2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
4 * Copyright (c) 2017 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13 * FPGA but is otherwise the same as the 2). Since the CPU itself
14 * and most of the devices are in the FPGA, the details of the board
15 * as seen by the guest depend significantly on the FPGA image.
16 * This source file covers the following FPGA images, for TrustZone cores:
17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18 * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19 * "mps2-an524" -- Dual Cortex-M33 as documented in Application Note AN524
20 * "mps2-an547" -- Single Cortex-M55 as documented in Application Note AN547
22 * Links to the TRM for the board itself and to the various Application
23 * Notes which document the FPGA images can be found here:
24 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
27 * https://developer.arm.com/documentation/100112/latest/
28 * Application Note AN505:
29 * https://developer.arm.com/documentation/dai0505/latest/
30 * Application Note AN521:
31 * https://developer.arm.com/documentation/dai0521/latest/
32 * Application Note AN524:
33 * https://developer.arm.com/documentation/dai0524/latest/
34 * Application Note AN547:
35 * https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/DAI0547B_SSE300_PLUS_U55_FPGA_for_mps3.pdf
37 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
38 * (ARM ECM0601256) for the details of some of the device layout:
39 * https://developer.arm.com/documentation/ecm0601256/latest
40 * Similarly, the AN521 and AN524 use the SSE-200, and the SSE-200 TRM defines
41 * most of the device layout:
42 * https://developer.arm.com/documentation/101104/latest/
43 * and the AN547 uses the SSE-300, whose layout is in the SSE-300 TRM:
44 * https://developer.arm.com/documentation/101773/latest/
47 #include "qemu/osdep.h"
48 #include "qemu/units.h"
49 #include "qemu/cutils.h"
50 #include "qapi/error.h"
51 #include "qemu/error-report.h"
52 #include "hw/arm/boot.h"
53 #include "hw/arm/armv7m.h"
54 #include "hw/or-irq.h"
55 #include "hw/boards.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/sysemu.h"
58 #include "sysemu/reset.h"
59 #include "hw/misc/unimp.h"
60 #include "hw/char/cmsdk-apb-uart.h"
61 #include "hw/timer/cmsdk-apb-timer.h"
62 #include "hw/misc/mps2-scc.h"
63 #include "hw/misc/mps2-fpgaio.h"
64 #include "hw/misc/tz-mpc.h"
65 #include "hw/misc/tz-msc.h"
66 #include "hw/arm/armsse.h"
67 #include "hw/dma/pl080.h"
68 #include "hw/rtc/pl031.h"
69 #include "hw/ssi/pl022.h"
70 #include "hw/i2c/arm_sbcon_i2c.h"
71 #include "hw/net/lan9118.h"
73 #include "hw/core/split-irq.h"
74 #include "hw/qdev-clock.h"
75 #include "qom/object.h"
78 #define MPS2TZ_NUMIRQ_MAX 96
79 #define MPS2TZ_RAM_MAX 5
81 typedef enum MPS2TZFPGAType
{
89 * Define the layout of RAM in a board, including which parts are
91 * mrindex specifies the index into mms->ram[] to use for the backing RAM;
92 * -1 means "use the system RAM".
94 typedef struct RAMInfo
{
98 int mpc
; /* MPC number, -1 for "not behind an MPC" */
105 * IS_ALIAS: this RAM area is an alias to the upstream end of the
106 * MPC specified by its .mpc value
107 * IS_ROM: this RAM area is read-only
112 struct MPS2TZMachineClass
{
114 MPS2TZFPGAType fpga_type
;
116 uint32_t sysclk_frq
; /* Main SYSCLK frequency in Hz */
117 uint32_t apb_periph_frq
; /* APB peripheral frequency in Hz */
119 const uint32_t *oscclk
;
120 uint32_t fpgaio_num_leds
; /* Number of LEDs in FPGAIO LED0 register */
121 bool fpgaio_has_switches
; /* Does FPGAIO have SWITCH register? */
122 bool fpgaio_has_dbgctrl
; /* Does FPGAIO have DBGCTRL register? */
123 int numirq
; /* Number of external interrupts */
124 int uart_overflow_irq
; /* number of the combined UART overflow IRQ */
125 uint32_t init_svtor
; /* init-svtor setting for SSE */
126 uint32_t sram_addr_width
; /* SRAM_ADDR_WIDTH setting for SSE */
127 const RAMInfo
*raminfo
;
128 const char *armsse_type
;
129 uint32_t boot_ram_size
; /* size of ram at address 0; 0 == find in raminfo */
132 struct MPS2TZMachineState
{
136 MemoryRegion ram
[MPS2TZ_RAM_MAX
];
137 MemoryRegion eth_usb_container
;
144 ArmSbconI2CState i2c
[5];
145 UnimplementedDeviceState i2s_audio
;
146 UnimplementedDeviceState gpio
[4];
147 UnimplementedDeviceState gfx
;
148 UnimplementedDeviceState cldc
;
149 UnimplementedDeviceState usb
;
153 CMSDKAPBUART uart
[6];
154 SplitIRQ sec_resp_splitter
;
155 qemu_or_irq uart_irq_orgate
;
156 DeviceState
*lan9118
;
157 SplitIRQ cpu_irq_splitter
[MPS2TZ_NUMIRQ_MAX
];
165 #define TYPE_MPS2TZ_MACHINE "mps2tz"
166 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
167 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
168 #define TYPE_MPS3TZ_AN524_MACHINE MACHINE_TYPE_NAME("mps3-an524")
169 #define TYPE_MPS3TZ_AN547_MACHINE MACHINE_TYPE_NAME("mps3-an547")
171 OBJECT_DECLARE_TYPE(MPS2TZMachineState
, MPS2TZMachineClass
, MPS2TZ_MACHINE
)
173 /* Slow 32Khz S32KCLK frequency in Hz */
174 #define S32KCLK_FRQ (32 * 1000)
177 * The MPS3 DDR is 2GiB, but on a 32-bit host QEMU doesn't permit
178 * emulation of that much guest RAM, so artificially make it smaller.
180 #if HOST_LONG_BITS == 32
181 #define MPS3_DDR_SIZE (1 * GiB)
183 #define MPS3_DDR_SIZE (2 * GiB)
186 static const uint32_t an505_oscclk
[] = {
192 static const uint32_t an524_oscclk
[] = {
201 static const RAMInfo an505_raminfo
[] = { {
220 .name
= "ssram-0-alias",
227 /* Use the largest bit of contiguous RAM as our "system memory" */
239 * Note that the addresses and MPC numbering here should match up
240 * with those used in remap_memory(), which can swap the BRAM and QSPI.
