2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic-msidef.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/dma.h"
37 #include "sysemu/sysemu.h"
38 #include "hw/i386/apic_internal.h"
39 #include "kvm/kvm_i386.h"
40 #include "migration/vmstate.h"
43 /* context entry operations */
44 #define VTD_CE_GET_RID2PASID(ce) \
45 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
47 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
51 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
52 #define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
55 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \
56 trace_vtd_fault_disabled(); \
58 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \
64 static void vtd_address_space_refresh_all(IntelIOMMUState
*s
);
65 static void vtd_address_space_unmap(VTDAddressSpace
*as
, IOMMUNotifier
*n
);
67 static void vtd_panic_require_caching_mode(void)
69 error_report("We need to set caching-mode=on for intel-iommu to enable "
70 "device assignment with IOMMU protection.");
74 static void vtd_define_quad(IntelIOMMUState
*s
, hwaddr addr
, uint64_t val
,
75 uint64_t wmask
, uint64_t w1cmask
)
77 stq_le_p(&s
->csr
[addr
], val
);
78 stq_le_p(&s
->wmask
[addr
], wmask
);
79 stq_le_p(&s
->w1cmask
[addr
], w1cmask
);
82 static void vtd_define_quad_wo(IntelIOMMUState
*s
, hwaddr addr
, uint64_t mask
)
84 stq_le_p(&s
->womask
[addr
], mask
);
87 static void vtd_define_long(IntelIOMMUState
*s
, hwaddr addr
, uint32_t val
,
88 uint32_t wmask
, uint32_t w1cmask
)
90 stl_le_p(&s
->csr
[addr
], val
);
91 stl_le_p(&s
->wmask
[addr
], wmask
);
92 stl_le_p(&s
->w1cmask
[addr
], w1cmask
);
95 static void vtd_define_long_wo(IntelIOMMUState
*s
, hwaddr addr
, uint32_t mask
)
97 stl_le_p(&s
->womask
[addr
], mask
);
100 /* "External" get/set operations */
101 static void vtd_set_quad(IntelIOMMUState
*s
, hwaddr addr
, uint64_t val
)
103 uint64_t oldval
= ldq_le_p(&s
->csr
[addr
]);
104 uint64_t wmask
= ldq_le_p(&s
->wmask
[addr
]);
105 uint64_t w1cmask
= ldq_le_p(&s
->w1cmask
[addr
]);
106 stq_le_p(&s
->csr
[addr
],
107 ((oldval
& ~wmask
) | (val
& wmask
)) & ~(w1cmask
& val
));
110 static void vtd_set_long(IntelIOMMUState
*s
, hwaddr addr
, uint32_t val
)
112 uint32_t oldval
= ldl_le_p(&s
->csr
[addr
]);
113 uint32_t wmask
= ldl_le_p(&s
->wmask
[addr
]);
114 uint32_t w1cmask
= ldl_le_p(&s
->w1cmask
[addr
]);
115 stl_le_p(&s
->csr
[addr
],
116 ((oldval
& ~wmask
) | (val
& wmask
)) & ~(w1cmask
& val
));
119 static uint64_t vtd_get_quad(IntelIOMMUState
*s
, hwaddr addr
)
121 uint64_t val
= ldq_le_p(&s
->csr
[addr
]);
122 uint64_t womask
= ldq_le_p(&s
->womask
[addr
]);
123 return val
& ~womask
;
126 static uint32_t vtd_get_long(IntelIOMMUState
*s
, hwaddr addr
)
128 uint32_t val
= ldl_le_p(&s
->csr
[addr
]);
129 uint32_t womask
= ldl_le_p(&s
->womask
[addr
]);
130 return val
& ~womask
;
133 /* "Internal" get/set operations */
134 static uint64_t vtd_get_quad_raw(IntelIOMMUState
*s
, hwaddr addr
)
136 return ldq_le_p(&s
->csr
[addr
]);
139 static uint32_t vtd_get_long_raw(IntelIOMMUState
*s
, hwaddr addr
)
141 return ldl_le_p(&s
->csr
[addr
]);
144 static void vtd_set_quad_raw(IntelIOMMUState
*s
, hwaddr addr
, uint64_t val
)
146 stq_le_p(&s
->csr
[addr
], val
);
149 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState
*s
, hwaddr addr
,
150 uint32_t clear
, uint32_t mask
)
152 uint32_t new_val
= (ldl_le_p(&s
->csr
[addr
]) & ~clear
) | mask
;
153 stl_le_p(&s
->csr
[addr
], new_val
);
157 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState
*s
, hwaddr addr
,
158 uint64_t clear
, uint64_t mask
)
160 uint64_t new_val
= (ldq_le_p(&s
->csr
[addr
]) & ~clear
) | mask
;
161 stq_le_p(&s
->csr
[addr
], new_val
);
165 static inline void vtd_iommu_lock(IntelIOMMUState
*s
)
167 qemu_mutex_lock(&s
->iommu_lock
);
170 static inline void vtd_iommu_unlock(IntelIOMMUState
*s
)
172 qemu_mutex_unlock(&s
->iommu_lock
);
175 static void vtd_update_scalable_state(IntelIOMMUState
*s
)
177 uint64_t val
= vtd_get_quad_raw(s
, DMAR_RTADDR_REG
);
179 if (s
->scalable_mode
) {
180 s
->root_scalable
= val
& VTD_RTADDR_SMT
;
184 /* Whether the address space needs to notify new mappings */
185 static inline gboolean
vtd_as_has_map_notifier(VTDAddressSpace
*as
)
187 return as
->notifier_flags
& IOMMU_NOTIFIER_MAP
;
190 /* GHashTable functions */
191 static gboolean
vtd_uint64_equal(gconstpointer v1
, gconstpointer v2
)
193 return *((const uint64_t *)v1
) == *((const uint64_t *)v2
);
196 static guint
vtd_uint64_hash(gconstpointer v
)
198 return (guint
)*(const uint64_t *)v
;
201 static gboolean
vtd_hash_remove_by_domain(gpointer key
, gpointer value
,
204 VTDIOTLBEntry
*entry
= (VTDIOTLBEntry
*)value
;
205 uint16_t domain_id
= *(uint16_t *)user_data
;
206 return entry
->domain_id
== domain_id
;
209 /* The shift of an addr for a certain level of paging structure */
210 static inline uint32_t vtd_slpt_level_shift(uint32_t level
)
213 return VTD_PAGE_SHIFT_4K
+ (level
- 1) * VTD_SL_LEVEL_BITS
;
216 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level
)
218 return ~((1ULL << vtd_slpt_level_shift(level
)) - 1);
221 static gboolean
vtd_hash_remove_by_page(gpointer key
, gpointer value
,
224 VTDIOTLBEntry
*entry
= (VTDIOTLBEntry
*)value
;
225 VTDIOTLBPageInvInfo
*info
= (VTDIOTLBPageInvInfo
*)user_data
;
226 uint64_t gfn
= (info
->addr
>> VTD_PAGE_SHIFT_4K
) & info
->mask
;
227 uint64_t gfn_tlb
= (info
->addr
& entry
->mask
) >> VTD_PAGE_SHIFT_4K
;
228 return (entry
->domain_id
== info
->domain_id
) &&
229 (((entry
->gfn
& info
->mask
) == gfn
) ||
230 (entry
->gfn
== gfn_tlb
));
233 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
234 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
236 static void vtd_reset_context_cache_locked(IntelIOMMUState
*s
)
238 VTDAddressSpace
*vtd_as
;
240 GHashTableIter bus_it
;
243 trace_vtd_context_cache_reset();
245 g_hash_table_iter_init(&bus_it
, s
->vtd_as_by_busptr
);
247 while (g_hash_table_iter_next (&bus_it
, NULL
, (void**)&vtd_bus
)) {
248 for (devfn_it
= 0; devfn_it
< PCI_DEVFN_MAX
; ++devfn_it
) {
249 vtd_as
= vtd_bus
->dev_as
[devfn_it
];
253 vtd_as
->context_cache_entry
.context_cache_gen
= 0;
256 s
->context_cache_gen
= 1;
259 /* Must be called with IOMMU lock held. */
260 static void vtd_reset_iotlb_locked(IntelIOMMUState
*s
)
263 g_hash_table_remove_all(s
->iotlb
);
266 static void vtd_reset_iotlb(IntelIOMMUState
*s
)
269 vtd_reset_iotlb_locked(s
);
273 static void vtd_reset_caches(IntelIOMMUState
*s
)
276 vtd_reset_iotlb_locked(s
);
277 vtd_reset_context_cache_locked(s
);
281 static uint64_t vtd_get_iotlb_key(uint64_t gfn
, uint16_t source_id
,
284 return gfn
| ((uint64_t)(source_id
) << VTD_IOTLB_SID_SHIFT
) |
285 ((uint64_t)(level
) << VTD_IOTLB_LVL_SHIFT
);
288 static uint64_t vtd_get_iotlb_gfn(hwaddr addr
, uint32_t level
)
290 return (addr
& vtd_slpt_level_page_mask(level
)) >> VTD_PAGE_SHIFT_4K
;
293 /* Must be called with IOMMU lock held */
294 static VTDIOTLBEntry
*vtd_lookup_iotlb(IntelIOMMUState
*s
, uint16_t source_id
,
297 VTDIOTLBEntry
*entry
;
301 for (level
= VTD_SL_PT_LEVEL
; level
< VTD_SL_PML4_LEVEL
; level
++) {
302 key
= vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr
, level
),
304 entry
= g_hash_table_lookup(s
->iotlb
, &key
);
314 /* Must be with IOMMU lock held */
315 static void vtd_update_iotlb(IntelIOMMUState
*s
, uint16_t source_id
,
316 uint16_t domain_id
, hwaddr addr
, uint64_t slpte
,
317 uint8_t access_flags
, uint32_t level
)
319 VTDIOTLBEntry
*entry
= g_malloc(sizeof(*entry
));
320 uint64_t *key
= g_malloc(sizeof(*key
));
321 uint64_t gfn
= vtd_get_iotlb_gfn(addr
, level
);
323 trace_vtd_iotlb_page_update(source_id
, addr
, slpte
, domain_id
);
324 if (g_hash_table_size(s
->iotlb
) >= VTD_IOTLB_MAX_SIZE
) {
325 trace_vtd_iotlb_reset("iotlb exceeds size limit");
326 vtd_reset_iotlb_locked(s
);
330 entry
->domain_id
= domain_id
;
331 entry
->slpte
= slpte
;
332 entry
->access_flags
= access_flags
;
333 entry
->mask
= vtd_slpt_level_page_mask(level
);
334 *key
= vtd_get_iotlb_key(gfn
, source_id
, level
);
335 g_hash_table_replace(s
->iotlb
, key
, entry
);
338 /* Given the reg addr of both the message data and address, generate an
341 static void vtd_generate_interrupt(IntelIOMMUState
*s
, hwaddr mesg_addr_reg
,
342 hwaddr mesg_data_reg
)
346 assert(mesg_data_reg
< DMAR_REG_SIZE
);
347 assert(mesg_addr_reg
< DMAR_REG_SIZE
);
349 msi
.address
= vtd_get_long_raw(s
, mesg_addr_reg
);
350 msi
.data
= vtd_get_long_raw(s
, mesg_data_reg
);
352 trace_vtd_irq_generate(msi
.address
, msi
.data
);
354 apic_get_class()->send_msi(&msi
);
357 /* Generate a fault event to software via MSI if conditions are met.
358 * Notice that the value of FSTS_REG being passed to it should be the one
361 static void vtd_generate_fault_event(IntelIOMMUState
*s
, uint32_t pre_fsts
)
363 if (pre_fsts
& VTD_FSTS_PPF
|| pre_fsts
& VTD_FSTS_PFO
||
364 pre_fsts
& VTD_FSTS_IQE
) {
365 error_report_once("There are previous interrupt conditions "
366 "to be serviced by software, fault event "
370 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, 0, VTD_FECTL_IP
);
371 if (vtd_get_long_raw(s
, DMAR_FECTL_REG
) & VTD_FECTL_IM
) {
372 error_report_once("Interrupt Mask set, irq is not generated");
374 vtd_generate_interrupt(s
, DMAR_FEADDR_REG
, DMAR_FEDATA_REG
);
375 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, VTD_FECTL_IP
, 0);
379 /* Check if the Fault (F) field of the Fault Recording Register referenced by
382 static bool vtd_is_frcd_set(IntelIOMMUState
*s
, uint16_t index
)
384 /* Each reg is 128-bit */
385 hwaddr addr
= DMAR_FRCD_REG_OFFSET
+ (((uint64_t)index
) << 4);
386 addr
+= 8; /* Access the high 64-bit half */
388 assert(index
< DMAR_FRCD_REG_NR
);
390 return vtd_get_quad_raw(s
, addr
) & VTD_FRCD_F
;
393 /* Update the PPF field of Fault Status Register.
394 * Should be called whenever change the F field of any fault recording
397 static void vtd_update_fsts_ppf(IntelIOMMUState
*s
)
400 uint32_t ppf_mask
= 0;
402 for (i
= 0; i
< DMAR_FRCD_REG_NR
; i
++) {
403 if (vtd_is_frcd_set(s
, i
)) {
404 ppf_mask
= VTD_FSTS_PPF
;
408 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, VTD_FSTS_PPF
, ppf_mask
);
409 trace_vtd_fsts_ppf(!!ppf_mask
);
412 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState
*s
, uint16_t index
)
414 /* Each reg is 128-bit */
415 hwaddr addr
= DMAR_FRCD_REG_OFFSET
+ (((uint64_t)index
) << 4);
416 addr
+= 8; /* Access the high 64-bit half */
418 assert(index
< DMAR_FRCD_REG_NR
);
420 vtd_set_clear_mask_quad(s
, addr
, 0, VTD_FRCD_F
);
421 vtd_update_fsts_ppf(s
);
424 /* Must not update F field now, should be done later */
425 static void vtd_record_frcd(IntelIOMMUState
*s
, uint16_t index
,
426 uint16_t source_id
, hwaddr addr
,
427 VTDFaultReason fault
, bool is_write
)
430 hwaddr frcd_reg_addr
= DMAR_FRCD_REG_OFFSET
+ (((uint64_t)index
) << 4);
432 assert(index
< DMAR_FRCD_REG_NR
);
434 lo
= VTD_FRCD_FI(addr
);
435 hi
= VTD_FRCD_SID(source_id
) | VTD_FRCD_FR(fault
);
439 vtd_set_quad_raw(s
, frcd_reg_addr
, lo
);
440 vtd_set_quad_raw(s
, frcd_reg_addr
+ 8, hi
);
442 trace_vtd_frr_new(index
, hi
, lo
);
445 /* Try to collapse multiple pending faults from the same requester */
446 static bool vtd_try_collapse_fault(IntelIOMMUState
*s
, uint16_t source_id
)
450 hwaddr addr
= DMAR_FRCD_REG_OFFSET
+ 8; /* The high 64-bit half */
452 for (i
= 0; i
< DMAR_FRCD_REG_NR
; i
++) {
453 frcd_reg
= vtd_get_quad_raw(s
, addr
);
454 if ((frcd_reg
& VTD_FRCD_F
) &&
455 ((frcd_reg
& VTD_FRCD_SID_MASK
) == source_id
)) {
458 addr
+= 16; /* 128-bit for each */
463 /* Log and report an DMAR (address translation) fault to software */
464 static void vtd_report_dmar_fault(IntelIOMMUState
*s
, uint16_t source_id
,
465 hwaddr addr
, VTDFaultReason fault
,
468 uint32_t fsts_reg
= vtd_get_long_raw(s
, DMAR_FSTS_REG
);
470 assert(fault
< VTD_FR_MAX
);
472 if (fault
== VTD_FR_RESERVED_ERR
) {
473 /* This is not a normal fault reason case. Drop it. */
477 trace_vtd_dmar_fault(source_id
, fault
, addr
, is_write
);
479 if (fsts_reg
& VTD_FSTS_PFO
) {
480 error_report_once("New fault is not recorded due to "
481 "Primary Fault Overflow");
485 if (vtd_try_collapse_fault(s
, source_id
)) {
486 error_report_once("New fault is not recorded due to "
487 "compression of faults");
491 if (vtd_is_frcd_set(s
, s
->next_frcd_reg
)) {
492 error_report_once("Next Fault Recording Reg is used, "
493 "new fault is not recorded, set PFO field");
494 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, 0, VTD_FSTS_PFO
);
498 vtd_record_frcd(s
, s
->next_frcd_reg
, source_id
, addr
, fault
, is_write
);
500 if (fsts_reg
& VTD_FSTS_PPF
) {
501 error_report_once("There are pending faults already, "
502 "fault event is not generated");
503 vtd_set_frcd_and_update_ppf(s
, s
->next_frcd_reg
);
505 if (s
->next_frcd_reg
== DMAR_FRCD_REG_NR
) {
506 s
->next_frcd_reg
= 0;
509 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, VTD_FSTS_FRI_MASK
,
510 VTD_FSTS_FRI(s
->next_frcd_reg
));
511 vtd_set_frcd_and_update_ppf(s
, s
->next_frcd_reg
); /* Will set PPF */
513 if (s
->next_frcd_reg
== DMAR_FRCD_REG_NR
) {
514 s
->next_frcd_reg
= 0;
516 /* This case actually cause the PPF to be Set.
