4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/kvm.h"
28 #include "qemu/range.h"
29 #include "qapi/qapi-commands-machine-target.h"
30 #include "qapi/error.h"
31 #include "qemu/guest-random.h"
34 #include "exec/cpu_ldst.h"
37 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
39 #ifndef CONFIG_USER_ONLY
41 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
42 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
43 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
44 target_ulong
*page_size_ptr
,
45 ARMMMUFaultInfo
*fi
, ARMCacheAttrs
*cacheattrs
);
48 static void switch_mode(CPUARMState
*env
, int mode
);
50 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
54 /* VFP data registers are always little-endian. */
55 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
57 stq_le_p(buf
, *aa32_vfp_dreg(env
, reg
));
60 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
61 /* Aliases for Q regs. */
64 uint64_t *q
= aa32_vfp_qreg(env
, reg
- 32);
66 stq_le_p(buf
+ 8, q
[1]);
70 switch (reg
- nregs
) {
71 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
72 case 1: stl_p(buf
, vfp_get_fpscr(env
)); return 4;
73 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
78 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
82 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
84 *aa32_vfp_dreg(env
, reg
) = ldq_le_p(buf
);
87 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
90 uint64_t *q
= aa32_vfp_qreg(env
, reg
- 32);
92 q
[1] = ldq_le_p(buf
+ 8);
96 switch (reg
- nregs
) {
97 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
98 case 1: vfp_set_fpscr(env
, ldl_p(buf
)); return 4;
99 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
104 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
108 /* 128 bit FP register */
110 uint64_t *q
= aa64_vfp_qreg(env
, reg
);
112 stq_le_p(buf
+ 8, q
[1]);
117 stl_p(buf
, vfp_get_fpsr(env
));
121 stl_p(buf
, vfp_get_fpcr(env
));
128 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
132 /* 128 bit FP register */
134 uint64_t *q
= aa64_vfp_qreg(env
, reg
);
135 q
[0] = ldq_le_p(buf
);
136 q
[1] = ldq_le_p(buf
+ 8);
141 vfp_set_fpsr(env
, ldl_p(buf
));
145 vfp_set_fpcr(env
, ldl_p(buf
));
152 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
154 assert(ri
->fieldoffset
);
155 if (cpreg_field_is_64bit(ri
)) {
156 return CPREG_FIELD64(env
, ri
);
158 return CPREG_FIELD32(env
, ri
);
162 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
165 assert(ri
->fieldoffset
);
166 if (cpreg_field_is_64bit(ri
)) {
167 CPREG_FIELD64(env
, ri
) = value
;
169 CPREG_FIELD32(env
, ri
) = value
;
173 static void *raw_ptr(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
175 return (char *)env
+ ri
->fieldoffset
;
178 uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
180 /* Raw read of a coprocessor register (as needed for migration, etc). */
181 if (ri
->type
& ARM_CP_CONST
) {
182 return ri
->resetvalue
;
183 } else if (ri
->raw_readfn
) {
184 return ri
->raw_readfn(env
, ri
);
185 } else if (ri
->readfn
) {
186 return ri
->readfn(env
, ri
);
188 return raw_read(env
, ri
);
192 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
195 /* Raw write of a coprocessor register (as needed for migration, etc).
196 * Note that constant registers are treated as write-ignored; the
197 * caller should check for success by whether a readback gives the
200 if (ri
->type
& ARM_CP_CONST
) {
202 } else if (ri
->raw_writefn
) {
203 ri
->raw_writefn(env
, ri
, v
);
204 } else if (ri
->writefn
) {
205 ri
->writefn(env
, ri
, v
);
207 raw_write(env
, ri
, v
);
211 static int arm_gdb_get_sysreg(CPUARMState
*env
, uint8_t *buf
, int reg
)
213 ARMCPU
*cpu
= env_archcpu(env
);
214 const ARMCPRegInfo
*ri
;
217 key
= cpu
->dyn_xml
.cpregs_keys
[reg
];
218 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, key
);
220 if (cpreg_field_is_64bit(ri
)) {
221 return gdb_get_reg64(buf
, (uint64_t)read_raw_cp_reg(env
, ri
));
223 return gdb_get_reg32(buf
, (uint32_t)read_raw_cp_reg(env
, ri
));
229 static int arm_gdb_set_sysreg(CPUARMState
*env
, uint8_t *buf
, int reg
)
234 static bool raw_accessors_invalid(const ARMCPRegInfo
*ri
)
236 /* Return true if the regdef would cause an assertion if you called
237 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
238 * program bug for it not to have the NO_RAW flag).
239 * NB that returning false here doesn't necessarily mean that calling
240 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
241 * read/write access functions which are safe for raw use" from "has
242 * read/write access functions which have side effects but has forgotten
243 * to provide raw access functions".
244 * The tests here line up with the conditions in read/write_raw_cp_reg()
245 * and assertions in raw_read()/raw_write().
247 if ((ri
->type
& ARM_CP_CONST
) ||
249 ((ri
->raw_writefn
|| ri
->writefn
) && (ri
->raw_readfn
|| ri
->readfn
))) {
255 bool write_cpustate_to_list(ARMCPU
*cpu
, bool kvm_sync
)
257 /* Write the coprocessor state from cpu->env to the (index,value) list. */
261 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
262 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
263 const ARMCPRegInfo
*ri
;
266 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
271 if (ri
->type
& ARM_CP_NO_RAW
) {
275 newval
= read_raw_cp_reg(&cpu
->env
, ri
);
278 * Only sync if the previous list->cpustate sync succeeded.
279 * Rather than tracking the success/failure state for every
280 * item in the list, we just recheck "does the raw write we must
281 * have made in write_list_to_cpustate() read back OK" here.
283 uint64_t oldval
= cpu
->cpreg_values
[i
];
285 if (oldval
== newval
) {
289 write_raw_cp_reg(&cpu
->env
, ri
, oldval
);
290 if (read_raw_cp_reg(&cpu
->env
, ri
) != oldval
) {
294 write_raw_cp_reg(&cpu
->env
, ri
, newval
);
296 cpu
->cpreg_values
[i
] = newval
;
301 bool write_list_to_cpustate(ARMCPU
*cpu
)
306 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
307 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
308 uint64_t v
= cpu
->cpreg_values
[i
];
309 const ARMCPRegInfo
*ri
;
311 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
316 if (ri
->type
& ARM_CP_NO_RAW
) {
319 /* Write value and confirm it reads back as written
320 * (to catch read-only registers and partially read-only
321 * registers where the incoming migration value doesn't match)
323 write_raw_cp_reg(&cpu
->env
, ri
, v
);
324 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
331 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
333 ARMCPU
*cpu
= opaque
;
335 const ARMCPRegInfo
*ri
;
337 regidx
= *(uint32_t *)key
;
338 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
340 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
341 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
342 /* The value array need not be initialized at this point */
343 cpu
->cpreg_array_len
++;
347 static void count_cpreg(gpointer key
, gpointer opaque
)
349 ARMCPU
*cpu
= opaque
;
351 const ARMCPRegInfo
*ri
;
353 regidx
= *(uint32_t *)key
;
354 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
356 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
357 cpu
->cpreg_array_len
++;
361 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
363 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
364 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
375 void init_cpreg_list(ARMCPU
*cpu
)
377 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
378 * Note that we require cpreg_tuples[] to be sorted by key ID.
383 keys
= g_hash_table_get_keys(cpu
->cp_regs
);
384 keys
= g_list_sort(keys
, cpreg_key_compare
);
386 cpu
->cpreg_array_len
= 0;
388 g_list_foreach(keys
, count_cpreg
, cpu
);
390 arraylen
= cpu
->cpreg_array_len
;
391 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
392 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
393 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
394 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
395 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
396 cpu
->cpreg_array_len
= 0;
398 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
400 assert(cpu
->cpreg_array_len
== arraylen
);
406 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
407 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
409 * access_el3_aa32ns: Used to check AArch32 register views.
410 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
412 static CPAccessResult
access_el3_aa32ns(CPUARMState
*env
,
413 const ARMCPRegInfo
*ri
,
416 bool secure
= arm_is_secure_below_el3(env
);
418 assert(!arm_el_is_aa64(env
, 3));
420 return CP_ACCESS_TRAP_UNCATEGORIZED
;
425 static CPAccessResult
access_el3_aa32ns_aa64any(CPUARMState
*env
,
426 const ARMCPRegInfo
*ri
,
429 if (!arm_el_is_aa64(env
, 3)) {
430 return access_el3_aa32ns(env
, ri
, isread
);
435 /* Some secure-only AArch32 registers trap to EL3 if used from
436 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
437 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
438 * We assume that the .access field is set to PL1_RW.
440 static CPAccessResult
access_trap_aa32s_el1(CPUARMState
*env
,
441 const ARMCPRegInfo
*ri
,
444 if (arm_current_el(env
) == 3) {
447 if (arm_is_secure_below_el3(env
)) {
448 return CP_ACCESS_TRAP_EL3
;
450 /* This will be EL1 NS and EL2 NS, which just UNDEF */
451 return CP_ACCESS_TRAP_UNCATEGORIZED
;
454 /* Check for traps to "powerdown debug" registers, which are controlled
457 static CPAccessResult
access_tdosa(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
460 int el
= arm_current_el(env
);
461 bool mdcr_el2_tdosa
= (env
->cp15
.mdcr_el2
& MDCR_TDOSA
) ||
462 (env
->cp15
.mdcr_el2
& MDCR_TDE
) ||
463 (arm_hcr_el2_eff(env
) & HCR_TGE
);
465 if (el
< 2 && mdcr_el2_tdosa
&& !arm_is_secure_below_el3(env
)) {
466 return CP_ACCESS_TRAP_EL2
;
468 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDOSA
)) {
469 return CP_ACCESS_TRAP_EL3
;
474 /* Check for traps to "debug ROM" registers, which are controlled
475 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
477 static CPAccessResult
access_tdra(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
480 int el
= arm_current_el(env
);
481 bool mdcr_el2_tdra
= (env
->cp15
.mdcr_el2
& MDCR_TDRA
) ||
482 (env
->cp15
.mdcr_el2
& MDCR_TDE
) ||
483 (arm_hcr_el2_eff(env
) & HCR_TGE
);
485 if (el
< 2 && mdcr_el2_tdra
&& !arm_is_secure_below_el3(env
)) {
486 return CP_ACCESS_TRAP_EL2
;
488 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
489 return CP_ACCESS_TRAP_EL3
;
494 /* Check for traps to general debug registers, which are controlled
495 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
497 static CPAccessResult
access_tda(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
500 int el
= arm_current_el(env
);
501 bool mdcr_el2_tda
= (env
->cp15
.mdcr_el2
& MDCR_TDA
) ||
502 (env
->cp15
.mdcr_el2
& MDCR_TDE
) ||
503 (arm_hcr_el2_eff(env
) & HCR_TGE
);
505 if (el
< 2 && mdcr_el2_tda
&& !arm_is_secure_below_el3(env
)) {
506 return CP_ACCESS_TRAP_EL2
;
508 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
509 return CP_ACCESS_TRAP_EL3
;
514 /* Check for traps to performance monitor registers, which are controlled
515 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
517 static CPAccessResult
access_tpm(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
520 int el
= arm_current_el(env
);
522 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TPM
)
523 && !arm_is_secure_below_el3(env
)) {
524 return CP_ACCESS_TRAP_EL2
;
526 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TPM
)) {
527 return CP_ACCESS_TRAP_EL3
;
532 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
534 ARMCPU
*cpu
= env_archcpu(env
);
536 raw_write(env
, ri
, value
);
537 tlb_flush(CPU(cpu
)); /* Flush TLB as domain not tracked in TLB */
540 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
542 ARMCPU
*cpu
= env_archcpu(env
);
544 if (raw_read(env
, ri
) != value
) {
545 /* Unlike real hardware the qemu TLB uses virtual addresses,
546 * not modified virtual addresses, so this causes a TLB flush.
549 raw_write(env
, ri
, value
);
553 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
556 ARMCPU
*cpu
= env_archcpu(env
);
558 if (raw_read(env
, ri
) != value
&& !arm_feature(env
, ARM_FEATURE_PMSA
)
559 && !extended_addresses_enabled(env
)) {
560 /* For VMSA (when not using the LPAE long descriptor page table
561 * format) this register includes the ASID, so do a TLB flush.
562 * For PMSA it is purely a process ID and no action is needed.
566 raw_write(env
, ri
, value
);
569 /* IS variants of TLB operations must affect all cores */
570 static void tlbiall_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
573 CPUState
*cs
= env_cpu(env
);
575 tlb_flush_all_cpus_synced(cs
);
578 static void tlbiasid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
581 CPUState
*cs
= env_cpu(env
);
583 tlb_flush_all_cpus_synced(cs
);
586 static void tlbimva_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
589 CPUState
*cs
= env_cpu(env
);
591 tlb_flush_page_all_cpus_synced(cs
, value
& TARGET_PAGE_MASK
);
594 static void tlbimvaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
597 CPUState
*cs
= env_cpu(env
);
599 tlb_flush_page_all_cpus_synced(cs
, value
& TARGET_PAGE_MASK
);
603 * Non-IS variants of TLB operations are upgraded to
604 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
605 * force broadcast of these operations.
607 static bool tlb_force_broadcast(CPUARMState
*env
)
609 return (env
->cp15
.hcr_el2
& HCR_FB
) &&
610 arm_current_el(env
) == 1 && arm_is_secure_below_el3(env
);
613 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
616 /* Invalidate all (TLBIALL) */
617 ARMCPU
*cpu
= env_archcpu(env
);
619 if (tlb_force_broadcast(env
)) {
620 tlbiall_is_write(env
, NULL
, value
);
627 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
630 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
631 ARMCPU
*cpu
= env_archcpu(env
);
633 if (tlb_force_broadcast(env
)) {
634 tlbimva_is_write(env
, NULL
, value
);
638 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
641 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
644 /* Invalidate by ASID (TLBIASID) */
645 ARMCPU
*cpu
= env_archcpu(env
);
647 if (tlb_force_broadcast(env
)) {
648 tlbiasid_is_write(env
, NULL
, value
);
655 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
658 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
659 ARMCPU
*cpu
= env_archcpu(env
);
661 if (tlb_force_broadcast(env
)) {
662 tlbimvaa_is_write(env
, NULL
, value
);
666 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
669 static void tlbiall_nsnh_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
672 CPUState
*cs
= env_cpu(env
);
674 tlb_flush_by_mmuidx(cs
,
675 ARMMMUIdxBit_S12NSE1
|
676 ARMMMUIdxBit_S12NSE0
|
680 static void tlbiall_nsnh_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
683 CPUState
*cs
= env_cpu(env
);
685 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
686 ARMMMUIdxBit_S12NSE1
|
687 ARMMMUIdxBit_S12NSE0
|
691 static void tlbiipas2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
694 /* Invalidate by IPA. This has to invalidate any structures that
695 * contain only stage 2 translation information, but does not need
696 * to apply to structures that contain combined stage 1 and stage 2
697 * translation information.
698 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
700 CPUState
*cs
= env_cpu(env
);
703 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
707 pageaddr
= sextract64(value
<< 12, 0, 40);
709 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdxBit_S2NS
);
712 static void tlbiipas2_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
715 CPUState
*cs
= env_cpu(env
);
718 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
722 pageaddr
= sextract64(value
<< 12, 0, 40);
724 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
728 static void tlbiall_hyp_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
731 CPUState
*cs
= env_cpu(env
);
733 tlb_flush_by_mmuidx(cs
, ARMMMUIdxBit_S1E2
);
736 static void tlbiall_hyp_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
739 CPUState
*cs
= env_cpu(env
);
741 tlb_flush_by_mmuidx_all_cpus_synced(cs
, ARMMMUIdxBit_S1E2
);
744 static void tlbimva_hyp_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
747 CPUState
*cs
= env_cpu(env
);
748 uint64_t pageaddr
= value
& ~MAKE_64BIT_MASK(0, 12);
750 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdxBit_S1E2
);
753 static void tlbimva_hyp_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
756 CPUState
*cs
= env_cpu(env
);
757 uint64_t pageaddr
= value
& ~MAKE_64BIT_MASK(0, 12);
759 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
763 static const ARMCPRegInfo cp_reginfo
[] = {
764 /* Define the secure and non-secure FCSE identifier CP registers
765 * separately because there is no secure bank in V8 (no _EL3). This allows
766 * the secure register to be properly reset and migrated. There is also no
767 * v8 EL1 version of the register so the non-secure instance stands alone.
770 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
771 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
772 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_ns
),
773 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
774 { .name
= "FCSEIDR_S",
775 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
776 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
777 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_s
),
778 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
779 /* Define the secure and non-secure context identifier CP registers
780 * separately because there is no secure bank in V8 (no _EL3). This allows
781 * the secure register to be properly reset and migrated. In the
782 * non-secure case, the 32-bit register will have reset and migration
783 * disabled during registration as it is handled by the 64-bit instance.
785 { .name
= "CONTEXTIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
786 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
787 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
788 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el
[1]),
789 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
790 { .name
= "CONTEXTIDR_S", .state
= ARM_CP_STATE_AA32
,
791 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
792 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
793 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_s
),
794 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
798 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
799 /* NB: Some of these registers exist in v8 but with more precise
800 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
802 /* MMU Domain access control / MPU write buffer control */
804 .cp
= 15, .opc1
= CP_ANY
, .crn
= 3, .crm
= CP_ANY
, .opc2
= CP_ANY
,
805 .access
= PL1_RW
, .resetvalue
= 0,
806 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
807 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
808 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
809 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
810 * For v6 and v5, these mappings are overly broad.
812 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 0,
813 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
814 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 1,
815 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
816 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 4,
817 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
818 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 8,
819 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
820 /* Cache maintenance ops; some of this space may be overridden later. */
821 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
822 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
823 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
827 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
828 /* Not all pre-v6 cores implemented this WFI, so this is slightly
831 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
832 .access
= PL1_W
, .type
= ARM_CP_WFI
},
836 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
837 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
838 * is UNPREDICTABLE; we choose to NOP as most implementations do).
840 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
841 .access
= PL1_W
, .type
= ARM_CP_WFI
},
842 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
843 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
844 * OMAPCP will override this space.
846 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
847 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
849 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
850 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
852 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
853 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
854 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
856 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
857 * implementing it as RAZ means the "debug architecture version" bits
858 * will read as a reserved value, which should cause Linux to not try
859 * to use the debug hardware.
861 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
862 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
863 /* MMU TLB control. Note that the wildcarding means we cover not just
864 * the unified TLB ops but also the dside/iside/inner-shareable variants.
866 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
867 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
868 .type
= ARM_CP_NO_RAW
},
869 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
870 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
871 .type
= ARM_CP_NO_RAW
},
872 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
873 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
874 .type
= ARM_CP_NO_RAW
},
875 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
876 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
877 .type
= ARM_CP_NO_RAW
},
878 { .name
= "PRRR", .cp
= 15, .crn
= 10, .crm
= 2,
879 .opc1
= 0, .opc2
= 0, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
880 { .name
= "NMRR", .cp
= 15, .crn
= 10, .crm
= 2,
881 .opc1
= 0, .opc2
= 1, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
885 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
890 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
891 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
892 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
893 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
894 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
896 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
897 /* VFP coprocessor: cp10 & cp11 [23:20] */
898 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
900 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
901 /* ASEDIS [31] bit is RAO/WI */
905 /* VFPv3 and upwards with NEON implement 32 double precision
906 * registers (D0-D31).
