migration/rdma: Plug memory leaks in qemu_rdma_registration_stop()
[qemu/armbru.git] / target / arm / kvm.c
blob7c672c78b884fa9b043e93fe8e52a2345e1e6d89
1 /*
2 * ARM implementation of KVM hooks
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
14 #include <linux/kvm.h>
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "qemu/main-loop.h"
20 #include "qom/object.h"
21 #include "qapi/error.h"
22 #include "sysemu/sysemu.h"
23 #include "sysemu/kvm.h"
24 #include "sysemu/kvm_int.h"
25 #include "kvm_arm.h"
26 #include "cpu.h"
27 #include "trace.h"
28 #include "internals.h"
29 #include "hw/pci/pci.h"
30 #include "exec/memattrs.h"
31 #include "exec/address-spaces.h"
32 #include "hw/boards.h"
33 #include "hw/irq.h"
34 #include "qemu/log.h"
36 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
37 KVM_CAP_LAST_INFO
40 static bool cap_has_mp_state;
41 static bool cap_has_inject_serror_esr;
43 static ARMHostCPUFeatures arm_host_cpu_features;
45 int kvm_arm_vcpu_init(CPUState *cs)
47 ARMCPU *cpu = ARM_CPU(cs);
48 struct kvm_vcpu_init init;
50 init.target = cpu->kvm_target;
51 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
53 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
56 int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
58 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
61 void kvm_arm_init_serror_injection(CPUState *cs)
63 cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
64 KVM_CAP_ARM_INJECT_SERROR_ESR);
67 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
68 int *fdarray,
69 struct kvm_vcpu_init *init)
71 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
73 kvmfd = qemu_open("/dev/kvm", O_RDWR);
74 if (kvmfd < 0) {
75 goto err;
77 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
78 if (vmfd < 0) {
79 goto err;
81 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
82 if (cpufd < 0) {
83 goto err;
86 if (!init) {
87 /* Caller doesn't want the VCPU to be initialized, so skip it */
88 goto finish;
91 if (init->target == -1) {
92 struct kvm_vcpu_init preferred;
94 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
95 if (!ret) {
96 init->target = preferred.target;
99 if (ret >= 0) {
100 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
101 if (ret < 0) {
102 goto err;
104 } else if (cpus_to_try) {
105 /* Old kernel which doesn't know about the
106 * PREFERRED_TARGET ioctl: we know it will only support
107 * creating one kind of guest CPU which is its preferred
108 * CPU type.
110 struct kvm_vcpu_init try;
112 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
113 try.target = *cpus_to_try++;
114 memcpy(try.features, init->features, sizeof(init->features));
115 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
116 if (ret >= 0) {
117 break;
120 if (ret < 0) {
121 goto err;
123 init->target = try.target;
124 } else {
125 /* Treat a NULL cpus_to_try argument the same as an empty
126 * list, which means we will fail the call since this must
127 * be an old kernel which doesn't support PREFERRED_TARGET.
129 goto err;
132 finish:
133 fdarray[0] = kvmfd;
134 fdarray[1] = vmfd;
135 fdarray[2] = cpufd;
137 return true;
139 err:
140 if (cpufd >= 0) {
141 close(cpufd);
143 if (vmfd >= 0) {
144 close(vmfd);
146 if (kvmfd >= 0) {
147 close(kvmfd);
150 return false;
153 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
155 int i;
157 for (i = 2; i >= 0; i--) {
158 close(fdarray[i]);
162 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
164 CPUARMState *env = &cpu->env;
166 if (!arm_host_cpu_features.dtb_compatible) {
167 if (!kvm_enabled() ||
168 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
169 /* We can't report this error yet, so flag that we need to
170 * in arm_cpu_realizefn().
172 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
173 cpu->host_cpu_probe_failed = true;
174 return;
178 cpu->kvm_target = arm_host_cpu_features.target;
179 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
180 cpu->isar = arm_host_cpu_features.isar;
181 env->features = arm_host_cpu_features.features;
184 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
186 return !ARM_CPU(obj)->kvm_adjvtime;
189 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
191 ARM_CPU(obj)->kvm_adjvtime = !value;
194 /* KVM VCPU properties should be prefixed with "kvm-". */
195 void kvm_arm_add_vcpu_properties(Object *obj)
197 ARMCPU *cpu = ARM_CPU(obj);
198 CPUARMState *env = &cpu->env;
200 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
201 cpu->kvm_adjvtime = true;
202 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
203 kvm_no_adjvtime_set);
204 object_property_set_description(obj, "kvm-no-adjvtime",
205 "Set on to disable the adjustment of "
206 "the virtual counter. VM stopped time "
207 "will be counted.");
211 bool kvm_arm_pmu_supported(void)
213 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
216 int kvm_arm_get_max_vm_ipa_size(MachineState *ms)
218 KVMState *s = KVM_STATE(ms->accelerator);
219 int ret;
221 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
222 return ret > 0 ? ret : 40;
225 int kvm_arch_init(MachineState *ms, KVMState *s)
227 int ret = 0;
228 /* For ARM interrupt delivery is always asynchronous,
229 * whether we are using an in-kernel VGIC or not.