517 * So generate fault event (interrupt).
519 vtd_generate_fault_event(s
, fsts_reg
);
523 /* Handle Invalidation Queue Errors of queued invalidation interface error
526 static void vtd_handle_inv_queue_error(IntelIOMMUState
*s
)
528 uint32_t fsts_reg
= vtd_get_long_raw(s
, DMAR_FSTS_REG
);
530 vtd_set_clear_mask_long(s
, DMAR_FSTS_REG
, 0, VTD_FSTS_IQE
);
531 vtd_generate_fault_event(s
, fsts_reg
);
534 /* Set the IWC field and try to generate an invalidation completion interrupt */
535 static void vtd_generate_completion_event(IntelIOMMUState
*s
)
537 if (vtd_get_long_raw(s
, DMAR_ICS_REG
) & VTD_ICS_IWC
) {
538 trace_vtd_inv_desc_wait_irq("One pending, skip current");
541 vtd_set_clear_mask_long(s
, DMAR_ICS_REG
, 0, VTD_ICS_IWC
);
542 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, 0, VTD_IECTL_IP
);
543 if (vtd_get_long_raw(s
, DMAR_IECTL_REG
) & VTD_IECTL_IM
) {
544 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
545 "new event not generated");
548 /* Generate the interrupt event */
549 trace_vtd_inv_desc_wait_irq("Generating complete event");
550 vtd_generate_interrupt(s
, DMAR_IEADDR_REG
, DMAR_IEDATA_REG
);
551 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, VTD_IECTL_IP
, 0);
555 static inline bool vtd_root_entry_present(IntelIOMMUState
*s
,
559 if (s
->root_scalable
&& devfn
> UINT8_MAX
/ 2) {
560 return re
->hi
& VTD_ROOT_ENTRY_P
;
563 return re
->lo
& VTD_ROOT_ENTRY_P
;
566 static int vtd_get_root_entry(IntelIOMMUState
*s
, uint8_t index
,
571 addr
= s
->root
+ index
* sizeof(*re
);
572 if (dma_memory_read(&address_space_memory
, addr
, re
, sizeof(*re
))) {
574 return -VTD_FR_ROOT_TABLE_INV
;
576 re
->lo
= le64_to_cpu(re
->lo
);
577 re
->hi
= le64_to_cpu(re
->hi
);
581 static inline bool vtd_ce_present(VTDContextEntry
*context
)
583 return context
->lo
& VTD_CONTEXT_ENTRY_P
;
586 static int vtd_get_context_entry_from_root(IntelIOMMUState
*s
,
591 dma_addr_t addr
, ce_size
;
593 /* we have checked that root entry is present */
594 ce_size
= s
->root_scalable
? VTD_CTX_ENTRY_SCALABLE_SIZE
:
595 VTD_CTX_ENTRY_LEGACY_SIZE
;
597 if (s
->root_scalable
&& index
> UINT8_MAX
/ 2) {
598 index
= index
& (~VTD_DEVFN_CHECK_MASK
);
599 addr
= re
->hi
& VTD_ROOT_ENTRY_CTP
;
601 addr
= re
->lo
& VTD_ROOT_ENTRY_CTP
;
604 addr
= addr
+ index
* ce_size
;
605 if (dma_memory_read(&address_space_memory
, addr
, ce
, ce_size
)) {
606 return -VTD_FR_CONTEXT_TABLE_INV
;
609 ce
->lo
= le64_to_cpu(ce
->lo
);
610 ce
->hi
= le64_to_cpu(ce
->hi
);
611 if (ce_size
== VTD_CTX_ENTRY_SCALABLE_SIZE
) {
612 ce
->val
[2] = le64_to_cpu(ce
->val
[2]);
613 ce
->val
[3] = le64_to_cpu(ce
->val
[3]);
618 static inline dma_addr_t
vtd_ce_get_slpt_base(VTDContextEntry
*ce
)
620 return ce
->lo
& VTD_CONTEXT_ENTRY_SLPTPTR
;
623 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte
, uint8_t aw
)
625 return slpte
& VTD_SL_PT_BASE_ADDR_MASK(aw
);
628 /* Whether the pte indicates the address of the page frame */
629 static inline bool vtd_is_last_slpte(uint64_t slpte
, uint32_t level
)
631 return level
== VTD_SL_PT_LEVEL
|| (slpte
& VTD_SL_PT_PAGE_SIZE_MASK
);
634 /* Get the content of a spte located in @base_addr[@index] */
635 static uint64_t vtd_get_slpte(dma_addr_t base_addr
, uint32_t index
)
639 assert(index
< VTD_SL_PT_ENTRY_NR
);
641 if (dma_memory_read(&address_space_memory
,
642 base_addr
+ index
* sizeof(slpte
), &slpte
,
644 slpte
= (uint64_t)-1;
647 slpte
= le64_to_cpu(slpte
);
651 /* Given an iova and the level of paging structure, return the offset
654 static inline uint32_t vtd_iova_level_offset(uint64_t iova
, uint32_t level
)
656 return (iova
>> vtd_slpt_level_shift(level
)) &
657 ((1ULL << VTD_SL_LEVEL_BITS
) - 1);
660 /* Check Capability Register to see if the @level of page-table is supported */
661 static inline bool vtd_is_level_supported(IntelIOMMUState
*s
, uint32_t level
)
663 return VTD_CAP_SAGAW_MASK
& s
->cap
&
664 (1ULL << (level
- 2 + VTD_CAP_SAGAW_SHIFT
));
667 /* Return true if check passed, otherwise false */
668 static inline bool vtd_pe_type_check(X86IOMMUState
*x86_iommu
,
671 switch (VTD_PE_GET_TYPE(pe
)) {
672 case VTD_SM_PASID_ENTRY_FLT
:
673 case VTD_SM_PASID_ENTRY_SLT
:
674 case VTD_SM_PASID_ENTRY_NESTED
:
676 case VTD_SM_PASID_ENTRY_PT
:
677 if (!x86_iommu
->pt_supported
) {
688 static inline bool vtd_pdire_present(VTDPASIDDirEntry
*pdire
)
690 return pdire
->val
& 1;
694 * Caller of this function should check present bit if wants
695 * to use pdir entry for further usage except for fpd bit check.
697 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base
,
699 VTDPASIDDirEntry
*pdire
)
702 dma_addr_t addr
, entry_size
;
704 index
= VTD_PASID_DIR_INDEX(pasid
);
705 entry_size
= VTD_PASID_DIR_ENTRY_SIZE
;
706 addr
= pasid_dir_base
+ index
* entry_size
;
707 if (dma_memory_read(&address_space_memory
, addr
, pdire
, entry_size
)) {
708 return -VTD_FR_PASID_TABLE_INV
;
714 static inline bool vtd_pe_present(VTDPASIDEntry
*pe
)
716 return pe
->val
[0] & VTD_PASID_ENTRY_P
;
719 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState
*s
,
725 dma_addr_t entry_size
;
726 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
728 index
= VTD_PASID_TABLE_INDEX(pasid
);
729 entry_size
= VTD_PASID_ENTRY_SIZE
;
730 addr
= addr
+ index
* entry_size
;
731 if (dma_memory_read(&address_space_memory
, addr
, pe
, entry_size
)) {
732 return -VTD_FR_PASID_TABLE_INV
;
735 /* Do translation type check */
736 if (!vtd_pe_type_check(x86_iommu
, pe
)) {
737 return -VTD_FR_PASID_TABLE_INV
;
740 if (!vtd_is_level_supported(s
, VTD_PE_GET_LEVEL(pe
))) {
741 return -VTD_FR_PASID_TABLE_INV
;
748 * Caller of this function should check present bit if wants
749 * to use pasid entry for further usage except for fpd bit check.
751 static int vtd_get_pe_from_pdire(IntelIOMMUState
*s
,
753 VTDPASIDDirEntry
*pdire
,
756 dma_addr_t addr
= pdire
->val
& VTD_PASID_TABLE_BASE_ADDR_MASK
;
758 return vtd_get_pe_in_pasid_leaf_table(s
, pasid
, addr
, pe
);
762 * This function gets a pasid entry from a specified pasid
763 * table (includes dir and leaf table) with a specified pasid.
764 * Sanity check should be done to ensure return a present
765 * pasid entry to caller.
767 static int vtd_get_pe_from_pasid_table(IntelIOMMUState
*s
,
768 dma_addr_t pasid_dir_base
,
773 VTDPASIDDirEntry pdire
;
775 ret
= vtd_get_pdire_from_pdir_table(pasid_dir_base
,
781 if (!vtd_pdire_present(&pdire
)) {
782 return -VTD_FR_PASID_TABLE_INV
;
785 ret
= vtd_get_pe_from_pdire(s
, pasid
, &pdire
, pe
);
790 if (!vtd_pe_present(pe
)) {
791 return -VTD_FR_PASID_TABLE_INV
;
797 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState
*s
,
802 dma_addr_t pasid_dir_base
;
805 pasid
= VTD_CE_GET_RID2PASID(ce
);
806 pasid_dir_base
= VTD_CE_GET_PASID_DIR_TABLE(ce
);
807 ret
= vtd_get_pe_from_pasid_table(s
, pasid_dir_base
, pasid
, pe
);
812 static int vtd_ce_get_pasid_fpd(IntelIOMMUState
*s
,
818 dma_addr_t pasid_dir_base
;
819 VTDPASIDDirEntry pdire
;
822 pasid
= VTD_CE_GET_RID2PASID(ce
);
823 pasid_dir_base
= VTD_CE_GET_PASID_DIR_TABLE(ce
);
826 * No present bit check since fpd is meaningful even
827 * if the present bit is clear.
829 ret
= vtd_get_pdire_from_pdir_table(pasid_dir_base
, pasid
, &pdire
);
834 if (pdire
.val
& VTD_PASID_DIR_FPD
) {
839 if (!vtd_pdire_present(&pdire
)) {
840 return -VTD_FR_PASID_TABLE_INV
;
844 * No present bit check since fpd is meaningful even
845 * if the present bit is clear.
847 ret
= vtd_get_pe_from_pdire(s
, pasid
, &pdire
, &pe
);
852 if (pe
.val
[0] & VTD_PASID_ENTRY_FPD
) {
859 /* Get the page-table level that hardware should use for the second-level
860 * page-table walk from the Address Width field of context-entry.
862 static inline uint32_t vtd_ce_get_level(VTDContextEntry
*ce
)
864 return 2 + (ce
->hi
& VTD_CONTEXT_ENTRY_AW
);
867 static uint32_t vtd_get_iova_level(IntelIOMMUState
*s
,
872 if (s
->root_scalable
) {
873 vtd_ce_get_rid2pasid_entry(s
, ce
, &pe
);
874 return VTD_PE_GET_LEVEL(&pe
);
877 return vtd_ce_get_level(ce
);
880 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry
*ce
)
882 return 30 + (ce
->hi
& VTD_CONTEXT_ENTRY_AW
) * 9;
885 static uint32_t vtd_get_iova_agaw(IntelIOMMUState
*s
,
890 if (s
->root_scalable
) {
891 vtd_ce_get_rid2pasid_entry(s
, ce
, &pe
);
892 return 30 + ((pe
.val
[0] >> 2) & VTD_SM_PASID_ENTRY_AW
) * 9;
895 return vtd_ce_get_agaw(ce
);
898 static inline uint32_t vtd_ce_get_type(VTDContextEntry
*ce
)
900 return ce
->lo
& VTD_CONTEXT_ENTRY_TT
;
903 /* Only for Legacy Mode. Return true if check passed, otherwise false */
904 static inline bool vtd_ce_type_check(X86IOMMUState
*x86_iommu
,
907 switch (vtd_ce_get_type(ce
)) {
908 case VTD_CONTEXT_TT_MULTI_LEVEL
:
909 /* Always supported */
911 case VTD_CONTEXT_TT_DEV_IOTLB
:
912 if (!x86_iommu
->dt_supported
) {
913 error_report_once("%s: DT specified but not supported", __func__
);
917 case VTD_CONTEXT_TT_PASS_THROUGH
:
918 if (!x86_iommu
->pt_supported
) {
919 error_report_once("%s: PT specified but not supported", __func__
);
925 error_report_once("%s: unknown ce type: %"PRIu32
, __func__
,
926 vtd_ce_get_type(ce
));
932 static inline uint64_t vtd_iova_limit(IntelIOMMUState
*s
,
933 VTDContextEntry
*ce
, uint8_t aw
)
935 uint32_t ce_agaw
= vtd_get_iova_agaw(s
, ce
);
936 return 1ULL << MIN(ce_agaw
, aw
);
939 /* Return true if IOVA passes range check, otherwise false. */
940 static inline bool vtd_iova_range_check(IntelIOMMUState
*s
,
941 uint64_t iova
, VTDContextEntry
*ce
,
945 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
946 * in CAP_REG and AW in context-entry.
948 return !(iova
& ~(vtd_iova_limit(s
, ce
, aw
) - 1));
951 static dma_addr_t
vtd_get_iova_pgtbl_base(IntelIOMMUState
*s
,
956 if (s
->root_scalable
) {
957 vtd_ce_get_rid2pasid_entry(s
, ce
, &pe
);
958 return pe
.val
[0] & VTD_SM_PASID_ENTRY_SLPTPTR
;
961 return vtd_ce_get_slpt_base(ce
);
965 * Rsvd field masks for spte:
966 * vtd_spte_rsvd 4k pages
967 * vtd_spte_rsvd_large large pages
969 static uint64_t vtd_spte_rsvd
[5];
970 static uint64_t vtd_spte_rsvd_large
[5];
972 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte
, uint32_t level
)
974 uint64_t rsvd_mask
= vtd_spte_rsvd
[level
];
976 if ((level
== VTD_SL_PD_LEVEL
|| level
== VTD_SL_PDP_LEVEL
) &&
977 (slpte
& VTD_SL_PT_PAGE_SIZE_MASK
)) {
979 rsvd_mask
= vtd_spte_rsvd_large
[level
];
982 return slpte
& rsvd_mask
;
985 /* Find the VTD address space associated with a given bus number */
986 static VTDBus
*vtd_find_as_from_bus_num(IntelIOMMUState
*s
, uint8_t bus_num
)
988 VTDBus
*vtd_bus
= s
->vtd_as_by_bus_num
[bus_num
];
996 * Iterate over the registered buses to find the one which
997 * currently holds this bus number and update the bus_num
1000 g_hash_table_iter_init(&iter
, s
->vtd_as_by_busptr
);
1001 while (g_hash_table_iter_next(&iter
, NULL
, (void **)&vtd_bus
)) {
1002 if (pci_bus_num(vtd_bus
->bus
) == bus_num
) {
1003 s
->vtd_as_by_bus_num
[bus_num
] = vtd_bus
;
1011 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1012 * of the translation, can be used for deciding the size of large page.
