2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/sysbus.h"
26 #include "exec/address-spaces.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/i386/pc.h"
31 #include "hw/i386/apic-msidef.h"
32 #include "hw/boards.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "hw/i386/apic_internal.h"
40 static void vtd_define_quad(IntelIOMMUState
*s
, hwaddr addr
, uint64_t val
,
41 uint64_t wmask
, uint64_t w1cmask
)
43 stq_le_p(&s
->csr
[addr
], val
);
44 stq_le_p(&s
->wmask
[addr
], wmask
);
45 stq_le_p(&s
->w1cmask
[addr
], w1cmask
);
48 static void vtd_define_quad_wo(IntelIOMMUState
*s
, hwaddr addr
, uint64_t mask
)
50 stq_le_p(&s
->womask
[addr
], mask
);
53 static void vtd_define_long(IntelIOMMUState
*s
, hwaddr addr
, uint32_t val
,
54 uint32_t wmask
, uint32_t w1cmask
)
56 stl_le_p(&s
->csr
[addr
], val
);
57 stl_le_p(&s
->wmask
[addr
], wmask
);
58 stl_le_p(&s
->w1cmask
[addr
], w1cmask
);
61 static void vtd_define_long_wo(IntelIOMMUState
*s
, hwaddr addr
, uint32_t mask
)
63 stl_le_p(&s
->womask
[addr
], mask
);
66 /* "External" get/set operations */
67 static void vtd_set_quad(IntelIOMMUState
*s
, hwaddr addr
, uint64_t val
)
69 uint64_t oldval
= ldq_le_p(&s
->csr
[addr
]);
70 uint64_t wmask
= ldq_le_p(&s
->wmask
[addr
]);
71 uint64_t w1cmask
= ldq_le_p(&s
->w1cmask
[addr
]);
72 stq_le_p(&s
->csr
[addr
],
73 ((oldval
& ~wmask
) | (val
& wmask
)) & ~(w1cmask
& val
));
76 static void vtd_set_long(IntelIOMMUState
*s
, hwaddr addr
, uint32_t val
)
78 uint32_t oldval
= ldl_le_p(&s
->csr
[addr
]);
79 uint32_t wmask
= ldl_le_p(&s
->wmask
[addr
]);
80 uint32_t w1cmask
= ldl_le_p(&s
->w1cmask
[addr
]);
81 stl_le_p(&s
->csr
[addr
],
82 ((oldval
& ~wmask
) | (val
& wmask
)) & ~(w1cmask
& val
));
85 static uint64_t vtd_get_quad(IntelIOMMUState
*s
, hwaddr addr
)
87 uint64_t val
= ldq_le_p(&s
->csr
[addr
]);
88 uint64_t womask
= ldq_le_p(&s
->womask
[addr
]);
92 static uint32_t vtd_get_long(IntelIOMMUState
*s
, hwaddr addr
)
94 uint32_t val
= ldl_le_p(&s
->csr
[addr
]);
95 uint32_t womask
= ldl_le_p(&s
->womask
[addr
]);
99 /* "Internal" get/set operations */
100 static uint64_t vtd_get_quad_raw(IntelIOMMUState
*s
, hwaddr addr
)
102 return ldq_le_p(&s
->csr
[addr
]);
105 static uint32_t vtd_get_long_raw(IntelIOMMUState
*s
, hwaddr addr
)
107 return ldl_le_p(&s
->csr
[addr
]);
110 static void vtd_set_quad_raw(IntelIOMMUState
*s
, hwaddr addr
, uint64_t val
)
112 stq_le_p(&s
->csr
[addr
], val
);
115 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState
*s
, hwaddr addr
,
116 uint32_t clear
, uint32_t mask
)
118 uint32_t new_val
= (ldl_le_p(&s
->csr
[addr
]) & ~clear
) | mask
;
119 stl_le_p(&s
->csr
[addr
], new_val
);
123 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState
*s
, hwaddr addr
,
124 uint64_t clear
, uint64_t mask
)
126 uint64_t new_val
= (ldq_le_p(&s
->csr
[addr
]) & ~clear
) | mask
;
127 stq_le_p(&s
->csr
[addr
], new_val
);
131 static inline void vtd_iommu_lock(IntelIOMMUState
*s
)
133 qemu_mutex_lock(&s
->iommu_lock
);
136 static inline void vtd_iommu_unlock(IntelIOMMUState
*s
)
138 qemu_mutex_unlock(&s
->iommu_lock
);
141 /* Whether the address space needs to notify new mappings */
142 static inline gboolean
vtd_as_has_map_notifier(VTDAddressSpace
*as
)
144 return as
->notifier_flags
& IOMMU_NOTIFIER_MAP
;
147 /* GHashTable functions */
148 static gboolean
vtd_uint64_equal(gconstpointer v1
, gconstpointer v2
)
150 return *((const uint64_t *)v1
) == *((const uint64_t *)v2
);
153 static guint
vtd_uint64_hash(gconstpointer v
)
155 return (guint
)*(const uint64_t *)v
;
158 static gboolean
vtd_hash_remove_by_domain(gpointer key
, gpointer value
,
161 VTDIOTLBEntry
*entry
= (VTDIOTLBEntry
*)value
;
162 uint16_t domain_id
= *(uint16_t *)user_data
;
163 return entry
->domain_id
== domain_id
;
166 /* The shift of an addr for a certain level of paging structure */
167 static inline uint32_t vtd_slpt_level_shift(uint32_t level
)
170 return VTD_PAGE_SHIFT_4K
+ (level
- 1) * VTD_SL_LEVEL_BITS
;
173 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level
)
175 return ~((1ULL << vtd_slpt_level_shift(level
)) - 1);
178 static gboolean
vtd_hash_remove_by_page(gpointer key
, gpointer value
,
181 VTDIOTLBEntry
*entry
= (VTDIOTLBEntry
*)value
;
182 VTDIOTLBPageInvInfo
*info
= (VTDIOTLBPageInvInfo
*)user_data
;
183 uint64_t gfn
= (info
->addr
>> VTD_PAGE_SHIFT_4K
) & info
->mask
;
184 uint64_t gfn_tlb
= (info
->addr
& entry
->mask
) >> VTD_PAGE_SHIFT_4K
;
185 return (entry
->domain_id
== info
->domain_id
) &&
186 (((entry
->gfn
& info
->mask
) == gfn
) ||
187 (entry
->gfn
== gfn_tlb
));
190 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
191 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
193 static void vtd_reset_context_cache_locked(IntelIOMMUState
*s
)
195 VTDAddressSpace
*vtd_as
;
197 GHashTableIter bus_it
;
200 trace_vtd_context_cache_reset();
202 g_hash_table_iter_init(&bus_it
, s
->vtd_as_by_busptr
);
204 while (g_hash_table_iter_next (&bus_it
, NULL
, (void**)&vtd_bus
)) {
205 for (devfn_it
= 0; devfn_it
< PCI_DEVFN_MAX
; ++devfn_it
) {
206 vtd_as
= vtd_bus
->dev_as
[devfn_it
];
210 vtd_as
->context_cache_entry
.context_cache_gen
= 0;
213 s
->context_cache_gen
= 1;
216 /* Must be called with IOMMU lock held. */
217 static void vtd_reset_iotlb_locked(IntelIOMMUState
*s
)
220 g_hash_table_remove_all(s
->iotlb
);
223 static void vtd_reset_iotlb(IntelIOMMUState
*s
)
226 vtd_reset_iotlb_locked(s
);
230 static uint64_t vtd_get_iotlb_key(uint64_t gfn
, uint16_t source_id
,
233 return gfn
| ((uint64_t)(source_id
) << VTD_IOTLB_SID_SHIFT
) |
234 ((uint64_t)(level
) << VTD_IOTLB_LVL_SHIFT
);
237 static uint64_t vtd_get_iotlb_gfn(hwaddr addr
, uint32_t level
)
239 return (addr
& vtd_slpt_level_page_mask(level
)) >> VTD_PAGE_SHIFT_4K
;
242 /* Must be called with IOMMU lock held */
243 static VTDIOTLBEntry
*vtd_lookup_iotlb(IntelIOMMUState
*s
, uint16_t source_id
,
246 VTDIOTLBEntry
*entry
;
250 for (level
= VTD_SL_PT_LEVEL
; level
< VTD_SL_PML4_LEVEL
; level
++) {
251 key
= vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr
, level
),
253 entry
= g_hash_table_lookup(s
->iotlb
, &key
);
263 /* Must be with IOMMU lock held */
264 static void vtd_update_iotlb(IntelIOMMUState
*s
, uint16_t source_id
,
265 uint16_t domain_id
, hwaddr addr
, uint64_t slpte
,
266 uint8_t access_flags
, uint32_t level
)
268 VTDIOTLBEntry
*entry
= g_malloc(sizeof(*entry
));
269 uint64_t *key
= g_malloc(sizeof(*key
));
270 uint64_t gfn
= vtd_get_iotlb_gfn(addr
, level
);
272 trace_vtd_iotlb_page_update(source_id
, addr
, slpte
, domain_id
);
273 if (g_hash_table_size(s
->iotlb
) >= VTD_IOTLB_MAX_SIZE
) {
274 trace_vtd_iotlb_reset("iotlb exceeds size limit");
275 vtd_reset_iotlb_locked(s
);
279 entry
->domain_id
= domain_id
;
280 entry
->slpte
= slpte
;
281 entry
->access_flags
= access_flags
;
282 entry
->mask
= vtd_slpt_level_page_mask(level
);
283 *key
= vtd_get_iotlb_key(gfn
, source_id
, level
);
284 g_hash_table_replace(s
->iotlb
, key
, entry
);
287 /* Given the reg addr of both the message data and address, generate an
290 static void vtd_generate_interrupt(IntelIOMMUState
*s
, hwaddr mesg_addr_reg
,
291 hwaddr mesg_data_reg
)
295 assert(mesg_data_reg
< DMAR_REG_SIZE
);
296 assert(mesg_addr_reg
< DMAR_REG_SIZE
);
298 msi
.address
= vtd_get_long_raw(s
, mesg_addr_reg
);
299 msi
.data
= vtd_get_long_raw(s
, mesg_data_reg
);
301 trace_vtd_irq_generate(msi
.address
, msi
.data
);
303 apic_get_class()->send_msi(&msi
);
306 /* Generate a fault event to software via MSI if conditions are met.
307 * Notice that the value of FSTS_REG being passed to it should be the one
310 static void vtd_generate_fault_event(IntelIOMMUState
*s
, uint32_t pre_fsts
)
312 if (pre_fsts
& VTD_FSTS_PPF
|| pre_fsts
& VTD_FSTS_PFO
||
313 pre_fsts
& VTD_FSTS_IQE
) {
314 error_report_once("There are previous interrupt conditions "
315 "to be serviced by software, fault event "
319 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, 0, VTD_FECTL_IP
);
320 if (vtd_get_long_raw(s
, DMAR_FECTL_REG
) & VTD_FECTL_IM
) {
321 error_report_once("Interrupt Mask set, irq is not generated");
323 vtd_generate_interrupt(s
, DMAR_FEADDR_REG
, DMAR_FEDATA_REG
);
324 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, VTD_FECTL_IP
, 0);
328 /* Check if the Fault (F) field of the Fault Recording Register referenced by
331 static bool vtd_is_frcd_set(IntelIOMMUState
*s
, uint16_t index
)
333 /* Each reg is 128-bit */
334 hwaddr addr
= DMAR_FRCD_REG_OFFSET
+ (((uint64_t)index
) << 4);
335 addr
+= 8; /* Access the high 64-bit half */
337 assert(index
< DMAR_FRCD_REG_NR
);
339 return vtd_get_quad_raw(s
, addr
) & VTD_FRCD_F
;
342 /* Update the PPF field of Fault Status Register.
343 * Should be called whenever change the F field of any fault recording
346 static void vtd_update_fsts_ppf(IntelIOMMUState
*s
)
349 uint32_t ppf_mask
= 0;
351 for (i
= 0; i
< DMAR_FRCD_REG_NR
; i
++) {
352 if (vtd_is_frcd_set(s
, i
)) {
353 ppf_mask
= VTD_FSTS_PPF
;
357 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, VTD_FSTS_PPF
, ppf_mask
);
358 trace_vtd_fsts_ppf(!!ppf_mask
);
361 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState
*s
, uint16_t index
)
363 /* Each reg is 128-bit */
364 hwaddr addr
= DMAR_FRCD_REG_OFFSET
+ (((uint64_t)index
) << 4);
365 addr
+= 8; /* Access the high 64-bit half */
367 assert(index
< DMAR_FRCD_REG_NR
);
369 vtd_set_clear_mask_quad(s
, addr
, 0, VTD_FRCD_F
);
370 vtd_update_fsts_ppf(s
);
373 /* Must not update F field now, should be done later */
374 static void vtd_record_frcd(IntelIOMMUState
*s
, uint16_t index
,
375 uint16_t source_id
, hwaddr addr
,
376 VTDFaultReason fault
, bool is_write
)
379 hwaddr frcd_reg_addr
= DMAR_FRCD_REG_OFFSET
+ (((uint64_t)index
) << 4);
381 assert(index
< DMAR_FRCD_REG_NR
);
383 lo
= VTD_FRCD_FI(addr
);
384 hi
= VTD_FRCD_SID(source_id
) | VTD_FRCD_FR(fault
);
388 vtd_set_quad_raw(s
, frcd_reg_addr
, lo
);
389 vtd_set_quad_raw(s
, frcd_reg_addr
+ 8, hi
);
391 trace_vtd_frr_new(index
, hi
, lo
);
394 /* Try to collapse multiple pending faults from the same requester */
395 static bool vtd_try_collapse_fault(IntelIOMMUState
*s
, uint16_t source_id
)
399 hwaddr addr
= DMAR_FRCD_REG_OFFSET
+ 8; /* The high 64-bit half */
401 for (i
= 0; i
< DMAR_FRCD_REG_NR
; i
++) {
402 frcd_reg
= vtd_get_quad_raw(s
, addr
);
403 if ((frcd_reg
& VTD_FRCD_F
) &&
404 ((frcd_reg
& VTD_FRCD_SID_MASK
) == source_id
)) {
407 addr
+= 16; /* 128-bit for each */
412 /* Log and report an DMAR (address translation) fault to software */
413 static void vtd_report_dmar_fault(IntelIOMMUState
*s
, uint16_t source_id
,
414 hwaddr addr
, VTDFaultReason fault
,
417 uint32_t fsts_reg
= vtd_get_long_raw(s
, DMAR_FSTS_REG
);
419 assert(fault
< VTD_FR_MAX
);
421 if (fault
== VTD_FR_RESERVED_ERR
) {
422 /* This is not a normal fault reason case. Drop it. */
426 trace_vtd_dmar_fault(source_id
, fault
, addr
, is_write
);
428 if (fsts_reg
& VTD_FSTS_PFO
) {
429 error_report_once("New fault is not recorded due to "
430 "Primary Fault Overflow");
434 if (vtd_try_collapse_fault(s
, source_id
)) {
435 error_report_once("New fault is not recorded due to "
436 "compression of faults");
440 if (vtd_is_frcd_set(s
, s
->next_frcd_reg
)) {
441 error_report_once("Next Fault Recording Reg is used, "
442 "new fault is not recorded, set PFO field");
443 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, 0, VTD_FSTS_PFO
);
447 vtd_record_frcd(s
, s
->next_frcd_reg
, source_id
, addr
, fault
, is_write
);
449 if (fsts_reg
& VTD_FSTS_PPF
) {
450 error_report_once("There are pending faults already, "
451 "fault event is not generated");
452 vtd_set_frcd_and_update_ppf(s
, s
->next_frcd_reg
);
454 if (s
->next_frcd_reg
== DMAR_FRCD_REG_NR
) {
455 s
->next_frcd_reg
= 0;
458 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, VTD_FSTS_FRI_MASK
,
459 VTD_FSTS_FRI(s
->next_frcd_reg
));
460 vtd_set_frcd_and_update_ppf(s
, s
->next_frcd_reg
); /* Will set PPF */
462 if (s
->next_frcd_reg
== DMAR_FRCD_REG_NR
) {
463 s
->next_frcd_reg
= 0;
465 /* This case actually cause the PPF to be Set.
