monitor/qmp: Update comment for commit 4eaca8de268
[qemu/armbru.git] / hw / arm / mps2-tz.c
blobd85dc2c4bd8f6860beeb9278f90e82947597ec47
1 /*
2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
4 * Copyright (c) 2017 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13 * FPGA but is otherwise the same as the 2). Since the CPU itself
14 * and most of the devices are in the FPGA, the details of the board
15 * as seen by the guest depend significantly on the FPGA image.
16 * This source file covers the following FPGA images, for TrustZone cores:
17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18 * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
20 * Links to the TRM for the board itself and to the various Application
21 * Notes which document the FPGA images can be found here:
22 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
24 * Board TRM:
25 * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
26 * Application Note AN505:
27 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
28 * Application Note AN521:
29 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html
31 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
32 * (ARM ECM0601256) for the details of some of the device layout:
33 * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
34 * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines
35 * most of the device layout:
36 * http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
40 #include "qemu/osdep.h"
41 #include "qapi/error.h"
42 #include "qemu/error-report.h"
43 #include "hw/arm/boot.h"
44 #include "hw/arm/armv7m.h"
45 #include "hw/or-irq.h"
46 #include "hw/boards.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/sysemu.h"
49 #include "hw/misc/unimp.h"
50 #include "hw/char/cmsdk-apb-uart.h"
51 #include "hw/timer/cmsdk-apb-timer.h"
52 #include "hw/misc/mps2-scc.h"
53 #include "hw/misc/mps2-fpgaio.h"
54 #include "hw/misc/tz-mpc.h"
55 #include "hw/misc/tz-msc.h"
56 #include "hw/arm/armsse.h"
57 #include "hw/dma/pl080.h"
58 #include "hw/ssi/pl022.h"
59 #include "hw/net/lan9118.h"
60 #include "net/net.h"
61 #include "hw/core/split-irq.h"
63 #define MPS2TZ_NUMIRQ 92
65 typedef enum MPS2TZFPGAType {
66 FPGA_AN505,
67 FPGA_AN521,
68 } MPS2TZFPGAType;
70 typedef struct {
71 MachineClass parent;
72 MPS2TZFPGAType fpga_type;
73 uint32_t scc_id;
74 const char *armsse_type;
75 } MPS2TZMachineClass;
77 typedef struct {
78 MachineState parent;
80 ARMSSE iotkit;
81 MemoryRegion psram;
82 MemoryRegion ssram[3];
83 MemoryRegion ssram1_m;
84 MPS2SCC scc;
85 MPS2FPGAIO fpgaio;
86 TZPPC ppc[5];
87 TZMPC ssram_mpc[3];
88 PL022State spi[5];
89 UnimplementedDeviceState i2c[4];
90 UnimplementedDeviceState i2s_audio;
91 UnimplementedDeviceState gpio[4];
92 UnimplementedDeviceState gfx;
93 PL080State dma[4];
94 TZMSC msc[4];
95 CMSDKAPBUART uart[5];
96 SplitIRQ sec_resp_splitter;
97 qemu_or_irq uart_irq_orgate;
98 DeviceState *lan9118;
99 SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ];
100 } MPS2TZMachineState;
102 #define TYPE_MPS2TZ_MACHINE "mps2tz"
103 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
104 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
106 #define MPS2TZ_MACHINE(obj) \
107 OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE)
108 #define MPS2TZ_MACHINE_GET_CLASS(obj) \
109 OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE)
110 #define MPS2TZ_MACHINE_CLASS(klass) \
111 OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE)
113 /* Main SYSCLK frequency in Hz */
114 #define SYSCLK_FRQ 20000000
116 /* Create an alias of an entire original MemoryRegion @orig
117 * located at @base in the memory map.
119 static void make_ram_alias(MemoryRegion *mr, const char *name,
120 MemoryRegion *orig, hwaddr base)
122 memory_region_init_alias(mr, NULL, name, orig, 0,
123 memory_region_size(orig));
124 memory_region_add_subregion(get_system_memory(), base, mr);
127 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
129 /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
130 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
132 assert(irqno < MPS2TZ_NUMIRQ);
134 switch (mmc->fpga_type) {
135 case FPGA_AN505:
136 return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
137 case FPGA_AN521:
138 return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
139 default:
140 g_assert_not_reached();
144 /* Most of the devices in the AN505 FPGA image sit behind
145 * Peripheral Protection Controllers. These data structures
146 * define the layout of which devices sit behind which PPCs.
147 * The devfn for each port is a function which creates, configures
148 * and initializes the device, returning the MemoryRegion which
149 * needs to be plugged into the downstream end of the PPC port.
