qapi/parser: enable pylint checks
[qemu/armbru.git] / hw / timer / cadence_ttc.c
blob64108241ba996f97052c99c8c54f00e58eb4ca8a
1 /*
2 * Xilinx Zynq cadence TTC model
4 * Copyright (c) 2011 Xilinx Inc.
5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written By Haibing Ma
8 * M. Habib
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "hw/irq.h"
21 #include "hw/sysbus.h"
22 #include "migration/vmstate.h"
23 #include "qemu/module.h"
24 #include "qemu/timer.h"
25 #include "qom/object.h"
27 #ifdef CADENCE_TTC_ERR_DEBUG
28 #define DB_PRINT(...) do { \
29 fprintf(stderr, ": %s: ", __func__); \
30 fprintf(stderr, ## __VA_ARGS__); \
31 } while (0)
32 #else
33 #define DB_PRINT(...)
34 #endif
36 #define COUNTER_INTR_IV 0x00000001
37 #define COUNTER_INTR_M1 0x00000002
38 #define COUNTER_INTR_M2 0x00000004
39 #define COUNTER_INTR_M3 0x00000008
40 #define COUNTER_INTR_OV 0x00000010
41 #define COUNTER_INTR_EV 0x00000020
43 #define COUNTER_CTRL_DIS 0x00000001
44 #define COUNTER_CTRL_INT 0x00000002
45 #define COUNTER_CTRL_DEC 0x00000004
46 #define COUNTER_CTRL_MATCH 0x00000008
47 #define COUNTER_CTRL_RST 0x00000010
49 #define CLOCK_CTRL_PS_EN 0x00000001
50 #define CLOCK_CTRL_PS_V 0x0000001e
52 typedef struct {
53 QEMUTimer *timer;
54 int freq;
56 uint32_t reg_clock;
57 uint32_t reg_count;
58 uint32_t reg_value;
59 uint16_t reg_interval;
60 uint16_t reg_match[3];
61 uint32_t reg_intr;
62 uint32_t reg_intr_en;
63 uint32_t reg_event_ctrl;
64 uint32_t reg_event;
66 uint64_t cpu_time;
67 unsigned int cpu_time_valid;
69 qemu_irq irq;
70 } CadenceTimerState;
72 #define TYPE_CADENCE_TTC "cadence_ttc"
73 OBJECT_DECLARE_SIMPLE_TYPE(CadenceTTCState, CADENCE_TTC)
75 struct CadenceTTCState {
76 SysBusDevice parent_obj;
78 MemoryRegion iomem;
79 CadenceTimerState timer[3];
82 static void cadence_timer_update(CadenceTimerState *s)
84 qemu_set_irq(s->irq, !!(s->reg_intr & s->reg_intr_en));
87 static CadenceTimerState *cadence_timer_from_addr(void *opaque,
88 hwaddr offset)
90 unsigned int index;
91 CadenceTTCState *s = (CadenceTTCState *)opaque;
93 index = (offset >> 2) % 3;
95 return &s->timer[index];
98 static uint64_t cadence_timer_get_ns(CadenceTimerState *s, uint64_t timer_steps)
100 /* timer_steps has max value of 0x100000000. double check it
101 * (or overflow can happen below) */
102 assert(timer_steps <= 1ULL << 32);
104 uint64_t r = timer_steps * 1000000000ULL;
105 if (s->reg_clock & CLOCK_CTRL_PS_EN) {
106 r >>= 16 - (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
107 } else {
108 r >>= 16;
110 r /= (uint64_t)s->freq;
111 return r;
114 static uint64_t cadence_timer_get_steps(CadenceTimerState *s, uint64_t ns)
116 uint64_t to_divide = 1000000000ULL;
118 uint64_t r = ns;
119 /* for very large intervals (> 8s) do some division first to stop
120 * overflow (costs some prescision) */
121 while (r >= 8ULL << 30 && to_divide > 1) {
122 r /= 1000;
123 to_divide /= 1000;
125 r <<= 16;
126 /* keep early-dividing as needed */
127 while (r >= 8ULL << 30 && to_divide > 1) {
128 r /= 1000;
129 to_divide /= 1000;
131 r *= (uint64_t)s->freq;
132 if (s->reg_clock & CLOCK_CTRL_PS_EN) {
133 r /= 1 << (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
136 r /= to_divide;
137 return r;
140 /* determine if x is in between a and b, exclusive of a, inclusive of b */
142 static inline int64_t is_between(int64_t x, int64_t a, int64_t b)
144 if (a < b) {
145 return x > a && x <= b;
147 return x < a && x >= b;
150 static void cadence_timer_run(CadenceTimerState *s)
152 int i;
153 int64_t event_interval, next_value;
155 assert(s->cpu_time_valid); /* cadence_timer_sync must be called first */
157 if (s->reg_count & COUNTER_CTRL_DIS) {
158 s->cpu_time_valid = 0;
159 return;
162 { /* figure out what's going to happen next (rollover or match) */
163 int64_t interval = (uint64_t)((s->reg_count & COUNTER_CTRL_INT) ?
