULL)) {
6479 /* MPU/SAU lookup failed */
6480 if (fi.type == ARMFault_QEMU_SFault) {
6481 qemu_log_mask(CPU_LOG_INT,
6482 "...SecureFault with SFSR.AUVIOL during stacking\n");
6483 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6484 env->v7m.sfar = addr;
6485 exc = ARMV7M_EXCP_SECURE;
6486 exc_secure = false;
6487 } else {
6488 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
6489 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
6490 exc = ARMV7M_EXCP_MEM;
6491 exc_secure = secure;
6493 goto pend_fault;
6495 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
6496 attrs, &txres);
6497 if (txres != MEMTX_OK) {
6498 /* BusFault trying to write the data */
6499 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
6500 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
6501 exc = ARMV7M_EXCP_BUS;
6502 exc_secure = false;
6503 goto pend_fault;
6505 return true;
6507 pend_fault:
6508 /* By pending the exception at this point we are making
6509 * the IMPDEF choice "overridden exceptions pended" (see the
6510 * MergeExcInfo() pseudocode). The other choice would be to not
6511 * pend them now and then make a choice about which to throw away
6512 * later if we have two derived exceptions.
6513 * The only case when we must not pend the exception but instead
6514 * throw it away is if we are doing the push of the callee registers
6515 * and we've already generated a derived exception. Even in this
6516 * case we will still update the fault status registers.
6518 if (!ignfault) {
6519 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
6521 return false;
6524 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
6525 ARMMMUIdx mmu_idx)
6527 CPUState *cs = CPU(cpu);
6528 CPUARMState *env = &cpu->env;
6529 MemTxAttrs attrs = {};
6530 MemTxResult txres;
6531 target_ulong page_size;
6532 hwaddr physaddr;
6533 int prot;
6534 ARMMMUFaultInfo fi;
6535 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6536 int exc;
6537 bool exc_secure;
6538 uint32_t value;
6540 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
6541 &attrs, &prot, &page_size, &fi, NULL)) {
6542 /* MPU/SAU lookup failed */
6543 if (fi.type == ARMFault_QEMU_SFault) {
6544 qemu_log_mask(CPU_LOG_INT,
6545 "...SecureFault with SFSR.AUVIOL during unstack\n");
6546 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6547 env->v7m.sfar = addr;
6548 exc = ARMV7M_EXCP_SECURE;
6549 exc_secure = false;
6550 } else {
6551 qemu_log_mask(CPU_LOG_INT,
6552 "...MemManageFault with CFSR.MUNSTKERR\n");
6553 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
6554 exc = ARMV7M_EXCP_MEM;
6555 exc_secure = secure;
6557 goto pend_fault;
6560 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
6561 attrs, &txres);
6562 if (txres != MEMTX_OK) {
6563 /* BusFault trying to read the data */
6564 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
6565 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
6566 exc = ARMV7M_EXCP_BUS;
6567 exc_secure = false;
6568 goto pend_fault;
6571 *dest = value;
6572 return true;
6574 pend_fault:
6575 /* By pending the exception at this point we are making
6576 * the IMPDEF choice "overridden exceptions pended" (see the
6577 * MergeExcInfo() pseudocode). The other choice would be to not
6578 * pend them now and then make a choice about which to throw away
6579 * later if we have two derived exceptions.
6581 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
6582 return false;
6585 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6586 * This may change the current stack pointer between Main and Process
6587 * stack pointers if it is done for the CONTROL register for the current
6588 * security state.
6590 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6591 bool new_spsel,
6592 bool secstate)
6594 bool old_is_psp = v7m_using_psp(env);
6596 env->v7m.control[secstate] =
6597 deposit32(env->v7m.control[secstate],
6598 R_V7M_CONTROL_SPSEL_SHIFT,
6599 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6601 if (secstate == env->v7m.secure) {
6602 bool new_is_psp = v7m_using_psp(env);
6603 uint32_t tmp;
6605 if (old_is_psp != new_is_psp) {
6606 tmp = env->v7m.other_sp;
6607 env->v7m.other_sp = env->regs[13];
6608 env->regs[13] = tmp;
6613 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6614 * stack pointer between Main and Process stack pointers.
6616 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6618 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6621 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6623 /* Write a new value to v7m.exception, thus transitioning into or out
6624 * of Handler mode; this may result in a change of active stack pointer.
6626 bool new_is_psp, old_is_psp = v7m_using_psp(env);
6627 uint32_t tmp;
6629 env->v7m.exception = new_exc;
6631 new_is_psp = v7m_using_psp(env);
6633 if (old_is_psp != new_is_psp) {
6634 tmp = env->v7m.other_sp;
6635 env->v7m.other_sp = env->regs[13];
6636 env->regs[13] = tmp;
6640 /* Switch M profile security state between NS and S */
6641 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6643 uint32_t new_ss_msp, new_ss_psp;
6645 if (env->v7m.secure == new_secstate) {
6646 return;
6649 /* All the banked state is accessed by looking at env->v7m.secure
6650 * except for the stack pointer; rearrange the SP appropriately.
6652 new_ss_msp = env->v7m.other_ss_msp;
6653 new_ss_psp = env->v7m.other_ss_psp;
6655 if (v7m_using_psp(env)) {
6656 env->v7m.other_ss_psp = env->regs[13];
6657 env->v7m.other_ss_msp = env->v7m.other_sp;
6658 } else {
6659 env->v7m.other_ss_msp = env->regs[13];
6660 env->v7m.other_ss_psp = env->v7m.other_sp;
6663 env->v7m.secure = new_secstate;
6665 if (v7m_using_psp(env)) {
6666 env->regs[13] = new_ss_psp;
6667 env->v7m.other_sp = new_ss_msp;
6668 } else {
6669 env->regs[13] = new_ss_msp;
6670 env->v7m.other_sp = new_ss_psp;
6674 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6676 /* Handle v7M BXNS:
6677 * - if the return value is a magic value, do exception return (like BX)
6678 * - otherwise bit 0 of the return value is the target security state
6680 uint32_t min_magic;
6682 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6683 /* Covers FNC_RETURN and EXC_RETURN magic */
6684 min_magic = FNC_RETURN_MIN_MAGIC;
6685 } else {
6686 /* EXC_RETURN magic only */
6687 min_magic = EXC_RETURN_MIN_MAGIC;
6690 if (dest >= min_magic) {
6691 /* This is an exception return magic value; put it where
6692 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6693 * Note that if we ever add gen_ss_advance() singlestep support to
6694 * M profile this should count as an "instruction execution complete"
6695 * event (compare gen_bx_excret_final_code()).
6697 env->regs[15] = dest & ~1;
6698 env->thumb = dest & 1;
6699 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6700 /* notreached */
6703 /* translate.c should have made BXNS UNDEF unless we're secure */
6704 assert(env->v7m.secure);
6706 switch_v7m_security_state(env, dest & 1);
6707 env->thumb = 1;
6708 env->regs[15] = dest & ~1;
6711 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6713 /* Handle v7M BLXNS:
6714 * - bit 0 of the destination address is the target security state
6717 /* At this point regs[15] is the address just after the BLXNS */
6718 uint32_t nextinst = env->regs[15] | 1;
6719 uint32_t sp = env->regs[13] - 8;
6720 uint32_t saved_psr;
6722 /* translate.c will have made BLXNS UNDEF unless we're secure */
6723 assert(env->v7m.secure);
6725 if (dest & 1) {
6726 /* target is Secure, so this is just a normal BLX,
6727 * except that the low bit doesn't indicate Thumb/not.
6729 env->regs[14] = nextinst;
6730 env->thumb = 1;
6731 env->regs[15] = dest & ~1;
6732 return;
6735 /* Target is non-secure: first push a stack frame */
6736 if (!QEMU_IS_ALIGNED(sp, 8)) {
6737 qemu_log_mask(LOG_GUEST_ERROR,
6738 "BLXNS with misaligned SP is UNPREDICTABLE\n");
6741 if (sp < v7m_sp_limit(env)) {
6742 raise_exception(env, EXCP_STKOF, 0, 1);
6745 saved_psr = env->v7m.exception;
6746 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
6747 saved_psr |= XPSR_SFPA;
6750 /* Note that these stores can throw exceptions on MPU faults */
6751 cpu_stl_data(env, sp, nextinst);
6752 cpu_stl_data(env, sp + 4, saved_psr);
6754 env->regs[13] = sp;
6755 env->regs[14] = 0xfeffffff;
6756 if (arm_v7m_is_handler_mode(env)) {
6757 /* Write a dummy value to IPSR, to avoid leaking the current secure
6758 * exception number to non-secure code. This is guaranteed not
6759 * to cause write_v7m_exception() to actually change stacks.
6761 write_v7m_exception(env, 1);
6763 switch_v7m_security_state(env, 0);
6764 env->thumb = 1;
6765 env->regs[15] = dest;
6768 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6769 bool spsel)
6771 /* Return a pointer to the location where we currently store the
6772 * stack pointer for the requested security state and thread mode.
6773 * This pointer will become invalid if the CPU state is updated
6774 * such that the stack pointers are switched around (eg changing
6775 * the SPSEL control bit).
6776 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6777 * Unlike that pseudocode, we require the caller to pass us in the
6778 * SPSEL control bit value; this is because we also use this
6779 * function in handling of pushing of the callee-saves registers
6780 * part of the v8M stack frame (pseudocode PushCalleeStack()),
6781 * and in the tailchain codepath the SPSEL bit comes from the exception
6782 * return magic LR value from the previous exception. The pseudocode
6783 * opencodes the stack-selection in PushCalleeStack(), but we prefer
6784 * to make this utility function generic enough to do the job.
6786 bool want_psp = threadmode && spsel;
6788 if (secure == env->v7m.secure) {
6789 if (want_psp == v7m_using_psp(env)) {
6790 return &env->regs[13];
6791 } else {
6792 return &env->v7m.other_sp;
6794 } else {
6795 if (want_psp) {
6796 return &env->v7m.other_ss_psp;
6797 } else {
6798 return &env->v7m.other_ss_msp;
6803 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
6804 uint32_t *pvec)
6806 CPUState *cs = CPU(cpu);
6807 CPUARMState *env = &cpu->env;
6808 MemTxResult result;
6809 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
6810 uint32_t vector_entry;
6811 MemTxAttrs attrs = {};
6812 ARMMMUIdx mmu_idx;
6813 bool exc_secure;
6815 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
6817 /* We don't do a get_phys_addr() here because the rules for vector
6818 * loads are special: they always use the default memory map, and
6819 * the default memory map permits reads from all addresses.
6820 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
6821 * that we want this special case which would always say "yes",
6822 * we just do the SAU lookup here followed by a direct physical load.
6824 attrs.secure = targets_secure;
6825 attrs.user = false;
6827 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6828 V8M_SAttributes sattrs = {};
6830 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
6831 if (sattrs.ns) {
6832 attrs.secure = false;
6833 } else if (!targets_secure) {
6834 /* NS access to S memory */
6835 goto load_fail;
6839 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
6840 attrs, &result);
6841 if (result != MEMTX_OK) {
6842 goto load_fail;
6844 *pvec = vector_entry;
6845 return true;
6847 load_fail:
6848 /* All vector table fetch fails are reported as HardFault, with
6849 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
6850 * technically the underlying exception is a MemManage or BusFault
6851 * that is escalated to HardFault.) This is a terminal exception,
6852 * so we will either take the HardFault immediately or else enter
6853 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
6855 exc_secure = targets_secure ||
6856 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
6857 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
6858 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
6859 return false;
6862 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6863 bool ignore_faults)
6865 /* For v8M, push the callee-saves register part of the stack frame.
6866 * Compare the v8M pseudocode PushCalleeStack().
6867 * In the tailchaining case this may not be the current stack.
6869 CPUARMState *env = &cpu->env;
6870 uint32_t *frame_sp_p;
6871 uint32_t frameptr;
6872 ARMMMUIdx mmu_idx;
6873 bool stacked_ok;
6874 uint32_t limit;
6875 bool want_psp;
6877 if (dotailchain) {
6878 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
6879 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
6880 !mode;
6882 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
6883 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
6884 lr & R_V7M_EXCRET_SPSEL_MASK);
6885 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
6886 if (want_psp) {
6887 limit = env->v7m.psplim[M_REG_S];
6888 } else {
6889 limit = env->v7m.msplim[M_REG_S];
6891 } else {
6892 mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6893 frame_sp_p = &env->regs[13];
6894 limit = v7m_sp_limit(env);
6897 frameptr = *frame_sp_p - 0x28;
6898 if (frameptr < limit) {
6900 * Stack limit failure: set SP to the limit value, and generate
6901 * STKOF UsageFault. Stack pushes below the limit must not be
6902 * performed. It is IMPDEF whether pushes above the limit are
6903 * performed; we choose not to.
6905 qemu_log_mask(CPU_LOG_INT,
6906 "...STKOF during callee-saves register stacking\n");
6907 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
6908 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
6909 env->v7m.secure);
6910 *frame_sp_p = limit;
6911 return true;
6914 /* Write as much of the stack frame as we can. A write failure may
6915 * cause us to pend a derived exception.
6917 stacked_ok =
6918 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
6919 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
6920 ignore_faults) &&
6921 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
6922 ignore_faults) &&
6923 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
6924 ignore_faults) &&
6925 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
6926 ignore_faults) &&
6927 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
6928 ignore_faults) &&
6929 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
6930 ignore_faults) &&
6931 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
6932 ignore_faults) &&
6933 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
6934 ignore_faults);
6936 /* Update SP regardless of whether any of the stack accesses failed. */
6937 *frame_sp_p = frameptr;
6939 return !stacked_ok;
6942 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6943 bool ignore_stackfaults)
6945 /* Do the "take the exception" parts of exception entry,
6946 * but not the pushing of state to the stack. This is
6947 * similar to the pseudocode ExceptionTaken() function.
6949 CPUARMState *env = &cpu->env;
6950 uint32_t addr;
6951 bool targets_secure;
6952 int exc;
6953 bool push_failed = false;
6955 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
6956 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
6957 targets_secure ? "secure" : "nonsecure", exc);
6959 if (arm_feature(env, ARM_FEATURE_V8)) {
6960 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6961 (lr & R_V7M_EXCRET_S_MASK)) {
6962 /* The background code (the owner of the registers in the
6963 * exception frame) is Secure. This means it may either already
6964 * have or now needs to push callee-saves registers.
6966 if (targets_secure) {
6967 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
6968 /* We took an exception from Secure to NonSecure
6969 * (which means the callee-saved registers got stacked)
6970 * and are now tailchaining to a Secure exception.
6971 * Clear DCRS so eventual return from this Secure
6972 * exception unstacks the callee-saved registers.
6974 lr &= ~R_V7M_EXCRET_DCRS_MASK;
6976 } else {
6977 /* We're going to a non-secure exception; push the
6978 * callee-saves registers to the stack now, if they're
6979 * not already saved.
6981 if (lr & R_V7M_EXCRET_DCRS_MASK &&
6982 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
6983 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
6984 ignore_stackfaults);
6986 lr |= R_V7M_EXCRET_DCRS_MASK;
6990 lr &= ~R_V7M_EXCRET_ES_MASK;
6991 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6992 lr |= R_V7M_EXCRET_ES_MASK;
6994 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
6995 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
6996 lr |= R_V7M_EXCRET_SPSEL_MASK;
6999 /* Clear registers if necessary to prevent non-secure exception
7000 * code being able to see register values from secure code.
7001 * Where register values become architecturally UNKNOWN we leave
7002 * them with their previous values.
7004 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7005 if (!targets_secure) {
7006 /* Always clear the caller-saved registers (they have been
7007 * pushed to the stack earlier in v7m_push_stack()).
7008 * Clear callee-saved registers if the background code is
7009 * Secure (in which case these regs were saved in
7010 * v7m_push_callee_stack()).
7012 int i;
7014 for (i = 0; i < 13; i++) {
7015 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
7016 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
7017 env->regs[i] = 0;
7020 /* Clear EAPSR */
7021 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
7026 if (push_failed && !ignore_stackfaults) {
7027 /* Derived exception on callee-saves register stacking:
7028 * we might now want to take a different exception which
7029 * targets a different security state, so try again from the top.
7031 qemu_log_mask(CPU_LOG_INT,
7032 "...derived exception on callee-saves register stacking");
7033 v7m_exception_taken(cpu, lr, true, true);
7034 return;
7037 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
7038 /* Vector load failed: derived exception */
7039 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
7040 v7m_exception_taken(cpu, lr, true, true);
7041 return;
7044 /* Now we've done everything that might cause a derived exception
7045 * we can go ahead and activate whichever exception we're going to
7046 * take (which might now be the derived exception).
7048 armv7m_nvic_acknowledge_irq(env->nvic);
7050 /* Switch to target security state -- must do this before writing SPSEL */
7051 switch_v7m_security_state(env, targets_secure);
7052 write_v7m_control_spsel(env, 0);
7053 arm_clear_exclusive(env);
7054 /* Clear IT bits */
7055 env->condexec_bits = 0;
7056 env->regs[14] = lr;
7057 env->regs[15] = addr & 0xfffffffe;
7058 env->thumb = addr & 1;
7061 static bool v7m_push_stack(ARMCPU *cpu)
7063 /* Do the "set up stack frame" part of exception entry,
7064 * similar to pseudocode PushStack().
7065 * Return true if we generate a derived exception (and so
7066 * should ignore further stack faults trying to process
7067 * that derived exception.)
7069 bool stacked_ok;
7070 CPUARMState *env = &cpu->env;
7071 uint32_t xpsr = xpsr_read(env);
7072 uint32_t frameptr = env->regs[13];
7073 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
7075 /* Align stack pointer if the guest wants that */
7076 if ((frameptr & 4) &&
7077 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
7078 frameptr -= 4;
7079 xpsr |= XPSR_SPREALIGN;
7082 frameptr -= 0x20;
7084 if (arm_feature(env, ARM_FEATURE_V8)) {
7085 uint32_t limit = v7m_sp_limit(env);
7087 if (frameptr < limit) {
7089 * Stack limit failure: set SP to the limit value, and generate
7090 * STKOF UsageFault. Stack pushes below the limit must not be
7091 * performed. It is IMPDEF whether pushes above the limit are
7092 * performed; we choose not to.
7094 qemu_log_mask(CPU_LOG_INT,
7095 "...STKOF during stacking\n");
7096 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
7097 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7098 env->v7m.secure);
7099 env->regs[13] = limit;
7100 return true;
7104 /* Write as much of the stack frame as we can. If we fail a stack
7105 * write this will result in a derived exception being pended
7106 * (which may be taken in preference to the one we started with
7107 * if it has higher priority).
7109 stacked_ok =
7110 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
7111 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
7112 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
7113 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
7114 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
7115 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
7116 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
7117 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
7119 /* Update SP regardless of whether any of the stack accesses failed. */
7120 env->regs[13] = frameptr;
7122 return !stacked_ok;
7125 static void do_v7m_exception_exit(ARMCPU *cpu)
7127 CPUARMState *env = &cpu->env;
7128 uint32_t excret;
7129 uint32_t xpsr;
7130 bool ufault = false;
7131 bool sfault = false;
7132 bool return_to_sp_process;
7133 bool return_to_handler;
7134 bool rettobase = false;
7135 bool exc_secure = false;
7136 bool return_to_secure;
7138 /* If we're not in Handler mode then jumps to magic exception-exit
7139 * addresses don't have magic behaviour. However for the v8M
7140 * security extensions the magic secure-function-return has to
7141 * work in thread mode too, so to avoid doing an extra check in
7142 * the generated code we allow exception-exit magic to also cause the
7143 * internal exception and bring us here in thread mode. Correct code
7144 * will never try to do this (the following insn fetch will always
7145 * fault) so we the overhead of having taken an unnecessary exception
7146 * doesn't matter.
7148 if (!arm_v7m_is_handler_mode(env)) {
7149 return;
7152 /* In the spec pseudocode ExceptionReturn() is called directly
7153 * from BXWritePC() and gets the full target PC value including
7154 * bit zero. In QEMU's implementation we treat it as a normal
7155 * jump-to-register (which is then caught later on), and so split
7156 * the target value up between env->regs[15] and env->thumb in
7157 * gen_bx(). Reconstitute it.
7159 excret = env->regs[15];
7160 if (env->thumb) {
7161 excret |= 1;
7164 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
7165 " previous exception %d\n",
7166 excret, env->v7m.exception);
7168 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
7169 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
7170 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
7171 excret);
7174 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7175 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
7176 * we pick which FAULTMASK to clear.
7178 if (!env->v7m.secure &&
7179 ((excret & R_V7M_EXCRET_ES_MASK) ||
7180 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
7181 sfault = 1;
7182 /* For all other purposes, treat ES as 0 (R_HXSR) */
7183 excret &= ~R_V7M_EXCRET_ES_MASK;
7185 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
7188 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
7189 /* Auto-clear FAULTMASK on return from other than NMI.
7190 * If the security extension is implemented then this only
7191 * happens if the raw execution priority is >= 0; the
7192 * value of the ES bit in the exception return value indicates
7193 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
7195 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7196 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
7197 env->v7m.faultmask[exc_secure] = 0;
7199 } else {
7200 env->v7m.faultmask[M_REG_NS] = 0;
7204 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
7205 exc_secure)) {
7206 case -1:
7207 /* attempt to exit an exception that isn't active */
7208 ufault = true;
7209 break;
7210 case 0:
7211 /* still an irq active now */
7212 break;
7213 case 1:
7214 /* we returned to base exception level, no nesting.
7215 * (In the pseudocode this is written using "NestedActivation != 1"
7216 * where we have 'rettobase == false'.)
7218 rettobase = true;
7219 break;
7220 default:
7221 g_assert_not_reached();
7224 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
7225 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
7226 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
7227 (excret & R_V7M_EXCRET_S_MASK);
7229 if (arm_feature(env, ARM_FEATURE_V8)) {
7230 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7231 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
7232 * we choose to take the UsageFault.
7234 if ((excret & R_V7M_EXCRET_S_MASK) ||
7235 (excret & R_V7M_EXCRET_ES_MASK) ||
7236 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
7237 ufault = true;
7240 if (excret & R_V7M_EXCRET_RES0_MASK) {
7241 ufault = true;
7243 } else {
7244 /* For v7M we only recognize certain combinations of the low bits */
7245 switch (excret & 0xf) {
7246 case 1: /* Return to Handler */
7247 break;
7248 case 13: /* Return to Thread using Process stack */
7249 case 9: /* Return to Thread using Main stack */
7250 /* We only need to check NONBASETHRDENA for v7M, because in
7251 * v8M this bit does not exist (it is RES1).