151 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
152 const char *name, hwaddr size);
154 typedef struct PPCPortInfo {
155 const char *name;
156 MakeDevFn *devfn;
157 void *opaque;
158 hwaddr addr;
159 hwaddr size;
160 } PPCPortInfo;
162 typedef struct PPCInfo {
163 const char *name;
164 PPCPortInfo ports[TZ_NUM_PORTS];
165 } PPCInfo;
167 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
168 void *opaque,
169 const char *name, hwaddr size)
171 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
172 * and return a pointer to its MemoryRegion.
174 UnimplementedDeviceState *uds = opaque;
176 sysbus_init_child_obj(OBJECT(mms), name, uds,
177 sizeof(UnimplementedDeviceState),
178 TYPE_UNIMPLEMENTED_DEVICE);
179 qdev_prop_set_string(DEVICE(uds), "name", name);
180 qdev_prop_set_uint64(DEVICE(uds), "size", size);
181 object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal);
182 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
185 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
186 const char *name, hwaddr size)
188 CMSDKAPBUART *uart = opaque;
189 int i = uart - &mms->uart[0];
190 int rxirqno = i * 2;
191 int txirqno = i * 2 + 1;
192 int combirqno = i + 10;
193 SysBusDevice *s;
194 DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
196 sysbus_init_child_obj(OBJECT(mms), name, uart, sizeof(mms->uart[0]),
197 TYPE_CMSDK_APB_UART);
198 qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
199 qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
200 object_property_set_bool(OBJECT(uart), true, "realized", &error_fatal);
201 s = SYS_BUS_DEVICE(uart);
202 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, txirqno));
203 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, rxirqno));
204 sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
205 sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
206 sysbus_connect_irq(s, 4, get_sse_irq_in(mms, combirqno));
207 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
210 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
211 const char *name, hwaddr size)
213 MPS2SCC *scc = opaque;
214 DeviceState *sccdev;
215 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
217 sysbus_init_child_obj(OBJECT(mms), "scc", scc,
218 sizeof(mms->scc), TYPE_MPS2_SCC);
219 sccdev = DEVICE(scc);
220 qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
221 qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
222 qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
223 object_property_set_bool(OBJECT(scc), true, "realized", &error_fatal);
224 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
227 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
228 const char *name, hwaddr size)
230 MPS2FPGAIO *fpgaio = opaque;
232 sysbus_init_child_obj(OBJECT(mms), "fpgaio", fpgaio,
233 sizeof(mms->fpgaio), TYPE_MPS2_FPGAIO);
234 object_property_set_bool(OBJECT(fpgaio), true, "realized", &error_fatal);
235 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
238 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
239 const char *name, hwaddr size)
241 SysBusDevice *s;
242 NICInfo *nd = &nd_table[0];
244 /* In hardware this is a LAN9220; the LAN9118 is software compatible
245 * except that it doesn't support the checksum-offload feature.
247 qemu_check_nic_model(nd, "lan9118");
248 mms->lan9118 = qdev_create(NULL, TYPE_LAN9118);
249 qdev_set_nic_properties(mms->lan9118, nd);
250 qdev_init_nofail(mms->lan9118);
252 s = SYS_BUS_DEVICE(mms->lan9118);
253 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 16));
254 return sysbus_mmio_get_region(s, 0);
257 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
258 const char *name, hwaddr size)
260 TZMPC *mpc = opaque;
261 int i = mpc - &mms->ssram_mpc[0];
262 MemoryRegion *ssram = &mms->ssram[i];
263 MemoryRegion *upstream;
264 char *mpcname = g_strdup_printf("%s-mpc", name);
265 static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
266 static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };
268 memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);
270 sysbus_init_child_obj(OBJECT(mms), mpcname, mpc, sizeof(mms->ssram_mpc[0]),
271 TYPE_TZ_MPC);
272 object_property_set_link(OBJECT(mpc), OBJECT(ssram),
273 "downstream", &error_fatal);
274 object_property_set_bool(OBJECT(mpc), true, "realized", &error_fatal);
275 /* Map the upstream end of the MPC into system memory */
276 upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
277 memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
278 /* and connect its interrupt to the IoTKit */
279 qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
280 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
281 "mpcexp_status", i));
283 /* The first SSRAM is a special case as it has an alias; accesses to
284 * the alias region at 0x00400000 must also go to the MPC upstream.