1014 static int vtd_iova_to_slpte(IntelIOMMUState
*s
, VTDContextEntry
*ce
,
1015 uint64_t iova
, bool is_write
,
1016 uint64_t *slptep
, uint32_t *slpte_level
,
1017 bool *reads
, bool *writes
, uint8_t aw_bits
)
1019 dma_addr_t addr
= vtd_get_iova_pgtbl_base(s
, ce
);
1020 uint32_t level
= vtd_get_iova_level(s
, ce
);
1023 uint64_t access_right_check
;
1025 if (!vtd_iova_range_check(s
, iova
, ce
, aw_bits
)) {
1026 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64
")",
1028 return -VTD_FR_ADDR_BEYOND_MGAW
;
1031 /* FIXME: what is the Atomics request here? */
1032 access_right_check
= is_write
? VTD_SL_W
: VTD_SL_R
;
1035 offset
= vtd_iova_level_offset(iova
, level
);
1036 slpte
= vtd_get_slpte(addr
, offset
);
1038 if (slpte
== (uint64_t)-1) {
1039 error_report_once("%s: detected read error on DMAR slpte "
1040 "(iova=0x%" PRIx64
")", __func__
, iova
);
1041 if (level
== vtd_get_iova_level(s
, ce
)) {
1042 /* Invalid programming of context-entry */
1043 return -VTD_FR_CONTEXT_ENTRY_INV
;
1045 return -VTD_FR_PAGING_ENTRY_INV
;
1048 *reads
= (*reads
) && (slpte
& VTD_SL_R
);
1049 *writes
= (*writes
) && (slpte
& VTD_SL_W
);
1050 if (!(slpte
& access_right_check
)) {
1051 error_report_once("%s: detected slpte permission error "
1052 "(iova=0x%" PRIx64
", level=0x%" PRIx32
", "
1053 "slpte=0x%" PRIx64
", write=%d)", __func__
,
1054 iova
, level
, slpte
, is_write
);
1055 return is_write
? -VTD_FR_WRITE
: -VTD_FR_READ
;
1057 if (vtd_slpte_nonzero_rsvd(slpte
, level
)) {
1058 error_report_once("%s: detected splte reserve non-zero "
1059 "iova=0x%" PRIx64
", level=0x%" PRIx32
1060 "slpte=0x%" PRIx64
")", __func__
, iova
,
1062 return -VTD_FR_PAGING_ENTRY_RSVD
;
1065 if (vtd_is_last_slpte(slpte
, level
)) {
1067 *slpte_level
= level
;
1070 addr
= vtd_get_slpte_addr(slpte
, aw_bits
);
1075 typedef int (*vtd_page_walk_hook
)(IOMMUTLBEvent
*event
, void *private);
1078 * Constant information used during page walking
1080 * @hook_fn: hook func to be called when detected page
1081 * @private: private data to be passed into hook func
1082 * @notify_unmap: whether we should notify invalid entries
1083 * @as: VT-d address space of the device
1084 * @aw: maximum address width
1085 * @domain: domain ID of the page walk
1088 VTDAddressSpace
*as
;
1089 vtd_page_walk_hook hook_fn
;
1094 } vtd_page_walk_info
;
1096 static int vtd_page_walk_one(IOMMUTLBEvent
*event
, vtd_page_walk_info
*info
)
1098 VTDAddressSpace
*as
= info
->as
;
1099 vtd_page_walk_hook hook_fn
= info
->hook_fn
;
1100 void *private = info
->private;
1101 IOMMUTLBEntry
*entry
= &event
->entry
;
1103 .iova
= entry
->iova
,
1104 .size
= entry
->addr_mask
,
1105 .translated_addr
= entry
->translated_addr
,
1106 .perm
= entry
->perm
,
1108 DMAMap
*mapped
= iova_tree_find(as
->iova_tree
, &target
);
1110 if (event
->type
== IOMMU_NOTIFIER_UNMAP
&& !info
->notify_unmap
) {
1111 trace_vtd_page_walk_one_skip_unmap(entry
->iova
, entry
->addr_mask
);
1117 /* Update local IOVA mapped ranges */
1118 if (event
->type
== IOMMU_NOTIFIER_MAP
) {
1120 /* If it's exactly the same translation, skip */
1121 if (!memcmp(mapped
, &target
, sizeof(target
))) {
1122 trace_vtd_page_walk_one_skip_map(entry
->iova
, entry
->addr_mask
,
1123 entry
->translated_addr
);
1127 * Translation changed. Normally this should not
1128 * happen, but it can happen when with buggy guest
1129 * OSes. Note that there will be a small window that
1130 * we don't have map at all. But that's the best
1131 * effort we can do. The ideal way to emulate this is
1132 * atomically modify the PTE to follow what has
1133 * changed, but we can't. One example is that vfio
1134 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1135 * interface to modify a mapping (meanwhile it seems
1136 * meaningless to even provide one). Anyway, let's
1137 * mark this as a TODO in case one day we'll have
1138 * a better solution.
1140 IOMMUAccessFlags cache_perm
= entry
->perm
;
1143 /* Emulate an UNMAP */
1144 event
->type
= IOMMU_NOTIFIER_UNMAP
;
1145 entry
->perm
= IOMMU_NONE
;
1146 trace_vtd_page_walk_one(info
->domain_id
,
1148 entry
->translated_addr
,
1151 ret
= hook_fn(event
, private);
1155 /* Drop any existing mapping */
1156 iova_tree_remove(as
->iova_tree
, &target
);
1157 /* Recover the correct type */
1158 event
->type
= IOMMU_NOTIFIER_MAP
;
1159 entry
->perm
= cache_perm
;
1162 iova_tree_insert(as
->iova_tree
, &target
);
1165 /* Skip since we didn't map this range at all */
1166 trace_vtd_page_walk_one_skip_unmap(entry
->iova
, entry
->addr_mask
);
1169 iova_tree_remove(as
->iova_tree
, &target
);
1172 trace_vtd_page_walk_one(info
->domain_id
, entry
->iova
,
1173 entry
->translated_addr
, entry
->addr_mask
,
1175 return hook_fn(event
, private);
1179 * vtd_page_walk_level - walk over specific level for IOVA range
1181 * @addr: base GPA addr to start the walk
1182 * @start: IOVA range start address
1183 * @end: IOVA range end address (start <= addr < end)
1184 * @read: whether parent level has read permission
1185 * @write: whether parent level has write permission
1186 * @info: constant information for the page walk
1188 static int vtd_page_walk_level(dma_addr_t addr
, uint64_t start
,
1189 uint64_t end
, uint32_t level
, bool read
,
1190 bool write
, vtd_page_walk_info
*info
)
1192 bool read_cur
, write_cur
, entry_valid
;
1195 uint64_t subpage_size
, subpage_mask
;
1196 IOMMUTLBEvent event
;
1197 uint64_t iova
= start
;
1201 trace_vtd_page_walk_level(addr
, level
, start
, end
);
1203 subpage_size
= 1ULL << vtd_slpt_level_shift(level
);
1204 subpage_mask
= vtd_slpt_level_page_mask(level
);
1206 while (iova
< end
) {
1207 iova_next
= (iova
& subpage_mask
) + subpage_size
;
1209 offset
= vtd_iova_level_offset(iova
, level
);
1210 slpte
= vtd_get_slpte(addr
, offset
);
1212 if (slpte
== (uint64_t)-1) {
1213 trace_vtd_page_walk_skip_read(iova
, iova_next
);
1217 if (vtd_slpte_nonzero_rsvd(slpte
, level
)) {
1218 trace_vtd_page_walk_skip_reserve(iova
, iova_next
);
1222 /* Permissions are stacked with parents' */
1223 read_cur
= read
&& (slpte
& VTD_SL_R
);
1224 write_cur
= write
&& (slpte
& VTD_SL_W
);
1227 * As long as we have either read/write permission, this is a
1228 * valid entry. The rule works for both page entries and page
1231 entry_valid
= read_cur
| write_cur
;
1233 if (!vtd_is_last_slpte(slpte
, level
) && entry_valid
) {
1235 * This is a valid PDE (or even bigger than PDE). We need
1236 * to walk one further level.
1238 ret
= vtd_page_walk_level(vtd_get_slpte_addr(slpte
, info
->aw
),
1239 iova
, MIN(iova_next
, end
), level
- 1,
1240 read_cur
, write_cur
, info
);
1243 * This means we are either:
1245 * (1) the real page entry (either 4K page, or huge page)
1246 * (2) the whole range is invalid
1248 * In either case, we send an IOTLB notification down.
1250 event
.entry
.target_as
= &address_space_memory
;
1251 event
.entry
.iova
= iova
& subpage_mask
;
1252 event
.entry
.perm
= IOMMU_ACCESS_FLAG(read_cur
, write_cur
);
1253 event
.entry
.addr_mask
= ~subpage_mask
;
1254 /* NOTE: this is only meaningful if entry_valid == true */
1255 event
.entry
.translated_addr
= vtd_get_slpte_addr(slpte
, info
->aw
);
1256 event
.type
= event
.entry
.perm
? IOMMU_NOTIFIER_MAP
:
1257 IOMMU_NOTIFIER_UNMAP
;
1258 ret
= vtd_page_walk_one(&event
, info
);
1273 * vtd_page_walk - walk specific IOVA range, and call the hook
1275 * @s: intel iommu state
1276 * @ce: context entry to walk upon
1277 * @start: IOVA address to start the walk
1278 * @end: IOVA range end address (start <= addr < end)
1279 * @info: page walking information struct
1281 static int vtd_page_walk(IntelIOMMUState
*s
, VTDContextEntry
*ce
,
1282 uint64_t start
, uint64_t end
,
1283 vtd_page_walk_info
*info
)
1285 dma_addr_t addr
= vtd_get_iova_pgtbl_base(s
, ce
);
1286 uint32_t level
= vtd_get_iova_level(s
, ce
);
1288 if (!vtd_iova_range_check(s
, start
, ce
, info
->aw
)) {
1289 return -VTD_FR_ADDR_BEYOND_MGAW
;
1292 if (!vtd_iova_range_check(s
, end
, ce
, info
->aw
)) {
1293 /* Fix end so that it reaches the maximum */
1294 end
= vtd_iova_limit(s
, ce
, info
->aw
);
1297 return vtd_page_walk_level(addr
, start
, end
, level
, true, true, info
);
1300 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState
*s
,
1303 /* Legacy Mode reserved bits check */
1304 if (!s
->root_scalable
&&
1305 (re
->hi
|| (re
->lo
& VTD_ROOT_ENTRY_RSVD(s
->aw_bits
))))
1308 /* Scalable Mode reserved bits check */
1309 if (s
->root_scalable
&&
1310 ((re
->lo
& VTD_ROOT_ENTRY_RSVD(s
->aw_bits
)) ||
1311 (re
->hi
& VTD_ROOT_ENTRY_RSVD(s
->aw_bits
))))
1317 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1319 __func__
, re
->hi
, re
->lo
);
1320 return -VTD_FR_ROOT_ENTRY_RSVD
;
1323 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState
*s
,
1324 VTDContextEntry
*ce
)
1326 if (!s
->root_scalable
&&
1327 (ce
->hi
& VTD_CONTEXT_ENTRY_RSVD_HI
||
1328 ce
->lo
& VTD_CONTEXT_ENTRY_RSVD_LO(s
->aw_bits
))) {
1329 error_report_once("%s: invalid context entry: hi=%"PRIx64
1330 ", lo=%"PRIx64
" (reserved nonzero)",
1331 __func__
, ce
->hi
, ce
->lo
);
1332 return -VTD_FR_CONTEXT_ENTRY_RSVD
;
1335 if (s
->root_scalable
&&
1336 (ce
->val
[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s
->aw_bits
) ||
1337 ce
->val
[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1
||
1340 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1343 ", val[0]=%"PRIx64
" (reserved nonzero)",
1344 __func__
, ce
->val
[3], ce
->val
[2],
1345 ce
->val
[1], ce
->val
[0]);
1346 return -VTD_FR_CONTEXT_ENTRY_RSVD
;
1352 static int vtd_ce_rid2pasid_check(IntelIOMMUState
*s
,
1353 VTDContextEntry
*ce
)
1358 * Make sure in Scalable Mode, a present context entry
1359 * has valid rid2pasid setting, which includes valid
1360 * rid2pasid field and corresponding pasid entry setting
1362 return vtd_ce_get_rid2pasid_entry(s
, ce
, &pe
);
1365 /* Map a device to its corresponding domain (context-entry) */
1366 static int vtd_dev_to_context_entry(IntelIOMMUState
*s
, uint8_t bus_num
,
1367 uint8_t devfn
, VTDContextEntry
*ce
)
1371 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
1373 ret_fr
= vtd_get_root_entry(s
, bus_num
, &re
);
1378 if (!vtd_root_entry_present(s
, &re
, devfn
)) {
1379 /* Not error - it's okay we don't have root entry. */
1380 trace_vtd_re_not_present(bus_num
);
1381 return -VTD_FR_ROOT_ENTRY_P
;
1384 ret_fr
= vtd_root_entry_rsvd_bits_check(s
, &re
);
1389 ret_fr
= vtd_get_context_entry_from_root(s
, &re
, devfn
, ce
);
1394 if (!vtd_ce_present(ce
)) {
1395 /* Not error - it's okay we don't have context entry. */
1396 trace_vtd_ce_not_present(bus_num
, devfn
);
1397 return -VTD_FR_CONTEXT_ENTRY_P
;
1400 ret_fr
= vtd_context_entry_rsvd_bits_check(s
, ce
);
1405 /* Check if the programming of context-entry is valid */
1406 if (!s
->root_scalable
&&
1407 !vtd_is_level_supported(s
, vtd_ce_get_level(ce
))) {
1408 error_report_once("%s: invalid context entry: hi=%"PRIx64
1409 ", lo=%"PRIx64
" (level %d not supported)",
1410 __func__
, ce
->hi
, ce
->lo
,
1411 vtd_ce_get_level(ce
));
1412 return -VTD_FR_CONTEXT_ENTRY_INV
;
1415 if (!s
->root_scalable
) {
1416 /* Do translation type check */
1417 if (!vtd_ce_type_check(x86_iommu
, ce
)) {
1418 /* Errors dumped in vtd_ce_type_check() */
1419 return -VTD_FR_CONTEXT_ENTRY_INV
;
1423 * Check if the programming of context-entry.rid2pasid
1424 * and corresponding pasid setting is valid, and thus
1425 * avoids to check pasid entry fetching result in future
1426 * helper function calling.
1428 ret_fr
= vtd_ce_rid2pasid_check(s
, ce
);
1437 static int vtd_sync_shadow_page_hook(IOMMUTLBEvent
*event
,
1440 memory_region_notify_iommu(private, 0, *event
);
1444 static uint16_t vtd_get_domain_id(IntelIOMMUState
*s
,
1445 VTDContextEntry
*ce
)
1449 if (s
->root_scalable
) {
1450 vtd_ce_get_rid2pasid_entry(s
, ce
, &pe
);
1451 return VTD_SM_PASID_ENTRY_DID(pe
.val
[1]);
1454 return VTD_CONTEXT_ENTRY_DID(ce
->hi
);
1457 static int vtd_sync_shadow_page_table_range(VTDAddressSpace
*vtd_as
,
1458 VTDContextEntry
*ce
,
1459 hwaddr addr
, hwaddr size
)
1461 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
1462 vtd_page_walk_info info
= {
1463 .hook_fn
= vtd_sync_shadow_page_hook
,
1464 .private = (void *)&vtd_as
->iommu
,
1465 .notify_unmap
= true,
1468 .domain_id
= vtd_get_domain_id(s
, ce
),
1471 return vtd_page_walk(s
, ce
, addr
, addr
+ size
, &info
);
1474 static int vtd_sync_shadow_page_table(VTDAddressSpace
*vtd_as
)
1480 if (!(vtd_as
->iommu
.iommu_notify_flags
& IOMMU_NOTIFIER_IOTLB_EVENTS
)) {
1484 ret
= vtd_dev_to_context_entry(vtd_as
->iommu_state
,
1485 pci_bus_num(vtd_as
->bus
),
1486 vtd_as
->devfn
, &ce
);
1488 if (ret
== -VTD_FR_CONTEXT_ENTRY_P
) {
1490 * It's a valid scenario to have a context entry that is
1491 * not present. For example, when a device is removed
1492 * from an existing domain then the context entry will be
1493 * zeroed by the guest before it was put into another
1494 * domain. When this happens, instead of synchronizing
1495 * the shadow pages we should invalidate all existing
1496 * mappings and notify the backends.
1498 IOMMU_NOTIFIER_FOREACH(n
, &vtd_as
->iommu
) {
1499 vtd_address_space_unmap(vtd_as
, n
);
1506 return vtd_sync_shadow_page_table_range(vtd_as
, &ce
, 0, UINT64_MAX
);
1510 * Check if specific device is configured to bypass address
1511 * translation for DMA requests. In Scalable Mode, bypass
1512 * 1st-level translation or 2nd-level translation, it depends
1515 static bool vtd_dev_pt_enabled(VTDAddressSpace
*as
)
1524 s
= as
->iommu_state
;
1525 ret
= vtd_dev_to_context_entry(s
, pci_bus_num(as
->bus
),
1529 * Possibly failed to parse the context entry for some reason
1530 * (e.g., during init, or any guest configuration errors on
1531 * context entries). We should assume PT not enabled for
1537 if (s
->root_scalable
) {
1538 ret
= vtd_ce_get_rid2pasid_entry(s
, &ce
, &pe
);
1540 error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32
,
1544 return (VTD_PE_GET_TYPE(&pe
) == VTD_SM_PASID_ENTRY_PT
);
1547 return (vtd_ce_get_type(&ce
) == VTD_CONTEXT_TT_PASS_THROUGH
);
1550 /* Return whether the device is using IOMMU translation. */
1551 static bool vtd_switch_address_space(VTDAddressSpace
*as
)
1554 /* Whether we need to take the BQL on our own */
1555 bool take_bql
= !qemu_mutex_iothread_locked();
1559 use_iommu
= as
->iommu_state
->dmar_enabled
&& !vtd_dev_pt_enabled(as
);
1561 trace_vtd_switch_address_space(pci_bus_num(as
->bus
),
1562 VTD_PCI_SLOT(as
->devfn
),
1563 VTD_PCI_FUNC(as
->devfn
),
1567 * It's possible that we reach here without BQL, e.g., when called
1568 * from vtd_pt_enable_fast_path(). However the memory APIs need
1569 * it. We'd better make sure we have had it already, or, take it.
