Merge remote-tracking branch 'remotes/dgilbert-gitlab/tags/pull-migration-20210726a...
[qemu/armbru.git] / target / arm / helper.c
blob0c07ca98376c2c3b19c16210c3bf7b52f7ce452c
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/cpu-timers.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/tcg.h"
30 #include "qemu/range.h"
31 #include "qapi/qapi-commands-machine-target.h"
32 #include "qapi/error.h"
33 #include "qemu/guest-random.h"
34 #ifdef CONFIG_TCG
35 #include "arm_ldst.h"
36 #include "exec/cpu_ldst.h"
37 #include "semihosting/common-semi.h"
38 #endif
40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
41 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */
43 #ifndef CONFIG_USER_ONLY
45 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
46 MMUAccessType access_type, ARMMMUIdx mmu_idx,
47 bool s1_is_el0,
48 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
49 target_ulong *page_size_ptr,
50 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
51 __attribute__((nonnull));
52 #endif
54 static void switch_mode(CPUARMState *env, int mode);
55 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
57 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
59 ARMCPU *cpu = env_archcpu(env);
60 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
62 /* VFP data registers are always little-endian. */
63 if (reg < nregs) {
64 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
66 if (arm_feature(env, ARM_FEATURE_NEON)) {
67 /* Aliases for Q regs. */
68 nregs += 16;
69 if (reg < nregs) {
70 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
71 return gdb_get_reg128(buf, q[0], q[1]);
74 switch (reg - nregs) {
75 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
76 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
77 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
79 return 0;
82 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
84 ARMCPU *cpu = env_archcpu(env);
85 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
87 if (reg < nregs) {
88 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
89 return 8;
91 if (arm_feature(env, ARM_FEATURE_NEON)) {
92 nregs += 16;
93 if (reg < nregs) {
94 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
95 q[0] = ldq_le_p(buf);
96 q[1] = ldq_le_p(buf + 8);
97 return 16;
100 switch (reg - nregs) {
101 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
102 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
103 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
105 return 0;
108 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
110 switch (reg) {
111 case 0 ... 31:
113 /* 128 bit FP register - quads are in LE order */
114 uint64_t *q = aa64_vfp_qreg(env, reg);
115 return gdb_get_reg128(buf, q[1], q[0]);
117 case 32:
118 /* FPSR */
119 return gdb_get_reg32(buf, vfp_get_fpsr(env));
120 case 33:
121 /* FPCR */
122 return gdb_get_reg32(buf,vfp_get_fpcr(env));
123 default:
124 return 0;
128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
130 switch (reg) {
131 case 0 ... 31:
132 /* 128 bit FP register */
134 uint64_t *q = aa64_vfp_qreg(env, reg);
135 q[0] = ldq_le_p(buf);
136 q[1] = ldq_le_p(buf + 8);
137 return 16;
139 case 32:
140 /* FPSR */
141 vfp_set_fpsr(env, ldl_p(buf));
142 return 4;
143 case 33:
144 /* FPCR */
145 vfp_set_fpcr(env, ldl_p(buf));
146 return 4;
147 default:
148 return 0;
152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
154 assert(ri->fieldoffset);
155 if (cpreg_field_is_64bit(ri)) {
156 return CPREG_FIELD64(env, ri);
157 } else {
158 return CPREG_FIELD32(env, ri);
162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
163 uint64_t value)
165 assert(ri->fieldoffset);
166 if (cpreg_field_is_64bit(ri)) {
167 CPREG_FIELD64(env, ri) = value;
168 } else {
169 CPREG_FIELD32(env, ri) = value;
173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
175 return (char *)env + ri->fieldoffset;
178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
180 /* Raw read of a coprocessor register (as needed for migration, etc). */
181 if (ri->type & ARM_CP_CONST) {
182 return ri->resetvalue;
183 } else if (ri->raw_readfn) {
184 return ri->raw_readfn(env, ri);
185 } else if (ri->readfn) {
186 return ri->readfn(env, ri);
187 } else {
188 return raw_read(env, ri);
192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
193 uint64_t v)
195 /* Raw write of a coprocessor register (as needed for migration, etc).
196 * Note that constant registers are treated as write-ignored; the
197 * caller should check for success by whether a readback gives the
198 * value written.
200 if (ri->type & ARM_CP_CONST) {
201 return;
202 } else if (ri->raw_writefn) {
203 ri->raw_writefn(env, ri, v);
204 } else if (ri->writefn) {
205 ri->writefn(env, ri, v);
206 } else {
207 raw_write(env, ri, v);
212 * arm_get/set_gdb_*: get/set a gdb register
213 * @env: the CPU state
214 * @buf: a buffer to copy to/from
215 * @reg: register number (offset from start of group)
217 * We return the number of bytes copied
220 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
222 ARMCPU *cpu = env_archcpu(env);
223 const ARMCPRegInfo *ri;
224 uint32_t key;
226 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
227 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
228 if (ri) {
229 if (cpreg_field_is_64bit(ri)) {
230 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
231 } else {
232 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
235 return 0;
238 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
240 return 0;
243 #ifdef TARGET_AARCH64
244 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
246 ARMCPU *cpu = env_archcpu(env);
248 switch (reg) {
249 /* The first 32 registers are the zregs */
250 case 0 ... 31:
252 int vq, len = 0;
253 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
254 len += gdb_get_reg128(buf,
255 env->vfp.zregs[reg].d[vq * 2 + 1],
256 env->vfp.zregs[reg].d[vq * 2]);
258 return len;
260 case 32:
261 return gdb_get_reg32(buf, vfp_get_fpsr(env));
262 case 33:
263 return gdb_get_reg32(buf, vfp_get_fpcr(env));
264 /* then 16 predicates and the ffr */
265 case 34 ... 50:
267 int preg = reg - 34;
268 int vq, len = 0;
269 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
270 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
272 return len;
274 case 51:
277 * We report in Vector Granules (VG) which is 64bit in a Z reg
278 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
280 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
281 return gdb_get_reg64(buf, vq * 2);
283 default:
284 /* gdbstub asked for something out our range */
285 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
286 break;
289 return 0;
292 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
294 ARMCPU *cpu = env_archcpu(env);
296 /* The first 32 registers are the zregs */
297 switch (reg) {
298 /* The first 32 registers are the zregs */
299 case 0 ... 31:
301 int vq, len = 0;
302 uint64_t *p = (uint64_t *) buf;
303 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
304 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
305 env->vfp.zregs[reg].d[vq * 2] = *p++;
306 len += 16;
308 return len;
310 case 32:
311 vfp_set_fpsr(env, *(uint32_t *)buf);
312 return 4;
313 case 33:
314 vfp_set_fpcr(env, *(uint32_t *)buf);
315 return 4;
316 case 34 ... 50:
318 int preg = reg - 34;
319 int vq, len = 0;
320 uint64_t *p = (uint64_t *) buf;
321 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
322 env->vfp.pregs[preg].p[vq / 4] = *p++;
323 len += 8;
325 return len;
327 case 51:
328 /* cannot set vg via gdbstub */
329 return 0;
330 default:
331 /* gdbstub asked for something out our range */
332 break;
335 return 0;
337 #endif /* TARGET_AARCH64 */
339 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
341 /* Return true if the regdef would cause an assertion if you called
342 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
343 * program bug for it not to have the NO_RAW flag).
344 * NB that returning false here doesn't necessarily mean that calling
345 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
346 * read/write access functions which are safe for raw use" from "has
347 * read/write access functions which have side effects but has forgotten
348 * to provide raw access functions".
349 * The tests here line up with the conditions in read/write_raw_cp_reg()
350 * and assertions in raw_read()/raw_write().
352 if ((ri->type & ARM_CP_CONST) ||
353 ri->fieldoffset ||
354 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
355 return false;
357 return true;
360 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
362 /* Write the coprocessor state from cpu->env to the (index,value) list. */
363 int i;
364 bool ok = true;
366 for (i = 0; i < cpu->cpreg_array_len; i++) {
367 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
368 const ARMCPRegInfo *ri;
369 uint64_t newval;
371 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
372 if (!ri) {
373 ok = false;
374 continue;
376 if (ri->type & ARM_CP_NO_RAW) {
377 continue;
380 newval = read_raw_cp_reg(&cpu->env, ri);
381 if (kvm_sync) {
383 * Only sync if the previous list->cpustate sync succeeded.
384 * Rather than tracking the success/failure state for every
385 * item in the list, we just recheck "does the raw write we must
386 * have made in write_list_to_cpustate() read back OK" here.
388 uint64_t oldval = cpu->cpreg_values[i];
390 if (oldval == newval) {
391 continue;
394 write_raw_cp_reg(&cpu->env, ri, oldval);
395 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
396 continue;
399 write_raw_cp_reg(&cpu->env, ri, newval);
401 cpu->cpreg_values[i] = newval;
403 return ok;
406 bool write_list_to_cpustate(ARMCPU *cpu)
408 int i;
409 bool ok = true;
411 for (i = 0; i < cpu->cpreg_array_len; i++) {
412 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
413 uint64_t v = cpu->cpreg_values[i];
414 const ARMCPRegInfo *ri;
416 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
417 if (!ri) {
418 ok = false;
419 continue;
421 if (ri->type & ARM_CP_NO_RAW) {
422 continue;
424 /* Write value and confirm it reads back as written
425 * (to catch read-only registers and partially read-only
426 * registers where the incoming migration value doesn't match)
428 write_raw_cp_reg(&cpu->env, ri, v);
429 if (read_raw_cp_reg(&cpu->env, ri) != v) {
430 ok = false;
433 return ok;
436 static void add_cpreg_to_list(gpointer key, gpointer opaque)
438 ARMCPU *cpu = opaque;
439 uint64_t regidx;
440 const ARMCPRegInfo *ri;
442 regidx = *(uint32_t *)key;
443 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
445 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
446 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
447 /* The value array need not be initialized at this point */
448 cpu->cpreg_array_len++;
452 static void count_cpreg(gpointer key, gpointer opaque)
454 ARMCPU *cpu = opaque;
455 uint64_t regidx;
456 const ARMCPRegInfo *ri;
458 regidx = *(uint32_t *)key;
459 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
461 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
462 cpu->cpreg_array_len++;
466 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
468 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
469 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
471 if (aidx > bidx) {
472 return 1;
474 if (aidx < bidx) {
475 return -1;
477 return 0;
480 void init_cpreg_list(ARMCPU *cpu)
482 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
483 * Note that we require cpreg_tuples[] to be sorted by key ID.
485 GList *keys;
486 int arraylen;
488 keys = g_hash_table_get_keys(cpu->cp_regs);
489 keys = g_list_sort(keys, cpreg_key_compare);
491 cpu->cpreg_array_len = 0;
493 g_list_foreach(keys, count_cpreg, cpu);
495 arraylen = cpu->cpreg_array_len;
496 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
497 cpu->cpreg_values = g_new(uint64_t, arraylen);
498 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
499 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
500 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
501 cpu->cpreg_array_len = 0;
503 g_list_foreach(keys, add_cpreg_to_list, cpu);
505 assert(cpu->cpreg_array_len == arraylen);
507 g_list_free(keys);
511 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
513 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
514 const ARMCPRegInfo *ri,
515 bool isread)
517 if (!is_a64(env) && arm_current_el(env) == 3 &&
518 arm_is_secure_below_el3(env)) {
519 return CP_ACCESS_TRAP_UNCATEGORIZED;
521 return CP_ACCESS_OK;
524 /* Some secure-only AArch32 registers trap to EL3 if used from
525 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
526 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
527 * We assume that the .access field is set to PL1_RW.
529 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
530 const ARMCPRegInfo *ri,
531 bool isread)
533 if (arm_current_el(env) == 3) {
534 return CP_ACCESS_OK;
536 if (arm_is_secure_below_el3(env)) {
537 if (env->cp15.scr_el3 & SCR_EEL2) {
538 return CP_ACCESS_TRAP_EL2;
540 return CP_ACCESS_TRAP_EL3;
542 /* This will be EL1 NS and EL2 NS, which just UNDEF */
543 return CP_ACCESS_TRAP_UNCATEGORIZED;
546 static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
548 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
551 /* Check for traps to "powerdown debug" registers, which are controlled
552 * by MDCR.TDOSA
554 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
555 bool isread)
557 int el = arm_current_el(env);
558 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
559 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
560 (arm_hcr_el2_eff(env) & HCR_TGE);
562 if (el < 2 && mdcr_el2_tdosa) {
563 return CP_ACCESS_TRAP_EL2;
565 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
566 return CP_ACCESS_TRAP_EL3;
568 return CP_ACCESS_OK;
571 /* Check for traps to "debug ROM" registers, which are controlled
572 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
574 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
575 bool isread)
577 int el = arm_current_el(env);
578 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
579 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
580 (arm_hcr_el2_eff(env) & HCR_TGE);
582 if (el < 2 && mdcr_el2_tdra) {
583 return CP_ACCESS_TRAP_EL2;
585 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
586 return CP_ACCESS_TRAP_EL3;
588 return CP_ACCESS_OK;
591 /* Check for traps to general debug registers, which are controlled
592 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
594 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
595 bool isread)
597 int el = arm_current_el(env);
598 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
599 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
600 (arm_hcr_el2_eff(env) & HCR_TGE);
602 if (el < 2 && mdcr_el2_tda) {
603 return CP_ACCESS_TRAP_EL2;
605 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
606 return CP_ACCESS_TRAP_EL3;
608 return CP_ACCESS_OK;
611 /* Check for traps to performance monitor registers, which are controlled
612 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
614 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
615 bool isread)
617 int el = arm_current_el(env);
618 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
620 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
621 return CP_ACCESS_TRAP_EL2;
623 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
624 return CP_ACCESS_TRAP_EL3;
626 return CP_ACCESS_OK;
629 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
630 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
631 bool isread)
633 if (arm_current_el(env) == 1) {
634 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
635 if (arm_hcr_el2_eff(env) & trap) {
636 return CP_ACCESS_TRAP_EL2;
639 return CP_ACCESS_OK;
642 /* Check for traps from EL1 due to HCR_EL2.TSW. */
643 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
644 bool isread)
646 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
647 return CP_ACCESS_TRAP_EL2;
649 return CP_ACCESS_OK;
652 /* Check for traps from EL1 due to HCR_EL2.TACR. */
653 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
654 bool isread)
656 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
657 return CP_ACCESS_TRAP_EL2;
659 return CP_ACCESS_OK;
662 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
663 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
664 bool isread)
666 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
667 return CP_ACCESS_TRAP_EL2;
669 return CP_ACCESS_OK;
672 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
674 ARMCPU *cpu = env_archcpu(env);
676 raw_write(env, ri, value);
677 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
680 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
682 ARMCPU *cpu = env_archcpu(env);
684 if (raw_read(env, ri) != value) {
685 /* Unlike real hardware the qemu TLB uses virtual addresses,
686 * not modified virtual addresses, so this causes a TLB flush.
688 tlb_flush(CPU(cpu));
689 raw_write(env, ri, value);
693 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
694 uint64_t value)
696 ARMCPU *cpu = env_archcpu(env);
698 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
699 && !extended_addresses_enabled(env)) {
700 /* For VMSA (when not using the LPAE long descriptor page table
701 * format) this register includes the ASID, so do a TLB flush.
702 * For PMSA it is purely a process ID and no action is needed.
704 tlb_flush(CPU(cpu));
706 raw_write(env, ri, value);
709 /* IS variants of TLB operations must affect all cores */
710 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
711 uint64_t value)
713 CPUState *cs = env_cpu(env);
715 tlb_flush_all_cpus_synced(cs);
718 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
719 uint64_t value)
721 CPUState *cs = env_cpu(env);
723 tlb_flush_all_cpus_synced(cs);
726 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
727 uint64_t value)
729 CPUState *cs = env_cpu(env);
731 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
734 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
735 uint64_t value)
737 CPUState *cs = env_cpu(env);
739 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
743 * Non-IS variants of TLB operations are upgraded to
744 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
745 * force broadcast of these operations.
747 static bool tlb_force_broadcast(CPUARMState *env)
749 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
752 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
753 uint64_t value)
755 /* Invalidate all (TLBIALL) */
756 CPUState *cs = env_cpu(env);
758 if (tlb_force_broadcast(env)) {
759 tlb_flush_all_cpus_synced(cs);
760 } else {
761 tlb_flush(cs);
765 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
766 uint64_t value)
768 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
769 CPUState *cs = env_cpu(env);
771 value &= TARGET_PAGE_MASK;
772 if (tlb_force_broadcast(env)) {
773 tlb_flush_page_all_cpus_synced(cs, value);
774 } else {
775 tlb_flush_page(cs, value);
779 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
780 uint64_t value)
782 /* Invalidate by ASID (TLBIASID) */
783 CPUState *cs = env_cpu(env);
785 if (tlb_force_broadcast(env)) {
786 tlb_flush_all_cpus_synced(cs);
787 } else {
788 tlb_flush(cs);
792 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
793 uint64_t value)
795 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
796 CPUState *cs = env_cpu(env);
798 value &= TARGET_PAGE_MASK;
799 if (tlb_force_broadcast(env)) {
800 tlb_flush_page_all_cpus_synced(cs, value);
801 } else {
802 tlb_flush_page(cs, value);
806 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
807 uint64_t value)
809 CPUState *cs = env_cpu(env);
811 tlb_flush_by_mmuidx(cs,
812 ARMMMUIdxBit_E10_1 |
813 ARMMMUIdxBit_E10_1_PAN |
814 ARMMMUIdxBit_E10_0);
817 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
818 uint64_t value)
820 CPUState *cs = env_cpu(env);
822 tlb_flush_by_mmuidx_all_cpus_synced(cs,
823 ARMMMUIdxBit_E10_1 |
824 ARMMMUIdxBit_E10_1_PAN |
825 ARMMMUIdxBit_E10_0);
829 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
830 uint64_t value)
832 CPUState *cs = env_cpu(env);
834 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
837 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
838 uint64_t value)
840 CPUState *cs = env_cpu(env);
842 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
845 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
846 uint64_t value)
848 CPUState *cs = env_cpu(env);
849 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
851 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
854 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
855 uint64_t value)
857 CPUState *cs = env_cpu(env);
858 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
860 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
861 ARMMMUIdxBit_E2);
864 static const ARMCPRegInfo cp_reginfo[] = {
865 /* Define the secure and non-secure FCSE identifier CP registers
866 * separately because there is no secure bank in V8 (no _EL3). This allows
867 * the secure register to be properly reset and migrated. There is also no
868 * v8 EL1 version of the register so the non-secure instance stands alone.
870 { .name = "FCSEIDR",
871 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
872 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
873 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
874 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
875 { .name = "FCSEIDR_S",
876 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
877 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
878 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
879 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
880 /* Define the secure and non-secure context identifier CP registers
881 * separately because there is no secure bank in V8 (no _EL3). This allows
882 * the secure register to be properly reset and migrated. In the
883 * non-secure case, the 32-bit register will have reset and migration
884 * disabled during registration as it is handled by the 64-bit instance.
886 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
887 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
888 .access = PL1_RW, .accessfn = access_tvm_trvm,
889 .secure = ARM_CP_SECSTATE_NS,
890 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
891 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
892 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
893 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
894 .access = PL1_RW, .accessfn = access_tvm_trvm,
895 .secure = ARM_CP_SECSTATE_S,
896 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
897 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
898 REGINFO_SENTINEL
901 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
902 /* NB: Some of these registers exist in v8 but with more precise
903 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
905 /* MMU Domain access control / MPU write buffer control */
906 { .name = "DACR",
907 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
908 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
909 .writefn = dacr_write, .raw_writefn = raw_write,
910 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
911 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
912 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
913 * For v6 and v5, these mappings are overly broad.
915 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
916 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
917 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
918 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
919 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
920 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
921 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
922 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
923 /* Cache maintenance ops; some of this space may be overridden later. */
924 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
925 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
926 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
927 REGINFO_SENTINEL
930 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
931 /* Not all pre-v6 cores implemented this WFI, so this is slightly
932 * over-broad.
934 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
935 .access = PL1_W, .type = ARM_CP_WFI },
936 REGINFO_SENTINEL
939 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
940 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
941 * is UNPREDICTABLE; we choose to NOP as most implementations do).
943 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
944 .access = PL1_W, .type = ARM_CP_WFI },
945 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
946 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
947 * OMAPCP will override this space.
949 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
950 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
951 .resetvalue = 0 },
952 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
953 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
954 .resetvalue = 0 },
955 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
956 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
957 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
958 .resetvalue = 0 },
959 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
960 * implementing it as RAZ means the "debug architecture version" bits
961 * will read as a reserved value, which should cause Linux to not try
962 * to use the debug hardware.
964 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
965 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
966 /* MMU TLB control. Note that the wildcarding means we cover not just
967 * the unified TLB ops but also the dside/iside/inner-shareable variants.
969 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
970 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
971 .type = ARM_CP_NO_RAW },
972 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
973 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
974 .type = ARM_CP_NO_RAW },
975 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
976 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
977 .type = ARM_CP_NO_RAW },
978 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
979 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
980 .type = ARM_CP_NO_RAW },
981 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
982 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
983 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
984 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
985 REGINFO_SENTINEL
988 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
989 uint64_t value)
991 uint32_t mask = 0;
993 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
994 if (!arm_feature(env, ARM_FEATURE_V8)) {
995 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
996 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
997 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
999 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
1000 /* VFP coprocessor: cp10 & cp11 [23:20] */
1001 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
1003 if (!arm_feature(env, ARM_FEATURE_NEON)) {
1004 /* ASEDIS [31] bit is RAO/WI */
1005 value |= (1 << 31);
1008 /* VFPv3 and upwards with NEON implement 32 double precision
1009 * registers (D0-D31).
1011 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
1012 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
1013 value |= (1 << 30);
1016 value &= mask;
1020 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1021 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1023 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1024 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1025 value &= ~(0xf << 20);
1026 value |= env->cp15.cpacr_el1 & (0xf << 20);
1029 env->cp15.cpacr_el1 = value;
1032 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1035 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1036 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1038 uint64_t value = env->cp15.cpacr_el1;
1040 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1041 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1042 value &= ~(0xf << 20);
1044 return value;
1048 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1050 /* Call cpacr_write() so that we reset with the correct RAO bits set
1051 * for our CPU features.
1053 cpacr_write(env, ri, 0);
1056 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1057 bool isread)
1059 if (arm_feature(env, ARM_FEATURE_V8)) {
1060 /* Check if CPACR accesses are to be trapped to EL2 */
1061 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
1062 (env->cp15.cptr_el[2] & CPTR_TCPAC)) {
1063 return CP_ACCESS_TRAP_EL2;
1064 /* Check if CPACR accesses are to be trapped to EL3 */
1065 } else if (arm_current_el(env) < 3 &&
1066 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1067 return CP_ACCESS_TRAP_EL3;
1071 return CP_ACCESS_OK;
1074 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1075 bool isread)
1077 /* Check if CPTR accesses are set to trap to EL3 */
1078 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1079 return CP_ACCESS_TRAP_EL3;
1082 return CP_ACCESS_OK;
1085 static const ARMCPRegInfo v6_cp_reginfo[] = {
1086 /* prefetch by MVA in v6, NOP in v7 */
1087 { .name = "MVA_prefetch",
1088 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
1089 .access = PL1_W, .type = ARM_CP_NOP },
1090 /* We need to break the TB after ISB to execute self-modifying code
1091 * correctly and also to take any pending interrupts immediately.
1092 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
1094 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
1095 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
1096 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
1097 .access = PL0_W, .type = ARM_CP_NOP },
1098 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
1099 .access = PL0_W, .type = ARM_CP_NOP },
1100 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
1101 .access = PL1_RW, .accessfn = access_tvm_trvm,
1102 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1103 offsetof(CPUARMState, cp15.ifar_ns) },
1104 .resetvalue = 0, },
1105 /* Watchpoint Fault Address Register : should actually only be present
1106 * for 1136, 1176, 11MPCore.
1108 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1109 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1110 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1111 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1112 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1113 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1114 REGINFO_SENTINEL
1117 /* Definitions for the PMU registers */
1118 #define PMCRN_MASK 0xf800
1119 #define PMCRN_SHIFT 11
1120 #define PMCRLC 0x40
1121 #define PMCRDP 0x20
1122 #define PMCRX 0x10
1123 #define PMCRD 0x8
1124 #define PMCRC 0x4
1125 #define PMCRP 0x2
1126 #define PMCRE 0x1
1128 * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1129 * which can be written as 1 to trigger behaviour but which stay RAZ).
1131 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1133 #define PMXEVTYPER_P 0x80000000
1134 #define PMXEVTYPER_U 0x40000000
1135 #define PMXEVTYPER_NSK 0x20000000
1136 #define PMXEVTYPER_NSU 0x10000000
1137 #define PMXEVTYPER_NSH 0x08000000
1138 #define PMXEVTYPER_M 0x04000000
1139 #define PMXEVTYPER_MT 0x02000000
1140 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1141 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1142 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1143 PMXEVTYPER_M | PMXEVTYPER_MT | \
1144 PMXEVTYPER_EVTCOUNT)
1146 #define PMCCFILTR 0xf8000000
1147 #define PMCCFILTR_M PMXEVTYPER_M
1148 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1150 static inline uint32_t pmu_num_counters(CPUARMState *env)
1152 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1155 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1156 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1158 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1161 typedef struct pm_event {
1162 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1163 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1164 bool (*supported)(CPUARMState *);
1166 * Retrieve the current count of the underlying event. The programmed
1167 * counters hold a difference from the return value from this function
1169 uint64_t (*get_count)(CPUARMState *);
1171 * Return how many nanoseconds it will take (at a minimum) for count events
1172 * to occur. A negative value indicates the counter will never overflow, or
1173 * that the counter has otherwise arranged for the overflow bit to be set
1174 * and the PMU interrupt to be raised on overflow.
1176 int64_t (*ns_per_count)(uint64_t);
1177 } pm_event;
1179 static bool event_always_supported(CPUARMState *env)
1181 return true;
1184 static uint64_t swinc_get_count(CPUARMState *env)
1187 * SW_INCR events are written directly to the pmevcntr's by writes to
1188 * PMSWINC, so there is no underlying count maintained by the PMU itself
1190 return 0;
1193 static int64_t swinc_ns_per(uint64_t ignored)
1195 return -1;
1199 * Return the underlying cycle count for the PMU cycle counters. If we're in
1200 * usermode, simply return 0.
1202 static uint64_t cycles_get_count(CPUARMState *env)
1204 #ifndef CONFIG_USER_ONLY
1205 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1206 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1207 #else
1208 return cpu_get_host_ticks();
1209 #endif
1212 #ifndef CONFIG_USER_ONLY
1213 static int64_t cycles_ns_per(uint64_t cycles)
1215 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1218 static bool instructions_supported(CPUARMState *env)
1220 return icount_enabled() == 1; /* Precise instruction counting */
1223 static uint64_t instructions_get_count(CPUARMState *env)
1225 return (uint64_t)icount_get_raw();
1228 static int64_t instructions_ns_per(uint64_t icount)
1230 return icount_to_ns((int64_t)icount);
1232 #endif
1234 static bool pmu_8_1_events_supported(CPUARMState *env)
1236 /* For events which are supported in any v8.1 PMU */
1237 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1240 static bool pmu_8_4_events_supported(CPUARMState *env)
1242 /* For events which are supported in any v8.1 PMU */
1243 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1246 static uint64_t zero_event_get_count(CPUARMState *env)
1248 /* For events which on QEMU never fire, so their count is always zero */
1249 return 0;
1252 static int64_t zero_event_ns_per(uint64_t cycles)
1254 /* An event which never fires can never overflow */
1255 return -1;
1258 static const pm_event pm_events[] = {
1259 { .number = 0x000, /* SW_INCR */
1260 .supported = event_always_supported,
1261 .get_count = swinc_get_count,
1262 .ns_per_count = swinc_ns_per,
1264 #ifndef CONFIG_USER_ONLY
1265 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1266 .supported = instructions_supported,
1267 .get_count = instructions_get_count,
1268 .ns_per_count = instructions_ns_per,
1270 { .number = 0x011, /* CPU_CYCLES, Cycle */
1271 .supported = event_always_supported,
1272 .get_count = cycles_get_count,
1273 .ns_per_count = cycles_ns_per,
1275 #endif
1276 { .number = 0x023, /* STALL_FRONTEND */
1277 .supported = pmu_8_1_events_supported,
1278 .get_count = zero_event_get_count,
1279 .ns_per_count = zero_event_ns_per,
1281 { .number = 0x024, /* STALL_BACKEND */
1282 .supported = pmu_8_1_events_supported,
1283 .get_count = zero_event_get_count,
1284 .ns_per_count = zero_event_ns_per,
1286 { .number = 0x03c, /* STALL */
1287 .supported = pmu_8_4_events_supported,
1288 .get_count = zero_event_get_count,
1289 .ns_per_count = zero_event_ns_per,
1294 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1295 * events (i.e. the statistical profiling extension), this implementation
1296 * should first be updated to something sparse instead of the current
1297 * supported_event_map[] array.
1299 #define MAX_EVENT_ID 0x3c
1300 #define UNSUPPORTED_EVENT UINT16_MAX
1301 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1304 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1305 * of ARM event numbers to indices in our pm_events array.
1307 * Note: Events in the 0x40XX range are not currently supported.
1309 void pmu_init(ARMCPU *cpu)
1311 unsigned int i;
1314 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1315 * events to them
1317 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1318 supported_event_map[i] = UNSUPPORTED_EVENT;
1320 cpu->pmceid0 = 0;
1321 cpu->pmceid1 = 0;
1323 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1324 const pm_event *cnt = &pm_events[i];
1325 assert(cnt->number <= MAX_EVENT_ID);
1326 /* We do not currently support events in the 0x40xx range */
1327 assert(cnt->number <= 0x3f);
1329 if (cnt->supported(&cpu->env)) {
1330 supported_event_map[cnt->number] = i;
1331 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1332 if (cnt->number & 0x20) {
1333 cpu->pmceid1 |= event_mask;
1334 } else {
1335 cpu->pmceid0 |= event_mask;
1342 * Check at runtime whether a PMU event is supported for the current machine
1344 static bool event_supported(uint16_t number)
1346 if (number > MAX_EVENT_ID) {
1347 return false;
1349 return supported_event_map[number] != UNSUPPORTED_EVENT;
1352 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1353 bool isread)
1355 /* Performance monitor registers user accessibility is controlled
1356 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1357 * trapping to EL2 or EL3 for other accesses.
1359 int el = arm_current_el(env);
1360 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1362 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1363 return CP_ACCESS_TRAP;
1365 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1366 return CP_ACCESS_TRAP_EL2;
1368 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1369 return CP_ACCESS_TRAP_EL3;
1372 return CP_ACCESS_OK;
1375 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1376 const ARMCPRegInfo *ri,
1377 bool isread)
1379 /* ER: event counter read trap control */
1380 if (arm_feature(env, ARM_FEATURE_V8)
1381 && arm_current_el(env) == 0
1382 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1383 && isread) {
1384 return CP_ACCESS_OK;
1387 return pmreg_access(env, ri, isread);
1390 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1391 const ARMCPRegInfo *ri,
1392 bool isread)
1394 /* SW: software increment write trap control */
1395 if (arm_feature(env, ARM_FEATURE_V8)
1396 && arm_current_el(env) == 0
1397 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1398 && !isread) {
1399 return CP_ACCESS_OK;
1402 return pmreg_access(env, ri, isread);
1405 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1406 const ARMCPRegInfo *ri,
1407 bool isread)
1409 /* ER: event counter read trap control */
1410 if (arm_feature(env, ARM_FEATURE_V8)
1411 && arm_current_el(env) == 0
1412 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1413 return CP_ACCESS_OK;
1416 return pmreg_access(env, ri, isread);
1419 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1420 const ARMCPRegInfo *ri,
1421 bool isread)
1423 /* CR: cycle counter read trap control */
1424 if (arm_feature(env, ARM_FEATURE_V8)
1425 && arm_current_el(env) == 0
1426 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1427 && isread) {
1428 return CP_ACCESS_OK;
1431 return pmreg_access(env, ri, isread);
1434 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1435 * the current EL, security state, and register configuration.
1437 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1439 uint64_t filter;
1440 bool e, p, u, nsk, nsu, nsh, m;
1441 bool enabled, prohibited, filtered;
1442 bool secure = arm_is_secure(env);
1443 int el = arm_current_el(env);
1444 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1445 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1447 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1448 return false;
1451 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1452 (counter < hpmn || counter == 31)) {
1453 e = env->cp15.c9_pmcr & PMCRE;
1454 } else {
1455 e = mdcr_el2 & MDCR_HPME;
1457 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1459 if (!secure) {
1460 if (el == 2 && (counter < hpmn || counter == 31)) {
1461 prohibited = mdcr_el2 & MDCR_HPMD;
1462 } else {
1463 prohibited = false;
1465 } else {
1466 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1467 !(env->cp15.mdcr_el3 & MDCR_SPME);
1470 if (prohibited && counter == 31) {
1471 prohibited = env->cp15.c9_pmcr & PMCRDP;
1474 if (counter == 31) {
1475 filter = env->cp15.pmccfiltr_el0;
1476 } else {
1477 filter = env->cp15.c14_pmevtyper[counter];
1480 p = filter & PMXEVTYPER_P;
1481 u = filter & PMXEVTYPER_U;
1482 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1483 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1484 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1485 m = arm_el_is_aa64(env, 1) &&
1486 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1488 if (el == 0) {
1489 filtered = secure ? u : u != nsu;
1490 } else if (el == 1) {
1491 filtered = secure ? p : p != nsk;
1492 } else if (el == 2) {
1493 filtered = !nsh;
1494 } else { /* EL3 */
1495 filtered = m != p;
1498 if (counter != 31) {
1500 * If not checking PMCCNTR, ensure the counter is setup to an event we
1501 * support
1503 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1504 if (!event_supported(event)) {
1505 return false;
1509 return enabled && !prohibited && !filtered;
1512 static void pmu_update_irq(CPUARMState *env)
1514 ARMCPU *cpu = env_archcpu(env);
1515 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1516 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1520 * Ensure c15_ccnt is the guest-visible count so that operations such as
1521 * enabling/disabling the counter or filtering, modifying the count itself,
1522 * etc. can be done logically. This is essentially a no-op if the counter is
1523 * not enabled at the time of the call.
1525 static void pmccntr_op_start(CPUARMState *env)
1527 uint64_t cycles = cycles_get_count(env);
1529 if (pmu_counter_enabled(env, 31)) {
1530 uint64_t eff_cycles = cycles;
1531 if (env->cp15.c9_pmcr & PMCRD) {
1532 /* Increment once every 64 processor clock cycles */
1533 eff_cycles /= 64;
1536 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1538 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1539 1ull << 63 : 1ull << 31;
1540 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1541 env->cp15.c9_pmovsr |= (1 << 31);
1542 pmu_update_irq(env);
1545 env->cp15.c15_ccnt = new_pmccntr;
1547 env->cp15.c15_ccnt_delta = cycles;
1551 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1552 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1553 * pmccntr_op_start.
1555 static void pmccntr_op_finish(CPUARMState *env)
1557 if (pmu_counter_enabled(env, 31)) {
1558 #ifndef CONFIG_USER_ONLY
1559 /* Calculate when the counter will next overflow */
1560 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1561 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1562 remaining_cycles = (uint32_t)remaining_cycles;
1564 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1566 if (overflow_in > 0) {
1567 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1568 overflow_in;
1569 ARMCPU *cpu = env_archcpu(env);
1570 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1572 #endif
1574 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1575 if (env->cp15.c9_pmcr & PMCRD) {
1576 /* Increment once every 64 processor clock cycles */
1577 prev_cycles /= 64;
1579 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1583 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1586 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1587 uint64_t count = 0;
1588 if (event_supported(event)) {
1589 uint16_t event_idx = supported_event_map[event];
1590 count = pm_events[event_idx].get_count(env);
1593 if (pmu_counter_enabled(env, counter)) {
1594 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1596 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1597 env->cp15.c9_pmovsr |= (1 << counter);
1598 pmu_update_irq(env);
1600 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1602 env->cp15.c14_pmevcntr_delta[counter] = count;
1605 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1607 if (pmu_counter_enabled(env, counter)) {
1608 #ifndef CONFIG_USER_ONLY
1609 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1610 uint16_t event_idx = supported_event_map[event];
1611 uint64_t delta = UINT32_MAX -
1612 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1613 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1615 if (overflow_in > 0) {
1616 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1617 overflow_in;
1618 ARMCPU *cpu = env_archcpu(env);
1619 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1621 #endif
1623 env->cp15.c14_pmevcntr_delta[counter] -=
1624 env->cp15.c14_pmevcntr[counter];
1628 void pmu_op_start(CPUARMState *env)
1630 unsigned int i;
1631 pmccntr_op_start(env);
1632 for (i = 0; i < pmu_num_counters(env); i++) {
1633 pmevcntr_op_start(env, i);
1637 void pmu_op_finish(CPUARMState *env)
1639 unsigned int i;
1640 pmccntr_op_finish(env);
1641 for (i = 0; i < pmu_num_counters(env); i++) {
1642 pmevcntr_op_finish(env, i);
1646 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1648 pmu_op_start(&cpu->env);
1651 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1653 pmu_op_finish(&cpu->env);
1656 void arm_pmu_timer_cb(void *opaque)
1658 ARMCPU *cpu = opaque;
1661 * Update all the counter values based on the current underlying counts,
1662 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1663 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1664 * counter may expire.
1666 pmu_op_start(&cpu->env);
1667 pmu_op_finish(&cpu->env);
1670 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1671 uint64_t value)
1673 pmu_op_start(env);
1675 if (value & PMCRC) {
1676 /* The counter has been reset */
1677 env->cp15.c15_ccnt = 0;
1680 if (value & PMCRP) {
1681 unsigned int i;
1682 for (i = 0; i < pmu_num_counters(env); i++) {
1683 env->cp15.c14_pmevcntr[i] = 0;
1687 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1688 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1690 pmu_op_finish(env);
1693 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1694 uint64_t value)
1696 unsigned int i;
1697 for (i = 0; i < pmu_num_counters(env); i++) {
1698 /* Increment a counter's count iff: */
1699 if ((value & (1 << i)) && /* counter's bit is set */
1700 /* counter is enabled and not filtered */
1701 pmu_counter_enabled(env, i) &&
1702 /* counter is SW_INCR */
1703 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1704 pmevcntr_op_start(env, i);
1707 * Detect if this write causes an overflow since we can't predict
1708 * PMSWINC overflows like we can for other events
1710 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1712 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1713 env->cp15.c9_pmovsr |= (1 << i);
1714 pmu_update_irq(env);
1717 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1719 pmevcntr_op_finish(env, i);
1724 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1726 uint64_t ret;
1727 pmccntr_op_start(env);
1728 ret = env->cp15.c15_ccnt;
1729 pmccntr_op_finish(env);
1730 return ret;
1733 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734 uint64_t value)
1736 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1737 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1738 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1739 * accessed.
1741 env->cp15.c9_pmselr = value & 0x1f;
1744 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1745 uint64_t value)
1747 pmccntr_op_start(env);
1748 env->cp15.c15_ccnt = value;
1749 pmccntr_op_finish(env);
1752 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1753 uint64_t value)
1755 uint64_t cur_val = pmccntr_read(env, NULL);
1757 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1760 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1761 uint64_t value)
1763 pmccntr_op_start(env);
1764 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1765 pmccntr_op_finish(env);
1768 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1769 uint64_t value)
1771 pmccntr_op_start(env);
1772 /* M is not accessible from AArch32 */
1773 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1774 (value & PMCCFILTR);
1775 pmccntr_op_finish(env);
1778 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1780 /* M is not visible in AArch32 */
1781 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1784 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1785 uint64_t value)
1787 value &= pmu_counter_mask(env);
1788 env->cp15.c9_pmcnten |= value;
1791 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792 uint64_t value)
1794 value &= pmu_counter_mask(env);
1795 env->cp15.c9_pmcnten &= ~value;
1798 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1799 uint64_t value)
1801 value &= pmu_counter_mask(env);
1802 env->cp15.c9_pmovsr &= ~value;
1803 pmu_update_irq(env);
1806 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807 uint64_t value)
1809 value &= pmu_counter_mask(env);
1810 env->cp15.c9_pmovsr |= value;
1811 pmu_update_irq(env);
1814 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815 uint64_t value, const uint8_t counter)
1817 if (counter == 31) {
1818 pmccfiltr_write(env, ri, value);
1819 } else if (counter < pmu_num_counters(env)) {
1820 pmevcntr_op_start(env, counter);
1823 * If this counter's event type is changing, store the current
1824 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1825 * pmevcntr_op_finish has the correct baseline when it converts back to
1826 * a delta.
1828 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1829 PMXEVTYPER_EVTCOUNT;
1830 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1831 if (old_event != new_event) {
1832 uint64_t count = 0;
1833 if (event_supported(new_event)) {
1834 uint16_t event_idx = supported_event_map[new_event];
1835 count = pm_events[event_idx].get_count(env);
1837 env->cp15.c14_pmevcntr_delta[counter] = count;
1840 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1841 pmevcntr_op_finish(env, counter);
1843 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1844 * PMSELR value is equal to or greater than the number of implemented
1845 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1849 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1850 const uint8_t counter)
1852 if (counter == 31) {
1853 return env->cp15.pmccfiltr_el0;
1854 } else if (counter < pmu_num_counters(env)) {
1855 return env->cp15.c14_pmevtyper[counter];
1856 } else {
1858 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1859 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1861 return 0;
1865 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1866 uint64_t value)
1868 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1869 pmevtyper_write(env, ri, value, counter);
1872 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1873 uint64_t value)
1875 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1876 env->cp15.c14_pmevtyper[counter] = value;
1879 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1880 * pmu_op_finish calls when loading saved state for a migration. Because
1881 * we're potentially updating the type of event here, the value written to
1882 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1883 * different counter type. Therefore, we need to set this value to the
1884 * current count for the counter type we're writing so that pmu_op_finish
1885 * has the correct count for its calculation.
1887 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1888 if (event_supported(event)) {
1889 uint16_t event_idx = supported_event_map[event];
1890 env->cp15.c14_pmevcntr_delta[counter] =
1891 pm_events[event_idx].get_count(env);
1895 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1897 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1898 return pmevtyper_read(env, ri, counter);
1901 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1902 uint64_t value)
1904 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1907 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1909 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1912 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1913 uint64_t value, uint8_t counter)
1915 if (counter < pmu_num_counters(env)) {
1916 pmevcntr_op_start(env, counter);
1917 env->cp15.c14_pmevcntr[counter] = value;
1918 pmevcntr_op_finish(env, counter);
1921 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1922 * are CONSTRAINED UNPREDICTABLE.