286 if (i == 0) {
287 make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
290 g_free(mpcname);
291 /* Return the register interface MR for our caller to map behind the PPC */
292 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
295 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
296 const char *name, hwaddr size)
298 PL080State *dma = opaque;
299 int i = dma - &mms->dma[0];
300 SysBusDevice *s;
301 char *mscname = g_strdup_printf("%s-msc", name);
302 TZMSC *msc = &mms->msc[i];
303 DeviceState *iotkitdev = DEVICE(&mms->iotkit);
304 MemoryRegion *msc_upstream;
305 MemoryRegion *msc_downstream;
308 * Each DMA device is a PL081 whose transaction master interface
309 * is guarded by a Master Security Controller. The downstream end of
310 * the MSC connects to the IoTKit AHB Slave Expansion port, so the
311 * DMA devices can see all devices and memory that the CPU does.
313 sysbus_init_child_obj(OBJECT(mms), mscname, msc, sizeof(*msc), TYPE_TZ_MSC);
314 msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
315 object_property_set_link(OBJECT(msc), OBJECT(msc_downstream),
316 "downstream", &error_fatal);
317 object_property_set_link(OBJECT(msc), OBJECT(mms),
318 "idau", &error_fatal);
319 object_property_set_bool(OBJECT(msc), true, "realized", &error_fatal);
321 qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
322 qdev_get_gpio_in_named(iotkitdev,
323 "mscexp_status", i));
324 qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
325 qdev_get_gpio_in_named(DEVICE(msc),
326 "irq_clear", 0));
327 qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
328 qdev_get_gpio_in_named(DEVICE(msc),
329 "cfg_nonsec", 0));
330 qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
331 ARRAY_SIZE(mms->ppc) + i,
332 qdev_get_gpio_in_named(DEVICE(msc),
333 "cfg_sec_resp", 0));
334 msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
336 sysbus_init_child_obj(OBJECT(mms), name, dma, sizeof(*dma), TYPE_PL081);
337 object_property_set_link(OBJECT(dma), OBJECT(msc_upstream),
338 "downstream", &error_fatal);
339 object_property_set_bool(OBJECT(dma), true, "realized", &error_fatal);
341 s = SYS_BUS_DEVICE(dma);
342 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
343 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3));
344 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3));
345 sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3));
347 g_free(mscname);
348 return sysbus_mmio_get_region(s, 0);
351 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
352 const char *name, hwaddr size)
355 * The AN505 has five PL022 SPI controllers.
356 * One of these should have the LCD controller behind it; the others
357 * are connected only to the FPGA's "general purpose SPI connector"
358 * or "shield" expansion connectors.
359 * Note that if we do implement devices behind SPI, the chip select
360 * lines are set via the "MISC" register in the MPS2 FPGAIO device.
362 PL022State *spi = opaque;
363 int i = spi - &mms->spi[0];
364 SysBusDevice *s;
366 sysbus_init_child_obj(OBJECT(mms), name, spi, sizeof(mms->spi[0]),
367 TYPE_PL022);
368 object_property_set_bool(OBJECT(spi), true, "realized", &error_fatal);
369 s = SYS_BUS_DEVICE(spi);
370 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 51 + i));
371 return sysbus_mmio_get_region(s, 0);
374 static void mps2tz_common_init(MachineState *machine)
376 MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
377 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
378 MachineClass *mc = MACHINE_GET_CLASS(machine);
379 MemoryRegion *system_memory = get_system_memory();
380 DeviceState *iotkitdev;
381 DeviceState *dev_splitter;
382 int i;
384 if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
385 error_report("This board can only be used with CPU %s",
386 mc->default_cpu_type);
387 exit(1);
390 sysbus_init_child_obj(OBJECT(machine), "iotkit", &mms->iotkit,
391 sizeof(mms->iotkit), mmc->armsse_type);
392 iotkitdev = DEVICE(&mms->iotkit);
393 object_property_set_link(OBJECT(&mms->iotkit), OBJECT(system_memory),
394 "memory", &error_abort);
395 qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", MPS2TZ_NUMIRQ);
396 qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ);
397 object_property_set_bool(OBJECT(&mms->iotkit), true, "realized",
398 &error_fatal);
401 * The AN521 needs us to create splitters to feed the IRQ inputs
402 * for each CPU in the SSE-200 from each device in the board.
404 if (mmc->fpga_type == FPGA_AN521) {
405 for (i = 0; i < MPS2TZ_NUMIRQ; i++) {
406 char *name = g_strdup_printf("mps2-irq-splitter%d", i);
407 SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
409 object_initialize_child(OBJECT(machine), name,
410 splitter, sizeof(*splitter),
411 TYPE_SPLIT_IRQ, &error_fatal, NULL);
412 g_free(name);
414 object_property_set_int(OBJECT(splitter), 2, "num-lines",
415 &error_fatal);
416 object_property_set_bool(OBJECT(splitter), true, "realized",
417 &error_fatal);
418 qdev_connect_gpio_out(DEVICE(splitter), 0,
419 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
420 "EXP_IRQ", i));
421 qdev_connect_gpio_out(DEVICE(splitter), 1,
422 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
423 "EXP_CPU1_IRQ", i));
427 /* The sec_resp_cfg output from the IoTKit must be split into multiple
428 * lines, one for each of the PPCs we create here, plus one per MSC.