1572 qemu_mutex_lock_iothread();
1575 /* Turn off first then on the other */
1577 memory_region_set_enabled(&as
->nodmar
, false);
1578 memory_region_set_enabled(MEMORY_REGION(&as
->iommu
), true);
1580 memory_region_set_enabled(MEMORY_REGION(&as
->iommu
), false);
1581 memory_region_set_enabled(&as
->nodmar
, true);
1585 qemu_mutex_unlock_iothread();
1591 static void vtd_switch_address_space_all(IntelIOMMUState
*s
)
1593 GHashTableIter iter
;
1597 g_hash_table_iter_init(&iter
, s
->vtd_as_by_busptr
);
1598 while (g_hash_table_iter_next(&iter
, NULL
, (void **)&vtd_bus
)) {
1599 for (i
= 0; i
< PCI_DEVFN_MAX
; i
++) {
1600 if (!vtd_bus
->dev_as
[i
]) {
1603 vtd_switch_address_space(vtd_bus
->dev_as
[i
]);
1608 static inline uint16_t vtd_make_source_id(uint8_t bus_num
, uint8_t devfn
)
1610 return ((bus_num
& 0xffUL
) << 8) | (devfn
& 0xffUL
);
1613 static const bool vtd_qualified_faults
[] = {
1614 [VTD_FR_RESERVED
] = false,
1615 [VTD_FR_ROOT_ENTRY_P
] = false,
1616 [VTD_FR_CONTEXT_ENTRY_P
] = true,
1617 [VTD_FR_CONTEXT_ENTRY_INV
] = true,
1618 [VTD_FR_ADDR_BEYOND_MGAW
] = true,
1619 [VTD_FR_WRITE
] = true,
1620 [VTD_FR_READ
] = true,
1621 [VTD_FR_PAGING_ENTRY_INV
] = true,
1622 [VTD_FR_ROOT_TABLE_INV
] = false,
1623 [VTD_FR_CONTEXT_TABLE_INV
] = false,
1624 [VTD_FR_ROOT_ENTRY_RSVD
] = false,
1625 [VTD_FR_PAGING_ENTRY_RSVD
] = true,
1626 [VTD_FR_CONTEXT_ENTRY_TT
] = true,
1627 [VTD_FR_PASID_TABLE_INV
] = false,
1628 [VTD_FR_RESERVED_ERR
] = false,
1629 [VTD_FR_MAX
] = false,
1632 /* To see if a fault condition is "qualified", which is reported to software
1633 * only if the FPD field in the context-entry used to process the faulting
1636 static inline bool vtd_is_qualified_fault(VTDFaultReason fault
)
1638 return vtd_qualified_faults
[fault
];
1641 static inline bool vtd_is_interrupt_addr(hwaddr addr
)
1643 return VTD_INTERRUPT_ADDR_FIRST
<= addr
&& addr
<= VTD_INTERRUPT_ADDR_LAST
;
1646 static void vtd_pt_enable_fast_path(IntelIOMMUState
*s
, uint16_t source_id
)
1649 VTDAddressSpace
*vtd_as
;
1650 bool success
= false;
1652 vtd_bus
= vtd_find_as_from_bus_num(s
, VTD_SID_TO_BUS(source_id
));
1657 vtd_as
= vtd_bus
->dev_as
[VTD_SID_TO_DEVFN(source_id
)];
1662 if (vtd_switch_address_space(vtd_as
) == false) {
1663 /* We switched off IOMMU region successfully. */
1668 trace_vtd_pt_enable_fast_path(source_id
, success
);
1671 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1674 * Called from RCU critical section.
1676 * @bus_num: The bus number
1677 * @devfn: The devfn, which is the combined of device and function number
1678 * @is_write: The access is a write operation
1679 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1681 * Returns true if translation is successful, otherwise false.
1683 static bool vtd_do_iommu_translate(VTDAddressSpace
*vtd_as
, PCIBus
*bus
,
1684 uint8_t devfn
, hwaddr addr
, bool is_write
,
1685 IOMMUTLBEntry
*entry
)
1687 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
1689 uint8_t bus_num
= pci_bus_num(bus
);
1690 VTDContextCacheEntry
*cc_entry
;
1691 uint64_t slpte
, page_mask
;
1693 uint16_t source_id
= vtd_make_source_id(bus_num
, devfn
);
1695 bool is_fpd_set
= false;
1698 uint8_t access_flags
;
1699 VTDIOTLBEntry
*iotlb_entry
;
1702 * We have standalone memory region for interrupt addresses, we
1703 * should never receive translation requests in this region.
1705 assert(!vtd_is_interrupt_addr(addr
));
1709 cc_entry
= &vtd_as
->context_cache_entry
;
1711 /* Try to fetch slpte form IOTLB */
1712 iotlb_entry
= vtd_lookup_iotlb(s
, source_id
, addr
);
1714 trace_vtd_iotlb_page_hit(source_id
, addr
, iotlb_entry
->slpte
,
1715 iotlb_entry
->domain_id
);
1716 slpte
= iotlb_entry
->slpte
;
1717 access_flags
= iotlb_entry
->access_flags
;
1718 page_mask
= iotlb_entry
->mask
;
1722 /* Try to fetch context-entry from cache first */
1723 if (cc_entry
->context_cache_gen
== s
->context_cache_gen
) {
1724 trace_vtd_iotlb_cc_hit(bus_num
, devfn
, cc_entry
->context_entry
.hi
,
1725 cc_entry
->context_entry
.lo
,
1726 cc_entry
->context_cache_gen
);
1727 ce
= cc_entry
->context_entry
;
1728 is_fpd_set
= ce
.lo
& VTD_CONTEXT_ENTRY_FPD
;
1729 if (!is_fpd_set
&& s
->root_scalable
) {
1730 ret_fr
= vtd_ce_get_pasid_fpd(s
, &ce
, &is_fpd_set
);
1731 VTD_PE_GET_FPD_ERR(ret_fr
, is_fpd_set
, s
, source_id
, addr
, is_write
);
1734 ret_fr
= vtd_dev_to_context_entry(s
, bus_num
, devfn
, &ce
);
1735 is_fpd_set
= ce
.lo
& VTD_CONTEXT_ENTRY_FPD
;
1736 if (!ret_fr
&& !is_fpd_set
&& s
->root_scalable
) {
1737 ret_fr
= vtd_ce_get_pasid_fpd(s
, &ce
, &is_fpd_set
);
1739 VTD_PE_GET_FPD_ERR(ret_fr
, is_fpd_set
, s
, source_id
, addr
, is_write
);
1740 /* Update context-cache */
1741 trace_vtd_iotlb_cc_update(bus_num
, devfn
, ce
.hi
, ce
.lo
,
1742 cc_entry
->context_cache_gen
,
1743 s
->context_cache_gen
);
1744 cc_entry
->context_entry
= ce
;
1745 cc_entry
->context_cache_gen
= s
->context_cache_gen
;
1749 * We don't need to translate for pass-through context entries.
1750 * Also, let's ignore IOTLB caching as well for PT devices.
1752 if (vtd_ce_get_type(&ce
) == VTD_CONTEXT_TT_PASS_THROUGH
) {
1753 entry
->iova
= addr
& VTD_PAGE_MASK_4K
;
1754 entry
->translated_addr
= entry
->iova
;
1755 entry
->addr_mask
= ~VTD_PAGE_MASK_4K
;
1756 entry
->perm
= IOMMU_RW
;
1757 trace_vtd_translate_pt(source_id
, entry
->iova
);
1760 * When this happens, it means firstly caching-mode is not
1761 * enabled, and this is the first passthrough translation for
1762 * the device. Let's enable the fast path for passthrough.
1764 * When passthrough is disabled again for the device, we can
1765 * capture it via the context entry invalidation, then the
1766 * IOMMU region can be swapped back.
1768 vtd_pt_enable_fast_path(s
, source_id
);
1769 vtd_iommu_unlock(s
);
1773 ret_fr
= vtd_iova_to_slpte(s
, &ce
, addr
, is_write
, &slpte
, &level
,
1774 &reads
, &writes
, s
->aw_bits
);
1775 VTD_PE_GET_FPD_ERR(ret_fr
, is_fpd_set
, s
, source_id
, addr
, is_write
);
1777 page_mask
= vtd_slpt_level_page_mask(level
);
1778 access_flags
= IOMMU_ACCESS_FLAG(reads
, writes
);
1779 vtd_update_iotlb(s
, source_id
, vtd_get_domain_id(s
, &ce
), addr
, slpte
,
1780 access_flags
, level
);
1782 vtd_iommu_unlock(s
);
1783 entry
->iova
= addr
& page_mask
;
1784 entry
->translated_addr
= vtd_get_slpte_addr(slpte
, s
->aw_bits
) & page_mask
;
1785 entry
->addr_mask
= ~page_mask
;
1786 entry
->perm
= access_flags
;
1790 vtd_iommu_unlock(s
);
1792 entry
->translated_addr
= 0;
1793 entry
->addr_mask
= 0;
1794 entry
->perm
= IOMMU_NONE
;
1798 static void vtd_root_table_setup(IntelIOMMUState
*s
)
1800 s
->root
= vtd_get_quad_raw(s
, DMAR_RTADDR_REG
);
1801 s
->root
&= VTD_RTADDR_ADDR_MASK(s
->aw_bits
);
1803 vtd_update_scalable_state(s
);
1805 trace_vtd_reg_dmar_root(s
->root
, s
->root_scalable
);
1808 static void vtd_iec_notify_all(IntelIOMMUState
*s
, bool global
,
1809 uint32_t index
, uint32_t mask
)
1811 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s
), global
, index
, mask
);
1814 static void vtd_interrupt_remap_table_setup(IntelIOMMUState
*s
)
1817 value
= vtd_get_quad_raw(s
, DMAR_IRTA_REG
);
1818 s
->intr_size
= 1UL << ((value
& VTD_IRTA_SIZE_MASK
) + 1);
1819 s
->intr_root
= value
& VTD_IRTA_ADDR_MASK(s
->aw_bits
);
1820 s
->intr_eime
= value
& VTD_IRTA_EIME
;
1822 /* Notify global invalidation */
1823 vtd_iec_notify_all(s
, true, 0, 0);
1825 trace_vtd_reg_ir_root(s
->intr_root
, s
->intr_size
);
1828 static void vtd_iommu_replay_all(IntelIOMMUState
*s
)
1830 VTDAddressSpace
*vtd_as
;
1832 QLIST_FOREACH(vtd_as
, &s
->vtd_as_with_notifiers
, next
) {
1833 vtd_sync_shadow_page_table(vtd_as
);
1837 static void vtd_context_global_invalidate(IntelIOMMUState
*s
)
1839 trace_vtd_inv_desc_cc_global();
1840 /* Protects context cache */
1842 s
->context_cache_gen
++;
1843 if (s
->context_cache_gen
== VTD_CONTEXT_CACHE_GEN_MAX
) {
1844 vtd_reset_context_cache_locked(s
);
1846 vtd_iommu_unlock(s
);
1847 vtd_address_space_refresh_all(s
);
1849 * From VT-d spec 6.5.2.1, a global context entry invalidation
1850 * should be followed by a IOTLB global invalidation, so we should
1851 * be safe even without this. Hoewever, let's replay the region as
1852 * well to be safer, and go back here when we need finer tunes for
1853 * VT-d emulation codes.
1855 vtd_iommu_replay_all(s
);
1858 /* Do a context-cache device-selective invalidation.
1859 * @func_mask: FM field after shifting
1861 static void vtd_context_device_invalidate(IntelIOMMUState
*s
,
1867 VTDAddressSpace
*vtd_as
;
1868 uint8_t bus_n
, devfn
;
1871 trace_vtd_inv_desc_cc_devices(source_id
, func_mask
);
1873 switch (func_mask
& 3) {
1875 mask
= 0; /* No bits in the SID field masked */
1878 mask
= 4; /* Mask bit 2 in the SID field */
1881 mask
= 6; /* Mask bit 2:1 in the SID field */
1884 mask
= 7; /* Mask bit 2:0 in the SID field */
1887 g_assert_not_reached();
1891 bus_n
= VTD_SID_TO_BUS(source_id
);
1892 vtd_bus
= vtd_find_as_from_bus_num(s
, bus_n
);
1894 devfn
= VTD_SID_TO_DEVFN(source_id
);
1895 for (devfn_it
= 0; devfn_it
< PCI_DEVFN_MAX
; ++devfn_it
) {
1896 vtd_as
= vtd_bus
->dev_as
[devfn_it
];
1897 if (vtd_as
&& ((devfn_it
& mask
) == (devfn
& mask
))) {
1898 trace_vtd_inv_desc_cc_device(bus_n
, VTD_PCI_SLOT(devfn_it
),
1899 VTD_PCI_FUNC(devfn_it
));
1901 vtd_as
->context_cache_entry
.context_cache_gen
= 0;
1902 vtd_iommu_unlock(s
);
1904 * Do switch address space when needed, in case if the
1905 * device passthrough bit is switched.
1907 vtd_switch_address_space(vtd_as
);
1909 * So a device is moving out of (or moving into) a
1910 * domain, resync the shadow page table.
1911 * This won't bring bad even if we have no such
1912 * notifier registered - the IOMMU notification
1913 * framework will skip MAP notifications if that
1916 vtd_sync_shadow_page_table(vtd_as
);
1922 /* Context-cache invalidation
1923 * Returns the Context Actual Invalidation Granularity.
1924 * @val: the content of the CCMD_REG
1926 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState
*s
, uint64_t val
)
1929 uint64_t type
= val
& VTD_CCMD_CIRG_MASK
;
1932 case VTD_CCMD_DOMAIN_INVL
:
1934 case VTD_CCMD_GLOBAL_INVL
:
1935 caig
= VTD_CCMD_GLOBAL_INVL_A
;
1936 vtd_context_global_invalidate(s
);
1939 case VTD_CCMD_DEVICE_INVL
:
1940 caig
= VTD_CCMD_DEVICE_INVL_A
;
1941 vtd_context_device_invalidate(s
, VTD_CCMD_SID(val
), VTD_CCMD_FM(val
));
1945 error_report_once("%s: invalid context: 0x%" PRIx64
,
1952 static void vtd_iotlb_global_invalidate(IntelIOMMUState
*s
)
1954 trace_vtd_inv_desc_iotlb_global();
1956 vtd_iommu_replay_all(s
);
1959 static void vtd_iotlb_domain_invalidate(IntelIOMMUState
*s
, uint16_t domain_id
)
1962 VTDAddressSpace
*vtd_as
;
1964 trace_vtd_inv_desc_iotlb_domain(domain_id
);
1967 g_hash_table_foreach_remove(s
->iotlb
, vtd_hash_remove_by_domain
,
1969 vtd_iommu_unlock(s
);
1971 QLIST_FOREACH(vtd_as
, &s
->vtd_as_with_notifiers
, next
) {
1972 if (!vtd_dev_to_context_entry(s
, pci_bus_num(vtd_as
->bus
),
1973 vtd_as
->devfn
, &ce
) &&
1974 domain_id
== vtd_get_domain_id(s
, &ce
)) {
1975 vtd_sync_shadow_page_table(vtd_as
);
1980 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState
*s
,
1981 uint16_t domain_id
, hwaddr addr
,
1984 VTDAddressSpace
*vtd_as
;
1987 hwaddr size
= (1 << am
) * VTD_PAGE_SIZE
;
1989 QLIST_FOREACH(vtd_as
, &(s
->vtd_as_with_notifiers
), next
) {
1990 ret
= vtd_dev_to_context_entry(s
, pci_bus_num(vtd_as
->bus
),
1991 vtd_as
->devfn
, &ce
);
1992 if (!ret
&& domain_id
== vtd_get_domain_id(s
, &ce
)) {
1993 if (vtd_as_has_map_notifier(vtd_as
)) {
1995 * As long as we have MAP notifications registered in
1996 * any of our IOMMU notifiers, we need to sync the
1997 * shadow page table.
1999 vtd_sync_shadow_page_table_range(vtd_as
, &ce
, addr
, size
);
2002 * For UNMAP-only notifiers, we don't need to walk the
2003 * page tables. We just deliver the PSI down to
2004 * invalidate caches.
2006 IOMMUTLBEvent event
= {
2007 .type
= IOMMU_NOTIFIER_UNMAP
,
2009 .target_as
= &address_space_memory
,
2011 .translated_addr
= 0,
2012 .addr_mask
= size
- 1,
2016 memory_region_notify_iommu(&vtd_as
->iommu
, 0, event
);
2022 static void vtd_iotlb_page_invalidate(IntelIOMMUState
*s
, uint16_t domain_id
,
2023 hwaddr addr
, uint8_t am
)
2025 VTDIOTLBPageInvInfo info
;
2027 trace_vtd_inv_desc_iotlb_pages(domain_id
, addr
, am
);
2029 assert(am
<= VTD_MAMV
);
2030 info
.domain_id
= domain_id
;
2032 info
.mask
= ~((1 << am
) - 1);
2034 g_hash_table_foreach_remove(s
->iotlb
, vtd_hash_remove_by_page
, &info
);
2035 vtd_iommu_unlock(s
);
2036 vtd_iotlb_page_invalidate_notify(s
, domain_id
, addr
, am
);
2040 * Returns the IOTLB Actual Invalidation Granularity.