1926 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1927 uint8_t counter)
1929 if (counter < pmu_num_counters(env)) {
1930 uint64_t ret;
1931 pmevcntr_op_start(env, counter);
1932 ret = env->cp15.c14_pmevcntr[counter];
1933 pmevcntr_op_finish(env, counter);
1934 return ret;
1935 } else {
1936 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1937 * are CONSTRAINED UNPREDICTABLE. */
1938 return 0;
1942 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1943 uint64_t value)
1945 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1946 pmevcntr_write(env, ri, value, counter);
1949 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1951 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1952 return pmevcntr_read(env, ri, counter);
1955 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1956 uint64_t value)
1958 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1959 assert(counter < pmu_num_counters(env));
1960 env->cp15.c14_pmevcntr[counter] = value;
1961 pmevcntr_write(env, ri, value, counter);
1964 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1966 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1967 assert(counter < pmu_num_counters(env));
1968 return env->cp15.c14_pmevcntr[counter];
1971 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1972 uint64_t value)
1974 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1977 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1979 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1982 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1983 uint64_t value)
1985 if (arm_feature(env, ARM_FEATURE_V8)) {
1986 env->cp15.c9_pmuserenr = value & 0xf;
1987 } else {
1988 env->cp15.c9_pmuserenr = value & 1;
1992 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1993 uint64_t value)
1995 /* We have no event counters so only the C bit can be changed */
1996 value &= pmu_counter_mask(env);
1997 env->cp15.c9_pminten |= value;
1998 pmu_update_irq(env);
2001 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2002 uint64_t value)
2004 value &= pmu_counter_mask(env);
2005 env->cp15.c9_pminten &= ~value;
2006 pmu_update_irq(env);
2009 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2010 uint64_t value)
2012 /* Note that even though the AArch64 view of this register has bits
2013 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
2014 * architectural requirements for bits which are RES0 only in some
2015 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
2016 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
2018 raw_write(env, ri, value & ~0x1FULL);
2021 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2023 /* Begin with base v8.0 state. */
2024 uint32_t valid_mask = 0x3fff;
2025 ARMCPU *cpu = env_archcpu(env);
2027 if (ri->state == ARM_CP_STATE_AA64) {
2028 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
2029 !cpu_isar_feature(aa64_aa32_el1, cpu)) {
2030 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
2032 valid_mask &= ~SCR_NET;
2034 if (cpu_isar_feature(aa64_lor, cpu)) {
2035 valid_mask |= SCR_TLOR;
2037 if (cpu_isar_feature(aa64_pauth, cpu)) {
2038 valid_mask |= SCR_API | SCR_APK;
2040 if (cpu_isar_feature(aa64_sel2, cpu)) {
2041 valid_mask |= SCR_EEL2;
2043 if (cpu_isar_feature(aa64_mte, cpu)) {
2044 valid_mask |= SCR_ATA;
2046 } else {
2047 valid_mask &= ~(SCR_RW | SCR_ST);
2050 if (!arm_feature(env, ARM_FEATURE_EL2)) {
2051 valid_mask &= ~SCR_HCE;
2053 /* On ARMv7, SMD (or SCD as it is called in v7) is only
2054 * supported if EL2 exists. The bit is UNK/SBZP when
2055 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
2056 * when EL2 is unavailable.
2057 * On ARMv8, this bit is always available.
2059 if (arm_feature(env, ARM_FEATURE_V7) &&
2060 !arm_feature(env, ARM_FEATURE_V8)) {
2061 valid_mask &= ~SCR_SMD;
2065 /* Clear all-context RES0 bits. */
2066 value &= valid_mask;
2067 raw_write(env, ri, value);
2070 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2073 * scr_write will set the RES1 bits on an AArch64-only CPU.
2074 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
2076 scr_write(env, ri, 0);
2079 static CPAccessResult access_aa64_tid2(CPUARMState *env,
2080 const ARMCPRegInfo *ri,
2081 bool isread)
2083 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
2084 return CP_ACCESS_TRAP_EL2;
2087 return CP_ACCESS_OK;
2090 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2092 ARMCPU *cpu = env_archcpu(env);
2094 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
2095 * bank
2097 uint32_t index = A32_BANKED_REG_GET(env, csselr,
2098 ri->secure & ARM_CP_SECSTATE_S);
2100 return cpu->ccsidr[index];
2103 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2104 uint64_t value)
2106 raw_write(env, ri, value & 0xf);
2109 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2111 CPUState *cs = env_cpu(env);
2112 bool el1 = arm_current_el(env) == 1;
2113 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2114 uint64_t ret = 0;
2116 if (hcr_el2 & HCR_IMO) {
2117 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2118 ret |= CPSR_I;
2120 } else {
2121 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2122 ret |= CPSR_I;
2126 if (hcr_el2 & HCR_FMO) {
2127 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2128 ret |= CPSR_F;
2130 } else {
2131 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2132 ret |= CPSR_F;
2136 /* External aborts are not possible in QEMU so A bit is always clear */
2137 return ret;
2140 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2141 bool isread)
2143 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2144 return CP_ACCESS_TRAP_EL2;
2147 return CP_ACCESS_OK;
2150 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2151 bool isread)
2153 if (arm_feature(env, ARM_FEATURE_V8)) {
2154 return access_aa64_tid1(env, ri, isread);
2157 return CP_ACCESS_OK;
2160 static const ARMCPRegInfo v7_cp_reginfo[] = {
2161 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2162 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2163 .access = PL1_W, .type = ARM_CP_NOP },
2164 /* Performance monitors are implementation defined in v7,
2165 * but with an ARM recommended set of registers, which we
2166 * follow.
2168 * Performance registers fall into three categories:
2169 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2170 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2171 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2172 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2173 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2175 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2176 .access = PL0_RW, .type = ARM_CP_ALIAS,
2177 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2178 .writefn = pmcntenset_write,
2179 .accessfn = pmreg_access,
2180 .raw_writefn = raw_write },
2181 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2182 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2183 .access = PL0_RW, .accessfn = pmreg_access,
2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2185 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2186 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2187 .access = PL0_RW,
2188 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2189 .accessfn = pmreg_access,
2190 .writefn = pmcntenclr_write,
2191 .type = ARM_CP_ALIAS },
2192 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2193 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2194 .access = PL0_RW, .accessfn = pmreg_access,
2195 .type = ARM_CP_ALIAS,
2196 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2197 .writefn = pmcntenclr_write },
2198 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2199 .access = PL0_RW, .type = ARM_CP_IO,
2200 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2201 .accessfn = pmreg_access,
2202 .writefn = pmovsr_write,
2203 .raw_writefn = raw_write },
2204 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2205 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2206 .access = PL0_RW, .accessfn = pmreg_access,
2207 .type = ARM_CP_ALIAS | ARM_CP_IO,
2208 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2209 .writefn = pmovsr_write,
2210 .raw_writefn = raw_write },
2211 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2212 .access = PL0_W, .accessfn = pmreg_access_swinc,
2213 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2214 .writefn = pmswinc_write },
2215 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2216 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2217 .access = PL0_W, .accessfn = pmreg_access_swinc,
2218 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2219 .writefn = pmswinc_write },
2220 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2221 .access = PL0_RW, .type = ARM_CP_ALIAS,
2222 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2223 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2224 .raw_writefn = raw_write},
2225 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2226 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2227 .access = PL0_RW, .accessfn = pmreg_access_selr,
2228 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2229 .writefn = pmselr_write, .raw_writefn = raw_write, },
2230 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2231 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2232 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2233 .accessfn = pmreg_access_ccntr },
2234 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2235 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2236 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2237 .type = ARM_CP_IO,
2238 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2239 .readfn = pmccntr_read, .writefn = pmccntr_write,
2240 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2241 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2242 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2243 .access = PL0_RW, .accessfn = pmreg_access,
2244 .type = ARM_CP_ALIAS | ARM_CP_IO,
2245 .resetvalue = 0, },
2246 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2247 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2248 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2249 .access = PL0_RW, .accessfn = pmreg_access,
2250 .type = ARM_CP_IO,
2251 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2252 .resetvalue = 0, },
2253 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2254 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2255 .accessfn = pmreg_access,
2256 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2257 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2258 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2259 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2260 .accessfn = pmreg_access,
2261 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2262 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2263 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2264 .accessfn = pmreg_access_xevcntr,
2265 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2266 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2267 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2268 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2269 .accessfn = pmreg_access_xevcntr,
2270 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2271 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2272 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2273 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2274 .resetvalue = 0,
2275 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2276 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2277 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2278 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2279 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2280 .resetvalue = 0,
2281 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2282 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2283 .access = PL1_RW, .accessfn = access_tpm,
2284 .type = ARM_CP_ALIAS | ARM_CP_IO,
2285 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2286 .resetvalue = 0,
2287 .writefn = pmintenset_write, .raw_writefn = raw_write },
2288 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2289 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2290 .access = PL1_RW, .accessfn = access_tpm,
2291 .type = ARM_CP_IO,
2292 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2293 .writefn = pmintenset_write, .raw_writefn = raw_write,
2294 .resetvalue = 0x0 },
2295 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2296 .access = PL1_RW, .accessfn = access_tpm,
2297 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2298 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2299 .writefn = pmintenclr_write, },
2300 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2301 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2302 .access = PL1_RW, .accessfn = access_tpm,
2303 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2304 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2305 .writefn = pmintenclr_write },
2306 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2307 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2308 .access = PL1_R,
2309 .accessfn = access_aa64_tid2,
2310 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2311 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2312 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2313 .access = PL1_RW,
2314 .accessfn = access_aa64_tid2,
2315 .writefn = csselr_write, .resetvalue = 0,
2316 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2317 offsetof(CPUARMState, cp15.csselr_ns) } },
2318 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2319 * just RAZ for all cores:
2321 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2322 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2323 .access = PL1_R, .type = ARM_CP_CONST,
2324 .accessfn = access_aa64_tid1,
2325 .resetvalue = 0 },
2326 /* Auxiliary fault status registers: these also are IMPDEF, and we
2327 * choose to RAZ/WI for all cores.
2329 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2330 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2331 .access = PL1_RW, .accessfn = access_tvm_trvm,
2332 .type = ARM_CP_CONST, .resetvalue = 0 },
2333 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2334 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2335 .access = PL1_RW, .accessfn = access_tvm_trvm,
2336 .type = ARM_CP_CONST, .resetvalue = 0 },
2337 /* MAIR can just read-as-written because we don't implement caches
2338 * and so don't need to care about memory attributes.
2340 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2341 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2342 .access = PL1_RW, .accessfn = access_tvm_trvm,
2343 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2344 .resetvalue = 0 },
2345 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2346 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2347 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2348 .resetvalue = 0 },
2349 /* For non-long-descriptor page tables these are PRRR and NMRR;
2350 * regardless they still act as reads-as-written for QEMU.
2352 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2353 * allows them to assign the correct fieldoffset based on the endianness
2354 * handled in the field definitions.
2356 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2357 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2358 .access = PL1_RW, .accessfn = access_tvm_trvm,
2359 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2360 offsetof(CPUARMState, cp15.mair0_ns) },
2361 .resetfn = arm_cp_reset_ignore },
2362 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2363 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2364 .access = PL1_RW, .accessfn = access_tvm_trvm,
2365 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2366 offsetof(CPUARMState, cp15.mair1_ns) },
2367 .resetfn = arm_cp_reset_ignore },
2368 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2369 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2370 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2371 /* 32 bit ITLB invalidates */
2372 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2373 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2374 .writefn = tlbiall_write },
2375 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2376 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2377 .writefn = tlbimva_write },
2378 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2379 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2380 .writefn = tlbiasid_write },
2381 /* 32 bit DTLB invalidates */
2382 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2383 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2384 .writefn = tlbiall_write },
2385 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2386 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2387 .writefn = tlbimva_write },
2388 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2389 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2390 .writefn = tlbiasid_write },
2391 /* 32 bit TLB invalidates */
2392 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2393 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2394 .writefn = tlbiall_write },
2395 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2396 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2397 .writefn = tlbimva_write },
2398 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2399 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2400 .writefn = tlbiasid_write },
2401 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2402 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2403 .writefn = tlbimvaa_write },
2404 REGINFO_SENTINEL
2407 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2408 /* 32 bit TLB invalidates, Inner Shareable */
2409 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2410 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2411 .writefn = tlbiall_is_write },
2412 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2413 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2414 .writefn = tlbimva_is_write },
2415 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2416 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2417 .writefn = tlbiasid_is_write },
2418 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2419 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2420 .writefn = tlbimvaa_is_write },
2421 REGINFO_SENTINEL
2424 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2425 /* PMOVSSET is not implemented in v7 before v7ve */
2426 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2427 .access = PL0_RW, .accessfn = pmreg_access,
2428 .type = ARM_CP_ALIAS | ARM_CP_IO,
2429 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2430 .writefn = pmovsset_write,
2431 .raw_writefn = raw_write },
2432 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2433 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2434 .access = PL0_RW, .accessfn = pmreg_access,
2435 .type = ARM_CP_ALIAS | ARM_CP_IO,
2436 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2437 .writefn = pmovsset_write,
2438 .raw_writefn = raw_write },
2439 REGINFO_SENTINEL
2442 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2443 uint64_t value)
2445 value &= 1;
2446 env->teecr = value;
2449 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2450 bool isread)
2452 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2453 return CP_ACCESS_TRAP;
2455 return CP_ACCESS_OK;
2458 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2459 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2460 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2461 .resetvalue = 0,
2462 .writefn = teecr_write },
2463 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2464 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2465 .accessfn = teehbr_access, .resetvalue = 0 },
2466 REGINFO_SENTINEL
2469 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2470 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2471 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2472 .access = PL0_RW,
2473 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2474 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2475 .access = PL0_RW,
2476 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2477 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2478 .resetfn = arm_cp_reset_ignore },
2479 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2480 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2481 .access = PL0_R|PL1_W,
2482 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2483 .resetvalue = 0},
2484 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2485 .access = PL0_R|PL1_W,
2486 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2487 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2488 .resetfn = arm_cp_reset_ignore },
2489 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2490 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2491 .access = PL1_RW,
2492 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2493 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2494 .access = PL1_RW,
2495 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2496 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2497 .resetvalue = 0 },
2498 REGINFO_SENTINEL
2501 #ifndef CONFIG_USER_ONLY
2503 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2504 bool isread)
2506 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2507 * Writable only at the highest implemented exception level.
2509 int el = arm_current_el(env);
2510 uint64_t hcr;
2511 uint32_t cntkctl;
2513 switch (el) {
2514 case 0:
2515 hcr = arm_hcr_el2_eff(env);
2516 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2517 cntkctl = env->cp15.cnthctl_el2;
2518 } else {
2519 cntkctl = env->cp15.c14_cntkctl;
2521 if (!extract32(cntkctl, 0, 2)) {
2522 return CP_ACCESS_TRAP;
2524 break;
2525 case 1:
2526 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2527 arm_is_secure_below_el3(env)) {
2528 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2529 return CP_ACCESS_TRAP_UNCATEGORIZED;
2531 break;
2532 case 2:
2533 case 3:
2534 break;
2537 if (!isread && el < arm_highest_el(env)) {
2538 return CP_ACCESS_TRAP_UNCATEGORIZED;
2541 return CP_ACCESS_OK;
2544 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2545 bool isread)
2547 unsigned int cur_el = arm_current_el(env);
2548 bool has_el2 = arm_is_el2_enabled(env);
2549 uint64_t hcr = arm_hcr_el2_eff(env);
2551 switch (cur_el) {
2552 case 0:
2553 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2554 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2555 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2556 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2559 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2560 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2561 return CP_ACCESS_TRAP;
2564 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2565 if (hcr & HCR_E2H) {
2566 if (timeridx == GTIMER_PHYS &&
2567 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2568 return CP_ACCESS_TRAP_EL2;
2570 } else {
2571 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2572 if (has_el2 && timeridx == GTIMER_PHYS &&
2573 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2574 return CP_ACCESS_TRAP_EL2;
2577 break;
2579 case 1:
2580 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2581 if (has_el2 && timeridx == GTIMER_PHYS &&
2582 (hcr & HCR_E2H
2583 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2584 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2585 return CP_ACCESS_TRAP_EL2;
2587 break;
2589 return CP_ACCESS_OK;
2592 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2593 bool isread)
2595 unsigned int cur_el = arm_current_el(env);
2596 bool has_el2 = arm_is_el2_enabled(env);
2597 uint64_t hcr = arm_hcr_el2_eff(env);
2599 switch (cur_el) {
2600 case 0:
2601 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2602 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2603 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2604 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2608 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2609 * EL0 if EL0[PV]TEN is zero.
2611 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2612 return CP_ACCESS_TRAP;
2614 /* fall through */
2616 case 1:
2617 if (has_el2 && timeridx == GTIMER_PHYS) {
2618 if (hcr & HCR_E2H) {
2619 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2620 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2621 return CP_ACCESS_TRAP_EL2;
2623 } else {
2624 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2625 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2626 return CP_ACCESS_TRAP_EL2;
2630 break;
2632 return CP_ACCESS_OK;
2635 static CPAccessResult gt_pct_access(CPUARMState *env,
2636 const ARMCPRegInfo *ri,
2637 bool isread)
2639 return gt_counter_access(env, GTIMER_PHYS, isread);
2642 static CPAccessResult gt_vct_access(CPUARMState *env,
2643 const ARMCPRegInfo *ri,
2644 bool isread)
2646 return gt_counter_access(env, GTIMER_VIRT, isread);
2649 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2650 bool isread)
2652 return gt_timer_access(env, GTIMER_PHYS, isread);
2655 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2656 bool isread)
2658 return gt_timer_access(env, GTIMER_VIRT, isread);
2661 static CPAccessResult gt_stimer_access(CPUARMState *env,
2662 const ARMCPRegInfo *ri,
2663 bool isread)
2665 /* The AArch64 register view of the secure physical timer is
2666 * always accessible from EL3, and configurably accessible from
2667 * Secure EL1.
2669 switch (arm_current_el(env)) {
2670 case 1:
2671 if (!arm_is_secure(env)) {
2672 return CP_ACCESS_TRAP;
2674 if (!(env->cp15.scr_el3 & SCR_ST)) {
2675 return CP_ACCESS_TRAP_EL3;
2677 return CP_ACCESS_OK;
2678 case 0:
2679 case 2:
2680 return CP_ACCESS_TRAP;
2681 case 3:
2682 return CP_ACCESS_OK;
2683 default:
2684 g_assert_not_reached();
2688 static uint64_t gt_get_countervalue(CPUARMState *env)
2690 ARMCPU *cpu = env_archcpu(env);
2692 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2695 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2697 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2699 if (gt->ctl & 1) {
2700 /* Timer enabled: calculate and set current ISTATUS, irq, and
2701 * reset timer to when ISTATUS next has to change
2703 uint64_t offset = timeridx == GTIMER_VIRT ?
2704 cpu->env.cp15.cntvoff_el2 : 0;
2705 uint64_t count = gt_get_countervalue(&cpu->env);
2706 /* Note that this must be unsigned 64 bit arithmetic: */
2707 int istatus = count - offset >= gt->cval;
2708 uint64_t nexttick;
2709 int irqstate;
2711 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2713 irqstate = (istatus && !(gt->ctl & 2));
2714 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2716 if (istatus) {
2717 /* Next transition is when count rolls back over to zero */
2718 nexttick = UINT64_MAX;
2719 } else {
2720 /* Next transition is when we hit cval */
2721 nexttick = gt->cval + offset;
2723 /* Note that the desired next expiry time might be beyond the
2724 * signed-64-bit range of a QEMUTimer -- in this case we just
2725 * set the timer for as far in the future as possible. When the
2726 * timer expires we will reset the timer for any remaining period.
2728 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2729 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2730 } else {
2731 timer_mod(cpu->gt_timer[timeridx], nexttick);
2733 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2734 } else {
2735 /* Timer disabled: ISTATUS and timer output always clear */
2736 gt->ctl &= ~4;
2737 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2738 timer_del(cpu->gt_timer[timeridx]);
2739 trace_arm_gt_recalc_disabled(timeridx);
2743 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2744 int timeridx)
2746 ARMCPU *cpu = env_archcpu(env);
2748 timer_del(cpu->gt_timer[timeridx]);
2751 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2753 return gt_get_countervalue(env);
2756 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2758 uint64_t hcr;
2760 switch (arm_current_el(env)) {
2761 case 2:
2762 hcr = arm_hcr_el2_eff(env);
2763 if (hcr & HCR_E2H) {
2764 return 0;
2766 break;
2767 case 0:
2768 hcr = arm_hcr_el2_eff(env);
2769 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2770 return 0;
2772 break;
2775 return env->cp15.cntvoff_el2;
2778 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2780 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2783 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2784 int timeridx,
2785 uint64_t value)
2787 trace_arm_gt_cval_write(timeridx, value);
2788 env->cp15.c14_timer[timeridx].cval = value;
2789 gt_recalc_timer(env_archcpu(env), timeridx);
2792 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2793 int timeridx)
2795 uint64_t offset = 0;
2797 switch (timeridx) {
2798 case GTIMER_VIRT:
2799 case GTIMER_HYPVIRT:
2800 offset = gt_virt_cnt_offset(env);
2801 break;
2804 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2805 (gt_get_countervalue(env) - offset));
2808 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2809 int timeridx,
2810 uint64_t value)
2812 uint64_t offset = 0;
2814 switch (timeridx) {
2815 case GTIMER_VIRT:
2816 case GTIMER_HYPVIRT:
2817 offset = gt_virt_cnt_offset(env);
2818 break;
2821 trace_arm_gt_tval_write(timeridx, value);
2822 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2823 sextract64(value, 0, 32);
2824 gt_recalc_timer(env_archcpu(env), timeridx);
2827 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2828 int timeridx,
2829 uint64_t value)
2831 ARMCPU *cpu = env_archcpu(env);
2832 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2834 trace_arm_gt_ctl_write(timeridx, value);
2835 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2836 if ((oldval ^ value) & 1) {
2837 /* Enable toggled */
2838 gt_recalc_timer(cpu, timeridx);
2839 } else if ((oldval ^ value) & 2) {
2840 /* IMASK toggled: don't need to recalculate,
2841 * just set the interrupt line based on ISTATUS
2843 int irqstate = (oldval & 4) && !(value & 2);
2845 trace_arm_gt_imask_toggle(timeridx, irqstate);
2846 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2850 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2852 gt_timer_reset(env, ri, GTIMER_PHYS);
2855 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856 uint64_t value)
2858 gt_cval_write(env, ri, GTIMER_PHYS, value);
2861 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2863 return gt_tval_read(env, ri, GTIMER_PHYS);
2866 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2867 uint64_t value)
2869 gt_tval_write(env, ri, GTIMER_PHYS, value);
2872 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2873 uint64_t value)
2875 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2878 static int gt_phys_redir_timeridx(CPUARMState *env)
2880 switch (arm_mmu_idx(env)) {
2881 case ARMMMUIdx_E20_0:
2882 case ARMMMUIdx_E20_2:
2883 case ARMMMUIdx_E20_2_PAN:
2884 case ARMMMUIdx_SE20_0:
2885 case ARMMMUIdx_SE20_2:
2886 case ARMMMUIdx_SE20_2_PAN:
2887 return GTIMER_HYP;
2888 default:
2889 return GTIMER_PHYS;
2893 static int gt_virt_redir_timeridx(CPUARMState *env)
2895 switch (arm_mmu_idx(env)) {
2896 case ARMMMUIdx_E20_0:
2897 case ARMMMUIdx_E20_2:
2898 case ARMMMUIdx_E20_2_PAN:
2899 case ARMMMUIdx_SE20_0:
2900 case ARMMMUIdx_SE20_2:
2901 case ARMMMUIdx_SE20_2_PAN:
2902 return GTIMER_HYPVIRT;
2903 default:
2904 return GTIMER_VIRT;
2908 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2909 const ARMCPRegInfo *ri)
2911 int timeridx = gt_phys_redir_timeridx(env);
2912 return env->cp15.c14_timer[timeridx].cval;
2915 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2916 uint64_t value)
2918 int timeridx = gt_phys_redir_timeridx(env);
2919 gt_cval_write(env, ri, timeridx, value);
2922 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2923 const ARMCPRegInfo *ri)
2925 int timeridx = gt_phys_redir_timeridx(env);
2926 return gt_tval_read(env, ri, timeridx);
2929 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2930 uint64_t value)
2932 int timeridx = gt_phys_redir_timeridx(env);
2933 gt_tval_write(env, ri, timeridx, value);
2936 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2937 const ARMCPRegInfo *ri)
2939 int timeridx = gt_phys_redir_timeridx(env);
2940 return env->cp15.c14_timer[timeridx].ctl;
2943 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2944 uint64_t value)
2946 int timeridx = gt_phys_redir_timeridx(env);
2947 gt_ctl_write(env, ri, timeridx, value);
2950 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2952 gt_timer_reset(env, ri, GTIMER_VIRT);
2955 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2956 uint64_t value)
2958 gt_cval_write(env, ri, GTIMER_VIRT, value);
2961 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2963 return gt_tval_read(env, ri, GTIMER_VIRT);
2966 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2967 uint64_t value)
2969 gt_tval_write(env, ri, GTIMER_VIRT, value);
2972 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2973 uint64_t value)
2975 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2978 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2979 uint64_t value)
2981 ARMCPU *cpu = env_archcpu(env);
2983 trace_arm_gt_cntvoff_write(value);
2984 raw_write(env, ri, value);
2985 gt_recalc_timer(cpu, GTIMER_VIRT);
2988 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2989 const ARMCPRegInfo *ri)
2991 int timeridx = gt_virt_redir_timeridx(env);
2992 return env->cp15.c14_timer[timeridx].cval;
2995 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2996 uint64_t value)
2998 int timeridx = gt_virt_redir_timeridx(env);
2999 gt_cval_write(env, ri, timeridx, value);
3002 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
3003 const ARMCPRegInfo *ri)
3005 int timeridx = gt_virt_redir_timeridx(env);
3006 return gt_tval_read(env, ri, timeridx);
3009 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3010 uint64_t value)
3012 int timeridx = gt_virt_redir_timeridx(env);
3013 gt_tval_write(env, ri, timeridx, value);
3016 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3017 const ARMCPRegInfo *ri)
3019 int timeridx = gt_virt_redir_timeridx(env);
3020 return env->cp15.c14_timer[timeridx].ctl;
3023 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3024 uint64_t value)
3026 int timeridx = gt_virt_redir_timeridx(env);
3027 gt_ctl_write(env, ri, timeridx, value);
3030 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3032 gt_timer_reset(env, ri, GTIMER_HYP);
3035 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3036 uint64_t value)
3038 gt_cval_write(env, ri, GTIMER_HYP, value);
3041 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3043 return gt_tval_read(env, ri, GTIMER_HYP);
3046 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3047 uint64_t value)
3049 gt_tval_write(env, ri, GTIMER_HYP, value);
3052 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3053 uint64_t value)
3055 gt_ctl_write(env, ri, GTIMER_HYP, value);
3058 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3060 gt_timer_reset(env, ri, GTIMER_SEC);
3063 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064 uint64_t value)
3066 gt_cval_write(env, ri, GTIMER_SEC, value);
3069 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3071 return gt_tval_read(env, ri, GTIMER_SEC);
3074 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3075 uint64_t value)
3077 gt_tval_write(env, ri, GTIMER_SEC, value);
3080 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3081 uint64_t value)
3083 gt_ctl_write(env, ri, GTIMER_SEC, value);
3086 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3088 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3091 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3092 uint64_t value)
3094 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3097 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3099 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3102 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3103 uint64_t value)
3105 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3108 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3109 uint64_t value)
3111 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3114 void arm_gt_ptimer_cb(void *opaque)
3116 ARMCPU *cpu = opaque;
3118 gt_recalc_timer(cpu, GTIMER_PHYS);
3121 void arm_gt_vtimer_cb(void *opaque)
3123 ARMCPU *cpu = opaque;
3125 gt_recalc_timer(cpu, GTIMER_VIRT);
3128 void arm_gt_htimer_cb(void *opaque)
3130 ARMCPU *cpu = opaque;
3132 gt_recalc_timer(cpu, GTIMER_HYP);
3135 void arm_gt_stimer_cb(void *opaque)
3137 ARMCPU *cpu = opaque;
3139 gt_recalc_timer(cpu, GTIMER_SEC);
3142 void arm_gt_hvtimer_cb(void *opaque)
3144 ARMCPU *cpu = opaque;
3146 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3149 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3151 ARMCPU *cpu = env_archcpu(env);
3153 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3156 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3157 /* Note that CNTFRQ is purely reads-as-written for the benefit
3158 * of software; writing it doesn't actually change the timer frequency.
3159 * Our reset value matches the fixed frequency we implement the timer at.
3161 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3162 .type = ARM_CP_ALIAS,
3163 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3164 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3166 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3167 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3168 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3169 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3170 .resetfn = arm_gt_cntfrq_reset,
3172 /* overall control: mostly access permissions */
3173 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3174 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3175 .access = PL1_RW,
3176 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3177 .resetvalue = 0,
3179 /* per-timer control */
3180 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3181 .secure = ARM_CP_SECSTATE_NS,
3182 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3183 .accessfn = gt_ptimer_access,
3184 .fieldoffset = offsetoflow32(CPUARMState,
3185 cp15.c14_timer[GTIMER_PHYS].ctl),
3186 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3187 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3189 { .name = "CNTP_CTL_S",
3190 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3191 .secure = ARM_CP_SECSTATE_S,
3192 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3193 .accessfn = gt_ptimer_access,
3194 .fieldoffset = offsetoflow32(CPUARMState,
3195 cp15.c14_timer[GTIMER_SEC].ctl),
3196 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3198 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3199 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3200 .type = ARM_CP_IO, .access = PL0_RW,
3201 .accessfn = gt_ptimer_access,
3202 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3203 .resetvalue = 0,
3204 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3205 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3207 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3208 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3209 .accessfn = gt_vtimer_access,
3210 .fieldoffset = offsetoflow32(CPUARMState,
3211 cp15.c14_timer[GTIMER_VIRT].ctl),
3212 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3213 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3215 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3216 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3217 .type = ARM_CP_IO, .access = PL0_RW,
3218 .accessfn = gt_vtimer_access,
3219 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3220 .resetvalue = 0,
3221 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3222 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3224 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3225 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3226 .secure = ARM_CP_SECSTATE_NS,
3227 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3228 .accessfn = gt_ptimer_access,
3229 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3231 { .name = "CNTP_TVAL_S",
3232 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3233 .secure = ARM_CP_SECSTATE_S,
3234 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3235 .accessfn = gt_ptimer_access,
3236 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3238 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3239 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3240 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3241 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3242 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3244 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3245 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3246 .accessfn = gt_vtimer_access,
3247 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3249 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3250 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3251 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3252 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3253 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3255 /* The counter itself */
3256 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3257 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3258 .accessfn = gt_pct_access,
3259 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3261 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3262 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3263 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3264 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3266 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3267 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3268 .accessfn = gt_vct_access,
3269 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3271 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3272 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3273 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3274 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3276 /* Comparison value, indicating when the timer goes off */
3277 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3278 .secure = ARM_CP_SECSTATE_NS,
3279 .access = PL0_RW,
3280 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3281 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3282 .accessfn = gt_ptimer_access,
3283 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3284 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3286 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3287 .secure = ARM_CP_SECSTATE_S,
3288 .access = PL0_RW,
3289 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3290 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3291 .accessfn = gt_ptimer_access,
3292 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3294 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3295 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3296 .access = PL0_RW,
3297 .type = ARM_CP_IO,
3298 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3299 .resetvalue = 0, .accessfn = gt_ptimer_access,
3300 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3301 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3303 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3304 .access = PL0_RW,
3305 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3306 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3307 .accessfn = gt_vtimer_access,
3308 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3309 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3311 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3312 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3313 .access = PL0_RW,
3314 .type = ARM_CP_IO,
3315 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3316 .resetvalue = 0, .accessfn = gt_vtimer_access,
3317 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3318 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3320 /* Secure timer -- this is actually restricted to only EL3
3321 * and configurably Secure-EL1 via the accessfn.
3323 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3324 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3325 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3326 .accessfn = gt_stimer_access,
3327 .readfn = gt_sec_tval_read,
3328 .writefn = gt_sec_tval_write,
3329 .resetfn = gt_sec_timer_reset,
3331 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3332 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3333 .type = ARM_CP_IO, .access = PL1_RW,
3334 .accessfn = gt_stimer_access,
3335 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3336 .resetvalue = 0,
3337 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3339 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3340 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3341 .type = ARM_CP_IO, .access = PL1_RW,
3342 .accessfn = gt_stimer_access,
3343 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3344 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3346 REGINFO_SENTINEL
3349 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3350 bool isread)
3352 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3353 return CP_ACCESS_TRAP;
3355 return CP_ACCESS_OK;
3358 #else
3360 /* In user-mode most of the generic timer registers are inaccessible
3361 * however modern kernels (4.12+) allow access to cntvct_el0
3364 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3366 ARMCPU *cpu = env_archcpu(env);
3368 /* Currently we have no support for QEMUTimer in linux-user so we
3369 * can't call gt_get_countervalue(env), instead we directly
3370 * call the lower level functions.
3372 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3375 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3376 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3377 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3378 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3379 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3380 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3382 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3383 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3384 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3385 .readfn = gt_virt_cnt_read,
3387 REGINFO_SENTINEL
3390 #endif
3392 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3394 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3395 raw_write(env, ri, value);
3396 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3397 raw_write(env, ri, value & 0xfffff6ff);
3398 } else {
3399 raw_write(env, ri, value & 0xfffff1ff);
3403 #ifndef CONFIG_USER_ONLY
3404 /* get_phys_addr() isn't present for user-mode-only targets */
3406 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3407 bool isread)
3409 if (ri->opc2 & 4) {
3410 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3411 * Secure EL1 (which can only happen if EL3 is AArch64).
3412 * They are simply UNDEF if executed from NS EL1.
3413 * They function normally from EL2 or EL3.
3415 if (arm_current_el(env) == 1) {
3416 if (arm_is_secure_below_el3(env)) {
3417 if (env->cp15.scr_el3 & SCR_EEL2) {
3418 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3420 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3422 return CP_ACCESS_TRAP_UNCATEGORIZED;
3425 return CP_ACCESS_OK;
3428 #ifdef CONFIG_TCG
3429 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3430 MMUAccessType access_type, ARMMMUIdx mmu_idx)
3432 hwaddr phys_addr;
3433 target_ulong page_size;
3434 int prot;
3435 bool ret;
3436 uint64_t par64;
3437 bool format64 = false;
3438 MemTxAttrs attrs = {};
3439 ARMMMUFaultInfo fi = {};
3440 ARMCacheAttrs cacheattrs = {};
3442 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3443 &prot, &page_size, &fi, &cacheattrs);
3445 if (ret) {
3447 * Some kinds of translation fault must cause exceptions rather
3448 * than being reported in the PAR.
3450 int current_el = arm_current_el(env);
3451 int target_el;
3452 uint32_t syn, fsr, fsc;
3453 bool take_exc = false;
3455 if (fi.s1ptw && current_el == 1
3456 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3458 * Synchronous stage 2 fault on an access made as part of the
3459 * translation table walk for AT S1E0* or AT S1E1* insn
3460 * executed from NS EL1. If this is a synchronous external abort
3461 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3462 * to EL3. Otherwise the fault is taken as an exception to EL2,
3463 * and HPFAR_EL2 holds the faulting IPA.
3465 if (fi.type == ARMFault_SyncExternalOnWalk &&
3466 (env->cp15.scr_el3 & SCR_EA)) {
3467 target_el = 3;
3468 } else {
3469 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3470 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3471 env->cp15.hpfar_el2 |= HPFAR_NS;
3473 target_el = 2;
3475 take_exc = true;
3476 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3478 * Synchronous external aborts during a translation table walk
3479 * are taken as Data Abort exceptions.
3481 if (fi.stage2) {
3482 if (current_el == 3) {
3483 target_el = 3;
3484 } else {
3485 target_el = 2;
3487 } else {
3488 target_el = exception_target_el(env);
3490 take_exc = true;
3493 if (take_exc) {
3494 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3495 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3496 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3497 fsr = arm_fi_to_lfsc(&fi);
3498 fsc = extract32(fsr, 0, 6);
3499 } else {
3500 fsr = arm_fi_to_sfsc(&fi);
3501 fsc = 0x3f;
3504 * Report exception with ESR indicating a fault due to a
3505 * translation table walk for a cache maintenance instruction.
3507 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3508 fi.ea, 1, fi.s1ptw, 1, fsc);
3509 env->exception.vaddress = value;
3510 env->exception.fsr = fsr;
3511 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3515 if (is_a64(env)) {
3516 format64 = true;
3517 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3519 * ATS1Cxx:
3520 * * TTBCR.EAE determines whether the result is returned using the
3521 * 32-bit or the 64-bit PAR format
3522 * * Instructions executed in Hyp mode always use the 64bit format
3524 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3525 * * The Non-secure TTBCR.EAE bit is set to 1
3526 * * The implementation includes EL2, and the value of HCR.VM is 1
3528 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3530 * ATS1Hx always uses the 64bit format.
3532 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3534 if (arm_feature(env, ARM_FEATURE_EL2)) {
3535 if (mmu_idx == ARMMMUIdx_E10_0 ||
3536 mmu_idx == ARMMMUIdx_E10_1 ||
3537 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3538 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3539 } else {
3540 format64 |= arm_current_el(env) == 2;
3545 if (format64) {
3546 /* Create a 64-bit PAR */
3547 par64 = (1 << 11); /* LPAE bit always set */
3548 if (!ret) {
3549 par64 |= phys_addr & ~0xfffULL;
3550 if (!attrs.secure) {
3551 par64 |= (1 << 9); /* NS */
3553 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3554 par64 |= cacheattrs.shareability << 7; /* SH */
3555 } else {
3556 uint32_t fsr = arm_fi_to_lfsc(&fi);
3558 par64 |= 1; /* F */
3559 par64 |= (fsr & 0x3f) << 1; /* FS */
3560 if (fi.stage2) {
3561 par64 |= (1 << 9); /* S */
3563 if (fi.s1ptw) {
3564 par64 |= (1 << 8); /* PTW */
3567 } else {
3568 /* fsr is a DFSR/IFSR value for the short descriptor
3569 * translation table format (with WnR always clear).
3570 * Convert it to a 32-bit PAR.
3572 if (!ret) {
3573 /* We do not set any attribute bits in the PAR */
3574 if (page_size == (1 << 24)
3575 && arm_feature(env, ARM_FEATURE_V7)) {
3576 par64 = (phys_addr & 0xff000000) | (1 << 1);
3577 } else {
3578 par64 = phys_addr & 0xfffff000;
3580 if (!attrs.secure) {
3581 par64 |= (1 << 9); /* NS */
3583 } else {
3584 uint32_t fsr = arm_fi_to_sfsc(&fi);
3586 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3587 ((fsr & 0xf) << 1) | 1;
3590 return par64;
3592 #endif /* CONFIG_TCG */
3594 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3596 #ifdef CONFIG_TCG
3597 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3598 uint64_t par64;
3599 ARMMMUIdx mmu_idx;
3600 int el = arm_current_el(env);
3601 bool secure = arm_is_secure_below_el3(env);
3603 switch (ri->opc2 & 6) {
3604 case 0:
3605 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3606 switch (el) {
3607 case 3:
3608 mmu_idx = ARMMMUIdx_SE3;
3609 break;
3610 case 2:
3611 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3612 /* fall through */
3613 case 1:
3614 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3615 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3616 : ARMMMUIdx_Stage1_E1_PAN);
3617 } else {
3618 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3620 break;
3621 default:
3622 g_assert_not_reached();
3624 break;
3625 case 2:
3626 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3627 switch (el) {
3628 case 3:
3629 mmu_idx = ARMMMUIdx_SE10_0;
3630 break;
3631 case 2:
3632 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3633 mmu_idx = ARMMMUIdx_Stage1_E0;
3634 break;
3635 case 1:
3636 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3637 break;
3638 default:
3639 g_assert_not_reached();
3641 break;
3642 case 4:
3643 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3644 mmu_idx = ARMMMUIdx_E10_1;
3645 break;
3646 case 6:
3647 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3648 mmu_idx = ARMMMUIdx_E10_0;
3649 break;
3650 default:
3651 g_assert_not_reached();
3654 par64 = do_ats_write(env, value, access_type, mmu_idx);
3656 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3657 #else
3658 /* Handled by hardware accelerator. */
3659 g_assert_not_reached();
3660 #endif /* CONFIG_TCG */
3663 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3664 uint64_t value)
3666 #ifdef CONFIG_TCG
3667 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3668 uint64_t par64;
3670 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3672 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3673 #else
3674 /* Handled by hardware accelerator. */
3675 g_assert_not_reached();
3676 #endif /* CONFIG_TCG */
3679 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3680 bool isread)
3682 if (arm_current_el(env) == 3 &&
3683 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3684 return CP_ACCESS_TRAP;
3686 return CP_ACCESS_OK;
3689 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3690 uint64_t value)
3692 #ifdef CONFIG_TCG
3693 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3694 ARMMMUIdx mmu_idx;
3695 int secure = arm_is_secure_below_el3(env);
3697 switch (ri->opc2 & 6) {
3698 case 0:
3699 switch (ri->opc1) {
3700 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3701 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3702 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3703 : ARMMMUIdx_Stage1_E1_PAN);
3704 } else {
3705 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3707 break;
3708 case 4: /* AT S1E2R, AT S1E2W */
3709 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3710 break;
3711 case 6: /* AT S1E3R, AT S1E3W */
3712 mmu_idx = ARMMMUIdx_SE3;
3713 break;
3714 default:
3715 g_assert_not_reached();
3717 break;
3718 case 2: /* AT S1E0R, AT S1E0W */
3719 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3720 break;
3721 case 4: /* AT S12E1R, AT S12E1W */
3722 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3723 break;
3724 case 6: /* AT S12E0R, AT S12E0W */
3725 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3726 break;
3727 default:
3728 g_assert_not_reached();
3731 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3732 #else
3733 /* Handled by hardware accelerator. */
3734 g_assert_not_reached();
3735 #endif /* CONFIG_TCG */
3737 #endif
3739 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3740 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3741 .access = PL1_RW, .resetvalue = 0,
3742 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3743 offsetoflow32(CPUARMState, cp15.par_ns) },
3744 .writefn = par_write },
3745 #ifndef CONFIG_USER_ONLY
3746 /* This underdecoding is safe because the reginfo is NO_RAW. */
3747 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3748 .access = PL1_W, .accessfn = ats_access,
3749 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3750 #endif
3751 REGINFO_SENTINEL
3754 /* Return basic MPU access permission bits. */
3755 static uint32_t simple_mpu_ap_bits(uint32_t val)
3757 uint32_t ret;
3758 uint32_t mask;
3759 int i;
3760 ret = 0;
3761 mask = 3;
3762 for (i = 0; i < 16; i += 2) {
3763 ret |= (val >> i) & mask;
3764 mask <<= 2;
3766 return ret;
3769 /* Pad basic MPU access permission bits to extended format. */
3770 static uint32_t extended_mpu_ap_bits(uint32_t val)
3772 uint32_t ret;
3773 uint32_t mask;
3774 int i;
3775 ret = 0;
3776 mask = 3;
3777 for (i = 0; i < 16; i += 2) {
3778 ret |= (val & mask) << i;
3779 mask <<= 2;
3781 return ret;
3784 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3785 uint64_t value)
3787 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3790 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3792 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3795 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3796 uint64_t value)
3798 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3801 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3803 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3806 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3808 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3810 if (!u32p) {
3811 return 0;
3814 u32p += env->pmsav7.rnr[M_REG_NS];
3815 return *u32p;
3818 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3819 uint64_t value)
3821 ARMCPU *cpu = env_archcpu(env);
3822 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3824 if (!u32p) {
3825 return;
3828 u32p += env->pmsav7.rnr[M_REG_NS];
3829 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3830 *u32p = value;
3833 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3834 uint64_t value)
3836 ARMCPU *cpu = env_archcpu(env);
3837 uint32_t nrgs = cpu->pmsav7_dregion;
3839 if (value >= nrgs) {
3840 qemu_log_mask(LOG_GUEST_ERROR,
3841 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3842 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3843 return;
3846 raw_write(env, ri, value);
3849 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3850 /* Reset for all these registers is handled in arm_cpu_reset(),
3851 * because the PMSAv7 is also used by M-profile CPUs, which do
3852 * not register cpregs but still need the state to be reset.