908 if (!arm_feature(env
, ARM_FEATURE_NEON
) ||
909 !arm_feature(env
, ARM_FEATURE_VFP3
)) {
910 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
918 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
919 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
921 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_el_is_aa64(env
, 3) &&
922 !arm_is_secure(env
) && !extract32(env
->cp15
.nsacr
, 10, 1)) {
923 value
&= ~(0xf << 20);
924 value
|= env
->cp15
.cpacr_el1
& (0xf << 20);
927 env
->cp15
.cpacr_el1
= value
;
930 static uint64_t cpacr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
933 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
934 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
936 uint64_t value
= env
->cp15
.cpacr_el1
;
938 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_el_is_aa64(env
, 3) &&
939 !arm_is_secure(env
) && !extract32(env
->cp15
.nsacr
, 10, 1)) {
940 value
&= ~(0xf << 20);
946 static void cpacr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
948 /* Call cpacr_write() so that we reset with the correct RAO bits set
949 * for our CPU features.
951 cpacr_write(env
, ri
, 0);
954 static CPAccessResult
cpacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
957 if (arm_feature(env
, ARM_FEATURE_V8
)) {
958 /* Check if CPACR accesses are to be trapped to EL2 */
959 if (arm_current_el(env
) == 1 &&
960 (env
->cp15
.cptr_el
[2] & CPTR_TCPAC
) && !arm_is_secure(env
)) {
961 return CP_ACCESS_TRAP_EL2
;
962 /* Check if CPACR accesses are to be trapped to EL3 */
963 } else if (arm_current_el(env
) < 3 &&
964 (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
965 return CP_ACCESS_TRAP_EL3
;
972 static CPAccessResult
cptr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
975 /* Check if CPTR accesses are set to trap to EL3 */
976 if (arm_current_el(env
) == 2 && (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
977 return CP_ACCESS_TRAP_EL3
;
983 static const ARMCPRegInfo v6_cp_reginfo
[] = {
984 /* prefetch by MVA in v6, NOP in v7 */
985 { .name
= "MVA_prefetch",
986 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
987 .access
= PL1_W
, .type
= ARM_CP_NOP
},
988 /* We need to break the TB after ISB to execute self-modifying code
989 * correctly and also to take any pending interrupts immediately.
990 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
992 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
993 .access
= PL0_W
, .type
= ARM_CP_NO_RAW
, .writefn
= arm_cp_write_ignore
},
994 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
995 .access
= PL0_W
, .type
= ARM_CP_NOP
},
996 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
997 .access
= PL0_W
, .type
= ARM_CP_NOP
},
998 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
1000 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ifar_s
),
1001 offsetof(CPUARMState
, cp15
.ifar_ns
) },
1003 /* Watchpoint Fault Address Register : should actually only be present
1004 * for 1136, 1176, 11MPCore.
1006 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
1007 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
1008 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
1009 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2, .accessfn
= cpacr_access
,
1010 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.cpacr_el1
),
1011 .resetfn
= cpacr_reset
, .writefn
= cpacr_write
, .readfn
= cpacr_read
},
1015 /* Definitions for the PMU registers */
1016 #define PMCRN_MASK 0xf800
1017 #define PMCRN_SHIFT 11
1025 #define PMXEVTYPER_P 0x80000000
1026 #define PMXEVTYPER_U 0x40000000
1027 #define PMXEVTYPER_NSK 0x20000000
1028 #define PMXEVTYPER_NSU 0x10000000
1029 #define PMXEVTYPER_NSH 0x08000000
1030 #define PMXEVTYPER_M 0x04000000
1031 #define PMXEVTYPER_MT 0x02000000
1032 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1033 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1034 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1035 PMXEVTYPER_M | PMXEVTYPER_MT | \
1036 PMXEVTYPER_EVTCOUNT)
1038 #define PMCCFILTR 0xf8000000
1039 #define PMCCFILTR_M PMXEVTYPER_M
1040 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1042 static inline uint32_t pmu_num_counters(CPUARMState
*env
)
1044 return (env
->cp15
.c9_pmcr
& PMCRN_MASK
) >> PMCRN_SHIFT
;
1047 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1048 static inline uint64_t pmu_counter_mask(CPUARMState
*env
)
1050 return (1 << 31) | ((1 << pmu_num_counters(env
)) - 1);
1053 typedef struct pm_event
{
1054 uint16_t number
; /* PMEVTYPER.evtCount is 16 bits wide */
1055 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1056 bool (*supported
)(CPUARMState
*);
1058 * Retrieve the current count of the underlying event. The programmed
1059 * counters hold a difference from the return value from this function
1061 uint64_t (*get_count
)(CPUARMState
*);
1063 * Return how many nanoseconds it will take (at a minimum) for count events
1064 * to occur. A negative value indicates the counter will never overflow, or
1065 * that the counter has otherwise arranged for the overflow bit to be set
1066 * and the PMU interrupt to be raised on overflow.
1068 int64_t (*ns_per_count
)(uint64_t);
1071 static bool event_always_supported(CPUARMState
*env
)
1076 static uint64_t swinc_get_count(CPUARMState
*env
)
1079 * SW_INCR events are written directly to the pmevcntr's by writes to
1080 * PMSWINC, so there is no underlying count maintained by the PMU itself
1085 static int64_t swinc_ns_per(uint64_t ignored
)
1091 * Return the underlying cycle count for the PMU cycle counters. If we're in
1092 * usermode, simply return 0.
1094 static uint64_t cycles_get_count(CPUARMState
*env
)
1096 #ifndef CONFIG_USER_ONLY
1097 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
1098 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
1100 return cpu_get_host_ticks();
1104 #ifndef CONFIG_USER_ONLY
1105 static int64_t cycles_ns_per(uint64_t cycles
)
1107 return (ARM_CPU_FREQ
/ NANOSECONDS_PER_SECOND
) * cycles
;
1110 static bool instructions_supported(CPUARMState
*env
)
1112 return use_icount
== 1 /* Precise instruction counting */;
1115 static uint64_t instructions_get_count(CPUARMState
*env
)
1117 return (uint64_t)cpu_get_icount_raw();
1120 static int64_t instructions_ns_per(uint64_t icount
)
1122 return cpu_icount_to_ns((int64_t)icount
);
1126 static const pm_event pm_events
[] = {
1127 { .number
= 0x000, /* SW_INCR */
1128 .supported
= event_always_supported
,
1129 .get_count
= swinc_get_count
,
1130 .ns_per_count
= swinc_ns_per
,
1132 #ifndef CONFIG_USER_ONLY
1133 { .number
= 0x008, /* INST_RETIRED, Instruction architecturally executed */
1134 .supported
= instructions_supported
,
1135 .get_count
= instructions_get_count
,
1136 .ns_per_count
= instructions_ns_per
,
1138 { .number
= 0x011, /* CPU_CYCLES, Cycle */
1139 .supported
= event_always_supported
,
1140 .get_count
= cycles_get_count
,
1141 .ns_per_count
= cycles_ns_per
,
1147 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1148 * events (i.e. the statistical profiling extension), this implementation
1149 * should first be updated to something sparse instead of the current
1150 * supported_event_map[] array.
1152 #define MAX_EVENT_ID 0x11
1153 #define UNSUPPORTED_EVENT UINT16_MAX
1154 static uint16_t supported_event_map
[MAX_EVENT_ID
+ 1];
1157 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1158 * of ARM event numbers to indices in our pm_events array.
1160 * Note: Events in the 0x40XX range are not currently supported.
1162 void pmu_init(ARMCPU
*cpu
)
1167 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1170 for (i
= 0; i
< ARRAY_SIZE(supported_event_map
); i
++) {
1171 supported_event_map
[i
] = UNSUPPORTED_EVENT
;
1176 for (i
= 0; i
< ARRAY_SIZE(pm_events
); i
++) {
1177 const pm_event
*cnt
= &pm_events
[i
];
1178 assert(cnt
->number
<= MAX_EVENT_ID
);
1179 /* We do not currently support events in the 0x40xx range */
1180 assert(cnt
->number
<= 0x3f);
1182 if (cnt
->supported(&cpu
->env
)) {
1183 supported_event_map
[cnt
->number
] = i
;
1184 uint64_t event_mask
= 1ULL << (cnt
->number
& 0x1f);
1185 if (cnt
->number
& 0x20) {
1186 cpu
->pmceid1
|= event_mask
;
1188 cpu
->pmceid0
|= event_mask
;
1195 * Check at runtime whether a PMU event is supported for the current machine
1197 static bool event_supported(uint16_t number
)
1199 if (number
> MAX_EVENT_ID
) {
1202 return supported_event_map
[number
] != UNSUPPORTED_EVENT
;
1205 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1208 /* Performance monitor registers user accessibility is controlled
1209 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1210 * trapping to EL2 or EL3 for other accesses.
1212 int el
= arm_current_el(env
);
1214 if (el
== 0 && !(env
->cp15
.c9_pmuserenr
& 1)) {
1215 return CP_ACCESS_TRAP
;
1217 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TPM
)
1218 && !arm_is_secure_below_el3(env
)) {
1219 return CP_ACCESS_TRAP_EL2
;
1221 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TPM
)) {
1222 return CP_ACCESS_TRAP_EL3
;
1225 return CP_ACCESS_OK
;
1228 static CPAccessResult
pmreg_access_xevcntr(CPUARMState
*env
,
1229 const ARMCPRegInfo
*ri
,
1232 /* ER: event counter read trap control */
1233 if (arm_feature(env
, ARM_FEATURE_V8
)
1234 && arm_current_el(env
) == 0
1235 && (env
->cp15
.c9_pmuserenr
& (1 << 3)) != 0
1237 return CP_ACCESS_OK
;
1240 return pmreg_access(env
, ri
, isread
);
1243 static CPAccessResult
pmreg_access_swinc(CPUARMState
*env
,
1244 const ARMCPRegInfo
*ri
,
1247 /* SW: software increment write trap control */
1248 if (arm_feature(env
, ARM_FEATURE_V8
)
1249 && arm_current_el(env
) == 0
1250 && (env
->cp15
.c9_pmuserenr
& (1 << 1)) != 0
1252 return CP_ACCESS_OK
;
1255 return pmreg_access(env
, ri
, isread
);
1258 static CPAccessResult
pmreg_access_selr(CPUARMState
*env
,
1259 const ARMCPRegInfo
*ri
,
1262 /* ER: event counter read trap control */
1263 if (arm_feature(env
, ARM_FEATURE_V8
)
1264 && arm_current_el(env
) == 0
1265 && (env
->cp15
.c9_pmuserenr
& (1 << 3)) != 0) {
1266 return CP_ACCESS_OK
;
1269 return pmreg_access(env
, ri
, isread
);
1272 static CPAccessResult
pmreg_access_ccntr(CPUARMState
*env
,
1273 const ARMCPRegInfo
*ri
,
1276 /* CR: cycle counter read trap control */
1277 if (arm_feature(env
, ARM_FEATURE_V8
)
1278 && arm_current_el(env
) == 0
1279 && (env
->cp15
.c9_pmuserenr
& (1 << 2)) != 0
1281 return CP_ACCESS_OK
;
1284 return pmreg_access(env
, ri
, isread
);
1287 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1288 * the current EL, security state, and register configuration.
1290 static bool pmu_counter_enabled(CPUARMState
*env
, uint8_t counter
)
1293 bool e
, p
, u
, nsk
, nsu
, nsh
, m
;
1294 bool enabled
, prohibited
, filtered
;
1295 bool secure
= arm_is_secure(env
);
1296 int el
= arm_current_el(env
);
1297 uint8_t hpmn
= env
->cp15
.mdcr_el2
& MDCR_HPMN
;
1299 if (!arm_feature(env
, ARM_FEATURE_PMU
)) {
1303 if (!arm_feature(env
, ARM_FEATURE_EL2
) ||
1304 (counter
< hpmn
|| counter
== 31)) {
1305 e
= env
->cp15
.c9_pmcr
& PMCRE
;
1307 e
= env
->cp15
.mdcr_el2
& MDCR_HPME
;
1309 enabled
= e
&& (env
->cp15
.c9_pmcnten
& (1 << counter
));
1312 if (el
== 2 && (counter
< hpmn
|| counter
== 31)) {
1313 prohibited
= env
->cp15
.mdcr_el2
& MDCR_HPMD
;
1318 prohibited
= arm_feature(env
, ARM_FEATURE_EL3
) &&
1319 (env
->cp15
.mdcr_el3
& MDCR_SPME
);
1322 if (prohibited
&& counter
== 31) {
1323 prohibited
= env
->cp15
.c9_pmcr
& PMCRDP
;
1326 if (counter
== 31) {
1327 filter
= env
->cp15
.pmccfiltr_el0
;
1329 filter
= env
->cp15
.c14_pmevtyper
[counter
];
1332 p
= filter
& PMXEVTYPER_P
;
1333 u
= filter
& PMXEVTYPER_U
;
1334 nsk
= arm_feature(env
, ARM_FEATURE_EL3
) && (filter
& PMXEVTYPER_NSK
);
1335 nsu
= arm_feature(env
, ARM_FEATURE_EL3
) && (filter
& PMXEVTYPER_NSU
);
1336 nsh
= arm_feature(env
, ARM_FEATURE_EL2
) && (filter
& PMXEVTYPER_NSH
);
1337 m
= arm_el_is_aa64(env
, 1) &&
1338 arm_feature(env
, ARM_FEATURE_EL3
) && (filter
& PMXEVTYPER_M
);
1341 filtered
= secure
? u
: u
!= nsu
;
1342 } else if (el
== 1) {
1343 filtered
= secure
? p
: p
!= nsk
;
1344 } else if (el
== 2) {
1350 if (counter
!= 31) {
1352 * If not checking PMCCNTR, ensure the counter is setup to an event we
1355 uint16_t event
= filter
& PMXEVTYPER_EVTCOUNT
;
1356 if (!event_supported(event
)) {
1361 return enabled
&& !prohibited
&& !filtered
;
1364 static void pmu_update_irq(CPUARMState
*env
)
1366 ARMCPU
*cpu
= env_archcpu(env
);
1367 qemu_set_irq(cpu
->pmu_interrupt
, (env
->cp15
.c9_pmcr
& PMCRE
) &&
1368 (env
->cp15
.c9_pminten
& env
->cp15
.c9_pmovsr
));
1372 * Ensure c15_ccnt is the guest-visible count so that operations such as
1373 * enabling/disabling the counter or filtering, modifying the count itself,
1374 * etc. can be done logically. This is essentially a no-op if the counter is
1375 * not enabled at the time of the call.
1377 static void pmccntr_op_start(CPUARMState
*env
)
1379 uint64_t cycles
= cycles_get_count(env
);
1381 if (pmu_counter_enabled(env
, 31)) {
1382 uint64_t eff_cycles
= cycles
;
1383 if (env
->cp15
.c9_pmcr
& PMCRD
) {
1384 /* Increment once every 64 processor clock cycles */
1388 uint64_t new_pmccntr
= eff_cycles
- env
->cp15
.c15_ccnt_delta
;
1390 uint64_t overflow_mask
= env
->cp15
.c9_pmcr
& PMCRLC
? \
1391 1ull << 63 : 1ull << 31;
1392 if (env
->cp15
.c15_ccnt
& ~new_pmccntr
& overflow_mask
) {
1393 env
->cp15
.c9_pmovsr
|= (1 << 31);
1394 pmu_update_irq(env
);
1397 env
->cp15
.c15_ccnt
= new_pmccntr
;
1399 env
->cp15
.c15_ccnt_delta
= cycles
;
1403 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1404 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1407 static void pmccntr_op_finish(CPUARMState
*env
)
1409 if (pmu_counter_enabled(env
, 31)) {
1410 #ifndef CONFIG_USER_ONLY
1411 /* Calculate when the counter will next overflow */
1412 uint64_t remaining_cycles
= -env
->cp15
.c15_ccnt
;
1413 if (!(env
->cp15
.c9_pmcr
& PMCRLC
)) {
1414 remaining_cycles
= (uint32_t)remaining_cycles
;
1416 int64_t overflow_in
= cycles_ns_per(remaining_cycles
);
1418 if (overflow_in
> 0) {
1419 int64_t overflow_at
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
1421 ARMCPU
*cpu
= env_archcpu(env
);
1422 timer_mod_anticipate_ns(cpu
->pmu_timer
, overflow_at
);
1426 uint64_t prev_cycles
= env
->cp15
.c15_ccnt_delta
;
1427 if (env
->cp15
.c9_pmcr
& PMCRD
) {
1428 /* Increment once every 64 processor clock cycles */
1431 env
->cp15
.c15_ccnt_delta
= prev_cycles
- env
->cp15
.c15_ccnt
;
1435 static void pmevcntr_op_start(CPUARMState
*env
, uint8_t counter
)
1438 uint16_t event
= env
->cp15
.c14_pmevtyper
[counter
] & PMXEVTYPER_EVTCOUNT
;
1440 if (event_supported(event
)) {
1441 uint16_t event_idx
= supported_event_map
[event
];
1442 count
= pm_events
[event_idx
].get_count(env
);
1445 if (pmu_counter_enabled(env
, counter
)) {
1446 uint32_t new_pmevcntr
= count
- env
->cp15
.c14_pmevcntr_delta
[counter
];
1448 if (env
->cp15
.c14_pmevcntr
[counter
] & ~new_pmevcntr
& INT32_MIN
) {
1449 env
->cp15
.c9_pmovsr
|= (1 << counter
);
1450 pmu_update_irq(env
);
1452 env
->cp15
.c14_pmevcntr
[counter
] = new_pmevcntr
;
1454 env
->cp15
.c14_pmevcntr_delta
[counter
] = count
;
1457 static void pmevcntr_op_finish(CPUARMState
*env
, uint8_t counter
)
1459 if (pmu_counter_enabled(env
, counter
)) {
1460 #ifndef CONFIG_USER_ONLY
1461 uint16_t event
= env
->cp15
.c14_pmevtyper
[counter
] & PMXEVTYPER_EVTCOUNT
;
1462 uint16_t event_idx
= supported_event_map
[event
];
1463 uint64_t delta
= UINT32_MAX
-
1464 (uint32_t)env
->cp15
.c14_pmevcntr
[counter
] + 1;
1465 int64_t overflow_in
= pm_events
[event_idx
].ns_per_count(delta
);
1467 if (overflow_in
> 0) {
1468 int64_t overflow_at
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
1470 ARMCPU
*cpu
= env_archcpu(env
);
1471 timer_mod_anticipate_ns(cpu
->pmu_timer
, overflow_at
);
1475 env
->cp15
.c14_pmevcntr_delta
[counter
] -=
1476 env
->cp15
.c14_pmevcntr
[counter
];
1480 void pmu_op_start(CPUARMState
*env
)
1483 pmccntr_op_start(env
);
1484 for (i
= 0; i
< pmu_num_counters(env
); i
++) {
1485 pmevcntr_op_start(env
, i
);
1489 void pmu_op_finish(CPUARMState
*env
)
1492 pmccntr_op_finish(env
);
1493 for (i
= 0; i
< pmu_num_counters(env
); i
++) {
1494 pmevcntr_op_finish(env
, i
);
1498 void pmu_pre_el_change(ARMCPU
*cpu
, void *ignored
)
1500 pmu_op_start(&cpu
->env
);
1503 void pmu_post_el_change(ARMCPU
*cpu
, void *ignored
)
1505 pmu_op_finish(&cpu
->env
);
1508 void arm_pmu_timer_cb(void *opaque
)
1510 ARMCPU
*cpu
= opaque
;
1513 * Update all the counter values based on the current underlying counts,
1514 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1515 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1516 * counter may expire.