2041 * @val: the content of the IOTLB_REG
2043 static uint64_t vtd_iotlb_flush(IntelIOMMUState
*s
, uint64_t val
)
2046 uint64_t type
= val
& VTD_TLB_FLUSH_GRANU_MASK
;
2052 case VTD_TLB_GLOBAL_FLUSH
:
2053 iaig
= VTD_TLB_GLOBAL_FLUSH_A
;
2054 vtd_iotlb_global_invalidate(s
);
2057 case VTD_TLB_DSI_FLUSH
:
2058 domain_id
= VTD_TLB_DID(val
);
2059 iaig
= VTD_TLB_DSI_FLUSH_A
;
2060 vtd_iotlb_domain_invalidate(s
, domain_id
);
2063 case VTD_TLB_PSI_FLUSH
:
2064 domain_id
= VTD_TLB_DID(val
);
2065 addr
= vtd_get_quad_raw(s
, DMAR_IVA_REG
);
2066 am
= VTD_IVA_AM(addr
);
2067 addr
= VTD_IVA_ADDR(addr
);
2068 if (am
> VTD_MAMV
) {
2069 error_report_once("%s: address mask overflow: 0x%" PRIx64
,
2070 __func__
, vtd_get_quad_raw(s
, DMAR_IVA_REG
));
2074 iaig
= VTD_TLB_PSI_FLUSH_A
;
2075 vtd_iotlb_page_invalidate(s
, domain_id
, addr
, am
);
2079 error_report_once("%s: invalid granularity: 0x%" PRIx64
,
2086 static void vtd_fetch_inv_desc(IntelIOMMUState
*s
);
2088 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState
*s
)
2090 return s
->qi_enabled
&& (s
->iq_tail
== s
->iq_head
) &&
2091 (s
->iq_last_desc_type
== VTD_INV_DESC_WAIT
);
2094 static void vtd_handle_gcmd_qie(IntelIOMMUState
*s
, bool en
)
2096 uint64_t iqa_val
= vtd_get_quad_raw(s
, DMAR_IQA_REG
);
2098 trace_vtd_inv_qi_enable(en
);
2101 s
->iq
= iqa_val
& VTD_IQA_IQA_MASK(s
->aw_bits
);
2102 /* 2^(x+8) entries */
2103 s
->iq_size
= 1UL << ((iqa_val
& VTD_IQA_QS
) + 8 - (s
->iq_dw
? 1 : 0));
2104 s
->qi_enabled
= true;
2105 trace_vtd_inv_qi_setup(s
->iq
, s
->iq_size
);
2106 /* Ok - report back to driver */
2107 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_QIES
);
2109 if (s
->iq_tail
!= 0) {
2111 * This is a spec violation but Windows guests are known to set up
2112 * Queued Invalidation this way so we allow the write and process
2113 * Invalidation Descriptors right away.
2115 trace_vtd_warn_invalid_qi_tail(s
->iq_tail
);
2116 if (!(vtd_get_long_raw(s
, DMAR_FSTS_REG
) & VTD_FSTS_IQE
)) {
2117 vtd_fetch_inv_desc(s
);
2121 if (vtd_queued_inv_disable_check(s
)) {
2122 /* disable Queued Invalidation */
2123 vtd_set_quad_raw(s
, DMAR_IQH_REG
, 0);
2125 s
->qi_enabled
= false;
2126 /* Ok - report back to driver */
2127 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, VTD_GSTS_QIES
, 0);
2129 error_report_once("%s: detected improper state when disable QI "
2130 "(head=0x%x, tail=0x%x, last_type=%d)",
2132 s
->iq_head
, s
->iq_tail
, s
->iq_last_desc_type
);
2137 /* Set Root Table Pointer */
2138 static void vtd_handle_gcmd_srtp(IntelIOMMUState
*s
)
2140 vtd_root_table_setup(s
);
2141 /* Ok - report back to driver */
2142 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_RTPS
);
2143 vtd_reset_caches(s
);
2144 vtd_address_space_refresh_all(s
);
2147 /* Set Interrupt Remap Table Pointer */
2148 static void vtd_handle_gcmd_sirtp(IntelIOMMUState
*s
)
2150 vtd_interrupt_remap_table_setup(s
);
2151 /* Ok - report back to driver */
2152 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_IRTPS
);
2155 /* Handle Translation Enable/Disable */
2156 static void vtd_handle_gcmd_te(IntelIOMMUState
*s
, bool en
)
2158 if (s
->dmar_enabled
== en
) {
2162 trace_vtd_dmar_enable(en
);
2165 s
->dmar_enabled
= true;
2166 /* Ok - report back to driver */
2167 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_TES
);
2169 s
->dmar_enabled
= false;
2171 /* Clear the index of Fault Recording Register */
2172 s
->next_frcd_reg
= 0;
2173 /* Ok - report back to driver */
2174 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, VTD_GSTS_TES
, 0);
2177 vtd_reset_caches(s
);
2178 vtd_address_space_refresh_all(s
);
2181 /* Handle Interrupt Remap Enable/Disable */
2182 static void vtd_handle_gcmd_ire(IntelIOMMUState
*s
, bool en
)
2184 trace_vtd_ir_enable(en
);
2187 s
->intr_enabled
= true;
2188 /* Ok - report back to driver */
2189 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, 0, VTD_GSTS_IRES
);
2191 s
->intr_enabled
= false;
2192 /* Ok - report back to driver */
2193 vtd_set_clear_mask_long(s
, DMAR_GSTS_REG
, VTD_GSTS_IRES
, 0);
2197 /* Handle write to Global Command Register */
2198 static void vtd_handle_gcmd_write(IntelIOMMUState
*s
)
2200 uint32_t status
= vtd_get_long_raw(s
, DMAR_GSTS_REG
);
2201 uint32_t val
= vtd_get_long_raw(s
, DMAR_GCMD_REG
);
2202 uint32_t changed
= status
^ val
;
2204 trace_vtd_reg_write_gcmd(status
, val
);
2205 if (changed
& VTD_GCMD_TE
) {
2206 /* Translation enable/disable */
2207 vtd_handle_gcmd_te(s
, val
& VTD_GCMD_TE
);
2209 if (val
& VTD_GCMD_SRTP
) {
2210 /* Set/update the root-table pointer */
2211 vtd_handle_gcmd_srtp(s
);
2213 if (changed
& VTD_GCMD_QIE
) {
2214 /* Queued Invalidation Enable */
2215 vtd_handle_gcmd_qie(s
, val
& VTD_GCMD_QIE
);
2217 if (val
& VTD_GCMD_SIRTP
) {
2218 /* Set/update the interrupt remapping root-table pointer */
2219 vtd_handle_gcmd_sirtp(s
);
2221 if (changed
& VTD_GCMD_IRE
) {
2222 /* Interrupt remap enable/disable */
2223 vtd_handle_gcmd_ire(s
, val
& VTD_GCMD_IRE
);
2227 /* Handle write to Context Command Register */
2228 static void vtd_handle_ccmd_write(IntelIOMMUState
*s
)
2231 uint64_t val
= vtd_get_quad_raw(s
, DMAR_CCMD_REG
);
2233 /* Context-cache invalidation request */
2234 if (val
& VTD_CCMD_ICC
) {
2235 if (s
->qi_enabled
) {
2236 error_report_once("Queued Invalidation enabled, "
2237 "should not use register-based invalidation");
2240 ret
= vtd_context_cache_invalidate(s
, val
);
2241 /* Invalidation completed. Change something to show */
2242 vtd_set_clear_mask_quad(s
, DMAR_CCMD_REG
, VTD_CCMD_ICC
, 0ULL);
2243 ret
= vtd_set_clear_mask_quad(s
, DMAR_CCMD_REG
, VTD_CCMD_CAIG_MASK
,
2248 /* Handle write to IOTLB Invalidation Register */
2249 static void vtd_handle_iotlb_write(IntelIOMMUState
*s
)
2252 uint64_t val
= vtd_get_quad_raw(s
, DMAR_IOTLB_REG
);
2254 /* IOTLB invalidation request */
2255 if (val
& VTD_TLB_IVT
) {
2256 if (s
->qi_enabled
) {
2257 error_report_once("Queued Invalidation enabled, "
2258 "should not use register-based invalidation");
2261 ret
= vtd_iotlb_flush(s
, val
);
2262 /* Invalidation completed. Change something to show */
2263 vtd_set_clear_mask_quad(s
, DMAR_IOTLB_REG
, VTD_TLB_IVT
, 0ULL);
2264 ret
= vtd_set_clear_mask_quad(s
, DMAR_IOTLB_REG
,
2265 VTD_TLB_FLUSH_GRANU_MASK_A
, ret
);
2269 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2270 static bool vtd_get_inv_desc(IntelIOMMUState
*s
,
2271 VTDInvDesc
*inv_desc
)
2273 dma_addr_t base_addr
= s
->iq
;
2274 uint32_t offset
= s
->iq_head
;
2275 uint32_t dw
= s
->iq_dw
? 32 : 16;
2276 dma_addr_t addr
= base_addr
+ offset
* dw
;
2278 if (dma_memory_read(&address_space_memory
, addr
, inv_desc
, dw
)) {
2279 error_report_once("Read INV DESC failed.");
2282 inv_desc
->lo
= le64_to_cpu(inv_desc
->lo
);
2283 inv_desc
->hi
= le64_to_cpu(inv_desc
->hi
);
2285 inv_desc
->val
[2] = le64_to_cpu(inv_desc
->val
[2]);
2286 inv_desc
->val
[3] = le64_to_cpu(inv_desc
->val
[3]);
2291 static bool vtd_process_wait_desc(IntelIOMMUState
*s
, VTDInvDesc
*inv_desc
)
2293 if ((inv_desc
->hi
& VTD_INV_DESC_WAIT_RSVD_HI
) ||
2294 (inv_desc
->lo
& VTD_INV_DESC_WAIT_RSVD_LO
)) {
2295 error_report_once("%s: invalid wait desc: hi=%"PRIx64
", lo=%"PRIx64
2296 " (reserved nonzero)", __func__
, inv_desc
->hi
,
2300 if (inv_desc
->lo
& VTD_INV_DESC_WAIT_SW
) {
2302 uint32_t status_data
= (uint32_t)(inv_desc
->lo
>>
2303 VTD_INV_DESC_WAIT_DATA_SHIFT
);
2305 assert(!(inv_desc
->lo
& VTD_INV_DESC_WAIT_IF
));
2307 /* FIXME: need to be masked with HAW? */
2308 dma_addr_t status_addr
= inv_desc
->hi
;
2309 trace_vtd_inv_desc_wait_sw(status_addr
, status_data
);
2310 status_data
= cpu_to_le32(status_data
);
2311 if (dma_memory_write(&address_space_memory
, status_addr
, &status_data
,
2312 sizeof(status_data
))) {
2313 trace_vtd_inv_desc_wait_write_fail(inv_desc
->hi
, inv_desc
->lo
);
2316 } else if (inv_desc
->lo
& VTD_INV_DESC_WAIT_IF
) {
2317 /* Interrupt flag */
2318 vtd_generate_completion_event(s
);
2320 error_report_once("%s: invalid wait desc: hi=%"PRIx64
", lo=%"PRIx64
2321 " (unknown type)", __func__
, inv_desc
->hi
,
2328 static bool vtd_process_context_cache_desc(IntelIOMMUState
*s
,
2329 VTDInvDesc
*inv_desc
)
2331 uint16_t sid
, fmask
;
2333 if ((inv_desc
->lo
& VTD_INV_DESC_CC_RSVD
) || inv_desc
->hi
) {
2334 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64
", lo=%"PRIx64
2335 " (reserved nonzero)", __func__
, inv_desc
->hi
,
2339 switch (inv_desc
->lo
& VTD_INV_DESC_CC_G
) {
2340 case VTD_INV_DESC_CC_DOMAIN
:
2341 trace_vtd_inv_desc_cc_domain(
2342 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc
->lo
));
2344 case VTD_INV_DESC_CC_GLOBAL
:
2345 vtd_context_global_invalidate(s
);
2348 case VTD_INV_DESC_CC_DEVICE
:
2349 sid
= VTD_INV_DESC_CC_SID(inv_desc
->lo
);
2350 fmask
= VTD_INV_DESC_CC_FM(inv_desc
->lo
);
2351 vtd_context_device_invalidate(s
, sid
, fmask
);
2355 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64
", lo=%"PRIx64
2356 " (invalid type)", __func__
, inv_desc
->hi
,
2363 static bool vtd_process_iotlb_desc(IntelIOMMUState
*s
, VTDInvDesc
*inv_desc
)
2369 if ((inv_desc
->lo
& VTD_INV_DESC_IOTLB_RSVD_LO
) ||
2370 (inv_desc
->hi
& VTD_INV_DESC_IOTLB_RSVD_HI
)) {
2371 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2372 ", lo=0x%"PRIx64
" (reserved bits unzero)",
2373 __func__
, inv_desc
->hi
, inv_desc
->lo
);
2377 switch (inv_desc
->lo
& VTD_INV_DESC_IOTLB_G
) {
2378 case VTD_INV_DESC_IOTLB_GLOBAL
:
2379 vtd_iotlb_global_invalidate(s
);
2382 case VTD_INV_DESC_IOTLB_DOMAIN
:
2383 domain_id
= VTD_INV_DESC_IOTLB_DID(inv_desc
->lo
);
2384 vtd_iotlb_domain_invalidate(s
, domain_id
);
2387 case VTD_INV_DESC_IOTLB_PAGE
:
2388 domain_id
= VTD_INV_DESC_IOTLB_DID(inv_desc
->lo
);
2389 addr
= VTD_INV_DESC_IOTLB_ADDR(inv_desc
->hi
);
2390 am
= VTD_INV_DESC_IOTLB_AM(inv_desc
->hi
);
2391 if (am
> VTD_MAMV
) {
2392 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2393 ", lo=0x%"PRIx64
" (am=%u > VTD_MAMV=%u)",
2394 __func__
, inv_desc
->hi
, inv_desc
->lo
,
2395 am
, (unsigned)VTD_MAMV
);
2398 vtd_iotlb_page_invalidate(s
, domain_id
, addr
, am
);
2402 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2403 ", lo=0x%"PRIx64
" (type mismatch: 0x%llx)",
2404 __func__
, inv_desc
->hi
, inv_desc
->lo
,
2405 inv_desc
->lo
& VTD_INV_DESC_IOTLB_G
);
2411 static bool vtd_process_inv_iec_desc(IntelIOMMUState
*s
,
2412 VTDInvDesc
*inv_desc
)
2414 trace_vtd_inv_desc_iec(inv_desc
->iec
.granularity
,
2415 inv_desc
->iec
.index
,
2416 inv_desc
->iec
.index_mask
);
2418 vtd_iec_notify_all(s
, !inv_desc
->iec
.granularity
,
2419 inv_desc
->iec
.index
,
2420 inv_desc
->iec
.index_mask
);
2424 static bool vtd_process_device_iotlb_desc(IntelIOMMUState
*s
,
2425 VTDInvDesc
*inv_desc
)
2427 VTDAddressSpace
*vtd_dev_as
;
2428 IOMMUTLBEvent event
;
2429 struct VTDBus
*vtd_bus
;
2437 addr
= VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc
->hi
);
2438 sid
= VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc
->lo
);
2441 size
= VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc
->hi
);
2443 if ((inv_desc
->lo
& VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO
) ||
2444 (inv_desc
->hi
& VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI
)) {
2445 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2446 ", lo=%"PRIx64
" (reserved nonzero)", __func__
,
2447 inv_desc
->hi
, inv_desc
->lo
);
2451 vtd_bus
= vtd_find_as_from_bus_num(s
, bus_num
);
2456 vtd_dev_as
= vtd_bus
->dev_as
[devfn
];
2461 /* According to ATS spec table 2.4:
2462 * S = 0, bits 15:12 = xxxx range size: 4K
2463 * S = 1, bits 15:12 = xxx0 range size: 8K
2464 * S = 1, bits 15:12 = xx01 range size: 16K
2465 * S = 1, bits 15:12 = x011 range size: 32K
2466 * S = 1, bits 15:12 = 0111 range size: 64K
2470 sz
= (VTD_PAGE_SIZE
* 2) << cto64(addr
>> VTD_PAGE_SHIFT
);
2476 event
.type
= IOMMU_NOTIFIER_DEVIOTLB_UNMAP
;
2477 event
.entry
.target_as
= &vtd_dev_as
->as
;
2478 event
.entry
.addr_mask
= sz
- 1;
2479 event
.entry
.iova
= addr
;
2480 event
.entry
.perm
= IOMMU_NONE
;
2481 event
.entry
.translated_addr
= 0;
2482 memory_region_notify_iommu(&vtd_dev_as
->iommu
, 0, event
);
2488 static bool vtd_process_inv_desc(IntelIOMMUState
*s
)
2490 VTDInvDesc inv_desc
;
2493 trace_vtd_inv_qi_head(s
->iq_head
);
2494 if (!vtd_get_inv_desc(s
, &inv_desc
)) {
2495 s
->iq_last_desc_type
= VTD_INV_DESC_NONE
;
2499 desc_type
= inv_desc
.lo
& VTD_INV_DESC_TYPE
;
2500 /* FIXME: should update at first or at last? */
2501 s
->iq_last_desc_type
= desc_type
;
2503 switch (desc_type
) {
2504 case VTD_INV_DESC_CC
:
2505 trace_vtd_inv_desc("context-cache", inv_desc
.hi
, inv_desc
.lo
);
2506 if (!vtd_process_context_cache_desc(s
, &inv_desc
)) {
2511 case VTD_INV_DESC_IOTLB
:
2512 trace_vtd_inv_desc("iotlb", inv_desc
.hi
, inv_desc
.lo
);
2513 if (!vtd_process_iotlb_desc(s
, &inv_desc
)) {
2519 * TODO: the entity of below two cases will be implemented in future series.