7253 if (!rettobase &&
7254 !(env->v7m.ccr[env->v7m.secure] &
7255 R_V7M_CCR_NONBASETHRDENA_MASK)) {
7256 ufault = true;
7258 break;
7259 default:
7260 ufault = true;
7265 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
7266 * Handler mode (and will be until we write the new XPSR.Interrupt
7267 * field) this does not switch around the current stack pointer.
7268 * We must do this before we do any kind of tailchaining, including
7269 * for the derived exceptions on integrity check failures, or we will
7270 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
7272 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
7274 if (sfault) {
7275 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
7276 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7277 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7278 "stackframe: failed EXC_RETURN.ES validity check\n");
7279 v7m_exception_taken(cpu, excret, true, false);
7280 return;
7283 if (ufault) {
7284 /* Bad exception return: instead of popping the exception
7285 * stack, directly take a usage fault on the current stack.
7287 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7288 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7289 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7290 "stackframe: failed exception return integrity check\n");
7291 v7m_exception_taken(cpu, excret, true, false);
7292 return;
7296 * Tailchaining: if there is currently a pending exception that
7297 * is high enough priority to preempt execution at the level we're
7298 * about to return to, then just directly take that exception now,
7299 * avoiding an unstack-and-then-stack. Note that now we have
7300 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
7301 * our current execution priority is already the execution priority we are
7302 * returning to -- none of the state we would unstack or set based on
7303 * the EXCRET value affects it.
7305 if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
7306 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
7307 v7m_exception_taken(cpu, excret, true, false);
7308 return;
7311 switch_v7m_security_state(env, return_to_secure);
7314 /* The stack pointer we should be reading the exception frame from
7315 * depends on bits in the magic exception return type value (and
7316 * for v8M isn't necessarily the stack pointer we will eventually
7317 * end up resuming execution with). Get a pointer to the location
7318 * in the CPU state struct where the SP we need is currently being
7319 * stored; we will use and modify it in place.
7320 * We use this limited C variable scope so we don't accidentally
7321 * use 'frame_sp_p' after we do something that makes it invalid.
7323 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
7324 return_to_secure,
7325 !return_to_handler,
7326 return_to_sp_process);
7327 uint32_t frameptr = *frame_sp_p;
7328 bool pop_ok = true;
7329 ARMMMUIdx mmu_idx;
7330 bool return_to_priv = return_to_handler ||
7331 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
7333 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
7334 return_to_priv);
7336 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
7337 arm_feature(env, ARM_FEATURE_V8)) {
7338 qemu_log_mask(LOG_GUEST_ERROR,
7339 "M profile exception return with non-8-aligned SP "
7340 "for destination state is UNPREDICTABLE\n");
7343 /* Do we need to pop callee-saved registers? */
7344 if (return_to_secure &&
7345 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
7346 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
7347 uint32_t expected_sig = 0xfefa125b;
7348 uint32_t actual_sig;
7350 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
7352 if (pop_ok && expected_sig != actual_sig) {
7353 /* Take a SecureFault on the current stack */
7354 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
7355 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7356 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7357 "stackframe: failed exception return integrity "
7358 "signature check\n");
7359 v7m_exception_taken(cpu, excret, true, false);
7360 return;
7363 pop_ok = pop_ok &&
7364 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
7365 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
7366 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
7367 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
7368 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
7369 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
7370 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
7371 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
7373 frameptr += 0x28;
7376 /* Pop registers */
7377 pop_ok = pop_ok &&
7378 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
7379 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
7380 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
7381 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
7382 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
7383 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
7384 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
7385 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
7387 if (!pop_ok) {
7388 /* v7m_stack_read() pended a fault, so take it (as a tail
7389 * chained exception on the same stack frame)
7391 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
7392 v7m_exception_taken(cpu, excret, true, false);
7393 return;
7396 /* Returning from an exception with a PC with bit 0 set is defined
7397 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
7398 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
7399 * the lsbit, and there are several RTOSes out there which incorrectly
7400 * assume the r15 in the stack frame should be a Thumb-style "lsbit
7401 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
7402 * complain about the badly behaved guest.
7404 if (env->regs[15] & 1) {
7405 env->regs[15] &= ~1U;
7406 if (!arm_feature(env, ARM_FEATURE_V8)) {
7407 qemu_log_mask(LOG_GUEST_ERROR,
7408 "M profile return from interrupt with misaligned "
7409 "PC is UNPREDICTABLE on v7M\n");
7413 if (arm_feature(env, ARM_FEATURE_V8)) {
7414 /* For v8M we have to check whether the xPSR exception field
7415 * matches the EXCRET value for return to handler/thread
7416 * before we commit to changing the SP and xPSR.
7418 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
7419 if (return_to_handler != will_be_handler) {
7420 /* Take an INVPC UsageFault on the current stack.
7421 * By this point we will have switched to the security state
7422 * for the background state, so this UsageFault will target
7423 * that state.
7425 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7426 env->v7m.secure);
7427 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7428 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7429 "stackframe: failed exception return integrity "
7430 "check\n");
7431 v7m_exception_taken(cpu, excret, true, false);
7432 return;
7436 /* Commit to consuming the stack frame */
7437 frameptr += 0x20;
7438 /* Undo stack alignment (the SPREALIGN bit indicates that the original
7439 * pre-exception SP was not 8-aligned and we added a padding word to
7440 * align it, so we undo this by ORing in the bit that increases it
7441 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
7442 * would work too but a logical OR is how the pseudocode specifies it.)
7444 if (xpsr & XPSR_SPREALIGN) {
7445 frameptr |= 4;
7447 *frame_sp_p = frameptr;
7449 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
7450 xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
7452 /* The restored xPSR exception field will be zero if we're
7453 * resuming in Thread mode. If that doesn't match what the
7454 * exception return excret specified then this is a UsageFault.
7455 * v7M requires we make this check here; v8M did it earlier.
7457 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
7458 /* Take an INVPC UsageFault by pushing the stack again;
7459 * we know we're v7M so this is never a Secure UsageFault.
7461 bool ignore_stackfaults;
7463 assert(!arm_feature(env, ARM_FEATURE_V8));
7464 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
7465 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7466 ignore_stackfaults = v7m_push_stack(cpu);
7467 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
7468 "failed exception return integrity check\n");
7469 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
7470 return;
7473 /* Otherwise, we have a successful exception exit. */
7474 arm_clear_exclusive(env);
7475 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
7478 static bool do_v7m_function_return(ARMCPU *cpu)
7480 /* v8M security extensions magic function return.
7481 * We may either:
7482 * (1) throw an exception (longjump)
7483 * (2) return true if we successfully handled the function return
7484 * (3) return false if we failed a consistency check and have
7485 * pended a UsageFault that needs to be taken now
7487 * At this point the magic return value is split between env->regs[15]
7488 * and env->thumb. We don't bother to reconstitute it because we don't
7489 * need it (all values are handled the same way).
7491 CPUARMState *env = &cpu->env;
7492 uint32_t newpc, newpsr, newpsr_exc;
7494 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
7497 bool threadmode, spsel;
7498 TCGMemOpIdx oi;
7499 ARMMMUIdx mmu_idx;
7500 uint32_t *frame_sp_p;
7501 uint32_t frameptr;
7503 /* Pull the return address and IPSR from the Secure stack */
7504 threadmode = !arm_v7m_is_handler_mode(env);
7505 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
7507 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
7508 frameptr = *frame_sp_p;
7510 /* These loads may throw an exception (for MPU faults). We want to
7511 * do them as secure, so work out what MMU index that is.
7513 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7514 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
7515 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
7516 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
7518 /* Consistency checks on new IPSR */
7519 newpsr_exc = newpsr & XPSR_EXCP;
7520 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
7521 (env->v7m.exception == 1 && newpsr_exc != 0))) {
7522 /* Pend the fault and tell our caller to take it */
7523 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7524 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7525 env->v7m.secure);
7526 qemu_log_mask(CPU_LOG_INT,
7527 "...taking INVPC UsageFault: "
7528 "IPSR consistency check failed\n");
7529 return false;
7532 *frame_sp_p = frameptr + 8;
7535 /* This invalidates frame_sp_p */
7536 switch_v7m_security_state(env, true);
7537 env->v7m.exception = newpsr_exc;
7538 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
7539 if (newpsr & XPSR_SFPA) {
7540 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
7542 xpsr_write(env, 0, XPSR_IT);
7543 env->thumb = newpc & 1;
7544 env->regs[15] = newpc & ~1;
7546 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
7547 return true;
7550 static void arm_log_exception(int idx)
7552 if (qemu_loglevel_mask(CPU_LOG_INT)) {
7553 const char *exc = NULL;
7554 static const char * const excnames[] = {
7555 [EXCP_UDEF] = "Undefined Instruction",
7556 [EXCP_SWI] = "SVC",
7557 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7558 [EXCP_DATA_ABORT] = "Data Abort",
7559 [EXCP_IRQ] = "IRQ",
7560 [EXCP_FIQ] = "FIQ",
7561 [EXCP_BKPT] = "Breakpoint",
7562 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7563 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7564 [EXCP_HVC] = "Hypervisor Call",
7565 [EXCP_HYP_TRAP] = "Hypervisor Trap",
7566 [EXCP_SMC] = "Secure Monitor Call",
7567 [EXCP_VIRQ] = "Virtual IRQ",
7568 [EXCP_VFIQ] = "Virtual FIQ",
7569 [EXCP_SEMIHOST] = "Semihosting call",
7570 [EXCP_NOCP] = "v7M NOCP UsageFault",
7571 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7572 [EXCP_STKOF] = "v8M STKOF UsageFault",
7575 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
7576 exc = excnames[idx];
7578 if (!exc) {
7579 exc = "unknown";
7581 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
7585 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
7586 uint32_t addr, uint16_t *insn)
7588 /* Load a 16-bit portion of a v7M instruction, returning true on success,
7589 * or false on failure (in which case we will have pended the appropriate
7590 * exception).
7591 * We need to do the instruction fetch's MPU and SAU checks
7592 * like this because there is no MMU index that would allow
7593 * doing the load with a single function call. Instead we must
7594 * first check that the security attributes permit the load
7595 * and that they don't mismatch on the two halves of the instruction,
7596 * and then we do the load as a secure load (ie using the security
7597 * attributes of the address, not the CPU, as architecturally required).
7599 CPUState *cs = CPU(cpu);
7600 CPUARMState *env = &cpu->env;
7601 V8M_SAttributes sattrs = {};
7602 MemTxAttrs attrs = {};
7603 ARMMMUFaultInfo fi = {};
7604 MemTxResult txres;
7605 target_ulong page_size;
7606 hwaddr physaddr;
7607 int prot;
7609 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
7610 if (!sattrs.nsc || sattrs.ns) {
7611 /* This must be the second half of the insn, and it straddles a
7612 * region boundary with the second half not being S&NSC.
7614 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7615 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7616 qemu_log_mask(CPU_LOG_INT,
7617 "...really SecureFault with SFSR.INVEP\n");
7618 return false;
7620 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
7621 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
7622 /* the MPU lookup failed */
7623 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7624 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
7625 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
7626 return false;
7628 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
7629 attrs, &txres);
7630 if (txres != MEMTX_OK) {
7631 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7632 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7633 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
7634 return false;
7636 return true;
7639 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
7641 /* Check whether this attempt to execute code in a Secure & NS-Callable
7642 * memory region is for an SG instruction; if so, then emulate the
7643 * effect of the SG instruction and return true. Otherwise pend
7644 * the correct kind of exception and return false.
7646 CPUARMState *env = &cpu->env;
7647 ARMMMUIdx mmu_idx;
7648 uint16_t insn;
7650 /* We should never get here unless get_phys_addr_pmsav8() caused
7651 * an exception for NS executing in S&NSC memory.
7653 assert(!env->v7m.secure);
7654 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7656 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
7657 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7659 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
7660 return false;
7663 if (!env->thumb) {
7664 goto gen_invep;
7667 if (insn != 0xe97f) {
7668 /* Not an SG instruction first half (we choose the IMPDEF
7669 * early-SG-check option).
7671 goto gen_invep;
7674 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
7675 return false;
7678 if (insn != 0xe97f) {
7679 /* Not an SG instruction second half (yes, both halves of the SG
7680 * insn have the same hex value)
7682 goto gen_invep;
7685 /* OK, we have confirmed that we really have an SG instruction.
7686 * We know we're NS in S memory so don't need to repeat those checks.
7688 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
7689 ", executing it\n", env->regs[15]);
7690 env->regs[14] &= ~1;
7691 switch_v7m_security_state(env, true);
7692 xpsr_write(env, 0, XPSR_IT);
7693 env->regs[15] += 4;
7694 return true;
7696 gen_invep:
7697 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7698 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7699 qemu_log_mask(CPU_LOG_INT,
7700 "...really SecureFault with SFSR.INVEP\n");
7701 return false;
7704 void arm_v7m_cpu_do_interrupt(CPUState *cs)
7706 ARMCPU *cpu = ARM_CPU(cs);
7707 CPUARMState *env = &cpu->env;
7708 uint32_t lr;
7709 bool ignore_stackfaults;
7711 arm_log_exception(cs->exception_index);
7713 /* For exceptions we just mark as pending on the NVIC, and let that
7714 handle it. */
7715 switch (cs->exception_index) {
7716 case EXCP_UDEF:
7717 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7718 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
7719 break;
7720 case EXCP_NOCP:
7721 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7722 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
7723 break;
7724 case EXCP_INVSTATE:
7725 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7726 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
7727 break;
7728 case EXCP_STKOF:
7729 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7730 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
7731 break;
7732 case EXCP_SWI:
7733 /* The PC already points to the next instruction. */
7734 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
7735 break;
7736 case EXCP_PREFETCH_ABORT:
7737 case EXCP_DATA_ABORT:
7738 /* Note that for M profile we don't have a guest facing FSR, but
7739 * the env->exception.fsr will be populated by the code that
7740 * raises the fault, in the A profile short-descriptor format.
7742 switch (env->exception.fsr & 0xf) {
7743 case M_FAKE_FSR_NSC_EXEC:
7744 /* Exception generated when we try to execute code at an address
7745 * which is marked as Secure & Non-Secure Callable and the CPU
7746 * is in the Non-Secure state. The only instruction which can
7747 * be executed like this is SG (and that only if both halves of
7748 * the SG instruction have the same security attributes.)
7749 * Everything else must generate an INVEP SecureFault, so we
7750 * emulate the SG instruction here.
7752 if (v7m_handle_execute_nsc(cpu)) {
7753 return;
7755 break;
7756 case M_FAKE_FSR_SFAULT:
7757 /* Various flavours of SecureFault for attempts to execute or
7758 * access data in the wrong security state.
7760 switch (cs->exception_index) {
7761 case EXCP_PREFETCH_ABORT:
7762 if (env->v7m.secure) {
7763 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
7764 qemu_log_mask(CPU_LOG_INT,
7765 "...really SecureFault with SFSR.INVTRAN\n");
7766 } else {
7767 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7768 qemu_log_mask(CPU_LOG_INT,
7769 "...really SecureFault with SFSR.INVEP\n");
7771 break;
7772 case EXCP_DATA_ABORT:
7773 /* This must be an NS access to S memory */
7774 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7775 qemu_log_mask(CPU_LOG_INT,
7776 "...really SecureFault with SFSR.AUVIOL\n");
7777 break;
7779 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7780 break;
7781 case 0x8: /* External Abort */
7782 switch (cs->exception_index) {
7783 case EXCP_PREFETCH_ABORT:
7784 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7785 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
7786 break;
7787 case EXCP_DATA_ABORT:
7788 env->v7m.cfsr[M_REG_NS] |=
7789 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
7790 env->v7m.bfar = env->exception.vaddress;
7791 qemu_log_mask(CPU_LOG_INT,
7792 "...with CFSR.PRECISERR and BFAR 0x%x\n",
7793 env->v7m.bfar);
7794 break;
7796 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7797 break;
7798 default:
7799 /* All other FSR values are either MPU faults or "can't happen
7800 * for M profile" cases.
7802 switch (cs->exception_index) {
7803 case EXCP_PREFETCH_ABORT:
7804 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7805 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
7806 break;
7807 case EXCP_DATA_ABORT:
7808 env->v7m.cfsr[env->v7m.secure] |=
7809 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
7810 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
7811 qemu_log_mask(CPU_LOG_INT,
7812 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
7813 env->v7m.mmfar[env->v7m.secure]);
7814 break;
7816 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
7817 env->v7m.secure);
7818 break;
7820 break;
7821 case EXCP_BKPT:
7822 if (semihosting_enabled()) {
7823 int nr;
7824 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
7825 if (nr == 0xab) {
7826 env->regs[15] += 2;
7827 qemu_log_mask(CPU_LOG_INT,
7828 "...handling as semihosting call 0x%x\n",
7829 env->regs[0]);
7830 env->regs[0] = do_arm_semihosting(env);
7831 return;
7834 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
7835 break;
7836 case EXCP_IRQ:
7837 break;
7838 case EXCP_EXCEPTION_EXIT:
7839 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
7840 /* Must be v8M security extension function return */
7841 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
7842 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7843 if (do_v7m_function_return(cpu)) {
7844 return;
7846 } else {
7847 do_v7m_exception_exit(cpu);
7848 return;
7850 break;
7851 default:
7852 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7853 return; /* Never happens. Keep compiler happy. */
7856 if (arm_feature(env, ARM_FEATURE_V8)) {
7857 lr = R_V7M_EXCRET_RES1_MASK |
7858 R_V7M_EXCRET_DCRS_MASK |
7859 R_V7M_EXCRET_FTYPE_MASK;
7860 /* The S bit indicates whether we should return to Secure
7861 * or NonSecure (ie our current state).
7862 * The ES bit indicates whether we're taking this exception
7863 * to Secure or NonSecure (ie our target state). We set it
7864 * later, in v7m_exception_taken().
7865 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
7866 * This corresponds to the ARM ARM pseudocode for v8M setting
7867 * some LR bits in PushStack() and some in ExceptionTaken();
7868 * the distinction matters for the tailchain cases where we
7869 * can take an exception without pushing the stack.
7871 if (env->v7m.secure) {
7872 lr |= R_V7M_EXCRET_S_MASK;
7874 } else {
7875 lr = R_V7M_EXCRET_RES1_MASK |
7876 R_V7M_EXCRET_S_MASK |
7877 R_V7M_EXCRET_DCRS_MASK |
7878 R_V7M_EXCRET_FTYPE_MASK |
7879 R_V7M_EXCRET_ES_MASK;
7880 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
7881 lr |= R_V7M_EXCRET_SPSEL_MASK;
7884 if (!arm_v7m_is_handler_mode(env)) {
7885 lr |= R_V7M_EXCRET_MODE_MASK;
7888 ignore_stackfaults = v7m_push_stack(cpu);
7889 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
7892 /* Function used to synchronize QEMU's AArch64 register set with AArch32
7893 * register set. This is necessary when switching between AArch32 and AArch64
7894 * execution state.
7896 void aarch64_sync_32_to_64(CPUARMState *env)
7898 int i;
7899 uint32_t mode = env->uncached_cpsr & CPSR_M;
7901 /* We can blanket copy R[0:7] to X[0:7] */
7902 for (i = 0; i < 8; i++) {
7903 env->xregs[i] = env->regs[i];
7906 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7907 * Otherwise, they come from the banked user regs.
7909 if (mode == ARM_CPU_MODE_FIQ) {
7910 for (i = 8; i < 13; i++) {
7911 env->xregs[i] = env->usr_regs[i - 8];
7913 } else {
7914 for (i = 8; i < 13; i++) {
7915 env->xregs[i] = env->regs[i];
7919 /* Registers x13-x23 are the various mode SP and FP registers. Registers
7920 * r13 and r14 are only copied if we are in that mode, otherwise we copy
7921 * from the mode banked register.
7923 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7924 env->xregs[13] = env->regs[13];
7925 env->xregs[14] = env->regs[14];
7926 } else {
7927 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7928 /* HYP is an exception in that it is copied from r14 */
7929 if (mode == ARM_CPU_MODE_HYP) {
7930 env->xregs[14] = env->regs[14];
7931 } else {
7932 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
7936 if (mode == ARM_CPU_MODE_HYP) {
7937 env->xregs[15] = env->regs[13];
7938 } else {
7939 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7942 if (mode == ARM_CPU_MODE_IRQ) {
7943 env->xregs[16] = env->regs[14];
7944 env->xregs[17] = env->regs[13];
7945 } else {
7946 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
7947 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7950 if (mode == ARM_CPU_MODE_SVC) {
7951 env->xregs[18] = env->regs[14];
7952 env->xregs[19] = env->regs[13];
7953 } else {
7954 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
7955 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7958 if (mode == ARM_CPU_MODE_ABT) {
7959 env->xregs[20] = env->regs[14];
7960 env->xregs[21] = env->regs[13];
7961 } else {
7962 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
7963 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7966 if (mode == ARM_CPU_MODE_UND) {
7967 env->xregs[22] = env->regs[14];
7968 env->xregs[23] = env->regs[13];
7969 } else {
7970 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
7971 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7974 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7975 * mode, then we can copy from r8-r14. Otherwise, we copy from the
7976 * FIQ bank for r8-r14.
7978 if (mode == ARM_CPU_MODE_FIQ) {
7979 for (i = 24; i < 31; i++) {
7980 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
7982 } else {
7983 for (i = 24; i < 29; i++) {
7984 env->xregs[i] = env->fiq_regs[i - 24];
7986 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7987 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
7990 env->pc = env->regs[15];
7993 /* Function used to synchronize QEMU's AArch32 register set with AArch64
7994 * register set. This is necessary when switching between AArch32 and AArch64
7995 * execution state.
7997 void aarch64_sync_64_to_32(CPUARMState *env)
7999 int i;
8000 uint32_t mode = env->uncached_cpsr & CPSR_M;
8002 /* We can blanket copy X[0:7] to R[0:7] */
8003 for (i = 0; i < 8; i++) {
8004 env->regs[i] = env->xregs[i];
8007 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
8008 * Otherwise, we copy x8-x12 into the banked user regs.
8010 if (mode == ARM_CPU_MODE_FIQ) {
8011 for (i = 8; i < 13; i++) {
8012 env->usr_regs[i - 8] = env->xregs[i];
8014 } else {
8015 for (i = 8; i < 13; i++) {
8016 env->regs[i] = env->xregs[i];
8020 /* Registers r13 & r14 depend on the current mode.
8021 * If we are in a given mode, we copy the corresponding x registers to r13
8022 * and r14. Otherwise, we copy the x register to the banked r13 and r14
8023 * for the mode.