242 static const RAMInfo an524_raminfo
[] = { {
249 /* We don't model QSPI flash yet; for now expose it as simple ROM */
259 .size
= MPS3_DDR_SIZE
,
267 static const RAMInfo an547_raminfo
[] = { {
280 /* We don't model QSPI flash yet; for now expose it as simple ROM */
290 .size
= MPS3_DDR_SIZE
,
298 static const RAMInfo
*find_raminfo_for_mpc(MPS2TZMachineState
*mms
, int mpc
)
300 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
302 const RAMInfo
*found
= NULL
;
304 for (p
= mmc
->raminfo
; p
->name
; p
++) {
305 if (p
->mpc
== mpc
&& !(p
->flags
& IS_ALIAS
)) {
306 /* There should only be one entry in the array for this MPC */
311 /* if raminfo array doesn't have an entry for each MPC this is a bug */
316 static MemoryRegion
*mr_for_raminfo(MPS2TZMachineState
*mms
,
317 const RAMInfo
*raminfo
)
319 /* Return an initialized MemoryRegion for the RAMInfo. */
322 if (raminfo
->mrindex
< 0) {
323 /* Means this RAMInfo is for QEMU's "system memory" */
324 MachineState
*machine
= MACHINE(mms
);
325 assert(!(raminfo
->flags
& IS_ROM
));
329 assert(raminfo
->mrindex
< MPS2TZ_RAM_MAX
);
330 ram
= &mms
->ram
[raminfo
->mrindex
];
332 memory_region_init_ram(ram
, NULL
, raminfo
->name
,
333 raminfo
->size
, &error_fatal
);
334 if (raminfo
->flags
& IS_ROM
) {
335 memory_region_set_readonly(ram
, true);
340 /* Create an alias of an entire original MemoryRegion @orig
341 * located at @base in the memory map.
343 static void make_ram_alias(MemoryRegion
*mr
, const char *name
,
344 MemoryRegion
*orig
, hwaddr base
)
346 memory_region_init_alias(mr
, NULL
, name
, orig
, 0,
347 memory_region_size(orig
));
348 memory_region_add_subregion(get_system_memory(), base
, mr
);
351 static qemu_irq
get_sse_irq_in(MPS2TZMachineState
*mms
, int irqno
)
354 * Return a qemu_irq which will signal IRQ n to all CPUs in the
355 * SSE. The irqno should be as the CPU sees it, so the first
356 * external-to-the-SSE interrupt is 32.
358 MachineClass
*mc
= MACHINE_GET_CLASS(mms
);
359 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
361 assert(irqno
>= 32 && irqno
< (mmc
->numirq
+ 32));
364 * Convert from "CPU irq number" (as listed in the FPGA image
365 * documentation) to the SSE external-interrupt number.
369 if (mc
->max_cpus
> 1) {
370 return qdev_get_gpio_in(DEVICE(&mms
->cpu_irq_splitter
[irqno
]), 0);
372 return qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
), "EXP_IRQ", irqno
);
376 /* Most of the devices in the AN505 FPGA image sit behind
377 * Peripheral Protection Controllers. These data structures
378 * define the layout of which devices sit behind which PPCs.
379 * The devfn for each port is a function which creates, configures
380 * and initializes the device, returning the MemoryRegion which
381 * needs to be plugged into the downstream end of the PPC port.
383 typedef MemoryRegion
*MakeDevFn(MPS2TZMachineState
*mms
, void *opaque
,
384 const char *name
, hwaddr size
,
387 typedef struct PPCPortInfo
{
393 int irqs
[3]; /* currently no device needs more IRQ lines than this */
396 typedef struct PPCInfo
{
398 PPCPortInfo ports
[TZ_NUM_PORTS
];
401 static MemoryRegion
*make_unimp_dev(MPS2TZMachineState
*mms
,
403 const char *name
, hwaddr size
,
406 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
407 * and return a pointer to its MemoryRegion.
409 UnimplementedDeviceState
*uds
= opaque
;
411 object_initialize_child(OBJECT(mms
), name
, uds
, TYPE_UNIMPLEMENTED_DEVICE
);
412 qdev_prop_set_string(DEVICE(uds
), "name", name
);
413 qdev_prop_set_uint64(DEVICE(uds
), "size", size
);
414 sysbus_realize(SYS_BUS_DEVICE(uds
), &error_fatal
);
415 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds
), 0);
418 static MemoryRegion
*make_uart(MPS2TZMachineState
*mms
, void *opaque
,
419 const char *name
, hwaddr size
,
422 /* The irq[] array is tx, rx, combined, in that order */
423 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
424 CMSDKAPBUART
*uart
= opaque
;
425 int i
= uart
- &mms
->uart
[0];
427 DeviceState
*orgate_dev
= DEVICE(&mms
->uart_irq_orgate
);
429 object_initialize_child(OBJECT(mms
), name
, uart
, TYPE_CMSDK_APB_UART
);
430 qdev_prop_set_chr(DEVICE(uart
), "chardev", serial_hd(i
));
431 qdev_prop_set_uint32(DEVICE(uart
), "pclk-frq", mmc
->apb_periph_frq
);
432 sysbus_realize(SYS_BUS_DEVICE(uart
), &error_fatal
);
433 s
= SYS_BUS_DEVICE(uart
);
434 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, irqs
[0]));
435 sysbus_connect_irq(s
, 1, get_sse_irq_in(mms
, irqs
[1]));
436 sysbus_connect_irq(s
, 2, qdev_get_gpio_in(orgate_dev
, i
* 2));
437 sysbus_connect_irq(s
, 3, qdev_get_gpio_in(orgate_dev
, i
* 2 + 1));
438 sysbus_connect_irq(s
, 4, get_sse_irq_in(mms
, irqs
[2]));
439 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart
), 0);
442 static MemoryRegion
*make_scc(MPS2TZMachineState
*mms
, void *opaque
,
443 const char *name
, hwaddr size
,
446 MPS2SCC
*scc
= opaque
;
448 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
451 object_initialize_child(OBJECT(mms
), "scc", scc
, TYPE_MPS2_SCC
);
452 sccdev
= DEVICE(scc
);
453 qdev_prop_set_uint32(sccdev
, "scc-cfg0", mms
->remap
? 1 : 0);
454 qdev_prop_set_uint32(sccdev
, "scc-cfg4", 0x2);
455 qdev_prop_set_uint32(sccdev
, "scc-aid", 0x00200008);
456 qdev_prop_set_uint32(sccdev
, "scc-id", mmc
->scc_id
);
457 qdev_prop_set_uint32(sccdev
, "len-oscclk", mmc
->len_oscclk
);
458 for (i
= 0; i
< mmc
->len_oscclk
; i
++) {
459 g_autofree
char *propname
= g_strdup_printf("oscclk[%u]", i
);
460 qdev_prop_set_uint32(sccdev
, propname
, mmc
->oscclk
[i
]);
462 sysbus_realize(SYS_BUS_DEVICE(scc
), &error_fatal
);
463 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev
), 0);
466 static MemoryRegion
*make_fpgaio(MPS2TZMachineState
*mms
, void *opaque
,
467 const char *name
, hwaddr size
,
470 MPS2FPGAIO
*fpgaio
= opaque
;
471 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
473 object_initialize_child(OBJECT(mms
), "fpgaio", fpgaio
, TYPE_MPS2_FPGAIO
);
474 qdev_prop_set_uint32(DEVICE(fpgaio
), "num-leds", mmc
->fpgaio_num_leds
);
475 qdev_prop_set_bit(DEVICE(fpgaio
), "has-switches", mmc
->fpgaio_has_switches
);
476 qdev_prop_set_bit(DEVICE(fpgaio
), "has-dbgctrl", mmc
->fpgaio_has_dbgctrl
);
477 sysbus_realize(SYS_BUS_DEVICE(fpgaio
), &error_fatal
);
478 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio
), 0);
481 static MemoryRegion
*make_eth_dev(MPS2TZMachineState
*mms
, void *opaque
,
482 const char *name
, hwaddr size
,
486 NICInfo
*nd
= &nd_table
[0];
488 /* In hardware this is a LAN9220; the LAN9118 is software compatible
489 * except that it doesn't support the checksum-offload feature.