466 * So generate fault event (interrupt).
468 vtd_generate_fault_event(s
, fsts_reg
);
472 /* Handle Invalidation Queue Errors of queued invalidation interface error
475 static void vtd_handle_inv_queue_error(IntelIOMMUState
*s
)
477 uint32_t fsts_reg
= vtd_get_long_raw(s
, DMAR_FSTS_REG
);
479 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, 0, VTD_FSTS_IQE
);
480 vtd_generate_fault_event(s
, fsts_reg
);
483 /* Set the IWC field and try to generate an invalidation completion interrupt */
484 static void vtd_generate_completion_event(IntelIOMMUState
*s
)
486 if (vtd_get_long_raw(s
, DMAR_ICS_REG
) & VTD_ICS_IWC
) {
487 trace_vtd_inv_desc_wait_irq("One pending, skip current");
490 vtd_set_clear_mask_long(s
, DMAR_ICS_REG
, 0, VTD_ICS_IWC
);
491 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, 0, VTD_IECTL_IP
);
492 if (vtd_get_long_raw(s
, DMAR_IECTL_REG
) & VTD_IECTL_IM
) {
493 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
494 "new event not generated");
497 /* Generate the interrupt event */
498 trace_vtd_inv_desc_wait_irq("Generating complete event");
499 vtd_generate_interrupt(s
, DMAR_IEADDR_REG
, DMAR_IEDATA_REG
);
500 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, VTD_IECTL_IP
, 0);
504 static inline bool vtd_root_entry_present(VTDRootEntry
*root
)
506 return root
->val
& VTD_ROOT_ENTRY_P
;
509 static int vtd_get_root_entry(IntelIOMMUState
*s
, uint8_t index
,
514 addr
= s
->root
+ index
* sizeof(*re
);
515 if (dma_memory_read(&address_space_memory
, addr
, re
, sizeof(*re
))) {
516 trace_vtd_re_invalid(re
->rsvd
, re
->val
);
518 return -VTD_FR_ROOT_TABLE_INV
;
520 re
->val
= le64_to_cpu(re
->val
);
524 static inline bool vtd_ce_present(VTDContextEntry
*context
)
526 return context
->lo
& VTD_CONTEXT_ENTRY_P
;
529 static int vtd_get_context_entry_from_root(VTDRootEntry
*root
, uint8_t index
,
534 /* we have checked that root entry is present */
535 addr
= (root
->val
& VTD_ROOT_ENTRY_CTP
) + index
* sizeof(*ce
);
536 if (dma_memory_read(&address_space_memory
, addr
, ce
, sizeof(*ce
))) {
537 trace_vtd_re_invalid(root
->rsvd
, root
->val
);
538 return -VTD_FR_CONTEXT_TABLE_INV
;
540 ce
->lo
= le64_to_cpu(ce
->lo
);
541 ce
->hi
= le64_to_cpu(ce
->hi
);
545 static inline dma_addr_t
vtd_ce_get_slpt_base(VTDContextEntry
*ce
)
547 return ce
->lo
& VTD_CONTEXT_ENTRY_SLPTPTR
;
550 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte
, uint8_t aw
)
552 return slpte
& VTD_SL_PT_BASE_ADDR_MASK(aw
);
555 /* Whether the pte indicates the address of the page frame */
556 static inline bool vtd_is_last_slpte(uint64_t slpte
, uint32_t level
)
558 return level
== VTD_SL_PT_LEVEL
|| (slpte
& VTD_SL_PT_PAGE_SIZE_MASK
);
561 /* Get the content of a spte located in @base_addr[@index] */
562 static uint64_t vtd_get_slpte(dma_addr_t base_addr
, uint32_t index
)
566 assert(index
< VTD_SL_PT_ENTRY_NR
);
568 if (dma_memory_read(&address_space_memory
,
569 base_addr
+ index
* sizeof(slpte
), &slpte
,
571 slpte
= (uint64_t)-1;
574 slpte
= le64_to_cpu(slpte
);
578 /* Given an iova and the level of paging structure, return the offset
581 static inline uint32_t vtd_iova_level_offset(uint64_t iova
, uint32_t level
)
583 return (iova
>> vtd_slpt_level_shift(level
)) &
584 ((1ULL << VTD_SL_LEVEL_BITS
) - 1);
587 /* Check Capability Register to see if the @level of page-table is supported */
588 static inline bool vtd_is_level_supported(IntelIOMMUState
*s
, uint32_t level
)
590 return VTD_CAP_SAGAW_MASK
& s
->cap
&
591 (1ULL << (level
- 2 + VTD_CAP_SAGAW_SHIFT
));
594 /* Get the page-table level that hardware should use for the second-level
595 * page-table walk from the Address Width field of context-entry.
597 static inline uint32_t vtd_ce_get_level(VTDContextEntry
*ce
)
599 return 2 + (ce
->hi
& VTD_CONTEXT_ENTRY_AW
);
602 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry
*ce
)
604 return 30 + (ce
->hi
& VTD_CONTEXT_ENTRY_AW
) * 9;
607 static inline uint32_t vtd_ce_get_type(VTDContextEntry
*ce
)
609 return ce
->lo
& VTD_CONTEXT_ENTRY_TT
;
612 /* Return true if check passed, otherwise false */
613 static inline bool vtd_ce_type_check(X86IOMMUState
*x86_iommu
,
616 switch (vtd_ce_get_type(ce
)) {
617 case VTD_CONTEXT_TT_MULTI_LEVEL
:
618 /* Always supported */
620 case VTD_CONTEXT_TT_DEV_IOTLB
:
621 if (!x86_iommu
->dt_supported
) {
625 case VTD_CONTEXT_TT_PASS_THROUGH
:
626 if (!x86_iommu
->pt_supported
) {
637 static inline uint64_t vtd_iova_limit(VTDContextEntry
*ce
, uint8_t aw
)
639 uint32_t ce_agaw
= vtd_ce_get_agaw(ce
);
640 return 1ULL << MIN(ce_agaw
, aw
);
643 /* Return true if IOVA passes range check, otherwise false. */
644 static inline bool vtd_iova_range_check(uint64_t iova
, VTDContextEntry
*ce
,
648 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
649 * in CAP_REG and AW in context-entry.
651 return !(iova
& ~(vtd_iova_limit(ce
, aw
) - 1));
655 * Rsvd field masks for spte:
656 * Index [1] to [4] 4k pages
657 * Index [5] to [8] large pages
659 static uint64_t vtd_paging_entry_rsvd_field
[9];
661 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte
, uint32_t level
)
663 if (slpte
& VTD_SL_PT_PAGE_SIZE_MASK
) {
664 /* Maybe large page */
665 return slpte
& vtd_paging_entry_rsvd_field
[level
+ 4];
667 return slpte
& vtd_paging_entry_rsvd_field
[level
];
671 /* Find the VTD address space associated with a given bus number */
672 static VTDBus
*vtd_find_as_from_bus_num(IntelIOMMUState
*s
, uint8_t bus_num
)
674 VTDBus
*vtd_bus
= s
->vtd_as_by_bus_num
[bus_num
];
677 * Iterate over the registered buses to find the one which
678 * currently hold this bus number, and update the bus_num
683 g_hash_table_iter_init(&iter
, s
->vtd_as_by_busptr
);
684 while (g_hash_table_iter_next(&iter
, NULL
, (void **)&vtd_bus
)) {
685 if (pci_bus_num(vtd_bus
->bus
) == bus_num
) {
686 s
->vtd_as_by_bus_num
[bus_num
] = vtd_bus
;
694 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
695 * of the translation, can be used for deciding the size of large page.
697 static int vtd_iova_to_slpte(VTDContextEntry
*ce
, uint64_t iova
, bool is_write
,
698 uint64_t *slptep
, uint32_t *slpte_level
,
699 bool *reads
, bool *writes
, uint8_t aw_bits
)
701 dma_addr_t addr
= vtd_ce_get_slpt_base(ce
);
702 uint32_t level
= vtd_ce_get_level(ce
);
705 uint64_t access_right_check
;
707 if (!vtd_iova_range_check(iova
, ce
, aw_bits
)) {
708 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64
")",
710 return -VTD_FR_ADDR_BEYOND_MGAW
;
713 /* FIXME: what is the Atomics request here? */
714 access_right_check
= is_write
? VTD_SL_W
: VTD_SL_R
;
717 offset
= vtd_iova_level_offset(iova
, level
);
718 slpte
= vtd_get_slpte(addr
, offset
);
720 if (slpte
== (uint64_t)-1) {
721 error_report_once("%s: detected read error on DMAR slpte "
722 "(iova=0x%" PRIx64
")", __func__
, iova
);
723 if (level
== vtd_ce_get_level(ce
)) {
724 /* Invalid programming of context-entry */
725 return -VTD_FR_CONTEXT_ENTRY_INV
;
727 return -VTD_FR_PAGING_ENTRY_INV
;
730 *reads
= (*reads
) && (slpte
& VTD_SL_R
);
731 *writes
= (*writes
) && (slpte
& VTD_SL_W
);
732 if (!(slpte
& access_right_check
)) {
733 error_report_once("%s: detected slpte permission error "
734 "(iova=0x%" PRIx64
", level=0x%" PRIx32
", "
735 "slpte=0x%" PRIx64
", write=%d)", __func__
,
736 iova
, level
, slpte
, is_write
);
737 return is_write
? -VTD_FR_WRITE
: -VTD_FR_READ
;
739 if (vtd_slpte_nonzero_rsvd(slpte
, level
)) {
740 error_report_once("%s: detected splte reserve non-zero "
741 "iova=0x%" PRIx64
", level=0x%" PRIx32
742 "slpte=0x%" PRIx64
")", __func__
, iova
,
744 return -VTD_FR_PAGING_ENTRY_RSVD
;
747 if (vtd_is_last_slpte(slpte
, level
)) {
749 *slpte_level
= level
;
752 addr
= vtd_get_slpte_addr(slpte
, aw_bits
);
757 typedef int (*vtd_page_walk_hook
)(IOMMUTLBEntry
*entry
, void *private);
760 * Constant information used during page walking
762 * @hook_fn: hook func to be called when detected page
763 * @private: private data to be passed into hook func
764 * @notify_unmap: whether we should notify invalid entries
765 * @as: VT-d address space of the device
766 * @aw: maximum address width
767 * @domain: domain ID of the page walk
771 vtd_page_walk_hook hook_fn
;
776 } vtd_page_walk_info
;
778 static int vtd_page_walk_one(IOMMUTLBEntry
*entry
, vtd_page_walk_info
*info
)
780 VTDAddressSpace
*as
= info
->as
;
781 vtd_page_walk_hook hook_fn
= info
->hook_fn
;
782 void *private = info
->private;
785 .size
= entry
->addr_mask
,
786 .translated_addr
= entry
->translated_addr
,
789 DMAMap
*mapped
= iova_tree_find(as
->iova_tree
, &target
);
791 if (entry
->perm
== IOMMU_NONE
&& !info
->notify_unmap
) {
792 trace_vtd_page_walk_one_skip_unmap(entry
->iova
, entry
->addr_mask
);
798 /* Update local IOVA mapped ranges */
801 /* If it's exactly the same translation, skip */
802 if (!memcmp(mapped
, &target
, sizeof(target
))) {
803 trace_vtd_page_walk_one_skip_map(entry
->iova
, entry
->addr_mask
,
804 entry
->translated_addr
);
808 * Translation changed. Normally this should not
809 * happen, but it can happen when with buggy guest
810 * OSes. Note that there will be a small window that
811 * we don't have map at all. But that's the best
812 * effort we can do. The ideal way to emulate this is
813 * atomically modify the PTE to follow what has
814 * changed, but we can't. One example is that vfio
815 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
816 * interface to modify a mapping (meanwhile it seems
817 * meaningless to even provide one). Anyway, let's
818 * mark this as a TODO in case one day we'll have
821 IOMMUAccessFlags cache_perm
= entry
->perm
;
824 /* Emulate an UNMAP */
825 entry
->perm
= IOMMU_NONE
;
826 trace_vtd_page_walk_one(info
->domain_id
,
828 entry
->translated_addr
,
831 ret
= hook_fn(entry
, private);
835 /* Drop any existing mapping */
836 iova_tree_remove(as
->iova_tree
, &target
);
837 /* Recover the correct permission */
838 entry
->perm
= cache_perm
;
841 iova_tree_insert(as
->iova_tree
, &target
);
844 /* Skip since we didn't map this range at all */
845 trace_vtd_page_walk_one_skip_unmap(entry
->iova
, entry
->addr_mask
);
848 iova_tree_remove(as
->iova_tree
, &target
);
851 trace_vtd_page_walk_one(info
->domain_id
, entry
->iova
,
852 entry
->translated_addr
, entry
->addr_mask
,
854 return hook_fn(entry
, private);
858 * vtd_page_walk_level - walk over specific level for IOVA range
860 * @addr: base GPA addr to start the walk
861 * @start: IOVA range start address
862 * @end: IOVA range end address (start <= addr < end)
863 * @read: whether parent level has read permission
864 * @write: whether parent level has write permission
865 * @info: constant information for the page walk
867 static int vtd_page_walk_level(dma_addr_t addr
, uint64_t start
,
868 uint64_t end
, uint32_t level
, bool read
,
869 bool write
, vtd_page_walk_info
*info
)
871 bool read_cur
, write_cur
, entry_valid
;
874 uint64_t subpage_size
, subpage_mask
;
876 uint64_t iova
= start
;
880 trace_vtd_page_walk_level(addr
, level
, start
, end
);
882 subpage_size
= 1ULL << vtd_slpt_level_shift(level
);
883 subpage_mask
= vtd_slpt_level_page_mask(level
);
886 iova_next
= (iova
& subpage_mask
) + subpage_size
;
888 offset
= vtd_iova_level_offset(iova
, level
);
889 slpte
= vtd_get_slpte(addr
, offset
);
891 if (slpte
== (uint64_t)-1) {
892 trace_vtd_page_walk_skip_read(iova
, iova_next
);
896 if (vtd_slpte_nonzero_rsvd(slpte
, level
)) {
897 trace_vtd_page_walk_skip_reserve(iova
, iova_next
);
901 /* Permissions are stacked with parents' */
902 read_cur
= read
&& (slpte
& VTD_SL_R
);
903 write_cur
= write
&& (slpte
& VTD_SL_W
);
906 * As long as we have either read/write permission, this is a
907 * valid entry. The rule works for both page entries and page
910 entry_valid
= read_cur
| write_cur
;
912 if (!vtd_is_last_slpte(slpte
, level
) && entry_valid
) {
914 * This is a valid PDE (or even bigger than PDE). We need
915 * to walk one further level.