231 kvm_async_interrupts_allowed = true;
234 * PSCI wakes up secondary cores, so we always need to
235 * have vCPUs waiting in kernel space
237 kvm_halt_in_kernel_allowed = true;
239 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
241 if (ms->smp.cpus > 256 &&
242 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
243 error_report("Using more than 256 vcpus requires a host kernel "
244 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
245 ret = -EINVAL;
248 return ret;
251 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
253 return cpu->cpu_index;
256 /* We track all the KVM devices which need their memory addresses
257 * passing to the kernel in a list of these structures.
258 * When board init is complete we run through the list and
259 * tell the kernel the base addresses of the memory regions.
260 * We use a MemoryListener to track mapping and unmapping of
261 * the regions during board creation, so the board models don't
262 * need to do anything special for the KVM case.
264 * Sometimes the address must be OR'ed with some other fields
265 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
266 * @kda_addr_ormask aims at storing the value of those fields.
268 typedef struct KVMDevice {
269 struct kvm_arm_device_addr kda;
270 struct kvm_device_attr kdattr;
271 uint64_t kda_addr_ormask;
272 MemoryRegion *mr;
273 QSLIST_ENTRY(KVMDevice) entries;
274 int dev_fd;
275 } KVMDevice;
277 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
279 static void kvm_arm_devlistener_add(MemoryListener *listener,
280 MemoryRegionSection *section)
282 KVMDevice *kd;
284 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
285 if (section->mr == kd->mr) {
286 kd->kda.addr = section->offset_within_address_space;
291 static void kvm_arm_devlistener_del(MemoryListener *listener,
292 MemoryRegionSection *section)
294 KVMDevice *kd;
296 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
297 if (section->mr == kd->mr) {
298 kd->kda.addr = -1;
303 static MemoryListener devlistener = {
304 .region_add = kvm_arm_devlistener_add,
305 .region_del = kvm_arm_devlistener_del,
308 static void kvm_arm_set_device_addr(KVMDevice *kd)
310 struct kvm_device_attr *attr = &kd->kdattr;
311 int ret;
313 /* If the device control API is available and we have a device fd on the
314 * KVMDevice struct, let's use the newer API
316 if (kd->dev_fd >= 0) {
317 uint64_t addr = kd->kda.addr;
319 addr |= kd->kda_addr_ormask;
320 attr->addr = (uintptr_t)&addr;
321 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
322 } else {
323 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
326 if (ret < 0) {
327 fprintf(stderr, "Failed to set device address: %s\n",
328 strerror(-ret));
329 abort();
333 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
335 KVMDevice *kd, *tkd;
337 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
338 if (kd->kda.addr != -1) {
339 kvm_arm_set_device_addr(kd);
341 memory_region_unref(kd->mr);
342 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
343 g_free(kd);
345 memory_listener_unregister(&devlistener);
348 static Notifier notify = {
349 .notify = kvm_arm_machine_init_done,
352 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
353 uint64_t attr, int dev_fd, uint64_t addr_ormask)
355 KVMDevice *kd;
357 if (!kvm_irqchip_in_kernel()) {
358 return;
361 if (QSLIST_EMPTY(&kvm_devices_head)) {
362 memory_listener_register(&devlistener, &address_space_memory);
363 qemu_add_machine_init_done_notifier(&notify);
365 kd = g_new0(KVMDevice, 1);
366 kd->mr = mr;
367 kd->kda.id = devid;
368 kd->kda.addr = -1;
369 kd->kdattr.flags = 0;
370 kd->kdattr.group = group;
371 kd->kdattr.attr = attr;
372 kd->dev_fd = dev_fd;
373 kd->kda_addr_ormask = addr_ormask;
374 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
375 memory_region_ref(kd->mr);
378 static int compare_u64(const void *a, const void *b)
380 if (*(uint64_t *)a > *(uint64_t *)b) {
381 return 1;
383 if (*(uint64_t *)a < *(uint64_t *)b) {
384 return -1;
386 return 0;
390 * cpreg_values are sorted in ascending order by KVM register ID
391 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
392 * the storage for a KVM register by ID with a binary search.