3854 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3855 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3856 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3857 .readfn = pmsav7_read, .writefn = pmsav7_write,
3858 .resetfn = arm_cp_reset_ignore },
3859 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3860 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3861 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3862 .readfn = pmsav7_read, .writefn = pmsav7_write,
3863 .resetfn = arm_cp_reset_ignore },
3864 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3865 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3866 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3867 .readfn = pmsav7_read, .writefn = pmsav7_write,
3868 .resetfn = arm_cp_reset_ignore },
3869 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3870 .access = PL1_RW,
3871 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3872 .writefn = pmsav7_rgnr_write,
3873 .resetfn = arm_cp_reset_ignore },
3874 REGINFO_SENTINEL
3877 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3878 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3879 .access = PL1_RW, .type = ARM_CP_ALIAS,
3880 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3881 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3882 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3883 .access = PL1_RW, .type = ARM_CP_ALIAS,
3884 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3885 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3886 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3887 .access = PL1_RW,
3888 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3889 .resetvalue = 0, },
3890 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3891 .access = PL1_RW,
3892 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3893 .resetvalue = 0, },
3894 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3895 .access = PL1_RW,
3896 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3897 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3898 .access = PL1_RW,
3899 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3900 /* Protection region base and size registers */
3901 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3902 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3903 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3904 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3905 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3906 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3907 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3908 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3909 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3910 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3911 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3912 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3913 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3914 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3915 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3916 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3917 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3918 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3919 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3920 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3921 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3922 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3923 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3924 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3925 REGINFO_SENTINEL
3928 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3929 uint64_t value)
3931 TCR *tcr = raw_ptr(env, ri);
3932 int maskshift = extract32(value, 0, 3);
3934 if (!arm_feature(env, ARM_FEATURE_V8)) {
3935 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3936 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3937 * using Long-desciptor translation table format */
3938 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3939 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3940 /* In an implementation that includes the Security Extensions
3941 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3942 * Short-descriptor translation table format.
3944 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3945 } else {
3946 value &= TTBCR_N;
3950 /* Update the masks corresponding to the TCR bank being written
3951 * Note that we always calculate mask and base_mask, but
3952 * they are only used for short-descriptor tables (ie if EAE is 0);
3953 * for long-descriptor tables the TCR fields are used differently
3954 * and the mask and base_mask values are meaningless.
3956 tcr->raw_tcr = value;
3957 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3958 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3961 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3962 uint64_t value)
3964 ARMCPU *cpu = env_archcpu(env);
3965 TCR *tcr = raw_ptr(env, ri);
3967 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3968 /* With LPAE the TTBCR could result in a change of ASID
3969 * via the TTBCR.A1 bit, so do a TLB flush.
3971 tlb_flush(CPU(cpu));
3973 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3974 value = deposit64(tcr->raw_tcr, 0, 32, value);
3975 vmsa_ttbcr_raw_write(env, ri, value);
3978 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3980 TCR *tcr = raw_ptr(env, ri);
3982 /* Reset both the TCR as well as the masks corresponding to the bank of
3983 * the TCR being reset.
3985 tcr->raw_tcr = 0;
3986 tcr->mask = 0;
3987 tcr->base_mask = 0xffffc000u;
3990 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3991 uint64_t value)
3993 ARMCPU *cpu = env_archcpu(env);
3994 TCR *tcr = raw_ptr(env, ri);
3996 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3997 tlb_flush(CPU(cpu));
3998 tcr->raw_tcr = value;
4001 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4002 uint64_t value)
4004 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4005 if (cpreg_field_is_64bit(ri) &&
4006 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4007 ARMCPU *cpu = env_archcpu(env);
4008 tlb_flush(CPU(cpu));
4010 raw_write(env, ri, value);
4013 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4014 uint64_t value)
4017 * If we are running with E2&0 regime, then an ASID is active.
4018 * Flush if that might be changing. Note we're not checking
4019 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4020 * holds the active ASID, only checking the field that might.
4022 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4023 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4024 uint16_t mask = ARMMMUIdxBit_E20_2 |
4025 ARMMMUIdxBit_E20_2_PAN |
4026 ARMMMUIdxBit_E20_0;
4028 if (arm_is_secure_below_el3(env)) {
4029 mask >>= ARM_MMU_IDX_A_NS;
4032 tlb_flush_by_mmuidx(env_cpu(env), mask);
4034 raw_write(env, ri, value);
4037 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4038 uint64_t value)
4040 ARMCPU *cpu = env_archcpu(env);
4041 CPUState *cs = CPU(cpu);
4044 * A change in VMID to the stage2 page table (Stage2) invalidates
4045 * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
4047 if (raw_read(env, ri) != value) {
4048 uint16_t mask = ARMMMUIdxBit_E10_1 |
4049 ARMMMUIdxBit_E10_1_PAN |
4050 ARMMMUIdxBit_E10_0;
4052 if (arm_is_secure_below_el3(env)) {
4053 mask >>= ARM_MMU_IDX_A_NS;
4056 tlb_flush_by_mmuidx(cs, mask);
4057 raw_write(env, ri, value);
4061 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4062 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4063 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4064 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4065 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4066 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4067 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4068 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4069 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4070 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4071 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4072 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4073 offsetof(CPUARMState, cp15.dfar_ns) } },
4074 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4075 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4076 .access = PL1_RW, .accessfn = access_tvm_trvm,
4077 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4078 .resetvalue = 0, },
4079 REGINFO_SENTINEL
4082 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4083 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4084 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4085 .access = PL1_RW, .accessfn = access_tvm_trvm,
4086 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4087 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4088 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4089 .access = PL1_RW, .accessfn = access_tvm_trvm,
4090 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4091 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4092 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4093 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4094 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4095 .access = PL1_RW, .accessfn = access_tvm_trvm,
4096 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4097 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4098 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4099 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4100 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4101 .access = PL1_RW, .accessfn = access_tvm_trvm,
4102 .writefn = vmsa_tcr_el12_write,
4103 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
4104 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4105 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4106 .access = PL1_RW, .accessfn = access_tvm_trvm,
4107 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4108 .raw_writefn = vmsa_ttbcr_raw_write,
4109 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */
4110 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]),
4111 offsetof(CPUARMState, cp15.tcr_el[1])} },
4112 REGINFO_SENTINEL
4115 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4116 * qemu tlbs nor adjusting cached masks.
4118 static const ARMCPRegInfo ttbcr2_reginfo = {
4119 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4120 .access = PL1_RW, .accessfn = access_tvm_trvm,
4121 .type = ARM_CP_ALIAS,
4122 .bank_fieldoffsets = {
4123 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr),
4124 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr),
4128 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4129 uint64_t value)
4131 env->cp15.c15_ticonfig = value & 0xe7;
4132 /* The OS_TYPE bit in this register changes the reported CPUID! */
4133 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4134 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4137 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4138 uint64_t value)
4140 env->cp15.c15_threadid = value & 0xffff;
4143 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4144 uint64_t value)
4146 /* Wait-for-interrupt (deprecated) */
4147 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4150 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4151 uint64_t value)
4153 /* On OMAP there are registers indicating the max/min index of dcache lines
4154 * containing a dirty line; cache flush operations have to reset these.
4156 env->cp15.c15_i_max = 0x000;
4157 env->cp15.c15_i_min = 0xff0;
4160 static const ARMCPRegInfo omap_cp_reginfo[] = {
4161 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4162 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4163 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4164 .resetvalue = 0, },
4165 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4166 .access = PL1_RW, .type = ARM_CP_NOP },
4167 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4168 .access = PL1_RW,
4169 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4170 .writefn = omap_ticonfig_write },
4171 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4172 .access = PL1_RW,
4173 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4174 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4175 .access = PL1_RW, .resetvalue = 0xff0,
4176 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4177 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4178 .access = PL1_RW,
4179 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4180 .writefn = omap_threadid_write },
4181 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4182 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4183 .type = ARM_CP_NO_RAW,
4184 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4185 /* TODO: Peripheral port remap register:
4186 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4187 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4188 * when MMU is off.
4190 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4191 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4192 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4193 .writefn = omap_cachemaint_write },
4194 { .name = "C9", .cp = 15, .crn = 9,
4195 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4196 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4197 REGINFO_SENTINEL
4200 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4201 uint64_t value)
4203 env->cp15.c15_cpar = value & 0x3fff;
4206 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4207 { .name = "XSCALE_CPAR",
4208 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4209 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4210 .writefn = xscale_cpar_write, },
4211 { .name = "XSCALE_AUXCR",
4212 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4213 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4214 .resetvalue = 0, },
4215 /* XScale specific cache-lockdown: since we have no cache we NOP these
4216 * and hope the guest does not really rely on cache behaviour.
4218 { .name = "XSCALE_LOCK_ICACHE_LINE",
4219 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4220 .access = PL1_W, .type = ARM_CP_NOP },
4221 { .name = "XSCALE_UNLOCK_ICACHE",
4222 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4223 .access = PL1_W, .type = ARM_CP_NOP },
4224 { .name = "XSCALE_DCACHE_LOCK",
4225 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4226 .access = PL1_RW, .type = ARM_CP_NOP },
4227 { .name = "XSCALE_UNLOCK_DCACHE",
4228 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4229 .access = PL1_W, .type = ARM_CP_NOP },
4230 REGINFO_SENTINEL
4233 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4234 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4235 * implementation of this implementation-defined space.
4236 * Ideally this should eventually disappear in favour of actually
4237 * implementing the correct behaviour for all cores.
4239 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4240 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4241 .access = PL1_RW,
4242 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4243 .resetvalue = 0 },
4244 REGINFO_SENTINEL
4247 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4248 /* Cache status: RAZ because we have no cache so it's always clean */
4249 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4250 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4251 .resetvalue = 0 },
4252 REGINFO_SENTINEL
4255 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4256 /* We never have a a block transfer operation in progress */
4257 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4258 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4259 .resetvalue = 0 },
4260 /* The cache ops themselves: these all NOP for QEMU */
4261 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4262 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4263 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4264 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4265 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4266 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4267 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4268 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4269 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4270 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4271 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4272 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4273 REGINFO_SENTINEL
4276 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4277 /* The cache test-and-clean instructions always return (1 << 30)
4278 * to indicate that there are no dirty cache lines.
4280 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4281 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4282 .resetvalue = (1 << 30) },
4283 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4284 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4285 .resetvalue = (1 << 30) },
4286 REGINFO_SENTINEL
4289 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4290 /* Ignore ReadBuffer accesses */
4291 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4292 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4293 .access = PL1_RW, .resetvalue = 0,
4294 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4295 REGINFO_SENTINEL
4298 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4300 unsigned int cur_el = arm_current_el(env);
4302 if (arm_is_el2_enabled(env) && cur_el == 1) {
4303 return env->cp15.vpidr_el2;
4305 return raw_read(env, ri);
4308 static uint64_t mpidr_read_val(CPUARMState *env)
4310 ARMCPU *cpu = env_archcpu(env);
4311 uint64_t mpidr = cpu->mp_affinity;
4313 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4314 mpidr |= (1U << 31);
4315 /* Cores which are uniprocessor (non-coherent)
4316 * but still implement the MP extensions set
4317 * bit 30. (For instance, Cortex-R5).
4319 if (cpu->mp_is_up) {
4320 mpidr |= (1u << 30);
4323 return mpidr;
4326 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4328 unsigned int cur_el = arm_current_el(env);
4330 if (arm_is_el2_enabled(env) && cur_el == 1) {
4331 return env->cp15.vmpidr_el2;
4333 return mpidr_read_val(env);
4336 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4337 /* NOP AMAIR0/1 */
4338 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4339 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4340 .access = PL1_RW, .accessfn = access_tvm_trvm,
4341 .type = ARM_CP_CONST, .resetvalue = 0 },
4342 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4343 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4344 .access = PL1_RW, .accessfn = access_tvm_trvm,
4345 .type = ARM_CP_CONST, .resetvalue = 0 },
4346 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4347 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4348 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4349 offsetof(CPUARMState, cp15.par_ns)} },
4350 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4351 .access = PL1_RW, .accessfn = access_tvm_trvm,
4352 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4353 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4354 offsetof(CPUARMState, cp15.ttbr0_ns) },
4355 .writefn = vmsa_ttbr_write, },
4356 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4357 .access = PL1_RW, .accessfn = access_tvm_trvm,
4358 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4359 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4360 offsetof(CPUARMState, cp15.ttbr1_ns) },
4361 .writefn = vmsa_ttbr_write, },
4362 REGINFO_SENTINEL
4365 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4367 return vfp_get_fpcr(env);
4370 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4371 uint64_t value)
4373 vfp_set_fpcr(env, value);
4376 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4378 return vfp_get_fpsr(env);
4381 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4382 uint64_t value)
4384 vfp_set_fpsr(env, value);
4387 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4388 bool isread)
4390 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4391 return CP_ACCESS_TRAP;
4393 return CP_ACCESS_OK;
4396 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4397 uint64_t value)
4399 env->daif = value & PSTATE_DAIF;
4402 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4404 return env->pstate & PSTATE_PAN;
4407 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4408 uint64_t value)
4410 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4413 static const ARMCPRegInfo pan_reginfo = {
4414 .name = "PAN", .state = ARM_CP_STATE_AA64,
4415 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4416 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4417 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4420 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4422 return env->pstate & PSTATE_UAO;
4425 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4426 uint64_t value)
4428 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4431 static const ARMCPRegInfo uao_reginfo = {
4432 .name = "UAO", .state = ARM_CP_STATE_AA64,
4433 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4434 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4435 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4438 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4440 return env->pstate & PSTATE_DIT;
4443 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4444 uint64_t value)
4446 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4449 static const ARMCPRegInfo dit_reginfo = {
4450 .name = "DIT", .state = ARM_CP_STATE_AA64,
4451 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4452 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4453 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4456 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4458 return env->pstate & PSTATE_SSBS;
4461 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4462 uint64_t value)
4464 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4467 static const ARMCPRegInfo ssbs_reginfo = {
4468 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4469 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4470 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4471 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4474 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4475 const ARMCPRegInfo *ri,
4476 bool isread)
4478 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4479 switch (arm_current_el(env)) {
4480 case 0:
4481 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4482 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4483 return CP_ACCESS_TRAP;
4485 /* fall through */
4486 case 1:
4487 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4488 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4489 return CP_ACCESS_TRAP_EL2;
4491 break;
4493 return CP_ACCESS_OK;
4496 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4497 const ARMCPRegInfo *ri,
4498 bool isread)
4500 /* Cache invalidate/clean to Point of Unification... */
4501 switch (arm_current_el(env)) {
4502 case 0:
4503 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4504 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4505 return CP_ACCESS_TRAP;
4507 /* fall through */
4508 case 1:
4509 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */
4510 if (arm_hcr_el2_eff(env) & HCR_TPU) {
4511 return CP_ACCESS_TRAP_EL2;
4513 break;
4515 return CP_ACCESS_OK;
4518 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4519 * Page D4-1736 (DDI0487A.b)
4522 static int vae1_tlbmask(CPUARMState *env)
4524 uint64_t hcr = arm_hcr_el2_eff(env);
4525 uint16_t mask;
4527 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4528 mask = ARMMMUIdxBit_E20_2 |
4529 ARMMMUIdxBit_E20_2_PAN |
4530 ARMMMUIdxBit_E20_0;
4531 } else {
4532 mask = ARMMMUIdxBit_E10_1 |
4533 ARMMMUIdxBit_E10_1_PAN |
4534 ARMMMUIdxBit_E10_0;
4537 if (arm_is_secure_below_el3(env)) {
4538 mask >>= ARM_MMU_IDX_A_NS;
4541 return mask;
4544 /* Return 56 if TBI is enabled, 64 otherwise. */
4545 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4546 uint64_t addr)
4548 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4549 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4550 int select = extract64(addr, 55, 1);
4552 return (tbi >> select) & 1 ? 56 : 64;
4555 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4557 uint64_t hcr = arm_hcr_el2_eff(env);
4558 ARMMMUIdx mmu_idx;
4560 /* Only the regime of the mmu_idx below is significant. */
4561 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4562 mmu_idx = ARMMMUIdx_E20_0;
4563 } else {
4564 mmu_idx = ARMMMUIdx_E10_0;
4567 if (arm_is_secure_below_el3(env)) {
4568 mmu_idx &= ~ARM_MMU_IDX_A_NS;
4571 return tlbbits_for_regime(env, mmu_idx, addr);
4574 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4575 uint64_t value)
4577 CPUState *cs = env_cpu(env);
4578 int mask = vae1_tlbmask(env);
4580 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4583 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4584 uint64_t value)
4586 CPUState *cs = env_cpu(env);
4587 int mask = vae1_tlbmask(env);
4589 if (tlb_force_broadcast(env)) {
4590 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4591 } else {
4592 tlb_flush_by_mmuidx(cs, mask);
4596 static int alle1_tlbmask(CPUARMState *env)
4599 * Note that the 'ALL' scope must invalidate both stage 1 and
4600 * stage 2 translations, whereas most other scopes only invalidate
4601 * stage 1 translations.
4603 if (arm_is_secure_below_el3(env)) {
4604 return ARMMMUIdxBit_SE10_1 |
4605 ARMMMUIdxBit_SE10_1_PAN |
4606 ARMMMUIdxBit_SE10_0;
4607 } else {
4608 return ARMMMUIdxBit_E10_1 |
4609 ARMMMUIdxBit_E10_1_PAN |
4610 ARMMMUIdxBit_E10_0;
4614 static int e2_tlbmask(CPUARMState *env)
4616 if (arm_is_secure_below_el3(env)) {
4617 return ARMMMUIdxBit_SE20_0 |
4618 ARMMMUIdxBit_SE20_2 |
4619 ARMMMUIdxBit_SE20_2_PAN |
4620 ARMMMUIdxBit_SE2;
4621 } else {
4622 return ARMMMUIdxBit_E20_0 |
4623 ARMMMUIdxBit_E20_2 |
4624 ARMMMUIdxBit_E20_2_PAN |
4625 ARMMMUIdxBit_E2;
4629 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4630 uint64_t value)
4632 CPUState *cs = env_cpu(env);
4633 int mask = alle1_tlbmask(env);
4635 tlb_flush_by_mmuidx(cs, mask);
4638 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4639 uint64_t value)
4641 CPUState *cs = env_cpu(env);
4642 int mask = e2_tlbmask(env);
4644 tlb_flush_by_mmuidx(cs, mask);
4647 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4648 uint64_t value)
4650 ARMCPU *cpu = env_archcpu(env);
4651 CPUState *cs = CPU(cpu);
4653 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4656 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4657 uint64_t value)
4659 CPUState *cs = env_cpu(env);
4660 int mask = alle1_tlbmask(env);
4662 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4665 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4666 uint64_t value)
4668 CPUState *cs = env_cpu(env);
4669 int mask = e2_tlbmask(env);
4671 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4674 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4675 uint64_t value)
4677 CPUState *cs = env_cpu(env);
4679 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4682 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4683 uint64_t value)
4685 /* Invalidate by VA, EL2
4686 * Currently handles both VAE2 and VALE2, since we don't support
4687 * flush-last-level-only.
4689 CPUState *cs = env_cpu(env);
4690 int mask = e2_tlbmask(env);
4691 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4693 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4696 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4697 uint64_t value)
4699 /* Invalidate by VA, EL3
4700 * Currently handles both VAE3 and VALE3, since we don't support
4701 * flush-last-level-only.
4703 ARMCPU *cpu = env_archcpu(env);
4704 CPUState *cs = CPU(cpu);
4705 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4707 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4710 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4711 uint64_t value)
4713 CPUState *cs = env_cpu(env);
4714 int mask = vae1_tlbmask(env);
4715 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4716 int bits = vae1_tlbbits(env, pageaddr);
4718 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4721 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4722 uint64_t value)
4724 /* Invalidate by VA, EL1&0 (AArch64 version).
4725 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4726 * since we don't support flush-for-specific-ASID-only or
4727 * flush-last-level-only.
4729 CPUState *cs = env_cpu(env);
4730 int mask = vae1_tlbmask(env);
4731 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4732 int bits = vae1_tlbbits(env, pageaddr);
4734 if (tlb_force_broadcast(env)) {
4735 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4736 } else {
4737 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4741 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4742 uint64_t value)
4744 CPUState *cs = env_cpu(env);
4745 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4746 bool secure = arm_is_secure_below_el3(env);
4747 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4748 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4749 pageaddr);
4751 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4754 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4755 uint64_t value)
4757 CPUState *cs = env_cpu(env);
4758 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4759 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4761 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4762 ARMMMUIdxBit_SE3, bits);
4765 #ifdef TARGET_AARCH64
4766 static uint64_t tlbi_aa64_range_get_length(CPUARMState *env,
4767 uint64_t value)
4769 unsigned int page_shift;
4770 unsigned int page_size_granule;
4771 uint64_t num;
4772 uint64_t scale;
4773 uint64_t exponent;
4774 uint64_t length;
4776 num = extract64(value, 39, 4);
4777 scale = extract64(value, 44, 2);
4778 page_size_granule = extract64(value, 46, 2);
4780 page_shift = page_size_granule * 2 + 12;
4782 if (page_size_granule == 0) {
4783 qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n",
4784 page_size_granule);
4785 return 0;
4788 exponent = (5 * scale) + 1;
4789 length = (num + 1) << (exponent + page_shift);
4791 return length;
4794 static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value,
4795 bool two_ranges)
4797 /* TODO: ARMv8.7 FEAT_LPA2 */
4798 uint64_t pageaddr;
4800 if (two_ranges) {
4801 pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS;
4802 } else {
4803 pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS;
4806 return pageaddr;
4809 static void do_rvae_write(CPUARMState *env, uint64_t value,
4810 int idxmap, bool synced)
4812 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4813 bool two_ranges = regime_has_2_ranges(one_idx);
4814 uint64_t baseaddr, length;
4815 int bits;
4817 baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges);
4818 length = tlbi_aa64_range_get_length(env, value);
4819 bits = tlbbits_for_regime(env, one_idx, baseaddr);
4821 if (synced) {
4822 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4823 baseaddr,
4824 length,
4825 idxmap,
4826 bits);
4827 } else {
4828 tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr,
4829 length, idxmap, bits);
4833 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4834 const ARMCPRegInfo *ri,
4835 uint64_t value)
4838 * Invalidate by VA range, EL1&0.
4839 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4840 * since we don't support flush-for-specific-ASID-only or
4841 * flush-last-level-only.
4844 do_rvae_write(env, value, vae1_tlbmask(env),
4845 tlb_force_broadcast(env));
4848 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4849 const ARMCPRegInfo *ri,
4850 uint64_t value)
4853 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4854 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4855 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4856 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4857 * shareable specific flushes.
4860 do_rvae_write(env, value, vae1_tlbmask(env), true);
4863 static int vae2_tlbmask(CPUARMState *env)
4865 return (arm_is_secure_below_el3(env)
4866 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4869 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4870 const ARMCPRegInfo *ri,
4871 uint64_t value)
4874 * Invalidate by VA range, EL2.
4875 * Currently handles all of RVAE2 and RVALE2,
4876 * since we don't support flush-for-specific-ASID-only or
4877 * flush-last-level-only.
4880 do_rvae_write(env, value, vae2_tlbmask(env),
4881 tlb_force_broadcast(env));
4886 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4887 const ARMCPRegInfo *ri,
4888 uint64_t value)
4891 * Invalidate by VA range, Inner/Outer Shareable, EL2.
4892 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4893 * since we don't support flush-for-specific-ASID-only,
4894 * flush-last-level-only or inner/outer shareable specific flushes.
4897 do_rvae_write(env, value, vae2_tlbmask(env), true);
4901 static void tlbi_aa64_rvae3_write(CPUARMState *env,
4902 const ARMCPRegInfo *ri,
4903 uint64_t value)
4906 * Invalidate by VA range, EL3.
4907 * Currently handles all of RVAE3 and RVALE3,
4908 * since we don't support flush-for-specific-ASID-only or
4909 * flush-last-level-only.
4912 do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4913 tlb_force_broadcast(env));
4916 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4917 const ARMCPRegInfo *ri,
4918 uint64_t value)
4921 * Invalidate by VA range, EL3, Inner/Outer Shareable.
4922 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4923 * since we don't support flush-for-specific-ASID-only,
4924 * flush-last-level-only or inner/outer specific flushes.
4927 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4929 #endif
4931 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4932 bool isread)
4934 int cur_el = arm_current_el(env);
4936 if (cur_el < 2) {
4937 uint64_t hcr = arm_hcr_el2_eff(env);
4939 if (cur_el == 0) {
4940 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4941 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4942 return CP_ACCESS_TRAP_EL2;
4944 } else {
4945 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4946 return CP_ACCESS_TRAP;
4948 if (hcr & HCR_TDZ) {
4949 return CP_ACCESS_TRAP_EL2;
4952 } else if (hcr & HCR_TDZ) {
4953 return CP_ACCESS_TRAP_EL2;
4956 return CP_ACCESS_OK;
4959 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4961 ARMCPU *cpu = env_archcpu(env);
4962 int dzp_bit = 1 << 4;
4964 /* DZP indicates whether DC ZVA access is allowed */
4965 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4966 dzp_bit = 0;
4968 return cpu->dcz_blocksize | dzp_bit;
4971 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4972 bool isread)
4974 if (!(env->pstate & PSTATE_SP)) {
4975 /* Access to SP_EL0 is undefined if it's being used as
4976 * the stack pointer.
4978 return CP_ACCESS_TRAP_UNCATEGORIZED;
4980 return CP_ACCESS_OK;
4983 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4985 return env->pstate & PSTATE_SP;
4988 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4990 update_spsel(env, val);
4993 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4994 uint64_t value)
4996 ARMCPU *cpu = env_archcpu(env);
4998 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4999 /* M bit is RAZ/WI for PMSA with no MPU implemented */
5000 value &= ~SCTLR_M;
5003 /* ??? Lots of these bits are not implemented. */
5005 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5006 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5007 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5008 } else {
5009 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5010 SCTLR_ATA0 | SCTLR_ATA);
5014 if (raw_read(env, ri) == value) {
5015 /* Skip the TLB flush if nothing actually changed; Linux likes
5016 * to do a lot of pointless SCTLR writes.
5018 return;
5021 raw_write(env, ri, value);
5023 /* This may enable/disable the MMU, so do a TLB flush. */
5024 tlb_flush(CPU(cpu));
5026 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
5028 * Normally we would always end the TB on an SCTLR write; see the
5029 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5030 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5031 * of hflags from the translator, so do it here.
5033 arm_rebuild_hflags(env);
5037 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
5038 bool isread)
5040 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
5041 return CP_ACCESS_TRAP_FP_EL2;
5043 if (env->cp15.cptr_el[3] & CPTR_TFP) {
5044 return CP_ACCESS_TRAP_FP_EL3;
5046 return CP_ACCESS_OK;
5049 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5050 uint64_t value)
5052 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
5055 static const ARMCPRegInfo v8_cp_reginfo[] = {
5056 /* Minimal set of EL0-visible registers. This will need to be expanded
5057 * significantly for system emulation of AArch64 CPUs.
5059 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5060 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5061 .access = PL0_RW, .type = ARM_CP_NZCV },
5062 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5063 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5064 .type = ARM_CP_NO_RAW,
5065 .access = PL0_RW, .accessfn = aa64_daif_access,
5066 .fieldoffset = offsetof(CPUARMState, daif),
5067 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5068 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5069 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5070 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5071 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5072 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5073 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5074 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5075 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5076 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5077 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5078 .access = PL0_R, .type = ARM_CP_NO_RAW,
5079 .readfn = aa64_dczid_read },
5080 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5081 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5082 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5083 #ifndef CONFIG_USER_ONLY
5084 /* Avoid overhead of an access check that always passes in user-mode */
5085 .accessfn = aa64_zva_access,
5086 #endif
5088 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5089 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5090 .access = PL1_R, .type = ARM_CP_CURRENTEL },
5091 /* Cache ops: all NOPs since we don't emulate caches */
5092 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5093 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5094 .access = PL1_W, .type = ARM_CP_NOP,
5095 .accessfn = aa64_cacheop_pou_access },
5096 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5097 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5098 .access = PL1_W, .type = ARM_CP_NOP,
5099 .accessfn = aa64_cacheop_pou_access },
5100 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5101 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5102 .access = PL0_W, .type = ARM_CP_NOP,
5103 .accessfn = aa64_cacheop_pou_access },
5104 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5105 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5106 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5107 .type = ARM_CP_NOP },
5108 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5109 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5110 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5111 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5112 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5113 .access = PL0_W, .type = ARM_CP_NOP,
5114 .accessfn = aa64_cacheop_poc_access },
5115 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5116 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5117 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5118 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5119 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5120 .access = PL0_W, .type = ARM_CP_NOP,
5121 .accessfn = aa64_cacheop_pou_access },
5122 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5123 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5124 .access = PL0_W, .type = ARM_CP_NOP,
5125 .accessfn = aa64_cacheop_poc_access },
5126 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5127 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5128 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5129 /* TLBI operations */
5130 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5131 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5132 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5133 .writefn = tlbi_aa64_vmalle1is_write },
5134 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5135 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5136 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5137 .writefn = tlbi_aa64_vae1is_write },
5138 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5139 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5140 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5141 .writefn = tlbi_aa64_vmalle1is_write },
5142 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5143 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5144 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5145 .writefn = tlbi_aa64_vae1is_write },
5146 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5147 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5148 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5149 .writefn = tlbi_aa64_vae1is_write },
5150 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5151 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5152 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5153 .writefn = tlbi_aa64_vae1is_write },
5154 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5155 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5156 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5157 .writefn = tlbi_aa64_vmalle1_write },
5158 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5159 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5160 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5161 .writefn = tlbi_aa64_vae1_write },
5162 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5163 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5164 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5165 .writefn = tlbi_aa64_vmalle1_write },
5166 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5167 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5168 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5169 .writefn = tlbi_aa64_vae1_write },
5170 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5171 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5172 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5173 .writefn = tlbi_aa64_vae1_write },
5174 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5175 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5176 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5177 .writefn = tlbi_aa64_vae1_write },
5178 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5179 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5180 .access = PL2_W, .type = ARM_CP_NOP },
5181 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5182 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5183 .access = PL2_W, .type = ARM_CP_NOP },
5184 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5185 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5186 .access = PL2_W, .type = ARM_CP_NO_RAW,
5187 .writefn = tlbi_aa64_alle1is_write },
5188 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5189 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5190 .access = PL2_W, .type = ARM_CP_NO_RAW,
5191 .writefn = tlbi_aa64_alle1is_write },
5192 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5193 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5194 .access = PL2_W, .type = ARM_CP_NOP },
5195 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5196 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5197 .access = PL2_W, .type = ARM_CP_NOP },
5198 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5199 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5200 .access = PL2_W, .type = ARM_CP_NO_RAW,
5201 .writefn = tlbi_aa64_alle1_write },
5202 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5203 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5204 .access = PL2_W, .type = ARM_CP_NO_RAW,
5205 .writefn = tlbi_aa64_alle1is_write },
5206 #ifndef CONFIG_USER_ONLY
5207 /* 64 bit address translation operations */
5208 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5209 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5210 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5211 .writefn = ats_write64 },
5212 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5213 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5214 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5215 .writefn = ats_write64 },
5216 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5217 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5218 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5219 .writefn = ats_write64 },
5220 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5221 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5222 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5223 .writefn = ats_write64 },
5224 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5225 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5226 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5227 .writefn = ats_write64 },
5228 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5229 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5230 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5231 .writefn = ats_write64 },
5232 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5233 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5234 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5235 .writefn = ats_write64 },
5236 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5237 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5238 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5239 .writefn = ats_write64 },
5240 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5241 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5242 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5243 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5244 .writefn = ats_write64 },
5245 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5246 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5247 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5248 .writefn = ats_write64 },
5249 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5250 .type = ARM_CP_ALIAS,
5251 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5252 .access = PL1_RW, .resetvalue = 0,
5253 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5254 .writefn = par_write },
5255 #endif
5256 /* TLB invalidate last level of translation table walk */
5257 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5258 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5259 .writefn = tlbimva_is_write },
5260 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5261 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5262 .writefn = tlbimvaa_is_write },
5263 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5264 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5265 .writefn = tlbimva_write },
5266 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5267 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5268 .writefn = tlbimvaa_write },
5269 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5270 .type = ARM_CP_NO_RAW, .access = PL2_W,
5271 .writefn = tlbimva_hyp_write },
5272 { .name = "TLBIMVALHIS",
5273 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5274 .type = ARM_CP_NO_RAW, .access = PL2_W,
5275 .writefn = tlbimva_hyp_is_write },
5276 { .name = "TLBIIPAS2",
5277 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5278 .type = ARM_CP_NOP, .access = PL2_W },
5279 { .name = "TLBIIPAS2IS",
5280 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5281 .type = ARM_CP_NOP, .access = PL2_W },
5282 { .name = "TLBIIPAS2L",
5283 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5284 .type = ARM_CP_NOP, .access = PL2_W },
5285 { .name = "TLBIIPAS2LIS",
5286 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5287 .type = ARM_CP_NOP, .access = PL2_W },
5288 /* 32 bit cache operations */
5289 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5290 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5291 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5292 .type = ARM_CP_NOP, .access = PL1_W },
5293 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5294 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5295 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5296 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5297 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5298 .type = ARM_CP_NOP, .access = PL1_W },
5299 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5300 .type = ARM_CP_NOP, .access = PL1_W },
5301 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5302 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5303 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5304 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5305 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5306 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5307 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5308 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5309 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5310 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5311 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5312 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5313 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5314 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5315 /* MMU Domain access control / MPU write buffer control */
5316 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5317 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5318 .writefn = dacr_write, .raw_writefn = raw_write,
5319 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5320 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5321 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5322 .type = ARM_CP_ALIAS,
5323 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5324 .access = PL1_RW,
5325 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5326 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5327 .type = ARM_CP_ALIAS,
5328 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5329 .access = PL1_RW,
5330 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5331 /* We rely on the access checks not allowing the guest to write to the
5332 * state field when SPSel indicates that it's being used as the stack
5333 * pointer.
5335 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5336 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5337 .access = PL1_RW, .accessfn = sp_el0_access,
5338 .type = ARM_CP_ALIAS,
5339 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5340 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5341 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5342 .access = PL2_RW, .type = ARM_CP_ALIAS,
5343 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5344 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5345 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5346 .type = ARM_CP_NO_RAW,
5347 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5348 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5349 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5350 .type = ARM_CP_ALIAS,
5351 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5352 .access = PL2_RW, .accessfn = fpexc32_access },
5353 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5354 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5355 .access = PL2_RW, .resetvalue = 0,
5356 .writefn = dacr_write, .raw_writefn = raw_write,
5357 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5358 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5359 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5360 .access = PL2_RW, .resetvalue = 0,
5361 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5362 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5363 .type = ARM_CP_ALIAS,
5364 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5365 .access = PL2_RW,
5366 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5367 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5368 .type = ARM_CP_ALIAS,
5369 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5370 .access = PL2_RW,
5371 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5372 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5373 .type = ARM_CP_ALIAS,
5374 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5375 .access = PL2_RW,
5376 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5377 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5378 .type = ARM_CP_ALIAS,
5379 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5380 .access = PL2_RW,
5381 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5382 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5383 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5384 .resetvalue = 0,
5385 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5386 { .name = "SDCR", .type = ARM_CP_ALIAS,
5387 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5388 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5389 .writefn = sdcr_write,
5390 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5391 REGINFO_SENTINEL
5394 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
5395 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5396 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5397 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5398 .access = PL2_RW,
5399 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5400 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5401 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5402 .access = PL2_RW,
5403 .type = ARM_CP_CONST, .resetvalue = 0 },
5404 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5405 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5406 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5407 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5408 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5409 .access = PL2_RW,
5410 .type = ARM_CP_CONST, .resetvalue = 0 },
5411 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5412 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5413 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5414 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5415 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5416 .access = PL2_RW, .type = ARM_CP_CONST,
5417 .resetvalue = 0 },
5418 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5419 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5420 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5421 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5422 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5423 .access = PL2_RW, .type = ARM_CP_CONST,
5424 .resetvalue = 0 },
5425 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5426 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5427 .access = PL2_RW, .type = ARM_CP_CONST,
5428 .resetvalue = 0 },
5429 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5430 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5431 .access = PL2_RW, .type = ARM_CP_CONST,
5432 .resetvalue = 0 },
5433 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5434 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5435 .access = PL2_RW, .type = ARM_CP_CONST,
5436 .resetvalue = 0 },
5437 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5438 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5439 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5440 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5441 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5442 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5443 .type = ARM_CP_CONST, .resetvalue = 0 },
5444 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5445 .cp = 15, .opc1 = 6, .crm = 2,
5446 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5447 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5448 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5449 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5450 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5451 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5452 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5453 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5454 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5455 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5456 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5457 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5458 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5459 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5460 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5461 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5462 .resetvalue = 0 },
5463 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5464 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5465 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5466 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5467 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5468 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5469 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5470 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5471 .resetvalue = 0 },
5472 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5473 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5474 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5475 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5476 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5477 .resetvalue = 0 },
5478 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5479 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5480 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5481 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5482 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5483 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5484 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5485 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5486 .access = PL2_RW, .accessfn = access_tda,
5487 .type = ARM_CP_CONST, .resetvalue = 0 },
5488 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5489 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5490 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5491 .type = ARM_CP_CONST, .resetvalue = 0 },
5492 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5493 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5494 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5495 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5496 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5497 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5498 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5499 .type = ARM_CP_CONST,
5500 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5501 .access = PL2_RW, .resetvalue = 0 },
5502 REGINFO_SENTINEL
5505 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5506 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5507 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5508 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5509 .access = PL2_RW,
5510 .type = ARM_CP_CONST, .resetvalue = 0 },
5511 REGINFO_SENTINEL
5514 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5516 ARMCPU *cpu = env_archcpu(env);
5518 if (arm_feature(env, ARM_FEATURE_V8)) {
5519 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5520 } else {
5521 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5524 if (arm_feature(env, ARM_FEATURE_EL3)) {
5525 valid_mask &= ~HCR_HCD;
5526 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5527 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5528 * However, if we're using the SMC PSCI conduit then QEMU is
5529 * effectively acting like EL3 firmware and so the guest at
5530 * EL2 should retain the ability to prevent EL1 from being
5531 * able to make SMC calls into the ersatz firmware, so in
5532 * that case HCR.TSC should be read/write.
5534 valid_mask &= ~HCR_TSC;
5537 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5538 if (cpu_isar_feature(aa64_vh, cpu)) {
5539 valid_mask |= HCR_E2H;
5541 if (cpu_isar_feature(aa64_lor, cpu)) {
5542 valid_mask |= HCR_TLOR;
5544 if (cpu_isar_feature(aa64_pauth, cpu)) {
5545 valid_mask |= HCR_API | HCR_APK;
5547 if (cpu_isar_feature(aa64_mte, cpu)) {
5548 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5552 /* Clear RES0 bits. */
5553 value &= valid_mask;
5556 * These bits change the MMU setup:
5557 * HCR_VM enables stage 2 translation
5558 * HCR_PTW forbids certain page-table setups
5559 * HCR_DC disables stage1 and enables stage2 translation
5560 * HCR_DCT enables tagging on (disabled) stage1 translation
5562 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5563 tlb_flush(CPU(cpu));
5565 env->cp15.hcr_el2 = value;
5568 * Updates to VI and VF require us to update the status of
5569 * virtual interrupts, which are the logical OR of these bits
5570 * and the state of the input lines from the GIC. (This requires
5571 * that we have the iothread lock, which is done by marking the
5572 * reginfo structs as ARM_CP_IO.)
5573 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5574 * possible for it to be taken immediately, because VIRQ and
5575 * VFIQ are masked unless running at EL0 or EL1, and HCR
5576 * can only be written at EL2.
5578 g_assert(qemu_mutex_iothread_locked());
5579 arm_cpu_update_virq(cpu);
5580 arm_cpu_update_vfiq(cpu);
5583 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5585 do_hcr_write(env, value, 0);
5588 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5589 uint64_t value)
5591 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5592 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5593 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5596 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5597 uint64_t value)
5599 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5600 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5601 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5605 * Return the effective value of HCR_EL2.
5606 * Bits that are not included here:
5607 * RW (read from SCR_EL3.RW as needed)
5609 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5611 uint64_t ret = env->cp15.hcr_el2;
5613 if (!arm_is_el2_enabled(env)) {
5615 * "This register has no effect if EL2 is not enabled in the
5616 * current Security state". This is ARMv8.4-SecEL2 speak for
5617 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5619 * Prior to that, the language was "In an implementation that
5620 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5621 * as if this field is 0 for all purposes other than a direct
5622 * read or write access of HCR_EL2". With lots of enumeration
5623 * on a per-field basis. In current QEMU, this is condition
5624 * is arm_is_secure_below_el3.
5626 * Since the v8.4 language applies to the entire register, and
5627 * appears to be backward compatible, use that.
5629 return 0;
5633 * For a cpu that supports both aarch64 and aarch32, we can set bits
5634 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5635 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5637 if (!arm_el_is_aa64(env, 2)) {
5638 uint64_t aa32_valid;
5641 * These bits are up-to-date as of ARMv8.6.
5642 * For HCR, it's easiest to list just the 2 bits that are invalid.
5643 * For HCR2, list those that are valid.
5645 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5646 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5647 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5648 ret &= aa32_valid;
5651 if (ret & HCR_TGE) {
5652 /* These bits are up-to-date as of ARMv8.6. */
5653 if (ret & HCR_E2H) {
5654 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5655 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5656 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5657 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5658 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5659 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5660 } else {
5661 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5663 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5664 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5665 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5666 HCR_TLOR);
5669 return ret;
5672 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5673 uint64_t value)
5676 * For A-profile AArch32 EL3, if NSACR.CP10
5677 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5679 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5680 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5681 value &= ~(0x3 << 10);
5682 value |= env->cp15.cptr_el[2] & (0x3 << 10);
5684 env->cp15.cptr_el[2] = value;
5687 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5690 * For A-profile AArch32 EL3, if NSACR.CP10
5691 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5693 uint64_t value = env->cp15.cptr_el[2];
5695 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5696 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5697 value |= 0x3 << 10;
5699 return value;
5702 static const ARMCPRegInfo el2_cp_reginfo[] = {
5703 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5704 .type = ARM_CP_IO,
5705 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5706 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5707 .writefn = hcr_write },
5708 { .name = "HCR", .state = ARM_CP_STATE_AA32,
5709 .type = ARM_CP_ALIAS | ARM_CP_IO,
5710 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5711 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5712 .writefn = hcr_writelow },
5713 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5714 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5715 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5716 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5717 .type = ARM_CP_ALIAS,
5718 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5719 .access = PL2_RW,
5720 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5721 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5722 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5723 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5724 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5725 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5726 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5727 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5728 .type = ARM_CP_ALIAS,
5729 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5730 .access = PL2_RW,
5731 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5732 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5733 .type = ARM_CP_ALIAS,
5734 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5735 .access = PL2_RW,
5736 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5737 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5738 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5739 .access = PL2_RW, .writefn = vbar_write,
5740 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5741 .resetvalue = 0 },
5742 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5743 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5744 .access = PL3_RW, .type = ARM_CP_ALIAS,
5745 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5746 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5747 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5748 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5749 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5750 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5751 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5752 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5753 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5754 .resetvalue = 0 },
5755 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5756 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5757 .access = PL2_RW, .type = ARM_CP_ALIAS,
5758 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5759 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5760 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5761 .access = PL2_RW, .type = ARM_CP_CONST,
5762 .resetvalue = 0 },
5763 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5764 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5765 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5766 .access = PL2_RW, .type = ARM_CP_CONST,
5767 .resetvalue = 0 },
5768 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5769 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5770 .access = PL2_RW, .type = ARM_CP_CONST,
5771 .resetvalue = 0 },
5772 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5773 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5774 .access = PL2_RW, .type = ARM_CP_CONST,
5775 .resetvalue = 0 },
5776 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5777 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5778 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5779 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5780 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5781 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5782 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5783 .type = ARM_CP_ALIAS,
5784 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5785 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5786 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5787 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5788 .access = PL2_RW,
5789 /* no .writefn needed as this can't cause an ASID change;
5790 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5792 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5793 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5794 .cp = 15, .opc1 = 6, .crm = 2,
5795 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5796 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5797 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5798 .writefn = vttbr_write },
5799 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5800 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5801 .access = PL2_RW, .writefn = vttbr_write,
5802 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5803 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5804 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5805 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5806 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5807 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5808 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5809 .access = PL2_RW, .resetvalue = 0,
5810 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5811 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5812 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5813 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5814 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5815 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5816 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5817 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5818 { .name = "TLBIALLNSNH",
5819 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5820 .type = ARM_CP_NO_RAW, .access = PL2_W,
5821 .writefn = tlbiall_nsnh_write },
5822 { .name = "TLBIALLNSNHIS",
5823 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5824 .type = ARM_CP_NO_RAW, .access = PL2_W,
5825 .writefn = tlbiall_nsnh_is_write },
5826 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5827 .type = ARM_CP_NO_RAW, .access = PL2_W,
5828 .writefn = tlbiall_hyp_write },
5829 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5830 .type = ARM_CP_NO_RAW, .access = PL2_W,
5831 .writefn = tlbiall_hyp_is_write },
5832 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5833 .type = ARM_CP_NO_RAW, .access = PL2_W,
5834 .writefn = tlbimva_hyp_write },
5835 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5836 .type = ARM_CP_NO_RAW, .access = PL2_W,
5837 .writefn = tlbimva_hyp_is_write },
5838 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5839 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5840 .type = ARM_CP_NO_RAW, .access = PL2_W,
5841 .writefn = tlbi_aa64_alle2_write },
5842 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5843 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5844 .type = ARM_CP_NO_RAW, .access = PL2_W,
5845 .writefn = tlbi_aa64_vae2_write },
5846 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5847 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5848 .access = PL2_W, .type = ARM_CP_NO_RAW,
5849 .writefn = tlbi_aa64_vae2_write },
5850 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5851 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5852 .access = PL2_W, .type = ARM_CP_NO_RAW,
5853 .writefn = tlbi_aa64_alle2is_write },
5854 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5855 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5856 .type = ARM_CP_NO_RAW, .access = PL2_W,
5857 .writefn = tlbi_aa64_vae2is_write },
5858 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5859 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5860 .access = PL2_W, .type = ARM_CP_NO_RAW,
5861 .writefn = tlbi_aa64_vae2is_write },
5862 #ifndef CONFIG_USER_ONLY
5863 /* Unlike the other EL2-related AT operations, these must
5864 * UNDEF from EL3 if EL2 is not implemented, which is why we
5865 * define them here rather than with the rest of the AT ops.