491 qemu_check_nic_model(nd
, "lan9118");
492 mms
->lan9118
= qdev_new(TYPE_LAN9118
);
493 qdev_set_nic_properties(mms
->lan9118
, nd
);
495 s
= SYS_BUS_DEVICE(mms
->lan9118
);
496 sysbus_realize_and_unref(s
, &error_fatal
);
497 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, irqs
[0]));
498 return sysbus_mmio_get_region(s
, 0);
501 static MemoryRegion
*make_eth_usb(MPS2TZMachineState
*mms
, void *opaque
,
502 const char *name
, hwaddr size
,
506 * The AN524 makes the ethernet and USB share a PPC port.
507 * irqs[] is the ethernet IRQ.
510 NICInfo
*nd
= &nd_table
[0];
512 memory_region_init(&mms
->eth_usb_container
, OBJECT(mms
),
513 "mps2-tz-eth-usb-container", 0x200000);
516 * In hardware this is a LAN9220; the LAN9118 is software compatible
517 * except that it doesn't support the checksum-offload feature.
519 qemu_check_nic_model(nd
, "lan9118");
520 mms
->lan9118
= qdev_new(TYPE_LAN9118
);
521 qdev_set_nic_properties(mms
->lan9118
, nd
);
523 s
= SYS_BUS_DEVICE(mms
->lan9118
);
524 sysbus_realize_and_unref(s
, &error_fatal
);
525 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, irqs
[0]));
527 memory_region_add_subregion(&mms
->eth_usb_container
,
528 0, sysbus_mmio_get_region(s
, 0));
530 /* The USB OTG controller is an ISP1763; we don't have a model of it. */
531 object_initialize_child(OBJECT(mms
), "usb-otg",
532 &mms
->usb
, TYPE_UNIMPLEMENTED_DEVICE
);
533 qdev_prop_set_string(DEVICE(&mms
->usb
), "name", "usb-otg");
534 qdev_prop_set_uint64(DEVICE(&mms
->usb
), "size", 0x100000);
535 s
= SYS_BUS_DEVICE(&mms
->usb
);
536 sysbus_realize(s
, &error_fatal
);
538 memory_region_add_subregion(&mms
->eth_usb_container
,
539 0x100000, sysbus_mmio_get_region(s
, 0));
541 return &mms
->eth_usb_container
;
544 static MemoryRegion
*make_mpc(MPS2TZMachineState
*mms
, void *opaque
,
545 const char *name
, hwaddr size
,
549 int i
= mpc
- &mms
->mpc
[0];
550 MemoryRegion
*upstream
;
551 const RAMInfo
*raminfo
= find_raminfo_for_mpc(mms
, i
);
552 MemoryRegion
*ram
= mr_for_raminfo(mms
, raminfo
);
554 object_initialize_child(OBJECT(mms
), name
, mpc
, TYPE_TZ_MPC
);
555 object_property_set_link(OBJECT(mpc
), "downstream", OBJECT(ram
),
557 sysbus_realize(SYS_BUS_DEVICE(mpc
), &error_fatal
);
558 /* Map the upstream end of the MPC into system memory */
559 upstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc
), 1);
560 memory_region_add_subregion(get_system_memory(), raminfo
->base
, upstream
);
561 /* and connect its interrupt to the IoTKit */
562 qdev_connect_gpio_out_named(DEVICE(mpc
), "irq", 0,
563 qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
),
564 "mpcexp_status", i
));
566 /* Return the register interface MR for our caller to map behind the PPC */
567 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc
), 0);
570 static hwaddr
boot_mem_base(MPS2TZMachineState
*mms
)
573 * Return the canonical address of the block which will be mapped
574 * at address 0x0 (i.e. where the vector table is).
575 * This is usually 0, but if the AN524 alternate memory map is
576 * enabled it will be the base address of the QSPI block.
578 return mms
->remap
? 0x28000000 : 0;
581 static void remap_memory(MPS2TZMachineState
*mms
, int map
)
584 * Remap the memory for the AN524. 'map' is the value of
585 * SCC CFG_REG0 bit 0, i.e. 0 for the default map and 1
586 * for the "option 1" mapping where QSPI is at address 0.
588 * Effectively we need to swap around the "upstream" ends of
591 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
594 if (mmc
->fpga_type
!= FPGA_AN524
) {
598 memory_region_transaction_begin();
599 for (i
= 0; i
< 2; i
++) {
600 TZMPC
*mpc
= &mms
->mpc
[i
];
601 MemoryRegion
*upstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc
), 1);
602 hwaddr addr
= (i
^ map
) ? 0x28000000 : 0;
604 memory_region_set_address(upstream
, addr
);
606 memory_region_transaction_commit();
609 static void remap_irq_fn(void *opaque
, int n
, int level
)
611 MPS2TZMachineState
*mms
= opaque
;
613 remap_memory(mms
, level
);
616 static MemoryRegion
*make_dma(MPS2TZMachineState
*mms
, void *opaque
,
617 const char *name
, hwaddr size
,
620 /* The irq[] array is DMACINTR, DMACINTERR, DMACINTTC, in that order */
621 PL080State
*dma
= opaque
;
622 int i
= dma
- &mms
->dma
[0];
624 char *mscname
= g_strdup_printf("%s-msc", name
);
625 TZMSC
*msc
= &mms
->msc
[i
];
626 DeviceState
*iotkitdev
= DEVICE(&mms
->iotkit
);
627 MemoryRegion
*msc_upstream
;
628 MemoryRegion
*msc_downstream
;
631 * Each DMA device is a PL081 whose transaction master interface
632 * is guarded by a Master Security Controller. The downstream end of
633 * the MSC connects to the IoTKit AHB Slave Expansion port, so the
634 * DMA devices can see all devices and memory that the CPU does.