917 ret
= vtd_page_walk_level(vtd_get_slpte_addr(slpte
, info
->aw
),
918 iova
, MIN(iova_next
, end
), level
- 1,
919 read_cur
, write_cur
, info
);
922 * This means we are either:
924 * (1) the real page entry (either 4K page, or huge page)
925 * (2) the whole range is invalid
927 * In either case, we send an IOTLB notification down.
929 entry
.target_as
= &address_space_memory
;
930 entry
.iova
= iova
& subpage_mask
;
931 entry
.perm
= IOMMU_ACCESS_FLAG(read_cur
, write_cur
);
932 entry
.addr_mask
= ~subpage_mask
;
933 /* NOTE: this is only meaningful if entry_valid == true */
934 entry
.translated_addr
= vtd_get_slpte_addr(slpte
, info
->aw
);
935 ret
= vtd_page_walk_one(&entry
, info
);
950 * vtd_page_walk - walk specific IOVA range, and call the hook
952 * @ce: context entry to walk upon
953 * @start: IOVA address to start the walk
954 * @end: IOVA range end address (start <= addr < end)
955 * @info: page walking information struct
957 static int vtd_page_walk(VTDContextEntry
*ce
, uint64_t start
, uint64_t end
,
958 vtd_page_walk_info
*info
)
960 dma_addr_t addr
= vtd_ce_get_slpt_base(ce
);
961 uint32_t level
= vtd_ce_get_level(ce
);
963 if (!vtd_iova_range_check(start
, ce
, info
->aw
)) {
964 return -VTD_FR_ADDR_BEYOND_MGAW
;
967 if (!vtd_iova_range_check(end
, ce
, info
->aw
)) {
968 /* Fix end so that it reaches the maximum */
969 end
= vtd_iova_limit(ce
, info
->aw
);
972 return vtd_page_walk_level(addr
, start
, end
, level
, true, true, info
);
975 /* Map a device to its corresponding domain (context-entry) */
976 static int vtd_dev_to_context_entry(IntelIOMMUState
*s
, uint8_t bus_num
,
977 uint8_t devfn
, VTDContextEntry
*ce
)
981 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
983 ret_fr
= vtd_get_root_entry(s
, bus_num
, &re
);
988 if (!vtd_root_entry_present(&re
)) {
989 /* Not error - it's okay we don't have root entry. */
990 trace_vtd_re_not_present(bus_num
);
991 return -VTD_FR_ROOT_ENTRY_P
;
994 if (re
.rsvd
|| (re
.val
& VTD_ROOT_ENTRY_RSVD(s
->aw_bits
))) {
995 trace_vtd_re_invalid(re
.rsvd
, re
.val
);
996 return -VTD_FR_ROOT_ENTRY_RSVD
;
999 ret_fr
= vtd_get_context_entry_from_root(&re
, devfn
, ce
);
1004 if (!vtd_ce_present(ce
)) {
1005 /* Not error - it's okay we don't have context entry. */
1006 trace_vtd_ce_not_present(bus_num
, devfn
);
1007 return -VTD_FR_CONTEXT_ENTRY_P
;
1010 if ((ce
->hi
& VTD_CONTEXT_ENTRY_RSVD_HI
) ||
1011 (ce
->lo
& VTD_CONTEXT_ENTRY_RSVD_LO(s
->aw_bits
))) {
1012 trace_vtd_ce_invalid(ce
->hi
, ce
->lo
);
1013 return -VTD_FR_CONTEXT_ENTRY_RSVD
;
1016 /* Check if the programming of context-entry is valid */
1017 if (!vtd_is_level_supported(s
, vtd_ce_get_level(ce
))) {
1018 trace_vtd_ce_invalid(ce
->hi
, ce
->lo
);
1019 return -VTD_FR_CONTEXT_ENTRY_INV
;
1022 /* Do translation type check */
1023 if (!vtd_ce_type_check(x86_iommu
, ce
)) {
1024 trace_vtd_ce_invalid(ce
->hi
, ce
->lo
);
1025 return -VTD_FR_CONTEXT_ENTRY_INV
;
1031 static int vtd_sync_shadow_page_hook(IOMMUTLBEntry
*entry
,
1034 memory_region_notify_iommu((IOMMUMemoryRegion
*)private, 0, *entry
);
1038 /* If context entry is NULL, we'll try to fetch it on our own. */
1039 static int vtd_sync_shadow_page_table_range(VTDAddressSpace
*vtd_as
,
1040 VTDContextEntry
*ce
,
1041 hwaddr addr
, hwaddr size
)
1043 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
1044 vtd_page_walk_info info
= {
1045 .hook_fn
= vtd_sync_shadow_page_hook
,
1046 .private = (void *)&vtd_as
->iommu
,
1047 .notify_unmap
= true,
1051 VTDContextEntry ce_cache
;
1055 /* If the caller provided context entry, use it */
1058 /* If the caller didn't provide ce, try to fetch */
1059 ret
= vtd_dev_to_context_entry(s
, pci_bus_num(vtd_as
->bus
),
1060 vtd_as
->devfn
, &ce_cache
);
1063 * This should not really happen, but in case it happens,
1064 * we just skip the sync for this time. After all we even
1065 * don't have the root table pointer!
1067 error_report_once("%s: invalid context entry for bus 0x%x"
1069 __func__
, pci_bus_num(vtd_as
->bus
),
1075 info
.domain_id
= VTD_CONTEXT_ENTRY_DID(ce_cache
.hi
);
1077 return vtd_page_walk(&ce_cache
, addr
, addr
+ size
, &info
);
1080 static int vtd_sync_shadow_page_table(VTDAddressSpace
*vtd_as
)
1082 return vtd_sync_shadow_page_table_range(vtd_as
, NULL
, 0, UINT64_MAX
);
1086 * Fetch translation type for specific device. Returns <0 if error
1087 * happens, otherwise return the shifted type to check against
1090 static int vtd_dev_get_trans_type(VTDAddressSpace
*as
)
1096 s
= as
->iommu_state
;
1098 ret
= vtd_dev_to_context_entry(s
, pci_bus_num(as
->bus
),
1104 return vtd_ce_get_type(&ce
);
1107 static bool vtd_dev_pt_enabled(VTDAddressSpace
*as
)
1113 ret
= vtd_dev_get_trans_type(as
);
1116 * Possibly failed to parse the context entry for some reason
1117 * (e.g., during init, or any guest configuration errors on
1118 * context entries). We should assume PT not enabled for
1124 return ret
== VTD_CONTEXT_TT_PASS_THROUGH
;
1127 /* Return whether the device is using IOMMU translation. */
1128 static bool vtd_switch_address_space(VTDAddressSpace
*as
)
1131 /* Whether we need to take the BQL on our own */
1132 bool take_bql
= !qemu_mutex_iothread_locked();
1136 use_iommu
= as
->iommu_state
->dmar_enabled
& !vtd_dev_pt_enabled(as
);
1138 trace_vtd_switch_address_space(pci_bus_num(as
->bus
),
1139 VTD_PCI_SLOT(as
->devfn
),
1140 VTD_PCI_FUNC(as
->devfn
),
1144 * It's possible that we reach here without BQL, e.g., when called
1145 * from vtd_pt_enable_fast_path(). However the memory APIs need
1146 * it. We'd better make sure we have had it already, or, take it.
1149 qemu_mutex_lock_iothread();
1152 /* Turn off first then on the other */
1154 memory_region_set_enabled(&as
->sys_alias
, false);
1155 memory_region_set_enabled(MEMORY_REGION(&as
->iommu
), true);
1157 memory_region_set_enabled(MEMORY_REGION(&as
->iommu
), false);
1158 memory_region_set_enabled(&as
->sys_alias
, true);
1162 qemu_mutex_unlock_iothread();
1168 static void vtd_switch_address_space_all(IntelIOMMUState
*s
)
1170 GHashTableIter iter
;
1174 g_hash_table_iter_init(&iter
, s
->vtd_as_by_busptr
);
1175 while (g_hash_table_iter_next(&iter
, NULL
, (void **)&vtd_bus
)) {
1176 for (i
= 0; i
< PCI_DEVFN_MAX
; i
++) {
1177 if (!vtd_bus
->dev_as
[i
]) {
1180 vtd_switch_address_space(vtd_bus
->dev_as
[i
]);
1185 static inline uint16_t vtd_make_source_id(uint8_t bus_num
, uint8_t devfn
)
1187 return ((bus_num
& 0xffUL
) << 8) | (devfn
& 0xffUL
);
1190 static const bool vtd_qualified_faults
[] = {
1191 [VTD_FR_RESERVED
] = false,
1192 [VTD_FR_ROOT_ENTRY_P
] = false,
1193 [VTD_FR_CONTEXT_ENTRY_P
] = true,
1194 [VTD_FR_CONTEXT_ENTRY_INV
] = true,
1195 [VTD_FR_ADDR_BEYOND_MGAW
] = true,
1196 [VTD_FR_WRITE
] = true,
1197 [VTD_FR_READ
] = true,
1198 [VTD_FR_PAGING_ENTRY_INV
] = true,
1199 [VTD_FR_ROOT_TABLE_INV
] = false,
1200 [VTD_FR_CONTEXT_TABLE_INV
] = false,
1201 [VTD_FR_ROOT_ENTRY_RSVD
] = false,
1202 [VTD_FR_PAGING_ENTRY_RSVD
] = true,
1203 [VTD_FR_CONTEXT_ENTRY_TT
] = true,
1204 [VTD_FR_RESERVED_ERR
] = false,
1205 [VTD_FR_MAX
] = false,
1208 /* To see if a fault condition is "qualified", which is reported to software
1209 * only if the FPD field in the context-entry used to process the faulting
1212 static inline bool vtd_is_qualified_fault(VTDFaultReason fault
)
1214 return vtd_qualified_faults
[fault
];
1217 static inline bool vtd_is_interrupt_addr(hwaddr addr
)
1219 return VTD_INTERRUPT_ADDR_FIRST
<= addr
&& addr
<= VTD_INTERRUPT_ADDR_LAST
;
1222 static void vtd_pt_enable_fast_path(IntelIOMMUState
*s
, uint16_t source_id
)
1225 VTDAddressSpace
*vtd_as
;
1226 bool success
= false;
1228 vtd_bus
= vtd_find_as_from_bus_num(s
, VTD_SID_TO_BUS(source_id
));
1233 vtd_as
= vtd_bus
->dev_as
[VTD_SID_TO_DEVFN(source_id
)];
1238 if (vtd_switch_address_space(vtd_as
) == false) {
1239 /* We switched off IOMMU region successfully. */
1244 trace_vtd_pt_enable_fast_path(source_id
, success
);
1247 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1250 * Called from RCU critical section.
1252 * @bus_num: The bus number
1253 * @devfn: The devfn, which is the combined of device and function number
1254 * @is_write: The access is a write operation
1255 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1257 * Returns true if translation is successful, otherwise false.
1259 static bool vtd_do_iommu_translate(VTDAddressSpace
*vtd_as
, PCIBus
*bus
,
1260 uint8_t devfn
, hwaddr addr
, bool is_write
,
1261 IOMMUTLBEntry
*entry
)
1263 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
1265 uint8_t bus_num
= pci_bus_num(bus
);
1266 VTDContextCacheEntry
*cc_entry
;
1267 uint64_t slpte
, page_mask
;
1269 uint16_t source_id
= vtd_make_source_id(bus_num
, devfn
);
1271 bool is_fpd_set
= false;
1274 uint8_t access_flags
;
1275 VTDIOTLBEntry
*iotlb_entry
;
1278 * We have standalone memory region for interrupt addresses, we
1279 * should never receive translation requests in this region.
1281 assert(!vtd_is_interrupt_addr(addr
));
1285 cc_entry
= &vtd_as
->context_cache_entry
;
1287 /* Try to fetch slpte form IOTLB */
1288 iotlb_entry
= vtd_lookup_iotlb(s
, source_id
, addr
);
1290 trace_vtd_iotlb_page_hit(source_id
, addr
, iotlb_entry
->slpte
,
1291 iotlb_entry
->domain_id
);
1292 slpte
= iotlb_entry
->slpte
;
1293 access_flags
= iotlb_entry
->access_flags
;
1294 page_mask
= iotlb_entry
->mask
;
1298 /* Try to fetch context-entry from cache first */
1299 if (cc_entry
->context_cache_gen
== s
->context_cache_gen
) {
1300 trace_vtd_iotlb_cc_hit(bus_num
, devfn
, cc_entry
->context_entry
.hi
,
1301 cc_entry
->context_entry
.lo
,
1302 cc_entry
->context_cache_gen
);
1303 ce
= cc_entry
->context_entry
;
1304 is_fpd_set
= ce
.lo
& VTD_CONTEXT_ENTRY_FPD
;
1306 ret_fr
= vtd_dev_to_context_entry(s
, bus_num
, devfn
, &ce
);
1307 is_fpd_set
= ce
.lo
& VTD_CONTEXT_ENTRY_FPD
;
1310 if (is_fpd_set
&& vtd_is_qualified_fault(ret_fr
)) {
1311 trace_vtd_fault_disabled();
1313 vtd_report_dmar_fault(s
, source_id
, addr
, ret_fr
, is_write
);
1317 /* Update context-cache */
1318 trace_vtd_iotlb_cc_update(bus_num
, devfn
, ce
.hi
, ce
.lo
,
1319 cc_entry
->context_cache_gen
,
1320 s
->context_cache_gen
);
1321 cc_entry
->context_entry
= ce
;
1322 cc_entry
->context_cache_gen
= s
->context_cache_gen
;
1326 * We don't need to translate for pass-through context entries.
1327 * Also, let's ignore IOTLB caching as well for PT devices.
1329 if (vtd_ce_get_type(&ce
) == VTD_CONTEXT_TT_PASS_THROUGH
) {
1330 entry
->iova
= addr
& VTD_PAGE_MASK_4K
;
1331 entry
->translated_addr
= entry
->iova
;
1332 entry
->addr_mask
= ~VTD_PAGE_MASK_4K
;
1333 entry
->perm
= IOMMU_RW
;
1334 trace_vtd_translate_pt(source_id
, entry
->iova
);
1337 * When this happens, it means firstly caching-mode is not
1338 * enabled, and this is the first passthrough translation for
1339 * the device. Let's enable the fast path for passthrough.