5867 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5868 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5869 .access = PL2_W, .accessfn = at_s1e2_access,
5870 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5871 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5872 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5873 .access = PL2_W, .accessfn = at_s1e2_access,
5874 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5875 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5876 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5877 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5878 * to behave as if SCR.NS was 1.
5880 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5881 .access = PL2_W,
5882 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5883 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5884 .access = PL2_W,
5885 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5886 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5887 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5888 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5889 * reset values as IMPDEF. We choose to reset to 3 to comply with
5890 * both ARMv7 and ARMv8.
5892 .access = PL2_RW, .resetvalue = 3,
5893 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5894 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5895 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5896 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5897 .writefn = gt_cntvoff_write,
5898 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5899 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5900 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5901 .writefn = gt_cntvoff_write,
5902 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5903 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5904 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5905 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5906 .type = ARM_CP_IO, .access = PL2_RW,
5907 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5908 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5909 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5910 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5911 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5912 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5913 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5914 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5915 .resetfn = gt_hyp_timer_reset,
5916 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5917 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5918 .type = ARM_CP_IO,
5919 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5920 .access = PL2_RW,
5921 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5922 .resetvalue = 0,
5923 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5924 #endif
5925 /* The only field of MDCR_EL2 that has a defined architectural reset value
5926 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
5928 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5929 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5930 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS,
5931 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5932 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5933 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5934 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5935 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5936 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5937 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5938 .access = PL2_RW,
5939 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5940 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5941 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5942 .access = PL2_RW,
5943 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5944 REGINFO_SENTINEL
5947 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5948 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5949 .type = ARM_CP_ALIAS | ARM_CP_IO,
5950 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5951 .access = PL2_RW,
5952 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5953 .writefn = hcr_writehigh },
5954 REGINFO_SENTINEL
5957 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5958 bool isread)
5960 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5961 return CP_ACCESS_OK;
5963 return CP_ACCESS_TRAP_UNCATEGORIZED;
5966 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5967 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5968 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5969 .access = PL2_RW, .accessfn = sel2_access,
5970 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5971 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5972 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5973 .access = PL2_RW, .accessfn = sel2_access,
5974 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5975 REGINFO_SENTINEL
5978 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5979 bool isread)
5981 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5982 * At Secure EL1 it traps to EL3 or EL2.
5984 if (arm_current_el(env) == 3) {
5985 return CP_ACCESS_OK;
5987 if (arm_is_secure_below_el3(env)) {
5988 if (env->cp15.scr_el3 & SCR_EEL2) {
5989 return CP_ACCESS_TRAP_EL2;
5991 return CP_ACCESS_TRAP_EL3;
5993 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5994 if (isread) {
5995 return CP_ACCESS_OK;
5997 return CP_ACCESS_TRAP_UNCATEGORIZED;
6000 static const ARMCPRegInfo el3_cp_reginfo[] = {
6001 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6002 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6003 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6004 .resetfn = scr_reset, .writefn = scr_write },
6005 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6006 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6007 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6008 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6009 .writefn = scr_write },
6010 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6011 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6012 .access = PL3_RW, .resetvalue = 0,
6013 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6014 { .name = "SDER",
6015 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6016 .access = PL3_RW, .resetvalue = 0,
6017 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6018 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6019 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6020 .writefn = vbar_write, .resetvalue = 0,
6021 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6022 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6023 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6024 .access = PL3_RW, .resetvalue = 0,
6025 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6026 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6027 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6028 .access = PL3_RW,
6029 /* no .writefn needed as this can't cause an ASID change;
6030 * we must provide a .raw_writefn and .resetfn because we handle
6031 * reset and migration for the AArch32 TTBCR(S), which might be
6032 * using mask and base_mask.
6034 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
6035 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6036 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6037 .type = ARM_CP_ALIAS,
6038 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6039 .access = PL3_RW,
6040 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6041 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6042 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6043 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6044 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6045 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6046 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6047 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6048 .type = ARM_CP_ALIAS,
6049 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6050 .access = PL3_RW,
6051 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6052 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6053 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6054 .access = PL3_RW, .writefn = vbar_write,
6055 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6056 .resetvalue = 0 },
6057 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6058 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6059 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6060 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6061 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6062 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6063 .access = PL3_RW, .resetvalue = 0,
6064 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6065 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6066 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6067 .access = PL3_RW, .type = ARM_CP_CONST,
6068 .resetvalue = 0 },
6069 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6070 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6071 .access = PL3_RW, .type = ARM_CP_CONST,
6072 .resetvalue = 0 },
6073 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6074 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6075 .access = PL3_RW, .type = ARM_CP_CONST,
6076 .resetvalue = 0 },
6077 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6078 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6079 .access = PL3_W, .type = ARM_CP_NO_RAW,
6080 .writefn = tlbi_aa64_alle3is_write },
6081 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6082 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6083 .access = PL3_W, .type = ARM_CP_NO_RAW,
6084 .writefn = tlbi_aa64_vae3is_write },
6085 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6086 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6087 .access = PL3_W, .type = ARM_CP_NO_RAW,
6088 .writefn = tlbi_aa64_vae3is_write },
6089 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6090 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6091 .access = PL3_W, .type = ARM_CP_NO_RAW,
6092 .writefn = tlbi_aa64_alle3_write },
6093 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6094 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6095 .access = PL3_W, .type = ARM_CP_NO_RAW,
6096 .writefn = tlbi_aa64_vae3_write },
6097 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6098 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6099 .access = PL3_W, .type = ARM_CP_NO_RAW,
6100 .writefn = tlbi_aa64_vae3_write },
6101 REGINFO_SENTINEL
6104 #ifndef CONFIG_USER_ONLY
6105 /* Test if system register redirection is to occur in the current state. */
6106 static bool redirect_for_e2h(CPUARMState *env)
6108 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6111 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6113 CPReadFn *readfn;
6115 if (redirect_for_e2h(env)) {
6116 /* Switch to the saved EL2 version of the register. */
6117 ri = ri->opaque;
6118 readfn = ri->readfn;
6119 } else {
6120 readfn = ri->orig_readfn;
6122 if (readfn == NULL) {
6123 readfn = raw_read;
6125 return readfn(env, ri);
6128 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6129 uint64_t value)
6131 CPWriteFn *writefn;
6133 if (redirect_for_e2h(env)) {
6134 /* Switch to the saved EL2 version of the register. */
6135 ri = ri->opaque;
6136 writefn = ri->writefn;
6137 } else {
6138 writefn = ri->orig_writefn;
6140 if (writefn == NULL) {
6141 writefn = raw_write;
6143 writefn(env, ri, value);
6146 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6148 struct E2HAlias {
6149 uint32_t src_key, dst_key, new_key;
6150 const char *src_name, *dst_name, *new_name;
6151 bool (*feature)(const ARMISARegisters *id);
6154 #define K(op0, op1, crn, crm, op2) \
6155 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6157 static const struct E2HAlias aliases[] = {
6158 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6159 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6160 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6161 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6162 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6163 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6164 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6165 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6166 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6167 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6168 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6169 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6170 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6171 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6172 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6173 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6174 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6175 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6176 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6177 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6178 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6179 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6180 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6181 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6182 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6183 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6184 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6185 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6186 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6187 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6188 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6189 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6192 * Note that redirection of ZCR is mentioned in the description
6193 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6194 * not in the summary table.
6196 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6197 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6199 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6200 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6202 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6203 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6205 #undef K
6207 size_t i;
6209 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6210 const struct E2HAlias *a = &aliases[i];
6211 ARMCPRegInfo *src_reg, *dst_reg;
6213 if (a->feature && !a->feature(&cpu->isar)) {
6214 continue;
6217 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
6218 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
6219 g_assert(src_reg != NULL);
6220 g_assert(dst_reg != NULL);
6222 /* Cross-compare names to detect typos in the keys. */
6223 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6224 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6226 /* None of the core system registers use opaque; we will. */
6227 g_assert(src_reg->opaque == NULL);
6229 /* Create alias before redirection so we dup the right data. */
6230 if (a->new_key) {
6231 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6232 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
6233 bool ok;
6235 new_reg->name = a->new_name;
6236 new_reg->type |= ARM_CP_ALIAS;
6237 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6238 new_reg->access &= PL2_RW | PL3_RW;
6240 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
6241 g_assert(ok);
6244 src_reg->opaque = dst_reg;
6245 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6246 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6247 if (!src_reg->raw_readfn) {
6248 src_reg->raw_readfn = raw_read;
6250 if (!src_reg->raw_writefn) {
6251 src_reg->raw_writefn = raw_write;
6253 src_reg->readfn = el2_e2h_read;
6254 src_reg->writefn = el2_e2h_write;
6257 #endif
6259 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6260 bool isread)
6262 int cur_el = arm_current_el(env);
6264 if (cur_el < 2) {
6265 uint64_t hcr = arm_hcr_el2_eff(env);
6267 if (cur_el == 0) {
6268 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6269 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6270 return CP_ACCESS_TRAP_EL2;
6272 } else {
6273 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6274 return CP_ACCESS_TRAP;
6276 if (hcr & HCR_TID2) {
6277 return CP_ACCESS_TRAP_EL2;
6280 } else if (hcr & HCR_TID2) {
6281 return CP_ACCESS_TRAP_EL2;
6285 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6286 return CP_ACCESS_TRAP_EL2;
6289 return CP_ACCESS_OK;
6292 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6293 uint64_t value)
6295 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6296 * read via a bit in OSLSR_EL1.
6298 int oslock;
6300 if (ri->state == ARM_CP_STATE_AA32) {
6301 oslock = (value == 0xC5ACCE55);
6302 } else {
6303 oslock = value & 1;
6306 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6309 static const ARMCPRegInfo debug_cp_reginfo[] = {
6310 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6311 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6312 * unlike DBGDRAR it is never accessible from EL0.
6313 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6314 * accessor.
6316 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6317 .access = PL0_R, .accessfn = access_tdra,
6318 .type = ARM_CP_CONST, .resetvalue = 0 },
6319 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6320 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6321 .access = PL1_R, .accessfn = access_tdra,
6322 .type = ARM_CP_CONST, .resetvalue = 0 },
6323 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6324 .access = PL0_R, .accessfn = access_tdra,
6325 .type = ARM_CP_CONST, .resetvalue = 0 },
6326 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6327 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6328 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6329 .access = PL1_RW, .accessfn = access_tda,
6330 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6331 .resetvalue = 0 },
6333 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external
6334 * Debug Communication Channel is not implemented.
6336 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
6337 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
6338 .access = PL0_R, .accessfn = access_tda,
6339 .type = ARM_CP_CONST, .resetvalue = 0 },
6341 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as
6342 * it is unlikely a guest will care.
6343 * We don't implement the configurable EL0 access.
6345 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
6346 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6347 .type = ARM_CP_ALIAS,
6348 .access = PL1_R, .accessfn = access_tda,
6349 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6350 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6351 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6352 .access = PL1_W, .type = ARM_CP_NO_RAW,
6353 .accessfn = access_tdosa,
6354 .writefn = oslar_write },
6355 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6356 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6357 .access = PL1_R, .resetvalue = 10,
6358 .accessfn = access_tdosa,
6359 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6360 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6361 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6362 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6363 .access = PL1_RW, .accessfn = access_tdosa,
6364 .type = ARM_CP_NOP },
6365 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6366 * implement vector catch debug events yet.
6368 { .name = "DBGVCR",
6369 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6370 .access = PL1_RW, .accessfn = access_tda,
6371 .type = ARM_CP_NOP },
6372 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6373 * to save and restore a 32-bit guest's DBGVCR)
6375 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6376 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6377 .access = PL2_RW, .accessfn = access_tda,
6378 .type = ARM_CP_NOP },
6379 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6380 * Channel but Linux may try to access this register. The 32-bit
6381 * alias is DBGDCCINT.
6383 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6384 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6385 .access = PL1_RW, .accessfn = access_tda,
6386 .type = ARM_CP_NOP },
6387 REGINFO_SENTINEL
6390 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6391 /* 64 bit access versions of the (dummy) debug registers */
6392 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6393 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6394 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6395 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6396 REGINFO_SENTINEL
6399 /* Return the exception level to which exceptions should be taken
6400 * via SVEAccessTrap. If an exception should be routed through
6401 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6402 * take care of raising that exception.
6403 * C.f. the ARM pseudocode function CheckSVEEnabled.
6405 int sve_exception_el(CPUARMState *env, int el)
6407 #ifndef CONFIG_USER_ONLY
6408 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6410 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6411 bool disabled = false;
6413 /* The CPACR.ZEN controls traps to EL1:
6414 * 0, 2 : trap EL0 and EL1 accesses
6415 * 1 : trap only EL0 accesses
6416 * 3 : trap no accesses
6418 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6419 disabled = true;
6420 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6421 disabled = el == 0;
6423 if (disabled) {
6424 /* route_to_el2 */
6425 return hcr_el2 & HCR_TGE ? 2 : 1;
6428 /* Check CPACR.FPEN. */
6429 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6430 disabled = true;
6431 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6432 disabled = el == 0;
6434 if (disabled) {
6435 return 0;
6439 /* CPTR_EL2. Since TZ and TFP are positive,
6440 * they will be zero when EL2 is not present.
6442 if (el <= 2 && arm_is_el2_enabled(env)) {
6443 if (env->cp15.cptr_el[2] & CPTR_TZ) {
6444 return 2;
6446 if (env->cp15.cptr_el[2] & CPTR_TFP) {
6447 return 0;
6451 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6452 if (arm_feature(env, ARM_FEATURE_EL3)
6453 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6454 return 3;
6456 #endif
6457 return 0;
6460 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6462 uint32_t end_len;
6464 end_len = start_len &= 0xf;
6465 if (!test_bit(start_len, cpu->sve_vq_map)) {
6466 end_len = find_last_bit(cpu->sve_vq_map, start_len);
6467 assert(end_len < start_len);
6469 return end_len;
6473 * Given that SVE is enabled, return the vector length for EL.
6475 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6477 ARMCPU *cpu = env_archcpu(env);
6478 uint32_t zcr_len = cpu->sve_max_vq - 1;
6480 if (el <= 1) {
6481 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6483 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6484 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6486 if (arm_feature(env, ARM_FEATURE_EL3)) {
6487 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6490 return sve_zcr_get_valid_len(cpu, zcr_len);
6493 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6494 uint64_t value)
6496 int cur_el = arm_current_el(env);
6497 int old_len = sve_zcr_len_for_el(env, cur_el);
6498 int new_len;
6500 /* Bits other than [3:0] are RAZ/WI. */
6501 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6502 raw_write(env, ri, value & 0xf);
6505 * Because we arrived here, we know both FP and SVE are enabled;
6506 * otherwise we would have trapped access to the ZCR_ELn register.
6508 new_len = sve_zcr_len_for_el(env, cur_el);
6509 if (new_len < old_len) {
6510 aarch64_sve_narrow_vq(env, new_len + 1);
6514 static const ARMCPRegInfo zcr_el1_reginfo = {
6515 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6516 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6517 .access = PL1_RW, .type = ARM_CP_SVE,
6518 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6519 .writefn = zcr_write, .raw_writefn = raw_write
6522 static const ARMCPRegInfo zcr_el2_reginfo = {
6523 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6524 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6525 .access = PL2_RW, .type = ARM_CP_SVE,
6526 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6527 .writefn = zcr_write, .raw_writefn = raw_write
6530 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6531 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6532 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6533 .access = PL2_RW, .type = ARM_CP_SVE,
6534 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6537 static const ARMCPRegInfo zcr_el3_reginfo = {
6538 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6539 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6540 .access = PL3_RW, .type = ARM_CP_SVE,
6541 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6542 .writefn = zcr_write, .raw_writefn = raw_write
6545 void hw_watchpoint_update(ARMCPU *cpu, int n)
6547 CPUARMState *env = &cpu->env;
6548 vaddr len = 0;
6549 vaddr wvr = env->cp15.dbgwvr[n];
6550 uint64_t wcr = env->cp15.dbgwcr[n];
6551 int mask;
6552 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6554 if (env->cpu_watchpoint[n]) {
6555 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6556 env->cpu_watchpoint[n] = NULL;
6559 if (!extract64(wcr, 0, 1)) {
6560 /* E bit clear : watchpoint disabled */
6561 return;
6564 switch (extract64(wcr, 3, 2)) {
6565 case 0:
6566 /* LSC 00 is reserved and must behave as if the wp is disabled */
6567 return;
6568 case 1:
6569 flags |= BP_MEM_READ;
6570 break;
6571 case 2:
6572 flags |= BP_MEM_WRITE;
6573 break;
6574 case 3:
6575 flags |= BP_MEM_ACCESS;
6576 break;
6579 /* Attempts to use both MASK and BAS fields simultaneously are
6580 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6581 * thus generating a watchpoint for every byte in the masked region.
6583 mask = extract64(wcr, 24, 4);
6584 if (mask == 1 || mask == 2) {
6585 /* Reserved values of MASK; we must act as if the mask value was
6586 * some non-reserved value, or as if the watchpoint were disabled.
6587 * We choose the latter.
6589 return;
6590 } else if (mask) {
6591 /* Watchpoint covers an aligned area up to 2GB in size */
6592 len = 1ULL << mask;
6593 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6594 * whether the watchpoint fires when the unmasked bits match; we opt
6595 * to generate the exceptions.
6597 wvr &= ~(len - 1);
6598 } else {
6599 /* Watchpoint covers bytes defined by the byte address select bits */
6600 int bas = extract64(wcr, 5, 8);
6601 int basstart;
6603 if (extract64(wvr, 2, 1)) {
6604 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6605 * ignored, and BAS[3:0] define which bytes to watch.
6607 bas &= 0xf;
6610 if (bas == 0) {
6611 /* This must act as if the watchpoint is disabled */
6612 return;
6615 /* The BAS bits are supposed to be programmed to indicate a contiguous
6616 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6617 * we fire for each byte in the word/doubleword addressed by the WVR.
6618 * We choose to ignore any non-zero bits after the first range of 1s.
6620 basstart = ctz32(bas);
6621 len = cto32(bas >> basstart);
6622 wvr += basstart;
6625 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6626 &env->cpu_watchpoint[n]);
6629 void hw_watchpoint_update_all(ARMCPU *cpu)
6631 int i;
6632 CPUARMState *env = &cpu->env;
6634 /* Completely clear out existing QEMU watchpoints and our array, to
6635 * avoid possible stale entries following migration load.
6637 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6638 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6640 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6641 hw_watchpoint_update(cpu, i);
6645 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6646 uint64_t value)
6648 ARMCPU *cpu = env_archcpu(env);
6649 int i = ri->crm;
6651 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6652 * register reads and behaves as if values written are sign extended.
6653 * Bits [1:0] are RES0.
6655 value = sextract64(value, 0, 49) & ~3ULL;
6657 raw_write(env, ri, value);
6658 hw_watchpoint_update(cpu, i);
6661 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6662 uint64_t value)
6664 ARMCPU *cpu = env_archcpu(env);
6665 int i = ri->crm;
6667 raw_write(env, ri, value);
6668 hw_watchpoint_update(cpu, i);
6671 void hw_breakpoint_update(ARMCPU *cpu, int n)
6673 CPUARMState *env = &cpu->env;
6674 uint64_t bvr = env->cp15.dbgbvr[n];
6675 uint64_t bcr = env->cp15.dbgbcr[n];
6676 vaddr addr;
6677 int bt;
6678 int flags = BP_CPU;
6680 if (env->cpu_breakpoint[n]) {
6681 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6682 env->cpu_breakpoint[n] = NULL;
6685 if (!extract64(bcr, 0, 1)) {
6686 /* E bit clear : watchpoint disabled */
6687 return;
6690 bt = extract64(bcr, 20, 4);
6692 switch (bt) {
6693 case 4: /* unlinked address mismatch (reserved if AArch64) */
6694 case 5: /* linked address mismatch (reserved if AArch64) */
6695 qemu_log_mask(LOG_UNIMP,
6696 "arm: address mismatch breakpoint types not implemented\n");
6697 return;
6698 case 0: /* unlinked address match */
6699 case 1: /* linked address match */
6701 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6702 * we behave as if the register was sign extended. Bits [1:0] are
6703 * RES0. The BAS field is used to allow setting breakpoints on 16
6704 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6705 * a bp will fire if the addresses covered by the bp and the addresses
6706 * covered by the insn overlap but the insn doesn't start at the
6707 * start of the bp address range. We choose to require the insn and
6708 * the bp to have the same address. The constraints on writing to
6709 * BAS enforced in dbgbcr_write mean we have only four cases:
6710 * 0b0000 => no breakpoint
6711 * 0b0011 => breakpoint on addr
6712 * 0b1100 => breakpoint on addr + 2
6713 * 0b1111 => breakpoint on addr
6714 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6716 int bas = extract64(bcr, 5, 4);
6717 addr = sextract64(bvr, 0, 49) & ~3ULL;
6718 if (bas == 0) {
6719 return;
6721 if (bas == 0xc) {
6722 addr += 2;
6724 break;
6726 case 2: /* unlinked context ID match */
6727 case 8: /* unlinked VMID match (reserved if no EL2) */
6728 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6729 qemu_log_mask(LOG_UNIMP,
6730 "arm: unlinked context breakpoint types not implemented\n");
6731 return;
6732 case 9: /* linked VMID match (reserved if no EL2) */
6733 case 11: /* linked context ID and VMID match (reserved if no EL2) */
6734 case 3: /* linked context ID match */
6735 default:
6736 /* We must generate no events for Linked context matches (unless
6737 * they are linked to by some other bp/wp, which is handled in
6738 * updates for the linking bp/wp). We choose to also generate no events
6739 * for reserved values.
6741 return;
6744 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6747 void hw_breakpoint_update_all(ARMCPU *cpu)
6749 int i;
6750 CPUARMState *env = &cpu->env;
6752 /* Completely clear out existing QEMU breakpoints and our array, to
6753 * avoid possible stale entries following migration load.
6755 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6756 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6758 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6759 hw_breakpoint_update(cpu, i);
6763 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6764 uint64_t value)
6766 ARMCPU *cpu = env_archcpu(env);
6767 int i = ri->crm;
6769 raw_write(env, ri, value);
6770 hw_breakpoint_update(cpu, i);
6773 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6774 uint64_t value)
6776 ARMCPU *cpu = env_archcpu(env);
6777 int i = ri->crm;
6779 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6780 * copy of BAS[0].
6782 value = deposit64(value, 6, 1, extract64(value, 5, 1));
6783 value = deposit64(value, 8, 1, extract64(value, 7, 1));
6785 raw_write(env, ri, value);
6786 hw_breakpoint_update(cpu, i);
6789 static void define_debug_regs(ARMCPU *cpu)
6791 /* Define v7 and v8 architectural debug registers.
6792 * These are just dummy implementations for now.
6794 int i;
6795 int wrps, brps, ctx_cmps;
6798 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
6799 * use AArch32. Given that bit 15 is RES1, if the value is 0 then
6800 * the register must not exist for this cpu.
6802 if (cpu->isar.dbgdidr != 0) {
6803 ARMCPRegInfo dbgdidr = {
6804 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
6805 .opc1 = 0, .opc2 = 0,
6806 .access = PL0_R, .accessfn = access_tda,
6807 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6809 define_one_arm_cp_reg(cpu, &dbgdidr);
6812 /* Note that all these register fields hold "number of Xs minus 1". */
6813 brps = arm_num_brps(cpu);
6814 wrps = arm_num_wrps(cpu);
6815 ctx_cmps = arm_num_ctx_cmps(cpu);
6817 assert(ctx_cmps <= brps);
6819 define_arm_cp_regs(cpu, debug_cp_reginfo);
6821 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6822 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6825 for (i = 0; i < brps; i++) {
6826 ARMCPRegInfo dbgregs[] = {
6827 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6828 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6829 .access = PL1_RW, .accessfn = access_tda,
6830 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6831 .writefn = dbgbvr_write, .raw_writefn = raw_write
6833 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6834 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6835 .access = PL1_RW, .accessfn = access_tda,
6836 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6837 .writefn = dbgbcr_write, .raw_writefn = raw_write
6839 REGINFO_SENTINEL
6841 define_arm_cp_regs(cpu, dbgregs);
6844 for (i = 0; i < wrps; i++) {
6845 ARMCPRegInfo dbgregs[] = {
6846 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6847 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6848 .access = PL1_RW, .accessfn = access_tda,
6849 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6850 .writefn = dbgwvr_write, .raw_writefn = raw_write
6852 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6853 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6854 .access = PL1_RW, .accessfn = access_tda,
6855 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6856 .writefn = dbgwcr_write, .raw_writefn = raw_write
6858 REGINFO_SENTINEL
6860 define_arm_cp_regs(cpu, dbgregs);
6864 static void define_pmu_regs(ARMCPU *cpu)
6867 * v7 performance monitor control register: same implementor
6868 * field as main ID register, and we implement four counters in
6869 * addition to the cycle count register.
6871 unsigned int i, pmcrn = PMCR_NUM_COUNTERS;
6872 ARMCPRegInfo pmcr = {
6873 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6874 .access = PL0_RW,
6875 .type = ARM_CP_IO | ARM_CP_ALIAS,
6876 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6877 .accessfn = pmreg_access, .writefn = pmcr_write,
6878 .raw_writefn = raw_write,
6880 ARMCPRegInfo pmcr64 = {
6881 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6882 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6883 .access = PL0_RW, .accessfn = pmreg_access,
6884 .type = ARM_CP_IO,
6885 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6886 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6887 PMCRLC,
6888 .writefn = pmcr_write, .raw_writefn = raw_write,
6890 define_one_arm_cp_reg(cpu, &pmcr);
6891 define_one_arm_cp_reg(cpu, &pmcr64);
6892 for (i = 0; i < pmcrn; i++) {
6893 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6894 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6895 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6896 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6897 ARMCPRegInfo pmev_regs[] = {
6898 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6899 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6900 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6901 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6902 .accessfn = pmreg_access },
6903 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6904 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6905 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6906 .type = ARM_CP_IO,
6907 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6908 .raw_readfn = pmevcntr_rawread,
6909 .raw_writefn = pmevcntr_rawwrite },
6910 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6911 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6912 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6913 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6914 .accessfn = pmreg_access },
6915 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6916 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6917 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6918 .type = ARM_CP_IO,
6919 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6920 .raw_writefn = pmevtyper_rawwrite },
6921 REGINFO_SENTINEL
6923 define_arm_cp_regs(cpu, pmev_regs);
6924 g_free(pmevcntr_name);
6925 g_free(pmevcntr_el0_name);
6926 g_free(pmevtyper_name);
6927 g_free(pmevtyper_el0_name);
6929 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6930 ARMCPRegInfo v81_pmu_regs[] = {
6931 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6932 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6933 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6934 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6935 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6936 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6937 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6938 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6939 REGINFO_SENTINEL
6941 define_arm_cp_regs(cpu, v81_pmu_regs);
6943 if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6944 static const ARMCPRegInfo v84_pmmir = {
6945 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6946 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6947 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6948 .resetvalue = 0
6950 define_one_arm_cp_reg(cpu, &v84_pmmir);
6954 /* We don't know until after realize whether there's a GICv3
6955 * attached, and that is what registers the gicv3 sysregs.
6956 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6957 * at runtime.
6959 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6961 ARMCPU *cpu = env_archcpu(env);
6962 uint64_t pfr1 = cpu->isar.id_pfr1;
6964 if (env->gicv3state) {
6965 pfr1 |= 1 << 28;
6967 return pfr1;
6970 #ifndef CONFIG_USER_ONLY
6971 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6973 ARMCPU *cpu = env_archcpu(env);
6974 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6976 if (env->gicv3state) {
6977 pfr0 |= 1 << 24;
6979 return pfr0;
6981 #endif
6983 /* Shared logic between LORID and the rest of the LOR* registers.
6984 * Secure state exclusion has already been dealt with.
6986 static CPAccessResult access_lor_ns(CPUARMState *env,
6987 const ARMCPRegInfo *ri, bool isread)
6989 int el = arm_current_el(env);
6991 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6992 return CP_ACCESS_TRAP_EL2;
6994 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6995 return CP_ACCESS_TRAP_EL3;
6997 return CP_ACCESS_OK;
7000 static CPAccessResult access_lor_other(CPUARMState *env,
7001 const ARMCPRegInfo *ri, bool isread)
7003 if (arm_is_secure_below_el3(env)) {
7004 /* Access denied in secure mode. */
7005 return CP_ACCESS_TRAP;
7007 return access_lor_ns(env, ri, isread);
7011 * A trivial implementation of ARMv8.1-LOR leaves all of these
7012 * registers fixed at 0, which indicates that there are zero
7013 * supported Limited Ordering regions.
7015 static const ARMCPRegInfo lor_reginfo[] = {
7016 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7017 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7018 .access = PL1_RW, .accessfn = access_lor_other,
7019 .type = ARM_CP_CONST, .resetvalue = 0 },
7020 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7021 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7022 .access = PL1_RW, .accessfn = access_lor_other,
7023 .type = ARM_CP_CONST, .resetvalue = 0 },
7024 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7025 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7026 .access = PL1_RW, .accessfn = access_lor_other,
7027 .type = ARM_CP_CONST, .resetvalue = 0 },
7028 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7029 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7030 .access = PL1_RW, .accessfn = access_lor_other,
7031 .type = ARM_CP_CONST, .resetvalue = 0 },
7032 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7033 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7034 .access = PL1_R, .accessfn = access_lor_ns,
7035 .type = ARM_CP_CONST, .resetvalue = 0 },
7036 REGINFO_SENTINEL
7039 #ifdef TARGET_AARCH64
7040 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7041 bool isread)
7043 int el = arm_current_el(env);
7045 if (el < 2 &&
7046 arm_feature(env, ARM_FEATURE_EL2) &&
7047 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7048 return CP_ACCESS_TRAP_EL2;
7050 if (el < 3 &&
7051 arm_feature(env, ARM_FEATURE_EL3) &&
7052 !(env->cp15.scr_el3 & SCR_APK)) {
7053 return CP_ACCESS_TRAP_EL3;
7055 return CP_ACCESS_OK;
7058 static const ARMCPRegInfo pauth_reginfo[] = {
7059 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7060 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7061 .access = PL1_RW, .accessfn = access_pauth,
7062 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7063 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7064 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7065 .access = PL1_RW, .accessfn = access_pauth,
7066 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7067 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7068 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7069 .access = PL1_RW, .accessfn = access_pauth,
7070 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7071 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7072 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7073 .access = PL1_RW, .accessfn = access_pauth,
7074 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7075 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7076 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7077 .access = PL1_RW, .accessfn = access_pauth,
7078 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7079 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7080 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7081 .access = PL1_RW, .accessfn = access_pauth,
7082 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7083 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7084 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7085 .access = PL1_RW, .accessfn = access_pauth,
7086 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7087 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7088 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7089 .access = PL1_RW, .accessfn = access_pauth,
7090 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7091 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7092 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7093 .access = PL1_RW, .accessfn = access_pauth,
7094 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7095 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7096 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7097 .access = PL1_RW, .accessfn = access_pauth,
7098 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7099 REGINFO_SENTINEL
7102 static const ARMCPRegInfo tlbirange_reginfo[] = {
7103 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7104 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7105 .access = PL1_W, .type = ARM_CP_NO_RAW,
7106 .writefn = tlbi_aa64_rvae1is_write },
7107 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7108 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7109 .access = PL1_W, .type = ARM_CP_NO_RAW,
7110 .writefn = tlbi_aa64_rvae1is_write },
7111 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7112 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7113 .access = PL1_W, .type = ARM_CP_NO_RAW,
7114 .writefn = tlbi_aa64_rvae1is_write },
7115 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7116 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7117 .access = PL1_W, .type = ARM_CP_NO_RAW,
7118 .writefn = tlbi_aa64_rvae1is_write },
7119 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7120 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7121 .access = PL1_W, .type = ARM_CP_NO_RAW,
7122 .writefn = tlbi_aa64_rvae1is_write },
7123 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7124 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7125 .access = PL1_W, .type = ARM_CP_NO_RAW,
7126 .writefn = tlbi_aa64_rvae1is_write },
7127 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7128 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7129 .access = PL1_W, .type = ARM_CP_NO_RAW,
7130 .writefn = tlbi_aa64_rvae1is_write },
7131 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7132 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7133 .access = PL1_W, .type = ARM_CP_NO_RAW,
7134 .writefn = tlbi_aa64_rvae1is_write },
7135 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7136 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7137 .access = PL1_W, .type = ARM_CP_NO_RAW,
7138 .writefn = tlbi_aa64_rvae1_write },
7139 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7140 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7141 .access = PL1_W, .type = ARM_CP_NO_RAW,
7142 .writefn = tlbi_aa64_rvae1_write },
7143 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7144 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7145 .access = PL1_W, .type = ARM_CP_NO_RAW,
7146 .writefn = tlbi_aa64_rvae1_write },
7147 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7148 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7149 .access = PL1_W, .type = ARM_CP_NO_RAW,
7150 .writefn = tlbi_aa64_rvae1_write },
7151 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7152 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7153 .access = PL2_W, .type = ARM_CP_NOP },
7154 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7155 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7156 .access = PL2_W, .type = ARM_CP_NOP },
7157 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7158 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7159 .access = PL2_W, .type = ARM_CP_NO_RAW,
7160 .writefn = tlbi_aa64_rvae2is_write },
7161 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7162 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7163 .access = PL2_W, .type = ARM_CP_NO_RAW,
7164 .writefn = tlbi_aa64_rvae2is_write },
7165 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7166 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7167 .access = PL2_W, .type = ARM_CP_NOP },
7168 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7169 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7170 .access = PL2_W, .type = ARM_CP_NOP },
7171 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7172 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7173 .access = PL2_W, .type = ARM_CP_NO_RAW,
7174 .writefn = tlbi_aa64_rvae2is_write },
7175 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7176 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7177 .access = PL2_W, .type = ARM_CP_NO_RAW,
7178 .writefn = tlbi_aa64_rvae2is_write },
7179 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7180 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7181 .access = PL2_W, .type = ARM_CP_NO_RAW,
7182 .writefn = tlbi_aa64_rvae2_write },
7183 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7184 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7185 .access = PL2_W, .type = ARM_CP_NO_RAW,
7186 .writefn = tlbi_aa64_rvae2_write },
7187 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7188 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7189 .access = PL3_W, .type = ARM_CP_NO_RAW,
7190 .writefn = tlbi_aa64_rvae3is_write },
7191 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7192 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7193 .access = PL3_W, .type = ARM_CP_NO_RAW,
7194 .writefn = tlbi_aa64_rvae3is_write },
7195 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7196 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7197 .access = PL3_W, .type = ARM_CP_NO_RAW,
7198 .writefn = tlbi_aa64_rvae3is_write },
7199 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7200 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7201 .access = PL3_W, .type = ARM_CP_NO_RAW,
7202 .writefn = tlbi_aa64_rvae3is_write },
7203 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7204 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7205 .access = PL3_W, .type = ARM_CP_NO_RAW,
7206 .writefn = tlbi_aa64_rvae3_write },
7207 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7208 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7209 .access = PL3_W, .type = ARM_CP_NO_RAW,
7210 .writefn = tlbi_aa64_rvae3_write },
7211 REGINFO_SENTINEL
7214 static const ARMCPRegInfo tlbios_reginfo[] = {
7215 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7216 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7217 .access = PL1_W, .type = ARM_CP_NO_RAW,
7218 .writefn = tlbi_aa64_vmalle1is_write },
7219 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7220 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7221 .access = PL1_W, .type = ARM_CP_NO_RAW,
7222 .writefn = tlbi_aa64_vmalle1is_write },
7223 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7224 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7225 .access = PL2_W, .type = ARM_CP_NO_RAW,
7226 .writefn = tlbi_aa64_alle2is_write },
7227 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7228 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7229 .access = PL2_W, .type = ARM_CP_NO_RAW,
7230 .writefn = tlbi_aa64_alle1is_write },
7231 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7232 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7233 .access = PL2_W, .type = ARM_CP_NO_RAW,
7234 .writefn = tlbi_aa64_alle1is_write },
7235 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7236 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7237 .access = PL2_W, .type = ARM_CP_NOP },
7238 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7239 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7240 .access = PL2_W, .type = ARM_CP_NOP },
7241 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7242 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7243 .access = PL2_W, .type = ARM_CP_NOP },
7244 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7245 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7246 .access = PL2_W, .type = ARM_CP_NOP },
7247 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7248 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7249 .access = PL3_W, .type = ARM_CP_NO_RAW,
7250 .writefn = tlbi_aa64_alle3is_write },
7251 REGINFO_SENTINEL
7254 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7256 Error *err = NULL;
7257 uint64_t ret;
7259 /* Success sets NZCV = 0000. */
7260 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7262 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7264 * ??? Failed, for unknown reasons in the crypto subsystem.
7265 * The best we can do is log the reason and return the
7266 * timed-out indication to the guest. There is no reason
7267 * we know to expect this failure to be transitory, so the
7268 * guest may well hang retrying the operation.
7270 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7271 ri->name, error_get_pretty(err));
7272 error_free(err);
7274 env->ZF = 0; /* NZCF = 0100 */
7275 return 0;
7277 return ret;
7280 /* We do not support re-seeding, so the two registers operate the same. */
7281 static const ARMCPRegInfo rndr_reginfo[] = {
7282 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7283 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7284 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7285 .access = PL0_R, .readfn = rndr_readfn },
7286 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7287 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7288 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7289 .access = PL0_R, .readfn = rndr_readfn },
7290 REGINFO_SENTINEL
7293 #ifndef CONFIG_USER_ONLY
7294 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7295 uint64_t value)
7297 ARMCPU *cpu = env_archcpu(env);
7298 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7299 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7300 uint64_t vaddr_in = (uint64_t) value;
7301 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7302 void *haddr;
7303 int mem_idx = cpu_mmu_index(env, false);
7305 /* This won't be crossing page boundaries */
7306 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7307 if (haddr) {
7309 ram_addr_t offset;
7310 MemoryRegion *mr;
7312 /* RCU lock is already being held */
7313 mr = memory_region_from_host(haddr, &offset);
7315 if (mr) {
7316 memory_region_writeback(mr, offset, dline_size);
7321 static const ARMCPRegInfo dcpop_reg[] = {
7322 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7323 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7324 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7325 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7326 REGINFO_SENTINEL
7329 static const ARMCPRegInfo dcpodp_reg[] = {
7330 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7331 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7332 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7333 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7334 REGINFO_SENTINEL
7336 #endif /*CONFIG_USER_ONLY*/
7338 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7339 bool isread)
7341 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7342 return CP_ACCESS_TRAP_EL2;
7345 return CP_ACCESS_OK;
7348 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7349 bool isread)
7351 int el = arm_current_el(env);
7353 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7354 uint64_t hcr = arm_hcr_el2_eff(env);
7355 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7356 return CP_ACCESS_TRAP_EL2;
7359 if (el < 3 &&
7360 arm_feature(env, ARM_FEATURE_EL3) &&
7361 !(env->cp15.scr_el3 & SCR_ATA)) {
7362 return CP_ACCESS_TRAP_EL3;
7364 return CP_ACCESS_OK;
7367 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7369 return env->pstate & PSTATE_TCO;
7372 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7374 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7377 static const ARMCPRegInfo mte_reginfo[] = {
7378 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7379 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7380 .access = PL1_RW, .accessfn = access_mte,
7381 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7382 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7383 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7384 .access = PL1_RW, .accessfn = access_mte,
7385 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7386 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7387 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7388 .access = PL2_RW, .accessfn = access_mte,
7389 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7390 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7391 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7392 .access = PL3_RW,
7393 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7394 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7395 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7396 .access = PL1_RW, .accessfn = access_mte,
7397 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7398 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7399 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7400 .access = PL1_RW, .accessfn = access_mte,
7401 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7402 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7403 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7404 .access = PL1_R, .accessfn = access_aa64_tid5,
7405 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7406 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7407 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7408 .type = ARM_CP_NO_RAW,
7409 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7410 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7411 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7412 .type = ARM_CP_NOP, .access = PL1_W,
7413 .accessfn = aa64_cacheop_poc_access },
7414 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7415 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7416 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7417 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7418 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7419 .type = ARM_CP_NOP, .access = PL1_W,
7420 .accessfn = aa64_cacheop_poc_access },
7421 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7422 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7423 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7424 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7425 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7426 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7427 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7428 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7429 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7430 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7431 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7432 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7433 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7434 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7435 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7436 REGINFO_SENTINEL
7439 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7440 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7441 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7442 .type = ARM_CP_CONST, .access = PL0_RW, },
7443 REGINFO_SENTINEL
7446 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7447 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7448 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7449 .type = ARM_CP_NOP, .access = PL0_W,
7450 .accessfn = aa64_cacheop_poc_access },
7451 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7452 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7453 .type = ARM_CP_NOP, .access = PL0_W,
7454 .accessfn = aa64_cacheop_poc_access },
7455 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7456 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7457 .type = ARM_CP_NOP, .access = PL0_W,
7458 .accessfn = aa64_cacheop_poc_access },
7459 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7460 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7461 .type = ARM_CP_NOP, .access = PL0_W,
7462 .accessfn = aa64_cacheop_poc_access },
7463 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7464 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7465 .type = ARM_CP_NOP, .access = PL0_W,
7466 .accessfn = aa64_cacheop_poc_access },
7467 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7468 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7469 .type = ARM_CP_NOP, .access = PL0_W,
7470 .accessfn = aa64_cacheop_poc_access },
7471 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7472 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7473 .type = ARM_CP_NOP, .access = PL0_W,
7474 .accessfn = aa64_cacheop_poc_access },
7475 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7476 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7477 .type = ARM_CP_NOP, .access = PL0_W,
7478 .accessfn = aa64_cacheop_poc_access },
7479 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7480 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7481 .access = PL0_W, .type = ARM_CP_DC_GVA,
7482 #ifndef CONFIG_USER_ONLY
7483 /* Avoid overhead of an access check that always passes in user-mode */
7484 .accessfn = aa64_zva_access,
7485 #endif
7487 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7488 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7489 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7490 #ifndef CONFIG_USER_ONLY
7491 /* Avoid overhead of an access check that always passes in user-mode */
7492 .accessfn = aa64_zva_access,
7493 #endif
7495 REGINFO_SENTINEL
7498 #endif
7500 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7501 bool isread)
7503 int el = arm_current_el(env);
7505 if (el == 0) {
7506 uint64_t sctlr = arm_sctlr(env, el);
7507 if (!(sctlr & SCTLR_EnRCTX)) {
7508 return CP_ACCESS_TRAP;
7510 } else if (el == 1) {
7511 uint64_t hcr = arm_hcr_el2_eff(env);
7512 if (hcr & HCR_NV) {
7513 return CP_ACCESS_TRAP_EL2;
7516 return CP_ACCESS_OK;
7519 static const ARMCPRegInfo predinv_reginfo[] = {
7520 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7521 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7522 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7523 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7524 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7525 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7526 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7527 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7528 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7530 * Note the AArch32 opcodes have a different OPC1.