394 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
396 uint64_t *res;
398 res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
399 sizeof(uint64_t), compare_u64);
400 assert(res);
402 return &cpu->cpreg_values[res - cpu->cpreg_indexes];
405 /* Initialize the ARMCPU cpreg list according to the kernel's
406 * definition of what CPU registers it knows about (and throw away
407 * the previous TCG-created cpreg list).
409 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
411 struct kvm_reg_list rl;
412 struct kvm_reg_list *rlp;
413 int i, ret, arraylen;
414 CPUState *cs = CPU(cpu);
416 rl.n = 0;
417 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
418 if (ret != -E2BIG) {
419 return ret;
421 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
422 rlp->n = rl.n;
423 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
424 if (ret) {
425 goto out;
427 /* Sort the list we get back from the kernel, since cpreg_tuples
428 * must be in strictly ascending order.
430 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
432 for (i = 0, arraylen = 0; i < rlp->n; i++) {
433 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
434 continue;
436 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
437 case KVM_REG_SIZE_U32:
438 case KVM_REG_SIZE_U64:
439 break;
440 default:
441 fprintf(stderr, "Can't handle size of register in kernel list\n");
442 ret = -EINVAL;
443 goto out;
446 arraylen++;
449 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
450 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
451 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
452 arraylen);
453 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
454 arraylen);
455 cpu->cpreg_array_len = arraylen;
456 cpu->cpreg_vmstate_array_len = arraylen;
458 for (i = 0, arraylen = 0; i < rlp->n; i++) {
459 uint64_t regidx = rlp->reg[i];
460 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
461 continue;
463 cpu->cpreg_indexes[arraylen] = regidx;
464 arraylen++;
466 assert(cpu->cpreg_array_len == arraylen);
468 if (!write_kvmstate_to_list(cpu)) {
469 /* Shouldn't happen unless kernel is inconsistent about
470 * what registers exist.
472 fprintf(stderr, "Initial read of kernel register state failed\n");
473 ret = -EINVAL;
474 goto out;
477 out:
478 g_free(rlp);
479 return ret;
482 bool write_kvmstate_to_list(ARMCPU *cpu)
484 CPUState *cs = CPU(cpu);
485 int i;
486 bool ok = true;
488 for (i = 0; i < cpu->cpreg_array_len; i++) {
489 struct kvm_one_reg r;
490 uint64_t regidx = cpu->cpreg_indexes[i];
491 uint32_t v32;
492 int ret;
494 r.id = regidx;
496 switch (regidx & KVM_REG_SIZE_MASK) {
497 case KVM_REG_SIZE_U32:
498 r.addr = (uintptr_t)&v32;
499 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
500 if (!ret) {
501 cpu->cpreg_values[i] = v32;
503 break;
504 case KVM_REG_SIZE_U64:
505 r.addr = (uintptr_t)(cpu->cpreg_values + i);
506 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
507 break;
508 default:
509 abort();
511 if (ret) {
512 ok = false;
515 return ok;
518 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
520 CPUState *cs = CPU(cpu);
521 int i;
522 bool ok = true;
524 for (i = 0; i < cpu->cpreg_array_len; i++) {
525 struct kvm_one_reg r;
526 uint64_t regidx = cpu->cpreg_indexes[i];
527 uint32_t v32;
528 int ret;
530 if (kvm_arm_cpreg_level(regidx) > level) {
531 continue;
534 r.id = regidx;
535 switch (regidx & KVM_REG_SIZE_MASK) {
536 case KVM_REG_SIZE_U32:
537 v32 = cpu->cpreg_values[i];
538 r.addr = (uintptr_t)&v32;
539 break;
540 case KVM_REG_SIZE_U64:
541 r.addr = (uintptr_t)(cpu->cpreg_values + i);
542 break;
543 default:
544 abort();
546 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
547 if (ret) {
548 /* We might fail for "unknown register" and also for
549 * "you tried to set a register which is constant with
550 * a different value from what it actually contains".
