tests: Restore check-qdict unit test
[qemu/armbru.git] / hw / timer / cadence_ttc.c
blob10056407ab8d75cf55dc78b02d60a8ac9c2d0d9f
1 /*
2 * Xilinx Zynq cadence TTC model
4 * Copyright (c) 2011 Xilinx Inc.
5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written By Haibing Ma
8 * M. Habib
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "hw/sysbus.h"
21 #include "qemu/timer.h"
23 #ifdef CADENCE_TTC_ERR_DEBUG
24 #define DB_PRINT(...) do { \
25 fprintf(stderr, ": %s: ", __func__); \
26 fprintf(stderr, ## __VA_ARGS__); \
27 } while (0)
28 #else
29 #define DB_PRINT(...)
30 #endif
32 #define COUNTER_INTR_IV 0x00000001
33 #define COUNTER_INTR_M1 0x00000002
34 #define COUNTER_INTR_M2 0x00000004
35 #define COUNTER_INTR_M3 0x00000008
36 #define COUNTER_INTR_OV 0x00000010
37 #define COUNTER_INTR_EV 0x00000020
39 #define COUNTER_CTRL_DIS 0x00000001
40 #define COUNTER_CTRL_INT 0x00000002
41 #define COUNTER_CTRL_DEC 0x00000004
42 #define COUNTER_CTRL_MATCH 0x00000008
43 #define COUNTER_CTRL_RST 0x00000010
45 #define CLOCK_CTRL_PS_EN 0x00000001
46 #define CLOCK_CTRL_PS_V 0x0000001e
48 typedef struct {
49 QEMUTimer *timer;
50 int freq;
52 uint32_t reg_clock;
53 uint32_t reg_count;
54 uint32_t reg_value;
55 uint16_t reg_interval;
56 uint16_t reg_match[3];
57 uint32_t reg_intr;
58 uint32_t reg_intr_en;
59 uint32_t reg_event_ctrl;
60 uint32_t reg_event;
62 uint64_t cpu_time;
63 unsigned int cpu_time_valid;
65 qemu_irq irq;
66 } CadenceTimerState;
68 #define TYPE_CADENCE_TTC "cadence_ttc"
69 #define CADENCE_TTC(obj) \
70 OBJECT_CHECK(CadenceTTCState, (obj), TYPE_CADENCE_TTC)
72 typedef struct CadenceTTCState {
73 SysBusDevice parent_obj;
75 MemoryRegion iomem;
76 CadenceTimerState timer[3];
77 } CadenceTTCState;
79 static void cadence_timer_update(CadenceTimerState *s)
81 qemu_set_irq(s->irq, !!(s->reg_intr & s->reg_intr_en));
84 static CadenceTimerState *cadence_timer_from_addr(void *opaque,
85 hwaddr offset)
87 unsigned int index;
88 CadenceTTCState *s = (CadenceTTCState *)opaque;
90 index = (offset >> 2) % 3;
92 return &s->timer[index];
95 static uint64_t cadence_timer_get_ns(CadenceTimerState *s, uint64_t timer_steps)
97 /* timer_steps has max value of 0x100000000. double check it
98 * (or overflow can happen below) */
99 assert(timer_steps <= 1ULL << 32);
101 uint64_t r = timer_steps * 1000000000ULL;
102 if (s->reg_clock & CLOCK_CTRL_PS_EN) {
103 r >>= 16 - (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
104 } else {
105 r >>= 16;
107 r /= (uint64_t)s->freq;
108 return r;
111 static uint64_t cadence_timer_get_steps(CadenceTimerState *s, uint64_t ns)
113 uint64_t to_divide = 1000000000ULL;
115 uint64_t r = ns;
116 /* for very large intervals (> 8s) do some division first to stop
117 * overflow (costs some prescision) */
118 while (r >= 8ULL << 30 && to_divide > 1) {
119 r /= 1000;
120 to_divide /= 1000;
122 r <<= 16;
123 /* keep early-dividing as needed */
124 while (r >= 8ULL << 30 && to_divide > 1) {
125 r /= 1000;
126 to_divide /= 1000;
128 r *= (uint64_t)s->freq;
129 if (s->reg_clock & CLOCK_CTRL_PS_EN) {
130 r /= 1 << (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
133 r /= to_divide;
134 return r;
137 /* determine if x is in between a and b, exclusive of a, inclusive of b */
139 static inline int64_t is_between(int64_t x, int64_t a, int64_t b)
141 if (a < b) {
142 return x > a && x <= b;
144 return x < a && x >= b;
147 static void cadence_timer_run(CadenceTimerState *s)
149 int i;
150 int64_t event_interval, next_value;
152 assert(s->cpu_time_valid); /* cadence_timer_sync must be called first */
154 if (s->reg_count & COUNTER_CTRL_DIS) {
155 s->cpu_time_valid = 0;
156 return;
159 { /* figure out what's going to happen next (rollover or match) */
160 int64_t interval = (uint64_t)((s->reg_count & COUNTER_CTRL_INT) ?