430 object_initialize(&mms->sec_resp_splitter, sizeof(mms->sec_resp_splitter),
431 TYPE_SPLIT_IRQ);
432 object_property_add_child(OBJECT(machine), "sec-resp-splitter",
433 OBJECT(&mms->sec_resp_splitter), &error_abort);
434 object_property_set_int(OBJECT(&mms->sec_resp_splitter),
435 ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
436 "num-lines", &error_fatal);
437 object_property_set_bool(OBJECT(&mms->sec_resp_splitter), true,
438 "realized", &error_fatal);
439 dev_splitter = DEVICE(&mms->sec_resp_splitter);
440 qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
441 qdev_get_gpio_in(dev_splitter, 0));
443 /* The IoTKit sets up much of the memory layout, including
444 * the aliases between secure and non-secure regions in the
445 * address space. The FPGA itself contains:
447 * 0x00000000..0x003fffff SSRAM1
448 * 0x00400000..0x007fffff alias of SSRAM1
449 * 0x28000000..0x283fffff 4MB SSRAM2 + SSRAM3
450 * 0x40100000..0x4fffffff AHB Master Expansion 1 interface devices
451 * 0x80000000..0x80ffffff 16MB PSRAM
454 /* The FPGA images have an odd combination of different RAMs,
455 * because in hardware they are different implementations and
456 * connected to different buses, giving varying performance/size
457 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
458 * call the 16MB our "system memory", as it's the largest lump.
460 memory_region_allocate_system_memory(&mms->psram,
461 NULL, "mps.ram", 0x01000000);
462 memory_region_add_subregion(system_memory, 0x80000000, &mms->psram);
464 /* The overflow IRQs for all UARTs are ORed together.
465 * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
466 * Create the OR gate for this.
468 object_initialize(&mms->uart_irq_orgate, sizeof(mms->uart_irq_orgate),
469 TYPE_OR_IRQ);
470 object_property_add_child(OBJECT(mms), "uart-irq-orgate",
471 OBJECT(&mms->uart_irq_orgate), &error_abort);
472 object_property_set_int(OBJECT(&mms->uart_irq_orgate), 10, "num-lines",
473 &error_fatal);
474 object_property_set_bool(OBJECT(&mms->uart_irq_orgate), true,
475 "realized", &error_fatal);
476 qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
477 get_sse_irq_in(mms, 15));
479 /* Most of the devices in the FPGA are behind Peripheral Protection
480 * Controllers. The required order for initializing things is:
481 * + initialize the PPC
482 * + initialize, configure and realize downstream devices
483 * + connect downstream device MemoryRegions to the PPC
484 * + realize the PPC
485 * + map the PPC's MemoryRegions to the places in the address map
486 * where the downstream devices should appear
487 * + wire up the PPC's control lines to the IoTKit object
490 const PPCInfo ppcs[] = { {
491 .name = "apb_ppcexp0",
492 .ports = {
493 { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
494 { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
495 { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
497 }, {
498 .name = "apb_ppcexp1",
499 .ports = {
500 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000 },
501 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000 },
502 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000 },
503 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000 },
504 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000 },
505 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
506 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
507 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
508 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
509 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
510 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40207000, 0x1000 },
511 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40208000, 0x1000 },
512 { "i2c2", make_unimp_dev, &mms->i2c[2], 0x4020c000, 0x1000 },
513 { "i2c3", make_unimp_dev, &mms->i2c[3], 0x4020d000, 0x1000 },
515 }, {
516 .name = "apb_ppcexp2",
517 .ports = {
518 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
519 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
520 0x40301000, 0x1000 },
521 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
523 }, {
524 .name = "ahb_ppcexp0",
525 .ports = {
526 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
527 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
528 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
529 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
530 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
531 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
533 }, {
534 .name = "ahb_ppcexp1",
535 .ports = {
536 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 },
537 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 },
538 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 },
539 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 },