1518 pmu_op_start(&cpu
->env
);
1519 pmu_op_finish(&cpu
->env
);
1522 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1527 if (value
& PMCRC
) {
1528 /* The counter has been reset */
1529 env
->cp15
.c15_ccnt
= 0;
1532 if (value
& PMCRP
) {
1534 for (i
= 0; i
< pmu_num_counters(env
); i
++) {
1535 env
->cp15
.c14_pmevcntr
[i
] = 0;
1539 /* only the DP, X, D and E bits are writable */
1540 env
->cp15
.c9_pmcr
&= ~0x39;
1541 env
->cp15
.c9_pmcr
|= (value
& 0x39);
1546 static void pmswinc_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1550 for (i
= 0; i
< pmu_num_counters(env
); i
++) {
1551 /* Increment a counter's count iff: */
1552 if ((value
& (1 << i
)) && /* counter's bit is set */
1553 /* counter is enabled and not filtered */
1554 pmu_counter_enabled(env
, i
) &&
1555 /* counter is SW_INCR */
1556 (env
->cp15
.c14_pmevtyper
[i
] & PMXEVTYPER_EVTCOUNT
) == 0x0) {
1557 pmevcntr_op_start(env
, i
);
1560 * Detect if this write causes an overflow since we can't predict
1561 * PMSWINC overflows like we can for other events
1563 uint32_t new_pmswinc
= env
->cp15
.c14_pmevcntr
[i
] + 1;
1565 if (env
->cp15
.c14_pmevcntr
[i
] & ~new_pmswinc
& INT32_MIN
) {
1566 env
->cp15
.c9_pmovsr
|= (1 << i
);
1567 pmu_update_irq(env
);
1570 env
->cp15
.c14_pmevcntr
[i
] = new_pmswinc
;
1572 pmevcntr_op_finish(env
, i
);
1577 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1580 pmccntr_op_start(env
);
1581 ret
= env
->cp15
.c15_ccnt
;
1582 pmccntr_op_finish(env
);
1586 static void pmselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1589 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1590 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1591 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1594 env
->cp15
.c9_pmselr
= value
& 0x1f;
1597 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1600 pmccntr_op_start(env
);
1601 env
->cp15
.c15_ccnt
= value
;
1602 pmccntr_op_finish(env
);
1605 static void pmccntr_write32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1608 uint64_t cur_val
= pmccntr_read(env
, NULL
);
1610 pmccntr_write(env
, ri
, deposit64(cur_val
, 0, 32, value
));
1613 static void pmccfiltr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1616 pmccntr_op_start(env
);
1617 env
->cp15
.pmccfiltr_el0
= value
& PMCCFILTR_EL0
;
1618 pmccntr_op_finish(env
);
1621 static void pmccfiltr_write_a32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1624 pmccntr_op_start(env
);
1625 /* M is not accessible from AArch32 */
1626 env
->cp15
.pmccfiltr_el0
= (env
->cp15
.pmccfiltr_el0
& PMCCFILTR_M
) |
1627 (value
& PMCCFILTR
);
1628 pmccntr_op_finish(env
);
1631 static uint64_t pmccfiltr_read_a32(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1633 /* M is not visible in AArch32 */
1634 return env
->cp15
.pmccfiltr_el0
& PMCCFILTR
;
1637 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1640 value
&= pmu_counter_mask(env
);
1641 env
->cp15
.c9_pmcnten
|= value
;
1644 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1647 value
&= pmu_counter_mask(env
);
1648 env
->cp15
.c9_pmcnten
&= ~value
;
1651 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1654 value
&= pmu_counter_mask(env
);
1655 env
->cp15
.c9_pmovsr
&= ~value
;
1656 pmu_update_irq(env
);
1659 static void pmovsset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1662 value
&= pmu_counter_mask(env
);
1663 env
->cp15
.c9_pmovsr
|= value
;
1664 pmu_update_irq(env
);
1667 static void pmevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1668 uint64_t value
, const uint8_t counter
)
1670 if (counter
== 31) {
1671 pmccfiltr_write(env
, ri
, value
);
1672 } else if (counter
< pmu_num_counters(env
)) {
1673 pmevcntr_op_start(env
, counter
);
1676 * If this counter's event type is changing, store the current
1677 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1678 * pmevcntr_op_finish has the correct baseline when it converts back to
1681 uint16_t old_event
= env
->cp15
.c14_pmevtyper
[counter
] &
1682 PMXEVTYPER_EVTCOUNT
;
1683 uint16_t new_event
= value
& PMXEVTYPER_EVTCOUNT
;
1684 if (old_event
!= new_event
) {
1686 if (event_supported(new_event
)) {
1687 uint16_t event_idx
= supported_event_map
[new_event
];
1688 count
= pm_events
[event_idx
].get_count(env
);
1690 env
->cp15
.c14_pmevcntr_delta
[counter
] = count
;
1693 env
->cp15
.c14_pmevtyper
[counter
] = value
& PMXEVTYPER_MASK
;
1694 pmevcntr_op_finish(env
, counter
);
1696 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1697 * PMSELR value is equal to or greater than the number of implemented
1698 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1702 static uint64_t pmevtyper_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1703 const uint8_t counter
)
1705 if (counter
== 31) {
1706 return env
->cp15
.pmccfiltr_el0
;
1707 } else if (counter
< pmu_num_counters(env
)) {
1708 return env
->cp15
.c14_pmevtyper
[counter
];
1711 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1712 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1718 static void pmevtyper_writefn(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1721 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1722 pmevtyper_write(env
, ri
, value
, counter
);
1725 static void pmevtyper_rawwrite(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1728 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1729 env
->cp15
.c14_pmevtyper
[counter
] = value
;
1732 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1733 * pmu_op_finish calls when loading saved state for a migration. Because
1734 * we're potentially updating the type of event here, the value written to
1735 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1736 * different counter type. Therefore, we need to set this value to the
1737 * current count for the counter type we're writing so that pmu_op_finish
1738 * has the correct count for its calculation.
1740 uint16_t event
= value
& PMXEVTYPER_EVTCOUNT
;
1741 if (event_supported(event
)) {
1742 uint16_t event_idx
= supported_event_map
[event
];
1743 env
->cp15
.c14_pmevcntr_delta
[counter
] =
1744 pm_events
[event_idx
].get_count(env
);
1748 static uint64_t pmevtyper_readfn(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1750 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1751 return pmevtyper_read(env
, ri
, counter
);
1754 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1757 pmevtyper_write(env
, ri
, value
, env
->cp15
.c9_pmselr
& 31);
1760 static uint64_t pmxevtyper_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1762 return pmevtyper_read(env
, ri
, env
->cp15
.c9_pmselr
& 31);
1765 static void pmevcntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1766 uint64_t value
, uint8_t counter
)
1768 if (counter
< pmu_num_counters(env
)) {
1769 pmevcntr_op_start(env
, counter
);
1770 env
->cp15
.c14_pmevcntr
[counter
] = value
;
1771 pmevcntr_op_finish(env
, counter
);
1774 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1775 * are CONSTRAINED UNPREDICTABLE.
1779 static uint64_t pmevcntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1782 if (counter
< pmu_num_counters(env
)) {
1784 pmevcntr_op_start(env
, counter
);
1785 ret
= env
->cp15
.c14_pmevcntr
[counter
];
1786 pmevcntr_op_finish(env
, counter
);
1789 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1790 * are CONSTRAINED UNPREDICTABLE. */
1795 static void pmevcntr_writefn(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1798 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1799 pmevcntr_write(env
, ri
, value
, counter
);
1802 static uint64_t pmevcntr_readfn(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1804 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1805 return pmevcntr_read(env
, ri
, counter
);
1808 static void pmevcntr_rawwrite(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1811 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1812 assert(counter
< pmu_num_counters(env
));
1813 env
->cp15
.c14_pmevcntr
[counter
] = value
;
1814 pmevcntr_write(env
, ri
, value
, counter
);
1817 static uint64_t pmevcntr_rawread(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1819 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1820 assert(counter
< pmu_num_counters(env
));
1821 return env
->cp15
.c14_pmevcntr
[counter
];
1824 static void pmxevcntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1827 pmevcntr_write(env
, ri
, value
, env
->cp15
.c9_pmselr
& 31);
1830 static uint64_t pmxevcntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1832 return pmevcntr_read(env
, ri
, env
->cp15
.c9_pmselr
& 31);
1835 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1838 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1839 env
->cp15
.c9_pmuserenr
= value
& 0xf;
1841 env
->cp15
.c9_pmuserenr
= value
& 1;
1845 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1848 /* We have no event counters so only the C bit can be changed */
1849 value
&= pmu_counter_mask(env
);
1850 env
->cp15
.c9_pminten
|= value
;
1851 pmu_update_irq(env
);
1854 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1857 value
&= pmu_counter_mask(env
);
1858 env
->cp15
.c9_pminten
&= ~value
;
1859 pmu_update_irq(env
);
1862 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1865 /* Note that even though the AArch64 view of this register has bits
1866 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1867 * architectural requirements for bits which are RES0 only in some
1868 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1869 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1871 raw_write(env
, ri
, value
& ~0x1FULL
);
1874 static void scr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1876 /* Begin with base v8.0 state. */
1877 uint32_t valid_mask
= 0x3fff;
1878 ARMCPU
*cpu
= env_archcpu(env
);
1880 if (arm_el_is_aa64(env
, 3)) {
1881 value
|= SCR_FW
| SCR_AW
; /* these two bits are RES1. */
1882 valid_mask
&= ~SCR_NET
;
1884 valid_mask
&= ~(SCR_RW
| SCR_ST
);
1887 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
1888 valid_mask
&= ~SCR_HCE
;
1890 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1891 * supported if EL2 exists. The bit is UNK/SBZP when
1892 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1893 * when EL2 is unavailable.
1894 * On ARMv8, this bit is always available.
1896 if (arm_feature(env
, ARM_FEATURE_V7
) &&
1897 !arm_feature(env
, ARM_FEATURE_V8
)) {
1898 valid_mask
&= ~SCR_SMD
;
1901 if (cpu_isar_feature(aa64_lor
, cpu
)) {
1902 valid_mask
|= SCR_TLOR
;
1904 if (cpu_isar_feature(aa64_pauth
, cpu
)) {
1905 valid_mask
|= SCR_API
| SCR_APK
;
1908 /* Clear all-context RES0 bits. */
1909 value
&= valid_mask
;
1910 raw_write(env
, ri
, value
);
1913 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1915 ARMCPU
*cpu
= env_archcpu(env
);
1917 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1920 uint32_t index
= A32_BANKED_REG_GET(env
, csselr
,
1921 ri
->secure
& ARM_CP_SECSTATE_S
);
1923 return cpu
->ccsidr
[index
];
1926 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1929 raw_write(env
, ri
, value
& 0xf);
1932 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1934 CPUState
*cs
= env_cpu(env
);
1935 uint64_t hcr_el2
= arm_hcr_el2_eff(env
);
1938 if (hcr_el2
& HCR_IMO
) {
1939 if (cs
->interrupt_request
& CPU_INTERRUPT_VIRQ
) {
1943 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
1948 if (hcr_el2
& HCR_FMO
) {
1949 if (cs
->interrupt_request
& CPU_INTERRUPT_VFIQ
) {
1953 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
1958 /* External aborts are not possible in QEMU so A bit is always clear */
1962 static const ARMCPRegInfo v7_cp_reginfo
[] = {
1963 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1964 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
1965 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1966 /* Performance monitors are implementation defined in v7,
1967 * but with an ARM recommended set of registers, which we
1970 * Performance registers fall into three categories:
1971 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1972 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1973 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1974 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1975 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1977 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
1978 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
1979 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
1980 .writefn
= pmcntenset_write
,
1981 .accessfn
= pmreg_access
,
1982 .raw_writefn
= raw_write
},
1983 { .name
= "PMCNTENSET_EL0", .state
= ARM_CP_STATE_AA64
,
1984 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 1,
1985 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1986 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
), .resetvalue
= 0,
1987 .writefn
= pmcntenset_write
, .raw_writefn
= raw_write
},
1988 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
1990 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
1991 .accessfn
= pmreg_access
,
1992 .writefn
= pmcntenclr_write
,
1993 .type
= ARM_CP_ALIAS
},
1994 { .name
= "PMCNTENCLR_EL0", .state
= ARM_CP_STATE_AA64
,
1995 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 2,
1996 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1997 .type
= ARM_CP_ALIAS
,
1998 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
1999 .writefn
= pmcntenclr_write
},
2000 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
2001 .access
= PL0_RW
, .type
= ARM_CP_IO
,
2002 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmovsr
),
2003 .accessfn
= pmreg_access
,
2004 .writefn
= pmovsr_write
,
2005 .raw_writefn
= raw_write
},
2006 { .name
= "PMOVSCLR_EL0", .state
= ARM_CP_STATE_AA64
,
2007 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 3,
2008 .access
= PL0_RW
, .accessfn
= pmreg_access
,
2009 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2010 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
2011 .writefn
= pmovsr_write
,
2012 .raw_writefn
= raw_write
},
2013 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
2014 .access
= PL0_W
, .accessfn
= pmreg_access_swinc
,
2015 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2016 .writefn
= pmswinc_write
},
2017 { .name
= "PMSWINC_EL0", .state
= ARM_CP_STATE_AA64
,
2018 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 4,
2019 .access
= PL0_W
, .accessfn
= pmreg_access_swinc
,
2020 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2021 .writefn
= pmswinc_write
},
2022 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
2023 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
2024 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmselr
),
2025 .accessfn
= pmreg_access_selr
, .writefn
= pmselr_write
,
2026 .raw_writefn
= raw_write
},
2027 { .name
= "PMSELR_EL0", .state
= ARM_CP_STATE_AA64
,
2028 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 5,
2029 .access
= PL0_RW
, .accessfn
= pmreg_access_selr
,
2030 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmselr
),
2031 .writefn
= pmselr_write
, .raw_writefn
= raw_write
, },
2032 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
2033 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2034 .readfn
= pmccntr_read
, .writefn
= pmccntr_write32
,
2035 .accessfn
= pmreg_access_ccntr
},
2036 { .name
= "PMCCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
2037 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 0,
2038 .access
= PL0_RW
, .accessfn
= pmreg_access_ccntr
,
2040 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ccnt
),
2041 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
,
2042 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
, },
2043 { .name
= "PMCCFILTR", .cp
= 15, .opc1
= 0, .crn
= 14, .crm
= 15, .opc2
= 7,
2044 .writefn
= pmccfiltr_write_a32
, .readfn
= pmccfiltr_read_a32
,
2045 .access
= PL0_RW
, .accessfn
= pmreg_access
,
2046 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2048 { .name
= "PMCCFILTR_EL0", .state
= ARM_CP_STATE_AA64
,
2049 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 15, .opc2
= 7,
2050 .writefn
= pmccfiltr_write
, .raw_writefn
= raw_write
,
2051 .access
= PL0_RW
, .accessfn
= pmreg_access
,
2053 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmccfiltr_el0
),
2055 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
2056 .access
= PL0_RW
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2057 .accessfn
= pmreg_access
,
2058 .writefn
= pmxevtyper_write
, .readfn
= pmxevtyper_read
},
2059 { .name
= "PMXEVTYPER_EL0", .state
= ARM_CP_STATE_AA64
,
2060 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 1,
2061 .access
= PL0_RW
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2062 .accessfn
= pmreg_access
,
2063 .writefn
= pmxevtyper_write
, .readfn
= pmxevtyper_read
},
2064 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
2065 .access
= PL0_RW
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2066 .accessfn
= pmreg_access_xevcntr
,
2067 .writefn
= pmxevcntr_write
, .readfn
= pmxevcntr_read
},
2068 { .name
= "PMXEVCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
2069 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 2,
2070 .access
= PL0_RW
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2071 .accessfn
= pmreg_access_xevcntr
,
2072 .writefn
= pmxevcntr_write
, .readfn
= pmxevcntr_read
},
2073 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
2074 .access
= PL0_R
| PL1_RW
, .accessfn
= access_tpm
,
2075 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmuserenr
),
2077 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
2078 { .name
= "PMUSERENR_EL0", .state
= ARM_CP_STATE_AA64
,
2079 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 14, .opc2
= 0,
2080 .access
= PL0_R
| PL1_RW
, .accessfn
= access_tpm
, .type
= ARM_CP_ALIAS
,
2081 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
2083 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
2084 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
2085 .access
= PL1_RW
, .accessfn
= access_tpm
,
2086 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2087 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pminten
),
2089 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
2090 { .name
= "PMINTENSET_EL1", .state
= ARM_CP_STATE_AA64
,
2091 .opc0
= 3, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 1,
2092 .access
= PL1_RW
, .accessfn
= access_tpm
,
2094 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
2095 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
,
2096 .resetvalue
= 0x0 },
2097 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
2098 .access
= PL1_RW
, .accessfn
= access_tpm
,
2099 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2100 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
2101 .writefn
= pmintenclr_write
, },
2102 { .name
= "PMINTENCLR_EL1", .state
= ARM_CP_STATE_AA64
,
2103 .opc0
= 3, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 2,
2104 .access
= PL1_RW
, .accessfn
= access_tpm
,
2105 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2106 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
2107 .writefn
= pmintenclr_write
},
2108 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
2109 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
2110 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_RAW
},
2111 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
2112 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
2113 .access
= PL1_RW
, .writefn
= csselr_write
, .resetvalue
= 0,
2114 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.csselr_s
),
2115 offsetof(CPUARMState
, cp15
.csselr_ns
) } },
2116 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2117 * just RAZ for all cores:
2119 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
2120 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
2121 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2122 /* Auxiliary fault status registers: these also are IMPDEF, and we
2123 * choose to RAZ/WI for all cores.
2125 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2126 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
2127 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2128 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2129 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
2130 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2131 /* MAIR can just read-as-written because we don't implement caches
2132 * and so don't need to care about memory attributes.