164 (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
165 next_value = (s->reg_count & COUNTER_CTRL_DEC) ? -1ULL : interval;
166 for (i = 0; i < 3; ++i) {
167 int64_t cand = (uint64_t)s->reg_match[i] << 16;
168 if (is_between(cand, (uint64_t)s->reg_value, next_value)) {
169 next_value = cand;
173 DB_PRINT("next timer event value: %09llx\n",
174 (unsigned long long)next_value);
176 event_interval = next_value - (int64_t)s->reg_value;
177 event_interval = (event_interval < 0) ? -event_interval : event_interval;
179 timer_mod(s->timer, s->cpu_time +
180 cadence_timer_get_ns(s, event_interval));
183 static void cadence_timer_sync(CadenceTimerState *s)
185 int i;
186 int64_t r, x;
187 int64_t interval = ((s->reg_count & COUNTER_CTRL_INT) ?
188 (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
189 uint64_t old_time = s->cpu_time;
191 s->cpu_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
192 DB_PRINT("cpu time: %lld ns\n", (long long)old_time);
194 if (!s->cpu_time_valid || old_time == s->cpu_time) {
195 s->cpu_time_valid = 1;
196 return;
199 r = (int64_t)cadence_timer_get_steps(s, s->cpu_time - old_time);
200 x = (int64_t)s->reg_value + ((s->reg_count & COUNTER_CTRL_DEC) ? -r : r);
202 for (i = 0; i < 3; ++i) {
203 int64_t m = (int64_t)s->reg_match[i] << 16;
204 if (m > interval) {
205 continue;
207 /* check to see if match event has occurred. check m +/- interval
208 * to account for match events in wrap around cases */
209 if (is_between(m, s->reg_value, x) ||
210 is_between(m + interval, s->reg_value, x) ||
211 is_between(m - interval, s->reg_value, x)) {
212 s->reg_intr |= (2 << i);
215 if ((x < 0) || (x >= interval)) {
216 s->reg_intr |= (s->reg_count & COUNTER_CTRL_INT) ?
217 COUNTER_INTR_IV : COUNTER_INTR_OV;
219 while (x < 0) {
220 x += interval;
222 s->reg_value = (uint32_t)(x % interval);
223 cadence_timer_update(s);
226 static void cadence_timer_tick(void *opaque)
228 CadenceTimerState *s = opaque;
230 DB_PRINT("\n");
231 cadence_timer_sync(s);
232 cadence_timer_run(s);
235 static uint32_t cadence_ttc_read_imp(void *opaque, hwaddr offset)
237 CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
238 uint32_t value;
240 cadence_timer_sync(s);
241 cadence_timer_run(s);
243 switch (offset) {
244 case 0x00: /* clock control */
245 case 0x04:
246 case 0x08:
247 return s->reg_clock;
249 case 0x0c: /* counter control */
250 case 0x10:
251 case 0x14:
252 return s->reg_count;
254 case 0x18: /* counter value */
255 case 0x1c:
256 case 0x20:
257 return (uint16_t)(s->reg_value >> 16);
259 case 0x24: /* reg_interval counter */
260 case 0x28:
261 case 0x2c:
262 return s->reg_interval;
264 case 0x30: /* match 1 counter */
265 case 0x34:
266 case 0x38:
267 return s->reg_match[0];
269 case 0x3c: /* match 2 counter */
270 case 0x40:
271 case 0x44:
272 return s->reg_match[1];
274 case 0x48: /* match 3 counter */
275 case 0x4c:
276 case 0x50:
277 return s->reg_match[2];
279 case 0x54: /* interrupt register */
280 case 0x58:
281 case 0x5c:
282 /* cleared after read */
283 value = s->reg_intr;
284 s->reg_intr = 0;
285 cadence_timer_update(s);
286 return value;
288 case 0x60: /* interrupt enable */
289 case 0x64:
290 case 0x68:
291 return s->reg_intr_en;
293 case 0x6c:
294 case 0x70:
295 case 0x74:
296 return s->reg_event_ctrl;
298 case 0x78:
299 case 0x7c:
300 case 0x80:
301 return s->reg_event;
303 default:
304 return 0;
308 static uint64_t cadence_ttc_read(void *opaque, hwaddr offset,
309 unsigned size)
311 uint32_t ret = cadence_ttc_read_imp(opaque, offset);
313 DB_PRINT("addr: %08x data: %08x\n", (unsigned)offset, (unsigned)ret);
314 return ret;
317 static void cadence_ttc_write(void *opaque, hwaddr offset,
318 uint64_t value, unsigned size)
320 CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
322 DB_PRINT("addr: %08x data %08x\n", (unsigned)offset, (unsigned)value);
324 cadence_timer_sync(s);
326 switch (offset) {
327 case 0x00: /* clock control */
328 case 0x04:
329 case 0x08:
330 s->reg_clock = value & 0x3F;