7532 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7533 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7534 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7535 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7536 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7537 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7538 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7539 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7540 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7541 REGINFO_SENTINEL
7544 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7546 /* Read the high 32 bits of the current CCSIDR */
7547 return extract64(ccsidr_read(env, ri), 32, 32);
7550 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7551 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7552 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7553 .access = PL1_R,
7554 .accessfn = access_aa64_tid2,
7555 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7556 REGINFO_SENTINEL
7559 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7560 bool isread)
7562 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7563 return CP_ACCESS_TRAP_EL2;
7566 return CP_ACCESS_OK;
7569 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7570 bool isread)
7572 if (arm_feature(env, ARM_FEATURE_V8)) {
7573 return access_aa64_tid3(env, ri, isread);
7576 return CP_ACCESS_OK;
7579 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7580 bool isread)
7582 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7583 return CP_ACCESS_TRAP_EL2;
7586 return CP_ACCESS_OK;
7589 static const ARMCPRegInfo jazelle_regs[] = {
7590 { .name = "JIDR",
7591 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7592 .access = PL1_R, .accessfn = access_jazelle,
7593 .type = ARM_CP_CONST, .resetvalue = 0 },
7594 { .name = "JOSCR",
7595 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7596 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7597 { .name = "JMCR",
7598 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7599 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7600 REGINFO_SENTINEL
7603 static const ARMCPRegInfo vhe_reginfo[] = {
7604 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7605 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7606 .access = PL2_RW,
7607 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7608 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7609 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7610 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7611 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7612 #ifndef CONFIG_USER_ONLY
7613 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7614 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7615 .fieldoffset =
7616 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7617 .type = ARM_CP_IO, .access = PL2_RW,
7618 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7619 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7620 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7621 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7622 .resetfn = gt_hv_timer_reset,
7623 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7624 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7625 .type = ARM_CP_IO,
7626 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7627 .access = PL2_RW,
7628 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7629 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7630 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7631 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7632 .type = ARM_CP_IO | ARM_CP_ALIAS,
7633 .access = PL2_RW, .accessfn = e2h_access,
7634 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7635 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7636 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7637 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7638 .type = ARM_CP_IO | ARM_CP_ALIAS,
7639 .access = PL2_RW, .accessfn = e2h_access,
7640 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7641 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7642 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7643 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7644 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7645 .access = PL2_RW, .accessfn = e2h_access,
7646 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7647 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7648 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7649 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7650 .access = PL2_RW, .accessfn = e2h_access,
7651 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7652 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7653 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7654 .type = ARM_CP_IO | ARM_CP_ALIAS,
7655 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7656 .access = PL2_RW, .accessfn = e2h_access,
7657 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7658 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7659 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7660 .type = ARM_CP_IO | ARM_CP_ALIAS,
7661 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7662 .access = PL2_RW, .accessfn = e2h_access,
7663 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7664 #endif
7665 REGINFO_SENTINEL
7668 #ifndef CONFIG_USER_ONLY
7669 static const ARMCPRegInfo ats1e1_reginfo[] = {
7670 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7671 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7672 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7673 .writefn = ats_write64 },
7674 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7675 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7676 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7677 .writefn = ats_write64 },
7678 REGINFO_SENTINEL
7681 static const ARMCPRegInfo ats1cp_reginfo[] = {
7682 { .name = "ATS1CPRP",
7683 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7684 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7685 .writefn = ats_write },
7686 { .name = "ATS1CPWP",
7687 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7688 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7689 .writefn = ats_write },
7690 REGINFO_SENTINEL
7692 #endif
7695 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7696 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7697 * is non-zero, which is never for ARMv7, optionally in ARMv8
7698 * and mandatorily for ARMv8.2 and up.
7699 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7700 * implementation is RAZ/WI we can ignore this detail, as we
7701 * do for ACTLR.
7703 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7704 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7705 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7706 .access = PL1_RW, .accessfn = access_tacr,
7707 .type = ARM_CP_CONST, .resetvalue = 0 },
7708 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7709 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7710 .access = PL2_RW, .type = ARM_CP_CONST,
7711 .resetvalue = 0 },
7712 REGINFO_SENTINEL
7715 void register_cp_regs_for_features(ARMCPU *cpu)
7717 /* Register all the coprocessor registers based on feature bits */
7718 CPUARMState *env = &cpu->env;
7719 if (arm_feature(env, ARM_FEATURE_M)) {
7720 /* M profile has no coprocessor registers */
7721 return;
7724 define_arm_cp_regs(cpu, cp_reginfo);
7725 if (!arm_feature(env, ARM_FEATURE_V8)) {
7726 /* Must go early as it is full of wildcards that may be
7727 * overridden by later definitions.
7729 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7732 if (arm_feature(env, ARM_FEATURE_V6)) {
7733 /* The ID registers all have impdef reset values */
7734 ARMCPRegInfo v6_idregs[] = {
7735 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7736 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7737 .access = PL1_R, .type = ARM_CP_CONST,
7738 .accessfn = access_aa32_tid3,
7739 .resetvalue = cpu->isar.id_pfr0 },
7740 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7741 * the value of the GIC field until after we define these regs.
7743 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7744 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7745 .access = PL1_R, .type = ARM_CP_NO_RAW,
7746 .accessfn = access_aa32_tid3,
7747 .readfn = id_pfr1_read,
7748 .writefn = arm_cp_write_ignore },
7749 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7750 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7751 .access = PL1_R, .type = ARM_CP_CONST,
7752 .accessfn = access_aa32_tid3,
7753 .resetvalue = cpu->isar.id_dfr0 },
7754 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7755 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7756 .access = PL1_R, .type = ARM_CP_CONST,
7757 .accessfn = access_aa32_tid3,
7758 .resetvalue = cpu->id_afr0 },
7759 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7760 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7761 .access = PL1_R, .type = ARM_CP_CONST,
7762 .accessfn = access_aa32_tid3,
7763 .resetvalue = cpu->isar.id_mmfr0 },
7764 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7765 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7766 .access = PL1_R, .type = ARM_CP_CONST,
7767 .accessfn = access_aa32_tid3,
7768 .resetvalue = cpu->isar.id_mmfr1 },
7769 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7770 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7771 .access = PL1_R, .type = ARM_CP_CONST,
7772 .accessfn = access_aa32_tid3,
7773 .resetvalue = cpu->isar.id_mmfr2 },
7774 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7775 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7776 .access = PL1_R, .type = ARM_CP_CONST,
7777 .accessfn = access_aa32_tid3,
7778 .resetvalue = cpu->isar.id_mmfr3 },
7779 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7781 .access = PL1_R, .type = ARM_CP_CONST,
7782 .accessfn = access_aa32_tid3,
7783 .resetvalue = cpu->isar.id_isar0 },
7784 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7785 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7786 .access = PL1_R, .type = ARM_CP_CONST,
7787 .accessfn = access_aa32_tid3,
7788 .resetvalue = cpu->isar.id_isar1 },
7789 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7790 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7791 .access = PL1_R, .type = ARM_CP_CONST,
7792 .accessfn = access_aa32_tid3,
7793 .resetvalue = cpu->isar.id_isar2 },
7794 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7795 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7796 .access = PL1_R, .type = ARM_CP_CONST,
7797 .accessfn = access_aa32_tid3,
7798 .resetvalue = cpu->isar.id_isar3 },
7799 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7801 .access = PL1_R, .type = ARM_CP_CONST,
7802 .accessfn = access_aa32_tid3,
7803 .resetvalue = cpu->isar.id_isar4 },
7804 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7805 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7806 .access = PL1_R, .type = ARM_CP_CONST,
7807 .accessfn = access_aa32_tid3,
7808 .resetvalue = cpu->isar.id_isar5 },
7809 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7810 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7811 .access = PL1_R, .type = ARM_CP_CONST,
7812 .accessfn = access_aa32_tid3,
7813 .resetvalue = cpu->isar.id_mmfr4 },
7814 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7815 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7816 .access = PL1_R, .type = ARM_CP_CONST,
7817 .accessfn = access_aa32_tid3,
7818 .resetvalue = cpu->isar.id_isar6 },
7819 REGINFO_SENTINEL
7821 define_arm_cp_regs(cpu, v6_idregs);
7822 define_arm_cp_regs(cpu, v6_cp_reginfo);
7823 } else {
7824 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7826 if (arm_feature(env, ARM_FEATURE_V6K)) {
7827 define_arm_cp_regs(cpu, v6k_cp_reginfo);
7829 if (arm_feature(env, ARM_FEATURE_V7MP) &&
7830 !arm_feature(env, ARM_FEATURE_PMSA)) {
7831 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7833 if (arm_feature(env, ARM_FEATURE_V7VE)) {
7834 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7836 if (arm_feature(env, ARM_FEATURE_V7)) {
7837 ARMCPRegInfo clidr = {
7838 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7839 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7840 .access = PL1_R, .type = ARM_CP_CONST,
7841 .accessfn = access_aa64_tid2,
7842 .resetvalue = cpu->clidr
7844 define_one_arm_cp_reg(cpu, &clidr);
7845 define_arm_cp_regs(cpu, v7_cp_reginfo);
7846 define_debug_regs(cpu);
7847 define_pmu_regs(cpu);
7848 } else {
7849 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7851 if (arm_feature(env, ARM_FEATURE_V8)) {
7852 /* AArch64 ID registers, which all have impdef reset values.
7853 * Note that within the ID register ranges the unused slots
7854 * must all RAZ, not UNDEF; future architecture versions may
7855 * define new registers here.
7857 ARMCPRegInfo v8_idregs[] = {
7859 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7860 * emulation because we don't know the right value for the
7861 * GIC field until after we define these regs.
7863 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7864 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7865 .access = PL1_R,
7866 #ifdef CONFIG_USER_ONLY
7867 .type = ARM_CP_CONST,
7868 .resetvalue = cpu->isar.id_aa64pfr0
7869 #else
7870 .type = ARM_CP_NO_RAW,
7871 .accessfn = access_aa64_tid3,
7872 .readfn = id_aa64pfr0_read,
7873 .writefn = arm_cp_write_ignore
7874 #endif
7876 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7877 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7878 .access = PL1_R, .type = ARM_CP_CONST,
7879 .accessfn = access_aa64_tid3,
7880 .resetvalue = cpu->isar.id_aa64pfr1},
7881 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7882 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7883 .access = PL1_R, .type = ARM_CP_CONST,
7884 .accessfn = access_aa64_tid3,
7885 .resetvalue = 0 },
7886 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7887 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7888 .access = PL1_R, .type = ARM_CP_CONST,
7889 .accessfn = access_aa64_tid3,
7890 .resetvalue = 0 },
7891 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7892 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7893 .access = PL1_R, .type = ARM_CP_CONST,
7894 .accessfn = access_aa64_tid3,
7895 .resetvalue = cpu->isar.id_aa64zfr0 },
7896 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7897 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7898 .access = PL1_R, .type = ARM_CP_CONST,
7899 .accessfn = access_aa64_tid3,
7900 .resetvalue = 0 },
7901 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7902 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7903 .access = PL1_R, .type = ARM_CP_CONST,
7904 .accessfn = access_aa64_tid3,
7905 .resetvalue = 0 },
7906 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7907 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7908 .access = PL1_R, .type = ARM_CP_CONST,
7909 .accessfn = access_aa64_tid3,
7910 .resetvalue = 0 },
7911 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7912 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7913 .access = PL1_R, .type = ARM_CP_CONST,
7914 .accessfn = access_aa64_tid3,
7915 .resetvalue = cpu->isar.id_aa64dfr0 },
7916 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7917 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7918 .access = PL1_R, .type = ARM_CP_CONST,
7919 .accessfn = access_aa64_tid3,
7920 .resetvalue = cpu->isar.id_aa64dfr1 },
7921 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7922 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7923 .access = PL1_R, .type = ARM_CP_CONST,
7924 .accessfn = access_aa64_tid3,
7925 .resetvalue = 0 },
7926 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7927 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7928 .access = PL1_R, .type = ARM_CP_CONST,
7929 .accessfn = access_aa64_tid3,
7930 .resetvalue = 0 },
7931 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7932 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7933 .access = PL1_R, .type = ARM_CP_CONST,
7934 .accessfn = access_aa64_tid3,
7935 .resetvalue = cpu->id_aa64afr0 },
7936 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7937 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7938 .access = PL1_R, .type = ARM_CP_CONST,
7939 .accessfn = access_aa64_tid3,
7940 .resetvalue = cpu->id_aa64afr1 },
7941 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7942 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7943 .access = PL1_R, .type = ARM_CP_CONST,
7944 .accessfn = access_aa64_tid3,
7945 .resetvalue = 0 },
7946 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7947 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7948 .access = PL1_R, .type = ARM_CP_CONST,
7949 .accessfn = access_aa64_tid3,
7950 .resetvalue = 0 },
7951 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7952 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7953 .access = PL1_R, .type = ARM_CP_CONST,
7954 .accessfn = access_aa64_tid3,
7955 .resetvalue = cpu->isar.id_aa64isar0 },
7956 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7957 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7958 .access = PL1_R, .type = ARM_CP_CONST,
7959 .accessfn = access_aa64_tid3,
7960 .resetvalue = cpu->isar.id_aa64isar1 },
7961 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7962 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7963 .access = PL1_R, .type = ARM_CP_CONST,
7964 .accessfn = access_aa64_tid3,
7965 .resetvalue = 0 },
7966 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7967 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7968 .access = PL1_R, .type = ARM_CP_CONST,
7969 .accessfn = access_aa64_tid3,
7970 .resetvalue = 0 },
7971 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7972 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7973 .access = PL1_R, .type = ARM_CP_CONST,
7974 .accessfn = access_aa64_tid3,
7975 .resetvalue = 0 },
7976 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7977 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7978 .access = PL1_R, .type = ARM_CP_CONST,
7979 .accessfn = access_aa64_tid3,
7980 .resetvalue = 0 },
7981 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7982 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7983 .access = PL1_R, .type = ARM_CP_CONST,
7984 .accessfn = access_aa64_tid3,
7985 .resetvalue = 0 },
7986 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7987 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7988 .access = PL1_R, .type = ARM_CP_CONST,
7989 .accessfn = access_aa64_tid3,
7990 .resetvalue = 0 },
7991 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7992 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7993 .access = PL1_R, .type = ARM_CP_CONST,
7994 .accessfn = access_aa64_tid3,
7995 .resetvalue = cpu->isar.id_aa64mmfr0 },
7996 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7997 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7998 .access = PL1_R, .type = ARM_CP_CONST,
7999 .accessfn = access_aa64_tid3,
8000 .resetvalue = cpu->isar.id_aa64mmfr1 },
8001 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8002 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8003 .access = PL1_R, .type = ARM_CP_CONST,
8004 .accessfn = access_aa64_tid3,
8005 .resetvalue = cpu->isar.id_aa64mmfr2 },
8006 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8007 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8008 .access = PL1_R, .type = ARM_CP_CONST,
8009 .accessfn = access_aa64_tid3,
8010 .resetvalue = 0 },
8011 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8012 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8013 .access = PL1_R, .type = ARM_CP_CONST,
8014 .accessfn = access_aa64_tid3,
8015 .resetvalue = 0 },
8016 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8017 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8018 .access = PL1_R, .type = ARM_CP_CONST,
8019 .accessfn = access_aa64_tid3,
8020 .resetvalue = 0 },
8021 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8022 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8023 .access = PL1_R, .type = ARM_CP_CONST,
8024 .accessfn = access_aa64_tid3,
8025 .resetvalue = 0 },
8026 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8027 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8028 .access = PL1_R, .type = ARM_CP_CONST,
8029 .accessfn = access_aa64_tid3,
8030 .resetvalue = 0 },
8031 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8032 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8033 .access = PL1_R, .type = ARM_CP_CONST,
8034 .accessfn = access_aa64_tid3,
8035 .resetvalue = cpu->isar.mvfr0 },
8036 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8037 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8038 .access = PL1_R, .type = ARM_CP_CONST,
8039 .accessfn = access_aa64_tid3,
8040 .resetvalue = cpu->isar.mvfr1 },
8041 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8042 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8043 .access = PL1_R, .type = ARM_CP_CONST,
8044 .accessfn = access_aa64_tid3,
8045 .resetvalue = cpu->isar.mvfr2 },
8046 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8047 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8048 .access = PL1_R, .type = ARM_CP_CONST,
8049 .accessfn = access_aa64_tid3,
8050 .resetvalue = 0 },
8051 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8052 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8053 .access = PL1_R, .type = ARM_CP_CONST,
8054 .accessfn = access_aa64_tid3,
8055 .resetvalue = cpu->isar.id_pfr2 },
8056 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8057 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8058 .access = PL1_R, .type = ARM_CP_CONST,
8059 .accessfn = access_aa64_tid3,
8060 .resetvalue = 0 },
8061 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8062 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8063 .access = PL1_R, .type = ARM_CP_CONST,
8064 .accessfn = access_aa64_tid3,
8065 .resetvalue = 0 },
8066 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8067 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8068 .access = PL1_R, .type = ARM_CP_CONST,
8069 .accessfn = access_aa64_tid3,
8070 .resetvalue = 0 },
8071 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8072 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8073 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8074 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8075 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8076 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8077 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8078 .resetvalue = cpu->pmceid0 },
8079 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8080 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8081 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8082 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8083 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8084 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8085 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8086 .resetvalue = cpu->pmceid1 },
8087 REGINFO_SENTINEL
8089 #ifdef CONFIG_USER_ONLY
8090 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8091 { .name = "ID_AA64PFR0_EL1",
8092 .exported_bits = 0x000f000f00ff0000,
8093 .fixed_bits = 0x0000000000000011 },
8094 { .name = "ID_AA64PFR1_EL1",
8095 .exported_bits = 0x00000000000000f0 },
8096 { .name = "ID_AA64PFR*_EL1_RESERVED",
8097 .is_glob = true },
8098 { .name = "ID_AA64ZFR0_EL1" },
8099 { .name = "ID_AA64MMFR0_EL1",
8100 .fixed_bits = 0x00000000ff000000 },
8101 { .name = "ID_AA64MMFR1_EL1" },
8102 { .name = "ID_AA64MMFR*_EL1_RESERVED",
8103 .is_glob = true },
8104 { .name = "ID_AA64DFR0_EL1",
8105 .fixed_bits = 0x0000000000000006 },
8106 { .name = "ID_AA64DFR1_EL1" },
8107 { .name = "ID_AA64DFR*_EL1_RESERVED",
8108 .is_glob = true },
8109 { .name = "ID_AA64AFR*",
8110 .is_glob = true },
8111 { .name = "ID_AA64ISAR0_EL1",
8112 .exported_bits = 0x00fffffff0fffff0 },
8113 { .name = "ID_AA64ISAR1_EL1",
8114 .exported_bits = 0x000000f0ffffffff },
8115 { .name = "ID_AA64ISAR*_EL1_RESERVED",
8116 .is_glob = true },
8117 REGUSERINFO_SENTINEL
8119 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8120 #endif
8121 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
8122 if (!arm_feature(env, ARM_FEATURE_EL3) &&
8123 !arm_feature(env, ARM_FEATURE_EL2)) {
8124 ARMCPRegInfo rvbar = {
8125 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
8126 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8127 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
8129 define_one_arm_cp_reg(cpu, &rvbar);
8131 define_arm_cp_regs(cpu, v8_idregs);
8132 define_arm_cp_regs(cpu, v8_cp_reginfo);
8134 if (arm_feature(env, ARM_FEATURE_EL2)) {
8135 uint64_t vmpidr_def = mpidr_read_val(env);
8136 ARMCPRegInfo vpidr_regs[] = {
8137 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8138 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8139 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8140 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
8141 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8142 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8143 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8144 .access = PL2_RW, .resetvalue = cpu->midr,
8145 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8146 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8147 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8148 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8149 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
8150 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8151 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8152 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8153 .access = PL2_RW,
8154 .resetvalue = vmpidr_def,
8155 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8156 REGINFO_SENTINEL
8158 define_arm_cp_regs(cpu, vpidr_regs);
8159 define_arm_cp_regs(cpu, el2_cp_reginfo);
8160 if (arm_feature(env, ARM_FEATURE_V8)) {
8161 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8163 if (cpu_isar_feature(aa64_sel2, cpu)) {
8164 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8166 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8167 if (!arm_feature(env, ARM_FEATURE_EL3)) {
8168 ARMCPRegInfo rvbar = {
8169 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8170 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8171 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
8173 define_one_arm_cp_reg(cpu, &rvbar);
8175 } else {
8176 /* If EL2 is missing but higher ELs are enabled, we need to
8177 * register the no_el2 reginfos.
8179 if (arm_feature(env, ARM_FEATURE_EL3)) {
8180 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
8181 * of MIDR_EL1 and MPIDR_EL1.
8183 ARMCPRegInfo vpidr_regs[] = {
8184 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8185 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8186 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8187 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
8188 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8189 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8190 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8191 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8192 .type = ARM_CP_NO_RAW,
8193 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
8194 REGINFO_SENTINEL
8196 define_arm_cp_regs(cpu, vpidr_regs);
8197 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
8198 if (arm_feature(env, ARM_FEATURE_V8)) {
8199 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
8203 if (arm_feature(env, ARM_FEATURE_EL3)) {
8204 define_arm_cp_regs(cpu, el3_cp_reginfo);
8205 ARMCPRegInfo el3_regs[] = {
8206 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8207 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8208 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
8209 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8210 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8211 .access = PL3_RW,
8212 .raw_writefn = raw_write, .writefn = sctlr_write,
8213 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8214 .resetvalue = cpu->reset_sctlr },
8215 REGINFO_SENTINEL
8218 define_arm_cp_regs(cpu, el3_regs);
8220 /* The behaviour of NSACR is sufficiently various that we don't
8221 * try to describe it in a single reginfo:
8222 * if EL3 is 64 bit, then trap to EL3 from S EL1,
8223 * reads as constant 0xc00 from NS EL1 and NS EL2
8224 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8225 * if v7 without EL3, register doesn't exist
8226 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8228 if (arm_feature(env, ARM_FEATURE_EL3)) {
8229 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8230 ARMCPRegInfo nsacr = {
8231 .name = "NSACR", .type = ARM_CP_CONST,
8232 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8233 .access = PL1_RW, .accessfn = nsacr_access,
8234 .resetvalue = 0xc00
8236 define_one_arm_cp_reg(cpu, &nsacr);
8237 } else {
8238 ARMCPRegInfo nsacr = {
8239 .name = "NSACR",
8240 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8241 .access = PL3_RW | PL1_R,
8242 .resetvalue = 0,
8243 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8245 define_one_arm_cp_reg(cpu, &nsacr);
8247 } else {
8248 if (arm_feature(env, ARM_FEATURE_V8)) {
8249 ARMCPRegInfo nsacr = {
8250 .name = "NSACR", .type = ARM_CP_CONST,
8251 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8252 .access = PL1_R,
8253 .resetvalue = 0xc00
8255 define_one_arm_cp_reg(cpu, &nsacr);
8259 if (arm_feature(env, ARM_FEATURE_PMSA)) {
8260 if (arm_feature(env, ARM_FEATURE_V6)) {
8261 /* PMSAv6 not implemented */
8262 assert(arm_feature(env, ARM_FEATURE_V7));
8263 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8264 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8265 } else {
8266 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8268 } else {
8269 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8270 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8271 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
8272 if (cpu_isar_feature(aa32_hpd, cpu)) {
8273 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8276 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8277 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8279 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8280 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8282 if (arm_feature(env, ARM_FEATURE_VAPA)) {
8283 define_arm_cp_regs(cpu, vapa_cp_reginfo);
8285 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8286 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8288 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8289 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8291 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8292 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8294 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8295 define_arm_cp_regs(cpu, omap_cp_reginfo);
8297 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8298 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8300 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8301 define_arm_cp_regs(cpu, xscale_cp_reginfo);
8303 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8304 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8306 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8307 define_arm_cp_regs(cpu, lpae_cp_reginfo);
8309 if (cpu_isar_feature(aa32_jazelle, cpu)) {
8310 define_arm_cp_regs(cpu, jazelle_regs);
8312 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
8313 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8314 * be read-only (ie write causes UNDEF exception).
8317 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8318 /* Pre-v8 MIDR space.
8319 * Note that the MIDR isn't a simple constant register because
8320 * of the TI925 behaviour where writes to another register can
8321 * cause the MIDR value to change.
8323 * Unimplemented registers in the c15 0 0 0 space default to
8324 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8325 * and friends override accordingly.
8327 { .name = "MIDR",
8328 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8329 .access = PL1_R, .resetvalue = cpu->midr,
8330 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8331 .readfn = midr_read,
8332 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8333 .type = ARM_CP_OVERRIDE },
8334 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8335 { .name = "DUMMY",
8336 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8337 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8338 { .name = "DUMMY",
8339 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8340 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8341 { .name = "DUMMY",
8342 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8343 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8344 { .name = "DUMMY",
8345 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8346 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8347 { .name = "DUMMY",
8348 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8349 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8350 REGINFO_SENTINEL
8352 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8353 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8354 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8355 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8356 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8357 .readfn = midr_read },
8358 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8359 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8360 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8361 .access = PL1_R, .resetvalue = cpu->midr },
8362 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8363 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8364 .access = PL1_R, .resetvalue = cpu->midr },
8365 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8366 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8367 .access = PL1_R,
8368 .accessfn = access_aa64_tid1,
8369 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8370 REGINFO_SENTINEL
8372 ARMCPRegInfo id_cp_reginfo[] = {
8373 /* These are common to v8 and pre-v8 */
8374 { .name = "CTR",
8375 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8376 .access = PL1_R, .accessfn = ctr_el0_access,
8377 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8378 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8379 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8380 .access = PL0_R, .accessfn = ctr_el0_access,
8381 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8382 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8383 { .name = "TCMTR",
8384 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8385 .access = PL1_R,
8386 .accessfn = access_aa32_tid1,
8387 .type = ARM_CP_CONST, .resetvalue = 0 },
8388 REGINFO_SENTINEL
8390 /* TLBTR is specific to VMSA */
8391 ARMCPRegInfo id_tlbtr_reginfo = {
8392 .name = "TLBTR",
8393 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8394 .access = PL1_R,
8395 .accessfn = access_aa32_tid1,
8396 .type = ARM_CP_CONST, .resetvalue = 0,
8398 /* MPUIR is specific to PMSA V6+ */
8399 ARMCPRegInfo id_mpuir_reginfo = {
8400 .name = "MPUIR",
8401 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8402 .access = PL1_R, .type = ARM_CP_CONST,
8403 .resetvalue = cpu->pmsav7_dregion << 8
8405 ARMCPRegInfo crn0_wi_reginfo = {
8406 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8407 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8408 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8410 #ifdef CONFIG_USER_ONLY
8411 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8412 { .name = "MIDR_EL1",
8413 .exported_bits = 0x00000000ffffffff },
8414 { .name = "REVIDR_EL1" },
8415 REGUSERINFO_SENTINEL
8417 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8418 #endif
8419 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8420 arm_feature(env, ARM_FEATURE_STRONGARM)) {
8421 ARMCPRegInfo *r;
8422 /* Register the blanket "writes ignored" value first to cover the
8423 * whole space. Then update the specific ID registers to allow write
8424 * access, so that they ignore writes rather than causing them to
8425 * UNDEF.
8427 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8428 for (r = id_pre_v8_midr_cp_reginfo;
8429 r->type != ARM_CP_SENTINEL; r++) {
8430 r->access = PL1_RW;
8432 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
8433 r->access = PL1_RW;
8435 id_mpuir_reginfo.access = PL1_RW;
8436 id_tlbtr_reginfo.access = PL1_RW;
8438 if (arm_feature(env, ARM_FEATURE_V8)) {
8439 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8440 } else {
8441 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8443 define_arm_cp_regs(cpu, id_cp_reginfo);
8444 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8445 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8446 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8447 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8451 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8452 ARMCPRegInfo mpidr_cp_reginfo[] = {
8453 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8454 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8455 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8456 REGINFO_SENTINEL
8458 #ifdef CONFIG_USER_ONLY
8459 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8460 { .name = "MPIDR_EL1",
8461 .fixed_bits = 0x0000000080000000 },
8462 REGUSERINFO_SENTINEL
8464 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8465 #endif
8466 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8469 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8470 ARMCPRegInfo auxcr_reginfo[] = {
8471 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8472 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8473 .access = PL1_RW, .accessfn = access_tacr,
8474 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8475 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8476 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8477 .access = PL2_RW, .type = ARM_CP_CONST,
8478 .resetvalue = 0 },
8479 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8480 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8481 .access = PL3_RW, .type = ARM_CP_CONST,
8482 .resetvalue = 0 },
8483 REGINFO_SENTINEL
8485 define_arm_cp_regs(cpu, auxcr_reginfo);
8486 if (cpu_isar_feature(aa32_ac2, cpu)) {
8487 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8491 if (arm_feature(env, ARM_FEATURE_CBAR)) {
8493 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8494 * There are two flavours:
8495 * (1) older 32-bit only cores have a simple 32-bit CBAR
8496 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8497 * 32-bit register visible to AArch32 at a different encoding
8498 * to the "flavour 1" register and with the bits rearranged to
8499 * be able to squash a 64-bit address into the 32-bit view.
8500 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8501 * in future if we support AArch32-only configs of some of the
8502 * AArch64 cores we might need to add a specific feature flag
8503 * to indicate cores with "flavour 2" CBAR.
8505 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8506 /* 32 bit view is [31:18] 0...0 [43:32]. */
8507 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8508 | extract64(cpu->reset_cbar, 32, 12);
8509 ARMCPRegInfo cbar_reginfo[] = {
8510 { .name = "CBAR",
8511 .type = ARM_CP_CONST,
8512 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8513 .access = PL1_R, .resetvalue = cbar32 },
8514 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8515 .type = ARM_CP_CONST,
8516 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8517 .access = PL1_R, .resetvalue = cpu->reset_cbar },
8518 REGINFO_SENTINEL
8520 /* We don't implement a r/w 64 bit CBAR currently */
8521 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8522 define_arm_cp_regs(cpu, cbar_reginfo);
8523 } else {
8524 ARMCPRegInfo cbar = {
8525 .name = "CBAR",
8526 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8527 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8528 .fieldoffset = offsetof(CPUARMState,
8529 cp15.c15_config_base_address)
8531 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8532 cbar.access = PL1_R;
8533 cbar.fieldoffset = 0;
8534 cbar.type = ARM_CP_CONST;
8536 define_one_arm_cp_reg(cpu, &cbar);
8540 if (arm_feature(env, ARM_FEATURE_VBAR)) {
8541 ARMCPRegInfo vbar_cp_reginfo[] = {
8542 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8543 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8544 .access = PL1_RW, .writefn = vbar_write,
8545 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8546 offsetof(CPUARMState, cp15.vbar_ns) },
8547 .resetvalue = 0 },
8548 REGINFO_SENTINEL
8550 define_arm_cp_regs(cpu, vbar_cp_reginfo);
8553 /* Generic registers whose values depend on the implementation */
8555 ARMCPRegInfo sctlr = {
8556 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8557 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8558 .access = PL1_RW, .accessfn = access_tvm_trvm,
8559 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8560 offsetof(CPUARMState, cp15.sctlr_ns) },
8561 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8562 .raw_writefn = raw_write,
8564 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8565 /* Normally we would always end the TB on an SCTLR write, but Linux
8566 * arch/arm/mach-pxa/sleep.S expects two instructions following
8567 * an MMU enable to execute from cache. Imitate this behaviour.
8569 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8571 define_one_arm_cp_reg(cpu, &sctlr);
8574 if (cpu_isar_feature(aa64_lor, cpu)) {
8575 define_arm_cp_regs(cpu, lor_reginfo);
8577 if (cpu_isar_feature(aa64_pan, cpu)) {
8578 define_one_arm_cp_reg(cpu, &pan_reginfo);
8580 #ifndef CONFIG_USER_ONLY
8581 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8582 define_arm_cp_regs(cpu, ats1e1_reginfo);
8584 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8585 define_arm_cp_regs(cpu, ats1cp_reginfo);
8587 #endif
8588 if (cpu_isar_feature(aa64_uao, cpu)) {
8589 define_one_arm_cp_reg(cpu, &uao_reginfo);
8592 if (cpu_isar_feature(aa64_dit, cpu)) {
8593 define_one_arm_cp_reg(cpu, &dit_reginfo);
8595 if (cpu_isar_feature(aa64_ssbs, cpu)) {
8596 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8599 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8600 define_arm_cp_regs(cpu, vhe_reginfo);
8603 if (cpu_isar_feature(aa64_sve, cpu)) {
8604 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8605 if (arm_feature(env, ARM_FEATURE_EL2)) {
8606 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8607 } else {
8608 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8610 if (arm_feature(env, ARM_FEATURE_EL3)) {
8611 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8615 #ifdef TARGET_AARCH64
8616 if (cpu_isar_feature(aa64_pauth, cpu)) {
8617 define_arm_cp_regs(cpu, pauth_reginfo);
8619 if (cpu_isar_feature(aa64_rndr, cpu)) {
8620 define_arm_cp_regs(cpu, rndr_reginfo);
8622 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8623 define_arm_cp_regs(cpu, tlbirange_reginfo);
8625 if (cpu_isar_feature(aa64_tlbios, cpu)) {
8626 define_arm_cp_regs(cpu, tlbios_reginfo);
8628 #ifndef CONFIG_USER_ONLY
8629 /* Data Cache clean instructions up to PoP */
8630 if (cpu_isar_feature(aa64_dcpop, cpu)) {
8631 define_one_arm_cp_reg(cpu, dcpop_reg);
8633 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8634 define_one_arm_cp_reg(cpu, dcpodp_reg);
8637 #endif /*CONFIG_USER_ONLY*/
8640 * If full MTE is enabled, add all of the system registers.
8641 * If only "instructions available at EL0" are enabled,
8642 * then define only a RAZ/WI version of PSTATE.TCO.
8644 if (cpu_isar_feature(aa64_mte, cpu)) {
8645 define_arm_cp_regs(cpu, mte_reginfo);
8646 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8647 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8648 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8649 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8651 #endif
8653 if (cpu_isar_feature(any_predinv, cpu)) {
8654 define_arm_cp_regs(cpu, predinv_reginfo);
8657 if (cpu_isar_feature(any_ccidx, cpu)) {
8658 define_arm_cp_regs(cpu, ccsidr2_reginfo);
8661 #ifndef CONFIG_USER_ONLY
8663 * Register redirections and aliases must be done last,
8664 * after the registers from the other extensions have been defined.
8666 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8667 define_arm_vh_e2h_redirects_aliases(cpu);
8669 #endif
8672 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
8674 CPUState *cs = CPU(cpu);
8675 CPUARMState *env = &cpu->env;
8677 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8679 * The lower part of each SVE register aliases to the FPU
8680 * registers so we don't need to include both.
8682 #ifdef TARGET_AARCH64
8683 if (isar_feature_aa64_sve(&cpu->isar)) {
8684 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
8685 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
8686 "sve-registers.xml", 0);
8687 } else
8688 #endif
8690 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
8691 aarch64_fpu_gdb_set_reg,
8692 34, "aarch64-fpu.xml", 0);
8694 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
8695 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8696 51, "arm-neon.xml", 0);
8697 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
8698 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8699 35, "arm-vfp3.xml", 0);
8700 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
8701 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8702 19, "arm-vfp.xml", 0);
8704 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
8705 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
8706 "system-registers.xml", 0);
8710 /* Sort alphabetically by type name, except for "any". */
8711 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8713 ObjectClass *class_a = (ObjectClass *)a;
8714 ObjectClass *class_b = (ObjectClass *)b;
8715 const char *name_a, *name_b;
8717 name_a = object_class_get_name(class_a);
8718 name_b = object_class_get_name(class_b);
8719 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8720 return 1;
8721 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8722 return -1;
8723 } else {
8724 return strcmp(name_a, name_b);
8728 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8730 ObjectClass *oc = data;
8731 const char *typename;
8732 char *name;
8734 typename = object_class_get_name(oc);
8735 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8736 qemu_printf(" %s\n", name);
8737 g_free(name);
8740 void arm_cpu_list(void)
8742 GSList *list;
8744 list = object_class_get_list(TYPE_ARM_CPU, false);
8745 list = g_slist_sort(list, arm_cpu_list_compare);
8746 qemu_printf("Available CPUs:\n");
8747 g_slist_foreach(list, arm_cpu_list_entry, NULL);
8748 g_slist_free(list);
8751 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8753 ObjectClass *oc = data;
8754 CpuDefinitionInfoList **cpu_list = user_data;
8755 CpuDefinitionInfo *info;
8756 const char *typename;
8758 typename = object_class_get_name(oc);
8759 info = g_malloc0(sizeof(*info));
8760 info->name = g_strndup(typename,
8761 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8762 info->q_typename = g_strdup(typename);
8764 QAPI_LIST_PREPEND(*cpu_list, info);
8767 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8769 CpuDefinitionInfoList *cpu_list = NULL;
8770 GSList *list;
8772 list = object_class_get_list(TYPE_ARM_CPU, false);
8773 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8774 g_slist_free(list);
8776 return cpu_list;
8779 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8780 void *opaque, int state, int secstate,
8781 int crm, int opc1, int opc2,
8782 const char *name)
8784 /* Private utility function for define_one_arm_cp_reg_with_opaque():
8785 * add a single reginfo struct to the hash table.
8787 uint32_t *key = g_new(uint32_t, 1);
8788 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8789 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8790 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8792 r2->name = g_strdup(name);
8793 /* Reset the secure state to the specific incoming state. This is
8794 * necessary as the register may have been defined with both states.
8796 r2->secure = secstate;
8798 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8799 /* Register is banked (using both entries in array).
8800 * Overwriting fieldoffset as the array is only used to define
8801 * banked registers but later only fieldoffset is used.
8803 r2->fieldoffset = r->bank_fieldoffsets[ns];
8806 if (state == ARM_CP_STATE_AA32) {
8807 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8808 /* If the register is banked then we don't need to migrate or
8809 * reset the 32-bit instance in certain cases:
8811 * 1) If the register has both 32-bit and 64-bit instances then we
8812 * can count on the 64-bit instance taking care of the
8813 * non-secure bank.
8814 * 2) If ARMv8 is enabled then we can count on a 64-bit version
8815 * taking care of the secure bank. This requires that separate
8816 * 32 and 64-bit definitions are provided.
8818 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8819 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8820 r2->type |= ARM_CP_ALIAS;
8822 } else if ((secstate != r->secure) && !ns) {
8823 /* The register is not banked so we only want to allow migration of
8824 * the non-secure instance.
8826 r2->type |= ARM_CP_ALIAS;
8829 if (r->state == ARM_CP_STATE_BOTH) {
8830 /* We assume it is a cp15 register if the .cp field is left unset.
8832 if (r2->cp == 0) {
8833 r2->cp = 15;
8836 #ifdef HOST_WORDS_BIGENDIAN
8837 if (r2->fieldoffset) {
8838 r2->fieldoffset += sizeof(uint32_t);
8840 #endif
8843 if (state == ARM_CP_STATE_AA64) {
8844 /* To allow abbreviation of ARMCPRegInfo
8845 * definitions, we treat cp == 0 as equivalent to
8846 * the value for "standard guest-visible sysreg".
8847 * STATE_BOTH definitions are also always "standard
8848 * sysreg" in their AArch64 view (the .cp value may
8849 * be non-zero for the benefit of the AArch32 view).
8851 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8852 r2->cp = CP_REG_ARM64_SYSREG_CP;
8854 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8855 r2->opc0, opc1, opc2);
8856 } else {
8857 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8859 if (opaque) {
8860 r2->opaque = opaque;
8862 /* reginfo passed to helpers is correct for the actual access,
8863 * and is never ARM_CP_STATE_BOTH:
8865 r2->state = state;
8866 /* Make sure reginfo passed to helpers for wildcarded regs
8867 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8869 r2->crm = crm;
8870 r2->opc1 = opc1;
8871 r2->opc2 = opc2;
8872 /* By convention, for wildcarded registers only the first
8873 * entry is used for migration; the others are marked as
8874 * ALIAS so we don't try to transfer the register
8875 * multiple times. Special registers (ie NOP/WFI) are
8876 * never migratable and not even raw-accessible.
8878 if ((r->type & ARM_CP_SPECIAL)) {
8879 r2->type |= ARM_CP_NO_RAW;
8881 if (((r->crm == CP_ANY) && crm != 0) ||
8882 ((r->opc1 == CP_ANY) && opc1 != 0) ||
8883 ((r->opc2 == CP_ANY) && opc2 != 0)) {
8884 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8887 /* Check that raw accesses are either forbidden or handled. Note that
8888 * we can't assert this earlier because the setup of fieldoffset for
8889 * banked registers has to be done first.
8891 if (!(r2->type & ARM_CP_NO_RAW)) {
8892 assert(!raw_accessors_invalid(r2));
8895 /* Overriding of an existing definition must be explicitly
8896 * requested.
8898 if (!(r->type & ARM_CP_OVERRIDE)) {
8899 ARMCPRegInfo *oldreg;
8900 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8901 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8902 fprintf(stderr, "Register redefined: cp=%d %d bit "
8903 "crn=%d crm=%d opc1=%d opc2=%d, "
8904 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8905 r2->crn, r2->crm, r2->opc1, r2->opc2,
8906 oldreg->name, r2->name);
8907 g_assert_not_reached();
8910 g_hash_table_insert(cpu->cp_regs, key, r2);
8914 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8915 const ARMCPRegInfo *r, void *opaque)
8917 /* Define implementations of coprocessor registers.
8918 * We store these in a hashtable because typically
8919 * there are less than 150 registers in a space which
8920 * is 16*16*16*8*8 = 262144 in size.
8921 * Wildcarding is supported for the crm, opc1 and opc2 fields.
8922 * If a register is defined twice then the second definition is
8923 * used, so this can be used to define some generic registers and
8924 * then override them with implementation specific variations.
8925 * At least one of the original and the second definition should
8926 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8927 * against accidental use.
8929 * The state field defines whether the register is to be
8930 * visible in the AArch32 or AArch64 execution state. If the
8931 * state is set to ARM_CP_STATE_BOTH then we synthesise a
8932 * reginfo structure for the AArch32 view, which sees the lower
8933 * 32 bits of the 64 bit register.
8935 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8936 * be wildcarded. AArch64 registers are always considered to be 64
8937 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8938 * the register, if any.
8940 int crm, opc1, opc2, state;
8941 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8942 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8943 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8944 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8945 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8946 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8947 /* 64 bit registers have only CRm and Opc1 fields */
8948 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8949 /* op0 only exists in the AArch64 encodings */
8950 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8951 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8952 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8954 * This API is only for Arm's system coprocessors (14 and 15) or
8955 * (M-profile or v7A-and-earlier only) for implementation defined
8956 * coprocessors in the range 0..7. Our decode assumes this, since
8957 * 8..13 can be used for other insns including VFP and Neon. See
8958 * valid_cp() in translate.c. Assert here that we haven't tried
8959 * to use an invalid coprocessor number.