552 ok = false;
555 return ok;
558 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
560 /* KVM virtual time adjustment */
561 if (cpu->kvm_vtime_dirty) {
562 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
566 void kvm_arm_cpu_post_load(ARMCPU *cpu)
568 /* KVM virtual time adjustment */
569 if (cpu->kvm_adjvtime) {
570 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
571 cpu->kvm_vtime_dirty = true;
575 void kvm_arm_reset_vcpu(ARMCPU *cpu)
577 int ret;
579 /* Re-init VCPU so that all registers are set to
580 * their respective reset values.
582 ret = kvm_arm_vcpu_init(CPU(cpu));
583 if (ret < 0) {
584 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
585 abort();
587 if (!write_kvmstate_to_list(cpu)) {
588 fprintf(stderr, "write_kvmstate_to_list failed\n");
589 abort();
592 * Sync the reset values also into the CPUState. This is necessary
593 * because the next thing we do will be a kvm_arch_put_registers()
594 * which will update the list values from the CPUState before copying
595 * the list values back to KVM. It's OK to ignore failure returns here
596 * for the same reason we do so in kvm_arch_get_registers().
598 write_list_to_cpustate(cpu);
602 * Update KVM's MP_STATE based on what QEMU thinks it is
604 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
606 if (cap_has_mp_state) {
607 struct kvm_mp_state mp_state = {
608 .mp_state = (cpu->power_state == PSCI_OFF) ?
609 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
611 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
612 if (ret) {
613 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
614 __func__, ret, strerror(-ret));
615 return -1;
619 return 0;
623 * Sync the KVM MP_STATE into QEMU
625 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
627 if (cap_has_mp_state) {
628 struct kvm_mp_state mp_state;
629 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
630 if (ret) {
631 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
632 __func__, ret, strerror(-ret));
633 abort();
635 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
636 PSCI_OFF : PSCI_ON;
639 return 0;
642 void kvm_arm_get_virtual_time(CPUState *cs)
644 ARMCPU *cpu = ARM_CPU(cs);
645 struct kvm_one_reg reg = {
646 .id = KVM_REG_ARM_TIMER_CNT,
647 .addr = (uintptr_t)&cpu->kvm_vtime,
649 int ret;
651 if (cpu->kvm_vtime_dirty) {
652 return;
655 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
656 if (ret) {
657 error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
658 abort();
661 cpu->kvm_vtime_dirty = true;
664 void kvm_arm_put_virtual_time(CPUState *cs)
666 ARMCPU *cpu = ARM_CPU(cs);
667 struct kvm_one_reg reg = {
668 .id = KVM_REG_ARM_TIMER_CNT,
669 .addr = (uintptr_t)&cpu->kvm_vtime,
671 int ret;
673 if (!cpu->kvm_vtime_dirty) {
674 return;
677 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
678 if (ret) {
679 error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
680 abort();
683 cpu->kvm_vtime_dirty = false;
686 int kvm_put_vcpu_events(ARMCPU *cpu)
688 CPUARMState *env = &cpu->env;
689 struct kvm_vcpu_events events;
690 int ret;
692 if (!kvm_has_vcpu_events()) {
693 return 0;
696 memset(&events, 0, sizeof(events));
697 events.exception.serror_pending = env->serror.pending;
699 /* Inject SError to guest with specified syndrome if host kernel
700 * supports it, otherwise inject SError without syndrome.
702 if (cap_has_inject_serror_esr) {
703 events.exception.serror_has_esr = env->serror.has_esr;
704 events.exception.serror_esr = env->serror.esr;
707 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
708 if (ret) {
709 error_report("failed to put vcpu events");
712 return ret;
715 int kvm_get_vcpu_events(ARMCPU *cpu)
717 CPUARMState *env = &cpu->env;
718 struct kvm_vcpu_events events;
719 int ret;
721 if (!kvm_has_vcpu_events()) {
722 return 0;
725 memset(&events, 0, sizeof(events));
726 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
727 if (ret) {
728 error_report("failed to get vcpu events");
729 return ret;
732 env->serror.pending = events.exception.serror_pending;
733 env->serror.has_esr = events.exception.serror_has_esr;
734 env->serror.esr = events.exception.serror_esr;
736 return 0;
739 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
743 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
745 ARMCPU *cpu;
746 uint32_t switched_level;
748 if (kvm_irqchip_in_kernel()) {
750 * We only need to sync timer states with user-space interrupt
751 * controllers, so return early and save cycles if we don't.