8025 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8026 env->regs[13] = env->xregs[13];
8027 env->regs[14] = env->xregs[14];
8028 } else {
8029 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
8031 /* HYP is an exception in that it does not have its own banked r14 but
8032 * shares the USR r14
8034 if (mode == ARM_CPU_MODE_HYP) {
8035 env->regs[14] = env->xregs[14];
8036 } else {
8037 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
8041 if (mode == ARM_CPU_MODE_HYP) {
8042 env->regs[13] = env->xregs[15];
8043 } else {
8044 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
8047 if (mode == ARM_CPU_MODE_IRQ) {
8048 env->regs[14] = env->xregs[16];
8049 env->regs[13] = env->xregs[17];
8050 } else {
8051 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
8052 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
8055 if (mode == ARM_CPU_MODE_SVC) {
8056 env->regs[14] = env->xregs[18];
8057 env->regs[13] = env->xregs[19];
8058 } else {
8059 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
8060 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
8063 if (mode == ARM_CPU_MODE_ABT) {
8064 env->regs[14] = env->xregs[20];
8065 env->regs[13] = env->xregs[21];
8066 } else {
8067 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
8068 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
8071 if (mode == ARM_CPU_MODE_UND) {
8072 env->regs[14] = env->xregs[22];
8073 env->regs[13] = env->xregs[23];
8074 } else {
8075 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
8076 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
8079 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
8080 * mode, then we can copy to r8-r14. Otherwise, we copy to the
8081 * FIQ bank for r8-r14.
8083 if (mode == ARM_CPU_MODE_FIQ) {
8084 for (i = 24; i < 31; i++) {
8085 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
8087 } else {
8088 for (i = 24; i < 29; i++) {
8089 env->fiq_regs[i - 24] = env->xregs[i];
8091 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
8092 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
8095 env->regs[15] = env->pc;
8098 static void take_aarch32_exception(CPUARMState *env, int new_mode,
8099 uint32_t mask, uint32_t offset,
8100 uint32_t newpc)
8102 /* Change the CPU state so as to actually take the exception. */
8103 switch_mode(env, new_mode);
8105 * For exceptions taken to AArch32 we must clear the SS bit in both
8106 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8108 env->uncached_cpsr &= ~PSTATE_SS;
8109 env->spsr = cpsr_read(env);
8110 /* Clear IT bits. */
8111 env->condexec_bits = 0;
8112 /* Switch to the new mode, and to the correct instruction set. */
8113 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8114 /* Set new mode endianness */
8115 env->uncached_cpsr &= ~CPSR_E;
8116 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
8117 env->uncached_cpsr |= CPSR_E;
8119 /* J and IL must always be cleared for exception entry */
8120 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
8121 env->daif |= mask;
8123 if (new_mode == ARM_CPU_MODE_HYP) {
8124 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
8125 env->elr_el[2] = env->regs[15];
8126 } else {
8128 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
8129 * and we should just guard the thumb mode on V4
8131 if (arm_feature(env, ARM_FEATURE_V4T)) {
8132 env->thumb =
8133 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8135 env->regs[14] = env->regs[15] + offset;
8137 env->regs[15] = newpc;
8140 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
8143 * Handle exception entry to Hyp mode; this is sufficiently
8144 * different to entry to other AArch32 modes that we handle it
8145 * separately here.
8147 * The vector table entry used is always the 0x14 Hyp mode entry point,
8148 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
8149 * The offset applied to the preferred return address is always zero
8150 * (see DDI0487C.a section G1.12.3).
8151 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
8153 uint32_t addr, mask;
8154 ARMCPU *cpu = ARM_CPU(cs);
8155 CPUARMState *env = &cpu->env;
8157 switch (cs->exception_index) {
8158 case EXCP_UDEF:
8159 addr = 0x04;
8160 break;
8161 case EXCP_SWI:
8162 addr = 0x14;
8163 break;
8164 case EXCP_BKPT:
8165 /* Fall through to prefetch abort. */
8166 case EXCP_PREFETCH_ABORT:
8167 env->cp15.ifar_s = env->exception.vaddress;
8168 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
8169 (uint32_t)env->exception.vaddress);
8170 addr = 0x0c;
8171 break;
8172 case EXCP_DATA_ABORT:
8173 env->cp15.dfar_s = env->exception.vaddress;
8174 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
8175 (uint32_t)env->exception.vaddress);
8176 addr = 0x10;
8177 break;
8178 case EXCP_IRQ:
8179 addr = 0x18;
8180 break;
8181 case EXCP_FIQ:
8182 addr = 0x1c;
8183 break;
8184 case EXCP_HVC:
8185 addr = 0x08;
8186 break;
8187 case EXCP_HYP_TRAP:
8188 addr = 0x14;
8189 default:
8190 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8193 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
8194 env->cp15.esr_el[2] = env->exception.syndrome;
8197 if (arm_current_el(env) != 2 && addr < 0x14) {
8198 addr = 0x14;
8201 mask = 0;
8202 if (!(env->cp15.scr_el3 & SCR_EA)) {
8203 mask |= CPSR_A;
8205 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
8206 mask |= CPSR_I;
8208 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
8209 mask |= CPSR_F;
8212 addr += env->cp15.hvbar;
8214 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
8217 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
8219 ARMCPU *cpu = ARM_CPU(cs);
8220 CPUARMState *env = &cpu->env;
8221 uint32_t addr;
8222 uint32_t mask;
8223 int new_mode;
8224 uint32_t offset;
8225 uint32_t moe;
8227 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
8228 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
8229 case EC_BREAKPOINT:
8230 case EC_BREAKPOINT_SAME_EL:
8231 moe = 1;
8232 break;
8233 case EC_WATCHPOINT:
8234 case EC_WATCHPOINT_SAME_EL:
8235 moe = 10;
8236 break;
8237 case EC_AA32_BKPT:
8238 moe = 3;
8239 break;
8240 case EC_VECTORCATCH:
8241 moe = 5;
8242 break;
8243 default:
8244 moe = 0;
8245 break;
8248 if (moe) {
8249 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
8252 if (env->exception.target_el == 2) {
8253 arm_cpu_do_interrupt_aarch32_hyp(cs);
8254 return;
8257 /* TODO: Vectored interrupt controller. */
8258 switch (cs->exception_index) {
8259 case EXCP_UDEF:
8260 new_mode = ARM_CPU_MODE_UND;
8261 addr = 0x04;
8262 mask = CPSR_I;
8263 if (env->thumb)
8264 offset = 2;
8265 else
8266 offset = 4;
8267 break;
8268 case EXCP_SWI:
8269 new_mode = ARM_CPU_MODE_SVC;
8270 addr = 0x08;
8271 mask = CPSR_I;
8272 /* The PC already points to the next instruction. */
8273 offset = 0;
8274 break;
8275 case EXCP_BKPT:
8276 /* Fall through to prefetch abort. */
8277 case EXCP_PREFETCH_ABORT:
8278 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
8279 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
8280 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
8281 env->exception.fsr, (uint32_t)env->exception.vaddress);
8282 new_mode = ARM_CPU_MODE_ABT;
8283 addr = 0x0c;
8284 mask = CPSR_A | CPSR_I;
8285 offset = 4;
8286 break;
8287 case EXCP_DATA_ABORT:
8288 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
8289 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
8290 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
8291 env->exception.fsr,
8292 (uint32_t)env->exception.vaddress);
8293 new_mode = ARM_CPU_MODE_ABT;
8294 addr = 0x10;
8295 mask = CPSR_A | CPSR_I;
8296 offset = 8;
8297 break;
8298 case EXCP_IRQ:
8299 new_mode = ARM_CPU_MODE_IRQ;
8300 addr = 0x18;
8301 /* Disable IRQ and imprecise data aborts. */
8302 mask = CPSR_A | CPSR_I;
8303 offset = 4;
8304 if (env->cp15.scr_el3 & SCR_IRQ) {
8305 /* IRQ routed to monitor mode */
8306 new_mode = ARM_CPU_MODE_MON;
8307 mask |= CPSR_F;
8309 break;
8310 case EXCP_FIQ:
8311 new_mode = ARM_CPU_MODE_FIQ;
8312 addr = 0x1c;
8313 /* Disable FIQ, IRQ and imprecise data aborts. */
8314 mask = CPSR_A | CPSR_I | CPSR_F;
8315 if (env->cp15.scr_el3 & SCR_FIQ) {
8316 /* FIQ routed to monitor mode */
8317 new_mode = ARM_CPU_MODE_MON;
8319 offset = 4;
8320 break;
8321 case EXCP_VIRQ:
8322 new_mode = ARM_CPU_MODE_IRQ;
8323 addr = 0x18;
8324 /* Disable IRQ and imprecise data aborts. */
8325 mask = CPSR_A | CPSR_I;
8326 offset = 4;
8327 break;
8328 case EXCP_VFIQ:
8329 new_mode = ARM_CPU_MODE_FIQ;
8330 addr = 0x1c;
8331 /* Disable FIQ, IRQ and imprecise data aborts. */
8332 mask = CPSR_A | CPSR_I | CPSR_F;
8333 offset = 4;
8334 break;
8335 case EXCP_SMC:
8336 new_mode = ARM_CPU_MODE_MON;
8337 addr = 0x08;
8338 mask = CPSR_A | CPSR_I | CPSR_F;
8339 offset = 0;
8340 break;
8341 default:
8342 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8343 return; /* Never happens. Keep compiler happy. */
8346 if (new_mode == ARM_CPU_MODE_MON) {
8347 addr += env->cp15.mvbar;
8348 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
8349 /* High vectors. When enabled, base address cannot be remapped. */
8350 addr += 0xffff0000;
8351 } else {
8352 /* ARM v7 architectures provide a vector base address register to remap
8353 * the interrupt vector table.
8354 * This register is only followed in non-monitor mode, and is banked.
8355 * Note: only bits 31:5 are valid.
8357 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
8360 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
8361 env->cp15.scr_el3 &= ~SCR_NS;
8364 take_aarch32_exception(env, new_mode, mask, offset, addr);
8367 /* Handle exception entry to a target EL which is using AArch64 */
8368 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8370 ARMCPU *cpu = ARM_CPU(cs);
8371 CPUARMState *env = &cpu->env;
8372 unsigned int new_el = env->exception.target_el;
8373 target_ulong addr = env->cp15.vbar_el[new_el];
8374 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
8375 unsigned int cur_el = arm_current_el(env);
8377 aarch64_sve_change_el(env, cur_el, new_el);
8379 if (cur_el < new_el) {
8380 /* Entry vector offset depends on whether the implemented EL
8381 * immediately lower than the target level is using AArch32 or AArch64
8383 bool is_aa64;
8385 switch (new_el) {
8386 case 3:
8387 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
8388 break;
8389 case 2:
8390 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
8391 break;
8392 case 1:
8393 is_aa64 = is_a64(env);
8394 break;
8395 default:
8396 g_assert_not_reached();
8399 if (is_aa64) {
8400 addr += 0x400;
8401 } else {
8402 addr += 0x600;
8404 } else if (pstate_read(env) & PSTATE_SP) {
8405 addr += 0x200;
8408 switch (cs->exception_index) {
8409 case EXCP_PREFETCH_ABORT:
8410 case EXCP_DATA_ABORT:
8411 env->cp15.far_el[new_el] = env->exception.vaddress;
8412 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8413 env->cp15.far_el[new_el]);
8414 /* fall through */
8415 case EXCP_BKPT:
8416 case EXCP_UDEF:
8417 case EXCP_SWI:
8418 case EXCP_HVC:
8419 case EXCP_HYP_TRAP:
8420 case EXCP_SMC:
8421 env->cp15.esr_el[new_el] = env->exception.syndrome;
8422 break;
8423 case EXCP_IRQ:
8424 case EXCP_VIRQ:
8425 addr += 0x80;
8426 break;
8427 case EXCP_FIQ:
8428 case EXCP_VFIQ:
8429 addr += 0x100;
8430 break;
8431 case EXCP_SEMIHOST:
8432 qemu_log_mask(CPU_LOG_INT,
8433 "...handling as semihosting call 0x%" PRIx64 "\n",
8434 env->xregs[0]);
8435 env->xregs[0] = do_arm_semihosting(env);
8436 return;
8437 default:
8438 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8441 if (is_a64(env)) {
8442 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
8443 aarch64_save_sp(env, arm_current_el(env));
8444 env->elr_el[new_el] = env->pc;
8445 } else {
8446 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
8447 env->elr_el[new_el] = env->regs[15];
8449 aarch64_sync_32_to_64(env);
8451 env->condexec_bits = 0;
8453 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
8454 env->elr_el[new_el]);
8456 pstate_write(env, PSTATE_DAIF | new_mode);
8457 env->aarch64 = 1;
8458 aarch64_restore_sp(env, new_el);
8460 env->pc = addr;
8462 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
8463 new_el, env->pc, pstate_read(env));
8466 static inline bool check_for_semihosting(CPUState *cs)
8468 /* Check whether this exception is a semihosting call; if so
8469 * then handle it and return true; otherwise return false.
8471 ARMCPU *cpu = ARM_CPU(cs);
8472 CPUARMState *env = &cpu->env;
8474 if (is_a64(env)) {
8475 if (cs->exception_index == EXCP_SEMIHOST) {
8476 /* This is always the 64-bit semihosting exception.
8477 * The "is this usermode" and "is semihosting enabled"
8478 * checks have been done at translate time.
8480 qemu_log_mask(CPU_LOG_INT,
8481 "...handling as semihosting call 0x%" PRIx64 "\n",
8482 env->xregs[0]);
8483 env->xregs[0] = do_arm_semihosting(env);
8484 return true;
8486 return false;
8487 } else {
8488 uint32_t imm;
8490 /* Only intercept calls from privileged modes, to provide some
8491 * semblance of security.
8493 if (cs->exception_index != EXCP_SEMIHOST &&
8494 (!semihosting_enabled() ||
8495 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
8496 return false;
8499 switch (cs->exception_index) {
8500 case EXCP_SEMIHOST:
8501 /* This is always a semihosting call; the "is this usermode"
8502 * and "is semihosting enabled" checks have been done at
8503 * translate time.
8505 break;
8506 case EXCP_SWI:
8507 /* Check for semihosting interrupt. */
8508 if (env->thumb) {
8509 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
8510 & 0xff;
8511 if (imm == 0xab) {
8512 break;
8514 } else {
8515 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
8516 & 0xffffff;
8517 if (imm == 0x123456) {
8518 break;
8521 return false;
8522 case EXCP_BKPT:
8523 /* See if this is a semihosting syscall. */
8524 if (env->thumb) {
8525 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
8526 & 0xff;
8527 if (imm == 0xab) {
8528 env->regs[15] += 2;
8529 break;
8532 return false;
8533 default:
8534 return false;
8537 qemu_log_mask(CPU_LOG_INT,
8538 "...handling as semihosting call 0x%x\n",
8539 env->regs[0]);
8540 env->regs[0] = do_arm_semihosting(env);
8541 return true;
8545 /* Handle a CPU exception for A and R profile CPUs.
8546 * Do any appropriate logging, handle PSCI calls, and then hand off
8547 * to the AArch64-entry or AArch32-entry function depending on the
8548 * target exception level's register width.
8550 void arm_cpu_do_interrupt(CPUState *cs)
8552 ARMCPU *cpu = ARM_CPU(cs);
8553 CPUARMState *env = &cpu->env;
8554 unsigned int new_el = env->exception.target_el;
8556 assert(!arm_feature(env, ARM_FEATURE_M));
8558 arm_log_exception(cs->exception_index);
8559 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
8560 new_el);
8561 if (qemu_loglevel_mask(CPU_LOG_INT)
8562 && !excp_is_internal(cs->exception_index)) {
8563 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8564 env->exception.syndrome >> ARM_EL_EC_SHIFT,
8565 env->exception.syndrome);
8568 if (arm_is_psci_call(cpu, cs->exception_index)) {
8569 arm_handle_psci_call(cpu);
8570 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
8571 return;
8574 /* Semihosting semantics depend on the register width of the
8575 * code that caused the exception, not the target exception level,
8576 * so must be handled here.
8578 if (check_for_semihosting(cs)) {
8579 return;
8582 /* Hooks may change global state so BQL should be held, also the
8583 * BQL needs to be held for any modification of
8584 * cs->interrupt_request.
8586 g_assert(qemu_mutex_iothread_locked());
8588 arm_call_pre_el_change_hook(cpu);
8590 assert(!excp_is_internal(cs->exception_index));
8591 if (arm_el_is_aa64(env, new_el)) {
8592 arm_cpu_do_interrupt_aarch64(cs);
8593 } else {
8594 arm_cpu_do_interrupt_aarch32(cs);
8597 arm_call_el_change_hook(cpu);
8599 if (!kvm_enabled()) {
8600 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
8604 /* Return the exception level which controls this address translation regime */
8605 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
8607 switch (mmu_idx) {
8608 case ARMMMUIdx_S2NS:
8609 case ARMMMUIdx_S1E2:
8610 return 2;
8611 case ARMMMUIdx_S1E3:
8612 return 3;
8613 case ARMMMUIdx_S1SE0:
8614 return arm_el_is_aa64(env, 3) ? 1 : 3;
8615 case ARMMMUIdx_S1SE1:
8616 case ARMMMUIdx_S1NSE0:
8617 case ARMMMUIdx_S1NSE1:
8618 case ARMMMUIdx_MPrivNegPri:
8619 case ARMMMUIdx_MUserNegPri:
8620 case ARMMMUIdx_MPriv:
8621 case ARMMMUIdx_MUser:
8622 case ARMMMUIdx_MSPrivNegPri:
8623 case ARMMMUIdx_MSUserNegPri:
8624 case ARMMMUIdx_MSPriv:
8625 case ARMMMUIdx_MSUser:
8626 return 1;
8627 default:
8628 g_assert_not_reached();
8632 /* Return the SCTLR value which controls this address translation regime */
8633 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
8635 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
8638 /* Return true if the specified stage of address translation is disabled */
8639 static inline bool regime_translation_disabled(CPUARMState *env,
8640 ARMMMUIdx mmu_idx)
8642 if (arm_feature(env, ARM_FEATURE_M)) {
8643 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8644 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
8645 case R_V7M_MPU_CTRL_ENABLE_MASK:
8646 /* Enabled, but not for HardFault and NMI */
8647 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8648 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
8649 /* Enabled for all cases */
8650 return false;
8651 case 0:
8652 default:
8653 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8654 * we warned about that in armv7m_nvic.c when the guest set it.
8656 return true;
8660 if (mmu_idx == ARMMMUIdx_S2NS) {
8661 return (env->cp15.hcr_el2 & HCR_VM) == 0;
8664 if (env->cp15.hcr_el2 & HCR_TGE) {
8665 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
8666 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
8667 return true;
8671 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
8674 static inline bool regime_translation_big_endian(CPUARMState *env,
8675 ARMMMUIdx mmu_idx)
8677 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
8680 /* Return the TCR controlling this translation regime */
8681 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
8683 if (mmu_idx == ARMMMUIdx_S2NS) {
8684 return &env->cp15.vtcr_el2;
8686 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
8689 /* Convert a possible stage1+2 MMU index into the appropriate
8690 * stage 1 MMU index
8692 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
8694 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8695 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
8697 return mmu_idx;
8700 /* Returns TBI0 value for current regime el */
8701 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
8703 TCR *tcr;
8704 uint32_t el;
8706 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8707 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8709 mmu_idx = stage_1_mmu_idx(mmu_idx);
8711 tcr = regime_tcr(env, mmu_idx);
8712 el = regime_el(env, mmu_idx);
8714 if (el > 1) {
8715 return extract64(tcr->raw_tcr, 20, 1);
8716 } else {
8717 return extract64(tcr->raw_tcr, 37, 1);
8721 /* Returns TBI1 value for current regime el */
8722 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
8724 TCR *tcr;
8725 uint32_t el;
8727 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8728 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8730 mmu_idx = stage_1_mmu_idx(mmu_idx);
8732 tcr = regime_tcr(env, mmu_idx);
8733 el = regime_el(env, mmu_idx);
8735 if (el > 1) {
8736 return 0;
8737 } else {
8738 return extract64(tcr->raw_tcr, 38, 1);
8742 /* Return the TTBR associated with this translation regime */
8743 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8744 int ttbrn)
8746 if (mmu_idx == ARMMMUIdx_S2NS) {
8747 return env->cp15.vttbr_el2;
8749 if (ttbrn == 0) {
8750 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8751 } else {
8752 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8756 /* Return true if the translation regime is using LPAE format page tables */
8757 static inline bool regime_using_lpae_format(CPUARMState *env,
8758 ARMMMUIdx mmu_idx)
8760 int el = regime_el(env, mmu_idx);
8761 if (el == 2 || arm_el_is_aa64(env, el)) {
8762 return true;
8764 if (arm_feature(env, ARM_FEATURE_LPAE)
8765 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8766 return true;
8768 return false;
8771 /* Returns true if the stage 1 translation regime is using LPAE format page
8772 * tables. Used when raising alignment exceptions, whose FSR changes depending
8773 * on whether the long or short descriptor format is in use. */
8774 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8776 mmu_idx = stage_1_mmu_idx(mmu_idx);
8778 return regime_using_lpae_format(env, mmu_idx);
8781 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8783 switch (mmu_idx) {
8784 case ARMMMUIdx_S1SE0:
8785 case ARMMMUIdx_S1NSE0:
8786 case ARMMMUIdx_MUser:
8787 case ARMMMUIdx_MSUser:
8788 case ARMMMUIdx_MUserNegPri:
8789 case ARMMMUIdx_MSUserNegPri:
8790 return true;
8791 default:
8792 return false;
8793 case ARMMMUIdx_S12NSE0:
8794 case ARMMMUIdx_S12NSE1:
8795 g_assert_not_reached();
8799 /* Translate section/page access permissions to page
8800 * R/W protection flags
8802 * @env: CPUARMState
8803 * @mmu_idx: MMU index indicating required translation regime
8804 * @ap: The 3-bit access permissions (AP[2:0])
8805 * @domain_prot: The 2-bit domain access permissions
8807 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8808 int ap, int domain_prot)
8810 bool is_user = regime_is_user(env, mmu_idx);
8812 if (domain_prot == 3) {
8813 return PAGE_READ | PAGE_WRITE;
8816 switch (ap) {
8817 case 0:
8818 if (arm_feature(env, ARM_FEATURE_V7)) {
8819 return 0;
8821 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8822 case SCTLR_S:
8823 return is_user ? 0 : PAGE_READ;
8824 case SCTLR_R:
8825 return PAGE_READ;
8826 default:
8827 return 0;
8829 case 1:
8830 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8831 case 2:
8832 if (is_user) {
8833 return PAGE_READ;
8834 } else {
8835 return PAGE_READ | PAGE_WRITE;
8837 case 3:
8838 return PAGE_READ | PAGE_WRITE;
8839 case 4: /* Reserved. */
8840 return 0;
8841 case 5:
8842 return is_user ? 0 : PAGE_READ;
8843 case 6:
8844 return PAGE_READ;
8845 case 7:
8846 if (!arm_feature(env, ARM_FEATURE_V6K)) {
8847 return 0;
8849 return PAGE_READ;
8850 default:
8851 g_assert_not_reached();
8855 /* Translate section/page access permissions to page
8856 * R/W protection flags.