161 (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
162 next_value = (s->reg_count & COUNTER_CTRL_DEC) ? -1ULL : interval;
163 for (i = 0; i < 3; ++i) {
164 int64_t cand = (uint64_t)s->reg_match[i] << 16;
165 if (is_between(cand, (uint64_t)s->reg_value, next_value)) {
166 next_value = cand;
170 DB_PRINT("next timer event value: %09llx\n",
171 (unsigned long long)next_value);
173 event_interval = next_value - (int64_t)s->reg_value;
174 event_interval = (event_interval < 0) ? -event_interval : event_interval;
176 timer_mod(s->timer, s->cpu_time +
177 cadence_timer_get_ns(s, event_interval));
180 static void cadence_timer_sync(CadenceTimerState *s)
182 int i;
183 int64_t r, x;
184 int64_t interval = ((s->reg_count & COUNTER_CTRL_INT) ?
185 (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
186 uint64_t old_time = s->cpu_time;
188 s->cpu_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
189 DB_PRINT("cpu time: %lld ns\n", (long long)old_time);
191 if (!s->cpu_time_valid || old_time == s->cpu_time) {
192 s->cpu_time_valid = 1;
193 return;
196 r = (int64_t)cadence_timer_get_steps(s, s->cpu_time - old_time);
197 x = (int64_t)s->reg_value + ((s->reg_count & COUNTER_CTRL_DEC) ? -r : r);
199 for (i = 0; i < 3; ++i) {
200 int64_t m = (int64_t)s->reg_match[i] << 16;
201 if (m > interval) {
202 continue;
204 /* check to see if match event has occurred. check m +/- interval
205 * to account for match events in wrap around cases */
206 if (is_between(m, s->reg_value, x) ||
207 is_between(m + interval, s->reg_value, x) ||
208 is_between(m - interval, s->reg_value, x)) {
209 s->reg_intr |= (2 << i);
212 if ((x < 0) || (x >= interval)) {
213 s->reg_intr |= (s->reg_count & COUNTER_CTRL_INT) ?
214 COUNTER_INTR_IV : COUNTER_INTR_OV;
216 while (x < 0) {
217 x += interval;
219 s->reg_value = (uint32_t)(x % interval);
220 cadence_timer_update(s);
223 static void cadence_timer_tick(void *opaque)
225 CadenceTimerState *s = opaque;
227 DB_PRINT("\n");
228 cadence_timer_sync(s);
229 cadence_timer_run(s);
232 static uint32_t cadence_ttc_read_imp(void *opaque, hwaddr offset)
234 CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
235 uint32_t value;
237 cadence_timer_sync(s);
238 cadence_timer_run(s);
240 switch (offset) {
241 case 0x00: /* clock control */
242 case 0x04:
243 case 0x08:
244 return s->reg_clock;
246 case 0x0c: /* counter control */
247 case 0x10:
248 case 0x14:
249 return s->reg_count;
251 case 0x18: /* counter value */
252 case 0x1c:
253 case 0x20:
254 return (uint16_t)(s->reg_value >> 16);
256 case 0x24: /* reg_interval counter */
257 case 0x28:
258 case 0x2c:
259 return s->reg_interval;
261 case 0x30: /* match 1 counter */
262 case 0x34:
263 case 0x38:
264 return s->reg_match[0];
266 case 0x3c: /* match 2 counter */
267 case 0x40:
268 case 0x44:
269 return s->reg_match[1];
271 case 0x48: /* match 3 counter */
272 case 0x4c:
273 case 0x50:
274 return s->reg_match[2];
276 case 0x54: /* interrupt register */
277 case 0x58:
278 case 0x5c:
279 /* cleared after read */
280 value = s->reg_intr;
281 s->reg_intr = 0;
282 cadence_timer_update(s);
283 return value;
285 case 0x60: /* interrupt enable */
286 case 0x64:
287 case 0x68:
288 return s->reg_intr_en;
290 case 0x6c:
291 case 0x70:
292 case 0x74:
293 return s->reg_event_ctrl;
295 case 0x78:
296 case 0x7c:
297 case 0x80:
298 return s->reg_event;
300 default:
301 return 0;
305 static uint64_t cadence_ttc_read(void *opaque, hwaddr offset,
306 unsigned size)
308 uint32_t ret = cadence_ttc_read_imp(opaque, offset);
310 DB_PRINT("addr: %08x data: %08x\n", (unsigned)offset, (unsigned)ret);
311 return ret;
314 static void cadence_ttc_write(void *opaque, hwaddr offset,
315 uint64_t value, unsigned size)
317 CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
319 DB_PRINT("addr: %08x data %08x\n", (unsigned)offset, (unsigned)value);
321 cadence_timer_sync(s);
323 switch (offset) {
324 case 0x00: /* clock control */
