2 * QEMU RISC-V Boot Helper
4 * Copyright (c) 2017 SiFive, Inc.
5 * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/datadir.h"
23 #include "qemu/units.h"
24 #include "qemu/error-report.h"
25 #include "exec/cpu-defs.h"
26 #include "hw/boards.h"
27 #include "hw/loader.h"
28 #include "hw/riscv/boot.h"
29 #include "hw/riscv/boot_opensbi.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/qtest.h"
36 bool riscv_is_32bit(RISCVHartArrayState
*harts
)
38 return riscv_cpu_is_32bit(&harts
->harts
[0].env
);
41 target_ulong
riscv_calc_kernel_start_addr(RISCVHartArrayState
*harts
,
42 target_ulong firmware_end_addr
) {
43 if (riscv_is_32bit(harts
)) {
44 return QEMU_ALIGN_UP(firmware_end_addr
, 4 * MiB
);
46 return QEMU_ALIGN_UP(firmware_end_addr
, 2 * MiB
);
50 target_ulong
riscv_find_and_load_firmware(MachineState
*machine
,
51 const char *default_machine_firmware
,
52 hwaddr firmware_load_addr
,
55 char *firmware_filename
= NULL
;
56 target_ulong firmware_end_addr
= firmware_load_addr
;
58 if ((!machine
->firmware
) || (!strcmp(machine
->firmware
, "default"))) {
60 * The user didn't specify -bios, or has specified "-bios default".
61 * That means we are going to load the OpenSBI binary included in
64 firmware_filename
= riscv_find_firmware(default_machine_firmware
);
65 } else if (strcmp(machine
->firmware
, "none")) {
66 firmware_filename
= riscv_find_firmware(machine
->firmware
);
69 if (firmware_filename
) {
70 /* If not "none" load the firmware */
71 firmware_end_addr
= riscv_load_firmware(firmware_filename
,
72 firmware_load_addr
, sym_cb
);
73 g_free(firmware_filename
);
76 return firmware_end_addr
;
79 char *riscv_find_firmware(const char *firmware_filename
)
83 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, firmware_filename
);
84 if (filename
== NULL
) {
85 if (!qtest_enabled()) {
87 * We only ship plain binary bios images in the QEMU source.
88 * With Spike machine that uses ELF images as the default bios,
89 * running QEMU test will complain hence let's suppress the error
90 * report for QEMU testing.
92 error_report("Unable to load the RISC-V firmware \"%s\"",
101 target_ulong
riscv_load_firmware(const char *firmware_filename
,
102 hwaddr firmware_load_addr
,
105 uint64_t firmware_entry
, firmware_size
, firmware_end
;
107 if (load_elf_ram_sym(firmware_filename
, NULL
, NULL
, NULL
,
108 &firmware_entry
, NULL
, &firmware_end
, NULL
,
109 0, EM_RISCV
, 1, 0, NULL
, true, sym_cb
) > 0) {
113 firmware_size
= load_image_targphys_as(firmware_filename
,
115 current_machine
->ram_size
, NULL
);
117 if (firmware_size
> 0) {
118 return firmware_load_addr
+ firmware_size
;
121 error_report("could not load firmware '%s'", firmware_filename
);
125 target_ulong
riscv_load_kernel(const char *kernel_filename
,
126 target_ulong kernel_start_addr
,
129 uint64_t kernel_entry
;
131 if (load_elf_ram_sym(kernel_filename
, NULL
, NULL
, NULL
,
132 &kernel_entry
, NULL
, NULL
, NULL
, 0,
133 EM_RISCV
, 1, 0, NULL
, true, sym_cb
) > 0) {
137 if (load_uimage_as(kernel_filename
, &kernel_entry
, NULL
, NULL
,
138 NULL
, NULL
, NULL
) > 0) {
142 if (load_image_targphys_as(kernel_filename
, kernel_start_addr
,
143 current_machine
->ram_size
, NULL
) > 0) {
144 return kernel_start_addr
;
147 error_report("could not load kernel '%s'", kernel_filename
);
151 hwaddr
riscv_load_initrd(const char *filename
, uint64_t mem_size
,
152 uint64_t kernel_entry
, hwaddr
*start
)
157 * We want to put the initrd far enough into RAM that when the
158 * kernel is uncompressed it will not clobber the initrd. However
159 * on boards without much RAM we must ensure that we still leave
160 * enough room for a decent sized initrd, and on boards with large
161 * amounts of RAM we must avoid the initrd being so far up in RAM
162 * that it is outside lowmem and inaccessible to the kernel.
163 * So for boards with less than 256MB of RAM we put the initrd
164 * halfway into RAM, and for boards with 256MB of RAM or more we put
165 * the initrd at 128MB.