1341 * When passthrough is disabled again for the device, we can
1342 * capture it via the context entry invalidation, then the
1343 * IOMMU region can be swapped back.
1345 vtd_pt_enable_fast_path(s
, source_id
);
1346 vtd_iommu_unlock(s
);
1350 ret_fr
= vtd_iova_to_slpte(&ce
, addr
, is_write
, &slpte
, &level
,
1351 &reads
, &writes
, s
->aw_bits
);
1354 if (is_fpd_set
&& vtd_is_qualified_fault(ret_fr
)) {
1355 trace_vtd_fault_disabled();
1357 vtd_report_dmar_fault(s
, source_id
, addr
, ret_fr
, is_write
);
1362 page_mask
= vtd_slpt_level_page_mask(level
);
1363 access_flags
= IOMMU_ACCESS_FLAG(reads
, writes
);
1364 vtd_update_iotlb(s
, source_id
, VTD_CONTEXT_ENTRY_DID(ce
.hi
), addr
, slpte
,
1365 access_flags
, level
);
1367 vtd_iommu_unlock(s
);
1368 entry
->iova
= addr
& page_mask
;
1369 entry
->translated_addr
= vtd_get_slpte_addr(slpte
, s
->aw_bits
) & page_mask
;
1370 entry
->addr_mask
= ~page_mask
;
1371 entry
->perm
= access_flags
;
1375 vtd_iommu_unlock(s
);
1377 entry
->translated_addr
= 0;
1378 entry
->addr_mask
= 0;
1379 entry
->perm
= IOMMU_NONE
;
1383 static void vtd_root_table_setup(IntelIOMMUState
*s
)
1385 s
->root
= vtd_get_quad_raw(s
, DMAR_RTADDR_REG
);
1386 s
->root_extended
= s
->root
& VTD_RTADDR_RTT
;
1387 s
->root
&= VTD_RTADDR_ADDR_MASK(s
->aw_bits
);
1389 trace_vtd_reg_dmar_root(s
->root
, s
->root_extended
);
1392 static void vtd_iec_notify_all(IntelIOMMUState
*s
, bool global
,
1393 uint32_t index
, uint32_t mask
)
1395 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s
), global
, index
, mask
);
1398 static void vtd_interrupt_remap_table_setup(IntelIOMMUState
*s
)
1401 value
= vtd_get_quad_raw(s
, DMAR_IRTA_REG
);
1402 s
->intr_size
= 1UL << ((value
& VTD_IRTA_SIZE_MASK
) + 1);
1403 s
->intr_root
= value
& VTD_IRTA_ADDR_MASK(s
->aw_bits
);
1404 s
->intr_eime
= value
& VTD_IRTA_EIME
;
1406 /* Notify global invalidation */
1407 vtd_iec_notify_all(s
, true, 0, 0);
1409 trace_vtd_reg_ir_root(s
->intr_root
, s
->intr_size
);
1412 static void vtd_iommu_replay_all(IntelIOMMUState
*s
)
1414 VTDAddressSpace
*vtd_as
;
1416 QLIST_FOREACH(vtd_as
, &s
->vtd_as_with_notifiers
, next
) {
1417 vtd_sync_shadow_page_table(vtd_as
);
1421 static void vtd_context_global_invalidate(IntelIOMMUState
*s
)
1423 trace_vtd_inv_desc_cc_global();
1424 /* Protects context cache */
1426 s
->context_cache_gen
++;
1427 if (s
->context_cache_gen
== VTD_CONTEXT_CACHE_GEN_MAX
) {
1428 vtd_reset_context_cache_locked(s
);
1430 vtd_iommu_unlock(s
);
1431 vtd_switch_address_space_all(s
);
1433 * From VT-d spec 6.5.2.1, a global context entry invalidation
1434 * should be followed by a IOTLB global invalidation, so we should
1435 * be safe even without this. Hoewever, let's replay the region as
1436 * well to be safer, and go back here when we need finer tunes for
1437 * VT-d emulation codes.
1439 vtd_iommu_replay_all(s
);
1442 /* Do a context-cache device-selective invalidation.
1443 * @func_mask: FM field after shifting
1445 static void vtd_context_device_invalidate(IntelIOMMUState
*s
,
1451 VTDAddressSpace
*vtd_as
;
1452 uint8_t bus_n
, devfn
;
1455 trace_vtd_inv_desc_cc_devices(source_id
, func_mask
);
1457 switch (func_mask
& 3) {
1459 mask
= 0; /* No bits in the SID field masked */
1462 mask
= 4; /* Mask bit 2 in the SID field */
1465 mask
= 6; /* Mask bit 2:1 in the SID field */
1468 mask
= 7; /* Mask bit 2:0 in the SID field */
1473 bus_n
= VTD_SID_TO_BUS(source_id
);
1474 vtd_bus
= vtd_find_as_from_bus_num(s
, bus_n
);
1476 devfn
= VTD_SID_TO_DEVFN(source_id
);
1477 for (devfn_it
= 0; devfn_it
< PCI_DEVFN_MAX
; ++devfn_it
) {
1478 vtd_as
= vtd_bus
->dev_as
[devfn_it
];
1479 if (vtd_as
&& ((devfn_it
& mask
) == (devfn
& mask
))) {
1480 trace_vtd_inv_desc_cc_device(bus_n
, VTD_PCI_SLOT(devfn_it
),
1481 VTD_PCI_FUNC(devfn_it
));
1483 vtd_as
->context_cache_entry
.context_cache_gen
= 0;
1484 vtd_iommu_unlock(s
);
1486 * Do switch address space when needed, in case if the
1487 * device passthrough bit is switched.
1489 vtd_switch_address_space(vtd_as
);
1491 * So a device is moving out of (or moving into) a
1492 * domain, resync the shadow page table.
1493 * This won't bring bad even if we have no such
1494 * notifier registered - the IOMMU notification
1495 * framework will skip MAP notifications if that
1498 vtd_sync_shadow_page_table(vtd_as
);
1504 /* Context-cache invalidation
1505 * Returns the Context Actual Invalidation Granularity.
1506 * @val: the content of the CCMD_REG
1508 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState
*s
, uint64_t val
)
1511 uint64_t type
= val
& VTD_CCMD_CIRG_MASK
;
1514 case VTD_CCMD_DOMAIN_INVL
:
1516 case VTD_CCMD_GLOBAL_INVL
:
1517 caig
= VTD_CCMD_GLOBAL_INVL_A
;
1518 vtd_context_global_invalidate(s
);
1521 case VTD_CCMD_DEVICE_INVL
:
1522 caig
= VTD_CCMD_DEVICE_INVL_A
;
1523 vtd_context_device_invalidate(s
, VTD_CCMD_SID(val
), VTD_CCMD_FM(val
));
1527 error_report_once("%s: invalid context: 0x%" PRIx64
,
1534 static void vtd_iotlb_global_invalidate(IntelIOMMUState
*s
)
1536 trace_vtd_inv_desc_iotlb_global();
1538 vtd_iommu_replay_all(s
);
1541 static void vtd_iotlb_domain_invalidate(IntelIOMMUState
*s
, uint16_t domain_id
)
1544 VTDAddressSpace
*vtd_as
;
1546 trace_vtd_inv_desc_iotlb_domain(domain_id
);
1549 g_hash_table_foreach_remove(s
->iotlb
, vtd_hash_remove_by_domain
,
1551 vtd_iommu_unlock(s
);
1553 QLIST_FOREACH(vtd_as
, &s
->vtd_as_with_notifiers
, next
) {
1554 if (!vtd_dev_to_context_entry(s
, pci_bus_num(vtd_as
->bus
),
1555 vtd_as
->devfn
, &ce
) &&
1556 domain_id
== VTD_CONTEXT_ENTRY_DID(ce
.hi
)) {
1557 vtd_sync_shadow_page_table(vtd_as
);
1562 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState
*s
,
1563 uint16_t domain_id
, hwaddr addr
,
1566 VTDAddressSpace
*vtd_as
;
1569 hwaddr size
= (1 << am
) * VTD_PAGE_SIZE
;
1571 QLIST_FOREACH(vtd_as
, &(s
->vtd_as_with_notifiers
), next
) {
1572 ret
= vtd_dev_to_context_entry(s
, pci_bus_num(vtd_as
->bus
),
1573 vtd_as
->devfn
, &ce
);
1574 if (!ret
&& domain_id
== VTD_CONTEXT_ENTRY_DID(ce
.hi
)) {
1575 if (vtd_as_has_map_notifier(vtd_as
)) {
1577 * As long as we have MAP notifications registered in
1578 * any of our IOMMU notifiers, we need to sync the
1579 * shadow page table.
1581 vtd_sync_shadow_page_table_range(vtd_as
, &ce
, addr
, size
);
1584 * For UNMAP-only notifiers, we don't need to walk the
1585 * page tables. We just deliver the PSI down to
1586 * invalidate caches.
1588 IOMMUTLBEntry entry
= {
1589 .target_as
= &address_space_memory
,
1591 .translated_addr
= 0,
1592 .addr_mask
= size
- 1,
1595 memory_region_notify_iommu(&vtd_as
->iommu
, 0, entry
);
1601 static void vtd_iotlb_page_invalidate(IntelIOMMUState
*s
, uint16_t domain_id
,
1602 hwaddr addr
, uint8_t am
)
1604 VTDIOTLBPageInvInfo info
;
1606 trace_vtd_inv_desc_iotlb_pages(domain_id
, addr
, am
);
1608 assert(am
<= VTD_MAMV
);
1609 info
.domain_id
= domain_id
;
1611 info
.mask
= ~((1 << am
) - 1);
1613 g_hash_table_foreach_remove(s
->iotlb
, vtd_hash_remove_by_page
, &info
);
1614 vtd_iommu_unlock(s
);
1615 vtd_iotlb_page_invalidate_notify(s
, domain_id
, addr
, am
);
1619 * Returns the IOTLB Actual Invalidation Granularity.
1620 * @val: the content of the IOTLB_REG
1622 static uint64_t vtd_iotlb_flush(IntelIOMMUState
*s
, uint64_t val
)
1625 uint64_t type
= val
& VTD_TLB_FLUSH_GRANU_MASK
;
1631 case VTD_TLB_GLOBAL_FLUSH
:
1632 iaig
= VTD_TLB_GLOBAL_FLUSH_A
;
1633 vtd_iotlb_global_invalidate(s
);
1636 case VTD_TLB_DSI_FLUSH
:
1637 domain_id
= VTD_TLB_DID(val
);
1638 iaig
= VTD_TLB_DSI_FLUSH_A
;
1639 vtd_iotlb_domain_invalidate(s
, domain_id
);
1642 case VTD_TLB_PSI_FLUSH
:
1643 domain_id
= VTD_TLB_DID(val
);
1644 addr
= vtd_get_quad_raw(s
, DMAR_IVA_REG
);
1645 am
= VTD_IVA_AM(addr
);
1646 addr
= VTD_IVA_ADDR(addr
);
1647 if (am
> VTD_MAMV
) {
1648 error_report_once("%s: address mask overflow: 0x%" PRIx64
,
1649 __func__
, vtd_get_quad_raw(s
, DMAR_IVA_REG
));
1653 iaig
= VTD_TLB_PSI_FLUSH_A
;
1654 vtd_iotlb_page_invalidate(s
, domain_id
, addr
, am
);
1658 error_report_once("%s: invalid granularity: 0x%" PRIx64
,
1665 static void vtd_fetch_inv_desc(IntelIOMMUState
*s
);
1667 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState
*s
)
1669 return s
->qi_enabled
&& (s
->iq_tail
== s
->iq_head
) &&
1670 (s
->iq_last_desc_type
== VTD_INV_DESC_WAIT
);
1673 static void vtd_handle_gcmd_qie(IntelIOMMUState
*s
, bool en
)
1675 uint64_t iqa_val
= vtd_get_quad_raw(s
, DMAR_IQA_REG
);
1677 trace_vtd_inv_qi_enable(en
);
1680 s
->iq
= iqa_val
& VTD_IQA_IQA_MASK(s
->aw_bits
);
1681 /* 2^(x+8) entries */
1682 s
->iq_size
= 1UL << ((iqa_val
& VTD_IQA_QS
) + 8);
1683 s
->qi_enabled
= true;
1684 trace_vtd_inv_qi_setup(s
->iq
, s
->iq_size
);
1685 /* Ok - report back to driver */
1686 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_QIES
);
1688 if (s
->iq_tail
!= 0) {
1690 * This is a spec violation but Windows guests are known to set up
1691 * Queued Invalidation this way so we allow the write and process
1692 * Invalidation Descriptors right away.