753 return MEMTXATTRS_UNSPECIFIED;
756 cpu = ARM_CPU(cs);
758 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
759 if (run->s.regs.device_irq_level != cpu->device_irq_level) {
760 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
762 qemu_mutex_lock_iothread();
764 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
765 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
766 !!(run->s.regs.device_irq_level &
767 KVM_ARM_DEV_EL1_VTIMER));
768 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
771 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
772 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
773 !!(run->s.regs.device_irq_level &
774 KVM_ARM_DEV_EL1_PTIMER));
775 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
778 if (switched_level & KVM_ARM_DEV_PMU) {
779 qemu_set_irq(cpu->pmu_interrupt,
780 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
781 switched_level &= ~KVM_ARM_DEV_PMU;
784 if (switched_level) {
785 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
786 __func__, switched_level);
789 /* We also mark unknown levels as processed to not waste cycles */
790 cpu->device_irq_level = run->s.regs.device_irq_level;
791 qemu_mutex_unlock_iothread();
794 return MEMTXATTRS_UNSPECIFIED;
797 void kvm_arm_vm_state_change(void *opaque, int running, RunState state)
799 CPUState *cs = opaque;
800 ARMCPU *cpu = ARM_CPU(cs);
802 if (running) {
803 if (cpu->kvm_adjvtime) {
804 kvm_arm_put_virtual_time(cs);
806 } else {
807 if (cpu->kvm_adjvtime) {
808 kvm_arm_get_virtual_time(cs);
813 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
815 int ret = 0;
817 switch (run->exit_reason) {
818 case KVM_EXIT_DEBUG:
819 if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
820 ret = EXCP_DEBUG;
821 } /* otherwise return to guest */
822 break;
823 default:
824 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
825 __func__, run->exit_reason);
826 break;
828 return ret;
831 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
833 return true;
836 int kvm_arch_process_async_events(CPUState *cs)
838 return 0;
841 /* The #ifdef protections are until 32bit headers are imported and can
842 * be removed once both 32 and 64 bit reach feature parity.
844 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
846 #ifdef KVM_GUESTDBG_USE_SW_BP
847 if (kvm_sw_breakpoints_active(cs)) {
848 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
850 #endif
851 #ifdef KVM_GUESTDBG_USE_HW
852 if (kvm_arm_hw_debug_active(cs)) {
853 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
854 kvm_arm_copy_hw_debug_data(&dbg->arch);
856 #endif
859 void kvm_arch_init_irq_routing(KVMState *s)
863 int kvm_arch_irqchip_create(KVMState *s)
865 if (kvm_kernel_irqchip_split()) {
866 perror("-machine kernel_irqchip=split is not supported on ARM.");
867 exit(1);
870 /* If we can create the VGIC using the newer device control API, we
871 * let the device do this when it initializes itself, otherwise we
872 * fall back to the old API */
873 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
876 int kvm_arm_vgic_probe(void)
878 int val = 0;
880 if (kvm_create_device(kvm_state,
881 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
882 val |= KVM_ARM_VGIC_V3;
884 if (kvm_create_device(kvm_state,
885 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
886 val |= KVM_ARM_VGIC_V2;
888 return val;
891 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
893 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
894 int cpu_idx1 = cpu % 256;
895 int cpu_idx2 = cpu / 256;
897 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
898 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
900 return kvm_set_irq(kvm_state, kvm_irq, !!level);
903 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
904 uint64_t address, uint32_t data, PCIDevice *dev)
906 AddressSpace *as = pci_device_iommu_address_space(dev);
907 hwaddr xlat, len, doorbell_gpa;
908 MemoryRegionSection mrs;
909 MemoryRegion *mr;
910 int ret = 1;
912 if (as == &address_space_memory) {
913 return 0;
916 /* MSI doorbell address is translated by an IOMMU */
918 rcu_read_lock();
919 mr = address_space_translate(as, address, &xlat, &len, true,
920 MEMTXATTRS_UNSPECIFIED);
921 if (!mr) {
922 goto unlock;
924 mrs = memory_region_find(mr, xlat, 1);
925 if (!mrs.mr) {
926 goto unlock;
929 doorbell_gpa = mrs.offset_within_address_space;
930 memory_region_unref(mrs.mr);
932 route->u.msi.address_lo = doorbell_gpa;
933 route->u.msi.address_hi = doorbell_gpa >> 32;
935 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
937 ret = 0;
939 unlock:
940 rcu_read_unlock();
941 return ret;
944 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
945 int vector, PCIDevice *dev)
947 return 0;
950 int kvm_arch_release_virq_post(int virq)
952 return 0;
955 int kvm_arch_msi_data_to_gsi(uint32_t data)
957 return (data - 32) & 0xffff;