2520 * To make guest (which integrates scalable mode support patch set in
2521 * iommu driver) work, just return true is enough so far.
2523 case VTD_INV_DESC_PC
:
2526 case VTD_INV_DESC_PIOTLB
:
2529 case VTD_INV_DESC_WAIT
:
2530 trace_vtd_inv_desc("wait", inv_desc
.hi
, inv_desc
.lo
);
2531 if (!vtd_process_wait_desc(s
, &inv_desc
)) {
2536 case VTD_INV_DESC_IEC
:
2537 trace_vtd_inv_desc("iec", inv_desc
.hi
, inv_desc
.lo
);
2538 if (!vtd_process_inv_iec_desc(s
, &inv_desc
)) {
2543 case VTD_INV_DESC_DEVICE
:
2544 trace_vtd_inv_desc("device", inv_desc
.hi
, inv_desc
.lo
);
2545 if (!vtd_process_device_iotlb_desc(s
, &inv_desc
)) {
2551 error_report_once("%s: invalid inv desc: hi=%"PRIx64
", lo=%"PRIx64
2552 " (unknown type)", __func__
, inv_desc
.hi
,
2557 if (s
->iq_head
== s
->iq_size
) {
2563 /* Try to fetch and process more Invalidation Descriptors */
2564 static void vtd_fetch_inv_desc(IntelIOMMUState
*s
)
2568 /* Refer to 10.4.23 of VT-d spec 3.0 */
2569 qi_shift
= s
->iq_dw
? VTD_IQH_QH_SHIFT_5
: VTD_IQH_QH_SHIFT_4
;
2571 trace_vtd_inv_qi_fetch();
2573 if (s
->iq_tail
>= s
->iq_size
) {
2574 /* Detects an invalid Tail pointer */
2575 error_report_once("%s: detected invalid QI tail "
2576 "(tail=0x%x, size=0x%x)",
2577 __func__
, s
->iq_tail
, s
->iq_size
);
2578 vtd_handle_inv_queue_error(s
);
2581 while (s
->iq_head
!= s
->iq_tail
) {
2582 if (!vtd_process_inv_desc(s
)) {
2583 /* Invalidation Queue Errors */
2584 vtd_handle_inv_queue_error(s
);
2587 /* Must update the IQH_REG in time */
2588 vtd_set_quad_raw(s
, DMAR_IQH_REG
,
2589 (((uint64_t)(s
->iq_head
)) << qi_shift
) &
2594 /* Handle write to Invalidation Queue Tail Register */
2595 static void vtd_handle_iqt_write(IntelIOMMUState
*s
)
2597 uint64_t val
= vtd_get_quad_raw(s
, DMAR_IQT_REG
);
2599 if (s
->iq_dw
&& (val
& VTD_IQT_QT_256_RSV_BIT
)) {
2600 error_report_once("%s: RSV bit is set: val=0x%"PRIx64
,
2604 s
->iq_tail
= VTD_IQT_QT(s
->iq_dw
, val
);
2605 trace_vtd_inv_qi_tail(s
->iq_tail
);
2607 if (s
->qi_enabled
&& !(vtd_get_long_raw(s
, DMAR_FSTS_REG
) & VTD_FSTS_IQE
)) {
2608 /* Process Invalidation Queue here */
2609 vtd_fetch_inv_desc(s
);
2613 static void vtd_handle_fsts_write(IntelIOMMUState
*s
)
2615 uint32_t fsts_reg
= vtd_get_long_raw(s
, DMAR_FSTS_REG
);
2616 uint32_t fectl_reg
= vtd_get_long_raw(s
, DMAR_FECTL_REG
);
2617 uint32_t status_fields
= VTD_FSTS_PFO
| VTD_FSTS_PPF
| VTD_FSTS_IQE
;
2619 if ((fectl_reg
& VTD_FECTL_IP
) && !(fsts_reg
& status_fields
)) {
2620 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, VTD_FECTL_IP
, 0);
2621 trace_vtd_fsts_clear_ip();
2623 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2624 * Descriptors if there are any when Queued Invalidation is enabled?
2628 static void vtd_handle_fectl_write(IntelIOMMUState
*s
)
2631 /* FIXME: when software clears the IM field, check the IP field. But do we
2632 * need to compare the old value and the new value to conclude that
2633 * software clears the IM field? Or just check if the IM field is zero?
2635 fectl_reg
= vtd_get_long_raw(s
, DMAR_FECTL_REG
);
2637 trace_vtd_reg_write_fectl(fectl_reg
);
2639 if ((fectl_reg
& VTD_FECTL_IP
) && !(fectl_reg
& VTD_FECTL_IM
)) {
2640 vtd_generate_interrupt(s
, DMAR_FEADDR_REG
, DMAR_FEDATA_REG
);
2641 vtd_set_clear_mask_long(s
, DMAR_FECTL_REG
, VTD_FECTL_IP
, 0);
2645 static void vtd_handle_ics_write(IntelIOMMUState
*s
)
2647 uint32_t ics_reg
= vtd_get_long_raw(s
, DMAR_ICS_REG
);
2648 uint32_t iectl_reg
= vtd_get_long_raw(s
, DMAR_IECTL_REG
);
2650 if ((iectl_reg
& VTD_IECTL_IP
) && !(ics_reg
& VTD_ICS_IWC
)) {
2651 trace_vtd_reg_ics_clear_ip();
2652 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, VTD_IECTL_IP
, 0);
2656 static void vtd_handle_iectl_write(IntelIOMMUState
*s
)
2659 /* FIXME: when software clears the IM field, check the IP field. But do we
2660 * need to compare the old value and the new value to conclude that
2661 * software clears the IM field? Or just check if the IM field is zero?
2663 iectl_reg
= vtd_get_long_raw(s
, DMAR_IECTL_REG
);
2665 trace_vtd_reg_write_iectl(iectl_reg
);
2667 if ((iectl_reg
& VTD_IECTL_IP
) && !(iectl_reg
& VTD_IECTL_IM
)) {
2668 vtd_generate_interrupt(s
, DMAR_IEADDR_REG
, DMAR_IEDATA_REG
);
2669 vtd_set_clear_mask_long(s
, DMAR_IECTL_REG
, VTD_IECTL_IP
, 0);
2673 static uint64_t vtd_mem_read(void *opaque
, hwaddr addr
, unsigned size
)
2675 IntelIOMMUState
*s
= opaque
;
2678 trace_vtd_reg_read(addr
, size
);
2680 if (addr
+ size
> DMAR_REG_SIZE
) {
2681 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2682 " size=0x%x", __func__
, addr
, size
);
2683 return (uint64_t)-1;
2687 /* Root Table Address Register, 64-bit */
2688 case DMAR_RTADDR_REG
:
2689 val
= vtd_get_quad_raw(s
, DMAR_RTADDR_REG
);
2691 val
= val
& ((1ULL << 32) - 1);
2695 case DMAR_RTADDR_REG_HI
:
2697 val
= vtd_get_quad_raw(s
, DMAR_RTADDR_REG
) >> 32;
2700 /* Invalidation Queue Address Register, 64-bit */
2702 val
= s
->iq
| (vtd_get_quad(s
, DMAR_IQA_REG
) & VTD_IQA_QS
);
2704 val
= val
& ((1ULL << 32) - 1);
2708 case DMAR_IQA_REG_HI
:
2715 val
= vtd_get_long(s
, addr
);
2717 val
= vtd_get_quad(s
, addr
);
2724 static void vtd_mem_write(void *opaque
, hwaddr addr
,
2725 uint64_t val
, unsigned size
)
2727 IntelIOMMUState
*s
= opaque
;
2729 trace_vtd_reg_write(addr
, size
, val
);
2731 if (addr
+ size
> DMAR_REG_SIZE
) {
2732 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2733 " size=0x%x", __func__
, addr
, size
);
2738 /* Global Command Register, 32-bit */
2740 vtd_set_long(s
, addr
, val
);
2741 vtd_handle_gcmd_write(s
);
2744 /* Context Command Register, 64-bit */
2747 vtd_set_long(s
, addr
, val
);
2749 vtd_set_quad(s
, addr
, val
);
2750 vtd_handle_ccmd_write(s
);
2754 case DMAR_CCMD_REG_HI
:
2756 vtd_set_long(s
, addr
, val
);
2757 vtd_handle_ccmd_write(s
);
2760 /* IOTLB Invalidation Register, 64-bit */
2761 case DMAR_IOTLB_REG
:
2763 vtd_set_long(s
, addr
, val
);
2765 vtd_set_quad(s
, addr
, val
);
2766 vtd_handle_iotlb_write(s
);
2770 case DMAR_IOTLB_REG_HI
:
2772 vtd_set_long(s
, addr
, val
);
2773 vtd_handle_iotlb_write(s
);
2776 /* Invalidate Address Register, 64-bit */
2779 vtd_set_long(s
, addr
, val
);
2781 vtd_set_quad(s
, addr
, val
);
2785 case DMAR_IVA_REG_HI
:
2787 vtd_set_long(s
, addr
, val
);
2790 /* Fault Status Register, 32-bit */
2793 vtd_set_long(s
, addr
, val
);
2794 vtd_handle_fsts_write(s
);
2797 /* Fault Event Control Register, 32-bit */
2798 case DMAR_FECTL_REG
:
2800 vtd_set_long(s
, addr
, val
);
2801 vtd_handle_fectl_write(s
);
2804 /* Fault Event Data Register, 32-bit */
2805 case DMAR_FEDATA_REG
:
2807 vtd_set_long(s
, addr
, val
);
2810 /* Fault Event Address Register, 32-bit */
2811 case DMAR_FEADDR_REG
:
2813 vtd_set_long(s
, addr
, val
);
2816 * While the register is 32-bit only, some guests (Xen...) write to
2819 vtd_set_quad(s
, addr
, val
);
2823 /* Fault Event Upper Address Register, 32-bit */
2824 case DMAR_FEUADDR_REG
:
2826 vtd_set_long(s
, addr
, val
);
2829 /* Protected Memory Enable Register, 32-bit */
2832 vtd_set_long(s
, addr
, val
);
2835 /* Root Table Address Register, 64-bit */
2836 case DMAR_RTADDR_REG
:
2838 vtd_set_long(s
, addr
, val
);
2840 vtd_set_quad(s
, addr
, val
);
2844 case DMAR_RTADDR_REG_HI
:
2846 vtd_set_long(s
, addr
, val
);
2849 /* Invalidation Queue Tail Register, 64-bit */
2852 vtd_set_long(s
, addr
, val
);
2854 vtd_set_quad(s
, addr
, val
);
2856 vtd_handle_iqt_write(s
);
2859 case DMAR_IQT_REG_HI
:
2861 vtd_set_long(s
, addr
, val
);
2862 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2865 /* Invalidation Queue Address Register, 64-bit */
2868 vtd_set_long(s
, addr
, val
);
2870 vtd_set_quad(s
, addr
, val
);
2872 if (s
->ecap
& VTD_ECAP_SMTS
&&
2873 val
& VTD_IQA_DW_MASK
) {
2880 case DMAR_IQA_REG_HI
:
2882 vtd_set_long(s
, addr
, val
);
2885 /* Invalidation Completion Status Register, 32-bit */
2888 vtd_set_long(s
, addr
, val
);
2889 vtd_handle_ics_write(s
);
2892 /* Invalidation Event Control Register, 32-bit */
2893 case DMAR_IECTL_REG
:
2895 vtd_set_long(s
, addr
, val
);
2896 vtd_handle_iectl_write(s
);
2899 /* Invalidation Event Data Register, 32-bit */
2900 case DMAR_IEDATA_REG
:
2902 vtd_set_long(s
, addr
, val
);
2905 /* Invalidation Event Address Register, 32-bit */
2906 case DMAR_IEADDR_REG
:
2908 vtd_set_long(s
, addr
, val
);
2911 /* Invalidation Event Upper Address Register, 32-bit */
2912 case DMAR_IEUADDR_REG
:
2914 vtd_set_long(s
, addr
, val
);
2917 /* Fault Recording Registers, 128-bit */
2918 case DMAR_FRCD_REG_0_0
:
2920 vtd_set_long(s
, addr
, val
);
2922 vtd_set_quad(s
, addr
, val
);
2926 case DMAR_FRCD_REG_0_1
:
2928 vtd_set_long(s
, addr
, val
);
2931 case DMAR_FRCD_REG_0_2
:
2933 vtd_set_long(s
, addr
, val
);
2935 vtd_set_quad(s
, addr
, val
);
2936 /* May clear bit 127 (Fault), update PPF */
2937 vtd_update_fsts_ppf(s
);
2941 case DMAR_FRCD_REG_0_3
:
2943 vtd_set_long(s
, addr
, val
);
2944 /* May clear bit 127 (Fault), update PPF */
2945 vtd_update_fsts_ppf(s
);
2950 vtd_set_long(s
, addr
, val
);
2952 vtd_set_quad(s
, addr
, val
);
2956 case DMAR_IRTA_REG_HI
:
2958 vtd_set_long(s
, addr
, val
);
2963 vtd_set_long(s
, addr
, val
);
2965 vtd_set_quad(s
, addr
, val
);
2970 static IOMMUTLBEntry
vtd_iommu_translate(IOMMUMemoryRegion
*iommu
, hwaddr addr
,
2971 IOMMUAccessFlags flag
, int iommu_idx
)
2973 VTDAddressSpace
*vtd_as
= container_of(iommu
, VTDAddressSpace
, iommu
);
2974 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
2975 IOMMUTLBEntry iotlb
= {
2976 /* We'll fill in the rest later. */
2977 .target_as
= &address_space_memory
,
2981 if (likely(s
->dmar_enabled
)) {
2982 success
= vtd_do_iommu_translate(vtd_as
, vtd_as
->bus
, vtd_as
->devfn
,
2983 addr
, flag
& IOMMU_WO
, &iotlb
);
2985 /* DMAR disabled, passthrough, use 4k-page*/
2986 iotlb
.iova
= addr
& VTD_PAGE_MASK_4K
;
2987 iotlb
.translated_addr
= addr
& VTD_PAGE_MASK_4K
;
2988 iotlb
.addr_mask
= ~VTD_PAGE_MASK_4K
;
2989 iotlb
.perm
= IOMMU_RW
;
2993 if (likely(success
)) {
2994 trace_vtd_dmar_translate(pci_bus_num(vtd_as
->bus
),
2995 VTD_PCI_SLOT(vtd_as
->devfn
),
2996 VTD_PCI_FUNC(vtd_as
->devfn
),
2997 iotlb
.iova
, iotlb
.translated_addr
,
3000 error_report_once("%s: detected translation failure "
3001 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64
")",
3002 __func__
, pci_bus_num(vtd_as
->bus
),
3003 VTD_PCI_SLOT(vtd_as
->devfn
),
3004 VTD_PCI_FUNC(vtd_as
->devfn
),
3011 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion
*iommu
,
3012 IOMMUNotifierFlag old
,
3013 IOMMUNotifierFlag
new,
3016 VTDAddressSpace
*vtd_as
= container_of(iommu
, VTDAddressSpace
, iommu
);
3017 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
3019 /* Update per-address-space notifier flags */
3020 vtd_as
->notifier_flags
= new;
3022 if (old
== IOMMU_NOTIFIER_NONE
) {
3023 QLIST_INSERT_HEAD(&s
->vtd_as_with_notifiers
, vtd_as
, next
);
3024 } else if (new == IOMMU_NOTIFIER_NONE
) {
3025 QLIST_REMOVE(vtd_as
, next
);
3030 static int vtd_post_load(void *opaque
, int version_id
)
3032 IntelIOMMUState
*iommu
= opaque
;
3035 * Memory regions are dynamically turned on/off depending on
3036 * context entry configurations from the guest. After migration,
3037 * we need to make sure the memory regions are still correct.
3039 vtd_switch_address_space_all(iommu
);
3042 * We don't need to migrate the root_scalable because we can
3043 * simply do the calculation after the loading is complete. We
3044 * can actually do similar things with root, dmar_enabled, etc.
3045 * however since we've had them already so we'd better keep them
3046 * for compatibility of migration.