636 object_initialize_child(OBJECT(mms
), mscname
, msc
, TYPE_TZ_MSC
);
637 msc_downstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms
->iotkit
), 0);
638 object_property_set_link(OBJECT(msc
), "downstream",
639 OBJECT(msc_downstream
), &error_fatal
);
640 object_property_set_link(OBJECT(msc
), "idau", OBJECT(mms
), &error_fatal
);
641 sysbus_realize(SYS_BUS_DEVICE(msc
), &error_fatal
);
643 qdev_connect_gpio_out_named(DEVICE(msc
), "irq", 0,
644 qdev_get_gpio_in_named(iotkitdev
,
645 "mscexp_status", i
));
646 qdev_connect_gpio_out_named(iotkitdev
, "mscexp_clear", i
,
647 qdev_get_gpio_in_named(DEVICE(msc
),
649 qdev_connect_gpio_out_named(iotkitdev
, "mscexp_ns", i
,
650 qdev_get_gpio_in_named(DEVICE(msc
),
652 qdev_connect_gpio_out(DEVICE(&mms
->sec_resp_splitter
),
653 ARRAY_SIZE(mms
->ppc
) + i
,
654 qdev_get_gpio_in_named(DEVICE(msc
),
656 msc_upstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(msc
), 0);
658 object_initialize_child(OBJECT(mms
), name
, dma
, TYPE_PL081
);
659 object_property_set_link(OBJECT(dma
), "downstream", OBJECT(msc_upstream
),
661 sysbus_realize(SYS_BUS_DEVICE(dma
), &error_fatal
);
663 s
= SYS_BUS_DEVICE(dma
);
664 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
665 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, irqs
[0]));
666 sysbus_connect_irq(s
, 1, get_sse_irq_in(mms
, irqs
[1]));
667 sysbus_connect_irq(s
, 2, get_sse_irq_in(mms
, irqs
[2]));
670 return sysbus_mmio_get_region(s
, 0);
673 static MemoryRegion
*make_spi(MPS2TZMachineState
*mms
, void *opaque
,
674 const char *name
, hwaddr size
,
678 * The AN505 has five PL022 SPI controllers.
679 * One of these should have the LCD controller behind it; the others
680 * are connected only to the FPGA's "general purpose SPI connector"
681 * or "shield" expansion connectors.
682 * Note that if we do implement devices behind SPI, the chip select
683 * lines are set via the "MISC" register in the MPS2 FPGAIO device.
685 PL022State
*spi
= opaque
;
688 object_initialize_child(OBJECT(mms
), name
, spi
, TYPE_PL022
);
689 sysbus_realize(SYS_BUS_DEVICE(spi
), &error_fatal
);
690 s
= SYS_BUS_DEVICE(spi
);
691 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, irqs
[0]));
692 return sysbus_mmio_get_region(s
, 0);
695 static MemoryRegion
*make_i2c(MPS2TZMachineState
*mms
, void *opaque
,
696 const char *name
, hwaddr size
,
699 ArmSbconI2CState
*i2c
= opaque
;
702 object_initialize_child(OBJECT(mms
), name
, i2c
, TYPE_ARM_SBCON_I2C
);
703 s
= SYS_BUS_DEVICE(i2c
);
704 sysbus_realize(s
, &error_fatal
);
705 return sysbus_mmio_get_region(s
, 0);
708 static MemoryRegion
*make_rtc(MPS2TZMachineState
*mms
, void *opaque
,
709 const char *name
, hwaddr size
,
712 PL031State
*pl031
= opaque
;
715 object_initialize_child(OBJECT(mms
), name
, pl031
, TYPE_PL031
);
716 s
= SYS_BUS_DEVICE(pl031
);
717 sysbus_realize(s
, &error_fatal
);
719 * The board docs don't give an IRQ number for the PL031, so
720 * presumably it is not connected.
722 return sysbus_mmio_get_region(s
, 0);
725 static void create_non_mpc_ram(MPS2TZMachineState
*mms
)
728 * Handle the RAMs which are either not behind MPCs or which are
729 * aliases to another MPC.
732 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
734 for (p
= mmc
->raminfo
; p
->name
; p
++) {
735 if (p
->flags
& IS_ALIAS
) {
736 SysBusDevice
*mpc_sbd
= SYS_BUS_DEVICE(&mms
->mpc
[p
->mpc
]);
737 MemoryRegion
*upstream
= sysbus_mmio_get_region(mpc_sbd
, 1);
738 make_ram_alias(&mms
->ram
[p
->mrindex
], p
->name
, upstream
, p
->base
);
739 } else if (p
->mpc
== -1) {
740 /* RAM not behind an MPC */
741 MemoryRegion
*mr
= mr_for_raminfo(mms
, p
);
742 memory_region_add_subregion(get_system_memory(), p
->base
, mr
);
747 static uint32_t boot_ram_size(MPS2TZMachineState
*mms
)
749 /* Return the size of the RAM block at guest address zero */
751 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
754 * Use a per-board specification (for when the boot RAM is in
755 * the SSE and so doesn't have a RAMInfo list entry)
757 if (mmc
->boot_ram_size
) {
758 return mmc
->boot_ram_size
;
761 for (p
= mmc
->raminfo
; p
->name
; p
++) {
762 if (p
->base
== boot_mem_base(mms
)) {
766 g_assert_not_reached();
769 static void mps2tz_common_init(MachineState
*machine
)
771 MPS2TZMachineState
*mms
= MPS2TZ_MACHINE(machine
);
772 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
773 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
774 MemoryRegion
*system_memory
= get_system_memory();
775 DeviceState
*iotkitdev
;
776 DeviceState
*dev_splitter
;
781 if (strcmp(machine
->cpu_type
, mc
->default_cpu_type
) != 0) {
782 error_report("This board can only be used with CPU %s",
783 mc
->default_cpu_type
);
787 if (machine
->ram_size
!= mc
->default_ram_size
) {
788 char *sz
= size_to_str(mc
->default_ram_size
);
789 error_report("Invalid RAM size, should be %s", sz
);
794 /* These clocks don't need migration because they are fixed-frequency */
795 mms
->sysclk
= clock_new(OBJECT(machine
), "SYSCLK");
796 clock_set_hz(mms
->sysclk
, mmc
->sysclk_frq
);
797 mms
->s32kclk
= clock_new(OBJECT(machine
), "S32KCLK");
798 clock_set_hz(mms
->s32kclk
, S32KCLK_FRQ
);
800 object_initialize_child(OBJECT(machine
), TYPE_IOTKIT
, &mms
->iotkit
,
802 iotkitdev
= DEVICE(&mms
->iotkit
);
803 object_property_set_link(OBJECT(&mms
->iotkit
), "memory",
804 OBJECT(system_memory
), &error_abort
);
805 qdev_prop_set_uint32(iotkitdev
, "EXP_NUMIRQ", mmc
->numirq
);
806 qdev_prop_set_uint32(iotkitdev
, "init-svtor", mmc
->init_svtor
);
807 qdev_prop_set_uint32(iotkitdev
, "SRAM_ADDR_WIDTH", mmc
->sram_addr_width
);
808 qdev_connect_clock_in(iotkitdev
, "MAINCLK", mms
->sysclk
);
809 qdev_connect_clock_in(iotkitdev
, "S32KCLK", mms
->s32kclk
);
810 sysbus_realize(SYS_BUS_DEVICE(&mms
->iotkit
), &error_fatal
);
813 * If this board has more than one CPU, then we need to create splitters
814 * to feed the IRQ inputs for each CPU in the SSE from each device in the
815 * board. If there is only one CPU, we can just wire the device IRQ
816 * directly to the SSE's IRQ input.