544 for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
545 const PPCInfo *ppcinfo = &ppcs[i];
546 TZPPC *ppc = &mms->ppc[i];
547 DeviceState *ppcdev;
548 int port;
549 char *gpioname;
551 sysbus_init_child_obj(OBJECT(machine), ppcinfo->name, ppc,
552 sizeof(TZPPC), TYPE_TZ_PPC);
553 ppcdev = DEVICE(ppc);
555 for (port = 0; port < TZ_NUM_PORTS; port++) {
556 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
557 MemoryRegion *mr;
558 char *portname;
560 if (!pinfo->devfn) {
561 continue;
564 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
565 portname = g_strdup_printf("port[%d]", port);
566 object_property_set_link(OBJECT(ppc), OBJECT(mr),
567 portname, &error_fatal);
568 g_free(portname);
571 object_property_set_bool(OBJECT(ppc), true, "realized", &error_fatal);
573 for (port = 0; port < TZ_NUM_PORTS; port++) {
574 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
576 if (!pinfo->devfn) {
577 continue;
579 sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
581 gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
582 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
583 qdev_get_gpio_in_named(ppcdev,
584 "cfg_nonsec",
585 port));
586 g_free(gpioname);
587 gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
588 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
589 qdev_get_gpio_in_named(ppcdev,
590 "cfg_ap", port));
591 g_free(gpioname);
594 gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
595 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
596 qdev_get_gpio_in_named(ppcdev,
597 "irq_enable", 0));
598 g_free(gpioname);
599 gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
600 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
601 qdev_get_gpio_in_named(ppcdev,
602 "irq_clear", 0));
603 g_free(gpioname);
604 gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
605 qdev_connect_gpio_out_named(ppcdev, "irq", 0,
606 qdev_get_gpio_in_named(iotkitdev,
607 gpioname, 0));
608 g_free(gpioname);
610 qdev_connect_gpio_out(dev_splitter, i,
611 qdev_get_gpio_in_named(ppcdev,
612 "cfg_sec_resp", 0));
615 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
617 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
620 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
621 int *iregion, bool *exempt, bool *ns, bool *nsc)
624 * The MPS2 TZ FPGA images have IDAUs in them which are connected to
625 * the Master Security Controllers. Thes have the same logic as
626 * is used by the IoTKit for the IDAU connected to the CPU, except
627 * that MSCs don't care about the NSC attribute.
629 int region = extract32(address, 28, 4);
631 *ns = !(region & 1);
632 *nsc = false;
633 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
634 *exempt = (address & 0xeff00000) == 0xe0000000;
635 *iregion = region;
638 static void mps2tz_class_init(ObjectClass *oc, void *data)
640 MachineClass *mc = MACHINE_CLASS(oc);
641 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
643 mc->init = mps2tz_common_init;
644 iic->check = mps2_tz_idau_check;
647 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
649 MachineClass *mc = MACHINE_CLASS(oc);
650 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
652 mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
653 mc->default_cpus = 1;
654 mc->min_cpus = mc->default_cpus;
655 mc->max_cpus = mc->default_cpus;
656 mmc->fpga_type = FPGA_AN505;
657 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
658 mmc->scc_id = 0x41045050;
659 mmc->armsse_type = TYPE_IOTKIT;
662 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
664 MachineClass *mc = MACHINE_CLASS(oc);
665 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
667 mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
668 mc->default_cpus = 2;
669 mc->min_cpus = mc->default_cpus;
670 mc->max_cpus = mc->default_cpus;
671 mmc->fpga_type = FPGA_AN521;
672 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
673 mmc->scc_id = 0x41045210;
674 mmc->armsse_type = TYPE_SSE200;
677 static const TypeInfo mps2tz_info = {
678 .name = TYPE_MPS2TZ_MACHINE,
679 .parent = TYPE_MACHINE,
680 .abstract = true,
681 .instance_size = sizeof(MPS2TZMachineState),
682 .class_size = sizeof(MPS2TZMachineClass),
683 .class_init = mps2tz_class_init,
684 .interfaces = (InterfaceInfo[]) {
685 { TYPE_IDAU_INTERFACE },
690 static const TypeInfo mps2tz_an505_info = {
691 .name = TYPE_MPS2TZ_AN505_MACHINE,
692 .parent = TYPE_MPS2TZ_MACHINE,
693 .class_init = mps2tz_an505_class_init,
696 static const TypeInfo mps2tz_an521_info = {
697 .name = TYPE_MPS2TZ_AN521_MACHINE,
698 .parent = TYPE_MPS2TZ_MACHINE,
699 .class_init = mps2tz_an521_class_init,
702 static void mps2tz_machine_init(void)
704 type_register_static(&mps2tz_info);
705 type_register_static(&mps2tz_an505_info);
706 type_register_static(&mps2tz_an521_info);
709 type_init(mps2tz_machine_init);