8858 * @ap: The 2-bit simple AP (AP[2:1])
8859 * @is_user: TRUE if accessing from PL0
8861 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8863 switch (ap) {
8864 case 0:
8865 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8866 case 1:
8867 return PAGE_READ | PAGE_WRITE;
8868 case 2:
8869 return is_user ? 0 : PAGE_READ;
8870 case 3:
8871 return PAGE_READ;
8872 default:
8873 g_assert_not_reached();
8877 static inline int
8878 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8880 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8883 /* Translate S2 section/page access permissions to protection flags
8885 * @env: CPUARMState
8886 * @s2ap: The 2-bit stage2 access permissions (S2AP)
8887 * @xn: XN (execute-never) bit
8889 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8891 int prot = 0;
8893 if (s2ap & 1) {
8894 prot |= PAGE_READ;
8896 if (s2ap & 2) {
8897 prot |= PAGE_WRITE;
8899 if (!xn) {
8900 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8901 prot |= PAGE_EXEC;
8904 return prot;
8907 /* Translate section/page access permissions to protection flags
8909 * @env: CPUARMState
8910 * @mmu_idx: MMU index indicating required translation regime
8911 * @is_aa64: TRUE if AArch64
8912 * @ap: The 2-bit simple AP (AP[2:1])
8913 * @ns: NS (non-secure) bit
8914 * @xn: XN (execute-never) bit
8915 * @pxn: PXN (privileged execute-never) bit
8917 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8918 int ap, int ns, int xn, int pxn)
8920 bool is_user = regime_is_user(env, mmu_idx);
8921 int prot_rw, user_rw;
8922 bool have_wxn;
8923 int wxn = 0;
8925 assert(mmu_idx != ARMMMUIdx_S2NS);
8927 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8928 if (is_user) {
8929 prot_rw = user_rw;
8930 } else {
8931 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8934 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8935 return prot_rw;
8938 /* TODO have_wxn should be replaced with
8939 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8940 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8941 * compatible processors have EL2, which is required for [U]WXN.
8943 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8945 if (have_wxn) {
8946 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8949 if (is_aa64) {
8950 switch (regime_el(env, mmu_idx)) {
8951 case 1:
8952 if (!is_user) {
8953 xn = pxn || (user_rw & PAGE_WRITE);
8955 break;
8956 case 2:
8957 case 3:
8958 break;
8960 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8961 switch (regime_el(env, mmu_idx)) {
8962 case 1:
8963 case 3:
8964 if (is_user) {
8965 xn = xn || !(user_rw & PAGE_READ);
8966 } else {
8967 int uwxn = 0;
8968 if (have_wxn) {
8969 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8971 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8972 (uwxn && (user_rw & PAGE_WRITE));
8974 break;
8975 case 2:
8976 break;
8978 } else {
8979 xn = wxn = 0;
8982 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8983 return prot_rw;
8985 return prot_rw | PAGE_EXEC;
8988 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8989 uint32_t *table, uint32_t address)
8991 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8992 TCR *tcr = regime_tcr(env, mmu_idx);
8994 if (address & tcr->mask) {
8995 if (tcr->raw_tcr & TTBCR_PD1) {
8996 /* Translation table walk disabled for TTBR1 */
8997 return false;
8999 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
9000 } else {
9001 if (tcr->raw_tcr & TTBCR_PD0) {
9002 /* Translation table walk disabled for TTBR0 */
9003 return false;
9005 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
9007 *table |= (address >> 18) & 0x3ffc;
9008 return true;
9011 /* Translate a S1 pagetable walk through S2 if needed. */
9012 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
9013 hwaddr addr, MemTxAttrs txattrs,
9014 ARMMMUFaultInfo *fi)
9016 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
9017 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
9018 target_ulong s2size;
9019 hwaddr s2pa;
9020 int s2prot;
9021 int ret;
9023 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
9024 &txattrs, &s2prot, &s2size, fi, NULL);
9025 if (ret) {
9026 assert(fi->type != ARMFault_None);
9027 fi->s2addr = addr;
9028 fi->stage2 = true;
9029 fi->s1ptw = true;
9030 return ~0;
9032 addr = s2pa;
9034 return addr;
9037 /* All loads done in the course of a page table walk go through here. */
9038 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
9039 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
9041 ARMCPU *cpu = ARM_CPU(cs);
9042 CPUARMState *env = &cpu->env;
9043 MemTxAttrs attrs = {};
9044 MemTxResult result = MEMTX_OK;
9045 AddressSpace *as;
9046 uint32_t data;
9048 attrs.secure = is_secure;
9049 as = arm_addressspace(cs, attrs);
9050 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
9051 if (fi->s1ptw) {
9052 return 0;
9054 if (regime_translation_big_endian(env, mmu_idx)) {
9055 data = address_space_ldl_be(as, addr, attrs, &result);
9056 } else {
9057 data = address_space_ldl_le(as, addr, attrs, &result);
9059 if (result == MEMTX_OK) {
9060 return data;
9062 fi->type = ARMFault_SyncExternalOnWalk;
9063 fi->ea = arm_extabort_type(result);
9064 return 0;
9067 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
9068 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
9070 ARMCPU *cpu = ARM_CPU(cs);
9071 CPUARMState *env = &cpu->env;
9072 MemTxAttrs attrs = {};
9073 MemTxResult result = MEMTX_OK;
9074 AddressSpace *as;
9075 uint64_t data;
9077 attrs.secure = is_secure;
9078 as = arm_addressspace(cs, attrs);
9079 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
9080 if (fi->s1ptw) {
9081 return 0;
9083 if (regime_translation_big_endian(env, mmu_idx)) {
9084 data = address_space_ldq_be(as, addr, attrs, &result);
9085 } else {
9086 data = address_space_ldq_le(as, addr, attrs, &result);
9088 if (result == MEMTX_OK) {
9089 return data;
9091 fi->type = ARMFault_SyncExternalOnWalk;
9092 fi->ea = arm_extabort_type(result);
9093 return 0;
9096 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
9097 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9098 hwaddr *phys_ptr, int *prot,
9099 target_ulong *page_size,
9100 ARMMMUFaultInfo *fi)
9102 CPUState *cs = CPU(arm_env_get_cpu(env));
9103 int level = 1;
9104 uint32_t table;
9105 uint32_t desc;
9106 int type;
9107 int ap;
9108 int domain = 0;
9109 int domain_prot;
9110 hwaddr phys_addr;
9111 uint32_t dacr;
9113 /* Pagetable walk. */
9114 /* Lookup l1 descriptor. */
9115 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9116 /* Section translation fault if page walk is disabled by PD0 or PD1 */
9117 fi->type = ARMFault_Translation;
9118 goto do_fault;
9120 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9121 mmu_idx, fi);
9122 if (fi->type != ARMFault_None) {
9123 goto do_fault;
9125 type = (desc & 3);
9126 domain = (desc >> 5) & 0x0f;
9127 if (regime_el(env, mmu_idx) == 1) {
9128 dacr = env->cp15.dacr_ns;
9129 } else {
9130 dacr = env->cp15.dacr_s;
9132 domain_prot = (dacr >> (domain * 2)) & 3;
9133 if (type == 0) {
9134 /* Section translation fault. */
9135 fi->type = ARMFault_Translation;
9136 goto do_fault;
9138 if (type != 2) {
9139 level = 2;
9141 if (domain_prot == 0 || domain_prot == 2) {
9142 fi->type = ARMFault_Domain;
9143 goto do_fault;
9145 if (type == 2) {
9146 /* 1Mb section. */
9147 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9148 ap = (desc >> 10) & 3;
9149 *page_size = 1024 * 1024;
9150 } else {
9151 /* Lookup l2 entry. */
9152 if (type == 1) {
9153 /* Coarse pagetable. */
9154 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9155 } else {
9156 /* Fine pagetable. */
9157 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
9159 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9160 mmu_idx, fi);
9161 if (fi->type != ARMFault_None) {
9162 goto do_fault;
9164 switch (desc & 3) {
9165 case 0: /* Page translation fault. */
9166 fi->type = ARMFault_Translation;
9167 goto do_fault;
9168 case 1: /* 64k page. */
9169 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9170 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
9171 *page_size = 0x10000;
9172 break;
9173 case 2: /* 4k page. */
9174 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9175 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
9176 *page_size = 0x1000;
9177 break;
9178 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
9179 if (type == 1) {
9180 /* ARMv6/XScale extended small page format */
9181 if (arm_feature(env, ARM_FEATURE_XSCALE)
9182 || arm_feature(env, ARM_FEATURE_V6)) {
9183 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9184 *page_size = 0x1000;
9185 } else {
9186 /* UNPREDICTABLE in ARMv5; we choose to take a
9187 * page translation fault.
9189 fi->type = ARMFault_Translation;
9190 goto do_fault;
9192 } else {
9193 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
9194 *page_size = 0x400;
9196 ap = (desc >> 4) & 3;
9197 break;
9198 default:
9199 /* Never happens, but compiler isn't smart enough to tell. */
9200 abort();
9203 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9204 *prot |= *prot ? PAGE_EXEC : 0;
9205 if (!(*prot & (1 << access_type))) {
9206 /* Access permission fault. */
9207 fi->type = ARMFault_Permission;
9208 goto do_fault;
9210 *phys_ptr = phys_addr;
9211 return false;
9212 do_fault:
9213 fi->domain = domain;
9214 fi->level = level;
9215 return true;
9218 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
9219 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9220 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9221 target_ulong *page_size, ARMMMUFaultInfo *fi)
9223 CPUState *cs = CPU(arm_env_get_cpu(env));
9224 int level = 1;
9225 uint32_t table;
9226 uint32_t desc;
9227 uint32_t xn;
9228 uint32_t pxn = 0;
9229 int type;
9230 int ap;
9231 int domain = 0;
9232 int domain_prot;
9233 hwaddr phys_addr;
9234 uint32_t dacr;
9235 bool ns;
9237 /* Pagetable walk. */
9238 /* Lookup l1 descriptor. */
9239 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9240 /* Section translation fault if page walk is disabled by PD0 or PD1 */
9241 fi->type = ARMFault_Translation;
9242 goto do_fault;
9244 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9245 mmu_idx, fi);
9246 if (fi->type != ARMFault_None) {
9247 goto do_fault;
9249 type = (desc & 3);
9250 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
9251 /* Section translation fault, or attempt to use the encoding
9252 * which is Reserved on implementations without PXN.
9254 fi->type = ARMFault_Translation;
9255 goto do_fault;
9257 if ((type == 1) || !(desc & (1 << 18))) {
9258 /* Page or Section. */
9259 domain = (desc >> 5) & 0x0f;
9261 if (regime_el(env, mmu_idx) == 1) {
9262 dacr = env->cp15.dacr_ns;
9263 } else {
9264 dacr = env->cp15.dacr_s;
9266 if (type == 1) {
9267 level = 2;
9269 domain_prot = (dacr >> (domain * 2)) & 3;
9270 if (domain_prot == 0 || domain_prot == 2) {
9271 /* Section or Page domain fault */
9272 fi->type = ARMFault_Domain;
9273 goto do_fault;
9275 if (type != 1) {
9276 if (desc & (1 << 18)) {
9277 /* Supersection. */
9278 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
9279 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
9280 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
9281 *page_size = 0x1000000;
9282 } else {
9283 /* Section. */
9284 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9285 *page_size = 0x100000;
9287 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
9288 xn = desc & (1 << 4);
9289 pxn = desc & 1;
9290 ns = extract32(desc, 19, 1);
9291 } else {
9292 if (arm_feature(env, ARM_FEATURE_PXN)) {
9293 pxn = (desc >> 2) & 1;
9295 ns = extract32(desc, 3, 1);
9296 /* Lookup l2 entry. */
9297 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9298 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9299 mmu_idx, fi);
9300 if (fi->type != ARMFault_None) {
9301 goto do_fault;
9303 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
9304 switch (desc & 3) {
9305 case 0: /* Page translation fault. */
9306 fi->type = ARMFault_Translation;
9307 goto do_fault;
9308 case 1: /* 64k page. */
9309 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9310 xn = desc & (1 << 15);
9311 *page_size = 0x10000;
9312 break;
9313 case 2: case 3: /* 4k page. */
9314 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9315 xn = desc & 1;
9316 *page_size = 0x1000;
9317 break;
9318 default:
9319 /* Never happens, but compiler isn't smart enough to tell. */
9320 abort();
9323 if (domain_prot == 3) {
9324 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9325 } else {
9326 if (pxn && !regime_is_user(env, mmu_idx)) {
9327 xn = 1;
9329 if (xn && access_type == MMU_INST_FETCH) {
9330 fi->type = ARMFault_Permission;
9331 goto do_fault;
9334 if (arm_feature(env, ARM_FEATURE_V6K) &&
9335 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
9336 /* The simplified model uses AP[0] as an access control bit. */
9337 if ((ap & 1) == 0) {
9338 /* Access flag fault. */
9339 fi->type = ARMFault_AccessFlag;
9340 goto do_fault;
9342 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
9343 } else {
9344 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9346 if (*prot && !xn) {
9347 *prot |= PAGE_EXEC;
9349 if (!(*prot & (1 << access_type))) {
9350 /* Access permission fault. */
9351 fi->type = ARMFault_Permission;
9352 goto do_fault;
9355 if (ns) {
9356 /* The NS bit will (as required by the architecture) have no effect if
9357 * the CPU doesn't support TZ or this is a non-secure translation
9358 * regime, because the attribute will already be non-secure.
9360 attrs->secure = false;
9362 *phys_ptr = phys_addr;
9363 return false;
9364 do_fault:
9365 fi->domain = domain;
9366 fi->level = level;
9367 return true;
9371 * check_s2_mmu_setup
9372 * @cpu: ARMCPU
9373 * @is_aa64: True if the translation regime is in AArch64 state
9374 * @startlevel: Suggested starting level
9375 * @inputsize: Bitsize of IPAs
9376 * @stride: Page-table stride (See the ARM ARM)
9378 * Returns true if the suggested S2 translation parameters are OK and
9379 * false otherwise.
9381 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9382 int inputsize, int stride)
9384 const int grainsize = stride + 3;
9385 int startsizecheck;
9387 /* Negative levels are never allowed. */
9388 if (level < 0) {
9389 return false;
9392 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9393 if (startsizecheck < 1 || startsizecheck > stride + 4) {
9394 return false;
9397 if (is_aa64) {
9398 CPUARMState *env = &cpu->env;
9399 unsigned int pamax = arm_pamax(cpu);
9401 switch (stride) {
9402 case 13: /* 64KB Pages. */
9403 if (level == 0 || (level == 1 && pamax <= 42)) {
9404 return false;
9406 break;
9407 case 11: /* 16KB Pages. */
9408 if (level == 0 || (level == 1 && pamax <= 40)) {
9409 return false;
9411 break;
9412 case 9: /* 4KB Pages. */
9413 if (level == 0 && pamax <= 42) {
9414 return false;
9416 break;
9417 default:
9418 g_assert_not_reached();
9421 /* Inputsize checks. */
9422 if (inputsize > pamax &&
9423 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
9424 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
9425 return false;
9427 } else {
9428 /* AArch32 only supports 4KB pages. Assert on that. */
9429 assert(stride == 9);
9431 if (level == 0) {
9432 return false;
9435 return true;
9438 /* Translate from the 4-bit stage 2 representation of
9439 * memory attributes (without cache-allocation hints) to
9440 * the 8-bit representation of the stage 1 MAIR registers
9441 * (which includes allocation hints).
9443 * ref: shared/translation/attrs/S2AttrDecode()
9444 * .../S2ConvertAttrsHints()
9446 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
9448 uint8_t hiattr = extract32(s2attrs, 2, 2);
9449 uint8_t loattr = extract32(s2attrs, 0, 2);
9450 uint8_t hihint = 0, lohint = 0;
9452 if (hiattr != 0) { /* normal memory */
9453 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
9454 hiattr = loattr = 1; /* non-cacheable */
9455 } else {
9456 if (hiattr != 1) { /* Write-through or write-back */
9457 hihint = 3; /* RW allocate */
9459 if (loattr != 1) { /* Write-through or write-back */
9460 lohint = 3; /* RW allocate */
9465 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
9468 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9469 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9470 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9471 target_ulong *page_size_ptr,
9472 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9474 ARMCPU *cpu = arm_env_get_cpu(env);
9475 CPUState *cs = CPU(cpu);
9476 /* Read an LPAE long-descriptor translation table. */
9477 ARMFaultType fault_type = ARMFault_Translation;
9478 uint32_t level;
9479 uint32_t epd = 0;
9480 int32_t t0sz, t1sz;
9481 uint32_t tg;
9482 uint64_t ttbr;
9483 int ttbr_select;
9484 hwaddr descaddr, indexmask, indexmask_grainsize;
9485 uint32_t tableattrs;
9486 target_ulong page_size;
9487 uint32_t attrs;
9488 int32_t stride = 9;
9489 int32_t addrsize;
9490 int inputsize;
9491 int32_t tbi = 0;
9492 TCR *tcr = regime_tcr(env, mmu_idx);
9493 int ap, ns, xn, pxn;
9494 uint32_t el = regime_el(env, mmu_idx);
9495 bool ttbr1_valid = true;
9496 uint64_t descaddrmask;
9497 bool aarch64 = arm_el_is_aa64(env, el);
9499 /* TODO:
9500 * This code does not handle the different format TCR for VTCR_EL2.
9501 * This code also does not support shareability levels.
9502 * Attribute and permission bit handling should also be checked when adding
9503 * support for those page table walks.
9505 if (aarch64) {
9506 level = 0;
9507 addrsize = 64;
9508 if (el > 1) {
9509 if (mmu_idx != ARMMMUIdx_S2NS) {
9510 tbi = extract64(tcr->raw_tcr, 20, 1);
9512 } else {
9513 if (extract64(address, 55, 1)) {
9514 tbi = extract64(tcr->raw_tcr, 38, 1);
9515 } else {
9516 tbi = extract64(tcr->raw_tcr, 37, 1);
9519 tbi *= 8;
9521 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9522 * invalid.
9524 if (el > 1) {
9525 ttbr1_valid = false;
9527 } else {
9528 level = 1;
9529 addrsize = 32;
9530 /* There is no TTBR1 for EL2 */
9531 if (el == 2) {
9532 ttbr1_valid = false;
9536 /* Determine whether this address is in the region controlled by
9537 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
9538 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
9539 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
9541 if (aarch64) {
9542 /* AArch64 translation. */
9543 t0sz = extract32(tcr->raw_tcr, 0, 6);
9544 t0sz = MIN(t0sz, 39);
9545 t0sz = MAX(t0sz, 16);
9546 } else if (mmu_idx != ARMMMUIdx_S2NS) {
9547 /* AArch32 stage 1 translation. */
9548 t0sz = extract32(tcr->raw_tcr, 0, 3);
9549 } else {
9550 /* AArch32 stage 2 translation. */
9551 bool sext = extract32(tcr->raw_tcr, 4, 1);
9552 bool sign = extract32(tcr->raw_tcr, 3, 1);
9553 /* Address size is 40-bit for a stage 2 translation,
9554 * and t0sz can be negative (from -8 to 7),
9555 * so we need to adjust it to use the TTBR selecting logic below.
9557 addrsize = 40;
9558 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
9560 /* If the sign-extend bit is not the same as t0sz[3], the result
9561 * is unpredictable. Flag this as a guest error. */
9562 if (sign != sext) {
9563 qemu_log_mask(LOG_GUEST_ERROR,
9564 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9567 t1sz = extract32(tcr->raw_tcr, 16, 6);
9568 if (aarch64) {
9569 t1sz = MIN(t1sz, 39);
9570 t1sz = MAX(t1sz, 16);
9572 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
9573 /* there is a ttbr0 region and we are in it (high bits all zero) */
9574 ttbr_select = 0;
9575 } else if (ttbr1_valid && t1sz &&
9576 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
9577 /* there is a ttbr1 region and we are in it (high bits all one) */
9578 ttbr_select = 1;
9579 } else if (!t0sz) {
9580 /* ttbr0 region is "everything not in the ttbr1 region" */
9581 ttbr_select = 0;
9582 } else if (!t1sz && ttbr1_valid) {
9583 /* ttbr1 region is "everything not in the ttbr0 region" */
9584 ttbr_select = 1;
9585 } else {
9586 /* in the gap between the two regions, this is a Translation fault */
9587 fault_type = ARMFault_Translation;
9588 goto do_fault;
9591 /* Note that QEMU ignores shareability and cacheability attributes,
9592 * so we don't need to do anything with the SH, ORGN, IRGN fields
9593 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
9594 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9595 * implement any ASID-like capability so we can ignore it (instead
9596 * we will always flush the TLB any time the ASID is changed).
9598 if (ttbr_select == 0) {
9599 ttbr = regime_ttbr(env, mmu_idx, 0);
9600 if (el < 2) {
9601 epd = extract32(tcr->raw_tcr, 7, 1);
9603 inputsize = addrsize - t0sz;
9605 tg = extract32(tcr->raw_tcr, 14, 2);
9606 if (tg == 1) { /* 64KB pages */
9607 stride = 13;
9609 if (tg == 2) { /* 16KB pages */
9610 stride = 11;
9612 } else {
9613 /* We should only be here if TTBR1 is valid */
9614 assert(ttbr1_valid);
9616 ttbr = regime_ttbr(env, mmu_idx, 1);
9617 epd = extract32(tcr->raw_tcr, 23, 1);
9618 inputsize = addrsize - t1sz;
9620 tg = extract32(tcr->raw_tcr, 30, 2);
9621 if (tg == 3) { /* 64KB pages */
9622 stride = 13;
9624 if (tg == 1) { /* 16KB pages */
9625 stride = 11;
9629 /* Here we should have set up all the parameters for the translation:
9630 * inputsize, ttbr, epd, stride, tbi
9633 if (epd) {
9634 /* Translation table walk disabled => Translation fault on TLB miss
9635 * Note: This is always 0 on 64-bit EL2 and EL3.
9637 goto do_fault;
9640 if (mmu_idx != ARMMMUIdx_S2NS) {
9641 /* The starting level depends on the virtual address size (which can
9642 * be up to 48 bits) and the translation granule size. It indicates
9643 * the number of strides (stride bits at a time) needed to
9644 * consume the bits of the input address. In the pseudocode this is:
9645 * level = 4 - RoundUp((inputsize - grainsize) / stride)
9646 * where their 'inputsize' is our 'inputsize', 'grainsize' is
9647 * our 'stride + 3' and 'stride' is our 'stride'.