2134 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
2135 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
2136 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[1]),
2138 { .name
= "MAIR_EL3", .state
= ARM_CP_STATE_AA64
,
2139 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 2, .opc2
= 0,
2140 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[3]),
2142 /* For non-long-descriptor page tables these are PRRR and NMRR;
2143 * regardless they still act as reads-as-written for QEMU.
2145 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2146 * allows them to assign the correct fieldoffset based on the endianness
2147 * handled in the field definitions.
2149 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
,
2150 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
2151 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair0_s
),
2152 offsetof(CPUARMState
, cp15
.mair0_ns
) },
2153 .resetfn
= arm_cp_reset_ignore
},
2154 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
,
2155 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
2156 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair1_s
),
2157 offsetof(CPUARMState
, cp15
.mair1_ns
) },
2158 .resetfn
= arm_cp_reset_ignore
},
2159 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
2160 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
2161 .type
= ARM_CP_NO_RAW
, .access
= PL1_R
, .readfn
= isr_read
},
2162 /* 32 bit ITLB invalidates */
2163 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
2164 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
2165 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
2166 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2167 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
2168 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
2169 /* 32 bit DTLB invalidates */
2170 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
2171 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
2172 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
2173 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2174 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
2175 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
2176 /* 32 bit TLB invalidates */
2177 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
2178 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
2179 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
2180 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2181 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
2182 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
2183 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
2184 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
2188 static const ARMCPRegInfo v7mp_cp_reginfo
[] = {
2189 /* 32 bit TLB invalidates, Inner Shareable */
2190 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
2191 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_is_write
},
2192 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
2193 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
2194 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
2195 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
2196 .writefn
= tlbiasid_is_write
},
2197 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
2198 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
2199 .writefn
= tlbimvaa_is_write
},
2203 static const ARMCPRegInfo pmovsset_cp_reginfo
[] = {
2204 /* PMOVSSET is not implemented in v7 before v7ve */
2205 { .name
= "PMOVSSET", .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 3,
2206 .access
= PL0_RW
, .accessfn
= pmreg_access
,
2207 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2208 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmovsr
),
2209 .writefn
= pmovsset_write
,
2210 .raw_writefn
= raw_write
},
2211 { .name
= "PMOVSSET_EL0", .state
= ARM_CP_STATE_AA64
,
2212 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 14, .opc2
= 3,
2213 .access
= PL0_RW
, .accessfn
= pmreg_access
,
2214 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2215 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
2216 .writefn
= pmovsset_write
,
2217 .raw_writefn
= raw_write
},
2221 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2228 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2231 if (arm_current_el(env
) == 0 && (env
->teecr
& 1)) {
2232 return CP_ACCESS_TRAP
;
2234 return CP_ACCESS_OK
;
2237 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
2238 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
2239 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
2241 .writefn
= teecr_write
},
2242 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
2243 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
2244 .accessfn
= teehbr_access
, .resetvalue
= 0 },
2248 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
2249 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
2250 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
2252 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[0]), .resetvalue
= 0 },
2253 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
2255 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrurw_s
),
2256 offsetoflow32(CPUARMState
, cp15
.tpidrurw_ns
) },
2257 .resetfn
= arm_cp_reset_ignore
},
2258 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
2259 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
2260 .access
= PL0_R
|PL1_W
,
2261 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el
[0]),
2263 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
2264 .access
= PL0_R
|PL1_W
,
2265 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidruro_s
),
2266 offsetoflow32(CPUARMState
, cp15
.tpidruro_ns
) },
2267 .resetfn
= arm_cp_reset_ignore
},
2268 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_AA64
,
2269 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
2271 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[1]), .resetvalue
= 0 },
2272 { .name
= "TPIDRPRW", .opc1
= 0, .cp
= 15, .crn
= 13, .crm
= 0, .opc2
= 4,
2274 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrprw_s
),
2275 offsetoflow32(CPUARMState
, cp15
.tpidrprw_ns
) },
2280 #ifndef CONFIG_USER_ONLY
2282 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2285 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2286 * Writable only at the highest implemented exception level.
2288 int el
= arm_current_el(env
);
2292 if (!extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
2293 return CP_ACCESS_TRAP
;
2297 if (!isread
&& ri
->state
== ARM_CP_STATE_AA32
&&
2298 arm_is_secure_below_el3(env
)) {
2299 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2300 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2308 if (!isread
&& el
< arm_highest_el(env
)) {
2309 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2312 return CP_ACCESS_OK
;
2315 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
,
2318 unsigned int cur_el
= arm_current_el(env
);
2319 bool secure
= arm_is_secure(env
);
2321 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2323 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
2324 return CP_ACCESS_TRAP
;
2327 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
2328 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
2329 !extract32(env
->cp15
.cnthctl_el2
, 0, 1)) {
2330 return CP_ACCESS_TRAP_EL2
;
2332 return CP_ACCESS_OK
;
2335 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
,
2338 unsigned int cur_el
= arm_current_el(env
);
2339 bool secure
= arm_is_secure(env
);
2341 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2342 * EL0[PV]TEN is zero.
2345 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
2346 return CP_ACCESS_TRAP
;
2349 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
2350 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
2351 !extract32(env
->cp15
.cnthctl_el2
, 1, 1)) {
2352 return CP_ACCESS_TRAP_EL2
;
2354 return CP_ACCESS_OK
;
2357 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
2358 const ARMCPRegInfo
*ri
,
2361 return gt_counter_access(env
, GTIMER_PHYS
, isread
);
2364 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
2365 const ARMCPRegInfo
*ri
,
2368 return gt_counter_access(env
, GTIMER_VIRT
, isread
);
2371 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2374 return gt_timer_access(env
, GTIMER_PHYS
, isread
);
2377 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2380 return gt_timer_access(env
, GTIMER_VIRT
, isread
);
2383 static CPAccessResult
gt_stimer_access(CPUARMState
*env
,
2384 const ARMCPRegInfo
*ri
,
2387 /* The AArch64 register view of the secure physical timer is
2388 * always accessible from EL3, and configurably accessible from
2391 switch (arm_current_el(env
)) {
2393 if (!arm_is_secure(env
)) {
2394 return CP_ACCESS_TRAP
;
2396 if (!(env
->cp15
.scr_el3
& SCR_ST
)) {
2397 return CP_ACCESS_TRAP_EL3
;
2399 return CP_ACCESS_OK
;
2402 return CP_ACCESS_TRAP
;
2404 return CP_ACCESS_OK
;
2406 g_assert_not_reached();
2410 static uint64_t gt_get_countervalue(CPUARMState
*env
)
2412 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
2415 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
2417 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
2420 /* Timer enabled: calculate and set current ISTATUS, irq, and
2421 * reset timer to when ISTATUS next has to change
2423 uint64_t offset
= timeridx
== GTIMER_VIRT
?
2424 cpu
->env
.cp15
.cntvoff_el2
: 0;
2425 uint64_t count
= gt_get_countervalue(&cpu
->env
);
2426 /* Note that this must be unsigned 64 bit arithmetic: */
2427 int istatus
= count
- offset
>= gt
->cval
;
2431 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
2433 irqstate
= (istatus
&& !(gt
->ctl
& 2));
2434 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], irqstate
);
2437 /* Next transition is when count rolls back over to zero */
2438 nexttick
= UINT64_MAX
;
2440 /* Next transition is when we hit cval */
2441 nexttick
= gt
->cval
+ offset
;
2443 /* Note that the desired next expiry time might be beyond the
2444 * signed-64-bit range of a QEMUTimer -- in this case we just
2445 * set the timer for as far in the future as possible. When the
2446 * timer expires we will reset the timer for any remaining period.
2448 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
2449 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
2451 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
2452 trace_arm_gt_recalc(timeridx
, irqstate
, nexttick
);
2454 /* Timer disabled: ISTATUS and timer output always clear */
2456 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
2457 timer_del(cpu
->gt_timer
[timeridx
]);
2458 trace_arm_gt_recalc_disabled(timeridx
);
2462 static void gt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2465 ARMCPU
*cpu
= env_archcpu(env
);
2467 timer_del(cpu
->gt_timer
[timeridx
]);
2470 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2472 return gt_get_countervalue(env
);
2475 static uint64_t gt_virt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2477 return gt_get_countervalue(env
) - env
->cp15
.cntvoff_el2
;
2480 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2484 trace_arm_gt_cval_write(timeridx
, value
);
2485 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
2486 gt_recalc_timer(env_archcpu(env
), timeridx
);
2489 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2492 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
2494 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
2495 (gt_get_countervalue(env
) - offset
));
2498 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2502 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
2504 trace_arm_gt_tval_write(timeridx
, value
);
2505 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) - offset
+
2506 sextract64(value
, 0, 32);
2507 gt_recalc_timer(env_archcpu(env
), timeridx
);
2510 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2514 ARMCPU
*cpu
= env_archcpu(env
);
2515 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
2517 trace_arm_gt_ctl_write(timeridx
, value
);
2518 env
->cp15
.c14_timer
[timeridx
].ctl
= deposit64(oldval
, 0, 2, value
);
2519 if ((oldval
^ value
) & 1) {
2520 /* Enable toggled */
2521 gt_recalc_timer(cpu
, timeridx
);
2522 } else if ((oldval
^ value
) & 2) {
2523 /* IMASK toggled: don't need to recalculate,
2524 * just set the interrupt line based on ISTATUS
2526 int irqstate
= (oldval
& 4) && !(value
& 2);
2528 trace_arm_gt_imask_toggle(timeridx
, irqstate
);
2529 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], irqstate
);
2533 static void gt_phys_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2535 gt_timer_reset(env
, ri
, GTIMER_PHYS
);
2538 static void gt_phys_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2541 gt_cval_write(env
, ri
, GTIMER_PHYS
, value
);
2544 static uint64_t gt_phys_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2546 return gt_tval_read(env
, ri
, GTIMER_PHYS
);
2549 static void gt_phys_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2552 gt_tval_write(env
, ri
, GTIMER_PHYS
, value
);
2555 static void gt_phys_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2558 gt_ctl_write(env
, ri
, GTIMER_PHYS
, value
);
2561 static void gt_virt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2563 gt_timer_reset(env
, ri
, GTIMER_VIRT
);
2566 static void gt_virt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2569 gt_cval_write(env
, ri
, GTIMER_VIRT
, value
);
2572 static uint64_t gt_virt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2574 return gt_tval_read(env
, ri
, GTIMER_VIRT
);
2577 static void gt_virt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2580 gt_tval_write(env
, ri
, GTIMER_VIRT
, value
);
2583 static void gt_virt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2586 gt_ctl_write(env
, ri
, GTIMER_VIRT
, value
);
2589 static void gt_cntvoff_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2592 ARMCPU
*cpu
= env_archcpu(env
);
2594 trace_arm_gt_cntvoff_write(value
);
2595 raw_write(env
, ri
, value
);
2596 gt_recalc_timer(cpu
, GTIMER_VIRT
);
2599 static void gt_hyp_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2601 gt_timer_reset(env
, ri
, GTIMER_HYP
);
2604 static void gt_hyp_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2607 gt_cval_write(env
, ri
, GTIMER_HYP
, value
);
2610 static uint64_t gt_hyp_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2612 return gt_tval_read(env
, ri
, GTIMER_HYP
);
2615 static void gt_hyp_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2618 gt_tval_write(env
, ri
, GTIMER_HYP
, value
);
2621 static void gt_hyp_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2624 gt_ctl_write(env
, ri
, GTIMER_HYP
, value
);
2627 static void gt_sec_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2629 gt_timer_reset(env
, ri
, GTIMER_SEC
);
2632 static void gt_sec_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2635 gt_cval_write(env
, ri
, GTIMER_SEC
, value
);
2638 static uint64_t gt_sec_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2640 return gt_tval_read(env
, ri
, GTIMER_SEC
);
2643 static void gt_sec_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2646 gt_tval_write(env
, ri
, GTIMER_SEC
, value
);
2649 static void gt_sec_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2652 gt_ctl_write(env
, ri
, GTIMER_SEC
, value
);
2655 void arm_gt_ptimer_cb(void *opaque
)
2657 ARMCPU
*cpu
= opaque
;
2659 gt_recalc_timer(cpu
, GTIMER_PHYS
);
2662 void arm_gt_vtimer_cb(void *opaque
)
2664 ARMCPU
*cpu
= opaque
;
2666 gt_recalc_timer(cpu
, GTIMER_VIRT
);
2669 void arm_gt_htimer_cb(void *opaque
)
2671 ARMCPU
*cpu
= opaque
;
2673 gt_recalc_timer(cpu
, GTIMER_HYP
);
2676 void arm_gt_stimer_cb(void *opaque
)
2678 ARMCPU
*cpu
= opaque
;
2680 gt_recalc_timer(cpu
, GTIMER_SEC
);
2683 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
2684 /* Note that CNTFRQ is purely reads-as-written for the benefit
2685 * of software; writing it doesn't actually change the timer frequency.
2686 * Our reset value matches the fixed frequency we implement the timer at.
2688 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
2689 .type
= ARM_CP_ALIAS
,
2690 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
2691 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
2693 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
2694 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
2695 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
2696 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
2697 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
2699 /* overall control: mostly access permissions */
2700 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
2701 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
2703 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
2706 /* per-timer control */
2707 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
2708 .secure
= ARM_CP_SECSTATE_NS
,
2709 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL0_RW
,
2710 .accessfn
= gt_ptimer_access
,
2711 .fieldoffset
= offsetoflow32(CPUARMState
,
2712 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
2713 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
2715 { .name
= "CNTP_CTL_S",
2716 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
2717 .secure
= ARM_CP_SECSTATE_S
,
2718 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL0_RW
,
2719 .accessfn
= gt_ptimer_access
,
2720 .fieldoffset
= offsetoflow32(CPUARMState
,
2721 cp15
.c14_timer
[GTIMER_SEC
].ctl
),
2722 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
2724 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
2725 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
2726 .type
= ARM_CP_IO
, .access
= PL0_RW
,
2727 .accessfn
= gt_ptimer_access
,
2728 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
2730 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
2732 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
2733 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL0_RW
,
2734 .accessfn
= gt_vtimer_access
,
2735 .fieldoffset
= offsetoflow32(CPUARMState
,
2736 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
2737 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
2739 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
2740 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
2741 .type
= ARM_CP_IO
, .access
= PL0_RW
,
2742 .accessfn
= gt_vtimer_access
,
2743 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
2745 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
2747 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2748 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
2749 .secure
= ARM_CP_SECSTATE_NS
,
2750 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL0_RW
,
2751 .accessfn
= gt_ptimer_access
,
2752 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
2754 { .name
= "CNTP_TVAL_S",
2755 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
2756 .secure
= ARM_CP_SECSTATE_S
,
2757 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL0_RW
,
2758 .accessfn
= gt_ptimer_access
,
2759 .readfn
= gt_sec_tval_read
, .writefn
= gt_sec_tval_write
,
2761 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
2762 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
2763 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL0_RW
,
2764 .accessfn
= gt_ptimer_access
, .resetfn
= gt_phys_timer_reset
,
2765 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
2767 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
2768 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL0_RW
,
2769 .accessfn
= gt_vtimer_access
,
2770 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
2772 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
2773 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
2774 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL0_RW
,
2775 .accessfn
= gt_vtimer_access
, .resetfn
= gt_virt_timer_reset
,
2776 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
2778 /* The counter itself */
2779 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
2780 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
2781 .accessfn
= gt_pct_access
,
2782 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
2784 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
2785 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
2786 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2787 .accessfn
= gt_pct_access
, .readfn
= gt_cnt_read
,
2789 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
2790 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
2791 .accessfn
= gt_vct_access
,
2792 .readfn
= gt_virt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
2794 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
2795 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
2796 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2797 .accessfn
= gt_vct_access
, .readfn
= gt_virt_cnt_read
,
2799 /* Comparison value, indicating when the timer goes off */
2800 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
2801 .secure
= ARM_CP_SECSTATE_NS
,
2803 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
2804 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
2805 .accessfn
= gt_ptimer_access
,
2806 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
2808 { .name
= "CNTP_CVAL_S", .cp
= 15, .crm
= 14, .opc1
= 2,
2809 .secure
= ARM_CP_SECSTATE_S
,
2811 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
2812 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
2813 .accessfn
= gt_ptimer_access
,
2814 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
2816 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
2817 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
2820 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
2821 .resetvalue
= 0, .accessfn
= gt_ptimer_access
,
2822 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
2824 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
2826 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
2827 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
2828 .accessfn
= gt_vtimer_access
,
2829 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
2831 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
2832 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
2835 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
2836 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
2837 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
2839 /* Secure timer -- this is actually restricted to only EL3
2840 * and configurably Secure-EL1 via the accessfn.
2842 { .name
= "CNTPS_TVAL_EL1", .state
= ARM_CP_STATE_AA64
,
2843 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 0,
2844 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
,
2845 .accessfn
= gt_stimer_access
,
2846 .readfn
= gt_sec_tval_read
,
2847 .writefn
= gt_sec_tval_write
,
2848 .resetfn
= gt_sec_timer_reset
,
2850 { .name
= "CNTPS_CTL_EL1", .state
= ARM_CP_STATE_AA64
,
2851 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 1,
2852 .type
= ARM_CP_IO
, .access
= PL1_RW
,
2853 .accessfn
= gt_stimer_access
,
2854 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].ctl
),
2856 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
2858 { .name
= "CNTPS_CVAL_EL1", .state
= ARM_CP_STATE_AA64
,
2859 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 2,
2860 .type
= ARM_CP_IO
, .access
= PL1_RW
,
2861 .accessfn
= gt_stimer_access
,
2862 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
2863 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
2870 /* In user-mode most of the generic timer registers are inaccessible
2871 * however modern kernels (4.12+) allow access to cntvct_el0
2874 static uint64_t gt_virt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2876 /* Currently we have no support for QEMUTimer in linux-user so we
2877 * can't call gt_get_countervalue(env), instead we directly
2878 * call the lower level functions.
2880 return cpu_get_clock() / GTIMER_SCALE
;
2883 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
2884 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
2885 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
2886 .type
= ARM_CP_CONST
, .access
= PL0_R
/* no PL1_RW in linux-user */,
2887 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
2888 .resetvalue
= NANOSECONDS_PER_SECOND
/ GTIMER_SCALE
,
2890 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
2891 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
2892 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2893 .readfn
= gt_virt_cnt_read
,
2900 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
2902 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2903 raw_write(env
, ri
, value
);
2904 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
2905 raw_write(env
, ri
, value
& 0xfffff6ff);
2907 raw_write(env
, ri
, value
& 0xfffff1ff);
2911 #ifndef CONFIG_USER_ONLY
2912 /* get_phys_addr() isn't present for user-mode-only targets */
2914 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2918 /* The ATS12NSO* operations must trap to EL3 if executed in
2919 * Secure EL1 (which can only happen if EL3 is AArch64).
2920 * They are simply UNDEF if executed from NS EL1.
2921 * They function normally from EL2 or EL3.