1694 trace_vtd_warn_invalid_qi_tail(s
->iq_tail
);
1695 if (!(vtd_get_long_raw(s
, DMAR_FSTS_REG
) & VTD_FSTS_IQE
)) {
1696 vtd_fetch_inv_desc(s
);
1700 if (vtd_queued_inv_disable_check(s
)) {
1701 /* disable Queued Invalidation */
1702 vtd_set_quad_raw(s
, DMAR_IQH_REG
, 0);
1704 s
->qi_enabled
= false;
1705 /* Ok - report back to driver */
1706 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, VTD_GSTS_QIES
, 0);
1708 error_report_once("%s: detected improper state when disable QI "
1709 "(head=0x%x, tail=0x%x, last_type=%d)",
1711 s
->iq_head
, s
->iq_tail
, s
->iq_last_desc_type
);
1716 /* Set Root Table Pointer */
1717 static void vtd_handle_gcmd_srtp(IntelIOMMUState
*s
)
1719 vtd_root_table_setup(s
);
1720 /* Ok - report back to driver */
1721 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_RTPS
);
1724 /* Set Interrupt Remap Table Pointer */
1725 static void vtd_handle_gcmd_sirtp(IntelIOMMUState
*s
)
1727 vtd_interrupt_remap_table_setup(s
);
1728 /* Ok - report back to driver */
1729 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_IRTPS
);
1732 /* Handle Translation Enable/Disable */
1733 static void vtd_handle_gcmd_te(IntelIOMMUState
*s
, bool en
)
1735 if (s
->dmar_enabled
== en
) {
1739 trace_vtd_dmar_enable(en
);
1742 s
->dmar_enabled
= true;
1743 /* Ok - report back to driver */
1744 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_TES
);
1746 s
->dmar_enabled
= false;
1748 /* Clear the index of Fault Recording Register */
1749 s
->next_frcd_reg
= 0;
1750 /* Ok - report back to driver */
1751 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, VTD_GSTS_TES
, 0);
1754 vtd_switch_address_space_all(s
);
1757 /* Handle Interrupt Remap Enable/Disable */
1758 static void vtd_handle_gcmd_ire(IntelIOMMUState
*s
, bool en
)
1760 trace_vtd_ir_enable(en
);
1763 s
->intr_enabled
= true;
1764 /* Ok - report back to driver */
1765 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_IRES
);
1767 s
->intr_enabled
= false;
1768 /* Ok - report back to driver */
1769 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, VTD_GSTS_IRES
, 0);
1773 /* Handle write to Global Command Register */
1774 static void vtd_handle_gcmd_write(IntelIOMMUState
*s
)
1776 uint32_t status
= vtd_get_long_raw(s
, DMAR_GSTS_REG
);
1777 uint32_t val
= vtd_get_long_raw(s
, DMAR_GCMD_REG
);
1778 uint32_t changed
= status
^ val
;
1780 trace_vtd_reg_write_gcmd(status
, val
);
1781 if (changed
& VTD_GCMD_TE
) {
1782 /* Translation enable/disable */
1783 vtd_handle_gcmd_te(s
, val
& VTD_GCMD_TE
);
1785 if (val
& VTD_GCMD_SRTP
) {
1786 /* Set/update the root-table pointer */
1787 vtd_handle_gcmd_srtp(s
);
1789 if (changed
& VTD_GCMD_QIE
) {
1790 /* Queued Invalidation Enable */
1791 vtd_handle_gcmd_qie(s
, val
& VTD_GCMD_QIE
);
1793 if (val
& VTD_GCMD_SIRTP
) {
1794 /* Set/update the interrupt remapping root-table pointer */
1795 vtd_handle_gcmd_sirtp(s
);
1797 if (changed
& VTD_GCMD_IRE
) {
1798 /* Interrupt remap enable/disable */
1799 vtd_handle_gcmd_ire(s
, val
& VTD_GCMD_IRE
);
1803 /* Handle write to Context Command Register */
1804 static void vtd_handle_ccmd_write(IntelIOMMUState
*s
)
1807 uint64_t val
= vtd_get_quad_raw(s
, DMAR_CCMD_REG
);
1809 /* Context-cache invalidation request */
1810 if (val
& VTD_CCMD_ICC
) {
1811 if (s
->qi_enabled
) {
1812 error_report_once("Queued Invalidation enabled, "
1813 "should not use register-based invalidation");
1816 ret
= vtd_context_cache_invalidate(s
, val
);
1817 /* Invalidation completed. Change something to show */
1818 vtd_set_clear_mask_quad(s
, DMAR_CCMD_REG
, VTD_CCMD_ICC
, 0ULL);
1819 ret
= vtd_set_clear_mask_quad(s
, DMAR_CCMD_REG
, VTD_CCMD_CAIG_MASK
,
1824 /* Handle write to IOTLB Invalidation Register */
1825 static void vtd_handle_iotlb_write(IntelIOMMUState
*s
)
1828 uint64_t val
= vtd_get_quad_raw(s
, DMAR_IOTLB_REG
);
1830 /* IOTLB invalidation request */
1831 if (val
& VTD_TLB_IVT
) {
1832 if (s
->qi_enabled
) {
1833 error_report_once("Queued Invalidation enabled, "
1834 "should not use register-based invalidation");
1837 ret
= vtd_iotlb_flush(s
, val
);
1838 /* Invalidation completed. Change something to show */
1839 vtd_set_clear_mask_quad(s
, DMAR_IOTLB_REG
, VTD_TLB_IVT
, 0ULL);
1840 ret
= vtd_set_clear_mask_quad(s
, DMAR_IOTLB_REG
,
1841 VTD_TLB_FLUSH_GRANU_MASK_A
, ret
);
1845 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1846 static bool vtd_get_inv_desc(dma_addr_t base_addr
, uint32_t offset
,
1847 VTDInvDesc
*inv_desc
)
1849 dma_addr_t addr
= base_addr
+ offset
* sizeof(*inv_desc
);
1850 if (dma_memory_read(&address_space_memory
, addr
, inv_desc
,
1851 sizeof(*inv_desc
))) {
1852 error_report_once("Read INV DESC failed");
1857 inv_desc
->lo
= le64_to_cpu(inv_desc
->lo
);
1858 inv_desc
->hi
= le64_to_cpu(inv_desc
->hi
);
1862 static bool vtd_process_wait_desc(IntelIOMMUState
*s
, VTDInvDesc
*inv_desc
)
1864 if ((inv_desc
->hi
& VTD_INV_DESC_WAIT_RSVD_HI
) ||
1865 (inv_desc
->lo
& VTD_INV_DESC_WAIT_RSVD_LO
)) {
1866 trace_vtd_inv_desc_wait_invalid(inv_desc
->hi
, inv_desc
->lo
);
1869 if (inv_desc
->lo
& VTD_INV_DESC_WAIT_SW
) {
1871 uint32_t status_data
= (uint32_t)(inv_desc
->lo
>>
1872 VTD_INV_DESC_WAIT_DATA_SHIFT
);
1874 assert(!(inv_desc
->lo
& VTD_INV_DESC_WAIT_IF
));
1876 /* FIXME: need to be masked with HAW? */
1877 dma_addr_t status_addr
= inv_desc
->hi
;
1878 trace_vtd_inv_desc_wait_sw(status_addr
, status_data
);
1879 status_data
= cpu_to_le32(status_data
);
1880 if (dma_memory_write(&address_space_memory
, status_addr
, &status_data
,
1881 sizeof(status_data
))) {
1882 trace_vtd_inv_desc_wait_write_fail(inv_desc
->hi
, inv_desc
->lo
);
1885 } else if (inv_desc
->lo
& VTD_INV_DESC_WAIT_IF
) {
1886 /* Interrupt flag */
1887 vtd_generate_completion_event(s
);
1889 trace_vtd_inv_desc_wait_invalid(inv_desc
->hi
, inv_desc
->lo
);
1895 static bool vtd_process_context_cache_desc(IntelIOMMUState
*s
,
1896 VTDInvDesc
*inv_desc
)
1898 uint16_t sid
, fmask
;
1900 if ((inv_desc
->lo
& VTD_INV_DESC_CC_RSVD
) || inv_desc
->hi
) {
1901 trace_vtd_inv_desc_cc_invalid(inv_desc
->hi
, inv_desc
->lo
);
1904 switch (inv_desc
->lo
& VTD_INV_DESC_CC_G
) {
1905 case VTD_INV_DESC_CC_DOMAIN
:
1906 trace_vtd_inv_desc_cc_domain(
1907 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc
->lo
));
1909 case VTD_INV_DESC_CC_GLOBAL
:
1910 vtd_context_global_invalidate(s
);
1913 case VTD_INV_DESC_CC_DEVICE
:
1914 sid
= VTD_INV_DESC_CC_SID(inv_desc
->lo
);
1915 fmask
= VTD_INV_DESC_CC_FM(inv_desc
->lo
);
1916 vtd_context_device_invalidate(s
, sid
, fmask
);
1920 trace_vtd_inv_desc_cc_invalid(inv_desc
->hi
, inv_desc
->lo
);
1926 static bool vtd_process_iotlb_desc(IntelIOMMUState
*s
, VTDInvDesc
*inv_desc
)
1932 if ((inv_desc
->lo
& VTD_INV_DESC_IOTLB_RSVD_LO
) ||
1933 (inv_desc
->hi
& VTD_INV_DESC_IOTLB_RSVD_HI
)) {
1934 trace_vtd_inv_desc_iotlb_invalid(inv_desc
->hi
, inv_desc
->lo
);
1938 switch (inv_desc
->lo
& VTD_INV_DESC_IOTLB_G
) {
1939 case VTD_INV_DESC_IOTLB_GLOBAL
:
1940 vtd_iotlb_global_invalidate(s
);
1943 case VTD_INV_DESC_IOTLB_DOMAIN
:
1944 domain_id
= VTD_INV_DESC_IOTLB_DID(inv_desc
->lo
);
1945 vtd_iotlb_domain_invalidate(s
, domain_id
);
1948 case VTD_INV_DESC_IOTLB_PAGE
:
1949 domain_id
= VTD_INV_DESC_IOTLB_DID(inv_desc
->lo
);
1950 addr
= VTD_INV_DESC_IOTLB_ADDR(inv_desc
->hi
);
1951 am
= VTD_INV_DESC_IOTLB_AM(inv_desc
->hi
);
1952 if (am
> VTD_MAMV
) {
1953 trace_vtd_inv_desc_iotlb_invalid(inv_desc
->hi
, inv_desc
->lo
);
1956 vtd_iotlb_page_invalidate(s
, domain_id
, addr
, am
);
1960 trace_vtd_inv_desc_iotlb_invalid(inv_desc
->hi
, inv_desc
->lo
);
1966 static bool vtd_process_inv_iec_desc(IntelIOMMUState
*s
,
1967 VTDInvDesc
*inv_desc
)
1969 trace_vtd_inv_desc_iec(inv_desc
->iec
.granularity
,
1970 inv_desc
->iec
.index
,
1971 inv_desc
->iec
.index_mask
);
1973 vtd_iec_notify_all(s
, !inv_desc
->iec
.granularity
,
1974 inv_desc
->iec
.index
,
1975 inv_desc
->iec
.index_mask
);
1979 static bool vtd_process_device_iotlb_desc(IntelIOMMUState
*s
,
1980 VTDInvDesc
*inv_desc
)
1982 VTDAddressSpace
*vtd_dev_as
;
1983 IOMMUTLBEntry entry
;
1984 struct VTDBus
*vtd_bus
;
1992 addr
= VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc
->hi
);
1993 sid
= VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc
->lo
);
1996 size
= VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc
->hi
);
1998 if ((inv_desc
->lo
& VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO
) ||
1999 (inv_desc
->hi
& VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI
)) {
2000 trace_vtd_inv_desc_iotlb_invalid(inv_desc
->hi
, inv_desc
->lo
);
2004 vtd_bus
= vtd_find_as_from_bus_num(s
, bus_num
);
2009 vtd_dev_as
= vtd_bus
->dev_as
[devfn
];
2014 /* According to ATS spec table 2.4:
2015 * S = 0, bits 15:12 = xxxx range size: 4K
2016 * S = 1, bits 15:12 = xxx0 range size: 8K
2017 * S = 1, bits 15:12 = xx01 range size: 16K
2018 * S = 1, bits 15:12 = x011 range size: 32K
2019 * S = 1, bits 15:12 = 0111 range size: 64K
2023 sz
= (VTD_PAGE_SIZE
* 2) << cto64(addr
>> VTD_PAGE_SHIFT
);
2029 entry
.target_as
= &vtd_dev_as
->as
;
2030 entry
.addr_mask
= sz
- 1;
2032 entry
.perm
= IOMMU_NONE
;
2033 entry
.translated_addr
= 0;
2034 memory_region_notify_iommu(&vtd_dev_as
->iommu
, 0, entry
);
2040 static bool vtd_process_inv_desc(IntelIOMMUState
*s
)
2042 VTDInvDesc inv_desc
;
2045 trace_vtd_inv_qi_head(s
->iq_head
);
2046 if (!vtd_get_inv_desc(s
->iq
, s
->iq_head
, &inv_desc
)) {
2047 s
->iq_last_desc_type
= VTD_INV_DESC_NONE
;
2050 desc_type
= inv_desc
.lo
& VTD_INV_DESC_TYPE
;
2051 /* FIXME: should update at first or at last? */
2052 s
->iq_last_desc_type
= desc_type
;
2054 switch (desc_type
) {
2055 case VTD_INV_DESC_CC
:
2056 trace_vtd_inv_desc("context-cache", inv_desc
.hi
, inv_desc
.lo
);
2057 if (!vtd_process_context_cache_desc(s
, &inv_desc
)) {
2062 case VTD_INV_DESC_IOTLB
:
2063 trace_vtd_inv_desc("iotlb", inv_desc
.hi
, inv_desc
.lo
);
2064 if (!vtd_process_iotlb_desc(s
, &inv_desc
)) {
2069 case VTD_INV_DESC_WAIT
:
2070 trace_vtd_inv_desc("wait", inv_desc
.hi
, inv_desc
.lo
);
2071 if (!vtd_process_wait_desc(s
, &inv_desc
)) {
2076 case VTD_INV_DESC_IEC
:
2077 trace_vtd_inv_desc("iec", inv_desc
.hi
, inv_desc
.lo
);
2078 if (!vtd_process_inv_iec_desc(s
, &inv_desc
)) {
2083 case VTD_INV_DESC_DEVICE
:
2084 trace_vtd_inv_desc("device", inv_desc
.hi
, inv_desc
.lo
);
2085 if (!vtd_process_device_iotlb_desc(s
, &inv_desc
)) {
2091 trace_vtd_inv_desc_invalid(inv_desc
.hi
, inv_desc
.lo
);
2095 if (s
->iq_head
== s
->iq_size
) {
2101 /* Try to fetch and process more Invalidation Descriptors */
2102 static void vtd_fetch_inv_desc(IntelIOMMUState
*s
)
2104 trace_vtd_inv_qi_fetch();
2106 if (s
->iq_tail
>= s
->iq_size
) {
2107 /* Detects an invalid Tail pointer */
2108 error_report_once("%s: detected invalid QI tail "
2109 "(tail=0x%x, size=0x%x)",
2110 __func__
, s
->iq_tail
, s
->iq_size
);
2111 vtd_handle_inv_queue_error(s
);
2114 while (s
->iq_head
!= s
->iq_tail
) {
2115 if (!vtd_process_inv_desc(s
)) {
2116 /* Invalidation Queue Errors */
2117 vtd_handle_inv_queue_error(s
);
2120 /* Must update the IQH_REG in time */
2121 vtd_set_quad_raw(s
, DMAR_IQH_REG
,
2122 (((uint64_t)(s
->iq_head
)) << VTD_IQH_QH_SHIFT
) &
2127 /* Handle write to Invalidation Queue Tail Register */
2128 static void vtd_handle_iqt_write(IntelIOMMUState
*s
)
2130 uint64_t val
= vtd_get_quad_raw(s
, DMAR_IQT_REG
);
2132 s
->iq_tail
= VTD_IQT_QT(val
);
2133 trace_vtd_inv_qi_tail(s
->iq_tail
);
2135 if (s
->qi_enabled
&& !(vtd_get_long_raw(s
, DMAR_FSTS_REG
) & VTD_FSTS_IQE
)) {
2136 /* Process Invalidation Queue here */
2137 vtd_fetch_inv_desc(s
);
2141 static void vtd_handle_fsts_write(IntelIOMMUState
*s
)
2143 uint32_t fsts_reg
= vtd_get_long_raw(s
, DMAR_FSTS_REG
);
2144 uint32_t fectl_reg
= vtd_get_long_raw(s
, DMAR_FECTL_REG
);
2145 uint32_t status_fields
= VTD_FSTS_PFO
| VTD_FSTS_PPF
| VTD_FSTS_IQE
;
2147 if ((fectl_reg
& VTD_FECTL_IP
) && !(fsts_reg
& status_fields
)) {
2148 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, VTD_FECTL_IP
, 0);
2149 trace_vtd_fsts_clear_ip();
2151 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2152 * Descriptors if there are any when Queued Invalidation is enabled?
2156 static void vtd_handle_fectl_write(IntelIOMMUState
*s
)
2159 /* FIXME: when software clears the IM field, check the IP field. But do we
2160 * need to compare the old value and the new value to conclude that
2161 * software clears the IM field? Or just check if the IM field is zero?