818 assert(mmc
->numirq
<= MPS2TZ_NUMIRQ_MAX
);
819 if (mc
->max_cpus
> 1) {
820 for (i
= 0; i
< mmc
->numirq
; i
++) {
821 char *name
= g_strdup_printf("mps2-irq-splitter%d", i
);
822 SplitIRQ
*splitter
= &mms
->cpu_irq_splitter
[i
];
824 object_initialize_child_with_props(OBJECT(machine
), name
,
825 splitter
, sizeof(*splitter
),
826 TYPE_SPLIT_IRQ
, &error_fatal
,
830 object_property_set_int(OBJECT(splitter
), "num-lines", 2,
832 qdev_realize(DEVICE(splitter
), NULL
, &error_fatal
);
833 qdev_connect_gpio_out(DEVICE(splitter
), 0,
834 qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
),
836 qdev_connect_gpio_out(DEVICE(splitter
), 1,
837 qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
),
842 /* The sec_resp_cfg output from the IoTKit must be split into multiple
843 * lines, one for each of the PPCs we create here, plus one per MSC.
845 object_initialize_child(OBJECT(machine
), "sec-resp-splitter",
846 &mms
->sec_resp_splitter
, TYPE_SPLIT_IRQ
);
847 object_property_set_int(OBJECT(&mms
->sec_resp_splitter
), "num-lines",
848 ARRAY_SIZE(mms
->ppc
) + ARRAY_SIZE(mms
->msc
),
850 qdev_realize(DEVICE(&mms
->sec_resp_splitter
), NULL
, &error_fatal
);
851 dev_splitter
= DEVICE(&mms
->sec_resp_splitter
);
852 qdev_connect_gpio_out_named(iotkitdev
, "sec_resp_cfg", 0,
853 qdev_get_gpio_in(dev_splitter
, 0));
856 * The IoTKit sets up much of the memory layout, including
857 * the aliases between secure and non-secure regions in the
858 * address space, and also most of the devices in the system.
859 * The FPGA itself contains various RAMs and some additional devices.
860 * The FPGA images have an odd combination of different RAMs,
861 * because in hardware they are different implementations and
862 * connected to different buses, giving varying performance/size
863 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
864 * call the largest lump our "system memory".
868 * The overflow IRQs for all UARTs are ORed together.
869 * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
870 * Create the OR gate for this: it has one input for the TX overflow
871 * and one for the RX overflow for each UART we might have.
872 * (If the board has fewer than the maximum possible number of UARTs
873 * those inputs are never wired up and are treated as always-zero.)
875 object_initialize_child(OBJECT(mms
), "uart-irq-orgate",
876 &mms
->uart_irq_orgate
, TYPE_OR_IRQ
);
877 object_property_set_int(OBJECT(&mms
->uart_irq_orgate
), "num-lines",
878 2 * ARRAY_SIZE(mms
->uart
),
880 qdev_realize(DEVICE(&mms
->uart_irq_orgate
), NULL
, &error_fatal
);
881 qdev_connect_gpio_out(DEVICE(&mms
->uart_irq_orgate
), 0,
882 get_sse_irq_in(mms
, mmc
->uart_overflow_irq
));
884 /* Most of the devices in the FPGA are behind Peripheral Protection
885 * Controllers. The required order for initializing things is:
886 * + initialize the PPC
887 * + initialize, configure and realize downstream devices
888 * + connect downstream device MemoryRegions to the PPC
890 * + map the PPC's MemoryRegions to the places in the address map
891 * where the downstream devices should appear
892 * + wire up the PPC's control lines to the IoTKit object
895 const PPCInfo an505_ppcs
[] = { {
896 .name
= "apb_ppcexp0",
898 { "ssram-0-mpc", make_mpc
, &mms
->mpc
[0], 0x58007000, 0x1000 },
899 { "ssram-1-mpc", make_mpc
, &mms
->mpc
[1], 0x58008000, 0x1000 },
900 { "ssram-2-mpc", make_mpc
, &mms
->mpc
[2], 0x58009000, 0x1000 },
903 .name
= "apb_ppcexp1",
905 { "spi0", make_spi
, &mms
->spi
[0], 0x40205000, 0x1000, { 51 } },
906 { "spi1", make_spi
, &mms
->spi
[1], 0x40206000, 0x1000, { 52 } },
907 { "spi2", make_spi
, &mms
->spi
[2], 0x40209000, 0x1000, { 53 } },
908 { "spi3", make_spi
, &mms
->spi
[3], 0x4020a000, 0x1000, { 54 } },
909 { "spi4", make_spi
, &mms
->spi
[4], 0x4020b000, 0x1000, { 55 } },
910 { "uart0", make_uart
, &mms
->uart
[0], 0x40200000, 0x1000, { 32, 33, 42 } },
911 { "uart1", make_uart
, &mms
->uart
[1], 0x40201000, 0x1000, { 34, 35, 43 } },
912 { "uart2", make_uart
, &mms
->uart
[2], 0x40202000, 0x1000, { 36, 37, 44 } },
913 { "uart3", make_uart
, &mms
->uart
[3], 0x40203000, 0x1000, { 38, 39, 45 } },
914 { "uart4", make_uart
, &mms
->uart
[4], 0x40204000, 0x1000, { 40, 41, 46 } },
915 { "i2c0", make_i2c
, &mms
->i2c
[0], 0x40207000, 0x1000 },
916 { "i2c1", make_i2c
, &mms
->i2c
[1], 0x40208000, 0x1000 },
917 { "i2c2", make_i2c
, &mms
->i2c
[2], 0x4020c000, 0x1000 },
918 { "i2c3", make_i2c
, &mms
->i2c
[3], 0x4020d000, 0x1000 },
921 .name
= "apb_ppcexp2",
923 { "scc", make_scc
, &mms
->scc
, 0x40300000, 0x1000 },
924 { "i2s-audio", make_unimp_dev
, &mms
->i2s_audio
,
925 0x40301000, 0x1000 },
926 { "fpgaio", make_fpgaio
, &mms
->fpgaio
, 0x40302000, 0x1000 },
929 .name
= "ahb_ppcexp0",
931 { "gfx", make_unimp_dev