8961 switch (r->state) {
8962 case ARM_CP_STATE_BOTH:
8963 /* 0 has a special meaning, but otherwise the same rules as AA32. */
8964 if (r->cp == 0) {
8965 break;
8967 /* fall through */
8968 case ARM_CP_STATE_AA32:
8969 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8970 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8971 assert(r->cp >= 14 && r->cp <= 15);
8972 } else {
8973 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8975 break;
8976 case ARM_CP_STATE_AA64:
8977 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8978 break;
8979 default:
8980 g_assert_not_reached();
8982 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8983 * encodes a minimum access level for the register. We roll this
8984 * runtime check into our general permission check code, so check
8985 * here that the reginfo's specified permissions are strict enough
8986 * to encompass the generic architectural permission check.
8988 if (r->state != ARM_CP_STATE_AA32) {
8989 int mask = 0;
8990 switch (r->opc1) {
8991 case 0:
8992 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8993 mask = PL0U_R | PL1_RW;
8994 break;
8995 case 1: case 2:
8996 /* min_EL EL1 */
8997 mask = PL1_RW;
8998 break;
8999 case 3:
9000 /* min_EL EL0 */
9001 mask = PL0_RW;
9002 break;
9003 case 4:
9004 case 5:
9005 /* min_EL EL2 */
9006 mask = PL2_RW;
9007 break;
9008 case 6:
9009 /* min_EL EL3 */
9010 mask = PL3_RW;
9011 break;
9012 case 7:
9013 /* min_EL EL1, secure mode only (we don't check the latter) */
9014 mask = PL1_RW;
9015 break;
9016 default:
9017 /* broken reginfo with out-of-range opc1 */
9018 assert(false);
9019 break;
9021 /* assert our permissions are not too lax (stricter is fine) */
9022 assert((r->access & ~mask) == 0);
9025 /* Check that the register definition has enough info to handle
9026 * reads and writes if they are permitted.
9028 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
9029 if (r->access & PL3_R) {
9030 assert((r->fieldoffset ||
9031 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9032 r->readfn);
9034 if (r->access & PL3_W) {
9035 assert((r->fieldoffset ||
9036 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9037 r->writefn);
9040 /* Bad type field probably means missing sentinel at end of reg list */
9041 assert(cptype_valid(r->type));
9042 for (crm = crmmin; crm <= crmmax; crm++) {
9043 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9044 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9045 for (state = ARM_CP_STATE_AA32;
9046 state <= ARM_CP_STATE_AA64; state++) {
9047 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9048 continue;
9050 if (state == ARM_CP_STATE_AA32) {
9051 /* Under AArch32 CP registers can be common
9052 * (same for secure and non-secure world) or banked.
9054 char *name;
9056 switch (r->secure) {
9057 case ARM_CP_SECSTATE_S:
9058 case ARM_CP_SECSTATE_NS:
9059 add_cpreg_to_hashtable(cpu, r, opaque, state,
9060 r->secure, crm, opc1, opc2,
9061 r->name);
9062 break;
9063 default:
9064 name = g_strdup_printf("%s_S", r->name);
9065 add_cpreg_to_hashtable(cpu, r, opaque, state,
9066 ARM_CP_SECSTATE_S,
9067 crm, opc1, opc2, name);
9068 g_free(name);
9069 add_cpreg_to_hashtable(cpu, r, opaque, state,
9070 ARM_CP_SECSTATE_NS,
9071 crm, opc1, opc2, r->name);
9072 break;
9074 } else {
9075 /* AArch64 registers get mapped to non-secure instance
9076 * of AArch32 */
9077 add_cpreg_to_hashtable(cpu, r, opaque, state,
9078 ARM_CP_SECSTATE_NS,
9079 crm, opc1, opc2, r->name);
9087 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
9088 const ARMCPRegInfo *regs, void *opaque)
9090 /* Define a whole list of registers */
9091 const ARMCPRegInfo *r;
9092 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
9093 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
9098 * Modify ARMCPRegInfo for access from userspace.
9100 * This is a data driven modification directed by
9101 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9102 * user-space cannot alter any values and dynamic values pertaining to
9103 * execution state are hidden from user space view anyway.
9105 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
9107 const ARMCPRegUserSpaceInfo *m;
9108 ARMCPRegInfo *r;
9110 for (m = mods; m->name; m++) {
9111 GPatternSpec *pat = NULL;
9112 if (m->is_glob) {
9113 pat = g_pattern_spec_new(m->name);
9115 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
9116 if (pat && g_pattern_match_string(pat, r->name)) {
9117 r->type = ARM_CP_CONST;
9118 r->access = PL0U_R;
9119 r->resetvalue = 0;
9120 /* continue */
9121 } else if (strcmp(r->name, m->name) == 0) {
9122 r->type = ARM_CP_CONST;
9123 r->access = PL0U_R;
9124 r->resetvalue &= m->exported_bits;
9125 r->resetvalue |= m->fixed_bits;
9126 break;
9129 if (pat) {
9130 g_pattern_spec_free(pat);
9135 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9137 return g_hash_table_lookup(cpregs, &encoded_cp);
9140 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9141 uint64_t value)
9143 /* Helper coprocessor write function for write-ignore registers */
9146 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9148 /* Helper coprocessor write function for read-as-zero registers */
9149 return 0;
9152 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9154 /* Helper coprocessor reset function for do-nothing-on-reset registers */
9157 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9159 /* Return true if it is not valid for us to switch to
9160 * this CPU mode (ie all the UNPREDICTABLE cases in
9161 * the ARM ARM CPSRWriteByInstr pseudocode).
9164 /* Changes to or from Hyp via MSR and CPS are illegal. */
9165 if (write_type == CPSRWriteByInstr &&
9166 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9167 mode == ARM_CPU_MODE_HYP)) {
9168 return 1;
9171 switch (mode) {
9172 case ARM_CPU_MODE_USR:
9173 return 0;
9174 case ARM_CPU_MODE_SYS:
9175 case ARM_CPU_MODE_SVC:
9176 case ARM_CPU_MODE_ABT:
9177 case ARM_CPU_MODE_UND:
9178 case ARM_CPU_MODE_IRQ:
9179 case ARM_CPU_MODE_FIQ:
9180 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
9181 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9183 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9184 * and CPS are treated as illegal mode changes.
9186 if (write_type == CPSRWriteByInstr &&
9187 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9188 (arm_hcr_el2_eff(env) & HCR_TGE)) {
9189 return 1;
9191 return 0;
9192 case ARM_CPU_MODE_HYP:
9193 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9194 case ARM_CPU_MODE_MON:
9195 return arm_current_el(env) < 3;
9196 default:
9197 return 1;
9201 uint32_t cpsr_read(CPUARMState *env)
9203 int ZF;
9204 ZF = (env->ZF == 0);
9205 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9206 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9207 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9208 | ((env->condexec_bits & 0xfc) << 8)
9209 | (env->GE << 16) | (env->daif & CPSR_AIF);
9212 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9213 CPSRWriteType write_type)
9215 uint32_t changed_daif;
9217 if (mask & CPSR_NZCV) {
9218 env->ZF = (~val) & CPSR_Z;
9219 env->NF = val;
9220 env->CF = (val >> 29) & 1;
9221 env->VF = (val << 3) & 0x80000000;
9223 if (mask & CPSR_Q)
9224 env->QF = ((val & CPSR_Q) != 0);
9225 if (mask & CPSR_T)
9226 env->thumb = ((val & CPSR_T) != 0);
9227 if (mask & CPSR_IT_0_1) {
9228 env->condexec_bits &= ~3;
9229 env->condexec_bits |= (val >> 25) & 3;
9231 if (mask & CPSR_IT_2_7) {
9232 env->condexec_bits &= 3;
9233 env->condexec_bits |= (val >> 8) & 0xfc;
9235 if (mask & CPSR_GE) {
9236 env->GE = (val >> 16) & 0xf;
9239 /* In a V7 implementation that includes the security extensions but does
9240 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9241 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9242 * bits respectively.
9244 * In a V8 implementation, it is permitted for privileged software to
9245 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9247 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9248 arm_feature(env, ARM_FEATURE_EL3) &&
9249 !arm_feature(env, ARM_FEATURE_EL2) &&
9250 !arm_is_secure(env)) {
9252 changed_daif = (env->daif ^ val) & mask;
9254 if (changed_daif & CPSR_A) {
9255 /* Check to see if we are allowed to change the masking of async
9256 * abort exceptions from a non-secure state.
9258 if (!(env->cp15.scr_el3 & SCR_AW)) {
9259 qemu_log_mask(LOG_GUEST_ERROR,
9260 "Ignoring attempt to switch CPSR_A flag from "
9261 "non-secure world with SCR.AW bit clear\n");
9262 mask &= ~CPSR_A;
9266 if (changed_daif & CPSR_F) {
9267 /* Check to see if we are allowed to change the masking of FIQ
9268 * exceptions from a non-secure state.
9270 if (!(env->cp15.scr_el3 & SCR_FW)) {
9271 qemu_log_mask(LOG_GUEST_ERROR,
9272 "Ignoring attempt to switch CPSR_F flag from "
9273 "non-secure world with SCR.FW bit clear\n");
9274 mask &= ~CPSR_F;
9277 /* Check whether non-maskable FIQ (NMFI) support is enabled.
9278 * If this bit is set software is not allowed to mask
9279 * FIQs, but is allowed to set CPSR_F to 0.
9281 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9282 (val & CPSR_F)) {
9283 qemu_log_mask(LOG_GUEST_ERROR,
9284 "Ignoring attempt to enable CPSR_F flag "
9285 "(non-maskable FIQ [NMFI] support enabled)\n");
9286 mask &= ~CPSR_F;
9291 env->daif &= ~(CPSR_AIF & mask);
9292 env->daif |= val & CPSR_AIF & mask;
9294 if (write_type != CPSRWriteRaw &&
9295 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9296 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9297 /* Note that we can only get here in USR mode if this is a
9298 * gdb stub write; for this case we follow the architectural
9299 * behaviour for guest writes in USR mode of ignoring an attempt
9300 * to switch mode. (Those are caught by translate.c for writes
9301 * triggered by guest instructions.)
9303 mask &= ~CPSR_M;
9304 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9305 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9306 * v7, and has defined behaviour in v8:
9307 * + leave CPSR.M untouched
9308 * + allow changes to the other CPSR fields
9309 * + set PSTATE.IL
9310 * For user changes via the GDB stub, we don't set PSTATE.IL,
9311 * as this would be unnecessarily harsh for a user error.
9313 mask &= ~CPSR_M;
9314 if (write_type != CPSRWriteByGDBStub &&
9315 arm_feature(env, ARM_FEATURE_V8)) {
9316 mask |= CPSR_IL;
9317 val |= CPSR_IL;
9319 qemu_log_mask(LOG_GUEST_ERROR,
9320 "Illegal AArch32 mode switch attempt from %s to %s\n",
9321 aarch32_mode_name(env->uncached_cpsr),
9322 aarch32_mode_name(val));
9323 } else {
9324 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9325 write_type == CPSRWriteExceptionReturn ?
9326 "Exception return from AArch32" :
9327 "AArch32 mode switch from",
9328 aarch32_mode_name(env->uncached_cpsr),
9329 aarch32_mode_name(val), env->regs[15]);
9330 switch_mode(env, val & CPSR_M);
9333 mask &= ~CACHED_CPSR_BITS;
9334 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9337 /* Sign/zero extend */
9338 uint32_t HELPER(sxtb16)(uint32_t x)
9340 uint32_t res;
9341 res = (uint16_t)(int8_t)x;
9342 res |= (uint32_t)(int8_t)(x >> 16) << 16;
9343 return res;
9346 uint32_t HELPER(uxtb16)(uint32_t x)
9348 uint32_t res;
9349 res = (uint16_t)(uint8_t)x;
9350 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9351 return res;
9354 int32_t HELPER(sdiv)(int32_t num, int32_t den)
9356 if (den == 0)
9357 return 0;
9358 if (num == INT_MIN && den == -1)
9359 return INT_MIN;
9360 return num / den;
9363 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
9365 if (den == 0)
9366 return 0;
9367 return num / den;
9370 uint32_t HELPER(rbit)(uint32_t x)
9372 return revbit32(x);
9375 #ifdef CONFIG_USER_ONLY
9377 static void switch_mode(CPUARMState *env, int mode)
9379 ARMCPU *cpu = env_archcpu(env);
9381 if (mode != ARM_CPU_MODE_USR) {
9382 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9386 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9387 uint32_t cur_el, bool secure)
9389 return 1;
9392 void aarch64_sync_64_to_32(CPUARMState *env)
9394 g_assert_not_reached();
9397 #else
9399 static void switch_mode(CPUARMState *env, int mode)
9401 int old_mode;
9402 int i;
9404 old_mode = env->uncached_cpsr & CPSR_M;
9405 if (mode == old_mode)
9406 return;
9408 if (old_mode == ARM_CPU_MODE_FIQ) {
9409 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9410 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9411 } else if (mode == ARM_CPU_MODE_FIQ) {
9412 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9413 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9416 i = bank_number(old_mode);
9417 env->banked_r13[i] = env->regs[13];
9418 env->banked_spsr[i] = env->spsr;
9420 i = bank_number(mode);
9421 env->regs[13] = env->banked_r13[i];
9422 env->spsr = env->banked_spsr[i];
9424 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9425 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9428 /* Physical Interrupt Target EL Lookup Table
9430 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9432 * The below multi-dimensional table is used for looking up the target
9433 * exception level given numerous condition criteria. Specifically, the
9434 * target EL is based on SCR and HCR routing controls as well as the
9435 * currently executing EL and secure state.
9437 * Dimensions:
9438 * target_el_table[2][2][2][2][2][4]
9439 * | | | | | +--- Current EL
9440 * | | | | +------ Non-secure(0)/Secure(1)
9441 * | | | +--------- HCR mask override
9442 * | | +------------ SCR exec state control
9443 * | +--------------- SCR mask override
9444 * +------------------ 32-bit(0)/64-bit(1) EL3
9446 * The table values are as such:
9447 * 0-3 = EL0-EL3
9448 * -1 = Cannot occur
9450 * The ARM ARM target EL table includes entries indicating that an "exception
9451 * is not taken". The two cases where this is applicable are:
9452 * 1) An exception is taken from EL3 but the SCR does not have the exception
9453 * routed to EL3.
9454 * 2) An exception is taken from EL2 but the HCR does not have the exception
9455 * routed to EL2.
9456 * In these two cases, the below table contain a target of EL1. This value is
9457 * returned as it is expected that the consumer of the table data will check
9458 * for "target EL >= current EL" to ensure the exception is not taken.
9460 * SCR HCR
9461 * 64 EA AMO From
9462 * BIT IRQ IMO Non-secure Secure
9463 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
9465 static const int8_t target_el_table[2][2][2][2][2][4] = {
9466 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9467 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
9468 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9469 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
9470 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9471 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
9472 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9473 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
9474 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
9475 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
9476 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
9477 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
9478 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
9479 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
9480 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
9481 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
9485 * Determine the target EL for physical exceptions
9487 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9488 uint32_t cur_el, bool secure)
9490 CPUARMState *env = cs->env_ptr;
9491 bool rw;
9492 bool scr;
9493 bool hcr;
9494 int target_el;
9495 /* Is the highest EL AArch64? */
9496 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9497 uint64_t hcr_el2;
9499 if (arm_feature(env, ARM_FEATURE_EL3)) {
9500 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9501 } else {
9502 /* Either EL2 is the highest EL (and so the EL2 register width
9503 * is given by is64); or there is no EL2 or EL3, in which case
9504 * the value of 'rw' does not affect the table lookup anyway.
9506 rw = is64;
9509 hcr_el2 = arm_hcr_el2_eff(env);
9510 switch (excp_idx) {
9511 case EXCP_IRQ:
9512 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9513 hcr = hcr_el2 & HCR_IMO;
9514 break;
9515 case EXCP_FIQ:
9516 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9517 hcr = hcr_el2 & HCR_FMO;
9518 break;
9519 default:
9520 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9521 hcr = hcr_el2 & HCR_AMO;
9522 break;
9526 * For these purposes, TGE and AMO/IMO/FMO both force the
9527 * interrupt to EL2. Fold TGE into the bit extracted above.
9529 hcr |= (hcr_el2 & HCR_TGE) != 0;
9531 /* Perform a table-lookup for the target EL given the current state */
9532 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9534 assert(target_el > 0);
9536 return target_el;
9539 void arm_log_exception(int idx)
9541 if (qemu_loglevel_mask(CPU_LOG_INT)) {
9542 const char *exc = NULL;
9543 static const char * const excnames[] = {
9544 [EXCP_UDEF] = "Undefined Instruction",
9545 [EXCP_SWI] = "SVC",
9546 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9547 [EXCP_DATA_ABORT] = "Data Abort",
9548 [EXCP_IRQ] = "IRQ",
9549 [EXCP_FIQ] = "FIQ",
9550 [EXCP_BKPT] = "Breakpoint",
9551 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9552 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9553 [EXCP_HVC] = "Hypervisor Call",
9554 [EXCP_HYP_TRAP] = "Hypervisor Trap",
9555 [EXCP_SMC] = "Secure Monitor Call",
9556 [EXCP_VIRQ] = "Virtual IRQ",
9557 [EXCP_VFIQ] = "Virtual FIQ",
9558 [EXCP_SEMIHOST] = "Semihosting call",
9559 [EXCP_NOCP] = "v7M NOCP UsageFault",
9560 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9561 [EXCP_STKOF] = "v8M STKOF UsageFault",
9562 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9563 [EXCP_LSERR] = "v8M LSERR UsageFault",
9564 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9567 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9568 exc = excnames[idx];
9570 if (!exc) {
9571 exc = "unknown";
9573 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9578 * Function used to synchronize QEMU's AArch64 register set with AArch32
9579 * register set. This is necessary when switching between AArch32 and AArch64
9580 * execution state.
9582 void aarch64_sync_32_to_64(CPUARMState *env)
9584 int i;
9585 uint32_t mode = env->uncached_cpsr & CPSR_M;
9587 /* We can blanket copy R[0:7] to X[0:7] */
9588 for (i = 0; i < 8; i++) {
9589 env->xregs[i] = env->regs[i];
9593 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9594 * Otherwise, they come from the banked user regs.
9596 if (mode == ARM_CPU_MODE_FIQ) {
9597 for (i = 8; i < 13; i++) {
9598 env->xregs[i] = env->usr_regs[i - 8];
9600 } else {
9601 for (i = 8; i < 13; i++) {
9602 env->xregs[i] = env->regs[i];
9607 * Registers x13-x23 are the various mode SP and FP registers. Registers
9608 * r13 and r14 are only copied if we are in that mode, otherwise we copy
9609 * from the mode banked register.
9611 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9612 env->xregs[13] = env->regs[13];
9613 env->xregs[14] = env->regs[14];
9614 } else {
9615 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9616 /* HYP is an exception in that it is copied from r14 */
9617 if (mode == ARM_CPU_MODE_HYP) {
9618 env->xregs[14] = env->regs[14];
9619 } else {
9620 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9624 if (mode == ARM_CPU_MODE_HYP) {
9625 env->xregs[15] = env->regs[13];
9626 } else {
9627 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9630 if (mode == ARM_CPU_MODE_IRQ) {
9631 env->xregs[16] = env->regs[14];
9632 env->xregs[17] = env->regs[13];
9633 } else {
9634 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9635 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9638 if (mode == ARM_CPU_MODE_SVC) {
9639 env->xregs[18] = env->regs[14];
9640 env->xregs[19] = env->regs[13];
9641 } else {
9642 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9643 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9646 if (mode == ARM_CPU_MODE_ABT) {
9647 env->xregs[20] = env->regs[14];
9648 env->xregs[21] = env->regs[13];
9649 } else {
9650 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9651 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9654 if (mode == ARM_CPU_MODE_UND) {
9655 env->xregs[22] = env->regs[14];
9656 env->xregs[23] = env->regs[13];
9657 } else {
9658 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9659 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9663 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9664 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9665 * FIQ bank for r8-r14.
9667 if (mode == ARM_CPU_MODE_FIQ) {
9668 for (i = 24; i < 31; i++) {
9669 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9671 } else {
9672 for (i = 24; i < 29; i++) {
9673 env->xregs[i] = env->fiq_regs[i - 24];
9675 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9676 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9679 env->pc = env->regs[15];
9683 * Function used to synchronize QEMU's AArch32 register set with AArch64
9684 * register set. This is necessary when switching between AArch32 and AArch64
9685 * execution state.
9687 void aarch64_sync_64_to_32(CPUARMState *env)
9689 int i;
9690 uint32_t mode = env->uncached_cpsr & CPSR_M;
9692 /* We can blanket copy X[0:7] to R[0:7] */
9693 for (i = 0; i < 8; i++) {
9694 env->regs[i] = env->xregs[i];
9698 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9699 * Otherwise, we copy x8-x12 into the banked user regs.
9701 if (mode == ARM_CPU_MODE_FIQ) {
9702 for (i = 8; i < 13; i++) {
9703 env->usr_regs[i - 8] = env->xregs[i];
9705 } else {
9706 for (i = 8; i < 13; i++) {
9707 env->regs[i] = env->xregs[i];
9712 * Registers r13 & r14 depend on the current mode.
9713 * If we are in a given mode, we copy the corresponding x registers to r13
9714 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9715 * for the mode.
9717 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9718 env->regs[13] = env->xregs[13];
9719 env->regs[14] = env->xregs[14];
9720 } else {
9721 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9724 * HYP is an exception in that it does not have its own banked r14 but
9725 * shares the USR r14
9727 if (mode == ARM_CPU_MODE_HYP) {
9728 env->regs[14] = env->xregs[14];
9729 } else {
9730 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9734 if (mode == ARM_CPU_MODE_HYP) {
9735 env->regs[13] = env->xregs[15];
9736 } else {
9737 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9740 if (mode == ARM_CPU_MODE_IRQ) {
9741 env->regs[14] = env->xregs[16];
9742 env->regs[13] = env->xregs[17];
9743 } else {
9744 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9745 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9748 if (mode == ARM_CPU_MODE_SVC) {
9749 env->regs[14] = env->xregs[18];
9750 env->regs[13] = env->xregs[19];
9751 } else {
9752 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9753 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9756 if (mode == ARM_CPU_MODE_ABT) {
9757 env->regs[14] = env->xregs[20];
9758 env->regs[13] = env->xregs[21];
9759 } else {
9760 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9761 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9764 if (mode == ARM_CPU_MODE_UND) {
9765 env->regs[14] = env->xregs[22];
9766 env->regs[13] = env->xregs[23];
9767 } else {
9768 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9769 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9772 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9773 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9774 * FIQ bank for r8-r14.
9776 if (mode == ARM_CPU_MODE_FIQ) {
9777 for (i = 24; i < 31; i++) {
9778 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9780 } else {
9781 for (i = 24; i < 29; i++) {
9782 env->fiq_regs[i - 24] = env->xregs[i];
9784 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9785 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9788 env->regs[15] = env->pc;
9791 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9792 uint32_t mask, uint32_t offset,
9793 uint32_t newpc)
9795 int new_el;
9797 /* Change the CPU state so as to actually take the exception. */
9798 switch_mode(env, new_mode);
9801 * For exceptions taken to AArch32 we must clear the SS bit in both
9802 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9804 env->pstate &= ~PSTATE_SS;
9805 env->spsr = cpsr_read(env);
9806 /* Clear IT bits. */
9807 env->condexec_bits = 0;
9808 /* Switch to the new mode, and to the correct instruction set. */
9809 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9811 /* This must be after mode switching. */
9812 new_el = arm_current_el(env);
9814 /* Set new mode endianness */
9815 env->uncached_cpsr &= ~CPSR_E;
9816 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9817 env->uncached_cpsr |= CPSR_E;
9819 /* J and IL must always be cleared for exception entry */
9820 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9821 env->daif |= mask;
9823 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9824 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9825 env->uncached_cpsr |= CPSR_SSBS;
9826 } else {
9827 env->uncached_cpsr &= ~CPSR_SSBS;
9831 if (new_mode == ARM_CPU_MODE_HYP) {
9832 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9833 env->elr_el[2] = env->regs[15];
9834 } else {
9835 /* CPSR.PAN is normally preserved preserved unless... */
9836 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9837 switch (new_el) {
9838 case 3:
9839 if (!arm_is_secure_below_el3(env)) {
9840 /* ... the target is EL3, from non-secure state. */
9841 env->uncached_cpsr &= ~CPSR_PAN;
9842 break;
9844 /* ... the target is EL3, from secure state ... */
9845 /* fall through */
9846 case 1:
9847 /* ... the target is EL1 and SCTLR.SPAN is 0. */
9848 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9849 env->uncached_cpsr |= CPSR_PAN;
9851 break;
9855 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9856 * and we should just guard the thumb mode on V4
9858 if (arm_feature(env, ARM_FEATURE_V4T)) {
9859 env->thumb =
9860 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9862 env->regs[14] = env->regs[15] + offset;
9864 env->regs[15] = newpc;
9865 arm_rebuild_hflags(env);
9868 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9871 * Handle exception entry to Hyp mode; this is sufficiently
9872 * different to entry to other AArch32 modes that we handle it
9873 * separately here.
9875 * The vector table entry used is always the 0x14 Hyp mode entry point,
9876 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9877 * The offset applied to the preferred return address is always zero
9878 * (see DDI0487C.a section G1.12.3).
9879 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9881 uint32_t addr, mask;
9882 ARMCPU *cpu = ARM_CPU(cs);
9883 CPUARMState *env = &cpu->env;
9885 switch (cs->exception_index) {
9886 case EXCP_UDEF:
9887 addr = 0x04;
9888 break;
9889 case EXCP_SWI:
9890 addr = 0x14;
9891 break;
9892 case EXCP_BKPT:
9893 /* Fall through to prefetch abort. */
9894 case EXCP_PREFETCH_ABORT:
9895 env->cp15.ifar_s = env->exception.vaddress;
9896 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9897 (uint32_t)env->exception.vaddress);
9898 addr = 0x0c;
9899 break;
9900 case EXCP_DATA_ABORT:
9901 env->cp15.dfar_s = env->exception.vaddress;
9902 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9903 (uint32_t)env->exception.vaddress);
9904 addr = 0x10;
9905 break;
9906 case EXCP_IRQ:
9907 addr = 0x18;
9908 break;
9909 case EXCP_FIQ:
9910 addr = 0x1c;
9911 break;
9912 case EXCP_HVC:
9913 addr = 0x08;
9914 break;
9915 case EXCP_HYP_TRAP:
9916 addr = 0x14;
9917 break;
9918 default:
9919 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9922 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9923 if (!arm_feature(env, ARM_FEATURE_V8)) {
9925 * QEMU syndrome values are v8-style. v7 has the IL bit
9926 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9927 * If this is a v7 CPU, squash the IL bit in those cases.
9929 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9930 (cs->exception_index == EXCP_DATA_ABORT &&
9931 !(env->exception.syndrome & ARM_EL_ISV)) ||
9932 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9933 env->exception.syndrome &= ~ARM_EL_IL;
9936 env->cp15.esr_el[2] = env->exception.syndrome;
9939 if (arm_current_el(env) != 2 && addr < 0x14) {
9940 addr = 0x14;
9943 mask = 0;
9944 if (!(env->cp15.scr_el3 & SCR_EA)) {
9945 mask |= CPSR_A;
9947 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9948 mask |= CPSR_I;
9950 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9951 mask |= CPSR_F;
9954 addr += env->cp15.hvbar;
9956 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9959 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9961 ARMCPU *cpu = ARM_CPU(cs);
9962 CPUARMState *env = &cpu->env;
9963 uint32_t addr;
9964 uint32_t mask;
9965 int new_mode;
9966 uint32_t offset;
9967 uint32_t moe;
9969 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9970 switch (syn_get_ec(env->exception.syndrome)) {
9971 case EC_BREAKPOINT:
9972 case EC_BREAKPOINT_SAME_EL:
9973 moe = 1;
9974 break;
9975 case EC_WATCHPOINT:
9976 case EC_WATCHPOINT_SAME_EL:
9977 moe = 10;
9978 break;
9979 case EC_AA32_BKPT:
9980 moe = 3;
9981 break;
9982 case EC_VECTORCATCH:
9983 moe = 5;
9984 break;
9985 default:
9986 moe = 0;
9987 break;
9990 if (moe) {
9991 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9994 if (env->exception.target_el == 2) {
9995 arm_cpu_do_interrupt_aarch32_hyp(cs);
9996 return;
9999 switch (cs->exception_index) {
10000 case EXCP_UDEF:
10001 new_mode = ARM_CPU_MODE_UND;
10002 addr = 0x04;
10003 mask = CPSR_I;
10004 if (env->thumb)
10005 offset = 2;
10006 else
10007 offset = 4;
10008 break;
10009 case EXCP_SWI:
10010 new_mode = ARM_CPU_MODE_SVC;
10011 addr = 0x08;
10012 mask = CPSR_I;
10013 /* The PC already points to the next instruction. */
10014 offset = 0;
10015 break;
10016 case EXCP_BKPT:
10017 /* Fall through to prefetch abort. */
10018 case EXCP_PREFETCH_ABORT:
10019 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10020 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10021 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10022 env->exception.fsr, (uint32_t)env->exception.vaddress);
10023 new_mode = ARM_CPU_MODE_ABT;
10024 addr = 0x0c;
10025 mask = CPSR_A | CPSR_I;
10026 offset = 4;
10027 break;
10028 case EXCP_DATA_ABORT:
10029 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10030 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10031 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10032 env->exception.fsr,
10033 (uint32_t)env->exception.vaddress);
10034 new_mode = ARM_CPU_MODE_ABT;
10035 addr = 0x10;
10036 mask = CPSR_A | CPSR_I;
10037 offset = 8;
10038 break;
10039 case EXCP_IRQ:
10040 new_mode = ARM_CPU_MODE_IRQ;
10041 addr = 0x18;
10042 /* Disable IRQ and imprecise data aborts. */
10043 mask = CPSR_A | CPSR_I;
10044 offset = 4;
10045 if (env->cp15.scr_el3 & SCR_IRQ) {
10046 /* IRQ routed to monitor mode */
10047 new_mode = ARM_CPU_MODE_MON;
10048 mask |= CPSR_F;
10050 break;
10051 case EXCP_FIQ:
10052 new_mode = ARM_CPU_MODE_FIQ;
10053 addr = 0x1c;
10054 /* Disable FIQ, IRQ and imprecise data aborts. */
10055 mask = CPSR_A | CPSR_I | CPSR_F;
10056 if (env->cp15.scr_el3 & SCR_FIQ) {
10057 /* FIQ routed to monitor mode */
10058 new_mode = ARM_CPU_MODE_MON;
10060 offset = 4;
10061 break;
10062 case EXCP_VIRQ:
10063 new_mode = ARM_CPU_MODE_IRQ;
10064 addr = 0x18;
10065 /* Disable IRQ and imprecise data aborts. */
10066 mask = CPSR_A | CPSR_I;
10067 offset = 4;
10068 break;
10069 case EXCP_VFIQ:
10070 new_mode = ARM_CPU_MODE_FIQ;
10071 addr = 0x1c;
10072 /* Disable FIQ, IRQ and imprecise data aborts. */
10073 mask = CPSR_A | CPSR_I | CPSR_F;
10074 offset = 4;
10075 break;
10076 case EXCP_SMC:
10077 new_mode = ARM_CPU_MODE_MON;
10078 addr = 0x08;
10079 mask = CPSR_A | CPSR_I | CPSR_F;
10080 offset = 0;
10081 break;
10082 default:
10083 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10084 return; /* Never happens. Keep compiler happy. */
10087 if (new_mode == ARM_CPU_MODE_MON) {
10088 addr += env->cp15.mvbar;
10089 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10090 /* High vectors. When enabled, base address cannot be remapped. */
10091 addr += 0xffff0000;
10092 } else {
10093 /* ARM v7 architectures provide a vector base address register to remap
10094 * the interrupt vector table.
10095 * This register is only followed in non-monitor mode, and is banked.
10096 * Note: only bits 31:5 are valid.
10098 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10101 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10102 env->cp15.scr_el3 &= ~SCR_NS;
10105 take_aarch32_exception(env, new_mode, mask, offset, addr);
10108 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10111 * Return the register number of the AArch64 view of the AArch32
10112 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10113 * be that of the AArch32 mode the exception came from.
10115 int mode = env->uncached_cpsr & CPSR_M;
10117 switch (aarch32_reg) {
10118 case 0 ... 7:
10119 return aarch32_reg;
10120 case 8 ... 12:
10121 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10122 case 13:
10123 switch (mode) {
10124 case ARM_CPU_MODE_USR:
10125 case ARM_CPU_MODE_SYS:
10126 return 13;
10127 case ARM_CPU_MODE_HYP:
10128 return 15;
10129 case ARM_CPU_MODE_IRQ:
10130 return 17;
10131 case ARM_CPU_MODE_SVC:
10132 return 19;
10133 case ARM_CPU_MODE_ABT:
10134 return 21;
10135 case ARM_CPU_MODE_UND:
10136 return 23;
10137 case ARM_CPU_MODE_FIQ:
10138 return 29;
10139 default:
10140 g_assert_not_reached();
10142 case 14:
10143 switch (mode) {
10144 case ARM_CPU_MODE_USR:
10145 case ARM_CPU_MODE_SYS:
10146 case ARM_CPU_MODE_HYP:
10147 return 14;
10148 case ARM_CPU_MODE_IRQ:
10149 return 16;
10150 case ARM_CPU_MODE_SVC:
10151 return 18;
10152 case ARM_CPU_MODE_ABT:
10153 return 20;
10154 case ARM_CPU_MODE_UND:
10155 return 22;
10156 case ARM_CPU_MODE_FIQ:
10157 return 30;
10158 default:
10159 g_assert_not_reached();
10161 case 15:
10162 return 31;
10163 default:
10164 g_assert_not_reached();
10168 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10170 uint32_t ret = cpsr_read(env);
10172 /* Move DIT to the correct location for SPSR_ELx */
10173 if (ret & CPSR_DIT) {
10174 ret &= ~CPSR_DIT;
10175 ret |= PSTATE_DIT;
10177 /* Merge PSTATE.SS into SPSR_ELx */
10178 ret |= env->pstate & PSTATE_SS;
10180 return ret;
10183 /* Handle exception entry to a target EL which is using AArch64 */
10184 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10186 ARMCPU *cpu = ARM_CPU(cs);
10187 CPUARMState *env = &cpu->env;
10188 unsigned int new_el = env->exception.target_el;
10189 target_ulong addr = env->cp15.vbar_el[new_el];
10190 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10191 unsigned int old_mode;
10192 unsigned int cur_el = arm_current_el(env);
10193 int rt;
10196 * Note that new_el can never be 0. If cur_el is 0, then
10197 * el0_a64 is is_a64(), else el0_a64 is ignored.
10199 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10201 if (cur_el < new_el) {
10202 /* Entry vector offset depends on whether the implemented EL
10203 * immediately lower than the target level is using AArch32 or AArch64
10205 bool is_aa64;
10206 uint64_t hcr;
10208 switch (new_el) {
10209 case 3:
10210 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10211 break;
10212 case 2:
10213 hcr = arm_hcr_el2_eff(env);
10214 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10215 is_aa64 = (hcr & HCR_RW) != 0;
10216 break;
10218 /* fall through */
10219 case 1:
10220 is_aa64 = is_a64(env);
10221 break;
10222 default:
10223 g_assert_not_reached();
10226 if (is_aa64) {
10227 addr += 0x400;
10228 } else {
10229 addr += 0x600;
10231 } else if (pstate_read(env) & PSTATE_SP) {
10232 addr += 0x200;
10235 switch (cs->exception_index) {
10236 case EXCP_PREFETCH_ABORT:
10237 case EXCP_DATA_ABORT:
10238 env->cp15.far_el[new_el] = env->exception.vaddress;
10239 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10240 env->cp15.far_el[new_el]);
10241 /* fall through */
10242 case EXCP_BKPT:
10243 case EXCP_UDEF:
10244 case EXCP_SWI:
10245 case EXCP_HVC:
10246 case EXCP_HYP_TRAP:
10247 case EXCP_SMC:
10248 switch (syn_get_ec(env->exception.syndrome)) {
10249 case EC_ADVSIMDFPACCESSTRAP:
10251 * QEMU internal FP/SIMD syndromes from AArch32 include the
10252 * TA and coproc fields which are only exposed if the exception
10253 * is taken to AArch32 Hyp mode. Mask them out to get a valid
10254 * AArch64 format syndrome.
10256 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10257 break;
10258 case EC_CP14RTTRAP:
10259 case EC_CP15RTTRAP:
10260 case EC_CP14DTTRAP:
10262 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10263 * the raw register field from the insn; when taking this to
10264 * AArch64 we must convert it to the AArch64 view of the register
10265 * number. Notice that we read a 4-bit AArch32 register number and
10266 * write back a 5-bit AArch64 one.
10268 rt = extract32(env->exception.syndrome, 5, 4);
10269 rt = aarch64_regnum(env, rt);
10270 env->exception.syndrome = deposit32(env->exception.syndrome,
10271 5, 5, rt);
10272 break;
10273 case EC_CP15RRTTRAP:
10274 case EC_CP14RRTTRAP:
10275 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10276 rt = extract32(env->exception.syndrome, 5, 4);
10277 rt = aarch64_regnum(env, rt);
10278 env->exception.syndrome = deposit32(env->exception.syndrome,
10279 5, 5, rt);
10280 rt = extract32(env->exception.syndrome, 10, 4);
10281 rt = aarch64_regnum(env, rt);
10282 env->exception.syndrome = deposit32(env->exception.syndrome,
10283 10, 5, rt);
10284 break;
10286 env->cp15.esr_el[new_el] = env->exception.syndrome;
10287 break;
10288 case EXCP_IRQ:
10289 case EXCP_VIRQ:
10290 addr += 0x80;
10291 break;
10292 case EXCP_FIQ:
10293 case EXCP_VFIQ:
10294 addr += 0x100;
10295 break;
10296 default:
10297 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10300 if (is_a64(env)) {
10301 old_mode = pstate_read(env);
10302 aarch64_save_sp(env, arm_current_el(env));
10303 env->elr_el[new_el] = env->pc;
10304 } else {
10305 old_mode = cpsr_read_for_spsr_elx(env);
10306 env->elr_el[new_el] = env->regs[15];
10308 aarch64_sync_32_to_64(env);
10310 env->condexec_bits = 0;
10312 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10314 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10315 env->elr_el[new_el]);
10317 if (cpu_isar_feature(aa64_pan, cpu)) {
10318 /* The value of PSTATE.PAN is normally preserved, except when ... */
10319 new_mode |= old_mode & PSTATE_PAN;
10320 switch (new_el) {
10321 case 2:
10322 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
10323 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10324 != (HCR_E2H | HCR_TGE)) {
10325 break;
10327 /* fall through */
10328 case 1:
10329 /* ... the target is EL1 ... */
10330 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
10331 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10332 new_mode |= PSTATE_PAN;
10334 break;
10337 if (cpu_isar_feature(aa64_mte, cpu)) {
10338 new_mode |= PSTATE_TCO;
10341 if (cpu_isar_feature(aa64_ssbs, cpu)) {
10342 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10343 new_mode |= PSTATE_SSBS;
10344 } else {
10345 new_mode &= ~PSTATE_SSBS;
10349 pstate_write(env, PSTATE_DAIF | new_mode);
10350 env->aarch64 = 1;
10351 aarch64_restore_sp(env, new_el);
10352 helper_rebuild_hflags_a64(env, new_el);
10354 env->pc = addr;
10356 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10357 new_el, env->pc, pstate_read(env));
10361 * Do semihosting call and set the appropriate return value. All the
10362 * permission and validity checks have been done at translate time.
10364 * We only see semihosting exceptions in TCG only as they are not
10365 * trapped to the hypervisor in KVM.
10367 #ifdef CONFIG_TCG
10368 static void handle_semihosting(CPUState *cs)
10370 ARMCPU *cpu = ARM_CPU(cs);
10371 CPUARMState *env = &cpu->env;
10373 if (is_a64(env)) {
10374 qemu_log_mask(CPU_LOG_INT,
10375 "...handling as semihosting call 0x%" PRIx64 "\n",
10376 env->xregs[0]);
10377 env->xregs[0] = do_common_semihosting(cs);
10378 env->pc += 4;
10379 } else {
10380 qemu_log_mask(CPU_LOG_INT,
10381 "...handling as semihosting call 0x%x\n",
10382 env->regs[0]);
10383 env->regs[0] = do_common_semihosting(cs);
10384 env->regs[15] += env->thumb ? 2 : 4;
10387 #endif
10389 /* Handle a CPU exception for A and R profile CPUs.
10390 * Do any appropriate logging, handle PSCI calls, and then hand off
10391 * to the AArch64-entry or AArch32-entry function depending on the
10392 * target exception level's register width.
10394 * Note: this is used for both TCG (as the do_interrupt tcg op),
10395 * and KVM to re-inject guest debug exceptions, and to
10396 * inject a Synchronous-External-Abort.
10398 void arm_cpu_do_interrupt(CPUState *cs)
10400 ARMCPU *cpu = ARM_CPU(cs);
10401 CPUARMState *env = &cpu->env;
10402 unsigned int new_el = env->exception.target_el;
10404 assert(!arm_feature(env, ARM_FEATURE_M));
10406 arm_log_exception(cs->exception_index);
10407 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10408 new_el);
10409 if (qemu_loglevel_mask(CPU_LOG_INT)
10410 && !excp_is_internal(cs->exception_index)) {
10411 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10412 syn_get_ec(env->exception.syndrome),
10413 env->exception.syndrome);
10416 if (arm_is_psci_call(cpu, cs->exception_index)) {
10417 arm_handle_psci_call(cpu);
10418 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10419 return;
10423 * Semihosting semantics depend on the register width of the code
10424 * that caused the exception, not the target exception level, so
10425 * must be handled here.
10427 #ifdef CONFIG_TCG
10428 if (cs->exception_index == EXCP_SEMIHOST) {
10429 handle_semihosting(cs);
10430 return;
10432 #endif
10434 /* Hooks may change global state so BQL should be held, also the
10435 * BQL needs to be held for any modification of
10436 * cs->interrupt_request.
10438 g_assert(qemu_mutex_iothread_locked());
10440 arm_call_pre_el_change_hook(cpu);
10442 assert(!excp_is_internal(cs->exception_index));
10443 if (arm_el_is_aa64(env, new_el)) {
10444 arm_cpu_do_interrupt_aarch64(cs);
10445 } else {
10446 arm_cpu_do_interrupt_aarch32(cs);
10449 arm_call_el_change_hook(cpu);
10451 if (!kvm_enabled()) {
10452 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10455 #endif /* !CONFIG_USER_ONLY */
10457 uint64_t arm_sctlr(CPUARMState *env, int el)
10459 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10460 if (el == 0) {
10461 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10462 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10463 ? 2 : 1;
10465 return env->cp15.sctlr_el[el];
10468 /* Return the SCTLR value which controls this address translation regime */
10469 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10471 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10474 #ifndef CONFIG_USER_ONLY
10476 /* Return true if the specified stage of address translation is disabled */
10477 static inline bool regime_translation_disabled(CPUARMState *env,
10478 ARMMMUIdx mmu_idx)
10480 uint64_t hcr_el2;
10482 if (arm_feature(env, ARM_FEATURE_M)) {
10483 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10484 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10485 case R_V7M_MPU_CTRL_ENABLE_MASK:
10486 /* Enabled, but not for HardFault and NMI */
10487 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10488 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10489 /* Enabled for all cases */
10490 return false;
10491 case 0:
10492 default:
10493 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10494 * we warned about that in armv7m_nvic.c when the guest set it.