9648 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9649 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9650 * = 4 - (inputsize - 4) / stride;
9652 level = 4 - (inputsize - 4) / stride;
9653 } else {
9654 /* For stage 2 translations the starting level is specified by the
9655 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9657 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
9658 uint32_t startlevel;
9659 bool ok;
9661 if (!aarch64 || stride == 9) {
9662 /* AArch32 or 4KB pages */
9663 startlevel = 2 - sl0;
9664 } else {
9665 /* 16KB or 64KB pages */
9666 startlevel = 3 - sl0;
9669 /* Check that the starting level is valid. */
9670 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9671 inputsize, stride);
9672 if (!ok) {
9673 fault_type = ARMFault_Translation;
9674 goto do_fault;
9676 level = startlevel;
9679 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
9680 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9682 /* Now we can extract the actual base address from the TTBR */
9683 descaddr = extract64(ttbr, 0, 48);
9684 descaddr &= ~indexmask;
9686 /* The address field in the descriptor goes up to bit 39 for ARMv7
9687 * but up to bit 47 for ARMv8, but we use the descaddrmask
9688 * up to bit 39 for AArch32, because we don't need other bits in that case
9689 * to construct next descriptor address (anyway they should be all zeroes).
9691 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9692 ~indexmask_grainsize;
9694 /* Secure accesses start with the page table in secure memory and
9695 * can be downgraded to non-secure at any step. Non-secure accesses
9696 * remain non-secure. We implement this by just ORing in the NSTable/NS
9697 * bits at each step.
9699 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9700 for (;;) {
9701 uint64_t descriptor;
9702 bool nstable;
9704 descaddr |= (address >> (stride * (4 - level))) & indexmask;
9705 descaddr &= ~7ULL;
9706 nstable = extract32(tableattrs, 4, 1);
9707 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
9708 if (fi->type != ARMFault_None) {
9709 goto do_fault;
9712 if (!(descriptor & 1) ||
9713 (!(descriptor & 2) && (level == 3))) {
9714 /* Invalid, or the Reserved level 3 encoding */
9715 goto do_fault;
9717 descaddr = descriptor & descaddrmask;
9719 if ((descriptor & 2) && (level < 3)) {
9720 /* Table entry. The top five bits are attributes which may
9721 * propagate down through lower levels of the table (and
9722 * which are all arranged so that 0 means "no effect", so
9723 * we can gather them up by ORing in the bits at each level).
9725 tableattrs |= extract64(descriptor, 59, 5);
9726 level++;
9727 indexmask = indexmask_grainsize;
9728 continue;
9730 /* Block entry at level 1 or 2, or page entry at level 3.
9731 * These are basically the same thing, although the number
9732 * of bits we pull in from the vaddr varies.
9734 page_size = (1ULL << ((stride * (4 - level)) + 3));
9735 descaddr |= (address & (page_size - 1));
9736 /* Extract attributes from the descriptor */
9737 attrs = extract64(descriptor, 2, 10)
9738 | (extract64(descriptor, 52, 12) << 10);
9740 if (mmu_idx == ARMMMUIdx_S2NS) {
9741 /* Stage 2 table descriptors do not include any attribute fields */
9742 break;
9744 /* Merge in attributes from table descriptors */
9745 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
9746 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
9747 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9748 * means "force PL1 access only", which means forcing AP[1] to 0.
9750 if (extract32(tableattrs, 2, 1)) {
9751 attrs &= ~(1 << 4);
9753 attrs |= nstable << 3; /* NS */
9754 break;
9756 /* Here descaddr is the final physical address, and attributes
9757 * are all in attrs.
9759 fault_type = ARMFault_AccessFlag;
9760 if ((attrs & (1 << 8)) == 0) {
9761 /* Access flag */
9762 goto do_fault;
9765 ap = extract32(attrs, 4, 2);
9766 xn = extract32(attrs, 12, 1);
9768 if (mmu_idx == ARMMMUIdx_S2NS) {
9769 ns = true;
9770 *prot = get_S2prot(env, ap, xn);
9771 } else {
9772 ns = extract32(attrs, 3, 1);
9773 pxn = extract32(attrs, 11, 1);
9774 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9777 fault_type = ARMFault_Permission;
9778 if (!(*prot & (1 << access_type))) {
9779 goto do_fault;
9782 if (ns) {
9783 /* The NS bit will (as required by the architecture) have no effect if
9784 * the CPU doesn't support TZ or this is a non-secure translation
9785 * regime, because the attribute will already be non-secure.
9787 txattrs->secure = false;
9790 if (cacheattrs != NULL) {
9791 if (mmu_idx == ARMMMUIdx_S2NS) {
9792 cacheattrs->attrs = convert_stage2_attrs(env,
9793 extract32(attrs, 0, 4));
9794 } else {
9795 /* Index into MAIR registers for cache attributes */
9796 uint8_t attrindx = extract32(attrs, 0, 3);
9797 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9798 assert(attrindx <= 7);
9799 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9801 cacheattrs->shareability = extract32(attrs, 6, 2);
9804 *phys_ptr = descaddr;
9805 *page_size_ptr = page_size;
9806 return false;
9808 do_fault:
9809 fi->type = fault_type;
9810 fi->level = level;
9811 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
9812 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9813 return true;
9816 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9817 ARMMMUIdx mmu_idx,
9818 int32_t address, int *prot)
9820 if (!arm_feature(env, ARM_FEATURE_M)) {
9821 *prot = PAGE_READ | PAGE_WRITE;
9822 switch (address) {
9823 case 0xF0000000 ... 0xFFFFFFFF:
9824 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9825 /* hivecs execing is ok */
9826 *prot |= PAGE_EXEC;
9828 break;
9829 case 0x00000000 ... 0x7FFFFFFF:
9830 *prot |= PAGE_EXEC;
9831 break;
9833 } else {
9834 /* Default system address map for M profile cores.
9835 * The architecture specifies which regions are execute-never;
9836 * at the MPU level no other checks are defined.
9838 switch (address) {
9839 case 0x00000000 ... 0x1fffffff: /* ROM */
9840 case 0x20000000 ... 0x3fffffff: /* SRAM */
9841 case 0x60000000 ... 0x7fffffff: /* RAM */
9842 case 0x80000000 ... 0x9fffffff: /* RAM */
9843 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9844 break;
9845 case 0x40000000 ... 0x5fffffff: /* Peripheral */
9846 case 0xa0000000 ... 0xbfffffff: /* Device */
9847 case 0xc0000000 ... 0xdfffffff: /* Device */
9848 case 0xe0000000 ... 0xffffffff: /* System */
9849 *prot = PAGE_READ | PAGE_WRITE;
9850 break;
9851 default:
9852 g_assert_not_reached();
9857 static bool pmsav7_use_background_region(ARMCPU *cpu,
9858 ARMMMUIdx mmu_idx, bool is_user)
9860 /* Return true if we should use the default memory map as a
9861 * "background" region if there are no hits against any MPU regions.
9863 CPUARMState *env = &cpu->env;
9865 if (is_user) {
9866 return false;
9869 if (arm_feature(env, ARM_FEATURE_M)) {
9870 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9871 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9872 } else {
9873 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9877 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9879 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9880 return arm_feature(env, ARM_FEATURE_M) &&
9881 extract32(address, 20, 12) == 0xe00;
9884 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9886 /* True if address is in the M profile system region
9887 * 0xe0000000 - 0xffffffff
9889 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9892 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9893 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9894 hwaddr *phys_ptr, int *prot,
9895 target_ulong *page_size,
9896 ARMMMUFaultInfo *fi)
9898 ARMCPU *cpu = arm_env_get_cpu(env);
9899 int n;
9900 bool is_user = regime_is_user(env, mmu_idx);
9902 *phys_ptr = address;
9903 *page_size = TARGET_PAGE_SIZE;
9904 *prot = 0;
9906 if (regime_translation_disabled(env, mmu_idx) ||
9907 m_is_ppb_region(env, address)) {
9908 /* MPU disabled or M profile PPB access: use default memory map.
9909 * The other case which uses the default memory map in the
9910 * v7M ARM ARM pseudocode is exception vector reads from the vector
9911 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9912 * which always does a direct read using address_space_ldl(), rather
9913 * than going via this function, so we don't need to check that here.
9915 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9916 } else { /* MPU enabled */
9917 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9918 /* region search */
9919 uint32_t base = env->pmsav7.drbar[n];
9920 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9921 uint32_t rmask;
9922 bool srdis = false;
9924 if (!(env->pmsav7.drsr[n] & 0x1)) {
9925 continue;
9928 if (!rsize) {
9929 qemu_log_mask(LOG_GUEST_ERROR,
9930 "DRSR[%d]: Rsize field cannot be 0\n", n);
9931 continue;
9933 rsize++;
9934 rmask = (1ull << rsize) - 1;
9936 if (base & rmask) {
9937 qemu_log_mask(LOG_GUEST_ERROR,
9938 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9939 "to DRSR region size, mask = 0x%" PRIx32 "\n",
9940 n, base, rmask);
9941 continue;
9944 if (address < base || address > base + rmask) {
9946 * Address not in this region. We must check whether the
9947 * region covers addresses in the same page as our address.
9948 * In that case we must not report a size that covers the
9949 * whole page for a subsequent hit against a different MPU
9950 * region or the background region, because it would result in
9951 * incorrect TLB hits for subsequent accesses to addresses that
9952 * are in this MPU region.
9954 if (ranges_overlap(base, rmask,
9955 address & TARGET_PAGE_MASK,
9956 TARGET_PAGE_SIZE)) {
9957 *page_size = 1;
9959 continue;
9962 /* Region matched */
9964 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9965 int i, snd;
9966 uint32_t srdis_mask;
9968 rsize -= 3; /* sub region size (power of 2) */
9969 snd = ((address - base) >> rsize) & 0x7;
9970 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9972 srdis_mask = srdis ? 0x3 : 0x0;
9973 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9974 /* This will check in groups of 2, 4 and then 8, whether
9975 * the subregion bits are consistent. rsize is incremented
9976 * back up to give the region size, considering consistent
9977 * adjacent subregions as one region. Stop testing if rsize
9978 * is already big enough for an entire QEMU page.
9980 int snd_rounded = snd & ~(i - 1);
9981 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9982 snd_rounded + 8, i);
9983 if (srdis_mask ^ srdis_multi) {
9984 break;
9986 srdis_mask = (srdis_mask << i) | srdis_mask;
9987 rsize++;
9990 if (srdis) {
9991 continue;
9993 if (rsize < TARGET_PAGE_BITS) {
9994 *page_size = 1 << rsize;
9996 break;
9999 if (n == -1) { /* no hits */
10000 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10001 /* background fault */
10002 fi->type = ARMFault_Background;
10003 return true;
10005 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10006 } else { /* a MPU hit! */
10007 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
10008 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
10010 if (m_is_system_region(env, address)) {
10011 /* System space is always execute never */
10012 xn = 1;
10015 if (is_user) { /* User mode AP bit decoding */
10016 switch (ap) {
10017 case 0:
10018 case 1:
10019 case 5:
10020 break; /* no access */
10021 case 3:
10022 *prot |= PAGE_WRITE;
10023 /* fall through */
10024 case 2:
10025 case 6:
10026 *prot |= PAGE_READ | PAGE_EXEC;
10027 break;
10028 case 7:
10029 /* for v7M, same as 6; for R profile a reserved value */
10030 if (arm_feature(env, ARM_FEATURE_M)) {
10031 *prot |= PAGE_READ | PAGE_EXEC;
10032 break;
10034 /* fall through */
10035 default:
10036 qemu_log_mask(LOG_GUEST_ERROR,
10037 "DRACR[%d]: Bad value for AP bits: 0x%"
10038 PRIx32 "\n", n, ap);
10040 } else { /* Priv. mode AP bits decoding */
10041 switch (ap) {
10042 case 0:
10043 break; /* no access */
10044 case 1:
10045 case 2:
10046 case 3:
10047 *prot |= PAGE_WRITE;
10048 /* fall through */
10049 case 5:
10050 case 6:
10051 *prot |= PAGE_READ | PAGE_EXEC;
10052 break;
10053 case 7:
10054 /* for v7M, same as 6; for R profile a reserved value */
10055 if (arm_feature(env, ARM_FEATURE_M)) {
10056 *prot |= PAGE_READ | PAGE_EXEC;
10057 break;
10059 /* fall through */
10060 default:
10061 qemu_log_mask(LOG_GUEST_ERROR,
10062 "DRACR[%d]: Bad value for AP bits: 0x%"
10063 PRIx32 "\n", n, ap);
10067 /* execute never */
10068 if (xn) {
10069 *prot &= ~PAGE_EXEC;
10074 fi->type = ARMFault_Permission;
10075 fi->level = 1;
10076 return !(*prot & (1 << access_type));
10079 static bool v8m_is_sau_exempt(CPUARMState *env,
10080 uint32_t address, MMUAccessType access_type)
10082 /* The architecture specifies that certain address ranges are
10083 * exempt from v8M SAU/IDAU checks.
10085 return
10086 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
10087 (address >= 0xe0000000 && address <= 0xe0002fff) ||
10088 (address >= 0xe000e000 && address <= 0xe000efff) ||
10089 (address >= 0xe002e000 && address <= 0xe002efff) ||
10090 (address >= 0xe0040000 && address <= 0xe0041fff) ||
10091 (address >= 0xe00ff000 && address <= 0xe00fffff);
10094 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
10095 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10096 V8M_SAttributes *sattrs)
10098 /* Look up the security attributes for this address. Compare the
10099 * pseudocode SecurityCheck() function.
10100 * We assume the caller has zero-initialized *sattrs.
10102 ARMCPU *cpu = arm_env_get_cpu(env);
10103 int r;
10104 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
10105 int idau_region = IREGION_NOTVALID;
10106 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10107 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10109 if (cpu->idau) {
10110 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
10111 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
10113 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
10114 &idau_nsc);
10117 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
10118 /* 0xf0000000..0xffffffff is always S for insn fetches */
10119 return;
10122 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
10123 sattrs->ns = !regime_is_secure(env, mmu_idx);
10124 return;
10127 if (idau_region != IREGION_NOTVALID) {
10128 sattrs->irvalid = true;
10129 sattrs->iregion = idau_region;
10132 switch (env->sau.ctrl & 3) {
10133 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
10134 break;
10135 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
10136 sattrs->ns = true;
10137 break;
10138 default: /* SAU.ENABLE == 1 */
10139 for (r = 0; r < cpu->sau_sregion; r++) {
10140 if (env->sau.rlar[r] & 1) {
10141 uint32_t base = env->sau.rbar[r] & ~0x1f;
10142 uint32_t limit = env->sau.rlar[r] | 0x1f;
10144 if (base <= address && limit >= address) {
10145 if (base > addr_page_base || limit < addr_page_limit) {
10146 sattrs->subpage = true;
10148 if (sattrs->srvalid) {
10149 /* If we hit in more than one region then we must report
10150 * as Secure, not NS-Callable, with no valid region
10151 * number info.
10153 sattrs->ns = false;
10154 sattrs->nsc = false;
10155 sattrs->sregion = 0;
10156 sattrs->srvalid = false;
10157 break;
10158 } else {
10159 if (env->sau.rlar[r] & 2) {
10160 sattrs->nsc = true;
10161 } else {
10162 sattrs->ns = true;
10164 sattrs->srvalid = true;
10165 sattrs->sregion = r;
10167 } else {
10169 * Address not in this region. We must check whether the
10170 * region covers addresses in the same page as our address.
10171 * In that case we must not report a size that covers the
10172 * whole page for a subsequent hit against a different MPU
10173 * region or the background region, because it would result
10174 * in incorrect TLB hits for subsequent accesses to
10175 * addresses that are in this MPU region.
10177 if (limit >= base &&
10178 ranges_overlap(base, limit - base + 1,
10179 addr_page_base,
10180 TARGET_PAGE_SIZE)) {
10181 sattrs->subpage = true;
10187 /* The IDAU will override the SAU lookup results if it specifies
10188 * higher security than the SAU does.
10190 if (!idau_ns) {
10191 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
10192 sattrs->ns = false;
10193 sattrs->nsc = idau_nsc;
10196 break;
10200 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
10201 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10202 hwaddr *phys_ptr, MemTxAttrs *txattrs,
10203 int *prot, bool *is_subpage,
10204 ARMMMUFaultInfo *fi, uint32_t *mregion)
10206 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
10207 * that a full phys-to-virt translation does).
10208 * mregion is (if not NULL) set to the region number which matched,
10209 * or -1 if no region number is returned (MPU off, address did not
10210 * hit a region, address hit in multiple regions).
10211 * We set is_subpage to true if the region hit doesn't cover the
10212 * entire TARGET_PAGE the address is within.
10214 ARMCPU *cpu = arm_env_get_cpu(env);
10215 bool is_user = regime_is_user(env, mmu_idx);
10216 uint32_t secure = regime_is_secure(env, mmu_idx);
10217 int n;
10218 int matchregion = -1;
10219 bool hit = false;
10220 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10221 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10223 *is_subpage = false;
10224 *phys_ptr = address;
10225 *prot = 0;
10226 if (mregion) {
10227 *mregion = -1;
10230 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
10231 * was an exception vector read from the vector table (which is always
10232 * done using the default system address map), because those accesses
10233 * are done in arm_v7m_load_vector(), which always does a direct
10234 * read using address_space_ldl(), rather than going via this function.
10236 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
10237 hit = true;
10238 } else if (m_is_ppb_region(env, address)) {
10239 hit = true;
10240 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10241 hit = true;
10242 } else {
10243 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10244 /* region search */
10245 /* Note that the base address is bits [31:5] from the register
10246 * with bits [4:0] all zeroes, but the limit address is bits
10247 * [31:5] from the register with bits [4:0] all ones.
10249 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
10250 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
10252 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
10253 /* Region disabled */
10254 continue;
10257 if (address < base || address > limit) {
10259 * Address not in this region. We must check whether the
10260 * region covers addresses in the same page as our address.
10261 * In that case we must not report a size that covers the
10262 * whole page for a subsequent hit against a different MPU
10263 * region or the background region, because it would result in
10264 * incorrect TLB hits for subsequent accesses to addresses that
10265 * are in this MPU region.
10267 if (limit >= base &&
10268 ranges_overlap(base, limit - base + 1,
10269 addr_page_base,
10270 TARGET_PAGE_SIZE)) {
10271 *is_subpage = true;
10273 continue;
10276 if (base > addr_page_base || limit < addr_page_limit) {
10277 *is_subpage = true;
10280 if (hit) {
10281 /* Multiple regions match -- always a failure (unlike
10282 * PMSAv7 where highest-numbered-region wins)
10284 fi->type = ARMFault_Permission;
10285 fi->level = 1;
10286 return true;
10289 matchregion = n;
10290 hit = true;
10294 if (!hit) {
10295 /* background fault */
10296 fi->type = ARMFault_Background;
10297 return true;
10300 if (matchregion == -1) {
10301 /* hit using the background region */
10302 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10303 } else {
10304 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
10305 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
10307 if (m_is_system_region(env, address)) {
10308 /* System space is always execute never */
10309 xn = 1;
10312 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
10313 if (*prot && !xn) {
10314 *prot |= PAGE_EXEC;
10316 /* We don't need to look the attribute up in the MAIR0/MAIR1
10317 * registers because that only tells us about cacheability.
10319 if (mregion) {
10320 *mregion = matchregion;
10324 fi->type = ARMFault_Permission;
10325 fi->level = 1;
10326 return !(*prot & (1 << access_type));
10330 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
10331 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10332 hwaddr *phys_ptr, MemTxAttrs *txattrs,
10333 int *prot, target_ulong *page_size,
10334 ARMMMUFaultInfo *fi)
10336 uint32_t secure = regime_is_secure(env, mmu_idx);
10337 V8M_SAttributes sattrs = {};
10338 bool ret;
10339 bool mpu_is_subpage;
10341 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10342 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
10343 if (access_type == MMU_INST_FETCH) {
10344 /* Instruction fetches always use the MMU bank and the
10345 * transaction attribute determined by the fetch address,
10346 * regardless of CPU state. This is painful for QEMU
10347 * to handle, because it would mean we need to encode
10348 * into the mmu_idx not just the (user, negpri) information
10349 * for the current security state but also that for the
10350 * other security state, which would balloon the number
10351 * of mmu_idx values needed alarmingly.
10352 * Fortunately we can avoid this because it's not actually
10353 * possible to arbitrarily execute code from memory with
10354 * the wrong security attribute: it will always generate
10355 * an exception of some kind or another, apart from the
10356 * special case of an NS CPU executing an SG instruction
10357 * in S&NSC memory. So we always just fail the translation
10358 * here and sort things out in the exception handler
10359 * (including possibly emulating an SG instruction).
10361 if (sattrs.ns != !secure) {
10362 if (sattrs.nsc) {
10363 fi->type = ARMFault_QEMU_NSCExec;
10364 } else {
10365 fi->type = ARMFault_QEMU_SFault;
10367 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10368 *phys_ptr = address;
10369 *prot = 0;
10370 return true;
10372 } else {
10373 /* For data accesses we always use the MMU bank indicated
10374 * by the current CPU state, but the security attributes
10375 * might downgrade a secure access to nonsecure.
10377 if (sattrs.ns) {
10378 txattrs->secure = false;
10379 } else if (!secure) {
10380 /* NS access to S memory must fault.
10381 * Architecturally we should first check whether the
10382 * MPU information for this address indicates that we
10383 * are doing an unaligned access to Device memory, which
10384 * should generate a UsageFault instead. QEMU does not
10385 * currently check for that kind of unaligned access though.
10386 * If we added it we would need to do so as a special case
10387 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
10389 fi->type = ARMFault_QEMU_SFault;
10390 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10391 *phys_ptr = address;
10392 *prot = 0;
10393 return true;
10398 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
10399 txattrs, prot, &mpu_is_subpage, fi, NULL);
10401 * TODO: this is a temporary hack to ignore the fact that the SAU region
10402 * is smaller than a page if this is an executable region. We never
10403 * supported small MPU regions, but we did (accidentally) allow small
10404 * SAU regions, and if we now made small SAU regions not be executable
10405 * then this would break previously working guest code. We can't
10406 * remove this until/unless we implement support for execution from
10407 * small regions.