2923 if (arm_current_el(env
) == 1) {
2924 if (arm_is_secure_below_el3(env
)) {
2925 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3
;
2927 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2930 return CP_ACCESS_OK
;
2933 static uint64_t do_ats_write(CPUARMState
*env
, uint64_t value
,
2934 MMUAccessType access_type
, ARMMMUIdx mmu_idx
)
2937 target_ulong page_size
;
2941 bool format64
= false;
2942 MemTxAttrs attrs
= {};
2943 ARMMMUFaultInfo fi
= {};
2944 ARMCacheAttrs cacheattrs
= {};
2946 ret
= get_phys_addr(env
, value
, access_type
, mmu_idx
, &phys_addr
, &attrs
,
2947 &prot
, &page_size
, &fi
, &cacheattrs
);
2951 } else if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2954 * * TTBCR.EAE determines whether the result is returned using the
2955 * 32-bit or the 64-bit PAR format
2956 * * Instructions executed in Hyp mode always use the 64bit format
2958 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2959 * * The Non-secure TTBCR.EAE bit is set to 1
2960 * * The implementation includes EL2, and the value of HCR.VM is 1
2962 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
2964 * ATS1Hx always uses the 64bit format.
2966 format64
= arm_s1_regime_using_lpae_format(env
, mmu_idx
);
2968 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
2969 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
2970 format64
|= env
->cp15
.hcr_el2
& (HCR_VM
| HCR_DC
);
2972 format64
|= arm_current_el(env
) == 2;
2978 /* Create a 64-bit PAR */
2979 par64
= (1 << 11); /* LPAE bit always set */
2981 par64
|= phys_addr
& ~0xfffULL
;
2982 if (!attrs
.secure
) {
2983 par64
|= (1 << 9); /* NS */
2985 par64
|= (uint64_t)cacheattrs
.attrs
<< 56; /* ATTR */
2986 par64
|= cacheattrs
.shareability
<< 7; /* SH */
2988 uint32_t fsr
= arm_fi_to_lfsc(&fi
);
2991 par64
|= (fsr
& 0x3f) << 1; /* FS */
2993 par64
|= (1 << 9); /* S */
2996 par64
|= (1 << 8); /* PTW */
3000 /* fsr is a DFSR/IFSR value for the short descriptor
3001 * translation table format (with WnR always clear).
3002 * Convert it to a 32-bit PAR.
3005 /* We do not set any attribute bits in the PAR */
3006 if (page_size
== (1 << 24)
3007 && arm_feature(env
, ARM_FEATURE_V7
)) {
3008 par64
= (phys_addr
& 0xff000000) | (1 << 1);
3010 par64
= phys_addr
& 0xfffff000;
3012 if (!attrs
.secure
) {
3013 par64
|= (1 << 9); /* NS */
3016 uint32_t fsr
= arm_fi_to_sfsc(&fi
);
3018 par64
= ((fsr
& (1 << 10)) >> 5) | ((fsr
& (1 << 12)) >> 6) |
3019 ((fsr
& 0xf) << 1) | 1;
3025 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
3027 MMUAccessType access_type
= ri
->opc2
& 1 ? MMU_DATA_STORE
: MMU_DATA_LOAD
;
3030 int el
= arm_current_el(env
);
3031 bool secure
= arm_is_secure_below_el3(env
);
3033 switch (ri
->opc2
& 6) {
3035 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
3038 mmu_idx
= ARMMMUIdx_S1E3
;
3041 mmu_idx
= ARMMMUIdx_S1NSE1
;
3044 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
3047 g_assert_not_reached();
3051 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3054 mmu_idx
= ARMMMUIdx_S1SE0
;
3057 mmu_idx
= ARMMMUIdx_S1NSE0
;
3060 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
3063 g_assert_not_reached();
3067 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3068 mmu_idx
= ARMMMUIdx_S12NSE1
;
3071 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3072 mmu_idx
= ARMMMUIdx_S12NSE0
;
3075 g_assert_not_reached();
3078 par64
= do_ats_write(env
, value
, access_type
, mmu_idx
);
3080 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
3083 static void ats1h_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3086 MMUAccessType access_type
= ri
->opc2
& 1 ? MMU_DATA_STORE
: MMU_DATA_LOAD
;
3089 par64
= do_ats_write(env
, value
, access_type
, ARMMMUIdx_S1E2
);
3091 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
3094 static CPAccessResult
at_s1e2_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3097 if (arm_current_el(env
) == 3 && !(env
->cp15
.scr_el3
& SCR_NS
)) {
3098 return CP_ACCESS_TRAP
;
3100 return CP_ACCESS_OK
;
3103 static void ats_write64(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3106 MMUAccessType access_type
= ri
->opc2
& 1 ? MMU_DATA_STORE
: MMU_DATA_LOAD
;
3108 int secure
= arm_is_secure_below_el3(env
);
3110 switch (ri
->opc2
& 6) {
3113 case 0: /* AT S1E1R, AT S1E1W */
3114 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
3116 case 4: /* AT S1E2R, AT S1E2W */
3117 mmu_idx
= ARMMMUIdx_S1E2
;
3119 case 6: /* AT S1E3R, AT S1E3W */
3120 mmu_idx
= ARMMMUIdx_S1E3
;
3123 g_assert_not_reached();
3126 case 2: /* AT S1E0R, AT S1E0W */
3127 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
3129 case 4: /* AT S12E1R, AT S12E1W */
3130 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S12NSE1
;
3132 case 6: /* AT S12E0R, AT S12E0W */
3133 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S12NSE0
;
3136 g_assert_not_reached();
3139 env
->cp15
.par_el
[1] = do_ats_write(env
, value
, access_type
, mmu_idx
);
3143 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
3144 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
3145 .access
= PL1_RW
, .resetvalue
= 0,
3146 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.par_s
),
3147 offsetoflow32(CPUARMState
, cp15
.par_ns
) },
3148 .writefn
= par_write
},
3149 #ifndef CONFIG_USER_ONLY
3150 /* This underdecoding is safe because the reginfo is NO_RAW. */
3151 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
3152 .access
= PL1_W
, .accessfn
= ats_access
,
3153 .writefn
= ats_write
, .type
= ARM_CP_NO_RAW
},
3158 /* Return basic MPU access permission bits. */
3159 static uint32_t simple_mpu_ap_bits(uint32_t val
)
3166 for (i
= 0; i
< 16; i
+= 2) {
3167 ret
|= (val
>> i
) & mask
;
3173 /* Pad basic MPU access permission bits to extended format. */
3174 static uint32_t extended_mpu_ap_bits(uint32_t val
)
3181 for (i
= 0; i
< 16; i
+= 2) {
3182 ret
|= (val
& mask
) << i
;
3188 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3191 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
3194 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3196 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
3199 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3202 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
3205 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3207 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
3210 static uint64_t pmsav7_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3212 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
3218 u32p
+= env
->pmsav7
.rnr
[M_REG_NS
];
3222 static void pmsav7_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3225 ARMCPU
*cpu
= env_archcpu(env
);
3226 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
3232 u32p
+= env
->pmsav7
.rnr
[M_REG_NS
];
3233 tlb_flush(CPU(cpu
)); /* Mappings may have changed - purge! */
3237 static void pmsav7_rgnr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3240 ARMCPU
*cpu
= env_archcpu(env
);
3241 uint32_t nrgs
= cpu
->pmsav7_dregion
;
3243 if (value
>= nrgs
) {
3244 qemu_log_mask(LOG_GUEST_ERROR
,
3245 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3246 " > %" PRIu32
"\n", (uint32_t)value
, nrgs
);
3250 raw_write(env
, ri
, value
);
3253 static const ARMCPRegInfo pmsav7_cp_reginfo
[] = {
3254 /* Reset for all these registers is handled in arm_cpu_reset(),
3255 * because the PMSAv7 is also used by M-profile CPUs, which do
3256 * not register cpregs but still need the state to be reset.
3258 { .name
= "DRBAR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 0,
3259 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
3260 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drbar
),
3261 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
,
3262 .resetfn
= arm_cp_reset_ignore
},
3263 { .name
= "DRSR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 2,
3264 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
3265 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drsr
),
3266 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
,
3267 .resetfn
= arm_cp_reset_ignore
},
3268 { .name
= "DRACR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 4,
3269 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
3270 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.dracr
),
3271 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
,
3272 .resetfn
= arm_cp_reset_ignore
},
3273 { .name
= "RGNR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 2, .opc2
= 0,
3275 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.rnr
[M_REG_NS
]),
3276 .writefn
= pmsav7_rgnr_write
,
3277 .resetfn
= arm_cp_reset_ignore
},
3281 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
3282 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
3283 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
3284 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
3285 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
3286 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
3287 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
3288 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
3289 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
3290 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
3292 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
3294 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
3296 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
3298 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
3300 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
3301 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
3303 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
3304 /* Protection region base and size registers */
3305 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
3306 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3307 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
3308 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
3309 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3310 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
3311 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
3312 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3313 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
3314 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
3315 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3316 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
3317 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
3318 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3319 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
3320 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
3321 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3322 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
3323 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
3324 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3325 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
3326 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
3327 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3328 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
3332 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3335 TCR
*tcr
= raw_ptr(env
, ri
);
3336 int maskshift
= extract32(value
, 0, 3);
3338 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
3339 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& TTBCR_EAE
)) {
3340 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3341 * using Long-desciptor translation table format */
3342 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
3343 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3344 /* In an implementation that includes the Security Extensions
3345 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3346 * Short-descriptor translation table format.
3348 value
&= TTBCR_PD1
| TTBCR_PD0
| TTBCR_N
;
3354 /* Update the masks corresponding to the TCR bank being written
3355 * Note that we always calculate mask and base_mask, but
3356 * they are only used for short-descriptor tables (ie if EAE is 0);
3357 * for long-descriptor tables the TCR fields are used differently
3358 * and the mask and base_mask values are meaningless.
3360 tcr
->raw_tcr
= value
;
3361 tcr
->mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
3362 tcr
->base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
3365 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3368 ARMCPU
*cpu
= env_archcpu(env
);
3369 TCR
*tcr
= raw_ptr(env
, ri
);
3371 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
3372 /* With LPAE the TTBCR could result in a change of ASID
3373 * via the TTBCR.A1 bit, so do a TLB flush.
3375 tlb_flush(CPU(cpu
));
3377 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3378 value
= deposit64(tcr
->raw_tcr
, 0, 32, value
);
3379 vmsa_ttbcr_raw_write(env
, ri
, value
);
3382 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3384 TCR
*tcr
= raw_ptr(env
, ri
);
3386 /* Reset both the TCR as well as the masks corresponding to the bank of
3387 * the TCR being reset.
3391 tcr
->base_mask
= 0xffffc000u
;
3394 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3397 ARMCPU
*cpu
= env_archcpu(env
);
3398 TCR
*tcr
= raw_ptr(env
, ri
);
3400 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3401 tlb_flush(CPU(cpu
));
3402 tcr
->raw_tcr
= value
;
3405 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3408 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3409 if (cpreg_field_is_64bit(ri
) &&
3410 extract64(raw_read(env
, ri
) ^ value
, 48, 16) != 0) {
3411 ARMCPU
*cpu
= env_archcpu(env
);
3412 tlb_flush(CPU(cpu
));
3414 raw_write(env
, ri
, value
);
3417 static void vttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3420 ARMCPU
*cpu
= env_archcpu(env
);
3421 CPUState
*cs
= CPU(cpu
);
3423 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
3424 if (raw_read(env
, ri
) != value
) {
3425 tlb_flush_by_mmuidx(cs
,
3426 ARMMMUIdxBit_S12NSE1
|
3427 ARMMMUIdxBit_S12NSE0
|
3429 raw_write(env
, ri
, value
);
3433 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo
[] = {
3434 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
3435 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
3436 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dfsr_s
),
3437 offsetoflow32(CPUARMState
, cp15
.dfsr_ns
) }, },
3438 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
3439 .access
= PL1_RW
, .resetvalue
= 0,
3440 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.ifsr_s
),
3441 offsetoflow32(CPUARMState
, cp15
.ifsr_ns
) } },
3442 { .name
= "DFAR", .cp
= 15, .opc1
= 0, .crn
= 6, .crm
= 0, .opc2
= 0,
3443 .access
= PL1_RW
, .resetvalue
= 0,
3444 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.dfar_s
),
3445 offsetof(CPUARMState
, cp15
.dfar_ns
) } },
3446 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_AA64
,
3447 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
3448 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[1]),
3453 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
3454 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
3455 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
3457 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
3458 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
3459 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 0,
3460 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
3461 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
3462 offsetof(CPUARMState
, cp15
.ttbr0_ns
) } },
3463 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
3464 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 1,
3465 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
3466 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
3467 offsetof(CPUARMState
, cp15
.ttbr1_ns
) } },
3468 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
3469 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
3470 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
3471 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
3472 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[1]) },
3473 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
3474 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
, .writefn
= vmsa_ttbcr_write
,
3475 .raw_writefn
= vmsa_ttbcr_raw_write
,
3476 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tcr_el
[3]),
3477 offsetoflow32(CPUARMState
, cp15
.tcr_el
[1])} },
3481 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3482 * qemu tlbs nor adjusting cached masks.
3484 static const ARMCPRegInfo ttbcr2_reginfo
= {
3485 .name
= "TTBCR2", .cp
= 15, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 3,
3486 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
3487 .bank_fieldoffsets
= { offsetofhigh32(CPUARMState
, cp15
.tcr_el
[3]),
3488 offsetofhigh32(CPUARMState
, cp15
.tcr_el
[1]) },
3491 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3494 env
->cp15
.c15_ticonfig
= value
& 0xe7;
3495 /* The OS_TYPE bit in this register changes the reported CPUID! */
3496 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
3497 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
3500 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3503 env
->cp15
.c15_threadid
= value
& 0xffff;
3506 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3509 /* Wait-for-interrupt (deprecated) */
3510 cpu_interrupt(env_cpu(env
), CPU_INTERRUPT_HALT
);
3513 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3516 /* On OMAP there are registers indicating the max/min index of dcache lines
3517 * containing a dirty line; cache flush operations have to reset these.
3519 env
->cp15
.c15_i_max
= 0x000;
3520 env
->cp15
.c15_i_min
= 0xff0;
3523 static const ARMCPRegInfo omap_cp_reginfo
[] = {
3524 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
3525 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
3526 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
3528 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
3529 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
3530 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
3532 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
3533 .writefn
= omap_ticonfig_write
},
3534 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
3536 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
3537 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
3538 .access
= PL1_RW
, .resetvalue
= 0xff0,
3539 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
3540 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
3542 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
3543 .writefn
= omap_threadid_write
},
3544 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
3545 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
3546 .type
= ARM_CP_NO_RAW
,
3547 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
3548 /* TODO: Peripheral port remap register:
3549 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3550 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3553 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
3554 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
3555 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
,
3556 .writefn
= omap_cachemaint_write
},
3557 { .name
= "C9", .cp
= 15, .crn
= 9,
3558 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
3559 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
3563 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3566 env
->cp15
.c15_cpar
= value
& 0x3fff;
3569 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
3570 { .name
= "XSCALE_CPAR",
3571 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
3572 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
3573 .writefn
= xscale_cpar_write
, },
3574 { .name
= "XSCALE_AUXCR",
3575 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
3576 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
3578 /* XScale specific cache-lockdown: since we have no cache we NOP these
3579 * and hope the guest does not really rely on cache behaviour.
3581 { .name
= "XSCALE_LOCK_ICACHE_LINE",
3582 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
3583 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3584 { .name
= "XSCALE_UNLOCK_ICACHE",
3585 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
3586 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3587 { .name
= "XSCALE_DCACHE_LOCK",
3588 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
3589 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
3590 { .name
= "XSCALE_UNLOCK_DCACHE",
3591 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
3592 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3596 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
3597 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3598 * implementation of this implementation-defined space.
3599 * Ideally this should eventually disappear in favour of actually
3600 * implementing the correct behaviour for all cores.
3602 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
3603 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
3605 .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
| ARM_CP_OVERRIDE
,
3610 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
3611 /* Cache status: RAZ because we have no cache so it's always clean */
3612 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
3613 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
3618 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
3619 /* We never have a a block transfer operation in progress */
3620 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
3621 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
3623 /* The cache ops themselves: these all NOP for QEMU */
3624 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
3625 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
3626 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
3627 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
3628 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
3629 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
3630 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
3631 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
3632 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
3633 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
3634 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
3635 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
3639 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
3640 /* The cache test-and-clean instructions always return (1 << 30)
3641 * to indicate that there are no dirty cache lines.
3643 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
3644 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
3645 .resetvalue
= (1 << 30) },
3646 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
3647 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
3648 .resetvalue
= (1 << 30) },
3652 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
3653 /* Ignore ReadBuffer accesses */
3654 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
3655 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
3656 .access
= PL1_RW
, .resetvalue
= 0,
3657 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
},
3661 static uint64_t midr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3663 ARMCPU
*cpu
= env_archcpu(env
);
3664 unsigned int cur_el
= arm_current_el(env
);
3665 bool secure
= arm_is_secure(env
);
3667 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
3668 return env
->cp15
.vpidr_el2
;
3670 return raw_read(env
, ri
);
3673 static uint64_t mpidr_read_val(CPUARMState
*env
)
3675 ARMCPU
*cpu
= env_archcpu(env
);
3676 uint64_t mpidr
= cpu
->mp_affinity
;
3678 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
3679 mpidr
|= (1U << 31);
3680 /* Cores which are uniprocessor (non-coherent)
3681 * but still implement the MP extensions set
3682 * bit 30. (For instance, Cortex-R5).
3684 if (cpu
->mp_is_up
) {
3685 mpidr
|= (1u << 30);
3691 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3693 unsigned int cur_el
= arm_current_el(env
);
3694 bool secure
= arm_is_secure(env
);
3696 if (arm_feature(env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
3697 return env
->cp15
.vmpidr_el2
;
3699 return mpidr_read_val(env
);
3702 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
3704 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
3705 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
3706 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
3708 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3709 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
3710 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
3712 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
3713 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .resetvalue
= 0,
3714 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.par_s
),
3715 offsetof(CPUARMState
, cp15
.par_ns
)} },
3716 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
3717 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3718 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
3719 offsetof(CPUARMState
, cp15
.ttbr0_ns
) },
3720 .writefn
= vmsa_ttbr_write
, },
3721 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
3722 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3723 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
3724 offsetof(CPUARMState
, cp15
.ttbr1_ns
) },
3725 .writefn
= vmsa_ttbr_write
, },
3729 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3731 return vfp_get_fpcr(env
);
3734 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3737 vfp_set_fpcr(env
, value
);
3740 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3742 return vfp_get_fpsr(env
);
3745 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3748 vfp_set_fpsr(env
, value
);
3751 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3754 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
3755 return CP_ACCESS_TRAP
;
3757 return CP_ACCESS_OK
;
3760 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3763 env
->daif
= value
& PSTATE_DAIF
;
3766 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
3767 const ARMCPRegInfo
*ri
,
3770 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3771 * SCTLR_EL1.UCI is set.