3048 vtd_update_scalable_state(iommu
);
3053 static const VMStateDescription vtd_vmstate
= {
3054 .name
= "iommu-intel",
3056 .minimum_version_id
= 1,
3057 .priority
= MIG_PRI_IOMMU
,
3058 .post_load
= vtd_post_load
,
3059 .fields
= (VMStateField
[]) {
3060 VMSTATE_UINT64(root
, IntelIOMMUState
),
3061 VMSTATE_UINT64(intr_root
, IntelIOMMUState
),
3062 VMSTATE_UINT64(iq
, IntelIOMMUState
),
3063 VMSTATE_UINT32(intr_size
, IntelIOMMUState
),
3064 VMSTATE_UINT16(iq_head
, IntelIOMMUState
),
3065 VMSTATE_UINT16(iq_tail
, IntelIOMMUState
),
3066 VMSTATE_UINT16(iq_size
, IntelIOMMUState
),
3067 VMSTATE_UINT16(next_frcd_reg
, IntelIOMMUState
),
3068 VMSTATE_UINT8_ARRAY(csr
, IntelIOMMUState
, DMAR_REG_SIZE
),
3069 VMSTATE_UINT8(iq_last_desc_type
, IntelIOMMUState
),
3070 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
3071 VMSTATE_BOOL(dmar_enabled
, IntelIOMMUState
),
3072 VMSTATE_BOOL(qi_enabled
, IntelIOMMUState
),
3073 VMSTATE_BOOL(intr_enabled
, IntelIOMMUState
),
3074 VMSTATE_BOOL(intr_eime
, IntelIOMMUState
),
3075 VMSTATE_END_OF_LIST()
3079 static const MemoryRegionOps vtd_mem_ops
= {
3080 .read
= vtd_mem_read
,
3081 .write
= vtd_mem_write
,
3082 .endianness
= DEVICE_LITTLE_ENDIAN
,
3084 .min_access_size
= 4,
3085 .max_access_size
= 8,
3088 .min_access_size
= 4,
3089 .max_access_size
= 8,
3093 static Property vtd_properties
[] = {
3094 DEFINE_PROP_UINT32("version", IntelIOMMUState
, version
, 0),
3095 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState
, intr_eim
,
3097 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState
, buggy_eim
, false),
3098 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState
, aw_bits
,
3099 VTD_HOST_ADDRESS_WIDTH
),
3100 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState
, caching_mode
, FALSE
),
3101 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState
, scalable_mode
, FALSE
),
3102 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState
, dma_drain
, true),
3103 DEFINE_PROP_END_OF_LIST(),
3106 /* Read IRTE entry with specific index */
3107 static int vtd_irte_get(IntelIOMMUState
*iommu
, uint16_t index
,
3108 VTD_IR_TableEntry
*entry
, uint16_t sid
)
3110 static const uint16_t vtd_svt_mask
[VTD_SQ_MAX
] = \
3111 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3112 dma_addr_t addr
= 0x00;
3113 uint16_t mask
, source_id
;
3114 uint8_t bus
, bus_max
, bus_min
;
3116 if (index
>= iommu
->intr_size
) {
3117 error_report_once("%s: index too large: ind=0x%x",
3119 return -VTD_FR_IR_INDEX_OVER
;
3122 addr
= iommu
->intr_root
+ index
* sizeof(*entry
);
3123 if (dma_memory_read(&address_space_memory
, addr
, entry
,
3125 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64
,
3126 __func__
, index
, addr
);
3127 return -VTD_FR_IR_ROOT_INVAL
;
3130 trace_vtd_ir_irte_get(index
, le64_to_cpu(entry
->data
[1]),
3131 le64_to_cpu(entry
->data
[0]));
3133 if (!entry
->irte
.present
) {
3134 error_report_once("%s: detected non-present IRTE "
3135 "(index=%u, high=0x%" PRIx64
", low=0x%" PRIx64
")",
3136 __func__
, index
, le64_to_cpu(entry
->data
[1]),
3137 le64_to_cpu(entry
->data
[0]));
3138 return -VTD_FR_IR_ENTRY_P
;
3141 if (entry
->irte
.__reserved_0
|| entry
->irte
.__reserved_1
||
3142 entry
->irte
.__reserved_2
) {
3143 error_report_once("%s: detected non-zero reserved IRTE "
3144 "(index=%u, high=0x%" PRIx64
", low=0x%" PRIx64
")",
3145 __func__
, index
, le64_to_cpu(entry
->data
[1]),
3146 le64_to_cpu(entry
->data
[0]));
3147 return -VTD_FR_IR_IRTE_RSVD
;
3150 if (sid
!= X86_IOMMU_SID_INVALID
) {
3151 /* Validate IRTE SID */
3152 source_id
= le32_to_cpu(entry
->irte
.source_id
);
3153 switch (entry
->irte
.sid_vtype
) {
3158 mask
= vtd_svt_mask
[entry
->irte
.sid_q
];
3159 if ((source_id
& mask
) != (sid
& mask
)) {
3160 error_report_once("%s: invalid IRTE SID "
3161 "(index=%u, sid=%u, source_id=%u)",
3162 __func__
, index
, sid
, source_id
);
3163 return -VTD_FR_IR_SID_ERR
;
3168 bus_max
= source_id
>> 8;
3169 bus_min
= source_id
& 0xff;
3171 if (bus
> bus_max
|| bus
< bus_min
) {
3172 error_report_once("%s: invalid SVT_BUS "
3173 "(index=%u, bus=%u, min=%u, max=%u)",
3174 __func__
, index
, bus
, bus_min
, bus_max
);
3175 return -VTD_FR_IR_SID_ERR
;
3180 error_report_once("%s: detected invalid IRTE SVT "
3181 "(index=%u, type=%d)", __func__
,
3182 index
, entry
->irte
.sid_vtype
);
3183 /* Take this as verification failure. */
3184 return -VTD_FR_IR_SID_ERR
;
3191 /* Fetch IRQ information of specific IR index */
3192 static int vtd_remap_irq_get(IntelIOMMUState
*iommu
, uint16_t index
,
3193 X86IOMMUIrq
*irq
, uint16_t sid
)
3195 VTD_IR_TableEntry irte
= {};
3198 ret
= vtd_irte_get(iommu
, index
, &irte
, sid
);
3203 irq
->trigger_mode
= irte
.irte
.trigger_mode
;
3204 irq
->vector
= irte
.irte
.vector
;
3205 irq
->delivery_mode
= irte
.irte
.delivery_mode
;
3206 irq
->dest
= le32_to_cpu(irte
.irte
.dest_id
);
3207 if (!iommu
->intr_eime
) {
3208 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3209 #define VTD_IR_APIC_DEST_SHIFT (8)
3210 irq
->dest
= (irq
->dest
& VTD_IR_APIC_DEST_MASK
) >>
3211 VTD_IR_APIC_DEST_SHIFT
;
3213 irq
->dest_mode
= irte
.irte
.dest_mode
;
3214 irq
->redir_hint
= irte
.irte
.redir_hint
;
3216 trace_vtd_ir_remap(index
, irq
->trigger_mode
, irq
->vector
,
3217 irq
->delivery_mode
, irq
->dest
, irq
->dest_mode
);
3222 /* Interrupt remapping for MSI/MSI-X entry */
3223 static int vtd_interrupt_remap_msi(IntelIOMMUState
*iommu
,
3225 MSIMessage
*translated
,
3229 VTD_IR_MSIAddress addr
;
3231 X86IOMMUIrq irq
= {};
3233 assert(origin
&& translated
);
3235 trace_vtd_ir_remap_msi_req(origin
->address
, origin
->data
);
3237 if (!iommu
|| !iommu
->intr_enabled
) {
3238 memcpy(translated
, origin
, sizeof(*origin
));
3242 if (origin
->address
& VTD_MSI_ADDR_HI_MASK
) {
3243 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3244 "address=0x%" PRIx64
, __func__
, origin
->address
);
3245 return -VTD_FR_IR_REQ_RSVD
;
3248 addr
.data
= origin
->address
& VTD_MSI_ADDR_LO_MASK
;
3249 if (addr
.addr
.__head
!= 0xfee) {
3250 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32
,
3251 __func__
, addr
.data
);
3252 return -VTD_FR_IR_REQ_RSVD
;
3255 /* This is compatible mode. */
3256 if (addr
.addr
.int_mode
!= VTD_IR_INT_FORMAT_REMAP
) {
3257 memcpy(translated
, origin
, sizeof(*origin
));
3261 index
= addr
.addr
.index_h
<< 15 | le16_to_cpu(addr
.addr
.index_l
);
3263 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3264 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3266 if (addr
.addr
.sub_valid
) {
3267 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3268 index
+= origin
->data
& VTD_IR_MSI_DATA_SUBHANDLE
;
3271 ret
= vtd_remap_irq_get(iommu
, index
, &irq
, sid
);
3276 if (addr
.addr
.sub_valid
) {
3277 trace_vtd_ir_remap_type("MSI");
3278 if (origin
->data
& VTD_IR_MSI_DATA_RESERVED
) {
3279 error_report_once("%s: invalid IR MSI "
3280 "(sid=%u, address=0x%" PRIx64
3281 ", data=0x%" PRIx32
")",
3282 __func__
, sid
, origin
->address
, origin
->data
);
3283 return -VTD_FR_IR_REQ_RSVD
;
3286 uint8_t vector
= origin
->data
& 0xff;
3287 uint8_t trigger_mode
= (origin
->data
>> MSI_DATA_TRIGGER_SHIFT
) & 0x1;
3289 trace_vtd_ir_remap_type("IOAPIC");
3290 /* IOAPIC entry vector should be aligned with IRTE vector
3291 * (see vt-d spec 5.1.5.1). */
3292 if (vector
!= irq
.vector
) {
3293 trace_vtd_warn_ir_vector(sid
, index
, vector
, irq
.vector
);
3296 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3297 * (see vt-d spec 5.1.5.1). */
3298 if (trigger_mode
!= irq
.trigger_mode
) {
3299 trace_vtd_warn_ir_trigger(sid
, index
, trigger_mode
,
3305 * We'd better keep the last two bits, assuming that guest OS
3306 * might modify it. Keep it does not hurt after all.
3308 irq
.msi_addr_last_bits
= addr
.addr
.__not_care
;
3310 /* Translate X86IOMMUIrq to MSI message */
3311 x86_iommu_irq_to_msi_message(&irq
, translated
);
3314 trace_vtd_ir_remap_msi(origin
->address
, origin
->data
,
3315 translated
->address
, translated
->data
);
3319 static int vtd_int_remap(X86IOMMUState
*iommu
, MSIMessage
*src
,
3320 MSIMessage
*dst
, uint16_t sid
)
3322 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu
),
3326 static MemTxResult
vtd_mem_ir_read(void *opaque
, hwaddr addr
,
3327 uint64_t *data
, unsigned size
,
3333 static MemTxResult
vtd_mem_ir_write(void *opaque
, hwaddr addr
,
3334 uint64_t value
, unsigned size
,
3338 MSIMessage from
= {}, to
= {};
3339 uint16_t sid
= X86_IOMMU_SID_INVALID
;
3341 from
.address
= (uint64_t) addr
+ VTD_INTERRUPT_ADDR_FIRST
;
3342 from
.data
= (uint32_t) value
;
3344 if (!attrs
.unspecified
) {
3345 /* We have explicit Source ID */
3346 sid
= attrs
.requester_id
;
3349 ret
= vtd_interrupt_remap_msi(opaque
, &from
, &to
, sid
);
3351 /* TODO: report error */
3352 /* Drop this interrupt */
3356 apic_get_class()->send_msi(&to
);
3361 static const MemoryRegionOps vtd_mem_ir_ops
= {
3362 .read_with_attrs
= vtd_mem_ir_read
,
3363 .write_with_attrs
= vtd_mem_ir_write
,
3364 .endianness
= DEVICE_LITTLE_ENDIAN
,
3366 .min_access_size
= 4,
3367 .max_access_size
= 4,
3370 .min_access_size
= 4,
3371 .max_access_size
= 4,
3375 VTDAddressSpace
*vtd_find_add_as(IntelIOMMUState
*s
, PCIBus
*bus
, int devfn
)
3377 uintptr_t key
= (uintptr_t)bus
;
3378 VTDBus
*vtd_bus
= g_hash_table_lookup(s
->vtd_as_by_busptr
, &key
);
3379 VTDAddressSpace
*vtd_dev_as
;
3383 uintptr_t *new_key
= g_malloc(sizeof(*new_key
));
3384 *new_key
= (uintptr_t)bus
;
3385 /* No corresponding free() */
3386 vtd_bus
= g_malloc0(sizeof(VTDBus
) + sizeof(VTDAddressSpace
*) * \
3389 g_hash_table_insert(s
->vtd_as_by_busptr
, new_key
, vtd_bus
);
3392 vtd_dev_as
= vtd_bus
->dev_as
[devfn
];
3395 snprintf(name
, sizeof(name
), "vtd-%02x.%x", PCI_SLOT(devfn
),
3397 vtd_bus
->dev_as
[devfn
] = vtd_dev_as
= g_malloc0(sizeof(VTDAddressSpace
));
3399 vtd_dev_as
->bus
= bus
;
3400 vtd_dev_as
->devfn
= (uint8_t)devfn
;
3401 vtd_dev_as
->iommu_state
= s
;
3402 vtd_dev_as
->context_cache_entry
.context_cache_gen
= 0;
3403 vtd_dev_as
->iova_tree
= iova_tree_new();
3405 memory_region_init(&vtd_dev_as
->root
, OBJECT(s
), name
, UINT64_MAX
);
3406 address_space_init(&vtd_dev_as
->as
, &vtd_dev_as
->root
, "vtd-root");
3409 * Build the DMAR-disabled container with aliases to the
3410 * shared MRs. Note that aliasing to a shared memory region
3411 * could help the memory API to detect same FlatViews so we
3412 * can have devices to share the same FlatView when DMAR is
3413 * disabled (either by not providing "intel_iommu=on" or with
3414 * "iommu=pt"). It will greatly reduce the total number of
3415 * FlatViews of the system hence VM runs faster.
3417 memory_region_init_alias(&vtd_dev_as
->nodmar
, OBJECT(s
),
3418 "vtd-nodmar", &s
->mr_nodmar
, 0,
3419 memory_region_size(&s
->mr_nodmar
));
3422 * Build the per-device DMAR-enabled container.
3424 * TODO: currently we have per-device IOMMU memory region only
3425 * because we have per-device IOMMU notifiers for devices. If
3426 * one day we can abstract the IOMMU notifiers out of the
3427 * memory regions then we can also share the same memory
3428 * region here just like what we've done above with the nodmar
3431 strcat(name
, "-dmar");
3432 memory_region_init_iommu(&vtd_dev_as
->iommu
, sizeof(vtd_dev_as
->iommu
),
3433 TYPE_INTEL_IOMMU_MEMORY_REGION
, OBJECT(s
),
3435 memory_region_init_alias(&vtd_dev_as
->iommu_ir
, OBJECT(s
), "vtd-ir",
3436 &s
->mr_ir
, 0, memory_region_size(&s
->mr_ir
));
3437 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as
->iommu
),
3438 VTD_INTERRUPT_ADDR_FIRST
,
3439 &vtd_dev_as
->iommu_ir
, 1);
3442 * Hook both the containers under the root container, we
3443 * switch between DMAR & noDMAR by enable/disable
3444 * corresponding sub-containers
3446 memory_region_add_subregion_overlap(&vtd_dev_as
->root
, 0,
3447 MEMORY_REGION(&vtd_dev_as
->iommu
),
3449 memory_region_add_subregion_overlap(&vtd_dev_as
->root
, 0,
3450 &vtd_dev_as
->nodmar
, 0);
3452 vtd_switch_address_space(vtd_dev_as
);
3457 /* Unmap the whole range in the notifier's scope. */
3458 static void vtd_address_space_unmap(VTDAddressSpace
*as
, IOMMUNotifier
*n
)
3460 hwaddr size
, remain
;
3461 hwaddr start
= n
->start
;
3462 hwaddr end
= n
->end
;
3463 IntelIOMMUState
*s
= as
->iommu_state
;
3467 * Note: all the codes in this function has a assumption that IOVA
3468 * bits are no more than VTD_MGAW bits (which is restricted by
3469 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3472 if (end
> VTD_ADDRESS_SIZE(s
->aw_bits
) - 1) {
3474 * Don't need to unmap regions that is bigger than the whole
3475 * VT-d supported address space size
3477 end
= VTD_ADDRESS_SIZE(s
->aw_bits
) - 1;
3480 assert(start
<= end
);
3481 size
= remain
= end
- start
+ 1;
3483 while (remain
>= VTD_PAGE_SIZE
) {
3484 IOMMUTLBEvent event
;
3485 uint64_t mask
= dma_aligned_pow2_mask(start
, end
, s
->aw_bits
);
3486 uint64_t size
= mask
+ 1;
3490 event
.type
= IOMMU_NOTIFIER_UNMAP
;
3491 event
.entry
.iova
= start
;
3492 event
.entry
.addr_mask
= mask
;
3493 event
.entry
.target_as
= &address_space_memory
;
3494 event
.entry
.perm
= IOMMU_NONE
;
3495 /* This field is meaningless for unmap */
3496 event
.entry
.translated_addr
= 0;
3498 memory_region_notify_iommu_one(n
, &event
);
3506 trace_vtd_as_unmap_whole(pci_bus_num(as
->bus
),
3507 VTD_PCI_SLOT(as
->devfn
),
3508 VTD_PCI_FUNC(as
->devfn
),
3511 map
.iova
= n
->start
;
3513 iova_tree_remove(as
->iova_tree
, &map
);
3516 static void vtd_address_space_unmap_all(IntelIOMMUState
*s
)
3518 VTDAddressSpace
*vtd_as
;
3521 QLIST_FOREACH(vtd_as
, &s
->vtd_as_with_notifiers
, next
) {
3522 IOMMU_NOTIFIER_FOREACH(n
, &vtd_as
->iommu
) {
3523 vtd_address_space_unmap(vtd_as
, n
);
3528 static void vtd_address_space_refresh_all(IntelIOMMUState
*s
)
3530 vtd_address_space_unmap_all(s
);
3531 vtd_switch_address_space_all(s
);
3534 static int vtd_replay_hook(IOMMUTLBEvent
*event
, void *private)
3536 memory_region_notify_iommu_one(private, event
);
3540 static void vtd_iommu_replay(IOMMUMemoryRegion
*iommu_mr
, IOMMUNotifier
*n
)
3542 VTDAddressSpace
*vtd_as
= container_of(iommu_mr
, VTDAddressSpace
, iommu
);
3543 IntelIOMMUState
*s
= vtd_as
->iommu_state
;
3544 uint8_t bus_n
= pci_bus_num(vtd_as
->bus
);
3548 * The replay can be triggered by either a invalidation or a newly
3549 * created entry. No matter what, we release existing mappings
3550 * (it means flushing caches for UNMAP-only registers).