10409 if (*prot & PAGE_EXEC) {
10410 sattrs.subpage = false;
10412 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
10413 return ret;
10416 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
10417 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10418 hwaddr *phys_ptr, int *prot,
10419 ARMMMUFaultInfo *fi)
10421 int n;
10422 uint32_t mask;
10423 uint32_t base;
10424 bool is_user = regime_is_user(env, mmu_idx);
10426 if (regime_translation_disabled(env, mmu_idx)) {
10427 /* MPU disabled. */
10428 *phys_ptr = address;
10429 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10430 return false;
10433 *phys_ptr = address;
10434 for (n = 7; n >= 0; n--) {
10435 base = env->cp15.c6_region[n];
10436 if ((base & 1) == 0) {
10437 continue;
10439 mask = 1 << ((base >> 1) & 0x1f);
10440 /* Keep this shift separate from the above to avoid an
10441 (undefined) << 32. */
10442 mask = (mask << 1) - 1;
10443 if (((base ^ address) & ~mask) == 0) {
10444 break;
10447 if (n < 0) {
10448 fi->type = ARMFault_Background;
10449 return true;
10452 if (access_type == MMU_INST_FETCH) {
10453 mask = env->cp15.pmsav5_insn_ap;
10454 } else {
10455 mask = env->cp15.pmsav5_data_ap;
10457 mask = (mask >> (n * 4)) & 0xf;
10458 switch (mask) {
10459 case 0:
10460 fi->type = ARMFault_Permission;
10461 fi->level = 1;
10462 return true;
10463 case 1:
10464 if (is_user) {
10465 fi->type = ARMFault_Permission;
10466 fi->level = 1;
10467 return true;
10469 *prot = PAGE_READ | PAGE_WRITE;
10470 break;
10471 case 2:
10472 *prot = PAGE_READ;
10473 if (!is_user) {
10474 *prot |= PAGE_WRITE;
10476 break;
10477 case 3:
10478 *prot = PAGE_READ | PAGE_WRITE;
10479 break;
10480 case 5:
10481 if (is_user) {
10482 fi->type = ARMFault_Permission;
10483 fi->level = 1;
10484 return true;
10486 *prot = PAGE_READ;
10487 break;
10488 case 6:
10489 *prot = PAGE_READ;
10490 break;
10491 default:
10492 /* Bad permission. */
10493 fi->type = ARMFault_Permission;
10494 fi->level = 1;
10495 return true;
10497 *prot |= PAGE_EXEC;
10498 return false;
10501 /* Combine either inner or outer cacheability attributes for normal
10502 * memory, according to table D4-42 and pseudocode procedure
10503 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10505 * NB: only stage 1 includes allocation hints (RW bits), leading to
10506 * some asymmetry.
10508 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
10510 if (s1 == 4 || s2 == 4) {
10511 /* non-cacheable has precedence */
10512 return 4;
10513 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
10514 /* stage 1 write-through takes precedence */
10515 return s1;
10516 } else if (extract32(s2, 2, 2) == 2) {
10517 /* stage 2 write-through takes precedence, but the allocation hint
10518 * is still taken from stage 1
10520 return (2 << 2) | extract32(s1, 0, 2);
10521 } else { /* write-back */
10522 return s1;
10526 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10527 * and CombineS1S2Desc()
10529 * @s1: Attributes from stage 1 walk
10530 * @s2: Attributes from stage 2 walk
10532 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
10534 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
10535 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
10536 ARMCacheAttrs ret;
10538 /* Combine shareability attributes (table D4-43) */
10539 if (s1.shareability == 2 || s2.shareability == 2) {
10540 /* if either are outer-shareable, the result is outer-shareable */
10541 ret.shareability = 2;
10542 } else if (s1.shareability == 3 || s2.shareability == 3) {
10543 /* if either are inner-shareable, the result is inner-shareable */
10544 ret.shareability = 3;
10545 } else {
10546 /* both non-shareable */
10547 ret.shareability = 0;
10550 /* Combine memory type and cacheability attributes */
10551 if (s1hi == 0 || s2hi == 0) {
10552 /* Device has precedence over normal */
10553 if (s1lo == 0 || s2lo == 0) {
10554 /* nGnRnE has precedence over anything */
10555 ret.attrs = 0;
10556 } else if (s1lo == 4 || s2lo == 4) {
10557 /* non-Reordering has precedence over Reordering */
10558 ret.attrs = 4; /* nGnRE */
10559 } else if (s1lo == 8 || s2lo == 8) {
10560 /* non-Gathering has precedence over Gathering */
10561 ret.attrs = 8; /* nGRE */
10562 } else {
10563 ret.attrs = 0xc; /* GRE */
10566 /* Any location for which the resultant memory type is any
10567 * type of Device memory is always treated as Outer Shareable.
10569 ret.shareability = 2;
10570 } else { /* Normal memory */
10571 /* Outer/inner cacheability combine independently */
10572 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
10573 | combine_cacheattr_nibble(s1lo, s2lo);
10575 if (ret.attrs == 0x44) {
10576 /* Any location for which the resultant memory type is Normal
10577 * Inner Non-cacheable, Outer Non-cacheable is always treated
10578 * as Outer Shareable.
10580 ret.shareability = 2;
10584 return ret;
10588 /* get_phys_addr - get the physical address for this virtual address
10590 * Find the physical address corresponding to the given virtual address,
10591 * by doing a translation table walk on MMU based systems or using the
10592 * MPU state on MPU based systems.
10594 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10595 * prot and page_size may not be filled in, and the populated fsr value provides
10596 * information on why the translation aborted, in the format of a
10597 * DFSR/IFSR fault register, with the following caveats:
10598 * * we honour the short vs long DFSR format differences.
10599 * * the WnR bit is never set (the caller must do this).
10600 * * for PSMAv5 based systems we don't bother to return a full FSR format
10601 * value.
10603 * @env: CPUARMState
10604 * @address: virtual address to get physical address for
10605 * @access_type: 0 for read, 1 for write, 2 for execute
10606 * @mmu_idx: MMU index indicating required translation regime
10607 * @phys_ptr: set to the physical address corresponding to the virtual address
10608 * @attrs: set to the memory transaction attributes to use
10609 * @prot: set to the permissions for the page containing phys_ptr
10610 * @page_size: set to the size of the page containing phys_ptr
10611 * @fi: set to fault info if the translation fails
10612 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10614 static bool get_phys_addr(CPUARMState *env, target_ulong address,
10615 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10616 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10617 target_ulong *page_size,
10618 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10620 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10621 /* Call ourselves recursively to do the stage 1 and then stage 2
10622 * translations.
10624 if (arm_feature(env, ARM_FEATURE_EL2)) {
10625 hwaddr ipa;
10626 int s2_prot;
10627 int ret;
10628 ARMCacheAttrs cacheattrs2 = {};
10630 ret = get_phys_addr(env, address, access_type,
10631 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10632 prot, page_size, fi, cacheattrs);
10634 /* If S1 fails or S2 is disabled, return early. */
10635 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10636 *phys_ptr = ipa;
10637 return ret;
10640 /* S1 is done. Now do S2 translation. */
10641 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
10642 phys_ptr, attrs, &s2_prot,
10643 page_size, fi,
10644 cacheattrs != NULL ? &cacheattrs2 : NULL);
10645 fi->s2addr = ipa;
10646 /* Combine the S1 and S2 perms. */
10647 *prot &= s2_prot;
10649 /* Combine the S1 and S2 cache attributes, if needed */
10650 if (!ret && cacheattrs != NULL) {
10651 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
10654 return ret;
10655 } else {
10657 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10659 mmu_idx = stage_1_mmu_idx(mmu_idx);
10663 /* The page table entries may downgrade secure to non-secure, but
10664 * cannot upgrade an non-secure translation regime's attributes
10665 * to secure.
10667 attrs->secure = regime_is_secure(env, mmu_idx);
10668 attrs->user = regime_is_user(env, mmu_idx);
10670 /* Fast Context Switch Extension. This doesn't exist at all in v8.
10671 * In v7 and earlier it affects all stage 1 translations.
10673 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
10674 && !arm_feature(env, ARM_FEATURE_V8)) {
10675 if (regime_el(env, mmu_idx) == 3) {
10676 address += env->cp15.fcseidr_s;
10677 } else {
10678 address += env->cp15.fcseidr_ns;
10682 if (arm_feature(env, ARM_FEATURE_PMSA)) {
10683 bool ret;
10684 *page_size = TARGET_PAGE_SIZE;
10686 if (arm_feature(env, ARM_FEATURE_V8)) {
10687 /* PMSAv8 */
10688 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10689 phys_ptr, attrs, prot, page_size, fi);
10690 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10691 /* PMSAv7 */
10692 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10693 phys_ptr, prot, page_size, fi);
10694 } else {
10695 /* Pre-v7 MPU */
10696 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10697 phys_ptr, prot, fi);
10699 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10700 " mmu_idx %u -> %s (prot %c%c%c)\n",
10701 access_type == MMU_DATA_LOAD ? "reading" :
10702 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10703 (uint32_t)address, mmu_idx,
10704 ret ? "Miss" : "Hit",
10705 *prot & PAGE_READ ? 'r' : '-',
10706 *prot & PAGE_WRITE ? 'w' : '-',
10707 *prot & PAGE_EXEC ? 'x' : '-');
10709 return ret;
10712 /* Definitely a real MMU, not an MPU */
10714 if (regime_translation_disabled(env, mmu_idx)) {
10715 /* MMU disabled. */
10716 *phys_ptr = address;
10717 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10718 *page_size = TARGET_PAGE_SIZE;
10719 return 0;
10722 if (regime_using_lpae_format(env, mmu_idx)) {
10723 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
10724 phys_ptr, attrs, prot, page_size,
10725 fi, cacheattrs);
10726 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
10727 return get_phys_addr_v6(env, address, access_type, mmu_idx,
10728 phys_ptr, attrs, prot, page_size, fi);
10729 } else {
10730 return get_phys_addr_v5(env, address, access_type, mmu_idx,
10731 phys_ptr, prot, page_size, fi);
10735 /* Walk the page table and (if the mapping exists) add the page
10736 * to the TLB. Return false on success, or true on failure. Populate
10737 * fsr with ARM DFSR/IFSR fault register format value on failure.
10739 bool arm_tlb_fill(CPUState *cs, vaddr address,
10740 MMUAccessType access_type, int mmu_idx,
10741 ARMMMUFaultInfo *fi)
10743 ARMCPU *cpu = ARM_CPU(cs);
10744 CPUARMState *env = &cpu->env;
10745 hwaddr phys_addr;
10746 target_ulong page_size;
10747 int prot;
10748 int ret;
10749 MemTxAttrs attrs = {};
10751 ret = get_phys_addr(env, address, access_type,
10752 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
10753 &attrs, &prot, &page_size, fi, NULL);
10754 if (!ret) {
10756 * Map a single [sub]page. Regions smaller than our declared
10757 * target page size are handled specially, so for those we
10758 * pass in the exact addresses.
10760 if (page_size >= TARGET_PAGE_SIZE) {
10761 phys_addr &= TARGET_PAGE_MASK;
10762 address &= TARGET_PAGE_MASK;
10764 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
10765 prot, mmu_idx, page_size);
10766 return 0;
10769 return ret;
10772 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
10773 MemTxAttrs *attrs)
10775 ARMCPU *cpu = ARM_CPU(cs);
10776 CPUARMState *env = &cpu->env;
10777 hwaddr phys_addr;
10778 target_ulong page_size;
10779 int prot;
10780 bool ret;
10781 ARMMMUFaultInfo fi = {};
10782 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
10784 *attrs = (MemTxAttrs) {};
10786 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
10787 attrs, &prot, &page_size, &fi, NULL);
10789 if (ret) {
10790 return -1;
10792 return phys_addr;
10795 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
10797 uint32_t mask;
10798 unsigned el = arm_current_el(env);
10800 /* First handle registers which unprivileged can read */
10802 switch (reg) {
10803 case 0 ... 7: /* xPSR sub-fields */
10804 mask = 0;
10805 if ((reg & 1) && el) {
10806 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
10808 if (!(reg & 4)) {
10809 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
10811 /* EPSR reads as zero */
10812 return xpsr_read(env) & mask;
10813 break;
10814 case 20: /* CONTROL */
10815 return env->v7m.control[env->v7m.secure];
10816 case 0x94: /* CONTROL_NS */
10817 /* We have to handle this here because unprivileged Secure code
10818 * can read the NS CONTROL register.
10820 if (!env->v7m.secure) {
10821 return 0;
10823 return env->v7m.control[M_REG_NS];
10826 if (el == 0) {
10827 return 0; /* unprivileged reads others as zero */
10830 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10831 switch (reg) {
10832 case 0x88: /* MSP_NS */
10833 if (!env->v7m.secure) {
10834 return 0;
10836 return env->v7m.other_ss_msp;
10837 case 0x89: /* PSP_NS */
10838 if (!env->v7m.secure) {
10839 return 0;
10841 return env->v7m.other_ss_psp;
10842 case 0x8a: /* MSPLIM_NS */
10843 if (!env->v7m.secure) {
10844 return 0;
10846 return env->v7m.msplim[M_REG_NS];
10847 case 0x8b: /* PSPLIM_NS */
10848 if (!env->v7m.secure) {
10849 return 0;
10851 return env->v7m.psplim[M_REG_NS];
10852 case 0x90: /* PRIMASK_NS */
10853 if (!env->v7m.secure) {
10854 return 0;
10856 return env->v7m.primask[M_REG_NS];
10857 case 0x91: /* BASEPRI_NS */
10858 if (!env->v7m.secure) {
10859 return 0;
10861 return env->v7m.basepri[M_REG_NS];
10862 case 0x93: /* FAULTMASK_NS */
10863 if (!env->v7m.secure) {
10864 return 0;
10866 return env->v7m.faultmask[M_REG_NS];
10867 case 0x98: /* SP_NS */
10869 /* This gives the non-secure SP selected based on whether we're
10870 * currently in handler mode or not, using the NS CONTROL.SPSEL.
10872 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10874 if (!env->v7m.secure) {
10875 return 0;
10877 if (!arm_v7m_is_handler_mode(env) && spsel) {
10878 return env->v7m.other_ss_psp;
10879 } else {
10880 return env->v7m.other_ss_msp;
10883 default:
10884 break;
10888 switch (reg) {
10889 case 8: /* MSP */
10890 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
10891 case 9: /* PSP */
10892 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
10893 case 10: /* MSPLIM */
10894 if (!arm_feature(env, ARM_FEATURE_V8)) {
10895 goto bad_reg;
10897 return env->v7m.msplim[env->v7m.secure];
10898 case 11: /* PSPLIM */
10899 if (!arm_feature(env, ARM_FEATURE_V8)) {
10900 goto bad_reg;
10902 return env->v7m.psplim[env->v7m.secure];
10903 case 16: /* PRIMASK */
10904 return env->v7m.primask[env->v7m.secure];
10905 case 17: /* BASEPRI */
10906 case 18: /* BASEPRI_MAX */
10907 return env->v7m.basepri[env->v7m.secure];
10908 case 19: /* FAULTMASK */
10909 return env->v7m.faultmask[env->v7m.secure];
10910 default:
10911 bad_reg:
10912 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
10913 " register %d\n", reg);
10914 return 0;
10918 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
10920 /* We're passed bits [11..0] of the instruction; extract
10921 * SYSm and the mask bits.
10922 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
10923 * we choose to treat them as if the mask bits were valid.
10924 * NB that the pseudocode 'mask' variable is bits [11..10],
10925 * whereas ours is [11..8].
10927 uint32_t mask = extract32(maskreg, 8, 4);
10928 uint32_t reg = extract32(maskreg, 0, 8);
10930 if (arm_current_el(env) == 0 && reg > 7) {
10931 /* only xPSR sub-fields may be written by unprivileged */
10932 return;
10935 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10936 switch (reg) {
10937 case 0x88: /* MSP_NS */
10938 if (!env->v7m.secure) {
10939 return;
10941 env->v7m.other_ss_msp = val;
10942 return;
10943 case 0x89: /* PSP_NS */
10944 if (!env->v7m.secure) {
10945 return;
10947 env->v7m.other_ss_psp = val;
10948 return;
10949 case 0x8a: /* MSPLIM_NS */
10950 if (!env->v7m.secure) {
10951 return;
10953 env->v7m.msplim[M_REG_NS] = val & ~7;
10954 return;
10955 case 0x8b: /* PSPLIM_NS */
10956 if (!env->v7m.secure) {
10957 return;
10959 env->v7m.psplim[M_REG_NS] = val & ~7;
10960 return;
10961 case 0x90: /* PRIMASK_NS */
10962 if (!env->v7m.secure) {
10963 return;
10965 env->v7m.primask[M_REG_NS] = val & 1;
10966 return;
10967 case 0x91: /* BASEPRI_NS */
10968 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
10969 return;
10971 env->v7m.basepri[M_REG_NS] = val & 0xff;
10972 return;
10973 case 0x93: /* FAULTMASK_NS */
10974 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
10975 return;
10977 env->v7m.faultmask[M_REG_NS] = val & 1;
10978 return;
10979 case 0x94: /* CONTROL_NS */
10980 if (!env->v7m.secure) {
10981 return;
10983 write_v7m_control_spsel_for_secstate(env,
10984 val & R_V7M_CONTROL_SPSEL_MASK,
10985 M_REG_NS);
10986 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
10987 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
10988 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
10990 return;
10991 case 0x98: /* SP_NS */
10993 /* This gives the non-secure SP selected based on whether we're
10994 * currently in handler mode or not, using the NS CONTROL.SPSEL.
10996 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10997 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
10998 uint32_t limit;
11000 if (!env->v7m.secure) {
11001 return;
11004 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
11006 if (val < limit) {
11007 CPUState *cs = CPU(arm_env_get_cpu(env));
11009 cpu_restore_state(cs, GETPC(), true);
11010 raise_exception(env, EXCP_STKOF, 0, 1);
11013 if (is_psp) {
11014 env->v7m.other_ss_psp = val;
11015 } else {
11016 env->v7m.other_ss_msp = val;
11018 return;
11020 default:
11021 break;
11025 switch (reg) {
11026 case 0 ... 7: /* xPSR sub-fields */
11027 /* only APSR is actually writable */
11028 if (!(reg & 4)) {
11029 uint32_t apsrmask = 0;
11031 if (mask & 8) {
11032 apsrmask |= XPSR_NZCV | XPSR_Q;
11034 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
11035 apsrmask |= XPSR_GE;
11037 xpsr_write(env, val, apsrmask);
11039 break;
11040 case 8: /* MSP */
11041 if (v7m_using_psp(env)) {
11042 env->v7m.other_sp = val;
11043 } else {
11044 env->regs[13] = val;
11046 break;
11047 case 9: /* PSP */
11048 if (v7m_using_psp(env)) {
11049 env->regs[13] = val;
11050 } else {
11051 env->v7m.other_sp = val;
11053 break;
11054 case 10: /* MSPLIM */
11055 if (!arm_feature(env, ARM_FEATURE_V8)) {
11056 goto bad_reg;
11058 env->v7m.msplim[env->v7m.secure] = val & ~7;
11059 break;
11060 case 11: /* PSPLIM */
11061 if (!arm_feature(env, ARM_FEATURE_V8)) {
11062 goto bad_reg;
11064 env->v7m.psplim[env->v7m.secure] = val & ~7;
11065 break;
11066 case 16: /* PRIMASK */
11067 env->v7m.primask[env->v7m.secure] = val & 1;
11068 break;
11069 case 17: /* BASEPRI */
11070 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
11071 goto bad_reg;
11073 env->v7m.basepri[env->v7m.secure] = val & 0xff;
11074 break;
11075 case 18: /* BASEPRI_MAX */
11076 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
11077 goto bad_reg;
11079 val &= 0xff;
11080 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
11081 || env->v7m.basepri[env->v7m.secure] == 0)) {
11082 env->v7m.basepri[env->v7m.secure] = val;
11084 break;
11085 case 19: /* FAULTMASK */
11086 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
11087 goto bad_reg;
11089 env->v7m.faultmask[env->v7m.secure] = val & 1;
11090 break;
11091 case 20: /* CONTROL */
11092 /* Writing to the SPSEL bit only has an effect if we are in
11093 * thread mode; other bits can be updated by any privileged code.
11094 * write_v7m_control_spsel() deals with updating the SPSEL bit in
11095 * env->v7m.control, so we only need update the others.
11096 * For v7M, we must just ignore explicit writes to SPSEL in handler
11097 * mode; for v8M the write is permitted but will have no effect.
11099 if (arm_feature(env, ARM_FEATURE_V8) ||
11100 !arm_v7m_is_handler_mode(env)) {
11101 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
11103 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
11104 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
11105 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
11107 break;
11108 default:
11109 bad_reg:
11110 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
11111 " register %d\n", reg);
11112 return;
11116 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
11118 /* Implement the TT instruction. op is bits [7:6] of the insn. */
11119 bool forceunpriv = op & 1;
11120 bool alt = op & 2;
11121 V8M_SAttributes sattrs = {};
11122 uint32_t tt_resp;
11123 bool r, rw, nsr, nsrw, mrvalid;
11124 int prot;
11125 ARMMMUFaultInfo fi = {};
11126 MemTxAttrs attrs = {};
11127 hwaddr phys_addr;
11128 ARMMMUIdx mmu_idx;
11129 uint32_t mregion;
11130 bool targetpriv;
11131 bool targetsec = env->v7m.secure;
11132 bool is_subpage;
11134 /* Work out what the security state and privilege level we're
11135 * interested in is...
11137 if (alt) {
11138 targetsec = !targetsec;
11141 if (forceunpriv) {
11142 targetpriv = false;
11143 } else {
11144 targetpriv = arm_v7m_is_handler_mode(env) ||
11145 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
11148 /* ...and then figure out which MMU index this is */
11149 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
11151 /* We know that the MPU and SAU don't care about the access type
11152 * for our purposes beyond that we don't want to claim to be
11153 * an insn fetch, so we arbitrarily call this a read.
11156 /* MPU region info only available for privileged or if
11157 * inspecting the other MPU state.
11159 if (arm_current_el(env) != 0 || alt) {
11160 /* We can ignore the return value as prot is always set */
11161 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
11162 &phys_addr, &attrs, &prot, &is_subpage,
11163 &fi, &mregion);
11164 if (mregion == -1) {
11165 mrvalid = false;
11166 mregion = 0;
11167 } else {
11168 mrvalid = true;
11170 r = prot & PAGE_READ;
11171 rw = prot & PAGE_WRITE;
11172 } else {
11173 r = false;
11174 rw = false;
11175 mrvalid = false;
11176 mregion = 0;
11179 if (env->v7m.secure) {
11180 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
11181 nsr = sattrs.ns && r;
11182 nsrw = sattrs.ns && rw;
11183 } else {
11184 sattrs.ns = true;
11185 nsr = false;
11186 nsrw = false;
11189 tt_resp = (sattrs.iregion << 24) |
11190 (sattrs.irvalid << 23) |
11191 ((!sattrs.ns) << 22) |
11192 (nsrw << 21) |
11193 (nsr << 20) |
11194 (rw << 19) |
11195 (r << 18) |
11196 (sattrs.srvalid << 17) |
11197 (mrvalid << 16) |
11198 (sattrs.sregion << 8) |
11199 mregion;
11201 return tt_resp;
11204 #endif
11206 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
11208 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
11209 * Note that we do not implement the (architecturally mandated)
11210 * alignment fault for attempts to use this on Device memory
11211 * (which matches the usual QEMU behaviour of not implementing either
11212 * alignment faults or any memory attribute handling).