3773 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCI
)) {
3774 return CP_ACCESS_TRAP
;
3776 return CP_ACCESS_OK
;
3779 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3780 * Page D4-1736 (DDI0487A.b)
3783 static void tlbi_aa64_vmalle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3786 CPUState
*cs
= env_cpu(env
);
3787 bool sec
= arm_is_secure_below_el3(env
);
3790 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
3791 ARMMMUIdxBit_S1SE1
|
3792 ARMMMUIdxBit_S1SE0
);
3794 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
3795 ARMMMUIdxBit_S12NSE1
|
3796 ARMMMUIdxBit_S12NSE0
);
3800 static void tlbi_aa64_vmalle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3803 CPUState
*cs
= env_cpu(env
);
3805 if (tlb_force_broadcast(env
)) {
3806 tlbi_aa64_vmalle1is_write(env
, NULL
, value
);
3810 if (arm_is_secure_below_el3(env
)) {
3811 tlb_flush_by_mmuidx(cs
,
3812 ARMMMUIdxBit_S1SE1
|
3813 ARMMMUIdxBit_S1SE0
);
3815 tlb_flush_by_mmuidx(cs
,
3816 ARMMMUIdxBit_S12NSE1
|
3817 ARMMMUIdxBit_S12NSE0
);
3821 static void tlbi_aa64_alle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3824 /* Note that the 'ALL' scope must invalidate both stage 1 and
3825 * stage 2 translations, whereas most other scopes only invalidate
3826 * stage 1 translations.
3828 ARMCPU
*cpu
= env_archcpu(env
);
3829 CPUState
*cs
= CPU(cpu
);
3831 if (arm_is_secure_below_el3(env
)) {
3832 tlb_flush_by_mmuidx(cs
,
3833 ARMMMUIdxBit_S1SE1
|
3834 ARMMMUIdxBit_S1SE0
);
3836 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
3837 tlb_flush_by_mmuidx(cs
,
3838 ARMMMUIdxBit_S12NSE1
|
3839 ARMMMUIdxBit_S12NSE0
|
3842 tlb_flush_by_mmuidx(cs
,
3843 ARMMMUIdxBit_S12NSE1
|
3844 ARMMMUIdxBit_S12NSE0
);
3849 static void tlbi_aa64_alle2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3852 ARMCPU
*cpu
= env_archcpu(env
);
3853 CPUState
*cs
= CPU(cpu
);
3855 tlb_flush_by_mmuidx(cs
, ARMMMUIdxBit_S1E2
);
3858 static void tlbi_aa64_alle3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3861 ARMCPU
*cpu
= env_archcpu(env
);
3862 CPUState
*cs
= CPU(cpu
);
3864 tlb_flush_by_mmuidx(cs
, ARMMMUIdxBit_S1E3
);
3867 static void tlbi_aa64_alle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3870 /* Note that the 'ALL' scope must invalidate both stage 1 and
3871 * stage 2 translations, whereas most other scopes only invalidate
3872 * stage 1 translations.
3874 CPUState
*cs
= env_cpu(env
);
3875 bool sec
= arm_is_secure_below_el3(env
);
3876 bool has_el2
= arm_feature(env
, ARM_FEATURE_EL2
);
3879 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
3880 ARMMMUIdxBit_S1SE1
|
3881 ARMMMUIdxBit_S1SE0
);
3882 } else if (has_el2
) {
3883 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
3884 ARMMMUIdxBit_S12NSE1
|
3885 ARMMMUIdxBit_S12NSE0
|
3888 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
3889 ARMMMUIdxBit_S12NSE1
|
3890 ARMMMUIdxBit_S12NSE0
);
3894 static void tlbi_aa64_alle2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3897 CPUState
*cs
= env_cpu(env
);
3899 tlb_flush_by_mmuidx_all_cpus_synced(cs
, ARMMMUIdxBit_S1E2
);
3902 static void tlbi_aa64_alle3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3905 CPUState
*cs
= env_cpu(env
);
3907 tlb_flush_by_mmuidx_all_cpus_synced(cs
, ARMMMUIdxBit_S1E3
);
3910 static void tlbi_aa64_vae2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3913 /* Invalidate by VA, EL2
3914 * Currently handles both VAE2 and VALE2, since we don't support
3915 * flush-last-level-only.
3917 ARMCPU
*cpu
= env_archcpu(env
);
3918 CPUState
*cs
= CPU(cpu
);
3919 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3921 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdxBit_S1E2
);
3924 static void tlbi_aa64_vae3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3927 /* Invalidate by VA, EL3
3928 * Currently handles both VAE3 and VALE3, since we don't support
3929 * flush-last-level-only.
3931 ARMCPU
*cpu
= env_archcpu(env
);
3932 CPUState
*cs
= CPU(cpu
);
3933 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3935 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdxBit_S1E3
);
3938 static void tlbi_aa64_vae1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3941 ARMCPU
*cpu
= env_archcpu(env
);
3942 CPUState
*cs
= CPU(cpu
);
3943 bool sec
= arm_is_secure_below_el3(env
);
3944 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3947 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
3948 ARMMMUIdxBit_S1SE1
|
3949 ARMMMUIdxBit_S1SE0
);
3951 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
3952 ARMMMUIdxBit_S12NSE1
|
3953 ARMMMUIdxBit_S12NSE0
);
3957 static void tlbi_aa64_vae1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3960 /* Invalidate by VA, EL1&0 (AArch64 version).
3961 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3962 * since we don't support flush-for-specific-ASID-only or
3963 * flush-last-level-only.
3965 ARMCPU
*cpu
= env_archcpu(env
);
3966 CPUState
*cs
= CPU(cpu
);
3967 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3969 if (tlb_force_broadcast(env
)) {
3970 tlbi_aa64_vae1is_write(env
, NULL
, value
);
3974 if (arm_is_secure_below_el3(env
)) {
3975 tlb_flush_page_by_mmuidx(cs
, pageaddr
,
3976 ARMMMUIdxBit_S1SE1
|
3977 ARMMMUIdxBit_S1SE0
);
3979 tlb_flush_page_by_mmuidx(cs
, pageaddr
,
3980 ARMMMUIdxBit_S12NSE1
|
3981 ARMMMUIdxBit_S12NSE0
);
3985 static void tlbi_aa64_vae2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3988 CPUState
*cs
= env_cpu(env
);
3989 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3991 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
3995 static void tlbi_aa64_vae3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3998 CPUState
*cs
= env_cpu(env
);
3999 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
4001 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
4005 static void tlbi_aa64_ipas2e1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4008 /* Invalidate by IPA. This has to invalidate any structures that
4009 * contain only stage 2 translation information, but does not need
4010 * to apply to structures that contain combined stage 1 and stage 2
4011 * translation information.
4012 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
4014 ARMCPU
*cpu
= env_archcpu(env
);
4015 CPUState
*cs
= CPU(cpu
);
4018 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
4022 pageaddr
= sextract64(value
<< 12, 0, 48);
4024 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdxBit_S2NS
);
4027 static void tlbi_aa64_ipas2e1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4030 CPUState
*cs
= env_cpu(env
);
4033 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
4037 pageaddr
= sextract64(value
<< 12, 0, 48);
4039 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
4043 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4046 /* We don't implement EL2, so the only control on DC ZVA is the
4047 * bit in the SCTLR which can prohibit access for EL0.
4049 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_DZE
)) {
4050 return CP_ACCESS_TRAP
;
4052 return CP_ACCESS_OK
;
4055 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4057 ARMCPU
*cpu
= env_archcpu(env
);
4058 int dzp_bit
= 1 << 4;
4060 /* DZP indicates whether DC ZVA access is allowed */
4061 if (aa64_zva_access(env
, NULL
, false) == CP_ACCESS_OK
) {
4064 return cpu
->dcz_blocksize
| dzp_bit
;
4067 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4070 if (!(env
->pstate
& PSTATE_SP
)) {
4071 /* Access to SP_EL0 is undefined if it's being used as
4072 * the stack pointer.
4074 return CP_ACCESS_TRAP_UNCATEGORIZED
;
4076 return CP_ACCESS_OK
;
4079 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4081 return env
->pstate
& PSTATE_SP
;
4084 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
4086 update_spsel(env
, val
);
4089 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4092 ARMCPU
*cpu
= env_archcpu(env
);
4094 if (raw_read(env
, ri
) == value
) {
4095 /* Skip the TLB flush if nothing actually changed; Linux likes
4096 * to do a lot of pointless SCTLR writes.
4101 if (arm_feature(env
, ARM_FEATURE_PMSA
) && !cpu
->has_mpu
) {
4102 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4106 raw_write(env
, ri
, value
);
4107 /* ??? Lots of these bits are not implemented. */
4108 /* This may enable/disable the MMU, so do a TLB flush. */
4109 tlb_flush(CPU(cpu
));
4112 static CPAccessResult
fpexc32_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4115 if ((env
->cp15
.cptr_el
[2] & CPTR_TFP
) && arm_current_el(env
) == 2) {
4116 return CP_ACCESS_TRAP_FP_EL2
;
4118 if (env
->cp15
.cptr_el
[3] & CPTR_TFP
) {
4119 return CP_ACCESS_TRAP_FP_EL3
;
4121 return CP_ACCESS_OK
;
4124 static void sdcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4127 env
->cp15
.mdcr_el3
= value
& SDCR_VALID_MASK
;
4130 static const ARMCPRegInfo v8_cp_reginfo
[] = {
4131 /* Minimal set of EL0-visible registers. This will need to be expanded
4132 * significantly for system emulation of AArch64 CPUs.
4134 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
4135 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
4136 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
4137 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
4138 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
4139 .type
= ARM_CP_NO_RAW
,
4140 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
4141 .fieldoffset
= offsetof(CPUARMState
, daif
),
4142 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
4143 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
4144 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
4145 .access
= PL0_RW
, .type
= ARM_CP_FPU
| ARM_CP_SUPPRESS_TB_END
,
4146 .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
4147 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
4148 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
4149 .access
= PL0_RW
, .type
= ARM_CP_FPU
| ARM_CP_SUPPRESS_TB_END
,
4150 .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
4151 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
4152 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
4153 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
,
4154 .readfn
= aa64_dczid_read
},
4155 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
4156 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
4157 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
4158 #ifndef CONFIG_USER_ONLY
4159 /* Avoid overhead of an access check that always passes in user-mode */
4160 .accessfn
= aa64_zva_access
,
4163 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
4164 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
4165 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
4166 /* Cache ops: all NOPs since we don't emulate caches */
4167 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
4168 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
4169 .access
= PL1_W
, .type
= ARM_CP_NOP
},
4170 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
4171 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
4172 .access
= PL1_W
, .type
= ARM_CP_NOP
},
4173 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
4174 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
4175 .access
= PL0_W
, .type
= ARM_CP_NOP
,
4176 .accessfn
= aa64_cacheop_access
},
4177 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
4178 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
4179 .access
= PL1_W
, .type
= ARM_CP_NOP
},
4180 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
4181 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
4182 .access
= PL1_W
, .type
= ARM_CP_NOP
},
4183 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
4184 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
4185 .access
= PL0_W
, .type
= ARM_CP_NOP
,
4186 .accessfn
= aa64_cacheop_access
},
4187 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
4188 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
4189 .access
= PL1_W
, .type
= ARM_CP_NOP
},
4190 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
4191 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
4192 .access
= PL0_W
, .type
= ARM_CP_NOP
,
4193 .accessfn
= aa64_cacheop_access
},
4194 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
4195 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
4196 .access
= PL0_W
, .type
= ARM_CP_NOP
,
4197 .accessfn
= aa64_cacheop_access
},
4198 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
4199 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
4200 .access
= PL1_W
, .type
= ARM_CP_NOP
},
4201 /* TLBI operations */
4202 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
4203 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
4204 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4205 .writefn
= tlbi_aa64_vmalle1is_write
},
4206 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
4207 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
4208 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4209 .writefn
= tlbi_aa64_vae1is_write
},
4210 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
4211 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
4212 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4213 .writefn
= tlbi_aa64_vmalle1is_write
},
4214 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
4215 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
4216 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4217 .writefn
= tlbi_aa64_vae1is_write
},
4218 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
4219 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
4220 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4221 .writefn
= tlbi_aa64_vae1is_write
},
4222 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
4223 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
4224 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4225 .writefn
= tlbi_aa64_vae1is_write
},
4226 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
4227 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
4228 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4229 .writefn
= tlbi_aa64_vmalle1_write
},
4230 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
4231 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
4232 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4233 .writefn
= tlbi_aa64_vae1_write
},
4234 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
4235 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
4236 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4237 .writefn
= tlbi_aa64_vmalle1_write
},
4238 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
4239 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
4240 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4241 .writefn
= tlbi_aa64_vae1_write
},
4242 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
4243 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
4244 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4245 .writefn
= tlbi_aa64_vae1_write
},
4246 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
4247 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
4248 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4249 .writefn
= tlbi_aa64_vae1_write
},
4250 { .name
= "TLBI_IPAS2E1IS", .state
= ARM_CP_STATE_AA64
,
4251 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
4252 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4253 .writefn
= tlbi_aa64_ipas2e1is_write
},
4254 { .name
= "TLBI_IPAS2LE1IS", .state
= ARM_CP_STATE_AA64
,
4255 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
4256 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4257 .writefn
= tlbi_aa64_ipas2e1is_write
},
4258 { .name
= "TLBI_ALLE1IS", .state
= ARM_CP_STATE_AA64
,
4259 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
4260 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4261 .writefn
= tlbi_aa64_alle1is_write
},
4262 { .name
= "TLBI_VMALLS12E1IS", .state
= ARM_CP_STATE_AA64
,
4263 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 6,
4264 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4265 .writefn
= tlbi_aa64_alle1is_write
},
4266 { .name
= "TLBI_IPAS2E1", .state
= ARM_CP_STATE_AA64
,
4267 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
4268 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4269 .writefn
= tlbi_aa64_ipas2e1_write
},
4270 { .name
= "TLBI_IPAS2LE1", .state
= ARM_CP_STATE_AA64
,
4271 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
4272 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4273 .writefn
= tlbi_aa64_ipas2e1_write
},
4274 { .name
= "TLBI_ALLE1", .state
= ARM_CP_STATE_AA64
,
4275 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
4276 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4277 .writefn
= tlbi_aa64_alle1_write
},
4278 { .name
= "TLBI_VMALLS12E1", .state
= ARM_CP_STATE_AA64
,
4279 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 6,
4280 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4281 .writefn
= tlbi_aa64_alle1is_write
},
4282 #ifndef CONFIG_USER_ONLY
4283 /* 64 bit address translation operations */
4284 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
4285 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
4286 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4287 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
4288 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
4289 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4290 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
4291 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
4292 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4293 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
4294 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
4295 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4296 { .name
= "AT_S12E1R", .state
= ARM_CP_STATE_AA64
,
4297 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 4,
4298 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4299 { .name
= "AT_S12E1W", .state
= ARM_CP_STATE_AA64
,
4300 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 5,
4301 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4302 { .name
= "AT_S12E0R", .state
= ARM_CP_STATE_AA64
,
4303 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 6,
4304 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4305 { .name
= "AT_S12E0W", .state
= ARM_CP_STATE_AA64
,
4306 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 7,
4307 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4308 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4309 { .name
= "AT_S1E3R", .state
= ARM_CP_STATE_AA64
,
4310 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 0,
4311 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4312 { .name
= "AT_S1E3W", .state
= ARM_CP_STATE_AA64
,
4313 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 1,
4314 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4315 { .name
= "PAR_EL1", .state
= ARM_CP_STATE_AA64
,
4316 .type
= ARM_CP_ALIAS
,
4317 .opc0
= 3, .opc1
= 0, .crn
= 7, .crm
= 4, .opc2
= 0,
4318 .access
= PL1_RW
, .resetvalue
= 0,
4319 .fieldoffset
= offsetof(CPUARMState
, cp15
.par_el
[1]),
4320 .writefn
= par_write
},
4322 /* TLB invalidate last level of translation table walk */
4323 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
4324 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
4325 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
4326 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
4327 .writefn
= tlbimvaa_is_write
},
4328 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
4329 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
4330 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
4331 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
4332 { .name
= "TLBIMVALH", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
4333 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4334 .writefn
= tlbimva_hyp_write
},
4335 { .name
= "TLBIMVALHIS",
4336 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
4337 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4338 .writefn
= tlbimva_hyp_is_write
},
4339 { .name
= "TLBIIPAS2",
4340 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
4341 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4342 .writefn
= tlbiipas2_write
},
4343 { .name
= "TLBIIPAS2IS",
4344 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
4345 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4346 .writefn
= tlbiipas2_is_write
},
4347 { .name
= "TLBIIPAS2L",
4348 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
4349 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4350 .writefn
= tlbiipas2_write
},
4351 { .name
= "TLBIIPAS2LIS",
4352 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
4353 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4354 .writefn
= tlbiipas2_is_write
},
4355 /* 32 bit cache operations */
4356 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
4357 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4358 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
4359 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4360 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
4361 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4362 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
4363 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4364 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
4365 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4366 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
4367 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4368 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
4369 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4370 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
4371 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4372 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
4373 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4374 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
4375 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4376 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
4377 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4378 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
4379 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4380 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
4381 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4382 /* MMU Domain access control / MPU write buffer control */
4383 { .name
= "DACR", .cp
= 15, .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
4384 .access
= PL1_RW
, .resetvalue
= 0,
4385 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
4386 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
4387 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
4388 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
4389 .type
= ARM_CP_ALIAS
,
4390 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
4392 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
4393 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
4394 .type
= ARM_CP_ALIAS
,
4395 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
4397 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_SVC
]) },
4398 /* We rely on the access checks not allowing the guest to write to the
4399 * state field when SPSel indicates that it's being used as the stack
4402 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
4403 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
4404 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
4405 .type
= ARM_CP_ALIAS
,
4406 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
4407 { .name
= "SP_EL1", .state
= ARM_CP_STATE_AA64
,
4408 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 1, .opc2
= 0,
4409 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
4410 .fieldoffset
= offsetof(CPUARMState
, sp_el
[1]) },
4411 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
4412 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
4413 .type
= ARM_CP_NO_RAW
,
4414 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
4415 { .name
= "FPEXC32_EL2", .state
= ARM_CP_STATE_AA64
,
4416 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 3, .opc2
= 0,
4417 .type
= ARM_CP_ALIAS
,
4418 .fieldoffset
= offsetof(CPUARMState
, vfp
.xregs
[ARM_VFP_FPEXC
]),
4419 .access
= PL2_RW
, .accessfn
= fpexc32_access
},
4420 { .name
= "DACR32_EL2", .state
= ARM_CP_STATE_AA64
,
4421 .opc0
= 3, .opc1
= 4, .crn
= 3, .crm
= 0, .opc2
= 0,
4422 .access
= PL2_RW
, .resetvalue
= 0,
4423 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
4424 .fieldoffset
= offsetof(CPUARMState
, cp15
.dacr32_el2
) },
4425 { .name
= "IFSR32_EL2", .state
= ARM_CP_STATE_AA64
,
4426 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 0, .opc2
= 1,
4427 .access
= PL2_RW
, .resetvalue
= 0,
4428 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr32_el2
) },
4429 { .name
= "SPSR_IRQ", .state
= ARM_CP_STATE_AA64
,
4430 .type
= ARM_CP_ALIAS
,
4431 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 0,
4433 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_IRQ
]) },
4434 { .name
= "SPSR_ABT", .state
= ARM_CP_STATE_AA64
,
4435 .type
= ARM_CP_ALIAS
,
4436 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 1,
4438 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_ABT
]) },
4439 { .name
= "SPSR_UND", .state
= ARM_CP_STATE_AA64
,
4440 .type
= ARM_CP_ALIAS
,
4441 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 2,
4443 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_UND
]) },
4444 { .name
= "SPSR_FIQ", .state
= ARM_CP_STATE_AA64
,
4445 .type
= ARM_CP_ALIAS
,
4446 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 3,
4448 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_FIQ
]) },
4449 { .name
= "MDCR_EL3", .state
= ARM_CP_STATE_AA64
,
4450 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 3, .opc2
= 1,
4452 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el3
) },
4453 { .name
= "SDCR", .type
= ARM_CP_ALIAS
,
4454 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 1,
4455 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
4456 .writefn
= sdcr_write
,
4457 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.mdcr_el3
) },
4461 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4462 static const ARMCPRegInfo el3_no_el2_cp_reginfo
[] = {
4463 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_BOTH
,
4464 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
4466 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
4467 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_BOTH
,
4468 .type
= ARM_CP_NO_RAW
,
4469 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
4471 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4472 { .name
= "HACR_EL2", .state
= ARM_CP_STATE_BOTH
,
4473 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 7,
4474 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4475 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_BOTH
,
4476 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
4478 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4479 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
4480 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
4481 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4482 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
4483 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
4484 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4486 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
4487 .cp
= 15, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
4488 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4489 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
4490 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
4491 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4493 { .name
= "HAMAIR1", .state
= ARM_CP_STATE_AA32
,
4494 .cp
= 15, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
4495 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4497 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
4498 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
4499 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4501 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
4502 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
4503 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4505 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
4506 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
4507 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4508 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_BOTH
,
4509 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
4510 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4511 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4512 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
4513 .cp
= 15, .opc1
= 6, .crm
= 2,
4514 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4515 .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
4516 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
4517 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
4518 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4519 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
4520 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
4521 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4522 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4523 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
4524 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4525 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
4526 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
4527 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4528 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
4529 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
4531 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
4532 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
4533 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4534 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
4535 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
4536 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4537 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
4538 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
4540 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
4541 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
4542 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4543 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
4544 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
4546 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
4547 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
4548 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4549 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
4550 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
4551 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4552 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
4553 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
4554 .access
= PL2_RW
, .accessfn
= access_tda
,
4555 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4556 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_BOTH
,
4557 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
4558 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4559 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4560 { .name
= "HSTR_EL2", .state
= ARM_CP_STATE_BOTH
,
4561 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 3,
4562 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4563 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_BOTH
,
4564 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
4565 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4566 { .name
= "HIFAR", .state
= ARM_CP_STATE_AA32
,
4567 .type
= ARM_CP_CONST
,
4568 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 2,
4569 .access
= PL2_RW
, .resetvalue
= 0 },
4573 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4574 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo
[] = {
4575 { .name
= "HCR2", .state
= ARM_CP_STATE_AA32
,
4576 .cp
= 15, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 4,
4578 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4582 static void hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
4584 ARMCPU
*cpu
= env_archcpu(env
);
4585 uint64_t valid_mask
= HCR_MASK
;
4587 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4588 valid_mask
&= ~HCR_HCD
;
4589 } else if (cpu
->psci_conduit
!= QEMU_PSCI_CONDUIT_SMC
) {
4590 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4591 * However, if we're using the SMC PSCI conduit then QEMU is
4592 * effectively acting like EL3 firmware and so the guest at
4593 * EL2 should retain the ability to prevent EL1 from being
4594 * able to make SMC calls into the ersatz firmware, so in
4595 * that case HCR.TSC should be read/write.