10496 return true;
10500 hcr_el2 = arm_hcr_el2_eff(env);
10502 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10503 /* HCR.DC means HCR.VM behaves as 1 */
10504 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10507 if (hcr_el2 & HCR_TGE) {
10508 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10509 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10510 return true;
10514 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10515 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10516 return true;
10519 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10522 static inline bool regime_translation_big_endian(CPUARMState *env,
10523 ARMMMUIdx mmu_idx)
10525 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10528 /* Return the TTBR associated with this translation regime */
10529 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10530 int ttbrn)
10532 if (mmu_idx == ARMMMUIdx_Stage2) {
10533 return env->cp15.vttbr_el2;
10535 if (mmu_idx == ARMMMUIdx_Stage2_S) {
10536 return env->cp15.vsttbr_el2;
10538 if (ttbrn == 0) {
10539 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10540 } else {
10541 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10545 #endif /* !CONFIG_USER_ONLY */
10547 /* Convert a possible stage1+2 MMU index into the appropriate
10548 * stage 1 MMU index
10550 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10552 switch (mmu_idx) {
10553 case ARMMMUIdx_SE10_0:
10554 return ARMMMUIdx_Stage1_SE0;
10555 case ARMMMUIdx_SE10_1:
10556 return ARMMMUIdx_Stage1_SE1;
10557 case ARMMMUIdx_SE10_1_PAN:
10558 return ARMMMUIdx_Stage1_SE1_PAN;
10559 case ARMMMUIdx_E10_0:
10560 return ARMMMUIdx_Stage1_E0;
10561 case ARMMMUIdx_E10_1:
10562 return ARMMMUIdx_Stage1_E1;
10563 case ARMMMUIdx_E10_1_PAN:
10564 return ARMMMUIdx_Stage1_E1_PAN;
10565 default:
10566 return mmu_idx;
10570 /* Return true if the translation regime is using LPAE format page tables */
10571 static inline bool regime_using_lpae_format(CPUARMState *env,
10572 ARMMMUIdx mmu_idx)
10574 int el = regime_el(env, mmu_idx);
10575 if (el == 2 || arm_el_is_aa64(env, el)) {
10576 return true;
10578 if (arm_feature(env, ARM_FEATURE_LPAE)
10579 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10580 return true;
10582 return false;
10585 /* Returns true if the stage 1 translation regime is using LPAE format page
10586 * tables. Used when raising alignment exceptions, whose FSR changes depending
10587 * on whether the long or short descriptor format is in use. */
10588 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10590 mmu_idx = stage_1_mmu_idx(mmu_idx);
10592 return regime_using_lpae_format(env, mmu_idx);
10595 #ifndef CONFIG_USER_ONLY
10596 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10598 switch (mmu_idx) {
10599 case ARMMMUIdx_SE10_0:
10600 case ARMMMUIdx_E20_0:
10601 case ARMMMUIdx_SE20_0:
10602 case ARMMMUIdx_Stage1_E0:
10603 case ARMMMUIdx_Stage1_SE0:
10604 case ARMMMUIdx_MUser:
10605 case ARMMMUIdx_MSUser:
10606 case ARMMMUIdx_MUserNegPri:
10607 case ARMMMUIdx_MSUserNegPri:
10608 return true;
10609 default:
10610 return false;
10611 case ARMMMUIdx_E10_0:
10612 case ARMMMUIdx_E10_1:
10613 case ARMMMUIdx_E10_1_PAN:
10614 g_assert_not_reached();
10618 /* Translate section/page access permissions to page
10619 * R/W protection flags
10621 * @env: CPUARMState
10622 * @mmu_idx: MMU index indicating required translation regime
10623 * @ap: The 3-bit access permissions (AP[2:0])
10624 * @domain_prot: The 2-bit domain access permissions
10626 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10627 int ap, int domain_prot)
10629 bool is_user = regime_is_user(env, mmu_idx);
10631 if (domain_prot == 3) {
10632 return PAGE_READ | PAGE_WRITE;
10635 switch (ap) {
10636 case 0:
10637 if (arm_feature(env, ARM_FEATURE_V7)) {
10638 return 0;
10640 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10641 case SCTLR_S:
10642 return is_user ? 0 : PAGE_READ;
10643 case SCTLR_R:
10644 return PAGE_READ;
10645 default:
10646 return 0;
10648 case 1:
10649 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10650 case 2:
10651 if (is_user) {
10652 return PAGE_READ;
10653 } else {
10654 return PAGE_READ | PAGE_WRITE;
10656 case 3:
10657 return PAGE_READ | PAGE_WRITE;
10658 case 4: /* Reserved. */
10659 return 0;
10660 case 5:
10661 return is_user ? 0 : PAGE_READ;
10662 case 6:
10663 return PAGE_READ;
10664 case 7:
10665 if (!arm_feature(env, ARM_FEATURE_V6K)) {
10666 return 0;
10668 return PAGE_READ;
10669 default:
10670 g_assert_not_reached();
10674 /* Translate section/page access permissions to page
10675 * R/W protection flags.
10677 * @ap: The 2-bit simple AP (AP[2:1])
10678 * @is_user: TRUE if accessing from PL0
10680 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10682 switch (ap) {
10683 case 0:
10684 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10685 case 1:
10686 return PAGE_READ | PAGE_WRITE;
10687 case 2:
10688 return is_user ? 0 : PAGE_READ;
10689 case 3:
10690 return PAGE_READ;
10691 default:
10692 g_assert_not_reached();
10696 static inline int
10697 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10699 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10702 /* Translate S2 section/page access permissions to protection flags
10704 * @env: CPUARMState
10705 * @s2ap: The 2-bit stage2 access permissions (S2AP)
10706 * @xn: XN (execute-never) bits
10707 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10709 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10711 int prot = 0;
10713 if (s2ap & 1) {
10714 prot |= PAGE_READ;
10716 if (s2ap & 2) {
10717 prot |= PAGE_WRITE;
10720 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10721 switch (xn) {
10722 case 0:
10723 prot |= PAGE_EXEC;
10724 break;
10725 case 1:
10726 if (s1_is_el0) {
10727 prot |= PAGE_EXEC;
10729 break;
10730 case 2:
10731 break;
10732 case 3:
10733 if (!s1_is_el0) {
10734 prot |= PAGE_EXEC;
10736 break;
10737 default:
10738 g_assert_not_reached();
10740 } else {
10741 if (!extract32(xn, 1, 1)) {
10742 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10743 prot |= PAGE_EXEC;
10747 return prot;
10750 /* Translate section/page access permissions to protection flags
10752 * @env: CPUARMState
10753 * @mmu_idx: MMU index indicating required translation regime
10754 * @is_aa64: TRUE if AArch64
10755 * @ap: The 2-bit simple AP (AP[2:1])
10756 * @ns: NS (non-secure) bit
10757 * @xn: XN (execute-never) bit
10758 * @pxn: PXN (privileged execute-never) bit
10760 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10761 int ap, int ns, int xn, int pxn)
10763 bool is_user = regime_is_user(env, mmu_idx);
10764 int prot_rw, user_rw;
10765 bool have_wxn;
10766 int wxn = 0;
10768 assert(mmu_idx != ARMMMUIdx_Stage2);
10769 assert(mmu_idx != ARMMMUIdx_Stage2_S);
10771 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10772 if (is_user) {
10773 prot_rw = user_rw;
10774 } else {
10775 if (user_rw && regime_is_pan(env, mmu_idx)) {
10776 /* PAN forbids data accesses but doesn't affect insn fetch */
10777 prot_rw = 0;
10778 } else {
10779 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10783 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10784 return prot_rw;
10787 /* TODO have_wxn should be replaced with
10788 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10789 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10790 * compatible processors have EL2, which is required for [U]WXN.
10792 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10794 if (have_wxn) {
10795 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10798 if (is_aa64) {
10799 if (regime_has_2_ranges(mmu_idx) && !is_user) {
10800 xn = pxn || (user_rw & PAGE_WRITE);
10802 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10803 switch (regime_el(env, mmu_idx)) {
10804 case 1:
10805 case 3:
10806 if (is_user) {
10807 xn = xn || !(user_rw & PAGE_READ);
10808 } else {
10809 int uwxn = 0;
10810 if (have_wxn) {
10811 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10813 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10814 (uwxn && (user_rw & PAGE_WRITE));
10816 break;
10817 case 2:
10818 break;
10820 } else {
10821 xn = wxn = 0;
10824 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10825 return prot_rw;
10827 return prot_rw | PAGE_EXEC;
10830 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10831 uint32_t *table, uint32_t address)
10833 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10834 TCR *tcr = regime_tcr(env, mmu_idx);
10836 if (address & tcr->mask) {
10837 if (tcr->raw_tcr & TTBCR_PD1) {
10838 /* Translation table walk disabled for TTBR1 */
10839 return false;
10841 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10842 } else {
10843 if (tcr->raw_tcr & TTBCR_PD0) {
10844 /* Translation table walk disabled for TTBR0 */
10845 return false;
10847 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10849 *table |= (address >> 18) & 0x3ffc;
10850 return true;
10853 /* Translate a S1 pagetable walk through S2 if needed. */
10854 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10855 hwaddr addr, bool *is_secure,
10856 ARMMMUFaultInfo *fi)
10858 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10859 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10860 target_ulong s2size;
10861 hwaddr s2pa;
10862 int s2prot;
10863 int ret;
10864 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
10865 : ARMMMUIdx_Stage2;
10866 ARMCacheAttrs cacheattrs = {};
10867 MemTxAttrs txattrs = {};
10869 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
10870 &s2pa, &txattrs, &s2prot, &s2size, fi,
10871 &cacheattrs);
10872 if (ret) {
10873 assert(fi->type != ARMFault_None);
10874 fi->s2addr = addr;
10875 fi->stage2 = true;
10876 fi->s1ptw = true;
10877 fi->s1ns = !*is_secure;
10878 return ~0;
10880 if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
10881 (cacheattrs.attrs & 0xf0) == 0) {
10883 * PTW set and S1 walk touched S2 Device memory:
10884 * generate Permission fault.
10886 fi->type = ARMFault_Permission;
10887 fi->s2addr = addr;
10888 fi->stage2 = true;
10889 fi->s1ptw = true;
10890 fi->s1ns = !*is_secure;
10891 return ~0;
10894 if (arm_is_secure_below_el3(env)) {
10895 /* Check if page table walk is to secure or non-secure PA space. */
10896 if (*is_secure) {
10897 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
10898 } else {
10899 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
10901 } else {
10902 assert(!*is_secure);
10905 addr = s2pa;
10907 return addr;
10910 /* All loads done in the course of a page table walk go through here. */
10911 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10912 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10914 ARMCPU *cpu = ARM_CPU(cs);
10915 CPUARMState *env = &cpu->env;
10916 MemTxAttrs attrs = {};
10917 MemTxResult result = MEMTX_OK;
10918 AddressSpace *as;
10919 uint32_t data;
10921 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10922 attrs.secure = is_secure;
10923 as = arm_addressspace(cs, attrs);
10924 if (fi->s1ptw) {
10925 return 0;
10927 if (regime_translation_big_endian(env, mmu_idx)) {
10928 data = address_space_ldl_be(as, addr, attrs, &result);
10929 } else {
10930 data = address_space_ldl_le(as, addr, attrs, &result);
10932 if (result == MEMTX_OK) {
10933 return data;
10935 fi->type = ARMFault_SyncExternalOnWalk;
10936 fi->ea = arm_extabort_type(result);
10937 return 0;
10940 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10941 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10943 ARMCPU *cpu = ARM_CPU(cs);
10944 CPUARMState *env = &cpu->env;
10945 MemTxAttrs attrs = {};
10946 MemTxResult result = MEMTX_OK;
10947 AddressSpace *as;
10948 uint64_t data;
10950 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10951 attrs.secure = is_secure;
10952 as = arm_addressspace(cs, attrs);
10953 if (fi->s1ptw) {
10954 return 0;
10956 if (regime_translation_big_endian(env, mmu_idx)) {
10957 data = address_space_ldq_be(as, addr, attrs, &result);
10958 } else {
10959 data = address_space_ldq_le(as, addr, attrs, &result);
10961 if (result == MEMTX_OK) {
10962 return data;
10964 fi->type = ARMFault_SyncExternalOnWalk;
10965 fi->ea = arm_extabort_type(result);
10966 return 0;
10969 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10970 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10971 hwaddr *phys_ptr, int *prot,
10972 target_ulong *page_size,
10973 ARMMMUFaultInfo *fi)
10975 CPUState *cs = env_cpu(env);
10976 int level = 1;
10977 uint32_t table;
10978 uint32_t desc;
10979 int type;
10980 int ap;
10981 int domain = 0;
10982 int domain_prot;
10983 hwaddr phys_addr;
10984 uint32_t dacr;
10986 /* Pagetable walk. */
10987 /* Lookup l1 descriptor. */
10988 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10989 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10990 fi->type = ARMFault_Translation;
10991 goto do_fault;
10993 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10994 mmu_idx, fi);
10995 if (fi->type != ARMFault_None) {
10996 goto do_fault;
10998 type = (desc & 3);
10999 domain = (desc >> 5) & 0x0f;
11000 if (regime_el(env, mmu_idx) == 1) {
11001 dacr = env->cp15.dacr_ns;
11002 } else {
11003 dacr = env->cp15.dacr_s;
11005 domain_prot = (dacr >> (domain * 2)) & 3;
11006 if (type == 0) {
11007 /* Section translation fault. */
11008 fi->type = ARMFault_Translation;
11009 goto do_fault;
11011 if (type != 2) {
11012 level = 2;
11014 if (domain_prot == 0 || domain_prot == 2) {
11015 fi->type = ARMFault_Domain;
11016 goto do_fault;
11018 if (type == 2) {
11019 /* 1Mb section. */
11020 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11021 ap = (desc >> 10) & 3;
11022 *page_size = 1024 * 1024;
11023 } else {
11024 /* Lookup l2 entry. */
11025 if (type == 1) {
11026 /* Coarse pagetable. */
11027 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11028 } else {
11029 /* Fine pagetable. */
11030 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
11032 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11033 mmu_idx, fi);
11034 if (fi->type != ARMFault_None) {
11035 goto do_fault;
11037 switch (desc & 3) {
11038 case 0: /* Page translation fault. */
11039 fi->type = ARMFault_Translation;
11040 goto do_fault;
11041 case 1: /* 64k page. */
11042 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11043 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
11044 *page_size = 0x10000;
11045 break;
11046 case 2: /* 4k page. */
11047 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11048 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
11049 *page_size = 0x1000;
11050 break;
11051 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
11052 if (type == 1) {
11053 /* ARMv6/XScale extended small page format */
11054 if (arm_feature(env, ARM_FEATURE_XSCALE)
11055 || arm_feature(env, ARM_FEATURE_V6)) {
11056 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11057 *page_size = 0x1000;
11058 } else {
11059 /* UNPREDICTABLE in ARMv5; we choose to take a
11060 * page translation fault.
11062 fi->type = ARMFault_Translation;
11063 goto do_fault;
11065 } else {
11066 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
11067 *page_size = 0x400;
11069 ap = (desc >> 4) & 3;
11070 break;
11071 default:
11072 /* Never happens, but compiler isn't smart enough to tell. */
11073 abort();
11076 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11077 *prot |= *prot ? PAGE_EXEC : 0;
11078 if (!(*prot & (1 << access_type))) {
11079 /* Access permission fault. */
11080 fi->type = ARMFault_Permission;
11081 goto do_fault;
11083 *phys_ptr = phys_addr;
11084 return false;
11085 do_fault:
11086 fi->domain = domain;
11087 fi->level = level;
11088 return true;
11091 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
11092 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11093 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11094 target_ulong *page_size, ARMMMUFaultInfo *fi)
11096 CPUState *cs = env_cpu(env);
11097 ARMCPU *cpu = env_archcpu(env);
11098 int level = 1;
11099 uint32_t table;
11100 uint32_t desc;
11101 uint32_t xn;
11102 uint32_t pxn = 0;
11103 int type;
11104 int ap;
11105 int domain = 0;
11106 int domain_prot;
11107 hwaddr phys_addr;
11108 uint32_t dacr;
11109 bool ns;
11111 /* Pagetable walk. */
11112 /* Lookup l1 descriptor. */
11113 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
11114 /* Section translation fault if page walk is disabled by PD0 or PD1 */
11115 fi->type = ARMFault_Translation;
11116 goto do_fault;
11118 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11119 mmu_idx, fi);
11120 if (fi->type != ARMFault_None) {
11121 goto do_fault;
11123 type = (desc & 3);
11124 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
11125 /* Section translation fault, or attempt to use the encoding
11126 * which is Reserved on implementations without PXN.
11128 fi->type = ARMFault_Translation;
11129 goto do_fault;
11131 if ((type == 1) || !(desc & (1 << 18))) {
11132 /* Page or Section. */
11133 domain = (desc >> 5) & 0x0f;
11135 if (regime_el(env, mmu_idx) == 1) {
11136 dacr = env->cp15.dacr_ns;
11137 } else {
11138 dacr = env->cp15.dacr_s;
11140 if (type == 1) {
11141 level = 2;
11143 domain_prot = (dacr >> (domain * 2)) & 3;
11144 if (domain_prot == 0 || domain_prot == 2) {
11145 /* Section or Page domain fault */
11146 fi->type = ARMFault_Domain;
11147 goto do_fault;
11149 if (type != 1) {
11150 if (desc & (1 << 18)) {
11151 /* Supersection. */
11152 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
11153 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
11154 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
11155 *page_size = 0x1000000;
11156 } else {
11157 /* Section. */
11158 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11159 *page_size = 0x100000;
11161 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
11162 xn = desc & (1 << 4);
11163 pxn = desc & 1;
11164 ns = extract32(desc, 19, 1);
11165 } else {
11166 if (cpu_isar_feature(aa32_pxn, cpu)) {
11167 pxn = (desc >> 2) & 1;
11169 ns = extract32(desc, 3, 1);
11170 /* Lookup l2 entry. */
11171 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11172 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11173 mmu_idx, fi);
11174 if (fi->type != ARMFault_None) {
11175 goto do_fault;
11177 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
11178 switch (desc & 3) {
11179 case 0: /* Page translation fault. */
11180 fi->type = ARMFault_Translation;
11181 goto do_fault;
11182 case 1: /* 64k page. */
11183 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11184 xn = desc & (1 << 15);
11185 *page_size = 0x10000;
11186 break;
11187 case 2: case 3: /* 4k page. */
11188 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11189 xn = desc & 1;
11190 *page_size = 0x1000;
11191 break;
11192 default:
11193 /* Never happens, but compiler isn't smart enough to tell. */
11194 abort();
11197 if (domain_prot == 3) {
11198 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11199 } else {
11200 if (pxn && !regime_is_user(env, mmu_idx)) {
11201 xn = 1;
11203 if (xn && access_type == MMU_INST_FETCH) {
11204 fi->type = ARMFault_Permission;
11205 goto do_fault;
11208 if (arm_feature(env, ARM_FEATURE_V6K) &&
11209 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
11210 /* The simplified model uses AP[0] as an access control bit. */
11211 if ((ap & 1) == 0) {
11212 /* Access flag fault. */
11213 fi->type = ARMFault_AccessFlag;
11214 goto do_fault;
11216 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
11217 } else {
11218 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11220 if (*prot && !xn) {
11221 *prot |= PAGE_EXEC;
11223 if (!(*prot & (1 << access_type))) {
11224 /* Access permission fault. */
11225 fi->type = ARMFault_Permission;
11226 goto do_fault;
11229 if (ns) {
11230 /* The NS bit will (as required by the architecture) have no effect if
11231 * the CPU doesn't support TZ or this is a non-secure translation
11232 * regime, because the attribute will already be non-secure.
11234 attrs->secure = false;
11236 *phys_ptr = phys_addr;
11237 return false;
11238 do_fault:
11239 fi->domain = domain;
11240 fi->level = level;
11241 return true;
11245 * check_s2_mmu_setup
11246 * @cpu: ARMCPU
11247 * @is_aa64: True if the translation regime is in AArch64 state
11248 * @startlevel: Suggested starting level
11249 * @inputsize: Bitsize of IPAs
11250 * @stride: Page-table stride (See the ARM ARM)
11252 * Returns true if the suggested S2 translation parameters are OK and
11253 * false otherwise.
11255 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
11256 int inputsize, int stride)
11258 const int grainsize = stride + 3;
11259 int startsizecheck;
11261 /* Negative levels are never allowed. */
11262 if (level < 0) {
11263 return false;
11266 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
11267 if (startsizecheck < 1 || startsizecheck > stride + 4) {
11268 return false;
11271 if (is_aa64) {
11272 CPUARMState *env = &cpu->env;
11273 unsigned int pamax = arm_pamax(cpu);
11275 switch (stride) {
11276 case 13: /* 64KB Pages. */
11277 if (level == 0 || (level == 1 && pamax <= 42)) {
11278 return false;
11280 break;
11281 case 11: /* 16KB Pages. */
11282 if (level == 0 || (level == 1 && pamax <= 40)) {
11283 return false;
11285 break;
11286 case 9: /* 4KB Pages. */
11287 if (level == 0 && pamax <= 42) {
11288 return false;
11290 break;
11291 default:
11292 g_assert_not_reached();
11295 /* Inputsize checks. */
11296 if (inputsize > pamax &&
11297 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
11298 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
11299 return false;
11301 } else {
11302 /* AArch32 only supports 4KB pages. Assert on that. */
11303 assert(stride == 9);
11305 if (level == 0) {
11306 return false;
11309 return true;
11312 /* Translate from the 4-bit stage 2 representation of
11313 * memory attributes (without cache-allocation hints) to
11314 * the 8-bit representation of the stage 1 MAIR registers
11315 * (which includes allocation hints).
11317 * ref: shared/translation/attrs/S2AttrDecode()
11318 * .../S2ConvertAttrsHints()
11320 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11322 uint8_t hiattr = extract32(s2attrs, 2, 2);
11323 uint8_t loattr = extract32(s2attrs, 0, 2);
11324 uint8_t hihint = 0, lohint = 0;
11326 if (hiattr != 0) { /* normal memory */
11327 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
11328 hiattr = loattr = 1; /* non-cacheable */
11329 } else {
11330 if (hiattr != 1) { /* Write-through or write-back */
11331 hihint = 3; /* RW allocate */
11333 if (loattr != 1) { /* Write-through or write-back */
11334 lohint = 3; /* RW allocate */
11339 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11341 #endif /* !CONFIG_USER_ONLY */
11343 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11345 if (regime_has_2_ranges(mmu_idx)) {
11346 return extract64(tcr, 37, 2);
11347 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11348 return 0; /* VTCR_EL2 */
11349 } else {
11350 /* Replicate the single TBI bit so we always have 2 bits. */
11351 return extract32(tcr, 20, 1) * 3;
11355 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11357 if (regime_has_2_ranges(mmu_idx)) {
11358 return extract64(tcr, 51, 2);
11359 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11360 return 0; /* VTCR_EL2 */
11361 } else {
11362 /* Replicate the single TBID bit so we always have 2 bits. */
11363 return extract32(tcr, 29, 1) * 3;
11367 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11369 if (regime_has_2_ranges(mmu_idx)) {
11370 return extract64(tcr, 57, 2);
11371 } else {
11372 /* Replicate the single TCMA bit so we always have 2 bits. */
11373 return extract32(tcr, 30, 1) * 3;
11377 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11378 ARMMMUIdx mmu_idx, bool data)
11380 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11381 bool epd, hpd, using16k, using64k;
11382 int select, tsz, tbi, max_tsz;
11384 if (!regime_has_2_ranges(mmu_idx)) {
11385 select = 0;
11386 tsz = extract32(tcr, 0, 6);
11387 using64k = extract32(tcr, 14, 1);
11388 using16k = extract32(tcr, 15, 1);
11389 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11390 /* VTCR_EL2 */
11391 hpd = false;
11392 } else {
11393 hpd = extract32(tcr, 24, 1);
11395 epd = false;
11396 } else {
11398 * Bit 55 is always between the two regions, and is canonical for
11399 * determining if address tagging is enabled.
11401 select = extract64(va, 55, 1);
11402 if (!select) {
11403 tsz = extract32(tcr, 0, 6);
11404 epd = extract32(tcr, 7, 1);
11405 using64k = extract32(tcr, 14, 1);
11406 using16k = extract32(tcr, 15, 1);
11407 hpd = extract64(tcr, 41, 1);
11408 } else {
11409 int tg = extract32(tcr, 30, 2);
11410 using16k = tg == 1;
11411 using64k = tg == 3;
11412 tsz = extract32(tcr, 16, 6);
11413 epd = extract32(tcr, 23, 1);
11414 hpd = extract64(tcr, 42, 1);
11418 if (cpu_isar_feature(aa64_st, env_archcpu(env))) {
11419 max_tsz = 48 - using64k;
11420 } else {
11421 max_tsz = 39;
11424 tsz = MIN(tsz, max_tsz);
11425 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
11427 /* Present TBI as a composite with TBID. */
11428 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11429 if (!data) {
11430 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11432 tbi = (tbi >> select) & 1;
11434 return (ARMVAParameters) {
11435 .tsz = tsz,
11436 .select = select,
11437 .tbi = tbi,
11438 .epd = epd,
11439 .hpd = hpd,
11440 .using16k = using16k,
11441 .using64k = using64k,
11445 #ifndef CONFIG_USER_ONLY
11446 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11447 ARMMMUIdx mmu_idx)
11449 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11450 uint32_t el = regime_el(env, mmu_idx);
11451 int select, tsz;
11452 bool epd, hpd;
11454 assert(mmu_idx != ARMMMUIdx_Stage2_S);
11456 if (mmu_idx == ARMMMUIdx_Stage2) {
11457 /* VTCR */
11458 bool sext = extract32(tcr, 4, 1);
11459 bool sign = extract32(tcr, 3, 1);
11462 * If the sign-extend bit is not the same as t0sz[3], the result
11463 * is unpredictable. Flag this as a guest error.
11465 if (sign != sext) {
11466 qemu_log_mask(LOG_GUEST_ERROR,
11467 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11469 tsz = sextract32(tcr, 0, 4) + 8;
11470 select = 0;
11471 hpd = false;
11472 epd = false;
11473 } else if (el == 2) {
11474 /* HTCR */
11475 tsz = extract32(tcr, 0, 3);
11476 select = 0;
11477 hpd = extract64(tcr, 24, 1);
11478 epd = false;
11479 } else {
11480 int t0sz = extract32(tcr, 0, 3);
11481 int t1sz = extract32(tcr, 16, 3);
11483 if (t1sz == 0) {
11484 select = va > (0xffffffffu >> t0sz);
11485 } else {
11486 /* Note that we will detect errors later. */
11487 select = va >= ~(0xffffffffu >> t1sz);
11489 if (!select) {
11490 tsz = t0sz;
11491 epd = extract32(tcr, 7, 1);
11492 hpd = extract64(tcr, 41, 1);
11493 } else {
11494 tsz = t1sz;
11495 epd = extract32(tcr, 23, 1);
11496 hpd = extract64(tcr, 42, 1);
11498 /* For aarch32, hpd0 is not enabled without t2e as well. */
11499 hpd &= extract32(tcr, 6, 1);
11502 return (ARMVAParameters) {
11503 .tsz = tsz,
11504 .select = select,
11505 .epd = epd,
11506 .hpd = hpd,
11511 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11513 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11514 * prot and page_size may not be filled in, and the populated fsr value provides
11515 * information on why the translation aborted, in the format of a long-format
11516 * DFSR/IFSR fault register, with the following caveats:
11517 * * the WnR bit is never set (the caller must do this).
11519 * @env: CPUARMState
11520 * @address: virtual address to get physical address for
11521 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11522 * @mmu_idx: MMU index indicating required translation regime
11523 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11524 * walk), must be true if this is stage 2 of a stage 1+2 walk for an
11525 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11526 * @phys_ptr: set to the physical address corresponding to the virtual address
11527 * @attrs: set to the memory transaction attributes to use
11528 * @prot: set to the permissions for the page containing phys_ptr
11529 * @page_size_ptr: set to the size of the page containing phys_ptr
11530 * @fi: set to fault info if the translation fails
11531 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11533 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
11534 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11535 bool s1_is_el0,
11536 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11537 target_ulong *page_size_ptr,
11538 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11540 ARMCPU *cpu = env_archcpu(env);
11541 CPUState *cs = CPU(cpu);
11542 /* Read an LPAE long-descriptor translation table. */
11543 ARMFaultType fault_type = ARMFault_Translation;
11544 uint32_t level;
11545 ARMVAParameters param;
11546 uint64_t ttbr;
11547 hwaddr descaddr, indexmask, indexmask_grainsize;
11548 uint32_t tableattrs;
11549 target_ulong page_size;
11550 uint32_t attrs;
11551 int32_t stride;
11552 int addrsize, inputsize;
11553 TCR *tcr = regime_tcr(env, mmu_idx);
11554 int ap, ns, xn, pxn;
11555 uint32_t el = regime_el(env, mmu_idx);
11556 uint64_t descaddrmask;
11557 bool aarch64 = arm_el_is_aa64(env, el);
11558 bool guarded = false;
11560 /* TODO: This code does not support shareability levels. */
11561 if (aarch64) {
11562 param = aa64_va_parameters(env, address, mmu_idx,
11563 access_type != MMU_INST_FETCH);
11564 level = 0;
11565 addrsize = 64 - 8 * param.tbi;
11566 inputsize = 64 - param.tsz;
11567 } else {
11568 param = aa32_va_parameters(env, address, mmu_idx);
11569 level = 1;
11570 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11571 inputsize = addrsize - param.tsz;
11575 * We determined the region when collecting the parameters, but we
11576 * have not yet validated that the address is valid for the region.
11577 * Extract the top bits and verify that they all match select.
11579 * For aa32, if inputsize == addrsize, then we have selected the
11580 * region by exclusion in aa32_va_parameters and there is no more
11581 * validation to do here.
11583 if (inputsize < addrsize) {
11584 target_ulong top_bits = sextract64(address, inputsize,
11585 addrsize - inputsize);
11586 if (-top_bits != param.select) {
11587 /* The gap between the two regions is a Translation fault */
11588 fault_type = ARMFault_Translation;
11589 goto do_fault;
11593 if (param.using64k) {
11594 stride = 13;
11595 } else if (param.using16k) {
11596 stride = 11;
11597 } else {
11598 stride = 9;
11601 /* Note that QEMU ignores shareability and cacheability attributes,
11602 * so we don't need to do anything with the SH, ORGN, IRGN fields
11603 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
11604 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11605 * implement any ASID-like capability so we can ignore it (instead
11606 * we will always flush the TLB any time the ASID is changed).
11608 ttbr = regime_ttbr(env, mmu_idx, param.select);
11610 /* Here we should have set up all the parameters for the translation:
11611 * inputsize, ttbr, epd, stride, tbi
11614 if (param.epd) {
11615 /* Translation table walk disabled => Translation fault on TLB miss
11616 * Note: This is always 0 on 64-bit EL2 and EL3.
11618 goto do_fault;
11621 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
11622 /* The starting level depends on the virtual address size (which can
11623 * be up to 48 bits) and the translation granule size. It indicates
11624 * the number of strides (stride bits at a time) needed to
11625 * consume the bits of the input address. In the pseudocode this is:
11626 * level = 4 - RoundUp((inputsize - grainsize) / stride)
11627 * where their 'inputsize' is our 'inputsize', 'grainsize' is
11628 * our 'stride + 3' and 'stride' is our 'stride'.
11629 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11630 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11631 * = 4 - (inputsize - 4) / stride;
11633 level = 4 - (inputsize - 4) / stride;
11634 } else {
11635 /* For stage 2 translations the starting level is specified by the
11636 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11638 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11639 uint32_t startlevel;
11640 bool ok;
11642 if (!aarch64 || stride == 9) {
11643 /* AArch32 or 4KB pages */
11644 startlevel = 2 - sl0;
11646 if (cpu_isar_feature(aa64_st, cpu)) {
11647 startlevel &= 3;
11649 } else {
11650 /* 16KB or 64KB pages */
11651 startlevel = 3 - sl0;
11654 /* Check that the starting level is valid. */
11655 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11656 inputsize, stride);
11657 if (!ok) {
11658 fault_type = ARMFault_Translation;
11659 goto do_fault;
11661 level = startlevel;
11664 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11665 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11667 /* Now we can extract the actual base address from the TTBR */
11668 descaddr = extract64(ttbr, 0, 48);
11670 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11671 * and also to mask out CnP (bit 0) which could validly be non-zero.
11673 descaddr &= ~indexmask;
11675 /* The address field in the descriptor goes up to bit 39 for ARMv7
11676 * but up to bit 47 for ARMv8, but we use the descaddrmask
11677 * up to bit 39 for AArch32, because we don't need other bits in that case
11678 * to construct next descriptor address (anyway they should be all zeroes).
11680 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11681 ~indexmask_grainsize;
11683 /* Secure accesses start with the page table in secure memory and
11684 * can be downgraded to non-secure at any step. Non-secure accesses
11685 * remain non-secure. We implement this by just ORing in the NSTable/NS
11686 * bits at each step.
11688 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11689 for (;;) {
11690 uint64_t descriptor;
11691 bool nstable;
11693 descaddr |= (address >> (stride * (4 - level))) & indexmask;
11694 descaddr &= ~7ULL;
11695 nstable = extract32(tableattrs, 4, 1);
11696 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11697 if (fi->type != ARMFault_None) {
11698 goto do_fault;
11701 if (!(descriptor & 1) ||
11702 (!(descriptor & 2) && (level == 3))) {
11703 /* Invalid, or the Reserved level 3 encoding */
11704 goto do_fault;
11706 descaddr = descriptor & descaddrmask;
11708 if ((descriptor & 2) && (level < 3)) {
11709 /* Table entry. The top five bits are attributes which may
11710 * propagate down through lower levels of the table (and
11711 * which are all arranged so that 0 means "no effect", so
11712 * we can gather them up by ORing in the bits at each level).
11714 tableattrs |= extract64(descriptor, 59, 5);
11715 level++;
11716 indexmask = indexmask_grainsize;
11717 continue;
11719 /* Block entry at level 1 or 2, or page entry at level 3.
11720 * These are basically the same thing, although the number
11721 * of bits we pull in from the vaddr varies.
11723 page_size = (1ULL << ((stride * (4 - level)) + 3));
11724 descaddr |= (address & (page_size - 1));
11725 /* Extract attributes from the descriptor */
11726 attrs = extract64(descriptor, 2, 10)
11727 | (extract64(descriptor, 52, 12) << 10);
11729 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11730 /* Stage 2 table descriptors do not include any attribute fields */
11731 break;
11733 /* Merge in attributes from table descriptors */
11734 attrs |= nstable << 3; /* NS */
11735 guarded = extract64(descriptor, 50, 1); /* GP */
11736 if (param.hpd) {
11737 /* HPD disables all the table attributes except NSTable. */
11738 break;
11740 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
11741 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11742 * means "force PL1 access only", which means forcing AP[1] to 0.
11744 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
11745 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
11746 break;
11748 /* Here descaddr is the final physical address, and attributes
11749 * are all in attrs.
11751 fault_type = ARMFault_AccessFlag;
11752 if ((attrs & (1 << 8)) == 0) {
11753 /* Access flag */
11754 goto do_fault;
11757 ap = extract32(attrs, 4, 2);
11759 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11760 ns = mmu_idx == ARMMMUIdx_Stage2;
11761 xn = extract32(attrs, 11, 2);
11762 *prot = get_S2prot(env, ap, xn, s1_is_el0);
11763 } else {
11764 ns = extract32(attrs, 3, 1);
11765 xn = extract32(attrs, 12, 1);
11766 pxn = extract32(attrs, 11, 1);
11767 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11770 fault_type = ARMFault_Permission;
11771 if (!(*prot & (1 << access_type))) {
11772 goto do_fault;
11775 if (ns) {
11776 /* The NS bit will (as required by the architecture) have no effect if
11777 * the CPU doesn't support TZ or this is a non-secure translation
11778 * regime, because the attribute will already be non-secure.
11780 txattrs->secure = false;
11782 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
11783 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11784 arm_tlb_bti_gp(txattrs) = true;
11787 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11788 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11789 } else {
11790 /* Index into MAIR registers for cache attributes */
11791 uint8_t attrindx = extract32(attrs, 0, 3);
11792 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11793 assert(attrindx <= 7);
11794 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11796 cacheattrs->shareability = extract32(attrs, 6, 2);
11798 *phys_ptr = descaddr;
11799 *page_size_ptr = page_size;
11800 return false;
11802 do_fault:
11803 fi->type = fault_type;
11804 fi->level = level;
11805 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
11806 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
11807 mmu_idx == ARMMMUIdx_Stage2_S);
11808 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
11809 return true;
11812 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11813 ARMMMUIdx mmu_idx,
11814 int32_t address, int *prot)
11816 if (!arm_feature(env, ARM_FEATURE_M)) {
11817 *prot = PAGE_READ | PAGE_WRITE;
11818 switch (address) {
11819 case 0xF0000000 ... 0xFFFFFFFF:
11820 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11821 /* hivecs execing is ok */
11822 *prot |= PAGE_EXEC;
11824 break;
11825 case 0x00000000 ... 0x7FFFFFFF:
11826 *prot |= PAGE_EXEC;
11827 break;
11829 } else {
11830 /* Default system address map for M profile cores.
11831 * The architecture specifies which regions are execute-never;
11832 * at the MPU level no other checks are defined.
11834 switch (address) {
11835 case 0x00000000 ... 0x1fffffff: /* ROM */
11836 case 0x20000000 ... 0x3fffffff: /* SRAM */
11837 case 0x60000000 ... 0x7fffffff: /* RAM */
11838 case 0x80000000 ... 0x9fffffff: /* RAM */
11839 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11840 break;
11841 case 0x40000000 ... 0x5fffffff: /* Peripheral */
11842 case 0xa0000000 ... 0xbfffffff: /* Device */
11843 case 0xc0000000 ... 0xdfffffff: /* Device */
11844 case 0xe0000000 ... 0xffffffff: /* System */
11845 *prot = PAGE_READ | PAGE_WRITE;
11846 break;
11847 default:
11848 g_assert_not_reached();
11853 static bool pmsav7_use_background_region(ARMCPU *cpu,
11854 ARMMMUIdx mmu_idx, bool is_user)
11856 /* Return true if we should use the default memory map as a
11857 * "background" region if there are no hits against any MPU regions.
11859 CPUARMState *env = &cpu->env;
11861 if (is_user) {
11862 return false;
11865 if (arm_feature(env, ARM_FEATURE_M)) {
11866 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11867 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11868 } else {
11869 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11873 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11875 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11876 return arm_feature(env, ARM_FEATURE_M) &&
11877 extract32(address, 20, 12) == 0xe00;
11880 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11882 /* True if address is in the M profile system region
11883 * 0xe0000000 - 0xffffffff
11885 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11888 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11889 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11890 hwaddr *phys_ptr, int *prot,
11891 target_ulong *page_size,
11892 ARMMMUFaultInfo *fi)
11894 ARMCPU *cpu = env_archcpu(env);
11895 int n;
11896 bool is_user = regime_is_user(env, mmu_idx);
11898 *phys_ptr = address;
11899 *page_size = TARGET_PAGE_SIZE;
11900 *prot = 0;
11902 if (regime_translation_disabled(env, mmu_idx) ||
11903 m_is_ppb_region(env, address)) {
11904 /* MPU disabled or M profile PPB access: use default memory map.
11905 * The other case which uses the default memory map in the
11906 * v7M ARM ARM pseudocode is exception vector reads from the vector
11907 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11908 * which always does a direct read using address_space_ldl(), rather
11909 * than going via this function, so we don't need to check that here.
11911 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11912 } else { /* MPU enabled */
11913 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11914 /* region search */
11915 uint32_t base = env->pmsav7.drbar[n];
11916 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11917 uint32_t rmask;
11918 bool srdis = false;
11920 if (!(env->pmsav7.drsr[n] & 0x1)) {
11921 continue;
11924 if (!rsize) {
11925 qemu_log_mask(LOG_GUEST_ERROR,
11926 "DRSR[%d]: Rsize field cannot be 0\n", n);
11927 continue;
11929 rsize++;
11930 rmask = (1ull << rsize) - 1;
11932 if (base & rmask) {
11933 qemu_log_mask(LOG_GUEST_ERROR,
11934 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11935 "to DRSR region size, mask = 0x%" PRIx32 "\n",
11936 n, base, rmask);
11937 continue;
11940 if (address < base || address > base + rmask) {
11942 * Address not in this region. We must check whether the
11943 * region covers addresses in the same page as our address.
11944 * In that case we must not report a size that covers the
11945 * whole page for a subsequent hit against a different MPU
11946 * region or the background region, because it would result in
11947 * incorrect TLB hits for subsequent accesses to addresses that
11948 * are in this MPU region.
11950 if (ranges_overlap(base, rmask,
11951 address & TARGET_PAGE_MASK,
11952 TARGET_PAGE_SIZE)) {
11953 *page_size = 1;
11955 continue;
11958 /* Region matched */
11960 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11961 int i, snd;
11962 uint32_t srdis_mask;
11964 rsize -= 3; /* sub region size (power of 2) */
11965 snd = ((address - base) >> rsize) & 0x7;
11966 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11968 srdis_mask = srdis ? 0x3 : 0x0;
11969 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11970 /* This will check in groups of 2, 4 and then 8, whether
11971 * the subregion bits are consistent. rsize is incremented
11972 * back up to give the region size, considering consistent
11973 * adjacent subregions as one region. Stop testing if rsize
11974 * is already big enough for an entire QEMU page.
11976 int snd_rounded = snd & ~(i - 1);
11977 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11978 snd_rounded + 8, i);
11979 if (srdis_mask ^ srdis_multi) {
11980 break;
11982 srdis_mask = (srdis_mask << i) | srdis_mask;
11983 rsize++;
11986 if (srdis) {
11987 continue;
11989 if (rsize < TARGET_PAGE_BITS) {
11990 *page_size = 1 << rsize;
11992 break;
11995 if (n == -1) { /* no hits */
11996 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11997 /* background fault */
11998 fi->type = ARMFault_Background;
11999 return true;
12001 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12002 } else { /* a MPU hit! */
12003 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
12004 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
12006 if (m_is_system_region(env, address)) {
12007 /* System space is always execute never */
12008 xn = 1;
12011 if (is_user) { /* User mode AP bit decoding */
12012 switch (ap) {
12013 case 0:
12014 case 1:
12015 case 5:
12016 break; /* no access */
12017 case 3:
12018 *prot |= PAGE_WRITE;
12019 /* fall through */
12020 case 2:
12021 case 6:
12022 *prot |= PAGE_READ | PAGE_EXEC;
12023 break;
12024 case 7:
12025 /* for v7M, same as 6; for R profile a reserved value */
12026 if (arm_feature(env, ARM_FEATURE_M)) {
12027 *prot |= PAGE_READ | PAGE_EXEC;
12028 break;
12030 /* fall through */
12031 default:
12032 qemu_log_mask(LOG_GUEST_ERROR,
12033 "DRACR[%d]: Bad value for AP bits: 0x%"
12034 PRIx32 "\n", n, ap);
12036 } else { /* Priv. mode AP bits decoding */
12037 switch (ap) {
12038 case 0:
12039 break; /* no access */
12040 case 1:
12041 case 2:
12042 case 3:
12043 *prot |= PAGE_WRITE;
12044 /* fall through */
12045 case 5:
12046 case 6:
12047 *prot |= PAGE_READ | PAGE_EXEC;
12048 break;
12049 case 7:
12050 /* for v7M, same as 6; for R profile a reserved value */
12051 if (arm_feature(env, ARM_FEATURE_M)) {
12052 *prot |= PAGE_READ | PAGE_EXEC;
12053 break;
12055 /* fall through */
12056 default:
12057 qemu_log_mask(LOG_GUEST_ERROR,
12058 "DRACR[%d]: Bad value for AP bits: 0x%"
12059 PRIx32 "\n", n, ap);
12063 /* execute never */
12064 if (xn) {
12065 *prot &= ~PAGE_EXEC;
12070 fi->type = ARMFault_Permission;
12071 fi->level = 1;
12072 return !(*prot & (1 << access_type));
12075 static bool v8m_is_sau_exempt(CPUARMState *env,
12076 uint32_t address, MMUAccessType access_type)
12078 /* The architecture specifies that certain address ranges are
12079 * exempt from v8M SAU/IDAU checks.