11215 ARMCPU *cpu = arm_env_get_cpu(env);
11216 uint64_t blocklen = 4 << cpu->dcz_blocksize;
11217 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
11219 #ifndef CONFIG_USER_ONLY
11221 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
11222 * the block size so we might have to do more than one TLB lookup.
11223 * We know that in fact for any v8 CPU the page size is at least 4K
11224 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
11225 * 1K as an artefact of legacy v5 subpage support being present in the
11226 * same QEMU executable.
11228 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
11229 void *hostaddr[maxidx];
11230 int try, i;
11231 unsigned mmu_idx = cpu_mmu_index(env, false);
11232 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
11234 for (try = 0; try < 2; try++) {
11236 for (i = 0; i < maxidx; i++) {
11237 hostaddr[i] = tlb_vaddr_to_host(env,
11238 vaddr + TARGET_PAGE_SIZE * i,
11239 1, mmu_idx);
11240 if (!hostaddr[i]) {
11241 break;
11244 if (i == maxidx) {
11245 /* If it's all in the TLB it's fair game for just writing to;
11246 * we know we don't need to update dirty status, etc.
11248 for (i = 0; i < maxidx - 1; i++) {
11249 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
11251 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
11252 return;
11254 /* OK, try a store and see if we can populate the tlb. This
11255 * might cause an exception if the memory isn't writable,
11256 * in which case we will longjmp out of here. We must for
11257 * this purpose use the actual register value passed to us
11258 * so that we get the fault address right.
11260 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
11261 /* Now we can populate the other TLB entries, if any */
11262 for (i = 0; i < maxidx; i++) {
11263 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
11264 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
11265 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
11270 /* Slow path (probably attempt to do this to an I/O device or
11271 * similar, or clearing of a block of code we have translations
11272 * cached for). Just do a series of byte writes as the architecture
11273 * demands. It's not worth trying to use a cpu_physical_memory_map(),
11274 * memset(), unmap() sequence here because:
11275 * + we'd need to account for the blocksize being larger than a page
11276 * + the direct-RAM access case is almost always going to be dealt
11277 * with in the fastpath code above, so there's no speed benefit
11278 * + we would have to deal with the map returning NULL because the
11279 * bounce buffer was in use
11281 for (i = 0; i < blocklen; i++) {
11282 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
11285 #else
11286 memset(g2h(vaddr), 0, blocklen);
11287 #endif
11290 /* Note that signed overflow is undefined in C. The following routines are
11291 careful to use unsigned types where modulo arithmetic is required.
11292 Failure to do so _will_ break on newer gcc. */
11294 /* Signed saturating arithmetic. */
11296 /* Perform 16-bit signed saturating addition. */
11297 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11299 uint16_t res;
11301 res = a + b;
11302 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11303 if (a & 0x8000)
11304 res = 0x8000;
11305 else
11306 res = 0x7fff;
11308 return res;
11311 /* Perform 8-bit signed saturating addition. */
11312 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11314 uint8_t res;
11316 res = a + b;
11317 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11318 if (a & 0x80)
11319 res = 0x80;
11320 else
11321 res = 0x7f;
11323 return res;
11326 /* Perform 16-bit signed saturating subtraction. */
11327 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11329 uint16_t res;
11331 res = a - b;
11332 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11333 if (a & 0x8000)
11334 res = 0x8000;
11335 else
11336 res = 0x7fff;
11338 return res;
11341 /* Perform 8-bit signed saturating subtraction. */
11342 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11344 uint8_t res;
11346 res = a - b;
11347 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11348 if (a & 0x80)
11349 res = 0x80;
11350 else
11351 res = 0x7f;
11353 return res;
11356 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11357 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11358 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
11359 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
11360 #define PFX q
11362 #include "op_addsub.h"
11364 /* Unsigned saturating arithmetic. */
11365 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11367 uint16_t res;
11368 res = a + b;
11369 if (res < a)
11370 res = 0xffff;
11371 return res;
11374 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11376 if (a > b)
11377 return a - b;
11378 else
11379 return 0;
11382 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11384 uint8_t res;
11385 res = a + b;
11386 if (res < a)
11387 res = 0xff;
11388 return res;
11391 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11393 if (a > b)
11394 return a - b;
11395 else
11396 return 0;
11399 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11400 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11401 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11402 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11403 #define PFX uq
11405 #include "op_addsub.h"
11407 /* Signed modulo arithmetic. */
11408 #define SARITH16(a, b, n, op) do { \
11409 int32_t sum; \
11410 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11411 RESULT(sum, n, 16); \
11412 if (sum >= 0) \
11413 ge |= 3 << (n * 2); \
11414 } while(0)
11416 #define SARITH8(a, b, n, op) do { \
11417 int32_t sum; \
11418 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11419 RESULT(sum, n, 8); \
11420 if (sum >= 0) \
11421 ge |= 1 << n; \
11422 } while(0)
11425 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11426 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11427 #define ADD8(a, b, n) SARITH8(a, b, n, +)
11428 #define SUB8(a, b, n) SARITH8(a, b, n, -)
11429 #define PFX s
11430 #define ARITH_GE
11432 #include "op_addsub.h"
11434 /* Unsigned modulo arithmetic. */
11435 #define ADD16(a, b, n) do { \
11436 uint32_t sum; \
11437 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11438 RESULT(sum, n, 16); \
11439 if ((sum >> 16) == 1) \
11440 ge |= 3 << (n * 2); \
11441 } while(0)
11443 #define ADD8(a, b, n) do { \
11444 uint32_t sum; \
11445 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11446 RESULT(sum, n, 8); \
11447 if ((sum >> 8) == 1) \
11448 ge |= 1 << n; \
11449 } while(0)
11451 #define SUB16(a, b, n) do { \
11452 uint32_t sum; \
11453 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11454 RESULT(sum, n, 16); \
11455 if ((sum >> 16) == 0) \
11456 ge |= 3 << (n * 2); \
11457 } while(0)
11459 #define SUB8(a, b, n) do { \
11460 uint32_t sum; \
11461 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11462 RESULT(sum, n, 8); \
11463 if ((sum >> 8) == 0) \
11464 ge |= 1 << n; \
11465 } while(0)
11467 #define PFX u
11468 #define ARITH_GE
11470 #include "op_addsub.h"
11472 /* Halved signed arithmetic. */
11473 #define ADD16(a, b, n) \
11474 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11475 #define SUB16(a, b, n) \
11476 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11477 #define ADD8(a, b, n) \
11478 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11479 #define SUB8(a, b, n) \
11480 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11481 #define PFX sh
11483 #include "op_addsub.h"
11485 /* Halved unsigned arithmetic. */
11486 #define ADD16(a, b, n) \
11487 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11488 #define SUB16(a, b, n) \
11489 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11490 #define ADD8(a, b, n) \
11491 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11492 #define SUB8(a, b, n) \
11493 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11494 #define PFX uh
11496 #include "op_addsub.h"
11498 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11500 if (a > b)
11501 return a - b;
11502 else
11503 return b - a;
11506 /* Unsigned sum of absolute byte differences. */
11507 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11509 uint32_t sum;
11510 sum = do_usad(a, b);
11511 sum += do_usad(a >> 8, b >> 8);
11512 sum += do_usad(a >> 16, b >>16);
11513 sum += do_usad(a >> 24, b >> 24);
11514 return sum;
11517 /* For ARMv6 SEL instruction. */
11518 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11520 uint32_t mask;
11522 mask = 0;
11523 if (flags & 1)
11524 mask |= 0xff;
11525 if (flags & 2)
11526 mask |= 0xff00;
11527 if (flags & 4)
11528 mask |= 0xff0000;
11529 if (flags & 8)
11530 mask |= 0xff000000;
11531 return (a & mask) | (b & ~mask);
11534 /* VFP support. We follow the convention used for VFP instructions:
11535 Single precision routines have a "s" suffix, double precision a
11536 "d" suffix. */
11538 /* Convert host exception flags to vfp form. */
11539 static inline int vfp_exceptbits_from_host(int host_bits)
11541 int target_bits = 0;
11543 if (host_bits & float_flag_invalid)
11544 target_bits |= 1;
11545 if (host_bits & float_flag_divbyzero)
11546 target_bits |= 2;
11547 if (host_bits & float_flag_overflow)
11548 target_bits |= 4;
11549 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
11550 target_bits |= 8;
11551 if (host_bits & float_flag_inexact)
11552 target_bits |= 0x10;
11553 if (host_bits & float_flag_input_denormal)
11554 target_bits |= 0x80;
11555 return target_bits;
11558 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
11560 int i;
11561 uint32_t fpscr;
11563 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
11564 | (env->vfp.vec_len << 16)
11565 | (env->vfp.vec_stride << 20);
11567 i = get_float_exception_flags(&env->vfp.fp_status);
11568 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
11569 /* FZ16 does not generate an input denormal exception. */
11570 i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
11571 & ~float_flag_input_denormal);
11573 fpscr |= vfp_exceptbits_from_host(i);
11574 return fpscr;
11577 uint32_t vfp_get_fpscr(CPUARMState *env)
11579 return HELPER(vfp_get_fpscr)(env);
11582 /* Convert vfp exception flags to target form. */
11583 static inline int vfp_exceptbits_to_host(int target_bits)
11585 int host_bits = 0;
11587 if (target_bits & 1)
11588 host_bits |= float_flag_invalid;
11589 if (target_bits & 2)
11590 host_bits |= float_flag_divbyzero;
11591 if (target_bits & 4)
11592 host_bits |= float_flag_overflow;
11593 if (target_bits & 8)
11594 host_bits |= float_flag_underflow;
11595 if (target_bits & 0x10)
11596 host_bits |= float_flag_inexact;
11597 if (target_bits & 0x80)
11598 host_bits |= float_flag_input_denormal;
11599 return host_bits;
11602 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
11604 int i;
11605 uint32_t changed;
11607 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */
11608 if (!arm_feature(env, ARM_FEATURE_V8_FP16)) {
11609 val &= ~FPCR_FZ16;
11612 changed = env->vfp.xregs[ARM_VFP_FPSCR];
11613 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
11614 env->vfp.vec_len = (val >> 16) & 7;
11615 env->vfp.vec_stride = (val >> 20) & 3;
11617 changed ^= val;
11618 if (changed & (3 << 22)) {
11619 i = (val >> 22) & 3;
11620 switch (i) {
11621 case FPROUNDING_TIEEVEN:
11622 i = float_round_nearest_even;
11623 break;
11624 case FPROUNDING_POSINF:
11625 i = float_round_up;
11626 break;
11627 case FPROUNDING_NEGINF:
11628 i = float_round_down;
11629 break;
11630 case FPROUNDING_ZERO:
11631 i = float_round_to_zero;
11632 break;
11634 set_float_rounding_mode(i, &env->vfp.fp_status);
11635 set_float_rounding_mode(i, &env->vfp.fp_status_f16);
11637 if (changed & FPCR_FZ16) {
11638 bool ftz_enabled = val & FPCR_FZ16;
11639 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
11640 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
11642 if (changed & FPCR_FZ) {
11643 bool ftz_enabled = val & FPCR_FZ;
11644 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
11645 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
11647 if (changed & FPCR_DN) {
11648 bool dnan_enabled = val & FPCR_DN;
11649 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
11650 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
11653 /* The exception flags are ORed together when we read fpscr so we
11654 * only need to preserve the current state in one of our
11655 * float_status values.
11657 i = vfp_exceptbits_to_host(val);
11658 set_float_exception_flags(i, &env->vfp.fp_status);
11659 set_float_exception_flags(0, &env->vfp.fp_status_f16);
11660 set_float_exception_flags(0, &env->vfp.standard_fp_status);
11663 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
11665 HELPER(vfp_set_fpscr)(env, val);
11668 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
11670 #define VFP_BINOP(name) \
11671 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
11673 float_status *fpst = fpstp; \
11674 return float32_ ## name(a, b, fpst); \
11676 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
11678 float_status *fpst = fpstp; \
11679 return float64_ ## name(a, b, fpst); \
11681 VFP_BINOP(add)
11682 VFP_BINOP(sub)
11683 VFP_BINOP(mul)
11684 VFP_BINOP(div)
11685 VFP_BINOP(min)
11686 VFP_BINOP(max)
11687 VFP_BINOP(minnum)
11688 VFP_BINOP(maxnum)
11689 #undef VFP_BINOP
11691 float32 VFP_HELPER(neg, s)(float32 a)
11693 return float32_chs(a);
11696 float64 VFP_HELPER(neg, d)(float64 a)
11698 return float64_chs(a);
11701 float32 VFP_HELPER(abs, s)(float32 a)
11703 return float32_abs(a);
11706 float64 VFP_HELPER(abs, d)(float64 a)
11708 return float64_abs(a);
11711 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
11713 return float32_sqrt(a, &env->vfp.fp_status);
11716 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
11718 return float64_sqrt(a, &env->vfp.fp_status);
11721 /* XXX: check quiet/signaling case */
11722 #define DO_VFP_cmp(p, type) \
11723 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
11725 uint32_t flags; \
11726 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
11727 case 0: flags = 0x6; break; \
11728 case -1: flags = 0x8; break; \
11729 case 1: flags = 0x2; break; \
11730 default: case 2: flags = 0x3; break; \
11732 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11733 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11735 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
11737 uint32_t flags; \
11738 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
11739 case 0: flags = 0x6; break; \
11740 case -1: flags = 0x8; break; \
11741 case 1: flags = 0x2; break; \
11742 default: case 2: flags = 0x3; break; \
11744 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11745 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11747 DO_VFP_cmp(s, float32)
11748 DO_VFP_cmp(d, float64)
11749 #undef DO_VFP_cmp
11751 /* Integer to float and float to integer conversions */
11753 #define CONV_ITOF(name, ftype, fsz, sign) \
11754 ftype HELPER(name)(uint32_t x, void *fpstp) \
11756 float_status *fpst = fpstp; \
11757 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
11760 #define CONV_FTOI(name, ftype, fsz, sign, round) \
11761 sign##int32_t HELPER(name)(ftype x, void *fpstp) \
11763 float_status *fpst = fpstp; \
11764 if (float##fsz##_is_any_nan(x)) { \
11765 float_raise(float_flag_invalid, fpst); \
11766 return 0; \
11768 return float##fsz##_to_##sign##int32##round(x, fpst); \
11771 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \
11772 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
11773 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
11774 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
11776 FLOAT_CONVS(si, h, uint32_t, 16, )
11777 FLOAT_CONVS(si, s, float32, 32, )
11778 FLOAT_CONVS(si, d, float64, 64, )
11779 FLOAT_CONVS(ui, h, uint32_t, 16, u)
11780 FLOAT_CONVS(ui, s, float32, 32, u)
11781 FLOAT_CONVS(ui, d, float64, 64, u)
11783 #undef CONV_ITOF
11784 #undef CONV_FTOI
11785 #undef FLOAT_CONVS
11787 /* floating point conversion */
11788 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
11790 return float32_to_float64(x, &env->vfp.fp_status);
11793 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
11795 return float64_to_float32(x, &env->vfp.fp_status);
11798 /* VFP3 fixed point conversion. */
11799 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11800 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
11801 void *fpstp) \
11802 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
11804 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff) \
11805 uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
11806 void *fpst) \
11808 if (unlikely(float##fsz##_is_any_nan(x))) { \
11809 float_raise(float_flag_invalid, fpst); \
11810 return 0; \
11812 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \
11815 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
11816 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11817 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
11818 float_round_to_zero, _round_to_zero) \
11819 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
11820 get_float_rounding_mode(fpst), )
11822 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
11823 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11824 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
11825 get_float_rounding_mode(fpst), )
11827 VFP_CONV_FIX(sh, d, 64, 64, int16)
11828 VFP_CONV_FIX(sl, d, 64, 64, int32)
11829 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
11830 VFP_CONV_FIX(uh, d, 64, 64, uint16)
11831 VFP_CONV_FIX(ul, d, 64, 64, uint32)
11832 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
11833 VFP_CONV_FIX(sh, s, 32, 32, int16)
11834 VFP_CONV_FIX(sl, s, 32, 32, int32)
11835 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
11836 VFP_CONV_FIX(uh, s, 32, 32, uint16)
11837 VFP_CONV_FIX(ul, s, 32, 32, uint32)
11838 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
11840 #undef VFP_CONV_FIX
11841 #undef VFP_CONV_FIX_FLOAT
11842 #undef VFP_CONV_FLOAT_FIX_ROUND
11843 #undef VFP_CONV_FIX_A64
11845 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
11847 return int32_to_float16_scalbn(x, -shift, fpst);
11850 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
11852 return uint32_to_float16_scalbn(x, -shift, fpst);
11855 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
11857 return int64_to_float16_scalbn(x, -shift, fpst);
11860 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
11862 return uint64_to_float16_scalbn(x, -shift, fpst);
11865 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
11867 if (unlikely(float16_is_any_nan(x))) {
11868 float_raise(float_flag_invalid, fpst);
11869 return 0;
11871 return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst),
11872 shift, fpst);
11875 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
11877 if (unlikely(float16_is_any_nan(x))) {
11878 float_raise(float_flag_invalid, fpst);
11879 return 0;
11881 return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst),
11882 shift, fpst);
11885 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
11887 if (unlikely(float16_is_any_nan(x))) {
11888 float_raise(float_flag_invalid, fpst);
11889 return 0;
11891 return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst),
11892 shift, fpst);
11895 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
11897 if (unlikely(float16_is_any_nan(x))) {
11898 float_raise(float_flag_invalid, fpst);
11899 return 0;
11901 return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst),
11902 shift, fpst);
11905 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
11907 if (unlikely(float16_is_any_nan(x))) {
11908 float_raise(float_flag_invalid, fpst);
11909 return 0;
11911 return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst),
11912 shift, fpst);
11915 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
11917 if (unlikely(float16_is_any_nan(x))) {
11918 float_raise(float_flag_invalid, fpst);
11919 return 0;
11921 return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst),
11922 shift, fpst);
11925 /* Set the current fp rounding mode and return the old one.
11926 * The argument is a softfloat float_round_ value.
11928 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
11930 float_status *fp_status = fpstp;
11932 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
11933 set_float_rounding_mode(rmode, fp_status);
11935 return prev_rmode;
11938 /* Set the current fp rounding mode in the standard fp status and return
11939 * the old one. This is for NEON instructions that need to change the
11940 * rounding mode but wish to use the standard FPSCR values for everything
11941 * else. Always set the rounding mode back to the correct value after
11942 * modifying it.
11943 * The argument is a softfloat float_round_ value.
11945 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
11947 float_status *fp_status = &env->vfp.standard_fp_status;
11949 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
11950 set_float_rounding_mode(rmode, fp_status);
11952 return prev_rmode;
11955 /* Half precision conversions. */
11956 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
11958 /* Squash FZ16 to 0 for the duration of conversion. In this case,
11959 * it would affect flushing input denormals.
11961 float_status *fpst = fpstp;
11962 flag save = get_flush_inputs_to_zero(fpst);
11963 set_flush_inputs_to_zero(false, fpst);
11964 float32 r = float16_to_float32(a, !ahp_mode, fpst);
11965 set_flush_inputs_to_zero(save, fpst);
11966 return r;
11969 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
11971 /* Squash FZ16 to 0 for the duration of conversion. In this case,
11972 * it would affect flushing output denormals.
11974 float_status *fpst = fpstp;
11975 flag save = get_flush_to_zero(fpst);
11976 set_flush_to_zero(false, fpst);
11977 float16 r = float32_to_float16(a, !ahp_mode, fpst);
11978 set_flush_to_zero(save, fpst);
11979 return r;
11982 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
11984 /* Squash FZ16 to 0 for the duration of conversion. In this case,
11985 * it would affect flushing input denormals.
11987 float_status *fpst = fpstp;
11988 flag save = get_flush_inputs_to_zero(fpst);
11989 set_flush_inputs_to_zero(false, fpst);
11990 float64 r = float16_to_float64(a, !ahp_mode, fpst);
11991 set_flush_inputs_to_zero(save, fpst);
11992 return r;
11995 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
11997 /* Squash FZ16 to 0 for the duration of conversion. In this case,
11998 * it would affect flushing output denormals.
12000 float_status *fpst = fpstp;
12001 flag save = get_flush_to_zero(fpst);
12002 set_flush_to_zero(false, fpst);
12003 float16 r = float64_to_float16(a, !ahp_mode, fpst);
12004 set_flush_to_zero(save, fpst);
12005 return r;
12008 #define float32_two make_float32(0x40000000)
12009 #define float32_three make_float32(0x40400000)
12010 #define float32_one_point_five make_float32(0x3fc00000)
12012 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
12014 float_status *s = &env->vfp.standard_fp_status;
12015 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
12016 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
12017 if (!(float32_is_zero(a) || float32_is_zero(b))) {
12018 float_raise(float_flag_input_denormal, s);
12020 return float32_two;
12022 return float32_sub(float32_two, float32_mul(a, b, s), s);
12025 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
12027 float_status *s = &env->vfp.standard_fp_status;
12028 float32 product;
12029 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
12030 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
12031 if (!(float32_is_zero(a) || float32_is_zero(b))) {
12032 float_raise(float_flag_input_denormal, s);
12034 return float32_one_point_five;
12036 product = float32_mul(a, b, s);
12037 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
12040 /* NEON helpers. */
12042 /* Constants 256 and 512 are used in some helpers; we avoid relying on
12043 * int->float conversions at run-time. */
12044 #define float64_256 make_float64(0x4070000000000000LL)
12045 #define float64_512 make_float64(0x4080000000000000LL)
12046 #define float16_maxnorm make_float16(0x7bff)
12047 #define float32_maxnorm make_float32(0x7f7fffff)
12048 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
12050 /* Reciprocal functions
12052 * The algorithm that must be used to calculate the estimate
12053 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
12056 /* See RecipEstimate()
12058 * input is a 9 bit fixed point number
12059 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
12060 * result range 256 .. 511 for a number from 1.0 to 511/256.
12063 static int recip_estimate(int input)
12065 int a, b, r;
12066 assert(256 <= input && input < 512);
12067 a = (input * 2) + 1;
12068 b = (1 << 19) / a;
12069 r = (b + 1) >> 1;
12070 assert(256 <= r && r < 512);
12071 return r;
12075 * Common wrapper to call recip_estimate
12077 * The parameters are exponent and 64 bit fraction (without implicit
12078 * bit) where the binary point is nominally at bit 52. Returns a
12079 * float64 which can then be rounded to the appropriate size by the
12080 * callee.