4597 valid_mask
&= ~HCR_TSC
;
4599 if (cpu_isar_feature(aa64_lor
, cpu
)) {
4600 valid_mask
|= HCR_TLOR
;
4602 if (cpu_isar_feature(aa64_pauth
, cpu
)) {
4603 valid_mask
|= HCR_API
| HCR_APK
;
4606 /* Clear RES0 bits. */
4607 value
&= valid_mask
;
4609 /* These bits change the MMU setup:
4610 * HCR_VM enables stage 2 translation
4611 * HCR_PTW forbids certain page-table setups
4612 * HCR_DC Disables stage1 and enables stage2 translation
4614 if ((env
->cp15
.hcr_el2
^ value
) & (HCR_VM
| HCR_PTW
| HCR_DC
)) {
4615 tlb_flush(CPU(cpu
));
4617 env
->cp15
.hcr_el2
= value
;
4620 * Updates to VI and VF require us to update the status of
4621 * virtual interrupts, which are the logical OR of these bits
4622 * and the state of the input lines from the GIC. (This requires
4623 * that we have the iothread lock, which is done by marking the
4624 * reginfo structs as ARM_CP_IO.)
4625 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4626 * possible for it to be taken immediately, because VIRQ and
4627 * VFIQ are masked unless running at EL0 or EL1, and HCR
4628 * can only be written at EL2.
4630 g_assert(qemu_mutex_iothread_locked());
4631 arm_cpu_update_virq(cpu
);
4632 arm_cpu_update_vfiq(cpu
);
4635 static void hcr_writehigh(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4638 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4639 value
= deposit64(env
->cp15
.hcr_el2
, 32, 32, value
);
4640 hcr_write(env
, NULL
, value
);
4643 static void hcr_writelow(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4646 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4647 value
= deposit64(env
->cp15
.hcr_el2
, 0, 32, value
);
4648 hcr_write(env
, NULL
, value
);
4652 * Return the effective value of HCR_EL2.
4653 * Bits that are not included here:
4654 * RW (read from SCR_EL3.RW as needed)
4656 uint64_t arm_hcr_el2_eff(CPUARMState
*env
)
4658 uint64_t ret
= env
->cp15
.hcr_el2
;
4660 if (arm_is_secure_below_el3(env
)) {
4662 * "This register has no effect if EL2 is not enabled in the
4663 * current Security state". This is ARMv8.4-SecEL2 speak for
4664 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4666 * Prior to that, the language was "In an implementation that
4667 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4668 * as if this field is 0 for all purposes other than a direct
4669 * read or write access of HCR_EL2". With lots of enumeration
4670 * on a per-field basis. In current QEMU, this is condition
4671 * is arm_is_secure_below_el3.
4673 * Since the v8.4 language applies to the entire register, and
4674 * appears to be backward compatible, use that.
4677 } else if (ret
& HCR_TGE
) {
4678 /* These bits are up-to-date as of ARMv8.4. */
4679 if (ret
& HCR_E2H
) {
4680 ret
&= ~(HCR_VM
| HCR_FMO
| HCR_IMO
| HCR_AMO
|
4681 HCR_BSU_MASK
| HCR_DC
| HCR_TWI
| HCR_TWE
|
4682 HCR_TID0
| HCR_TID2
| HCR_TPCP
| HCR_TPU
|
4683 HCR_TDZ
| HCR_CD
| HCR_ID
| HCR_MIOCNCE
);
4685 ret
|= HCR_FMO
| HCR_IMO
| HCR_AMO
;
4687 ret
&= ~(HCR_SWIO
| HCR_PTW
| HCR_VF
| HCR_VI
| HCR_VSE
|
4688 HCR_FB
| HCR_TID1
| HCR_TID3
| HCR_TSC
| HCR_TACR
|
4689 HCR_TSW
| HCR_TTLB
| HCR_TVM
| HCR_HCD
| HCR_TRVM
|
4696 static void cptr_el2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4700 * For A-profile AArch32 EL3, if NSACR.CP10
4701 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4703 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_el_is_aa64(env
, 3) &&
4704 !arm_is_secure(env
) && !extract32(env
->cp15
.nsacr
, 10, 1)) {
4705 value
&= ~(0x3 << 10);
4706 value
|= env
->cp15
.cptr_el
[2] & (0x3 << 10);
4708 env
->cp15
.cptr_el
[2] = value
;
4711 static uint64_t cptr_el2_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4714 * For A-profile AArch32 EL3, if NSACR.CP10
4715 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4717 uint64_t value
= env
->cp15
.cptr_el
[2];
4719 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_el_is_aa64(env
, 3) &&
4720 !arm_is_secure(env
) && !extract32(env
->cp15
.nsacr
, 10, 1)) {
4726 static const ARMCPRegInfo el2_cp_reginfo
[] = {
4727 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
4729 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
4730 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
4731 .writefn
= hcr_write
},
4732 { .name
= "HCR", .state
= ARM_CP_STATE_AA32
,
4733 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
4734 .cp
= 15, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
4735 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
4736 .writefn
= hcr_writelow
},
4737 { .name
= "HACR_EL2", .state
= ARM_CP_STATE_BOTH
,
4738 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 7,
4739 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4740 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
4741 .type
= ARM_CP_ALIAS
,
4742 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
4744 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
4745 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_BOTH
,
4746 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
4747 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[2]) },
4748 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_BOTH
,
4749 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
4750 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[2]) },
4751 { .name
= "HIFAR", .state
= ARM_CP_STATE_AA32
,
4752 .type
= ARM_CP_ALIAS
,
4753 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 2,
4755 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.far_el
[2]) },
4756 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
4757 .type
= ARM_CP_ALIAS
,
4758 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
4760 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_HYP
]) },
4761 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_BOTH
,
4762 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
4763 .access
= PL2_RW
, .writefn
= vbar_write
,
4764 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
4766 { .name
= "SP_EL2", .state
= ARM_CP_STATE_AA64
,
4767 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 1, .opc2
= 0,
4768 .access
= PL3_RW
, .type
= ARM_CP_ALIAS
,
4769 .fieldoffset
= offsetof(CPUARMState
, sp_el
[2]) },
4770 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
4771 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
4772 .access
= PL2_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
4773 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[2]),
4774 .readfn
= cptr_el2_read
, .writefn
= cptr_el2_write
},
4775 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
4776 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
4777 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[2]),
4779 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
4780 .cp
= 15, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
4781 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
4782 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.mair_el
[2]) },
4783 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
4784 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
4785 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4787 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4788 { .name
= "HAMAIR1", .state
= ARM_CP_STATE_AA32
,
4789 .cp
= 15, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
4790 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4792 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
4793 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
4794 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4796 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
4797 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
4798 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4800 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
4801 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
4803 /* no .writefn needed as this can't cause an ASID change;
4804 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4806 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[2]) },
4807 { .name
= "VTCR", .state
= ARM_CP_STATE_AA32
,
4808 .cp
= 15, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
4809 .type
= ARM_CP_ALIAS
,
4810 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4811 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
4812 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_AA64
,
4813 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
4815 /* no .writefn needed as this can't cause an ASID change;
4816 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4818 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
4819 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
4820 .cp
= 15, .opc1
= 6, .crm
= 2,
4821 .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
4822 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4823 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
),
4824 .writefn
= vttbr_write
},
4825 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
4826 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
4827 .access
= PL2_RW
, .writefn
= vttbr_write
,
4828 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
) },
4829 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
4830 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
4831 .access
= PL2_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
4832 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[2]) },
4833 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4834 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
4835 .access
= PL2_RW
, .resetvalue
= 0,
4836 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[2]) },
4837 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
4838 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
4839 .access
= PL2_RW
, .resetvalue
= 0,
4840 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
4841 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
4842 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
4843 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
4844 { .name
= "TLBIALLNSNH",
4845 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
4846 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4847 .writefn
= tlbiall_nsnh_write
},
4848 { .name
= "TLBIALLNSNHIS",
4849 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
4850 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4851 .writefn
= tlbiall_nsnh_is_write
},
4852 { .name
= "TLBIALLH", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
4853 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4854 .writefn
= tlbiall_hyp_write
},
4855 { .name
= "TLBIALLHIS", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
4856 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4857 .writefn
= tlbiall_hyp_is_write
},
4858 { .name
= "TLBIMVAH", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
4859 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4860 .writefn
= tlbimva_hyp_write
},
4861 { .name
= "TLBIMVAHIS", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
4862 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4863 .writefn
= tlbimva_hyp_is_write
},
4864 { .name
= "TLBI_ALLE2", .state
= ARM_CP_STATE_AA64
,
4865 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
4866 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4867 .writefn
= tlbi_aa64_alle2_write
},
4868 { .name
= "TLBI_VAE2", .state
= ARM_CP_STATE_AA64
,
4869 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
4870 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4871 .writefn
= tlbi_aa64_vae2_write
},
4872 { .name
= "TLBI_VALE2", .state
= ARM_CP_STATE_AA64
,
4873 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
4874 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4875 .writefn
= tlbi_aa64_vae2_write
},
4876 { .name
= "TLBI_ALLE2IS", .state
= ARM_CP_STATE_AA64
,
4877 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
4878 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4879 .writefn
= tlbi_aa64_alle2is_write
},
4880 { .name
= "TLBI_VAE2IS", .state
= ARM_CP_STATE_AA64
,
4881 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
4882 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4883 .writefn
= tlbi_aa64_vae2is_write
},
4884 { .name
= "TLBI_VALE2IS", .state
= ARM_CP_STATE_AA64
,
4885 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
4886 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4887 .writefn
= tlbi_aa64_vae2is_write
},
4888 #ifndef CONFIG_USER_ONLY
4889 /* Unlike the other EL2-related AT operations, these must
4890 * UNDEF from EL3 if EL2 is not implemented, which is why we
4891 * define them here rather than with the rest of the AT ops.
4893 { .name
= "AT_S1E2R", .state
= ARM_CP_STATE_AA64
,
4894 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
4895 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
4896 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4897 { .name
= "AT_S1E2W", .state
= ARM_CP_STATE_AA64
,
4898 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
4899 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
4900 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4901 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4902 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4903 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4904 * to behave as if SCR.NS was 1.
4906 { .name
= "ATS1HR", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
4908 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
4909 { .name
= "ATS1HW", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
4911 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
4912 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
4913 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
4914 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4915 * reset values as IMPDEF. We choose to reset to 3 to comply with
4916 * both ARMv7 and ARMv8.
4918 .access
= PL2_RW
, .resetvalue
= 3,
4919 .fieldoffset
= offsetof(CPUARMState
, cp15
.cnthctl_el2
) },
4920 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
4921 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
4922 .access
= PL2_RW
, .type
= ARM_CP_IO
, .resetvalue
= 0,
4923 .writefn
= gt_cntvoff_write
,
4924 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
4925 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
4926 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
| ARM_CP_IO
,
4927 .writefn
= gt_cntvoff_write
,
4928 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
4929 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
4930 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
4931 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
4932 .type
= ARM_CP_IO
, .access
= PL2_RW
,
4933 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
4934 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
4935 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
4936 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_IO
,
4937 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
4938 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
4939 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
4940 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL2_RW
,
4941 .resetfn
= gt_hyp_timer_reset
,
4942 .readfn
= gt_hyp_tval_read
, .writefn
= gt_hyp_tval_write
},
4943 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
4945 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
4947 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].ctl
),
4949 .writefn
= gt_hyp_ctl_write
, .raw_writefn
= raw_write
},
4951 /* The only field of MDCR_EL2 that has a defined architectural reset value
4952 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4953 * don't implement any PMU event counters, so using zero as a reset
4954 * value for MDCR_EL2 is okay
4956 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
4957 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
4958 .access
= PL2_RW
, .resetvalue
= 0,
4959 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el2
), },
4960 { .name
= "HPFAR", .state
= ARM_CP_STATE_AA32
,
4961 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
4962 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4963 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
4964 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_AA64
,
4965 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
4967 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
4968 { .name
= "HSTR_EL2", .state
= ARM_CP_STATE_BOTH
,
4969 .cp
= 15, .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 3,
4971 .fieldoffset
= offsetof(CPUARMState
, cp15
.hstr_el2
) },
4975 static const ARMCPRegInfo el2_v8_cp_reginfo
[] = {
4976 { .name
= "HCR2", .state
= ARM_CP_STATE_AA32
,
4977 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
4978 .cp
= 15, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 4,
4980 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.hcr_el2
),
4981 .writefn
= hcr_writehigh
},
4985 static CPAccessResult
nsacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4988 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4989 * At Secure EL1 it traps to EL3.
4991 if (arm_current_el(env
) == 3) {
4992 return CP_ACCESS_OK
;
4994 if (arm_is_secure_below_el3(env
)) {
4995 return CP_ACCESS_TRAP_EL3
;
4997 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4999 return CP_ACCESS_OK
;
5001 return CP_ACCESS_TRAP_UNCATEGORIZED
;
5004 static const ARMCPRegInfo el3_cp_reginfo
[] = {
5005 { .name
= "SCR_EL3", .state
= ARM_CP_STATE_AA64
,
5006 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 0,
5007 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.scr_el3
),
5008 .resetvalue
= 0, .writefn
= scr_write
},
5009 { .name
= "SCR", .type
= ARM_CP_ALIAS
,
5010 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 0,
5011 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
5012 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.scr_el3
),
5013 .writefn
= scr_write
},
5014 { .name
= "SDER32_EL3", .state
= ARM_CP_STATE_AA64
,
5015 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 1,
5016 .access
= PL3_RW
, .resetvalue
= 0,
5017 .fieldoffset
= offsetof(CPUARMState
, cp15
.sder
) },
5019 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 1,
5020 .access
= PL3_RW
, .resetvalue
= 0,
5021 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.sder
) },
5022 { .name
= "MVBAR", .cp
= 15, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
5023 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
5024 .writefn
= vbar_write
, .resetvalue
= 0,
5025 .fieldoffset
= offsetof(CPUARMState
, cp15
.mvbar
) },
5026 { .name
= "TTBR0_EL3", .state
= ARM_CP_STATE_AA64
,
5027 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 0,
5028 .access
= PL3_RW
, .resetvalue
= 0,
5029 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[3]) },
5030 { .name
= "TCR_EL3", .state
= ARM_CP_STATE_AA64
,
5031 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 2,
5033 /* no .writefn needed as this can't cause an ASID change;
5034 * we must provide a .raw_writefn and .resetfn because we handle
5035 * reset and migration for the AArch32 TTBCR(S), which might be
5036 * using mask and base_mask.