331 break;
333 case 0x0c: /* counter control */
334 case 0x10:
335 case 0x14:
336 if (value & COUNTER_CTRL_RST) {
337 s->reg_value = 0;
339 s->reg_count = value & 0x3f & ~COUNTER_CTRL_RST;
340 break;
342 case 0x24: /* interval register */
343 case 0x28:
344 case 0x2c:
345 s->reg_interval = value & 0xffff;
346 break;
348 case 0x30: /* match register */
349 case 0x34:
350 case 0x38:
351 s->reg_match[0] = value & 0xffff;
352 break;
354 case 0x3c: /* match register */
355 case 0x40:
356 case 0x44:
357 s->reg_match[1] = value & 0xffff;
358 break;
360 case 0x48: /* match register */
361 case 0x4c:
362 case 0x50:
363 s->reg_match[2] = value & 0xffff;
364 break;
366 case 0x54: /* interrupt register */
367 case 0x58:
368 case 0x5c:
369 break;
371 case 0x60: /* interrupt enable */
372 case 0x64:
373 case 0x68:
374 s->reg_intr_en = value & 0x3f;
375 break;
377 case 0x6c: /* event control */
378 case 0x70:
379 case 0x74:
380 s->reg_event_ctrl = value & 0x07;
381 break;
383 default:
384 return;
387 cadence_timer_run(s);
388 cadence_timer_update(s);
391 static const MemoryRegionOps cadence_ttc_ops = {
392 .read = cadence_ttc_read,
393 .write = cadence_ttc_write,
394 .endianness = DEVICE_NATIVE_ENDIAN,
397 static void cadence_timer_reset(CadenceTimerState *s)
399 s->reg_count = 0x21;
402 static void cadence_timer_init(uint32_t freq, CadenceTimerState *s)
404 memset(s, 0, sizeof(CadenceTimerState));
405 s->freq = freq;
407 cadence_timer_reset(s);
409 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cadence_timer_tick, s);
412 static void cadence_ttc_init(Object *obj)
414 CadenceTTCState *s = CADENCE_TTC(obj);
416 memory_region_init_io(&s->iomem, obj, &cadence_ttc_ops, s,
417 "timer", 0x1000);
418 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
421 static void cadence_ttc_realize(DeviceState *dev, Error **errp)
423 CadenceTTCState *s = CADENCE_TTC(dev);
424 int i;
426 for (i = 0; i < 3; ++i) {
427 cadence_timer_init(133000000, &s->timer[i]);
428 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->timer[i].irq);
432 static int cadence_timer_pre_save(void *opaque)
434 cadence_timer_sync((CadenceTimerState *)opaque);
436 return 0;
439 static int cadence_timer_post_load(void *opaque, int version_id)
441 CadenceTimerState *s = opaque;
443 s->cpu_time_valid = 0;
444 cadence_timer_sync(s);
445 cadence_timer_run(s);
446 cadence_timer_update(s);
447 return 0;
450 static const VMStateDescription vmstate_cadence_timer = {
451 .name = "cadence_timer",
452 .version_id = 1,
453 .minimum_version_id = 1,
454 .pre_save = cadence_timer_pre_save,
455 .post_load = cadence_timer_post_load,
456 .fields = (VMStateField[]) {
457 VMSTATE_UINT32(reg_clock, CadenceTimerState),
458 VMSTATE_UINT32(reg_count, CadenceTimerState),
459 VMSTATE_UINT32(reg_value, CadenceTimerState),
460 VMSTATE_UINT16(reg_interval, CadenceTimerState),
461 VMSTATE_UINT16_ARRAY(reg_match, CadenceTimerState, 3),
462 VMSTATE_UINT32(reg_intr, CadenceTimerState),
463 VMSTATE_UINT32(reg_intr_en, CadenceTimerState),
464 VMSTATE_UINT32(reg_event_ctrl, CadenceTimerState),
465 VMSTATE_UINT32(reg_event, CadenceTimerState),
466 VMSTATE_END_OF_LIST()
470 static const VMStateDescription vmstate_cadence_ttc = {
471 .name = "cadence_TTC",
472 .version_id = 1,
473 .minimum_version_id = 1,
474 .fields = (VMStateField[]) {
475 VMSTATE_STRUCT_ARRAY(timer, CadenceTTCState, 3, 0,
476 vmstate_cadence_timer,
477 CadenceTimerState),
478 VMSTATE_END_OF_LIST()
482 static void cadence_ttc_class_init(ObjectClass *klass, void *data)
484 DeviceClass *dc = DEVICE_CLASS(klass);
486 dc->vmsd = &vmstate_cadence_ttc;
487 dc->realize = cadence_ttc_realize;
490 static const TypeInfo cadence_ttc_info = {
491 .name = TYPE_CADENCE_TTC,
492 .parent = TYPE_SYS_BUS_DEVICE,
493 .instance_size = sizeof(CadenceTTCState),
494 .instance_init = cadence_ttc_init,
495 .class_init = cadence_ttc_class_init,
498 static void cadence_ttc_register_types(void)
500 type_register_static(&cadence_ttc_info);
503 type_init(cadence_ttc_register_types)