167 *start
= kernel_entry
+ MIN(mem_size
/ 2, 128 * MiB
);
169 size
= load_ramdisk(filename
, *start
, mem_size
- *start
);
171 size
= load_image_targphys(filename
, *start
, mem_size
- *start
);
173 error_report("could not load ramdisk '%s'", filename
);
178 return *start
+ size
;
181 uint32_t riscv_load_fdt(hwaddr dram_base
, uint64_t mem_size
, void *fdt
)
183 uint32_t temp
, fdt_addr
;
184 hwaddr dram_end
= dram_base
+ mem_size
;
185 int ret
, fdtsize
= fdt_totalsize(fdt
);
188 error_report("invalid device-tree");
193 * We should put fdt as far as possible to avoid kernel/initrd overwriting
194 * its content. But it should be addressable by 32 bit system as well.
195 * Thus, put it at an 16MB aligned address that less than fdt size from the
196 * end of dram or 3GB whichever is lesser.
198 temp
= MIN(dram_end
, 3072 * MiB
);
199 fdt_addr
= QEMU_ALIGN_DOWN(temp
- fdtsize
, 16 * MiB
);
202 /* Should only fail if we've built a corrupted tree */
204 /* copy in the device tree */
205 qemu_fdt_dumpdtb(fdt
, fdtsize
);
207 rom_add_blob_fixed_as("fdt", fdt
, fdtsize
, fdt_addr
,
208 &address_space_memory
);
213 void riscv_rom_copy_firmware_info(MachineState
*machine
, hwaddr rom_base
,
214 hwaddr rom_size
, uint32_t reset_vec_size
,
215 uint64_t kernel_entry
)
217 struct fw_dynamic_info dinfo
;
220 if (sizeof(dinfo
.magic
) == 4) {
221 dinfo
.magic
= cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE
);
222 dinfo
.version
= cpu_to_le32(FW_DYNAMIC_INFO_VERSION
);
223 dinfo
.next_mode
= cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S
);
224 dinfo
.next_addr
= cpu_to_le32(kernel_entry
);
226 dinfo
.magic
= cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE
);
227 dinfo
.version
= cpu_to_le64(FW_DYNAMIC_INFO_VERSION
);
228 dinfo
.next_mode
= cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S
);
229 dinfo
.next_addr
= cpu_to_le64(kernel_entry
);
233 dinfo_len
= sizeof(dinfo
);
236 * copy the dynamic firmware info. This information is specific to
237 * OpenSBI but doesn't break any other firmware as long as they don't
238 * expect any certain value in "a2" register.
240 if (dinfo_len
> (rom_size
- reset_vec_size
)) {
241 error_report("not enough space to store dynamic firmware info");
245 rom_add_blob_fixed_as("mrom.finfo", &dinfo
, dinfo_len
,
246 rom_base
+ reset_vec_size
,
247 &address_space_memory
);
250 void riscv_setup_rom_reset_vec(MachineState
*machine
, RISCVHartArrayState
*harts
,
252 hwaddr rom_base
, hwaddr rom_size
,
253 uint64_t kernel_entry
,
254 uint32_t fdt_load_addr
, void *fdt
)
257 uint32_t start_addr_hi32
= 0x00000000;
259 if (!riscv_is_32bit(harts
)) {
260 start_addr_hi32
= start_addr
>> 32;
263 uint32_t reset_vec
[10] = {
264 0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */
265 0x02828613, /* addi a2, t0, %pcrel_lo(1b) */
266 0xf1402573, /* csrr a0, mhartid */
269 0x00028067, /* jr t0 */
270 start_addr
, /* start: .dword */
272 fdt_load_addr
, /* fdt_laddr: .dword */
276 if (riscv_is_32bit(harts
)) {
277 reset_vec
[3] = 0x0202a583; /* lw a1, 32(t0) */
278 reset_vec
[4] = 0x0182a283; /* lw t0, 24(t0) */
280 reset_vec
[3] = 0x0202b583; /* ld a1, 32(t0) */
281 reset_vec
[4] = 0x0182b283; /* ld t0, 24(t0) */
284 /* copy in the reset vector in little_endian byte order */
285 for (i
= 0; i
< ARRAY_SIZE(reset_vec
); i
++) {
286 reset_vec
[i
] = cpu_to_le32(reset_vec
[i
]);
288 rom_add_blob_fixed_as("mrom.reset", reset_vec
, sizeof(reset_vec
),
289 rom_base
, &address_space_memory
);
290 riscv_rom_copy_firmware_info(machine
, rom_base
, rom_size
, sizeof(reset_vec
),