12081 return
12082 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
12083 (address >= 0xe0000000 && address <= 0xe0002fff) ||
12084 (address >= 0xe000e000 && address <= 0xe000efff) ||
12085 (address >= 0xe002e000 && address <= 0xe002efff) ||
12086 (address >= 0xe0040000 && address <= 0xe0041fff) ||
12087 (address >= 0xe00ff000 && address <= 0xe00fffff);
12090 void v8m_security_lookup(CPUARMState *env, uint32_t address,
12091 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12092 V8M_SAttributes *sattrs)
12094 /* Look up the security attributes for this address. Compare the
12095 * pseudocode SecurityCheck() function.
12096 * We assume the caller has zero-initialized *sattrs.
12098 ARMCPU *cpu = env_archcpu(env);
12099 int r;
12100 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
12101 int idau_region = IREGION_NOTVALID;
12102 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12103 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12105 if (cpu->idau) {
12106 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
12107 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
12109 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
12110 &idau_nsc);
12113 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
12114 /* 0xf0000000..0xffffffff is always S for insn fetches */
12115 return;
12118 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
12119 sattrs->ns = !regime_is_secure(env, mmu_idx);
12120 return;
12123 if (idau_region != IREGION_NOTVALID) {
12124 sattrs->irvalid = true;
12125 sattrs->iregion = idau_region;
12128 switch (env->sau.ctrl & 3) {
12129 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
12130 break;
12131 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
12132 sattrs->ns = true;
12133 break;
12134 default: /* SAU.ENABLE == 1 */
12135 for (r = 0; r < cpu->sau_sregion; r++) {
12136 if (env->sau.rlar[r] & 1) {
12137 uint32_t base = env->sau.rbar[r] & ~0x1f;
12138 uint32_t limit = env->sau.rlar[r] | 0x1f;
12140 if (base <= address && limit >= address) {
12141 if (base > addr_page_base || limit < addr_page_limit) {
12142 sattrs->subpage = true;
12144 if (sattrs->srvalid) {
12145 /* If we hit in more than one region then we must report
12146 * as Secure, not NS-Callable, with no valid region
12147 * number info.
12149 sattrs->ns = false;
12150 sattrs->nsc = false;
12151 sattrs->sregion = 0;
12152 sattrs->srvalid = false;
12153 break;
12154 } else {
12155 if (env->sau.rlar[r] & 2) {
12156 sattrs->nsc = true;
12157 } else {
12158 sattrs->ns = true;
12160 sattrs->srvalid = true;
12161 sattrs->sregion = r;
12163 } else {
12165 * Address not in this region. We must check whether the
12166 * region covers addresses in the same page as our address.
12167 * In that case we must not report a size that covers the
12168 * whole page for a subsequent hit against a different MPU
12169 * region or the background region, because it would result
12170 * in incorrect TLB hits for subsequent accesses to
12171 * addresses that are in this MPU region.
12173 if (limit >= base &&
12174 ranges_overlap(base, limit - base + 1,
12175 addr_page_base,
12176 TARGET_PAGE_SIZE)) {
12177 sattrs->subpage = true;
12182 break;
12186 * The IDAU will override the SAU lookup results if it specifies
12187 * higher security than the SAU does.
12189 if (!idau_ns) {
12190 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
12191 sattrs->ns = false;
12192 sattrs->nsc = idau_nsc;
12197 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
12198 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12199 hwaddr *phys_ptr, MemTxAttrs *txattrs,
12200 int *prot, bool *is_subpage,
12201 ARMMMUFaultInfo *fi, uint32_t *mregion)
12203 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
12204 * that a full phys-to-virt translation does).
12205 * mregion is (if not NULL) set to the region number which matched,
12206 * or -1 if no region number is returned (MPU off, address did not
12207 * hit a region, address hit in multiple regions).
12208 * We set is_subpage to true if the region hit doesn't cover the
12209 * entire TARGET_PAGE the address is within.
12211 ARMCPU *cpu = env_archcpu(env);
12212 bool is_user = regime_is_user(env, mmu_idx);
12213 uint32_t secure = regime_is_secure(env, mmu_idx);
12214 int n;
12215 int matchregion = -1;
12216 bool hit = false;
12217 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12218 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12220 *is_subpage = false;
12221 *phys_ptr = address;
12222 *prot = 0;
12223 if (mregion) {
12224 *mregion = -1;
12227 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
12228 * was an exception vector read from the vector table (which is always
12229 * done using the default system address map), because those accesses
12230 * are done in arm_v7m_load_vector(), which always does a direct
12231 * read using address_space_ldl(), rather than going via this function.
12233 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
12234 hit = true;
12235 } else if (m_is_ppb_region(env, address)) {
12236 hit = true;
12237 } else {
12238 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12239 hit = true;
12242 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
12243 /* region search */
12244 /* Note that the base address is bits [31:5] from the register
12245 * with bits [4:0] all zeroes, but the limit address is bits
12246 * [31:5] from the register with bits [4:0] all ones.
12248 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
12249 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
12251 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
12252 /* Region disabled */
12253 continue;
12256 if (address < base || address > limit) {
12258 * Address not in this region. We must check whether the
12259 * region covers addresses in the same page as our address.
12260 * In that case we must not report a size that covers the
12261 * whole page for a subsequent hit against a different MPU
12262 * region or the background region, because it would result in
12263 * incorrect TLB hits for subsequent accesses to addresses that
12264 * are in this MPU region.
12266 if (limit >= base &&
12267 ranges_overlap(base, limit - base + 1,
12268 addr_page_base,
12269 TARGET_PAGE_SIZE)) {
12270 *is_subpage = true;
12272 continue;
12275 if (base > addr_page_base || limit < addr_page_limit) {
12276 *is_subpage = true;
12279 if (matchregion != -1) {
12280 /* Multiple regions match -- always a failure (unlike
12281 * PMSAv7 where highest-numbered-region wins)
12283 fi->type = ARMFault_Permission;
12284 fi->level = 1;
12285 return true;
12288 matchregion = n;
12289 hit = true;
12293 if (!hit) {
12294 /* background fault */
12295 fi->type = ARMFault_Background;
12296 return true;
12299 if (matchregion == -1) {
12300 /* hit using the background region */
12301 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12302 } else {
12303 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12304 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
12305 bool pxn = false;
12307 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
12308 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
12311 if (m_is_system_region(env, address)) {
12312 /* System space is always execute never */
12313 xn = 1;
12316 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12317 if (*prot && !xn && !(pxn && !is_user)) {
12318 *prot |= PAGE_EXEC;
12320 /* We don't need to look the attribute up in the MAIR0/MAIR1
12321 * registers because that only tells us about cacheability.
12323 if (mregion) {
12324 *mregion = matchregion;
12328 fi->type = ARMFault_Permission;
12329 fi->level = 1;
12330 return !(*prot & (1 << access_type));
12334 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12335 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12336 hwaddr *phys_ptr, MemTxAttrs *txattrs,
12337 int *prot, target_ulong *page_size,
12338 ARMMMUFaultInfo *fi)
12340 uint32_t secure = regime_is_secure(env, mmu_idx);
12341 V8M_SAttributes sattrs = {};
12342 bool ret;
12343 bool mpu_is_subpage;
12345 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12346 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12347 if (access_type == MMU_INST_FETCH) {
12348 /* Instruction fetches always use the MMU bank and the
12349 * transaction attribute determined by the fetch address,
12350 * regardless of CPU state. This is painful for QEMU
12351 * to handle, because it would mean we need to encode
12352 * into the mmu_idx not just the (user, negpri) information
12353 * for the current security state but also that for the
12354 * other security state, which would balloon the number
12355 * of mmu_idx values needed alarmingly.
12356 * Fortunately we can avoid this because it's not actually
12357 * possible to arbitrarily execute code from memory with
12358 * the wrong security attribute: it will always generate
12359 * an exception of some kind or another, apart from the
12360 * special case of an NS CPU executing an SG instruction
12361 * in S&NSC memory. So we always just fail the translation
12362 * here and sort things out in the exception handler
12363 * (including possibly emulating an SG instruction).
12365 if (sattrs.ns != !secure) {
12366 if (sattrs.nsc) {
12367 fi->type = ARMFault_QEMU_NSCExec;
12368 } else {
12369 fi->type = ARMFault_QEMU_SFault;
12371 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12372 *phys_ptr = address;
12373 *prot = 0;
12374 return true;
12376 } else {
12377 /* For data accesses we always use the MMU bank indicated
12378 * by the current CPU state, but the security attributes
12379 * might downgrade a secure access to nonsecure.
12381 if (sattrs.ns) {
12382 txattrs->secure = false;
12383 } else if (!secure) {
12384 /* NS access to S memory must fault.
12385 * Architecturally we should first check whether the
12386 * MPU information for this address indicates that we
12387 * are doing an unaligned access to Device memory, which
12388 * should generate a UsageFault instead. QEMU does not
12389 * currently check for that kind of unaligned access though.
12390 * If we added it we would need to do so as a special case
12391 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12393 fi->type = ARMFault_QEMU_SFault;
12394 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12395 *phys_ptr = address;
12396 *prot = 0;
12397 return true;
12402 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12403 txattrs, prot, &mpu_is_subpage, fi, NULL);
12404 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12405 return ret;
12408 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12409 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12410 hwaddr *phys_ptr, int *prot,
12411 ARMMMUFaultInfo *fi)
12413 int n;
12414 uint32_t mask;
12415 uint32_t base;
12416 bool is_user = regime_is_user(env, mmu_idx);
12418 if (regime_translation_disabled(env, mmu_idx)) {
12419 /* MPU disabled. */
12420 *phys_ptr = address;
12421 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12422 return false;
12425 *phys_ptr = address;
12426 for (n = 7; n >= 0; n--) {
12427 base = env->cp15.c6_region[n];
12428 if ((base & 1) == 0) {
12429 continue;
12431 mask = 1 << ((base >> 1) & 0x1f);
12432 /* Keep this shift separate from the above to avoid an
12433 (undefined) << 32. */
12434 mask = (mask << 1) - 1;
12435 if (((base ^ address) & ~mask) == 0) {
12436 break;
12439 if (n < 0) {
12440 fi->type = ARMFault_Background;
12441 return true;
12444 if (access_type == MMU_INST_FETCH) {
12445 mask = env->cp15.pmsav5_insn_ap;
12446 } else {
12447 mask = env->cp15.pmsav5_data_ap;
12449 mask = (mask >> (n * 4)) & 0xf;
12450 switch (mask) {
12451 case 0:
12452 fi->type = ARMFault_Permission;
12453 fi->level = 1;
12454 return true;
12455 case 1:
12456 if (is_user) {
12457 fi->type = ARMFault_Permission;
12458 fi->level = 1;
12459 return true;
12461 *prot = PAGE_READ | PAGE_WRITE;
12462 break;
12463 case 2:
12464 *prot = PAGE_READ;
12465 if (!is_user) {
12466 *prot |= PAGE_WRITE;
12468 break;
12469 case 3:
12470 *prot = PAGE_READ | PAGE_WRITE;
12471 break;
12472 case 5:
12473 if (is_user) {
12474 fi->type = ARMFault_Permission;
12475 fi->level = 1;
12476 return true;
12478 *prot = PAGE_READ;
12479 break;
12480 case 6:
12481 *prot = PAGE_READ;
12482 break;
12483 default:
12484 /* Bad permission. */
12485 fi->type = ARMFault_Permission;
12486 fi->level = 1;
12487 return true;
12489 *prot |= PAGE_EXEC;
12490 return false;
12493 /* Combine either inner or outer cacheability attributes for normal
12494 * memory, according to table D4-42 and pseudocode procedure
12495 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12497 * NB: only stage 1 includes allocation hints (RW bits), leading to
12498 * some asymmetry.
12500 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12502 if (s1 == 4 || s2 == 4) {
12503 /* non-cacheable has precedence */
12504 return 4;
12505 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12506 /* stage 1 write-through takes precedence */
12507 return s1;
12508 } else if (extract32(s2, 2, 2) == 2) {
12509 /* stage 2 write-through takes precedence, but the allocation hint
12510 * is still taken from stage 1
12512 return (2 << 2) | extract32(s1, 0, 2);
12513 } else { /* write-back */
12514 return s1;
12518 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12519 * and CombineS1S2Desc()
12521 * @s1: Attributes from stage 1 walk
12522 * @s2: Attributes from stage 2 walk
12524 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12526 uint8_t s1lo, s2lo, s1hi, s2hi;
12527 ARMCacheAttrs ret;
12528 bool tagged = false;
12530 if (s1.attrs == 0xf0) {
12531 tagged = true;
12532 s1.attrs = 0xff;
12535 s1lo = extract32(s1.attrs, 0, 4);
12536 s2lo = extract32(s2.attrs, 0, 4);
12537 s1hi = extract32(s1.attrs, 4, 4);
12538 s2hi = extract32(s2.attrs, 4, 4);
12540 /* Combine shareability attributes (table D4-43) */
12541 if (s1.shareability == 2 || s2.shareability == 2) {
12542 /* if either are outer-shareable, the result is outer-shareable */
12543 ret.shareability = 2;
12544 } else if (s1.shareability == 3 || s2.shareability == 3) {
12545 /* if either are inner-shareable, the result is inner-shareable */
12546 ret.shareability = 3;
12547 } else {
12548 /* both non-shareable */
12549 ret.shareability = 0;
12552 /* Combine memory type and cacheability attributes */
12553 if (s1hi == 0 || s2hi == 0) {
12554 /* Device has precedence over normal */
12555 if (s1lo == 0 || s2lo == 0) {
12556 /* nGnRnE has precedence over anything */
12557 ret.attrs = 0;
12558 } else if (s1lo == 4 || s2lo == 4) {
12559 /* non-Reordering has precedence over Reordering */
12560 ret.attrs = 4; /* nGnRE */
12561 } else if (s1lo == 8 || s2lo == 8) {
12562 /* non-Gathering has precedence over Gathering */
12563 ret.attrs = 8; /* nGRE */
12564 } else {
12565 ret.attrs = 0xc; /* GRE */
12568 /* Any location for which the resultant memory type is any
12569 * type of Device memory is always treated as Outer Shareable.
12571 ret.shareability = 2;
12572 } else { /* Normal memory */
12573 /* Outer/inner cacheability combine independently */
12574 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12575 | combine_cacheattr_nibble(s1lo, s2lo);
12577 if (ret.attrs == 0x44) {
12578 /* Any location for which the resultant memory type is Normal
12579 * Inner Non-cacheable, Outer Non-cacheable is always treated
12580 * as Outer Shareable.
12582 ret.shareability = 2;
12586 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12587 if (tagged && ret.attrs == 0xff) {
12588 ret.attrs = 0xf0;
12591 return ret;
12595 /* get_phys_addr - get the physical address for this virtual address
12597 * Find the physical address corresponding to the given virtual address,
12598 * by doing a translation table walk on MMU based systems or using the
12599 * MPU state on MPU based systems.
12601 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12602 * prot and page_size may not be filled in, and the populated fsr value provides
12603 * information on why the translation aborted, in the format of a
12604 * DFSR/IFSR fault register, with the following caveats:
12605 * * we honour the short vs long DFSR format differences.
12606 * * the WnR bit is never set (the caller must do this).
12607 * * for PSMAv5 based systems we don't bother to return a full FSR format
12608 * value.
12610 * @env: CPUARMState
12611 * @address: virtual address to get physical address for
12612 * @access_type: 0 for read, 1 for write, 2 for execute
12613 * @mmu_idx: MMU index indicating required translation regime
12614 * @phys_ptr: set to the physical address corresponding to the virtual address
12615 * @attrs: set to the memory transaction attributes to use
12616 * @prot: set to the permissions for the page containing phys_ptr
12617 * @page_size: set to the size of the page containing phys_ptr
12618 * @fi: set to fault info if the translation fails
12619 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12621 bool get_phys_addr(CPUARMState *env, target_ulong address,
12622 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12623 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12624 target_ulong *page_size,
12625 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12627 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
12629 if (mmu_idx != s1_mmu_idx) {
12630 /* Call ourselves recursively to do the stage 1 and then stage 2
12631 * translations if mmu_idx is a two-stage regime.
12633 if (arm_feature(env, ARM_FEATURE_EL2)) {
12634 hwaddr ipa;
12635 int s2_prot;
12636 int ret;
12637 ARMCacheAttrs cacheattrs2 = {};
12638 ARMMMUIdx s2_mmu_idx;
12639 bool is_el0;
12641 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
12642 attrs, prot, page_size, fi, cacheattrs);
12644 /* If S1 fails or S2 is disabled, return early. */
12645 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12646 *phys_ptr = ipa;
12647 return ret;
12650 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
12651 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
12653 /* S1 is done. Now do S2 translation. */
12654 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
12655 phys_ptr, attrs, &s2_prot,
12656 page_size, fi, &cacheattrs2);
12657 fi->s2addr = ipa;
12658 /* Combine the S1 and S2 perms. */
12659 *prot &= s2_prot;
12661 /* If S2 fails, return early. */
12662 if (ret) {
12663 return ret;
12666 /* Combine the S1 and S2 cache attributes. */
12667 if (arm_hcr_el2_eff(env) & HCR_DC) {
12669 * HCR.DC forces the first stage attributes to
12670 * Normal Non-Shareable,
12671 * Inner Write-Back Read-Allocate Write-Allocate,
12672 * Outer Write-Back Read-Allocate Write-Allocate.
12673 * Do not overwrite Tagged within attrs.
12675 if (cacheattrs->attrs != 0xf0) {
12676 cacheattrs->attrs = 0xff;
12678 cacheattrs->shareability = 0;
12680 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12682 /* Check if IPA translates to secure or non-secure PA space. */
12683 if (arm_is_secure_below_el3(env)) {
12684 if (attrs->secure) {
12685 attrs->secure =
12686 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
12687 } else {
12688 attrs->secure =
12689 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
12690 || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA));
12693 return 0;
12694 } else {
12696 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12698 mmu_idx = stage_1_mmu_idx(mmu_idx);
12702 /* The page table entries may downgrade secure to non-secure, but
12703 * cannot upgrade an non-secure translation regime's attributes
12704 * to secure.
12706 attrs->secure = regime_is_secure(env, mmu_idx);
12707 attrs->user = regime_is_user(env, mmu_idx);
12709 /* Fast Context Switch Extension. This doesn't exist at all in v8.
12710 * In v7 and earlier it affects all stage 1 translations.
12712 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12713 && !arm_feature(env, ARM_FEATURE_V8)) {
12714 if (regime_el(env, mmu_idx) == 3) {
12715 address += env->cp15.fcseidr_s;
12716 } else {
12717 address += env->cp15.fcseidr_ns;
12721 if (arm_feature(env, ARM_FEATURE_PMSA)) {
12722 bool ret;
12723 *page_size = TARGET_PAGE_SIZE;
12725 if (arm_feature(env, ARM_FEATURE_V8)) {
12726 /* PMSAv8 */
12727 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12728 phys_ptr, attrs, prot, page_size, fi);
12729 } else if (arm_feature(env, ARM_FEATURE_V7)) {
12730 /* PMSAv7 */
12731 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12732 phys_ptr, prot, page_size, fi);
12733 } else {
12734 /* Pre-v7 MPU */
12735 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12736 phys_ptr, prot, fi);
12738 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12739 " mmu_idx %u -> %s (prot %c%c%c)\n",
12740 access_type == MMU_DATA_LOAD ? "reading" :
12741 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12742 (uint32_t)address, mmu_idx,
12743 ret ? "Miss" : "Hit",
12744 *prot & PAGE_READ ? 'r' : '-',
12745 *prot & PAGE_WRITE ? 'w' : '-',
12746 *prot & PAGE_EXEC ? 'x' : '-');
12748 return ret;
12751 /* Definitely a real MMU, not an MPU */
12753 if (regime_translation_disabled(env, mmu_idx)) {
12754 uint64_t hcr;
12755 uint8_t memattr;
12758 * MMU disabled. S1 addresses within aa64 translation regimes are
12759 * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12761 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
12762 int r_el = regime_el(env, mmu_idx);
12763 if (arm_el_is_aa64(env, r_el)) {
12764 int pamax = arm_pamax(env_archcpu(env));
12765 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12766 int addrtop, tbi;
12768 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12769 if (access_type == MMU_INST_FETCH) {
12770 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12772 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12773 addrtop = (tbi ? 55 : 63);
12775 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12776 fi->type = ARMFault_AddressSize;
12777 fi->level = 0;
12778 fi->stage2 = false;
12779 return 1;
12783 * When TBI is disabled, we've just validated that all of the
12784 * bits above PAMax are zero, so logically we only need to
12785 * clear the top byte for TBI. But it's clearer to follow
12786 * the pseudocode set of addrdesc.paddress.
12788 address = extract64(address, 0, 52);
12791 *phys_ptr = address;
12792 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12793 *page_size = TARGET_PAGE_SIZE;
12795 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12796 hcr = arm_hcr_el2_eff(env);
12797 cacheattrs->shareability = 0;
12798 if (hcr & HCR_DC) {
12799 if (hcr & HCR_DCT) {
12800 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
12801 } else {
12802 memattr = 0xff; /* Normal, WB, RWA */
12804 } else if (access_type == MMU_INST_FETCH) {
12805 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12806 memattr = 0xee; /* Normal, WT, RA, NT */
12807 } else {
12808 memattr = 0x44; /* Normal, NC, No */
12810 cacheattrs->shareability = 2; /* outer sharable */
12811 } else {
12812 memattr = 0x00; /* Device, nGnRnE */
12814 cacheattrs->attrs = memattr;
12815 return 0;
12818 if (regime_using_lpae_format(env, mmu_idx)) {
12819 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12820 phys_ptr, attrs, prot, page_size,
12821 fi, cacheattrs);
12822 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12823 return get_phys_addr_v6(env, address, access_type, mmu_idx,
12824 phys_ptr, attrs, prot, page_size, fi);
12825 } else {
12826 return get_phys_addr_v5(env, address, access_type, mmu_idx,
12827 phys_ptr, prot, page_size, fi);
12831 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12832 MemTxAttrs *attrs)
12834 ARMCPU *cpu = ARM_CPU(cs);
12835 CPUARMState *env = &cpu->env;
12836 hwaddr phys_addr;
12837 target_ulong page_size;
12838 int prot;
12839 bool ret;
12840 ARMMMUFaultInfo fi = {};
12841 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12842 ARMCacheAttrs cacheattrs = {};
12844 *attrs = (MemTxAttrs) {};
12846 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
12847 attrs, &prot, &page_size, &fi, &cacheattrs);
12849 if (ret) {
12850 return -1;
12852 return phys_addr;
12855 #endif
12857 /* Note that signed overflow is undefined in C. The following routines are
12858 careful to use unsigned types where modulo arithmetic is required.
12859 Failure to do so _will_ break on newer gcc. */
12861 /* Signed saturating arithmetic. */
12863 /* Perform 16-bit signed saturating addition. */
12864 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12866 uint16_t res;
12868 res = a + b;
12869 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12870 if (a & 0x8000)
12871 res = 0x8000;
12872 else
12873 res = 0x7fff;
12875 return res;
12878 /* Perform 8-bit signed saturating addition. */
12879 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12881 uint8_t res;
12883 res = a + b;
12884 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12885 if (a & 0x80)
12886 res = 0x80;
12887 else
12888 res = 0x7f;
12890 return res;
12893 /* Perform 16-bit signed saturating subtraction. */
12894 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12896 uint16_t res;
12898 res = a - b;
12899 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12900 if (a & 0x8000)
12901 res = 0x8000;
12902 else
12903 res = 0x7fff;
12905 return res;
12908 /* Perform 8-bit signed saturating subtraction. */
12909 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12911 uint8_t res;
12913 res = a - b;
12914 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12915 if (a & 0x80)
12916 res = 0x80;
12917 else
12918 res = 0x7f;
12920 return res;
12923 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12924 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12925 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12926 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12927 #define PFX q
12929 #include "op_addsub.h"
12931 /* Unsigned saturating arithmetic. */
12932 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12934 uint16_t res;
12935 res = a + b;
12936 if (res < a)
12937 res = 0xffff;
12938 return res;
12941 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12943 if (a > b)
12944 return a - b;
12945 else
12946 return 0;
12949 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12951 uint8_t res;
12952 res = a + b;
12953 if (res < a)
12954 res = 0xff;
12955 return res;
12958 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12960 if (a > b)
12961 return a - b;
12962 else
12963 return 0;
12966 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12967 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12968 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12969 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12970 #define PFX uq
12972 #include "op_addsub.h"
12974 /* Signed modulo arithmetic. */
12975 #define SARITH16(a, b, n, op) do { \
12976 int32_t sum; \
12977 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12978 RESULT(sum, n, 16); \
12979 if (sum >= 0) \
12980 ge |= 3 << (n * 2); \
12981 } while(0)
12983 #define SARITH8(a, b, n, op) do { \
12984 int32_t sum; \
12985 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12986 RESULT(sum, n, 8); \
12987 if (sum >= 0) \
12988 ge |= 1 << n; \
12989 } while(0)
12992 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12993 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12994 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12995 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12996 #define PFX s
12997 #define ARITH_GE
12999 #include "op_addsub.h"
13001 /* Unsigned modulo arithmetic. */
13002 #define ADD16(a, b, n) do { \
13003 uint32_t sum; \
13004 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
13005 RESULT(sum, n, 16); \
13006 if ((sum >> 16) == 1) \
13007 ge |= 3 << (n * 2); \
13008 } while(0)
13010 #define ADD8(a, b, n) do { \
13011 uint32_t sum; \
13012 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
13013 RESULT(sum, n, 8); \
13014 if ((sum >> 8) == 1) \
13015 ge |= 1 << n; \
13016 } while(0)
13018 #define SUB16(a, b, n) do { \
13019 uint32_t sum; \
13020 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
13021 RESULT(sum, n, 16); \
13022 if ((sum >> 16) == 0) \
13023 ge |= 3 << (n * 2); \
13024 } while(0)
13026 #define SUB8(a, b, n) do { \
13027 uint32_t sum; \
13028 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
13029 RESULT(sum, n, 8); \
13030 if ((sum >> 8) == 0) \
13031 ge |= 1 << n; \
13032 } while(0)
13034 #define PFX u
13035 #define ARITH_GE
13037 #include "op_addsub.h"
13039 /* Halved signed arithmetic. */
13040 #define ADD16(a, b, n) \
13041 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
13042 #define SUB16(a, b, n) \
13043 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
13044 #define ADD8(a, b, n) \
13045 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
13046 #define SUB8(a, b, n) \
13047 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
13048 #define PFX sh
13050 #include "op_addsub.h"
13052 /* Halved unsigned arithmetic. */
13053 #define ADD16(a, b, n) \
13054 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13055 #define SUB16(a, b, n) \
13056 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13057 #define ADD8(a, b, n) \
13058 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13059 #define SUB8(a, b, n) \
13060 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13061 #define PFX uh
13063 #include "op_addsub.h"
13065 static inline uint8_t do_usad(uint8_t a, uint8_t b)
13067 if (a > b)
13068 return a - b;
13069 else
13070 return b - a;
13073 /* Unsigned sum of absolute byte differences. */
13074 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
13076 uint32_t sum;
13077 sum = do_usad(a, b);
13078 sum += do_usad(a >> 8, b >> 8);
13079 sum += do_usad(a >> 16, b >> 16);
13080 sum += do_usad(a >> 24, b >> 24);
13081 return sum;
13084 /* For ARMv6 SEL instruction. */
13085 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
13087 uint32_t mask;
13089 mask = 0;
13090 if (flags & 1)
13091 mask |= 0xff;
13092 if (flags & 2)
13093 mask |= 0xff00;
13094 if (flags & 4)
13095 mask |= 0xff0000;
13096 if (flags & 8)
13097 mask |= 0xff000000;
13098 return (a & mask) | (b & ~mask);
13101 /* CRC helpers.
13102 * The upper bytes of val (above the number specified by 'bytes') must have
13103 * been zeroed out by the caller.
13105 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13107 uint8_t buf[4];
13109 stl_le_p(buf, val);
13111 /* zlib crc32 converts the accumulator and output to one's complement. */
13112 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13115 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13117 uint8_t buf[4];
13119 stl_le_p(buf, val);
13121 /* Linux crc32c converts the output to one's complement. */
13122 return crc32c(acc, buf, bytes) ^ 0xffffffff;
13125 /* Return the exception level to which FP-disabled exceptions should
13126 * be taken, or 0 if FP is enabled.
13128 int fp_exception_el(CPUARMState *env, int cur_el)
13130 #ifndef CONFIG_USER_ONLY
13131 /* CPACR and the CPTR registers don't exist before v6, so FP is
13132 * always accessible
13134 if (!arm_feature(env, ARM_FEATURE_V6)) {
13135 return 0;
13138 if (arm_feature(env, ARM_FEATURE_M)) {
13139 /* CPACR can cause a NOCP UsageFault taken to current security state */
13140 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
13141 return 1;
13144 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
13145 if (!extract32(env->v7m.nsacr, 10, 1)) {
13146 /* FP insns cause a NOCP UsageFault taken to Secure */
13147 return 3;
13151 return 0;
13154 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13155 * 0, 2 : trap EL0 and EL1/PL1 accesses
13156 * 1 : trap only EL0 accesses
13157 * 3 : trap no accesses
13158 * This register is ignored if E2H+TGE are both set.
13160 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13161 int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13163 switch (fpen) {
13164 case 0:
13165 case 2:
13166 if (cur_el == 0 || cur_el == 1) {
13167 /* Trap to PL1, which might be EL1 or EL3 */
13168 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13169 return 3;
13171 return 1;
13173 if (cur_el == 3 && !is_a64(env)) {
13174 /* Secure PL1 running at EL3 */
13175 return 3;
13177 break;
13178 case 1:
13179 if (cur_el == 0) {
13180 return 1;
13182 break;
13183 case 3:
13184 break;
13189 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
13190 * to control non-secure access to the FPU. It doesn't have any
13191 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
13193 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
13194 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
13195 if (!extract32(env->cp15.nsacr, 10, 1)) {
13196 /* FP insns act as UNDEF */
13197 return cur_el == 2 ? 2 : 1;
13201 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
13202 * check because zero bits in the registers mean "don't trap".
13205 /* CPTR_EL2 : present in v7VE or v8 */
13206 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
13207 && arm_is_el2_enabled(env)) {
13208 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
13209 return 2;
13212 /* CPTR_EL3 : present in v8 */
13213 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
13214 /* Trap all FP ops to EL3 */
13215 return 3;
13217 #endif
13218 return 0;
13221 /* Return the exception level we're running at if this is our mmu_idx */
13222 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
13224 if (mmu_idx & ARM_MMU_IDX_M) {
13225 return mmu_idx & ARM_MMU_IDX_M_PRIV;
13228 switch (mmu_idx) {
13229 case ARMMMUIdx_E10_0:
13230 case ARMMMUIdx_E20_0:
13231 case ARMMMUIdx_SE10_0:
13232 case ARMMMUIdx_SE20_0:
13233 return 0;
13234 case ARMMMUIdx_E10_1:
13235 case ARMMMUIdx_E10_1_PAN:
13236 case ARMMMUIdx_SE10_1:
13237 case ARMMMUIdx_SE10_1_PAN:
13238 return 1;
13239 case ARMMMUIdx_E2:
13240 case ARMMMUIdx_E20_2:
13241 case ARMMMUIdx_E20_2_PAN:
13242 case ARMMMUIdx_SE2:
13243 case ARMMMUIdx_SE20_2:
13244 case ARMMMUIdx_SE20_2_PAN:
13245 return 2;
13246 case ARMMMUIdx_SE3:
13247 return 3;
13248 default:
13249 g_assert_not_reached();
13253 #ifndef CONFIG_TCG
13254 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13256 g_assert_not_reached();
13258 #endif
13260 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
13262 ARMMMUIdx idx;
13263 uint64_t hcr;
13265 if (arm_feature(env, ARM_FEATURE_M)) {
13266 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13269 /* See ARM pseudo-function ELIsInHost. */
13270 switch (el) {
13271 case 0:
13272 hcr = arm_hcr_el2_eff(env);
13273 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
13274 idx = ARMMMUIdx_E20_0;
13275 } else {
13276 idx = ARMMMUIdx_E10_0;
13278 break;
13279 case 1:
13280 if (env->pstate & PSTATE_PAN) {
13281 idx = ARMMMUIdx_E10_1_PAN;
13282 } else {
13283 idx = ARMMMUIdx_E10_1;
13285 break;
13286 case 2:
13287 /* Note that TGE does not apply at EL2. */
13288 if (arm_hcr_el2_eff(env) & HCR_E2H) {
13289 if (env->pstate & PSTATE_PAN) {
13290 idx = ARMMMUIdx_E20_2_PAN;
13291 } else {
13292 idx = ARMMMUIdx_E20_2;
13294 } else {
13295 idx = ARMMMUIdx_E2;
13297 break;
13298 case 3:
13299 return ARMMMUIdx_SE3;
13300 default:
13301 g_assert_not_reached();
13304 if (arm_is_secure_below_el3(env)) {
13305 idx &= ~ARM_MMU_IDX_A_NS;
13308 return idx;
13311 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13313 return arm_mmu_idx_el(env, arm_current_el(env));
13316 #ifndef CONFIG_USER_ONLY
13317 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13319 return stage_1_mmu_idx(arm_mmu_idx(env));
13321 #endif
13323 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
13324 ARMMMUIdx mmu_idx,
13325 CPUARMTBFlags flags)
13327 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
13328 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13330 if (arm_singlestep_active(env)) {
13331 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
13333 return flags;
13336 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
13337 ARMMMUIdx mmu_idx,
13338 CPUARMTBFlags flags)
13340 bool sctlr_b = arm_sctlr_b(env);
13342 if (sctlr_b) {
13343 DP_TBFLAG_A32(flags, SCTLR__B, 1);
13345 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
13346 DP_TBFLAG_ANY(flags, BE_DATA, 1);
13348 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
13350 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13353 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
13354 ARMMMUIdx mmu_idx)
13356 CPUARMTBFlags flags = {};
13357 uint32_t ccr = env->v7m.ccr[env->v7m.secure];
13359 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
13360 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
13361 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13364 if (arm_v7m_is_handler_mode(env)) {
13365 DP_TBFLAG_M32(flags, HANDLER, 1);
13369 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
13370 * is suppressing them because the requested execution priority
13371 * is less than 0.
13373 if (arm_feature(env, ARM_FEATURE_V8) &&
13374 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13375 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13376 DP_TBFLAG_M32(flags, STACKCHECK, 1);
13379 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13382 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env)
13384 CPUARMTBFlags flags = {};
13386 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env));
13387 return flags;
13390 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
13391 ARMMMUIdx mmu_idx)
13393 CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13394 int el = arm_current_el(env);
13396 if (arm_sctlr(env, el) & SCTLR_A) {
13397 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13400 if (arm_el_is_aa64(env, 1)) {
13401 DP_TBFLAG_A32(flags, VFPEN, 1);
13404 if (el < 2 && env->cp15.hstr_el2 &&
13405 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13406 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
13409 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13412 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
13413 ARMMMUIdx mmu_idx)
13415 CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13416 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13417 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
13418 uint64_t sctlr;
13419 int tbii, tbid;
13421 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
13423 /* Get control bits for tagged addresses. */
13424 tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
13425 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
13427 DP_TBFLAG_A64(flags, TBII, tbii);
13428 DP_TBFLAG_A64(flags, TBID, tbid);
13430 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
13431 int sve_el = sve_exception_el(env, el);
13432 uint32_t zcr_len;
13435 * If SVE is disabled, but FP is enabled,
13436 * then the effective len is 0.
13438 if (sve_el != 0 && fp_el == 0) {
13439 zcr_len = 0;
13440 } else {
13441 zcr_len = sve_zcr_len_for_el(env, el);
13443 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
13444 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len);
13447 sctlr = regime_sctlr(env, stage1);
13449 if (sctlr & SCTLR_A) {
13450 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13453 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
13454 DP_TBFLAG_ANY(flags, BE_DATA, 1);
13457 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
13459 * In order to save space in flags, we record only whether
13460 * pauth is "inactive", meaning all insns are implemented as
13461 * a nop, or "active" when some action must be performed.
13462 * The decision of which action to take is left to a helper.
13464 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13465 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
13469 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13470 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
13471 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13472 DP_TBFLAG_A64(flags, BT, 1);
13476 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13477 if (!(env->pstate & PSTATE_UAO)) {
13478 switch (mmu_idx) {
13479 case ARMMMUIdx_E10_1:
13480 case ARMMMUIdx_E10_1_PAN:
13481 case ARMMMUIdx_SE10_1:
13482 case ARMMMUIdx_SE10_1_PAN:
13483 /* TODO: ARMv8.3-NV */
13484 DP_TBFLAG_A64(flags, UNPRIV, 1);
13485 break;
13486 case ARMMMUIdx_E20_2:
13487 case ARMMMUIdx_E20_2_PAN:
13488 case ARMMMUIdx_SE20_2:
13489 case ARMMMUIdx_SE20_2_PAN:
13491 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13492 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13494 if (env->cp15.hcr_el2 & HCR_TGE) {
13495 DP_TBFLAG_A64(flags, UNPRIV, 1);
13497 break;
13498 default:
13499 break;
13503 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
13505 * Set MTE_ACTIVE if any access may be Checked, and leave clear
13506 * if all accesses must be Unchecked:
13507 * 1) If no TBI, then there are no tags in the address to check,
13508 * 2) If Tag Check Override, then all accesses are Unchecked,
13509 * 3) If Tag Check Fail == 0, then Checked access have no effect,
13510 * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13512 if (allocation_tag_access_enabled(env, el, sctlr)) {
13513 DP_TBFLAG_A64(flags, ATA, 1);
13514 if (tbid
13515 && !(env->pstate & PSTATE_TCO)
13516 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
13517 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
13520 /* And again for unprivileged accesses, if required. */
13521 if (EX_TBFLAG_A64(flags, UNPRIV)
13522 && tbid
13523 && !(env->pstate & PSTATE_TCO)
13524 && (sctlr & SCTLR_TCF0)
13525 && allocation_tag_access_enabled(env, 0, sctlr)) {
13526 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
13528 /* Cache TCMA as well as TBI. */
13529 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
13532 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13535 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
13537 int el = arm_current_el(env);
13538 int fp_el = fp_exception_el(env, el);
13539 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13541 if (is_a64(env)) {
13542 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13543 } else if (arm_feature(env, ARM_FEATURE_M)) {
13544 return rebuild_hflags_m32(env, fp_el, mmu_idx);
13545 } else {
13546 return rebuild_hflags_a32(env, fp_el, mmu_idx);
13550 void arm_rebuild_hflags(CPUARMState *env)
13552 env->hflags = rebuild_hflags_internal(env);
13556 * If we have triggered a EL state change we can't rely on the
13557 * translator having passed it to us, we need to recompute.
13559 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
13561 int el = arm_current_el(env);
13562 int fp_el = fp_exception_el(env, el);
13563 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13565 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13568 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
13570 int fp_el = fp_exception_el(env, el);
13571 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13573 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13577 * If we have triggered a EL state change we can't rely on the
13578 * translator having passed it to us, we need to recompute.
13580 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13582 int el = arm_current_el(env);
13583 int fp_el = fp_exception_el(env, el);
13584 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13585 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13588 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13590 int fp_el = fp_exception_el(env, el);
13591 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13593 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13596 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13598 int fp_el = fp_exception_el(env, el);
13599 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13601 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13604 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13606 #ifdef CONFIG_DEBUG_TCG
13607 CPUARMTBFlags c = env->hflags;
13608 CPUARMTBFlags r = rebuild_hflags_internal(env);
13610 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
13611 fprintf(stderr, "TCG hflags mismatch "
13612 "(current:(0x%08x,0x" TARGET_FMT_lx ")"
13613 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
13614 c.flags, c.flags2, r.flags, r.flags2);
13615 abort();
13617 #endif
13620 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13621 target_ulong *cs_base, uint32_t *pflags)
13623 CPUARMTBFlags flags;
13625 assert_hflags_rebuild_correctly(env);
13626 flags = env->hflags;
13628 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
13629 *pc = env->pc;
13630 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13631 DP_TBFLAG_A64(flags, BTYPE, env->btype);
13633 } else {
13634 *pc = env->regs[15];
13636 if (arm_feature(env, ARM_FEATURE_M)) {
13637 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13638 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13639 != env->v7m.secure) {
13640 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
13643 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13644 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13645 (env->v7m.secure &&
13646 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13648 * ASPEN is set, but FPCA/SFPA indicate that there is no
13649 * active FP context; we must create a new FP context before
13650 * executing any FP insn.
13652 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
13655 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13656 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13657 DP_TBFLAG_M32(flags, LSPACT, 1);
13659 } else {
13661 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13662 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13664 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13665 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
13666 } else {
13667 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
13668 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
13670 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13671 DP_TBFLAG_A32(flags, VFPEN, 1);
13675 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
13676 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
13680 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13681 * states defined in the ARM ARM for software singlestep:
13682 * SS_ACTIVE PSTATE.SS State
13683 * 0 x Inactive (the TB flag for SS is always 0)
13684 * 1 0 Active-pending
13685 * 1 1 Active-not-pending
13686 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
13688 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
13689 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
13692 *pflags = flags.flags;
13693 *cs_base = flags.flags2;
13696 #ifdef TARGET_AARCH64
13698 * The manual says that when SVE is enabled and VQ is widened the
13699 * implementation is allowed to zero the previously inaccessible
13700 * portion of the registers. The corollary to that is that when
13701 * SVE is enabled and VQ is narrowed we are also allowed to zero
13702 * the now inaccessible portion of the registers.
13704 * The intent of this is that no predicate bit beyond VQ is ever set.
13705 * Which means that some operations on predicate registers themselves
13706 * may operate on full uint64_t or even unrolled across the maximum
13707 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
13708 * may well be cheaper than conditionals to restrict the operation
13709 * to the relevant portion of a uint16_t[16].
13711 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13713 int i, j;
13714 uint64_t pmask;
13716 assert(vq >= 1 && vq <= ARM_MAX_VQ);
13717 assert(vq <= env_archcpu(env)->sve_max_vq);
13719 /* Zap the high bits of the zregs. */
13720 for (i = 0; i < 32; i++) {
13721 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13724 /* Zap the high bits of the pregs and ffr. */
13725 pmask = 0;
13726 if (vq & 3) {
13727 pmask = ~(-1ULL << (16 * (vq & 3)));
13729 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13730 for (i = 0; i < 17; ++i) {
13731 env->vfp.pregs[i].p[j] &= pmask;
13733 pmask = 0;
13738 * Notice a change in SVE vector size when changing EL.
13740 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13741 int new_el, bool el0_a64)
13743 ARMCPU *cpu = env_archcpu(env);
13744 int old_len, new_len;
13745 bool old_a64, new_a64;
13747 /* Nothing to do if no SVE. */
13748 if (!cpu_isar_feature(aa64_sve, cpu)) {
13749 return;
13752 /* Nothing to do if FP is disabled in either EL. */
13753 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13754 return;
13758 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13759 * at ELx, or not available because the EL is in AArch32 state, then
13760 * for all purposes other than a direct read, the ZCR_ELx.LEN field
13761 * has an effective value of 0".
13763 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13764 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13765 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
13766 * we already have the correct register contents when encountering the
13767 * vq0->vq0 transition between EL0->EL1.
13769 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13770 old_len = (old_a64 && !sve_exception_el(env, old_el)
13771 ? sve_zcr_len_for_el(env, old_el) : 0);
13772 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13773 new_len = (new_a64 && !sve_exception_el(env, new_el)
13774 ? sve_zcr_len_for_el(env, new_el) : 0);
13776 /* When changing vector length, clear inaccessible state. */
13777 if (new_len < old_len) {
13778 aarch64_sve_narrow_vq(env, new_len + 1);
13781 #endif