325 case 0x04:
326 case 0x08:
327 s->reg_clock = value & 0x3F;
328 break;
330 case 0x0c: /* counter control */
331 case 0x10:
332 case 0x14:
333 if (value & COUNTER_CTRL_RST) {
334 s->reg_value = 0;
336 s->reg_count = value & 0x3f & ~COUNTER_CTRL_RST;
337 break;
339 case 0x24: /* interval register */
340 case 0x28:
341 case 0x2c:
342 s->reg_interval = value & 0xffff;
343 break;
345 case 0x30: /* match register */
346 case 0x34:
347 case 0x38:
348 s->reg_match[0] = value & 0xffff;
349 break;
351 case 0x3c: /* match register */
352 case 0x40:
353 case 0x44:
354 s->reg_match[1] = value & 0xffff;
355 break;
357 case 0x48: /* match register */
358 case 0x4c:
359 case 0x50:
360 s->reg_match[2] = value & 0xffff;
361 break;
363 case 0x54: /* interrupt register */
364 case 0x58:
365 case 0x5c:
366 break;
368 case 0x60: /* interrupt enable */
369 case 0x64:
370 case 0x68:
371 s->reg_intr_en = value & 0x3f;
372 break;
374 case 0x6c: /* event control */
375 case 0x70:
376 case 0x74:
377 s->reg_event_ctrl = value & 0x07;
378 break;
380 default:
381 return;
384 cadence_timer_run(s);
385 cadence_timer_update(s);
388 static const MemoryRegionOps cadence_ttc_ops = {
389 .read = cadence_ttc_read,
390 .write = cadence_ttc_write,
391 .endianness = DEVICE_NATIVE_ENDIAN,
394 static void cadence_timer_reset(CadenceTimerState *s)
396 s->reg_count = 0x21;
399 static void cadence_timer_init(uint32_t freq, CadenceTimerState *s)
401 memset(s, 0, sizeof(CadenceTimerState));
402 s->freq = freq;
404 cadence_timer_reset(s);
406 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cadence_timer_tick, s);
409 static void cadence_ttc_init(Object *obj)
411 CadenceTTCState *s = CADENCE_TTC(obj);
412 int i;
414 for (i = 0; i < 3; ++i) {
415 cadence_timer_init(133000000, &s->timer[i]);
416 sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->timer[i].irq);
419 memory_region_init_io(&s->iomem, obj, &cadence_ttc_ops, s,
420 "timer", 0x1000);
421 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
424 static int cadence_timer_pre_save(void *opaque)
426 cadence_timer_sync((CadenceTimerState *)opaque);
428 return 0;
431 static int cadence_timer_post_load(void *opaque, int version_id)
433 CadenceTimerState *s = opaque;
435 s->cpu_time_valid = 0;
436 cadence_timer_sync(s);
437 cadence_timer_run(s);
438 cadence_timer_update(s);
439 return 0;
442 static const VMStateDescription vmstate_cadence_timer = {
443 .name = "cadence_timer",
444 .version_id = 1,
445 .minimum_version_id = 1,
446 .pre_save = cadence_timer_pre_save,
447 .post_load = cadence_timer_post_load,
448 .fields = (VMStateField[]) {
449 VMSTATE_UINT32(reg_clock, CadenceTimerState),
450 VMSTATE_UINT32(reg_count, CadenceTimerState),
451 VMSTATE_UINT32(reg_value, CadenceTimerState),
452 VMSTATE_UINT16(reg_interval, CadenceTimerState),
453 VMSTATE_UINT16_ARRAY(reg_match, CadenceTimerState, 3),
454 VMSTATE_UINT32(reg_intr, CadenceTimerState),
455 VMSTATE_UINT32(reg_intr_en, CadenceTimerState),
456 VMSTATE_UINT32(reg_event_ctrl, CadenceTimerState),
457 VMSTATE_UINT32(reg_event, CadenceTimerState),
458 VMSTATE_END_OF_LIST()
462 static const VMStateDescription vmstate_cadence_ttc = {
463 .name = "cadence_TTC",
464 .version_id = 1,
465 .minimum_version_id = 1,
466 .fields = (VMStateField[]) {
467 VMSTATE_STRUCT_ARRAY(timer, CadenceTTCState, 3, 0,
468 vmstate_cadence_timer,
469 CadenceTimerState),
470 VMSTATE_END_OF_LIST()
474 static void cadence_ttc_class_init(ObjectClass *klass, void *data)
476 DeviceClass *dc = DEVICE_CLASS(klass);
478 dc->vmsd = &vmstate_cadence_ttc;
481 static const TypeInfo cadence_ttc_info = {
482 .name = TYPE_CADENCE_TTC,
483 .parent = TYPE_SYS_BUS_DEVICE,
484 .instance_size = sizeof(CadenceTTCState),
485 .instance_init = cadence_ttc_init,
486 .class_init = cadence_ttc_class_init,
489 static void cadence_ttc_register_types(void)
491 type_register_static(&cadence_ttc_info);
494 type_init(cadence_ttc_register_types)