, &mms
->gfx
, 0x41000000, 0x140000 },
932 { "gpio0", make_unimp_dev
, &mms
->gpio
[0], 0x40100000, 0x1000 },
933 { "gpio1", make_unimp_dev
, &mms
->gpio
[1], 0x40101000, 0x1000 },
934 { "gpio2", make_unimp_dev
, &mms
->gpio
[2], 0x40102000, 0x1000 },
935 { "gpio3", make_unimp_dev
, &mms
->gpio
[3], 0x40103000, 0x1000 },
936 { "eth", make_eth_dev
, NULL
, 0x42000000, 0x100000, { 48 } },
939 .name
= "ahb_ppcexp1",
941 { "dma0", make_dma
, &mms
->dma
[0], 0x40110000, 0x1000, { 58, 56, 57 } },
942 { "dma1", make_dma
, &mms
->dma
[1], 0x40111000, 0x1000, { 61, 59, 60 } },
943 { "dma2", make_dma
, &mms
->dma
[2], 0x40112000, 0x1000, { 64, 62, 63 } },
944 { "dma3", make_dma
, &mms
->dma
[3], 0x40113000, 0x1000, { 67, 65, 66 } },
949 const PPCInfo an524_ppcs
[] = { {
950 .name
= "apb_ppcexp0",
952 { "bram-mpc", make_mpc
, &mms
->mpc
[0], 0x58007000, 0x1000 },
953 { "qspi-mpc", make_mpc
, &mms
->mpc
[1], 0x58008000, 0x1000 },
954 { "ddr-mpc", make_mpc
, &mms
->mpc
[2], 0x58009000, 0x1000 },
957 .name
= "apb_ppcexp1",
959 { "i2c0", make_i2c
, &mms
->i2c
[0], 0x41200000, 0x1000 },
960 { "i2c1", make_i2c
, &mms
->i2c
[1], 0x41201000, 0x1000 },
961 { "spi0", make_spi
, &mms
->spi
[0], 0x41202000, 0x1000, { 52 } },
962 { "spi1", make_spi
, &mms
->spi
[1], 0x41203000, 0x1000, { 53 } },
963 { "spi2", make_spi
, &mms
->spi
[2], 0x41204000, 0x1000, { 54 } },
964 { "i2c2", make_i2c
, &mms
->i2c
[2], 0x41205000, 0x1000 },
965 { "i2c3", make_i2c
, &mms
->i2c
[3], 0x41206000, 0x1000 },
966 { /* port 7 reserved */ },
967 { "i2c4", make_i2c
, &mms
->i2c
[4], 0x41208000, 0x1000 },
970 .name
= "apb_ppcexp2",
972 { "scc", make_scc
, &mms
->scc
, 0x41300000, 0x1000 },
973 { "i2s-audio", make_unimp_dev
, &mms
->i2s_audio
,
974 0x41301000, 0x1000 },
975 { "fpgaio", make_fpgaio
, &mms
->fpgaio
, 0x41302000, 0x1000 },
976 { "uart0", make_uart
, &mms
->uart
[0], 0x41303000, 0x1000, { 32, 33, 42 } },
977 { "uart1", make_uart
, &mms
->uart
[1], 0x41304000, 0x1000, { 34, 35, 43 } },
978 { "uart2", make_uart
, &mms
->uart
[2], 0x41305000, 0x1000, { 36, 37, 44 } },
979 { "uart3", make_uart
, &mms
->uart
[3], 0x41306000, 0x1000, { 38, 39, 45 } },
980 { "uart4", make_uart
, &mms
->uart
[4], 0x41307000, 0x1000, { 40, 41, 46 } },
981 { "uart5", make_uart
, &mms
->uart
[5], 0x41308000, 0x1000, { 124, 125, 126 } },
983 { /* port 9 reserved */ },
984 { "clcd", make_unimp_dev
, &mms
->cldc
, 0x4130a000, 0x1000 },
985 { "rtc", make_rtc
, &mms
->rtc
, 0x4130b000, 0x1000 },
988 .name
= "ahb_ppcexp0",
990 { "gpio0", make_unimp_dev
, &mms
->gpio
[0], 0x41100000, 0x1000 },
991 { "gpio1", make_unimp_dev
, &mms
->gpio
[1], 0x41101000, 0x1000 },
992 { "gpio2", make_unimp_dev
, &mms
->gpio
[2], 0x41102000, 0x1000 },
993 { "gpio3", make_unimp_dev
, &mms
->gpio
[3], 0x41103000, 0x1000 },
994 { "eth-usb", make_eth_usb
, NULL
, 0x41400000, 0x200000, { 48 } },
999 const PPCInfo an547_ppcs
[] = { {
1000 .name
= "apb_ppcexp0",
1002 { "ssram-mpc", make_mpc
, &mms
->mpc
[0], 0x57000000, 0x1000 },
1003 { "qspi-mpc", make_mpc
, &mms
->mpc
[1], 0x57001000, 0x1000 },
1004 { "ddr-mpc", make_mpc
, &mms
->mpc
[2], 0x57002000, 0x1000 },
1007 .name
= "apb_ppcexp1",
1009 { "i2c0", make_i2c
, &mms
->i2c
[0], 0x49200000, 0x1000 },
1010 { "i2c1", make_i2c
, &mms
->i2c
[1], 0x49201000, 0x1000 },
1011 { "spi0", make_spi
, &mms
->spi
[0], 0x49202000, 0x1000, { 53 } },
1012 { "spi1", make_spi
, &mms
->spi
[1], 0x49203000, 0x1000, { 54 } },
1013 { "spi2", make_spi
, &mms
->spi
[2], 0x49204000, 0x1000, { 55 } },
1014 { "i2c2", make_i2c
, &mms
->i2c
[2], 0x49205000, 0x1000 },
1015 { "i2c3", make_i2c
, &mms
->i2c
[3], 0x49206000, 0x1000 },
1016 { /* port 7 reserved */ },
1017 { "i2c4", make_i2c
, &mms
->i2c
[4], 0x49208000, 0x1000 },
1020 .name
= "apb_ppcexp2",
1022 { "scc", make_scc
, &mms
->scc
, 0x49300000, 0x1000 },
1023 { "i2s-audio", make_unimp_dev
, &mms
->i2s_audio
, 0x49301000, 0x1000 },
1024 { "fpgaio", make_fpgaio
, &mms
->fpgaio
, 0x49302000, 0x1000 },
1025 { "uart0", make_uart
, &mms
->uart
[0], 0x49303000, 0x1000, { 33, 34, 43 } },
1026 { "uart1", make_uart
, &mms
->uart
[1], 0x49304000, 0x1000, { 35, 36, 44 } },
1027 { "uart2", make_uart
, &mms
->uart
[2], 0x49305000, 0x1000, { 37, 38, 45 } },
1028 { "uart3", make_uart
, &mms
->uart
[3], 0x49306000, 0x1000, { 39, 40, 46 } },
1029 { "uart4", make_uart
, &mms
->uart
[4], 0x49307000, 0x1000, { 41, 42, 47 } },
1030 { "uart5", make_uart
, &mms
->uart
[5], 0x49308000, 0x1000, { 125, 126, 127 } },
1032 { /* port 9 reserved */ },
1033 { "clcd", make_unimp_dev
, &mms
->cldc
, 0x4930a000, 0x1000 },
1034 { "rtc", make_rtc
, &mms
->rtc
, 0x4930b000, 0x1000 },
1037 .name
= "ahb_ppcexp0",
1039 { "gpio0", make_unimp_dev
, &mms
->gpio
[0], 0x41100000, 0x1000 },
1040 { "gpio1", make_unimp_dev
, &mms
->gpio