2163 fectl_reg
= vtd_get_long_raw(s
, DMAR_FECTL_REG
);
2165 trace_vtd_reg_write_fectl(fectl_reg
);
2167 if ((fectl_reg
& VTD_FECTL_IP
) && !(fectl_reg
& VTD_FECTL_IM
)) {
2168 vtd_generate_interrupt(s
, DMAR_FEADDR_REG
, DMAR_FEDATA_REG
);
2169 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, VTD_FECTL_IP
, 0);
2173 static void vtd_handle_ics_write(IntelIOMMUState
*s
)
2175 uint32_t ics_reg
= vtd_get_long_raw(s
, DMAR_ICS_REG
);
2176 uint32_t iectl_reg
= vtd_get_long_raw(s
, DMAR_IECTL_REG
);
2178 if ((iectl_reg
& VTD_IECTL_IP
) && !(ics_reg
& VTD_ICS_IWC
)) {
2179 trace_vtd_reg_ics_clear_ip();
2180 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, VTD_IECTL_IP
, 0);
2184 static void vtd_handle_iectl_write(IntelIOMMUState
*s
)
2187 /* FIXME: when software clears the IM field, check the IP field. But do we
2188 * need to compare the old value and the new value to conclude that
2189 * software clears the IM field? Or just check if the IM field is zero?
2191 iectl_reg
= vtd_get_long_raw(s
, DMAR_IECTL_REG
);
2193 trace_vtd_reg_write_iectl(iectl_reg
);
2195 if ((iectl_reg
& VTD_IECTL_IP
) && !(iectl_reg
& VTD_IECTL_IM
)) {
2196 vtd_generate_interrupt(s
, DMAR_IEADDR_REG
, DMAR_IEDATA_REG
);
2197 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, VTD_IECTL_IP
, 0);
2201 static uint64_t vtd_mem_read(void *opaque
, hwaddr addr
, unsigned size
)
2203 IntelIOMMUState
*s
= opaque
;
2206 trace_vtd_reg_read(addr
, size
);
2208 if (addr
+ size
> DMAR_REG_SIZE
) {
2209 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2210 " size=0x%u", __func__
, addr
, size
);
2211 return (uint64_t)-1;
2215 /* Root Table Address Register, 64-bit */
2216 case DMAR_RTADDR_REG
:
2218 val
= s
->root
& ((1ULL << 32) - 1);
2224 case DMAR_RTADDR_REG_HI
:
2226 val
= s
->root
>> 32;
2229 /* Invalidation Queue Address Register, 64-bit */
2231 val
= s
->iq
| (vtd_get_quad(s
, DMAR_IQA_REG
) & VTD_IQA_QS
);
2233 val
= val
& ((1ULL << 32) - 1);
2237 case DMAR_IQA_REG_HI
:
2244 val
= vtd_get_long(s
, addr
);
2246 val
= vtd_get_quad(s
, addr
);
2253 static void vtd_mem_write(void *opaque
, hwaddr addr
,
2254 uint64_t val
, unsigned size
)
2256 IntelIOMMUState
*s
= opaque
;
2258 trace_vtd_reg_write(addr
, size
, val
);
2260 if (addr
+ size
> DMAR_REG_SIZE
) {
2261 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2262 " size=0x%u", __func__
, addr
, size
);
2267 /* Global Command Register, 32-bit */
2269 vtd_set_long(s
, addr
, val
);
2270 vtd_handle_gcmd_write(s
);
2273 /* Context Command Register, 64-bit */
2276 vtd_set_long(s
, addr
, val
);
2278 vtd_set_quad(s
, addr
, val
);
2279 vtd_handle_ccmd_write(s
);
2283 case DMAR_CCMD_REG_HI
:
2285 vtd_set_long(s
, addr
, val
);
2286 vtd_handle_ccmd_write(s
);
2289 /* IOTLB Invalidation Register, 64-bit */
2290 case DMAR_IOTLB_REG
:
2292 vtd_set_long(s
, addr
, val
);
2294 vtd_set_quad(s
, addr
, val
);
2295 vtd_handle_iotlb_write(s
);
2299 case DMAR_IOTLB_REG_HI
:
2301 vtd_set_long(s
, addr
, val
);
2302 vtd_handle_iotlb_write(s
);
2305 /* Invalidate Address Register, 64-bit */
2308 vtd_set_long(s
, addr
, val
);
2310 vtd_set_quad(s
, addr
, val
);
2314 case DMAR_IVA_REG_HI
:
2316 vtd_set_long(s
, addr
, val
);
2319 /* Fault Status Register, 32-bit */
2322 vtd_set_long(s
, addr
, val
);
2323 vtd_handle_fsts_write(s
);
2326 /* Fault Event Control Register, 32-bit */
2327 case DMAR_FECTL_REG
:
2329 vtd_set_long(s
, addr
, val
);
2330 vtd_handle_fectl_write(s
);
2333 /* Fault Event Data Register, 32-bit */
2334 case DMAR_FEDATA_REG
:
2336 vtd_set_long(s
, addr
, val
);
2339 /* Fault Event Address Register, 32-bit */
2340 case DMAR_FEADDR_REG
:
2342 vtd_set_long(s
, addr
, val
);
2345 * While the register is 32-bit only, some guests (Xen...) write to
2348 vtd_set_quad(s
, addr
, val
);
2352 /* Fault Event Upper Address Register, 32-bit */
2353 case DMAR_FEUADDR_REG
:
2355 vtd_set_long(s
, addr
, val
);
2358 /* Protected Memory Enable Register, 32-bit */
2361 vtd_set_long(s
, addr
, val
);
2364 /* Root Table Address Register, 64-bit */
2365 case DMAR_RTADDR_REG
:
2367 vtd_set_long(s
, addr
, val
);
2369 vtd_set_quad(s
, addr
, val
);
2373 case DMAR_RTADDR_REG_HI
:
2375 vtd_set_long(s
, addr
, val
);
2378 /* Invalidation Queue Tail Register, 64-bit */
2381 vtd_set_long(s
, addr
, val
);
2383 vtd_set_quad(s
, addr
, val
);
2385 vtd_handle_iqt_write(s
);
2388 case DMAR_IQT_REG_HI
:
2390 vtd_set_long(s
, addr
, val
);
2391 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2394 /* Invalidation Queue Address Register, 64-bit */
2397 vtd_set_long(s
, addr
, val
);
2399 vtd_set_quad(s
, addr
, val
);
2403 case DMAR_IQA_REG_HI
:
2405 vtd_set_long(s
, addr
, val
);
2408 /* Invalidation Completion Status Register, 32-bit */
2411 vtd_set_long(s
, addr
, val
);
2412 vtd_handle_ics_write(s
);
2415 /* Invalidation Event Control Register, 32-bit */
2416 case DMAR_IECTL_REG
:
2418 vtd_set_long(s
, addr
, val
);
2419 vtd_handle_iectl_write(s
);
2422 /* Invalidation Event Data Register, 32-bit */
2423 case DMAR_IEDATA_REG
:
2425 vtd_set_long(s
, addr
, val
);
2428 /* Invalidation Event Address Register, 32-bit */
2429 case DMAR_IEADDR_REG
:
2431 vtd_set_long(s
, addr
, val
);
2434 /* Invalidation Event Upper Address Register, 32-bit */
2435 case DMAR_IEUADDR_REG
:
2437 vtd_set_long(s
, addr
, val
);
2440 /* Fault Recording Registers, 128-bit */
2441 case DMAR_FRCD_REG_0_0
:
2443 vtd_set_long(s
, addr
, val
);
2445 vtd_set_quad(s
, addr
, val
);
2449 case DMAR_FRCD_REG_0_1
:
2451 vtd_set_long(s
, addr
, val
);
2454 case DMAR_FRCD_REG_0_2
:
2456 vtd_set_long(s
, addr
, val
);
2458 vtd_set_quad(s
, addr
, val
);
2459 /* May clear bit 127 (Fault), update PPF */
2460 vtd_update_fsts_ppf(s
);
2464 case DMAR_FRCD_REG_0_3
:
2466 vtd_set_long(s
, addr
, val
);
2467 /* May clear bit 127 (Fault), update PPF */
2468 vtd_update_fsts_ppf(s
);
2473 vtd_set_long(s
, addr
, val
);
2475 vtd_set_quad(s
, addr
, val
);
2479 case DMAR_IRTA_REG_HI
:
2481 vtd_set_long(s
, addr
, val
);
2486 vtd_set_long(s
, addr
, val
);
2488 vtd_set_quad(s
, addr
, val
);
2493 static IOMMUTLBEntry
vtd_iommu_translate(IOMMUMemoryRegion
*iommu
, hwaddr addr
,
2494 IOMMUAccessFlags flag
, int iommu_idx
)
2496 VTDAddressSpace
*vtd_as
= container_of(iommu
, VTDAddressSpace
, iommu
);
2497 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
2498 IOMMUTLBEntry iotlb
= {
2499 /* We'll fill in the rest later. */
2500 .target_as
= &address_space_memory
,
2504 if (likely(s
->dmar_enabled
)) {
2505 success
= vtd_do_iommu_translate(vtd_as
, vtd_as
->bus
, vtd_as
->devfn
,
2506 addr
, flag
& IOMMU_WO
, &iotlb
);
2508 /* DMAR disabled, passthrough, use 4k-page*/
2509 iotlb
.iova
= addr
& VTD_PAGE_MASK_4K
;
2510 iotlb
.translated_addr
= addr
& VTD_PAGE_MASK_4K
;
2511 iotlb
.addr_mask
= ~VTD_PAGE_MASK_4K
;
2512 iotlb
.perm
= IOMMU_RW
;
2516 if (likely(success
)) {
2517 trace_vtd_dmar_translate(pci_bus_num(vtd_as
->bus
),
2518 VTD_PCI_SLOT(vtd_as
->devfn
),
2519 VTD_PCI_FUNC(vtd_as
->devfn
),
2520 iotlb
.iova
, iotlb
.translated_addr
,
2523 error_report_once("%s: detected translation failure "
2524 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64
")",
2525 __func__
, pci_bus_num(vtd_as
->bus
),
2526 VTD_PCI_SLOT(vtd_as
->devfn
),
2527 VTD_PCI_FUNC(vtd_as
->devfn
),
2534 static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion
*iommu
,
2535 IOMMUNotifierFlag old
,
2536 IOMMUNotifierFlag
new)
2538 VTDAddressSpace
*vtd_as
= container_of(iommu
, VTDAddressSpace
, iommu
);
2539 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
2541 if (!s
->caching_mode
&& new & IOMMU_NOTIFIER_MAP
) {
2542 error_report("We need to set caching-mode=1 for intel-iommu to enable "
2543 "device assignment with IOMMU protection.");
2547 /* Update per-address-space notifier flags */
2548 vtd_as
->notifier_flags
= new;
2550 if (old
== IOMMU_NOTIFIER_NONE
) {
2551 QLIST_INSERT_HEAD(&s
->vtd_as_with_notifiers
, vtd_as
, next
);
2552 } else if (new == IOMMU_NOTIFIER_NONE
) {
2553 QLIST_REMOVE(vtd_as
, next
);
2557 static int vtd_post_load(void *opaque
, int version_id
)
2559 IntelIOMMUState
*iommu
= opaque
;
2562 * Memory regions are dynamically turned on/off depending on
2563 * context entry configurations from the guest. After migration,
2564 * we need to make sure the memory regions are still correct.