12083 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
12085 uint32_t scaled, estimate;
12086 uint64_t result_frac;
12087 int result_exp;
12089 /* Handle sub-normals */
12090 if (*exp == 0) {
12091 if (extract64(frac, 51, 1) == 0) {
12092 *exp = -1;
12093 frac <<= 2;
12094 } else {
12095 frac <<= 1;
12099 /* scaled = UInt('1':fraction<51:44>) */
12100 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
12101 estimate = recip_estimate(scaled);
12103 result_exp = exp_off - *exp;
12104 result_frac = deposit64(0, 44, 8, estimate);
12105 if (result_exp == 0) {
12106 result_frac = deposit64(result_frac >> 1, 51, 1, 1);
12107 } else if (result_exp == -1) {
12108 result_frac = deposit64(result_frac >> 2, 50, 2, 1);
12109 result_exp = 0;
12112 *exp = result_exp;
12114 return result_frac;
12117 static bool round_to_inf(float_status *fpst, bool sign_bit)
12119 switch (fpst->float_rounding_mode) {
12120 case float_round_nearest_even: /* Round to Nearest */
12121 return true;
12122 case float_round_up: /* Round to +Inf */
12123 return !sign_bit;
12124 case float_round_down: /* Round to -Inf */
12125 return sign_bit;
12126 case float_round_to_zero: /* Round to Zero */
12127 return false;
12130 g_assert_not_reached();
12133 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
12135 float_status *fpst = fpstp;
12136 float16 f16 = float16_squash_input_denormal(input, fpst);
12137 uint32_t f16_val = float16_val(f16);
12138 uint32_t f16_sign = float16_is_neg(f16);
12139 int f16_exp = extract32(f16_val, 10, 5);
12140 uint32_t f16_frac = extract32(f16_val, 0, 10);
12141 uint64_t f64_frac;
12143 if (float16_is_any_nan(f16)) {
12144 float16 nan = f16;
12145 if (float16_is_signaling_nan(f16, fpst)) {
12146 float_raise(float_flag_invalid, fpst);
12147 nan = float16_silence_nan(f16, fpst);
12149 if (fpst->default_nan_mode) {
12150 nan = float16_default_nan(fpst);
12152 return nan;
12153 } else if (float16_is_infinity(f16)) {
12154 return float16_set_sign(float16_zero, float16_is_neg(f16));
12155 } else if (float16_is_zero(f16)) {
12156 float_raise(float_flag_divbyzero, fpst);
12157 return float16_set_sign(float16_infinity, float16_is_neg(f16));
12158 } else if (float16_abs(f16) < (1 << 8)) {
12159 /* Abs(value) < 2.0^-16 */
12160 float_raise(float_flag_overflow | float_flag_inexact, fpst);
12161 if (round_to_inf(fpst, f16_sign)) {
12162 return float16_set_sign(float16_infinity, f16_sign);
12163 } else {
12164 return float16_set_sign(float16_maxnorm, f16_sign);
12166 } else if (f16_exp >= 29 && fpst->flush_to_zero) {
12167 float_raise(float_flag_underflow, fpst);
12168 return float16_set_sign(float16_zero, float16_is_neg(f16));
12171 f64_frac = call_recip_estimate(&f16_exp, 29,
12172 ((uint64_t) f16_frac) << (52 - 10));
12174 /* result = sign : result_exp<4:0> : fraction<51:42> */
12175 f16_val = deposit32(0, 15, 1, f16_sign);
12176 f16_val = deposit32(f16_val, 10, 5, f16_exp);
12177 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
12178 return make_float16(f16_val);
12181 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
12183 float_status *fpst = fpstp;
12184 float32 f32 = float32_squash_input_denormal(input, fpst);
12185 uint32_t f32_val = float32_val(f32);
12186 bool f32_sign = float32_is_neg(f32);
12187 int f32_exp = extract32(f32_val, 23, 8);
12188 uint32_t f32_frac = extract32(f32_val, 0, 23);
12189 uint64_t f64_frac;
12191 if (float32_is_any_nan(f32)) {
12192 float32 nan = f32;
12193 if (float32_is_signaling_nan(f32, fpst)) {
12194 float_raise(float_flag_invalid, fpst);
12195 nan = float32_silence_nan(f32, fpst);
12197 if (fpst->default_nan_mode) {
12198 nan = float32_default_nan(fpst);
12200 return nan;
12201 } else if (float32_is_infinity(f32)) {
12202 return float32_set_sign(float32_zero, float32_is_neg(f32));
12203 } else if (float32_is_zero(f32)) {
12204 float_raise(float_flag_divbyzero, fpst);
12205 return float32_set_sign(float32_infinity, float32_is_neg(f32));
12206 } else if (float32_abs(f32) < (1ULL << 21)) {
12207 /* Abs(value) < 2.0^-128 */
12208 float_raise(float_flag_overflow | float_flag_inexact, fpst);
12209 if (round_to_inf(fpst, f32_sign)) {
12210 return float32_set_sign(float32_infinity, f32_sign);
12211 } else {
12212 return float32_set_sign(float32_maxnorm, f32_sign);
12214 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
12215 float_raise(float_flag_underflow, fpst);
12216 return float32_set_sign(float32_zero, float32_is_neg(f32));
12219 f64_frac = call_recip_estimate(&f32_exp, 253,
12220 ((uint64_t) f32_frac) << (52 - 23));
12222 /* result = sign : result_exp<7:0> : fraction<51:29> */
12223 f32_val = deposit32(0, 31, 1, f32_sign);
12224 f32_val = deposit32(f32_val, 23, 8, f32_exp);
12225 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
12226 return make_float32(f32_val);
12229 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
12231 float_status *fpst = fpstp;
12232 float64 f64 = float64_squash_input_denormal(input, fpst);
12233 uint64_t f64_val = float64_val(f64);
12234 bool f64_sign = float64_is_neg(f64);
12235 int f64_exp = extract64(f64_val, 52, 11);
12236 uint64_t f64_frac = extract64(f64_val, 0, 52);
12238 /* Deal with any special cases */
12239 if (float64_is_any_nan(f64)) {
12240 float64 nan = f64;
12241 if (float64_is_signaling_nan(f64, fpst)) {
12242 float_raise(float_flag_invalid, fpst);
12243 nan = float64_silence_nan(f64, fpst);
12245 if (fpst->default_nan_mode) {
12246 nan = float64_default_nan(fpst);
12248 return nan;
12249 } else if (float64_is_infinity(f64)) {
12250 return float64_set_sign(float64_zero, float64_is_neg(f64));
12251 } else if (float64_is_zero(f64)) {
12252 float_raise(float_flag_divbyzero, fpst);
12253 return float64_set_sign(float64_infinity, float64_is_neg(f64));
12254 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
12255 /* Abs(value) < 2.0^-1024 */
12256 float_raise(float_flag_overflow | float_flag_inexact, fpst);
12257 if (round_to_inf(fpst, f64_sign)) {
12258 return float64_set_sign(float64_infinity, f64_sign);
12259 } else {
12260 return float64_set_sign(float64_maxnorm, f64_sign);
12262 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
12263 float_raise(float_flag_underflow, fpst);
12264 return float64_set_sign(float64_zero, float64_is_neg(f64));
12267 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
12269 /* result = sign : result_exp<10:0> : fraction<51:0>; */
12270 f64_val = deposit64(0, 63, 1, f64_sign);
12271 f64_val = deposit64(f64_val, 52, 11, f64_exp);
12272 f64_val = deposit64(f64_val, 0, 52, f64_frac);
12273 return make_float64(f64_val);
12276 /* The algorithm that must be used to calculate the estimate
12277 * is specified by the ARM ARM.
12280 static int do_recip_sqrt_estimate(int a)
12282 int b, estimate;
12284 assert(128 <= a && a < 512);
12285 if (a < 256) {
12286 a = a * 2 + 1;
12287 } else {
12288 a = (a >> 1) << 1;
12289 a = (a + 1) * 2;
12291 b = 512;
12292 while (a * (b + 1) * (b + 1) < (1 << 28)) {
12293 b += 1;
12295 estimate = (b + 1) / 2;
12296 assert(256 <= estimate && estimate < 512);
12298 return estimate;
12302 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
12304 int estimate;
12305 uint32_t scaled;
12307 if (*exp == 0) {
12308 while (extract64(frac, 51, 1) == 0) {
12309 frac = frac << 1;
12310 *exp -= 1;
12312 frac = extract64(frac, 0, 51) << 1;
12315 if (*exp & 1) {
12316 /* scaled = UInt('01':fraction<51:45>) */
12317 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
12318 } else {
12319 /* scaled = UInt('1':fraction<51:44>) */
12320 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
12322 estimate = do_recip_sqrt_estimate(scaled);
12324 *exp = (exp_off - *exp) / 2;
12325 return extract64(estimate, 0, 8) << 44;
12328 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
12330 float_status *s = fpstp;
12331 float16 f16 = float16_squash_input_denormal(input, s);
12332 uint16_t val = float16_val(f16);
12333 bool f16_sign = float16_is_neg(f16);
12334 int f16_exp = extract32(val, 10, 5);
12335 uint16_t f16_frac = extract32(val, 0, 10);
12336 uint64_t f64_frac;
12338 if (float16_is_any_nan(f16)) {
12339 float16 nan = f16;
12340 if (float16_is_signaling_nan(f16, s)) {
12341 float_raise(float_flag_invalid, s);
12342 nan = float16_silence_nan(f16, s);
12344 if (s->default_nan_mode) {
12345 nan = float16_default_nan(s);
12347 return nan;
12348 } else if (float16_is_zero(f16)) {
12349 float_raise(float_flag_divbyzero, s);
12350 return float16_set_sign(float16_infinity, f16_sign);
12351 } else if (f16_sign) {
12352 float_raise(float_flag_invalid, s);
12353 return float16_default_nan(s);
12354 } else if (float16_is_infinity(f16)) {
12355 return float16_zero;
12358 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
12359 * preserving the parity of the exponent. */
12361 f64_frac = ((uint64_t) f16_frac) << (52 - 10);
12363 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
12365 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
12366 val = deposit32(0, 15, 1, f16_sign);
12367 val = deposit32(val, 10, 5, f16_exp);
12368 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
12369 return make_float16(val);
12372 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
12374 float_status *s = fpstp;
12375 float32 f32 = float32_squash_input_denormal(input, s);
12376 uint32_t val = float32_val(f32);
12377 uint32_t f32_sign = float32_is_neg(f32);
12378 int f32_exp = extract32(val, 23, 8);
12379 uint32_t f32_frac = extract32(val, 0, 23);
12380 uint64_t f64_frac;
12382 if (float32_is_any_nan(f32)) {
12383 float32 nan = f32;
12384 if (float32_is_signaling_nan(f32, s)) {
12385 float_raise(float_flag_invalid, s);
12386 nan = float32_silence_nan(f32, s);
12388 if (s->default_nan_mode) {
12389 nan = float32_default_nan(s);
12391 return nan;
12392 } else if (float32_is_zero(f32)) {
12393 float_raise(float_flag_divbyzero, s);
12394 return float32_set_sign(float32_infinity, float32_is_neg(f32));
12395 } else if (float32_is_neg(f32)) {
12396 float_raise(float_flag_invalid, s);
12397 return float32_default_nan(s);
12398 } else if (float32_is_infinity(f32)) {
12399 return float32_zero;
12402 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
12403 * preserving the parity of the exponent. */
12405 f64_frac = ((uint64_t) f32_frac) << 29;
12407 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
12409 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
12410 val = deposit32(0, 31, 1, f32_sign);
12411 val = deposit32(val, 23, 8, f32_exp);
12412 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
12413 return make_float32(val);
12416 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
12418 float_status *s = fpstp;
12419 float64 f64 = float64_squash_input_denormal(input, s);
12420 uint64_t val = float64_val(f64);
12421 bool f64_sign = float64_is_neg(f64);
12422 int f64_exp = extract64(val, 52, 11);
12423 uint64_t f64_frac = extract64(val, 0, 52);
12425 if (float64_is_any_nan(f64)) {
12426 float64 nan = f64;
12427 if (float64_is_signaling_nan(f64, s)) {
12428 float_raise(float_flag_invalid, s);
12429 nan = float64_silence_nan(f64, s);
12431 if (s->default_nan_mode) {
12432 nan = float64_default_nan(s);
12434 return nan;
12435 } else if (float64_is_zero(f64)) {
12436 float_raise(float_flag_divbyzero, s);
12437 return float64_set_sign(float64_infinity, float64_is_neg(f64));
12438 } else if (float64_is_neg(f64)) {
12439 float_raise(float_flag_invalid, s);
12440 return float64_default_nan(s);
12441 } else if (float64_is_infinity(f64)) {
12442 return float64_zero;
12445 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
12447 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
12448 val = deposit64(0, 61, 1, f64_sign);
12449 val = deposit64(val, 52, 11, f64_exp);
12450 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
12451 return make_float64(val);
12454 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
12456 /* float_status *s = fpstp; */
12457 int input, estimate;
12459 if ((a & 0x80000000) == 0) {
12460 return 0xffffffff;
12463 input = extract32(a, 23, 9);
12464 estimate = recip_estimate(input);
12466 return deposit32(0, (32 - 9), 9, estimate);
12469 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
12471 int estimate;
12473 if ((a & 0xc0000000) == 0) {
12474 return 0xffffffff;
12477 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
12479 return deposit32(0, 23, 9, estimate);
12482 /* VFPv4 fused multiply-accumulate */
12483 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
12485 float_status *fpst = fpstp;
12486 return float32_muladd(a, b, c, 0, fpst);
12489 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
12491 float_status *fpst = fpstp;
12492 return float64_muladd(a, b, c, 0, fpst);
12495 /* ARMv8 round to integral */
12496 float32 HELPER(rints_exact)(float32 x, void *fp_status)
12498 return float32_round_to_int(x, fp_status);
12501 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
12503 return float64_round_to_int(x, fp_status);
12506 float32 HELPER(rints)(float32 x, void *fp_status)
12508 int old_flags = get_float_exception_flags(fp_status), new_flags;
12509 float32 ret;
12511 ret = float32_round_to_int(x, fp_status);
12513 /* Suppress any inexact exceptions the conversion produced */
12514 if (!(old_flags & float_flag_inexact)) {
12515 new_flags = get_float_exception_flags(fp_status);
12516 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
12519 return ret;
12522 float64 HELPER(rintd)(float64 x, void *fp_status)
12524 int old_flags = get_float_exception_flags(fp_status), new_flags;
12525 float64 ret;
12527 ret = float64_round_to_int(x, fp_status);
12529 new_flags = get_float_exception_flags(fp_status);
12531 /* Suppress any inexact exceptions the conversion produced */
12532 if (!(old_flags & float_flag_inexact)) {
12533 new_flags = get_float_exception_flags(fp_status);
12534 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
12537 return ret;
12540 /* Convert ARM rounding mode to softfloat */
12541 int arm_rmode_to_sf(int rmode)
12543 switch (rmode) {
12544 case FPROUNDING_TIEAWAY:
12545 rmode = float_round_ties_away;
12546 break;
12547 case FPROUNDING_ODD:
12548 /* FIXME: add support for TIEAWAY and ODD */
12549 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
12550 rmode);
12551 /* fall through for now */
12552 case FPROUNDING_TIEEVEN:
12553 default:
12554 rmode = float_round_nearest_even;
12555 break;
12556 case FPROUNDING_POSINF:
12557 rmode = float_round_up;
12558 break;
12559 case FPROUNDING_NEGINF:
12560 rmode = float_round_down;
12561 break;
12562 case FPROUNDING_ZERO:
12563 rmode = float_round_to_zero;
12564 break;
12566 return rmode;
12569 /* CRC helpers.
12570 * The upper bytes of val (above the number specified by 'bytes') must have
12571 * been zeroed out by the caller.
12573 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12575 uint8_t buf[4];
12577 stl_le_p(buf, val);
12579 /* zlib crc32 converts the accumulator and output to one's complement. */
12580 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12583 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12585 uint8_t buf[4];
12587 stl_le_p(buf, val);
12589 /* Linux crc32c converts the output to one's complement. */
12590 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12593 /* Return the exception level to which FP-disabled exceptions should
12594 * be taken, or 0 if FP is enabled.
12596 int fp_exception_el(CPUARMState *env, int cur_el)
12598 #ifndef CONFIG_USER_ONLY
12599 int fpen;
12601 /* CPACR and the CPTR registers don't exist before v6, so FP is
12602 * always accessible
12604 if (!arm_feature(env, ARM_FEATURE_V6)) {
12605 return 0;
12608 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12609 * 0, 2 : trap EL0 and EL1/PL1 accesses
12610 * 1 : trap only EL0 accesses
12611 * 3 : trap no accesses
12613 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12614 switch (fpen) {
12615 case 0:
12616 case 2:
12617 if (cur_el == 0 || cur_el == 1) {
12618 /* Trap to PL1, which might be EL1 or EL3 */
12619 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12620 return 3;
12622 return 1;
12624 if (cur_el == 3 && !is_a64(env)) {
12625 /* Secure PL1 running at EL3 */
12626 return 3;
12628 break;
12629 case 1:
12630 if (cur_el == 0) {
12631 return 1;
12633 break;
12634 case 3:
12635 break;
12638 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12639 * check because zero bits in the registers mean "don't trap".
12642 /* CPTR_EL2 : present in v7VE or v8 */
12643 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12644 && !arm_is_secure_below_el3(env)) {
12645 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12646 return 2;
12649 /* CPTR_EL3 : present in v8 */
12650 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12651 /* Trap all FP ops to EL3 */
12652 return 3;
12654 #endif
12655 return 0;
12658 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12659 target_ulong *cs_base, uint32_t *pflags)
12661 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
12662 int current_el = arm_current_el(env);
12663 int fp_el = fp_exception_el(env, current_el);
12664 uint32_t flags;
12666 if (is_a64(env)) {
12667 *pc = env->pc;
12668 flags = ARM_TBFLAG_AARCH64_STATE_MASK;
12669 /* Get control bits for tagged addresses */
12670 flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
12671 flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
12673 if (arm_feature(env, ARM_FEATURE_SVE)) {
12674 int sve_el = sve_exception_el(env, current_el);
12675 uint32_t zcr_len;
12677 /* If SVE is disabled, but FP is enabled,
12678 * then the effective len is 0.
12680 if (sve_el != 0 && fp_el == 0) {
12681 zcr_len = 0;
12682 } else {
12683 zcr_len = sve_zcr_len_for_el(env, current_el);
12685 flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT;
12686 flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT;
12688 } else {
12689 *pc = env->regs[15];
12690 flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
12691 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
12692 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
12693 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
12694 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
12695 if (!(access_secure_reg(env))) {
12696 flags |= ARM_TBFLAG_NS_MASK;
12698 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
12699 || arm_el_is_aa64(env, 1)) {
12700 flags |= ARM_TBFLAG_VFPEN_MASK;
12702 flags |= (extract32(env->cp15.c15_cpar, 0, 2)
12703 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
12706 flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
12708 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12709 * states defined in the ARM ARM for software singlestep:
12710 * SS_ACTIVE PSTATE.SS State
12711 * 0 x Inactive (the TB flag for SS is always 0)
12712 * 1 0 Active-pending
12713 * 1 1 Active-not-pending
12715 if (arm_singlestep_active(env)) {
12716 flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
12717 if (is_a64(env)) {
12718 if (env->pstate & PSTATE_SS) {
12719 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12721 } else {
12722 if (env->uncached_cpsr & PSTATE_SS) {
12723 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12727 if (arm_cpu_data_is_big_endian(env)) {
12728 flags |= ARM_TBFLAG_BE_DATA_MASK;
12730 flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT;
12732 if (arm_v7m_is_handler_mode(env)) {
12733 flags |= ARM_TBFLAG_HANDLER_MASK;
12736 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
12737 * suppressing them because the requested execution priority is less than 0.
12739 if (arm_feature(env, ARM_FEATURE_V8) &&
12740 arm_feature(env, ARM_FEATURE_M) &&
12741 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
12742 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
12743 flags |= ARM_TBFLAG_STACKCHECK_MASK;
12746 *pflags = flags;
12747 *cs_base = 0;
12750 #ifdef TARGET_AARCH64
12752 * The manual says that when SVE is enabled and VQ is widened the
12753 * implementation is allowed to zero the previously inaccessible
12754 * portion of the registers. The corollary to that is that when
12755 * SVE is enabled and VQ is narrowed we are also allowed to zero
12756 * the now inaccessible portion of the registers.
12758 * The intent of this is that no predicate bit beyond VQ is ever set.
12759 * Which means that some operations on predicate registers themselves
12760 * may operate on full uint64_t or even unrolled across the maximum
12761 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12762 * may well be cheaper than conditionals to restrict the operation
12763 * to the relevant portion of a uint16_t[16].
12765 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12767 int i, j;
12768 uint64_t pmask;
12770 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12771 assert(vq <= arm_env_get_cpu(env)->sve_max_vq);
12773 /* Zap the high bits of the zregs. */
12774 for (i = 0; i < 32; i++) {
12775 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12778 /* Zap the high bits of the pregs and ffr. */
12779 pmask = 0;
12780 if (vq & 3) {
12781 pmask = ~(-1ULL << (16 * (vq & 3)));
12783 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12784 for (i = 0; i < 17; ++i) {
12785 env->vfp.pregs[i].p[j] &= pmask;
12787 pmask = 0;
12792 * Notice a change in SVE vector size when changing EL.
12794 void aarch64_sve_change_el(CPUARMState *env, int old_el, int new_el)
12796 int old_len, new_len;
12798 /* Nothing to do if no SVE. */
12799 if (!arm_feature(env, ARM_FEATURE_SVE)) {
12800 return;
12803 /* Nothing to do if FP is disabled in either EL. */
12804 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12805 return;
12809 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12810 * at ELx, or not available because the EL is in AArch32 state, then
12811 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12812 * has an effective value of 0".
12814 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12815 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12816 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12817 * we already have the correct register contents when encountering the
12818 * vq0->vq0 transition between EL0->EL1.
12820 old_len = (arm_el_is_aa64(env, old_el) && !sve_exception_el(env, old_el)
12821 ? sve_zcr_len_for_el(env, old_el) : 0);
12822 new_len = (arm_el_is_aa64(env, new_el) && !sve_exception_el(env, new_el)
12823 ? sve_zcr_len_for_el(env, new_el) : 0);
12825 /* When changing vector length, clear inaccessible state. */
12826 if (new_len < old_len) {
12827 aarch64_sve_narrow_vq(env, new_len + 1);
12830 #endif