[1], 0x41101000, 0x1000 },
1041 { "gpio2", make_unimp_dev
, &mms
->gpio
[2], 0x41102000, 0x1000 },
1042 { "gpio3", make_unimp_dev
, &mms
->gpio
[3], 0x41103000, 0x1000 },
1043 { "eth-usb", make_eth_usb
, NULL
, 0x41400000, 0x200000, { 49 } },
1048 switch (mmc
->fpga_type
) {
1052 num_ppcs
= ARRAY_SIZE(an505_ppcs
);
1056 num_ppcs
= ARRAY_SIZE(an524_ppcs
);
1060 num_ppcs
= ARRAY_SIZE(an547_ppcs
);
1063 g_assert_not_reached();
1066 for (i
= 0; i
< num_ppcs
; i
++) {
1067 const PPCInfo
*ppcinfo
= &ppcs
[i
];
1068 TZPPC
*ppc
= &mms
->ppc
[i
];
1069 DeviceState
*ppcdev
;
1073 object_initialize_child(OBJECT(machine
), ppcinfo
->name
, ppc
,
1075 ppcdev
= DEVICE(ppc
);
1077 for (port
= 0; port
< TZ_NUM_PORTS
; port
++) {
1078 const PPCPortInfo
*pinfo
= &ppcinfo
->ports
[port
];
1082 if (!pinfo
->devfn
) {
1086 mr
= pinfo
->devfn(mms
, pinfo
->opaque
, pinfo
->name
, pinfo
->size
,
1088 portname
= g_strdup_printf("port[%d]", port
);
1089 object_property_set_link(OBJECT(ppc
), portname
, OBJECT(mr
),
1094 sysbus_realize(SYS_BUS_DEVICE(ppc
), &error_fatal
);
1096 for (port
= 0; port
< TZ_NUM_PORTS
; port
++) {
1097 const PPCPortInfo
*pinfo
= &ppcinfo
->ports
[port
];
1099 if (!pinfo
->devfn
) {
1102 sysbus_mmio_map(SYS_BUS_DEVICE(ppc
), port
, pinfo
->addr
);
1104 gpioname
= g_strdup_printf("%s_nonsec", ppcinfo
->name
);
1105 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, port
,
1106 qdev_get_gpio_in_named(ppcdev
,
1110 gpioname
= g_strdup_printf("%s_ap", ppcinfo
->name
);
1111 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, port
,
1112 qdev_get_gpio_in_named(ppcdev
,
1117 gpioname
= g_strdup_printf("%s_irq_enable", ppcinfo
->name
);
1118 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, 0,
1119 qdev_get_gpio_in_named(ppcdev
,
1122 gpioname
= g_strdup_printf("%s_irq_clear", ppcinfo
->name
);
1123 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, 0,
1124 qdev_get_gpio_in_named(ppcdev
,
1127 gpioname
= g_strdup_printf("%s_irq_status", ppcinfo
->name
);
1128 qdev_connect_gpio_out_named(ppcdev
, "irq", 0,
1129 qdev_get_gpio_in_named(iotkitdev
,
1133 qdev_connect_gpio_out(dev_splitter
, i
,
1134 qdev_get_gpio_in_named(ppcdev
,
1135 "cfg_sec_resp", 0));
1138 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
1140 if (mmc
->fpga_type
== FPGA_AN547
) {
1141 create_unimplemented_device("U55 timing adapter 0", 0x48102000, 0x1000);
1142 create_unimplemented_device("U55 timing adapter 1", 0x48103000, 0x1000);
1145 create_non_mpc_ram(mms
);
1147 if (mmc
->fpga_type
== FPGA_AN524
) {
1149 * Connect the line from the SCC so that we can remap when the
1150 * guest updates that register.
1152 mms
->remap_irq
= qemu_allocate_irq(remap_irq_fn
, mms
, 0);
1153 qdev_connect_gpio_out_named(DEVICE(&mms
->scc
), "remap", 0,
1157 armv7m_load_kernel(ARM_CPU(first_cpu
), machine
->kernel_filename
,
1158 boot_ram_size(mms
));
1161 static void mps2_tz_idau_check(IDAUInterface
*ii
, uint32_t address
,
1162 int *iregion
, bool *exempt
, bool *ns
, bool *nsc
)
1165 * The MPS2 TZ FPGA images have IDAUs in them which are connected to
1166 * the Master Security Controllers. Thes have the same logic as
1167 * is used by the IoTKit for the IDAU connected to the CPU, except
1168 * that MSCs don't care about the NSC attribute.
1170 int region
= extract32(address
, 28, 4);
1172 *ns
= !(region
& 1);
1174 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1175 *exempt
= (address
& 0xeff00000) == 0xe0000000;
1179 static char *mps2_get_remap(Object
*obj
, Error
**errp
)
1181 MPS2TZMachineState
*mms
= MPS2TZ_MACHINE(obj
);
1182 const char *val
= mms
->remap
? "QSPI" : "BRAM";
1183 return g_strdup(val
);
1186 static void mps2_set_remap(Object
*obj
, const char *value
, Error
**errp
)
1188 MPS2TZMachineState
*mms
= MPS2TZ_MACHINE(obj
);
1190 if (!strcmp(value
, "BRAM")) {
1192 } else if (!strcmp(value
, "QSPI")) {
1195 error_setg(errp
, "Invalid remap value");
1196 error_append_hint(errp
, "Valid values are BRAM and QSPI.\n");
1200 static void mps2_machine_reset(MachineState
*machine
)
1202 MPS2TZMachineState
*mms
= MPS2TZ_MACHINE(machine
);
1205 * Set the initial memory mapping before triggering the reset of
1206 * the rest of the system, so that the guest image loader and CPU
1207 * reset see the correct mapping.
1209 remap_memory(mms
, mms
->remap
);
1210 qemu_devices_reset();
1213 static void mps2tz_class_init(ObjectClass
*oc
, void *data
)
1215 MachineClass
*mc
= MACHINE_CLASS(oc
);
1216 IDAUInterfaceClass
*iic
= IDAU_INTERFACE_CLASS(oc
);
1218 mc
->init
= mps2tz_common_init
;
1219 mc
->reset
= mps2_machine_reset
;
1220 iic
->check
= mps2_tz_idau_check
;
1223 static void mps2tz_set_default_ram_info(MPS2TZMachineClass
*mmc
)
1226 * Set mc->default_ram_size and default_ram_id from the
1227 * information in mmc->raminfo.