2566 vtd_switch_address_space_all(iommu
);
2571 static const VMStateDescription vtd_vmstate
= {
2572 .name
= "iommu-intel",
2574 .minimum_version_id
= 1,
2575 .priority
= MIG_PRI_IOMMU
,
2576 .post_load
= vtd_post_load
,
2577 .fields
= (VMStateField
[]) {
2578 VMSTATE_UINT64(root
, IntelIOMMUState
),
2579 VMSTATE_UINT64(intr_root
, IntelIOMMUState
),
2580 VMSTATE_UINT64(iq
, IntelIOMMUState
),
2581 VMSTATE_UINT32(intr_size
, IntelIOMMUState
),
2582 VMSTATE_UINT16(iq_head
, IntelIOMMUState
),
2583 VMSTATE_UINT16(iq_tail
, IntelIOMMUState
),
2584 VMSTATE_UINT16(iq_size
, IntelIOMMUState
),
2585 VMSTATE_UINT16(next_frcd_reg
, IntelIOMMUState
),
2586 VMSTATE_UINT8_ARRAY(csr
, IntelIOMMUState
, DMAR_REG_SIZE
),
2587 VMSTATE_UINT8(iq_last_desc_type
, IntelIOMMUState
),
2588 VMSTATE_BOOL(root_extended
, IntelIOMMUState
),
2589 VMSTATE_BOOL(dmar_enabled
, IntelIOMMUState
),
2590 VMSTATE_BOOL(qi_enabled
, IntelIOMMUState
),
2591 VMSTATE_BOOL(intr_enabled
, IntelIOMMUState
),
2592 VMSTATE_BOOL(intr_eime
, IntelIOMMUState
),
2593 VMSTATE_END_OF_LIST()
2597 static const MemoryRegionOps vtd_mem_ops
= {
2598 .read
= vtd_mem_read
,
2599 .write
= vtd_mem_write
,
2600 .endianness
= DEVICE_LITTLE_ENDIAN
,
2602 .min_access_size
= 4,
2603 .max_access_size
= 8,
2606 .min_access_size
= 4,
2607 .max_access_size
= 8,
2611 static Property vtd_properties
[] = {
2612 DEFINE_PROP_UINT32("version", IntelIOMMUState
, version
, 0),
2613 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState
, intr_eim
,
2615 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState
, buggy_eim
, false),
2616 DEFINE_PROP_UINT8("x-aw-bits", IntelIOMMUState
, aw_bits
,
2617 VTD_HOST_ADDRESS_WIDTH
),
2618 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState
, caching_mode
, FALSE
),
2619 DEFINE_PROP_END_OF_LIST(),
2622 /* Read IRTE entry with specific index */
2623 static int vtd_irte_get(IntelIOMMUState
*iommu
, uint16_t index
,
2624 VTD_IR_TableEntry
*entry
, uint16_t sid
)
2626 static const uint16_t vtd_svt_mask
[VTD_SQ_MAX
] = \
2627 {0xffff, 0xfffb, 0xfff9, 0xfff8};
2628 dma_addr_t addr
= 0x00;
2629 uint16_t mask
, source_id
;
2630 uint8_t bus
, bus_max
, bus_min
;
2632 addr
= iommu
->intr_root
+ index
* sizeof(*entry
);
2633 if (dma_memory_read(&address_space_memory
, addr
, entry
,
2635 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64
,
2636 __func__
, index
, addr
);
2637 return -VTD_FR_IR_ROOT_INVAL
;
2640 trace_vtd_ir_irte_get(index
, le64_to_cpu(entry
->data
[1]),
2641 le64_to_cpu(entry
->data
[0]));
2643 if (!entry
->irte
.present
) {
2644 error_report_once("%s: detected non-present IRTE "
2645 "(index=%u, high=0x%" PRIx64
", low=0x%" PRIx64
")",
2646 __func__
, index
, le64_to_cpu(entry
->data
[1]),
2647 le64_to_cpu(entry
->data
[0]));
2648 return -VTD_FR_IR_ENTRY_P
;
2651 if (entry
->irte
.__reserved_0
|| entry
->irte
.__reserved_1
||
2652 entry
->irte
.__reserved_2
) {
2653 error_report_once("%s: detected non-zero reserved IRTE "
2654 "(index=%u, high=0x%" PRIx64
", low=0x%" PRIx64
")",
2655 __func__
, index
, le64_to_cpu(entry
->data
[1]),
2656 le64_to_cpu(entry
->data
[0]));
2657 return -VTD_FR_IR_IRTE_RSVD
;
2660 if (sid
!= X86_IOMMU_SID_INVALID
) {
2661 /* Validate IRTE SID */
2662 source_id
= le32_to_cpu(entry
->irte
.source_id
);
2663 switch (entry
->irte
.sid_vtype
) {
2668 mask
= vtd_svt_mask
[entry
->irte
.sid_q
];
2669 if ((source_id
& mask
) != (sid
& mask
)) {
2670 error_report_once("%s: invalid IRTE SID "
2671 "(index=%u, sid=%u, source_id=%u)",
2672 __func__
, index
, sid
, source_id
);
2673 return -VTD_FR_IR_SID_ERR
;
2678 bus_max
= source_id
>> 8;
2679 bus_min
= source_id
& 0xff;
2681 if (bus
> bus_max
|| bus
< bus_min
) {
2682 error_report_once("%s: invalid SVT_BUS "
2683 "(index=%u, bus=%u, min=%u, max=%u)",
2684 __func__
, index
, bus
, bus_min
, bus_max
);
2685 return -VTD_FR_IR_SID_ERR
;
2690 error_report_once("%s: detected invalid IRTE SVT "
2691 "(index=%u, type=%d)", __func__
,
2692 index
, entry
->irte
.sid_vtype
);
2693 /* Take this as verification failure. */
2694 return -VTD_FR_IR_SID_ERR
;
2702 /* Fetch IRQ information of specific IR index */
2703 static int vtd_remap_irq_get(IntelIOMMUState
*iommu
, uint16_t index
,
2704 VTDIrq
*irq
, uint16_t sid
)
2706 VTD_IR_TableEntry irte
= {};
2709 ret
= vtd_irte_get(iommu
, index
, &irte
, sid
);
2714 irq
->trigger_mode
= irte
.irte
.trigger_mode
;
2715 irq
->vector
= irte
.irte
.vector
;
2716 irq
->delivery_mode
= irte
.irte
.delivery_mode
;
2717 irq
->dest
= le32_to_cpu(irte
.irte
.dest_id
);
2718 if (!iommu
->intr_eime
) {
2719 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
2720 #define VTD_IR_APIC_DEST_SHIFT (8)
2721 irq
->dest
= (irq
->dest
& VTD_IR_APIC_DEST_MASK
) >>
2722 VTD_IR_APIC_DEST_SHIFT
;
2724 irq
->dest_mode
= irte
.irte
.dest_mode
;
2725 irq
->redir_hint
= irte
.irte
.redir_hint
;
2727 trace_vtd_ir_remap(index
, irq
->trigger_mode
, irq
->vector
,
2728 irq
->delivery_mode
, irq
->dest
, irq
->dest_mode
);
2733 /* Generate one MSI message from VTDIrq info */
2734 static void vtd_generate_msi_message(VTDIrq
*irq
, MSIMessage
*msg_out
)
2736 VTD_MSIMessage msg
= {};
2738 /* Generate address bits */
2739 msg
.dest_mode
= irq
->dest_mode
;
2740 msg
.redir_hint
= irq
->redir_hint
;
2741 msg
.dest
= irq
->dest
;
2742 msg
.__addr_hi
= irq
->dest
& 0xffffff00;
2743 msg
.__addr_head
= cpu_to_le32(0xfee);
2744 /* Keep this from original MSI address bits */
2745 msg
.__not_used
= irq
->msi_addr_last_bits
;
2747 /* Generate data bits */
2748 msg
.vector
= irq
->vector
;
2749 msg
.delivery_mode
= irq
->delivery_mode
;
2751 msg
.trigger_mode
= irq
->trigger_mode
;
2753 msg_out
->address
= msg
.msi_addr
;
2754 msg_out
->data
= msg
.msi_data
;
2757 /* Interrupt remapping for MSI/MSI-X entry */
2758 static int vtd_interrupt_remap_msi(IntelIOMMUState
*iommu
,
2760 MSIMessage
*translated
,
2764 VTD_IR_MSIAddress addr
;
2768 assert(origin
&& translated
);
2770 trace_vtd_ir_remap_msi_req(origin
->address
, origin
->data
);
2772 if (!iommu
|| !iommu
->intr_enabled
) {
2773 memcpy(translated
, origin
, sizeof(*origin
));
2777 if (origin
->address
& VTD_MSI_ADDR_HI_MASK
) {
2778 error_report_once("%s: MSI address high 32 bits non-zero detected: "
2779 "address=0x%" PRIx64
, __func__
, origin
->address
);
2780 return -VTD_FR_IR_REQ_RSVD
;
2783 addr
.data
= origin
->address
& VTD_MSI_ADDR_LO_MASK
;
2784 if (addr
.addr
.__head
!= 0xfee) {
2785 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32
,
2786 __func__
, addr
.data
);
2787 return -VTD_FR_IR_REQ_RSVD
;
2790 /* This is compatible mode. */
2791 if (addr
.addr
.int_mode
!= VTD_IR_INT_FORMAT_REMAP
) {
2792 memcpy(translated
, origin
, sizeof(*origin
));
2796 index
= addr
.addr
.index_h
<< 15 | le16_to_cpu(addr
.addr
.index_l
);
2798 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
2799 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
2801 if (addr
.addr
.sub_valid
) {
2802 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2803 index
+= origin
->data
& VTD_IR_MSI_DATA_SUBHANDLE
;
2806 ret
= vtd_remap_irq_get(iommu
, index
, &irq
, sid
);
2811 if (addr
.addr
.sub_valid
) {
2812 trace_vtd_ir_remap_type("MSI");
2813 if (origin
->data
& VTD_IR_MSI_DATA_RESERVED
) {
2814 error_report_once("%s: invalid IR MSI "
2815 "(sid=%u, address=0x%" PRIx64
2816 ", data=0x%" PRIx32
")",
2817 __func__
, sid
, origin
->address
, origin
->data
);
2818 return -VTD_FR_IR_REQ_RSVD
;
2821 uint8_t vector
= origin
->data
& 0xff;
2822 uint8_t trigger_mode
= (origin
->data
>> MSI_DATA_TRIGGER_SHIFT
) & 0x1;
2824 trace_vtd_ir_remap_type("IOAPIC");
2825 /* IOAPIC entry vector should be aligned with IRTE vector
2826 * (see vt-d spec 5.1.5.1). */
2827 if (vector
!= irq
.vector
) {
2828 trace_vtd_warn_ir_vector(sid
, index
, vector
, irq
.vector
);
2831 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2832 * (see vt-d spec 5.1.5.1). */
2833 if (trigger_mode
!= irq
.trigger_mode
) {
2834 trace_vtd_warn_ir_trigger(sid
, index
, trigger_mode
,
2840 * We'd better keep the last two bits, assuming that guest OS
2841 * might modify it. Keep it does not hurt after all.
2843 irq
.msi_addr_last_bits
= addr
.addr
.__not_care
;
2845 /* Translate VTDIrq to MSI message */
2846 vtd_generate_msi_message(&irq
, translated
);
2849 trace_vtd_ir_remap_msi(origin
->address
, origin
->data
,
2850 translated
->address
, translated
->data
);
2854 static int vtd_int_remap(X86IOMMUState
*iommu
, MSIMessage
*src
,
2855 MSIMessage
*dst
, uint16_t sid
)
2857 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu
),
2861 static MemTxResult
vtd_mem_ir_read(void *opaque
, hwaddr addr
,
2862 uint64_t *data
, unsigned size
,
2868 static MemTxResult
vtd_mem_ir_write(void *opaque
, hwaddr addr
,
2869 uint64_t value
, unsigned size
,
2873 MSIMessage from
= {}, to
= {};
2874 uint16_t sid
= X86_IOMMU_SID_INVALID
;
2876 from
.address
= (uint64_t) addr
+ VTD_INTERRUPT_ADDR_FIRST
;
2877 from
.data
= (uint32_t) value
;
2879 if (!attrs
.unspecified
) {
2880 /* We have explicit Source ID */
2881 sid
= attrs
.requester_id
;
2884 ret
= vtd_interrupt_remap_msi(opaque
, &from
, &to
, sid
);
2886 /* TODO: report error */
2887 /* Drop this interrupt */
2891 apic_get_class()->send_msi(&to
);
2896 static const MemoryRegionOps vtd_mem_ir_ops
= {
2897 .read_with_attrs
= vtd_mem_ir_read
,
2898 .write_with_attrs
= vtd_mem_ir_write
,
2899 .endianness
= DEVICE_LITTLE_ENDIAN
,
2901 .min_access_size
= 4,
2902 .max_access_size
= 4,
2905 .min_access_size
= 4,
2906 .max_access_size
= 4,
2910 VTDAddressSpace
*vtd_find_add_as(IntelIOMMUState
*s
, PCIBus
*bus
, int devfn
)
2912 uintptr_t key
= (uintptr_t)bus
;
2913 VTDBus
*vtd_bus
= g_hash_table_lookup(s
->vtd_as_by_busptr
, &key
);
2914 VTDAddressSpace
*vtd_dev_as
;
2918 uintptr_t *new_key
= g_malloc(sizeof(*new_key
));
2919 *new_key
= (uintptr_t)bus
;
2920 /* No corresponding free() */
2921 vtd_bus
= g_malloc0(sizeof(VTDBus
) + sizeof(VTDAddressSpace
*) * \
2924 g_hash_table_insert(s
->vtd_as_by_busptr
, new_key
, vtd_bus
);
2927 vtd_dev_as
= vtd_bus
->dev_as
[devfn
];
2930 snprintf(name
, sizeof(name
), "intel_iommu_devfn_%d", devfn
);
2931 vtd_bus
->dev_as
[devfn
] = vtd_dev_as
= g_malloc0(sizeof(VTDAddressSpace
));
2933 vtd_dev_as
->bus
= bus
;
2934 vtd_dev_as
->devfn
= (uint8_t)devfn
;
2935 vtd_dev_as
->iommu_state
= s
;
2936 vtd_dev_as
->context_cache_entry
.context_cache_gen
= 0;
2937 vtd_dev_as
->iova_tree
= iova_tree_new();
2940 * Memory region relationships looks like (Address range shows
2941 * only lower 32 bits to make it short in length...):
2943 * |-----------------+-------------------+----------|
2944 * | Name | Address range | Priority |
2945 * |-----------------+-------------------+----------+
2946 * | vtd_root | 00000000-ffffffff | 0 |
2947 * | intel_iommu | 00000000-ffffffff | 1 |
2948 * | vtd_sys_alias | 00000000-ffffffff | 1 |
2949 * | intel_iommu_ir | fee00000-feefffff | 64 |
2950 * |-----------------+-------------------+----------|
2952 * We enable/disable DMAR by switching enablement for
2953 * vtd_sys_alias and intel_iommu regions. IR region is always
2956 memory_region_init_iommu(&vtd_dev_as
->iommu
, sizeof(vtd_dev_as
->iommu
),
2957 TYPE_INTEL_IOMMU_MEMORY_REGION
, OBJECT(s
),
2960 memory_region_init_alias(&vtd_dev_as
->sys_alias
, OBJECT(s
),
2961 "vtd_sys_alias", get_system_memory(),
2962 0, memory_region_size(get_system_memory()));
2963 memory_region_init_io(&vtd_dev_as
->iommu_ir
, OBJECT(s
),
2964 &vtd_mem_ir_ops
, s
, "intel_iommu_ir",
2965 VTD_INTERRUPT_ADDR_SIZE
);
2966 memory_region_init(&vtd_dev_as
->root
, OBJECT(s
),
2967 "vtd_root", UINT64_MAX
);
2968 memory_region_add_subregion_overlap(&vtd_dev_as
->root
,
2969 VTD_INTERRUPT_ADDR_FIRST
,
2970 &vtd_dev_as
->iommu_ir
, 64);
2971 address_space_init(&vtd_dev_as
->as
, &vtd_dev_as
->root
, name
);
2972 memory_region_add_subregion_overlap(&vtd_dev_as
->root
, 0,
2973 &vtd_dev_as
->sys_alias
, 1);
2974 memory_region_add_subregion_overlap(&vtd_dev_as
->root
, 0,
2975 MEMORY_REGION(&vtd_dev_as
->iommu
),
2977 vtd_switch_address_space(vtd_dev_as
);
2982 /* Unmap the whole range in the notifier's scope. */
2983 static void vtd_address_space_unmap(VTDAddressSpace
*as
, IOMMUNotifier
*n
)
2985 IOMMUTLBEntry entry
;
2987 hwaddr start
= n
->start
;
2988 hwaddr end
= n
->end
;
2989 IntelIOMMUState
*s
= as
->iommu_state
;
2993 * Note: all the codes in this function has a assumption that IOVA
2994 * bits are no more than VTD_MGAW bits (which is restricted by
2995 * VT-d spec), otherwise we need to consider overflow of 64 bits.
2998 if (end
> VTD_ADDRESS_SIZE(s
->aw_bits
)) {
3000 * Don't need to unmap regions that is bigger than the whole
3001 * VT-d supported address space size
3003 end
= VTD_ADDRESS_SIZE(s
->aw_bits
);
3006 assert(start
<= end
);
3009 if (ctpop64(size
) != 1) {
3011 * This size cannot format a correct mask. Let's enlarge it to
3012 * suite the minimum available mask.