3552 vtd_address_space_unmap(vtd_as
, n
);
3554 if (vtd_dev_to_context_entry(s
, bus_n
, vtd_as
->devfn
, &ce
) == 0) {
3555 trace_vtd_replay_ce_valid(s
->root_scalable
? "scalable mode" :
3557 bus_n
, PCI_SLOT(vtd_as
->devfn
),
3558 PCI_FUNC(vtd_as
->devfn
),
3559 vtd_get_domain_id(s
, &ce
),
3561 if (vtd_as_has_map_notifier(vtd_as
)) {
3562 /* This is required only for MAP typed notifiers */
3563 vtd_page_walk_info info
= {
3564 .hook_fn
= vtd_replay_hook
,
3565 .private = (void *)n
,
3566 .notify_unmap
= false,
3569 .domain_id
= vtd_get_domain_id(s
, &ce
),
3572 vtd_page_walk(s
, &ce
, 0, ~0ULL, &info
);
3575 trace_vtd_replay_ce_invalid(bus_n
, PCI_SLOT(vtd_as
->devfn
),
3576 PCI_FUNC(vtd_as
->devfn
));
3582 /* Do the initialization. It will also be called when reset, so pay
3583 * attention when adding new initialization stuff.
3585 static void vtd_init(IntelIOMMUState
*s
)
3587 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
3589 memset(s
->csr
, 0, DMAR_REG_SIZE
);
3590 memset(s
->wmask
, 0, DMAR_REG_SIZE
);
3591 memset(s
->w1cmask
, 0, DMAR_REG_SIZE
);
3592 memset(s
->womask
, 0, DMAR_REG_SIZE
);
3595 s
->root_scalable
= false;
3596 s
->dmar_enabled
= false;
3597 s
->intr_enabled
= false;
3602 s
->qi_enabled
= false;
3603 s
->iq_last_desc_type
= VTD_INV_DESC_NONE
;
3605 s
->next_frcd_reg
= 0;
3606 s
->cap
= VTD_CAP_FRO
| VTD_CAP_NFR
| VTD_CAP_ND
|
3607 VTD_CAP_MAMV
| VTD_CAP_PSI
| VTD_CAP_SLLPS
|
3608 VTD_CAP_SAGAW_39bit
| VTD_CAP_MGAW(s
->aw_bits
);
3610 s
->cap
|= VTD_CAP_DRAIN
;
3612 if (s
->aw_bits
== VTD_HOST_AW_48BIT
) {
3613 s
->cap
|= VTD_CAP_SAGAW_48bit
;
3615 s
->ecap
= VTD_ECAP_QI
| VTD_ECAP_IRO
;
3618 * Rsvd field masks for spte
3620 vtd_spte_rsvd
[0] = ~0ULL;
3621 vtd_spte_rsvd
[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s
->aw_bits
,
3622 x86_iommu
->dt_supported
);
3623 vtd_spte_rsvd
[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s
->aw_bits
);
3624 vtd_spte_rsvd
[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s
->aw_bits
);
3625 vtd_spte_rsvd
[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s
->aw_bits
);
3627 vtd_spte_rsvd_large
[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s
->aw_bits
,
3628 x86_iommu
->dt_supported
);
3629 vtd_spte_rsvd_large
[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s
->aw_bits
,
3630 x86_iommu
->dt_supported
);
3632 if (x86_iommu_ir_supported(x86_iommu
)) {
3633 s
->ecap
|= VTD_ECAP_IR
| VTD_ECAP_MHMV
;
3634 if (s
->intr_eim
== ON_OFF_AUTO_ON
) {
3635 s
->ecap
|= VTD_ECAP_EIM
;
3637 assert(s
->intr_eim
!= ON_OFF_AUTO_AUTO
);
3640 if (x86_iommu
->dt_supported
) {
3641 s
->ecap
|= VTD_ECAP_DT
;
3644 if (x86_iommu
->pt_supported
) {
3645 s
->ecap
|= VTD_ECAP_PT
;
3648 if (s
->caching_mode
) {
3649 s
->cap
|= VTD_CAP_CM
;
3652 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3653 if (s
->scalable_mode
) {
3654 s
->ecap
|= VTD_ECAP_SMTS
| VTD_ECAP_SRS
| VTD_ECAP_SLTS
;
3657 vtd_reset_caches(s
);
3659 /* Define registers with default values and bit semantics */
3660 vtd_define_long(s
, DMAR_VER_REG
, 0x10UL
, 0, 0);
3661 vtd_define_quad(s
, DMAR_CAP_REG
, s
->cap
, 0, 0);
3662 vtd_define_quad(s
, DMAR_ECAP_REG
, s
->ecap
, 0, 0);
3663 vtd_define_long(s
, DMAR_GCMD_REG
, 0, 0xff800000UL
, 0);
3664 vtd_define_long_wo(s
, DMAR_GCMD_REG
, 0xff800000UL
);
3665 vtd_define_long(s
, DMAR_GSTS_REG
, 0, 0, 0);
3666 vtd_define_quad(s
, DMAR_RTADDR_REG
, 0, 0xfffffffffffffc00ULL
, 0);
3667 vtd_define_quad(s
, DMAR_CCMD_REG
, 0, 0xe0000003ffffffffULL
, 0);
3668 vtd_define_quad_wo(s
, DMAR_CCMD_REG
, 0x3ffff0000ULL
);
3670 /* Advanced Fault Logging not supported */
3671 vtd_define_long(s
, DMAR_FSTS_REG
, 0, 0, 0x11UL
);
3672 vtd_define_long(s
, DMAR_FECTL_REG
, 0x80000000UL
, 0x80000000UL
, 0);
3673 vtd_define_long(s
, DMAR_FEDATA_REG
, 0, 0x0000ffffUL
, 0);
3674 vtd_define_long(s
, DMAR_FEADDR_REG
, 0, 0xfffffffcUL
, 0);
3676 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3677 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3679 vtd_define_long(s
, DMAR_FEUADDR_REG
, 0, 0, 0);
3681 /* Treated as RO for implementations that PLMR and PHMR fields reported
3682 * as Clear in the CAP_REG.
3683 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3685 vtd_define_long(s
, DMAR_PMEN_REG
, 0, 0, 0);
3687 vtd_define_quad(s
, DMAR_IQH_REG
, 0, 0, 0);
3688 vtd_define_quad(s
, DMAR_IQT_REG
, 0, 0x7fff0ULL
, 0);
3689 vtd_define_quad(s
, DMAR_IQA_REG
, 0, 0xfffffffffffff807ULL
, 0);
3690 vtd_define_long(s
, DMAR_ICS_REG
, 0, 0, 0x1UL
);
3691 vtd_define_long(s
, DMAR_IECTL_REG
, 0x80000000UL
, 0x80000000UL
, 0);
3692 vtd_define_long(s
, DMAR_IEDATA_REG
, 0, 0xffffffffUL
, 0);
3693 vtd_define_long(s
, DMAR_IEADDR_REG
, 0, 0xfffffffcUL
, 0);
3694 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3695 vtd_define_long(s
, DMAR_IEUADDR_REG
, 0, 0, 0);
3697 /* IOTLB registers */
3698 vtd_define_quad(s
, DMAR_IOTLB_REG
, 0, 0Xb003ffff00000000ULL
, 0);
3699 vtd_define_quad(s
, DMAR_IVA_REG
, 0, 0xfffffffffffff07fULL
, 0);
3700 vtd_define_quad_wo(s
, DMAR_IVA_REG
, 0xfffffffffffff07fULL
);
3702 /* Fault Recording Registers, 128-bit */
3703 vtd_define_quad(s
, DMAR_FRCD_REG_0_0
, 0, 0, 0);
3704 vtd_define_quad(s
, DMAR_FRCD_REG_0_2
, 0, 0, 0x8000000000000000ULL
);
3707 * Interrupt remapping registers.
3709 vtd_define_quad(s
, DMAR_IRTA_REG
, 0, 0xfffffffffffff80fULL
, 0);
3712 /* Should not reset address_spaces when reset because devices will still use
3713 * the address space they got at first (won't ask the bus again).
3715 static void vtd_reset(DeviceState
*dev
)
3717 IntelIOMMUState
*s
= INTEL_IOMMU_DEVICE(dev
);
3720 vtd_address_space_refresh_all(s
);
3723 static AddressSpace
*vtd_host_dma_iommu(PCIBus
*bus
, void *opaque
, int devfn
)
3725 IntelIOMMUState
*s
= opaque
;
3726 VTDAddressSpace
*vtd_as
;
3728 assert(0 <= devfn
&& devfn
< PCI_DEVFN_MAX
);
3730 vtd_as
= vtd_find_add_as(s
, bus
, devfn
);
3734 static bool vtd_decide_config(IntelIOMMUState
*s
, Error
**errp
)
3736 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(s
);
3738 if (s
->intr_eim
== ON_OFF_AUTO_ON
&& !x86_iommu_ir_supported(x86_iommu
)) {
3739 error_setg(errp
, "eim=on cannot be selected without intremap=on");
3743 if (s
->intr_eim
== ON_OFF_AUTO_AUTO
) {
3744 s
->intr_eim
= (kvm_irqchip_in_kernel() || s
->buggy_eim
)
3745 && x86_iommu_ir_supported(x86_iommu
) ?
3746 ON_OFF_AUTO_ON
: ON_OFF_AUTO_OFF
;
3748 if (s
->intr_eim
== ON_OFF_AUTO_ON
&& !s
->buggy_eim
) {
3749 if (!kvm_irqchip_in_kernel()) {
3750 error_setg(errp
, "eim=on requires accel=kvm,kernel-irqchip=split");
3753 if (!kvm_enable_x2apic()) {
3754 error_setg(errp
, "eim=on requires support on the KVM side"
3755 "(X2APIC_API, first shipped in v4.7)");
3760 /* Currently only address widths supported are 39 and 48 bits */
3761 if ((s
->aw_bits
!= VTD_HOST_AW_39BIT
) &&
3762 (s
->aw_bits
!= VTD_HOST_AW_48BIT
)) {
3763 error_setg(errp
, "Supported values for aw-bits are: %d, %d",
3764 VTD_HOST_AW_39BIT
, VTD_HOST_AW_48BIT
);
3768 if (s
->scalable_mode
&& !s
->dma_drain
) {
3769 error_setg(errp
, "Need to set dma_drain for scalable mode");
3776 static int vtd_machine_done_notify_one(Object
*child
, void *unused
)
3778 IntelIOMMUState
*iommu
= INTEL_IOMMU_DEVICE(x86_iommu_get_default());
3781 * We hard-coded here because vfio-pci is the only special case
3782 * here. Let's be more elegant in the future when we can, but so
3783 * far there seems to be no better way.
3785 if (object_dynamic_cast(child
, "vfio-pci") && !iommu
->caching_mode
) {
3786 vtd_panic_require_caching_mode();
3792 static void vtd_machine_done_hook(Notifier
*notifier
, void *unused
)
3794 object_child_foreach_recursive(object_get_root(),
3795 vtd_machine_done_notify_one
, NULL
);
3798 static Notifier vtd_machine_done_notify
= {
3799 .notify
= vtd_machine_done_hook
,
3802 static void vtd_realize(DeviceState
*dev
, Error
**errp
)
3804 MachineState
*ms
= MACHINE(qdev_get_machine());
3805 PCMachineState
*pcms
= PC_MACHINE(ms
);
3806 X86MachineState
*x86ms
= X86_MACHINE(ms
);
3807 PCIBus
*bus
= pcms
->bus
;
3808 IntelIOMMUState
*s
= INTEL_IOMMU_DEVICE(dev
);
3809 X86IOMMUState
*x86_iommu
= X86_IOMMU_DEVICE(dev
);
3811 x86_iommu
->type
= TYPE_INTEL
;
3813 if (!vtd_decide_config(s
, errp
)) {
3817 QLIST_INIT(&s
->vtd_as_with_notifiers
);
3818 qemu_mutex_init(&s
->iommu_lock
);
3819 memset(s
->vtd_as_by_bus_num
, 0, sizeof(s
->vtd_as_by_bus_num
));
3820 memory_region_init_io(&s
->csrmem
, OBJECT(s
), &vtd_mem_ops
, s
,
3821 "intel_iommu", DMAR_REG_SIZE
);
3823 /* Create the shared memory regions by all devices */
3824 memory_region_init(&s
->mr_nodmar
, OBJECT(s
), "vtd-nodmar",
3826 memory_region_init_io(&s
->mr_ir
, OBJECT(s
), &vtd_mem_ir_ops
,
3827 s
, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE
);
3828 memory_region_init_alias(&s
->mr_sys_alias
, OBJECT(s
),
3829 "vtd-sys-alias", get_system_memory(), 0,
3830 memory_region_size(get_system_memory()));
3831 memory_region_add_subregion_overlap(&s
->mr_nodmar
, 0,
3832 &s
->mr_sys_alias
, 0);
3833 memory_region_add_subregion_overlap(&s
->mr_nodmar
,
3834 VTD_INTERRUPT_ADDR_FIRST
,
3837 sysbus_init_mmio(SYS_BUS_DEVICE(s
), &s
->csrmem
);
3838 /* No corresponding destroy */
3839 s
->iotlb
= g_hash_table_new_full(vtd_uint64_hash
, vtd_uint64_equal
,
3841 s
->vtd_as_by_busptr
= g_hash_table_new_full(vtd_uint64_hash
, vtd_uint64_equal
,
3844 sysbus_mmio_map(SYS_BUS_DEVICE(s
), 0, Q35_HOST_BRIDGE_IOMMU_ADDR
);
3845 pci_setup_iommu(bus
, vtd_host_dma_iommu
, dev
);
3846 /* Pseudo address space under root PCI bus. */
3847 x86ms
->ioapic_as
= vtd_host_dma_iommu(bus
, s
, Q35_PSEUDO_DEVFN_IOAPIC
);
3848 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify
);
3851 static void vtd_class_init(ObjectClass
*klass
, void *data
)
3853 DeviceClass
*dc
= DEVICE_CLASS(klass
);
3854 X86IOMMUClass
*x86_class
= X86_IOMMU_DEVICE_CLASS(klass
);
3856 dc
->reset
= vtd_reset
;
3857 dc
->vmsd
= &vtd_vmstate
;
3858 device_class_set_props(dc
, vtd_properties
);
3859 dc
->hotpluggable
= false;
3860 x86_class
->realize
= vtd_realize
;
3861 x86_class
->int_remap
= vtd_int_remap
;
3862 /* Supported by the pc-q35-* machine types */
3863 dc
->user_creatable
= true;
3864 set_bit(DEVICE_CATEGORY_MISC
, dc
->categories
);
3865 dc
->desc
= "Intel IOMMU (VT-d) DMA Remapping device";
3868 static const TypeInfo vtd_info
= {
3869 .name
= TYPE_INTEL_IOMMU_DEVICE
,
3870 .parent
= TYPE_X86_IOMMU_DEVICE
,
3871 .instance_size
= sizeof(IntelIOMMUState
),
3872 .class_init
= vtd_class_init
,
3875 static void vtd_iommu_memory_region_class_init(ObjectClass
*klass
,
3878 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_CLASS(klass
);
3880 imrc
->translate
= vtd_iommu_translate
;
3881 imrc
->notify_flag_changed
= vtd_iommu_notify_flag_changed
;
3882 imrc
->replay
= vtd_iommu_replay
;
3885 static const TypeInfo vtd_iommu_memory_region_info
= {
3886 .parent
= TYPE_IOMMU_MEMORY_REGION
,
3887 .name
= TYPE_INTEL_IOMMU_MEMORY_REGION
,
3888 .class_init
= vtd_iommu_memory_region_class_init
,
3891 static void vtd_register_types(void)
3893 type_register_static(&vtd_info
);
3894 type_register_static(&vtd_iommu_memory_region_info
);
3897 type_init(vtd_register_types
)