1229 MachineClass
*mc
= MACHINE_CLASS(mmc
);
1232 for (p
= mmc
->raminfo
; p
->name
; p
++) {
1233 if (p
->mrindex
< 0) {
1234 /* Found the entry for "system memory" */
1235 mc
->default_ram_size
= p
->size
;
1236 mc
->default_ram_id
= p
->name
;
1240 g_assert_not_reached();
1243 static void mps2tz_an505_class_init(ObjectClass
*oc
, void *data
)
1245 MachineClass
*mc
= MACHINE_CLASS(oc
);
1246 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_CLASS(oc
);
1248 mc
->desc
= "ARM MPS2 with AN505 FPGA image for Cortex-M33";
1249 mc
->default_cpus
= 1;
1250 mc
->min_cpus
= mc
->default_cpus
;
1251 mc
->max_cpus
= mc
->default_cpus
;
1252 mmc
->fpga_type
= FPGA_AN505
;
1253 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33");
1254 mmc
->scc_id
= 0x41045050;
1255 mmc
->sysclk_frq
= 20 * 1000 * 1000; /* 20MHz */
1256 mmc
->apb_periph_frq
= mmc
->sysclk_frq
;
1257 mmc
->oscclk
= an505_oscclk
;
1258 mmc
->len_oscclk
= ARRAY_SIZE(an505_oscclk
);
1259 mmc
->fpgaio_num_leds
= 2;
1260 mmc
->fpgaio_has_switches
= false;
1261 mmc
->fpgaio_has_dbgctrl
= false;
1263 mmc
->uart_overflow_irq
= 47;
1264 mmc
->init_svtor
= 0x10000000;
1265 mmc
->sram_addr_width
= 15;
1266 mmc
->raminfo
= an505_raminfo
;
1267 mmc
->armsse_type
= TYPE_IOTKIT
;
1268 mmc
->boot_ram_size
= 0;
1269 mps2tz_set_default_ram_info(mmc
);
1272 static void mps2tz_an521_class_init(ObjectClass
*oc
, void *data
)
1274 MachineClass
*mc
= MACHINE_CLASS(oc
);
1275 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_CLASS(oc
);
1277 mc
->desc
= "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
1278 mc
->default_cpus
= 2;
1279 mc
->min_cpus
= mc
->default_cpus
;
1280 mc
->max_cpus
= mc
->default_cpus
;
1281 mmc
->fpga_type
= FPGA_AN521
;
1282 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33");
1283 mmc
->scc_id
= 0x41045210;
1284 mmc
->sysclk_frq
= 20 * 1000 * 1000; /* 20MHz */
1285 mmc
->apb_periph_frq
= mmc
->sysclk_frq
;
1286 mmc
->oscclk
= an505_oscclk
; /* AN521 is the same as AN505 here */
1287 mmc
->len_oscclk
= ARRAY_SIZE(an505_oscclk
);
1288 mmc
->fpgaio_num_leds
= 2;
1289 mmc
->fpgaio_has_switches
= false;
1290 mmc
->fpgaio_has_dbgctrl
= false;
1292 mmc
->uart_overflow_irq
= 47;
1293 mmc
->init_svtor
= 0x10000000;
1294 mmc
->sram_addr_width
= 15;
1295 mmc
->raminfo
= an505_raminfo
; /* AN521 is the same as AN505 here */
1296 mmc
->armsse_type
= TYPE_SSE200
;
1297 mmc
->boot_ram_size
= 0;
1298 mps2tz_set_default_ram_info(mmc
);
1301 static void mps3tz_an524_class_init(ObjectClass
*oc
, void *data
)
1303 MachineClass
*mc
= MACHINE_CLASS(oc
);
1304 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_CLASS(oc
);
1306 mc
->desc
= "ARM MPS3 with AN524 FPGA image for dual Cortex-M33";
1307 mc
->default_cpus
= 2;
1308 mc
->min_cpus
= mc
->default_cpus
;
1309 mc
->max_cpus
= mc
->default_cpus
;
1310 mmc
->fpga_type
= FPGA_AN524
;
1311 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33");
1312 mmc
->scc_id
= 0x41045240;
1313 mmc
->sysclk_frq
= 32 * 1000 * 1000; /* 32MHz */
1314 mmc
->apb_periph_frq
= mmc
->sysclk_frq
;
1315 mmc
->oscclk
= an524_oscclk
;
1316 mmc
->len_oscclk
= ARRAY_SIZE(an524_oscclk
);
1317 mmc
->fpgaio_num_leds
= 10;
1318 mmc
->fpgaio_has_switches
= true;
1319 mmc
->fpgaio_has_dbgctrl
= false;
1321 mmc
->uart_overflow_irq
= 47;
1322 mmc
->init_svtor
= 0x10000000;
1323 mmc
->sram_addr_width
= 15;
1324 mmc
->raminfo
= an524_raminfo
;
1325 mmc
->armsse_type
= TYPE_SSE200
;
1326 mmc
->boot_ram_size
= 0;
1327 mps2tz_set_default_ram_info(mmc
);
1329 object_class_property_add_str(oc
, "remap", mps2_get_remap
, mps2_set_remap
);
1330 object_class_property_set_description(oc
, "remap",
1331 "Set memory mapping. Valid values "
1332 "are BRAM (default) and QSPI.");
1335 static void mps3tz_an547_class_init(ObjectClass
*oc
, void *data
)
1337 MachineClass
*mc
= MACHINE_CLASS(oc
);
1338 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_CLASS(oc
);
1340 mc
->desc
= "ARM MPS3 with AN547 FPGA image for Cortex-M55";
1341 mc
->default_cpus
= 1;
1342 mc
->min_cpus
= mc
->default_cpus
;
1343 mc
->max_cpus
= mc
->default_cpus
;
1344 mmc
->fpga_type
= FPGA_AN547
;
1345 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-m55");
1346 mmc
->scc_id
= 0x41055470;
1347 mmc
->sysclk_frq
= 32 * 1000 * 1000; /* 32MHz */
1348 mmc
->apb_periph_frq
= 25 * 1000 * 1000; /* 25MHz */
1349 mmc
->oscclk
= an524_oscclk
; /* same as AN524 */
1350 mmc
->len_oscclk
= ARRAY_SIZE(an524_oscclk
);
1351 mmc
->fpgaio_num_leds
= 10;
1352 mmc
->fpgaio_has_switches
= true;
1353 mmc
->fpgaio_has_dbgctrl
= true;
1355 mmc
->uart_overflow_irq
= 48;
1356 mmc
->init_svtor
= 0x00000000;
1357 mmc
->sram_addr_width
= 21;
1358 mmc
->raminfo
= an547_raminfo
;
1359 mmc
->armsse_type
= TYPE_SSE300
;
1360 mmc
->boot_ram_size
= 512 * KiB
;
1361 mps2tz_set_default_ram_info(mmc
);
1364 static const TypeInfo mps2tz_info
= {
1365 .name
= TYPE_MPS2TZ_MACHINE
,
1366 .parent
= TYPE_MACHINE
,
1368 .instance_size
= sizeof(MPS2TZMachineState
),
1369 .class_size
= sizeof(MPS2TZMachineClass
),
1370 .class_init
= mps2tz_class_init
,
1371 .interfaces
= (InterfaceInfo
[]) {
1372 { TYPE_IDAU_INTERFACE
},
1377 static const TypeInfo mps2tz_an505_info
= {
1378 .name
= TYPE_MPS2TZ_AN505_MACHINE
,
1379 .parent
= TYPE_MPS2TZ_MACHINE
,
1380 .class_init
= mps2tz_an505_class_init
,
1383 static const TypeInfo mps2tz_an521_info
= {
1384 .name
= TYPE_MPS2TZ_AN521_MACHINE
,
1385 .parent
= TYPE_MPS2TZ_MACHINE
,
1386 .class_init
= mps2tz_an521_class_init
,
1389 static const TypeInfo mps3tz_an524_info
= {
1390 .name
= TYPE_MPS3TZ_AN524_MACHINE
,
1391 .parent
= TYPE_MPS2TZ_MACHINE
,
1392 .class_init
= mps3tz_an524_class_init
,
1395 static const TypeInfo mps3tz_an547_info
= {
1396 .name
= TYPE_MPS3TZ_AN547_MACHINE
,
1397 .parent
= TYPE_MPS2TZ_MACHINE
,
1398 .class_init
= mps3tz_an547_class_init
,
1401 static void mps2tz_machine_init(void)
1403 type_register_static(&mps2tz_info
);
1404 type_register_static(&mps2tz_an505_info
);
1405 type_register_static(&mps2tz_an521_info
);
1406 type_register_static(&mps3tz_an524_info
);
1407 type_register_static(&mps3tz_an547_info
);
1410 type_init(mps2tz_machine_init
);