3014 int n
= 64 - clz64(size
);
3015 if (n
> s
->aw_bits
) {
3016 /* should not happen, but in case it happens, limit it */
3022 entry
.target_as
= &address_space_memory
;
3023 /* Adjust iova for the size */
3024 entry
.iova
= n
->start
& ~(size
- 1);
3025 /* This field is meaningless for unmap */
3026 entry
.translated_addr
= 0;
3027 entry
.perm
= IOMMU_NONE
;
3028 entry
.addr_mask
= size
- 1;
3030 trace_vtd_as_unmap_whole(pci_bus_num(as
->bus
),
3031 VTD_PCI_SLOT(as
->devfn
),
3032 VTD_PCI_FUNC(as
->devfn
),
3035 map
.iova
= entry
.iova
;
3036 map
.size
= entry
.addr_mask
;
3037 iova_tree_remove(as
->iova_tree
, &map
);
3039 memory_region_notify_one(n
, &entry
);
3042 static void vtd_address_space_unmap_all(IntelIOMMUState
*s
)
3044 VTDAddressSpace
*vtd_as
;
3047 QLIST_FOREACH(vtd_as
, &s
->vtd_as_with_notifiers
, next
) {
3048 IOMMU_NOTIFIER_FOREACH(n
, &vtd_as
->iommu
) {
3049 vtd_address_space_unmap(vtd_as
, n
);
3054 static int vtd_replay_hook(IOMMUTLBEntry
*entry
, void *private)
3056 memory_region_notify_one((IOMMUNotifier
*)private, entry
);
3060 static void vtd_iommu_replay(IOMMUMemoryRegion
*iommu_mr
, IOMMUNotifier
*n
)
3062 VTDAddressSpace
*vtd_as
= container_of(iommu_mr
, VTDAddressSpace
, iommu
);
3063 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
3064 uint8_t bus_n
= pci_bus_num(vtd_as
->bus
);
3068 * The replay can be triggered by either a invalidation or a newly
3069 * created entry. No matter what, we release existing mappings
3070 * (it means flushing caches for UNMAP-only registers).
3072 vtd_address_space_unmap(vtd_as
, n
);
3074 if (vtd_dev_to_context_entry(s
, bus_n
, vtd_as
->devfn
, &ce
) == 0) {
3075 trace_vtd_replay_ce_valid(bus_n
, PCI_SLOT(vtd_as
->devfn
),
3076 PCI_FUNC(vtd_as
->devfn
),
3077 VTD_CONTEXT_ENTRY_DID(ce
.hi
),
3079 if (vtd_as_has_map_notifier(vtd_as
)) {
3080 /* This is required only for MAP typed notifiers */
3081 vtd_page_walk_info info
= {
3082 .hook_fn
= vtd_replay_hook
,
3083 .private = (void *)n
,
3084 .notify_unmap
= false,
3087 .domain_id
= VTD_CONTEXT_ENTRY_DID(ce
.hi
),
3090 vtd_page_walk(&ce
, 0, ~0ULL, &info
);
3093 trace_vtd_replay_ce_invalid(bus_n
, PCI_SLOT(vtd_as
->devfn
),
3094 PCI_FUNC(vtd_as
->devfn
));
3100 /* Do the initialization. It will also be called when reset, so pay
3101 * attention when adding new initialization stuff.
3103 static void vtd_init(IntelIOMMUState
*s
)
3105 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
3107 memset(s
->csr
, 0, DMAR_REG_SIZE
);
3108 memset(s
->wmask
, 0, DMAR_REG_SIZE
);
3109 memset(s
->w1cmask
, 0, DMAR_REG_SIZE
);
3110 memset(s
->womask
, 0, DMAR_REG_SIZE
);
3113 s
->root_extended
= false;
3114 s
->dmar_enabled
= false;
3119 s
->qi_enabled
= false;
3120 s
->iq_last_desc_type
= VTD_INV_DESC_NONE
;
3121 s
->next_frcd_reg
= 0;
3122 s
->cap
= VTD_CAP_FRO
| VTD_CAP_NFR
| VTD_CAP_ND
|
3123 VTD_CAP_MAMV
| VTD_CAP_PSI
| VTD_CAP_SLLPS
|
3124 VTD_CAP_SAGAW_39bit
| VTD_CAP_MGAW(s
->aw_bits
);
3125 if (s
->aw_bits
== VTD_HOST_AW_48BIT
) {
3126 s
->cap
|= VTD_CAP_SAGAW_48bit
;
3128 s
->ecap
= VTD_ECAP_QI
| VTD_ECAP_IRO
;
3131 * Rsvd field masks for spte
3133 vtd_paging_entry_rsvd_field
[0] = ~0ULL;
3134 vtd_paging_entry_rsvd_field
[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s
->aw_bits
);
3135 vtd_paging_entry_rsvd_field
[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s
->aw_bits
);
3136 vtd_paging_entry_rsvd_field
[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s
->aw_bits
);
3137 vtd_paging_entry_rsvd_field
[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s
->aw_bits
);
3138 vtd_paging_entry_rsvd_field
[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s
->aw_bits
);
3139 vtd_paging_entry_rsvd_field
[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s
->aw_bits
);
3140 vtd_paging_entry_rsvd_field
[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s
->aw_bits
);
3141 vtd_paging_entry_rsvd_field
[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s
->aw_bits
);
3143 if (x86_iommu
->intr_supported
) {
3144 s
->ecap
|= VTD_ECAP_IR
| VTD_ECAP_MHMV
;
3145 if (s
->intr_eim
== ON_OFF_AUTO_ON
) {
3146 s
->ecap
|= VTD_ECAP_EIM
;
3148 assert(s
->intr_eim
!= ON_OFF_AUTO_AUTO
);
3151 if (x86_iommu
->dt_supported
) {
3152 s
->ecap
|= VTD_ECAP_DT
;
3155 if (x86_iommu
->pt_supported
) {
3156 s
->ecap
|= VTD_ECAP_PT
;
3159 if (s
->caching_mode
) {
3160 s
->cap
|= VTD_CAP_CM
;
3164 vtd_reset_context_cache_locked(s
);
3165 vtd_reset_iotlb_locked(s
);
3166 vtd_iommu_unlock(s
);
3168 /* Define registers with default values and bit semantics */
3169 vtd_define_long(s
, DMAR_VER_REG
, 0x10UL
, 0, 0);
3170 vtd_define_quad(s
, DMAR_CAP_REG
, s
->cap
, 0, 0);
3171 vtd_define_quad(s
, DMAR_ECAP_REG
, s
->ecap
, 0, 0);
3172 vtd_define_long(s
, DMAR_GCMD_REG
, 0, 0xff800000UL
, 0);
3173 vtd_define_long_wo(s
, DMAR_GCMD_REG
, 0xff800000UL
);
3174 vtd_define_long(s
, DMAR_GSTS_REG
, 0, 0, 0);
3175 vtd_define_quad(s
, DMAR_RTADDR_REG
, 0, 0xfffffffffffff000ULL
, 0);
3176 vtd_define_quad(s
, DMAR_CCMD_REG
, 0, 0xe0000003ffffffffULL
, 0);
3177 vtd_define_quad_wo(s
, DMAR_CCMD_REG
, 0x3ffff0000ULL
);
3179 /* Advanced Fault Logging not supported */
3180 vtd_define_long(s
, DMAR_FSTS_REG
, 0, 0, 0x11UL
);
3181 vtd_define_long(s
, DMAR_FECTL_REG
, 0x80000000UL
, 0x80000000UL
, 0);
3182 vtd_define_long(s
, DMAR_FEDATA_REG
, 0, 0x0000ffffUL
, 0);
3183 vtd_define_long(s
, DMAR_FEADDR_REG
, 0, 0xfffffffcUL
, 0);
3185 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3186 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3188 vtd_define_long(s
, DMAR_FEUADDR_REG
, 0, 0, 0);
3190 /* Treated as RO for implementations that PLMR and PHMR fields reported
3191 * as Clear in the CAP_REG.
3192 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3194 vtd_define_long(s
, DMAR_PMEN_REG
, 0, 0, 0);
3196 vtd_define_quad(s
, DMAR_IQH_REG
, 0, 0, 0);
3197 vtd_define_quad(s
, DMAR_IQT_REG
, 0, 0x7fff0ULL
, 0);
3198 vtd_define_quad(s
, DMAR_IQA_REG
, 0, 0xfffffffffffff007ULL
, 0);
3199 vtd_define_long(s
, DMAR_ICS_REG
, 0, 0, 0x1UL
);
3200 vtd_define_long(s
, DMAR_IECTL_REG
, 0x80000000UL
, 0x80000000UL
, 0);
3201 vtd_define_long(s
, DMAR_IEDATA_REG
, 0, 0xffffffffUL
, 0);
3202 vtd_define_long(s
, DMAR_IEADDR_REG
, 0, 0xfffffffcUL
, 0);
3203 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3204 vtd_define_long(s
, DMAR_IEUADDR_REG
, 0, 0, 0);
3206 /* IOTLB registers */
3207 vtd_define_quad(s
, DMAR_IOTLB_REG
, 0, 0Xb003ffff00000000ULL
, 0);
3208 vtd_define_quad(s
, DMAR_IVA_REG
, 0, 0xfffffffffffff07fULL
, 0);
3209 vtd_define_quad_wo(s
, DMAR_IVA_REG
, 0xfffffffffffff07fULL
);
3211 /* Fault Recording Registers, 128-bit */
3212 vtd_define_quad(s
, DMAR_FRCD_REG_0_0
, 0, 0, 0);
3213 vtd_define_quad(s
, DMAR_FRCD_REG_0_2
, 0, 0, 0x8000000000000000ULL
);
3216 * Interrupt remapping registers.
3218 vtd_define_quad(s
, DMAR_IRTA_REG
, 0, 0xfffffffffffff80fULL
, 0);
3221 /* Should not reset address_spaces when reset because devices will still use
3222 * the address space they got at first (won't ask the bus again).
3224 static void vtd_reset(DeviceState
*dev
)
3226 IntelIOMMUState
*s
= INTEL_IOMMU_DEVICE(dev
);
3231 * When device reset, throw away all mappings and external caches
3233 vtd_address_space_unmap_all(s
);
3236 static AddressSpace
*vtd_host_dma_iommu(PCIBus
*bus
, void *opaque
, int devfn
)
3238 IntelIOMMUState
*s
= opaque
;
3239 VTDAddressSpace
*vtd_as
;
3241 assert(0 <= devfn
&& devfn
< PCI_DEVFN_MAX
);
3243 vtd_as
= vtd_find_add_as(s
, bus
, devfn
);
3247 static bool vtd_decide_config(IntelIOMMUState
*s
, Error
**errp
)
3249 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
3251 /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
3252 if (x86_iommu
->intr_supported
&& kvm_irqchip_in_kernel() &&
3253 !kvm_irqchip_is_split()) {
3254 error_setg(errp
, "Intel Interrupt Remapping cannot work with "
3255 "kernel-irqchip=on, please use 'split|off'.");
3258 if (s
->intr_eim
== ON_OFF_AUTO_ON
&& !x86_iommu
->intr_supported
) {
3259 error_setg(errp
, "eim=on cannot be selected without intremap=on");
3263 if (s
->intr_eim
== ON_OFF_AUTO_AUTO
) {
3264 s
->intr_eim
= (kvm_irqchip_in_kernel() || s
->buggy_eim
)
3265 && x86_iommu
->intr_supported
?
3266 ON_OFF_AUTO_ON
: ON_OFF_AUTO_OFF
;
3268 if (s
->intr_eim
== ON_OFF_AUTO_ON
&& !s
->buggy_eim
) {
3269 if (!kvm_irqchip_in_kernel()) {
3270 error_setg(errp
, "eim=on requires accel=kvm,kernel-irqchip=split");
3273 if (!kvm_enable_x2apic()) {
3274 error_setg(errp
, "eim=on requires support on the KVM side"
3275 "(X2APIC_API, first shipped in v4.7)");
3280 /* Currently only address widths supported are 39 and 48 bits */
3281 if ((s
->aw_bits
!= VTD_HOST_AW_39BIT
) &&
3282 (s
->aw_bits
!= VTD_HOST_AW_48BIT
)) {
3283 error_setg(errp
, "Supported values for x-aw-bits are: %d, %d",
3284 VTD_HOST_AW_39BIT
, VTD_HOST_AW_48BIT
);
3291 static void vtd_realize(DeviceState
*dev
, Error
**errp
)
3293 MachineState
*ms
= MACHINE(qdev_get_machine());
3294 PCMachineState
*pcms
= PC_MACHINE(ms
);
3295 PCIBus
*bus
= pcms
->bus
;
3296 IntelIOMMUState
*s
= INTEL_IOMMU_DEVICE(dev
);
3297 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(dev
);
3299 x86_iommu
->type
= TYPE_INTEL
;
3301 if (!vtd_decide_config(s
, errp
)) {
3305 QLIST_INIT(&s
->vtd_as_with_notifiers
);
3306 qemu_mutex_init(&s
->iommu_lock
);
3307 memset(s
->vtd_as_by_bus_num
, 0, sizeof(s
->vtd_as_by_bus_num
));
3308 memory_region_init_io(&s
->csrmem
, OBJECT(s
), &vtd_mem_ops
, s
,
3309 "intel_iommu", DMAR_REG_SIZE
);
3310 sysbus_init_mmio(SYS_BUS_DEVICE(s
), &s
->csrmem
);
3311 /* No corresponding destroy */
3312 s
->iotlb
= g_hash_table_new_full(vtd_uint64_hash
, vtd_uint64_equal
,
3314 s
->vtd_as_by_busptr
= g_hash_table_new_full(vtd_uint64_hash
, vtd_uint64_equal
,
3317 sysbus_mmio_map(SYS_BUS_DEVICE(s
), 0, Q35_HOST_BRIDGE_IOMMU_ADDR
);
3318 pci_setup_iommu(bus
, vtd_host_dma_iommu
, dev
);
3319 /* Pseudo address space under root PCI bus. */
3320 pcms
->ioapic_as
= vtd_host_dma_iommu(bus
, s
, Q35_PSEUDO_DEVFN_IOAPIC
);
3323 static void vtd_class_init(ObjectClass
*klass
, void *data
)
3325 DeviceClass
*dc
= DEVICE_CLASS(klass
);
3326 X86IOMMUClass
*x86_class
= X86_IOMMU_CLASS(klass
);
3328 dc
->reset
= vtd_reset
;
3329 dc
->vmsd
= &vtd_vmstate
;
3330 dc
->props
= vtd_properties
;
3331 dc
->hotpluggable
= false;
3332 x86_class
->realize
= vtd_realize
;
3333 x86_class
->int_remap
= vtd_int_remap
;
3334 /* Supported by the pc-q35-* machine types */
3335 dc
->user_creatable
= true;
3338 static const TypeInfo vtd_info
= {
3339 .name
= TYPE_INTEL_IOMMU_DEVICE
,
3340 .parent
= TYPE_X86_IOMMU_DEVICE
,
3341 .instance_size
= sizeof(IntelIOMMUState
),
3342 .class_init
= vtd_class_init
,
3345 static void vtd_iommu_memory_region_class_init(ObjectClass
*klass
,
3348 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_CLASS(klass
);
3350 imrc
->translate
= vtd_iommu_translate
;
3351 imrc
->notify_flag_changed
= vtd_iommu_notify_flag_changed
;
3352 imrc
->replay
= vtd_iommu_replay
;
3355 static const TypeInfo vtd_iommu_memory_region_info
= {
3356 .parent
= TYPE_IOMMU_MEMORY_REGION
,
3357 .name
= TYPE_INTEL_IOMMU_MEMORY_REGION
,
3358 .class_init
= vtd_iommu_memory_region_class_init
,
3361 static void vtd_register_types(void)
3363 type_register_static(&vtd_info
);
3364 type_register_static(&vtd_iommu_memory_region_info
);
3367 type_init(vtd_register_types
)