5038 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= vmsa_ttbcr_raw_write
,
5039 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[3]) },
5040 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
5041 .type
= ARM_CP_ALIAS
,
5042 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
5044 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
5045 { .name
= "ESR_EL3", .state
= ARM_CP_STATE_AA64
,
5046 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 2, .opc2
= 0,
5047 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[3]) },
5048 { .name
= "FAR_EL3", .state
= ARM_CP_STATE_AA64
,
5049 .opc0
= 3, .opc1
= 6, .crn
= 6, .crm
= 0, .opc2
= 0,
5050 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[3]) },
5051 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
5052 .type
= ARM_CP_ALIAS
,
5053 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
5055 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_MON
]) },
5056 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
5057 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
5058 .access
= PL3_RW
, .writefn
= vbar_write
,
5059 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
5061 { .name
= "CPTR_EL3", .state
= ARM_CP_STATE_AA64
,
5062 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 2,
5063 .access
= PL3_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
5064 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[3]) },
5065 { .name
= "TPIDR_EL3", .state
= ARM_CP_STATE_AA64
,
5066 .opc0
= 3, .opc1
= 6, .crn
= 13, .crm
= 0, .opc2
= 2,
5067 .access
= PL3_RW
, .resetvalue
= 0,
5068 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[3]) },
5069 { .name
= "AMAIR_EL3", .state
= ARM_CP_STATE_AA64
,
5070 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 3, .opc2
= 0,
5071 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
5073 { .name
= "AFSR0_EL3", .state
= ARM_CP_STATE_BOTH
,
5074 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 0,
5075 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
5077 { .name
= "AFSR1_EL3", .state
= ARM_CP_STATE_BOTH
,
5078 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 1,
5079 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
5081 { .name
= "TLBI_ALLE3IS", .state
= ARM_CP_STATE_AA64
,
5082 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 0,
5083 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5084 .writefn
= tlbi_aa64_alle3is_write
},
5085 { .name
= "TLBI_VAE3IS", .state
= ARM_CP_STATE_AA64
,
5086 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 1,
5087 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5088 .writefn
= tlbi_aa64_vae3is_write
},
5089 { .name
= "TLBI_VALE3IS", .state
= ARM_CP_STATE_AA64
,
5090 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 5,
5091 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5092 .writefn
= tlbi_aa64_vae3is_write
},
5093 { .name
= "TLBI_ALLE3", .state
= ARM_CP_STATE_AA64
,
5094 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 0,
5095 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5096 .writefn
= tlbi_aa64_alle3_write
},
5097 { .name
= "TLBI_VAE3", .state
= ARM_CP_STATE_AA64
,
5098 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 1,
5099 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5100 .writefn
= tlbi_aa64_vae3_write
},
5101 { .name
= "TLBI_VALE3", .state
= ARM_CP_STATE_AA64
,
5102 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 5,
5103 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5104 .writefn
= tlbi_aa64_vae3_write
},
5108 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5111 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5112 * but the AArch32 CTR has its own reginfo struct)
5114 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCT
)) {
5115 return CP_ACCESS_TRAP
;
5117 return CP_ACCESS_OK
;
5120 static void oslar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5123 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5124 * read via a bit in OSLSR_EL1.
5128 if (ri
->state
== ARM_CP_STATE_AA32
) {
5129 oslock
= (value
== 0xC5ACCE55);
5134 env
->cp15
.oslsr_el1
= deposit32(env
->cp15
.oslsr_el1
, 1, 1, oslock
);
5137 static const ARMCPRegInfo debug_cp_reginfo
[] = {
5138 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5139 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5140 * unlike DBGDRAR it is never accessible from EL0.
5141 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5144 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
5145 .access
= PL0_R
, .accessfn
= access_tdra
,
5146 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5147 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
5148 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
5149 .access
= PL1_R
, .accessfn
= access_tdra
,
5150 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5151 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
5152 .access
= PL0_R
, .accessfn
= access_tdra
,
5153 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5154 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5155 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
5156 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
5157 .access
= PL1_RW
, .accessfn
= access_tda
,
5158 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
5160 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5161 * We don't implement the configurable EL0 access.
5163 { .name
= "MDCCSR_EL0", .state
= ARM_CP_STATE_BOTH
,
5164 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
5165 .type
= ARM_CP_ALIAS
,
5166 .access
= PL1_R
, .accessfn
= access_tda
,
5167 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
), },
5168 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
5169 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
5170 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
5171 .accessfn
= access_tdosa
,
5172 .writefn
= oslar_write
},
5173 { .name
= "OSLSR_EL1", .state
= ARM_CP_STATE_BOTH
,
5174 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 4,
5175 .access
= PL1_R
, .resetvalue
= 10,
5176 .accessfn
= access_tdosa
,
5177 .fieldoffset
= offsetof(CPUARMState
, cp15
.oslsr_el1
) },
5178 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5179 { .name
= "OSDLR_EL1", .state
= ARM_CP_STATE_BOTH
,
5180 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 4,
5181 .access
= PL1_RW
, .accessfn
= access_tdosa
,
5182 .type
= ARM_CP_NOP
},
5183 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5184 * implement vector catch debug events yet.
5187 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
5188 .access
= PL1_RW
, .accessfn
= access_tda
,
5189 .type
= ARM_CP_NOP
},
5190 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5191 * to save and restore a 32-bit guest's DBGVCR)
5193 { .name
= "DBGVCR32_EL2", .state
= ARM_CP_STATE_AA64
,
5194 .opc0
= 2, .opc1
= 4, .crn
= 0, .crm
= 7, .opc2
= 0,
5195 .access
= PL2_RW
, .accessfn
= access_tda
,
5196 .type
= ARM_CP_NOP
},
5197 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5198 * Channel but Linux may try to access this register. The 32-bit
5199 * alias is DBGDCCINT.
5201 { .name
= "MDCCINT_EL1", .state
= ARM_CP_STATE_BOTH
,
5202 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
5203 .access
= PL1_RW
, .accessfn
= access_tda
,
5204 .type
= ARM_CP_NOP
},
5208 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
5209 /* 64 bit access versions of the (dummy) debug registers */
5210 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
5211 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
5212 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
5213 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
5217 /* Return the exception level to which exceptions should be taken
5218 * via SVEAccessTrap. If an exception should be routed through
5219 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5220 * take care of raising that exception.
5221 * C.f. the ARM pseudocode function CheckSVEEnabled.
5223 int sve_exception_el(CPUARMState
*env
, int el
)
5225 #ifndef CONFIG_USER_ONLY
5227 bool disabled
= false;
5229 /* The CPACR.ZEN controls traps to EL1:
5230 * 0, 2 : trap EL0 and EL1 accesses
5231 * 1 : trap only EL0 accesses
5232 * 3 : trap no accesses
5234 if (!extract32(env
->cp15
.cpacr_el1
, 16, 1)) {
5236 } else if (!extract32(env
->cp15
.cpacr_el1
, 17, 1)) {
5241 return (arm_feature(env
, ARM_FEATURE_EL2
)
5242 && (arm_hcr_el2_eff(env
) & HCR_TGE
) ? 2 : 1);
5245 /* Check CPACR.FPEN. */
5246 if (!extract32(env
->cp15
.cpacr_el1
, 20, 1)) {
5248 } else if (!extract32(env
->cp15
.cpacr_el1
, 21, 1)) {
5256 /* CPTR_EL2. Since TZ and TFP are positive,
5257 * they will be zero when EL2 is not present.
5259 if (el
<= 2 && !arm_is_secure_below_el3(env
)) {
5260 if (env
->cp15
.cptr_el
[2] & CPTR_TZ
) {
5263 if (env
->cp15
.cptr_el
[2] & CPTR_TFP
) {
5268 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
5269 if (arm_feature(env
, ARM_FEATURE_EL3
)
5270 && !(env
->cp15
.cptr_el
[3] & CPTR_EZ
)) {
5278 * Given that SVE is enabled, return the vector length for EL.
5280 uint32_t sve_zcr_len_for_el(CPUARMState
*env
, int el
)
5282 ARMCPU
*cpu
= env_archcpu(env
);
5283 uint32_t zcr_len
= cpu
->sve_max_vq
- 1;
5286 zcr_len
= MIN(zcr_len
, 0xf & (uint32_t)env
->vfp
.zcr_el
[1]);
5288 if (el
<= 2 && arm_feature(env
, ARM_FEATURE_EL2
)) {
5289 zcr_len
= MIN(zcr_len
, 0xf & (uint32_t)env
->vfp
.zcr_el
[2]);
5291 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
5292 zcr_len
= MIN(zcr_len
, 0xf & (uint32_t)env
->vfp
.zcr_el
[3]);
5297 static void zcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5300 int cur_el
= arm_current_el(env
);
5301 int old_len
= sve_zcr_len_for_el(env
, cur_el
);
5304 /* Bits other than [3:0] are RAZ/WI. */
5305 QEMU_BUILD_BUG_ON(ARM_MAX_VQ
> 16);
5306 raw_write(env
, ri
, value
& 0xf);
5309 * Because we arrived here, we know both FP and SVE are enabled;
5310 * otherwise we would have trapped access to the ZCR_ELn register.
5312 new_len
= sve_zcr_len_for_el(env
, cur_el
);
5313 if (new_len
< old_len
) {
5314 aarch64_sve_narrow_vq(env
, new_len
+ 1);
5318 static const ARMCPRegInfo zcr_el1_reginfo
= {
5319 .name
= "ZCR_EL1", .state
= ARM_CP_STATE_AA64
,
5320 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 2, .opc2
= 0,
5321 .access
= PL1_RW
, .type
= ARM_CP_SVE
,
5322 .fieldoffset
= offsetof(CPUARMState
, vfp
.zcr_el
[1]),
5323 .writefn
= zcr_write
, .raw_writefn
= raw_write
5326 static const ARMCPRegInfo zcr_el2_reginfo
= {
5327 .name
= "ZCR_EL2", .state
= ARM_CP_STATE_AA64
,
5328 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 2, .opc2
= 0,
5329 .access
= PL2_RW
, .type
= ARM_CP_SVE
,
5330 .fieldoffset
= offsetof(CPUARMState
, vfp
.zcr_el
[2]),
5331 .writefn
= zcr_write
, .raw_writefn
= raw_write
5334 static const ARMCPRegInfo zcr_no_el2_reginfo
= {
5335 .name
= "ZCR_EL2", .state
= ARM_CP_STATE_AA64
,
5336 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 2, .opc2
= 0,
5337 .access
= PL2_RW
, .type
= ARM_CP_SVE
,
5338 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
5341 static const ARMCPRegInfo zcr_el3_reginfo
= {
5342 .name
= "ZCR_EL3", .state
= ARM_CP_STATE_AA64
,
5343 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 2, .opc2
= 0,
5344 .access
= PL3_RW
, .type
= ARM_CP_SVE
,
5345 .fieldoffset
= offsetof(CPUARMState
, vfp
.zcr_el
[3]),
5346 .writefn
= zcr_write
, .raw_writefn
= raw_write
5349 void hw_watchpoint_update(ARMCPU
*cpu
, int n
)
5351 CPUARMState
*env
= &cpu
->env
;
5353 vaddr wvr
= env
->cp15
.dbgwvr
[n
];
5354 uint64_t wcr
= env
->cp15
.dbgwcr
[n
];
5356 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
5358 if (env
->cpu_watchpoint
[n
]) {
5359 cpu_watchpoint_remove_by_ref(CPU(cpu
), env
->cpu_watchpoint
[n
]);
5360 env
->cpu_watchpoint
[n
] = NULL
;
5363 if (!extract64(wcr
, 0, 1)) {
5364 /* E bit clear : watchpoint disabled */
5368 switch (extract64(wcr
, 3, 2)) {
5370 /* LSC 00 is reserved and must behave as if the wp is disabled */
5373 flags
|= BP_MEM_READ
;
5376 flags
|= BP_MEM_WRITE
;
5379 flags
|= BP_MEM_ACCESS
;
5383 /* Attempts to use both MASK and BAS fields simultaneously are
5384 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5385 * thus generating a watchpoint for every byte in the masked region.
5387 mask
= extract64(wcr
, 24, 4);
5388 if (mask
== 1 || mask
== 2) {
5389 /* Reserved values of MASK; we must act as if the mask value was
5390 * some non-reserved value, or as if the watchpoint were disabled.
5391 * We choose the latter.
5395 /* Watchpoint covers an aligned area up to 2GB in size */
5397 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5398 * whether the watchpoint fires when the unmasked bits match; we opt
5399 * to generate the exceptions.
5403 /* Watchpoint covers bytes defined by the byte address select bits */
5404 int bas
= extract64(wcr
, 5, 8);
5408 /* This must act as if the watchpoint is disabled */
5412 if (extract64(wvr
, 2, 1)) {
5413 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5414 * ignored, and BAS[3:0] define which bytes to watch.
5418 /* The BAS bits are supposed to be programmed to indicate a contiguous
5419 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5420 * we fire for each byte in the word/doubleword addressed by the WVR.
5421 * We choose to ignore any non-zero bits after the first range of 1s.
5423 basstart
= ctz32(bas
);
5424 len
= cto32(bas
>> basstart
);
5428 cpu_watchpoint_insert(CPU(cpu
), wvr
, len
, flags
,
5429 &env
->cpu_watchpoint
[n
]);
5432 void hw_watchpoint_update_all(ARMCPU
*cpu
)
5435 CPUARMState
*env
= &cpu
->env
;
5437 /* Completely clear out existing QEMU watchpoints and our array, to
5438 * avoid possible stale entries following migration load.
5440 cpu_watchpoint_remove_all(CPU(cpu
), BP_CPU
);
5441 memset(env
->cpu_watchpoint
, 0, sizeof(env
->cpu_watchpoint
));
5443 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_watchpoint
); i
++) {
5444 hw_watchpoint_update(cpu
, i
);
5448 static void dbgwvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5451 ARMCPU
*cpu
= env_archcpu(env
);
5454 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5455 * register reads and behaves as if values written are sign extended.
5456 * Bits [1:0] are RES0.
5458 value
= sextract64(value
, 0, 49) & ~3ULL;
5460 raw_write(env
, ri
, value
);
5461 hw_watchpoint_update(cpu
, i
);
5464 static void dbgwcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5467 ARMCPU
*cpu
= env_archcpu(env
);
5470 raw_write(env
, ri
, value
);
5471 hw_watchpoint_update(cpu
, i
);
5474 void hw_breakpoint_update(ARMCPU
*cpu
, int n
)
5476 CPUARMState
*env
= &cpu
->env
;
5477 uint64_t bvr
= env
->cp15
.dbgbvr
[n
];
5478 uint64_t bcr
= env
->cp15
.dbgbcr
[n
];
5483 if (env
->cpu_breakpoint
[n
]) {
5484 cpu_breakpoint_remove_by_ref(CPU(cpu
), env
->cpu_breakpoint
[n
]);
5485 env
->cpu_breakpoint
[n
] = NULL
;
5488 if (!extract64(bcr
, 0, 1)) {
5489 /* E bit clear : watchpoint disabled */
5493 bt
= extract64(bcr
, 20, 4);
5496 case 4: /* unlinked address mismatch (reserved if AArch64) */
5497 case 5: /* linked address mismatch (reserved if AArch64) */
5498 qemu_log_mask(LOG_UNIMP
,
5499 "arm: address mismatch breakpoint types not implemented\n");
5501 case 0: /* unlinked address match */
5502 case 1: /* linked address match */
5504 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5505 * we behave as if the register was sign extended. Bits [1:0] are
5506 * RES0. The BAS field is used to allow setting breakpoints on 16
5507 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5508 * a bp will fire if the addresses covered by the bp and the addresses
5509 * covered by the insn overlap but the insn doesn't start at the
5510 * start of the bp address range. We choose to require the insn and
5511 * the bp to have the same address. The constraints on writing to
5512 * BAS enforced in dbgbcr_write mean we have only four cases:
5513 * 0b0000 => no breakpoint
5514 * 0b0011 => breakpoint on addr
5515 * 0b1100 => breakpoint on addr + 2
5516 * 0b1111 => breakpoint on addr
5517 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5519 int bas
= extract64(bcr
, 5, 4);
5520 addr
= sextract64(bvr
, 0, 49) & ~3ULL;
5529 case 2: /* unlinked context ID match */
5530 case 8: /* unlinked VMID match (reserved if no EL2) */
5531 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5532 qemu_log_mask(LOG_UNIMP
,
5533 "arm: unlinked context breakpoint types not implemented\n");
5535 case 9: /* linked VMID match (reserved if no EL2) */
5536 case 11: /* linked context ID and VMID match (reserved if no EL2) */
5537 case 3: /* linked context ID match */
5539 /* We must generate no events for Linked context matches (unless
5540 * they are linked to by some other bp/wp, which is handled in
5541 * updates for the linking bp/wp). We choose to also generate no events
5542 * for reserved values.
5547 cpu_breakpoint_insert(CPU(cpu
), addr
, flags
, &env
->cpu_breakpoint
[n
]);
5550 void hw_breakpoint_update_all(ARMCPU
*cpu
)
5553 CPUARMState
*env
= &cpu
->env
;
5555 /* Completely clear out existing QEMU breakpoints and our array, to
5556 * avoid possible stale entries following migration load.
5558 cpu_breakpoint_remove_all(CPU(cpu
), BP_CPU
);
5559 memset(env
->cpu_breakpoint
, 0, sizeof(env
->cpu_breakpoint
));
5561 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_breakpoint
); i
++) {
5562 hw_breakpoint_update(cpu
, i
);
5566 static void dbgbvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5569 ARMCPU
*cpu
= env_archcpu(env
);
5572 raw_write(env
, ri
, value
);
5573 hw_breakpoint_update(cpu
, i
);
5576 static void dbgbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5579 ARMCPU
*cpu
= env_archcpu(env
);
5582 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5585 value
= deposit64(value
, 6, 1, extract64(value
, 5, 1));
5586 value
= deposit64(value
, 8, 1, extract64(value
, 7, 1));
5588 raw_write(env
, ri
, value
);
5589 hw_breakpoint_update(cpu
, i
);
5592 static void define_debug_regs(ARMCPU
*cpu
)
5594 /* Define v7 and v8 architectural debug registers.
5595 * These are just dummy implementations for now.
5598 int wrps
, brps
, ctx_cmps
;
5599 ARMCPRegInfo dbgdidr
= {
5600 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
5601 .access
= PL0_R
, .accessfn
= access_tda
,
5602 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->dbgdidr
,
5605 /* Note that all these register fields hold "number of Xs minus 1". */
5606 brps
= extract32(cpu
->dbgdidr
, 24, 4);
5607 wrps
= extract32(cpu
->dbgdidr
, 28, 4);
5608 ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
5610 assert(ctx_cmps
<= brps
);
5612 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5613 * of the debug registers such as number of breakpoints;
5614 * check that if they both exist then they agree.
5616 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
5617 assert(extract32(cpu
->id_aa64dfr0
, 12, 4) == brps
);
5618 assert(extract32(cpu
->id_aa64dfr0
, 20, 4) == wrps
);
5619 assert(extract32(cpu
->id_aa64dfr0
, 28, 4) == ctx_cmps
);
5622 define_one_arm_cp_reg(cpu
, &dbgdidr
);
5623 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
5625 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
5626 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
5629 for (i
= 0; i
< brps
+ 1; i
++) {
5630 ARMCPRegInfo dbgregs
[] = {
5631 { .name
= "DBGBVR", .state
= ARM_CP_STATE_BOTH
,
5632 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
5633 .access
= PL1_RW
, .accessfn
= access_tda
,
5634 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]),
5635 .writefn
= dbgbvr_write
, .raw_writefn
= raw_write
5637 { .name
= "DBGBCR", .state
= ARM_CP_STATE_BOTH
,
5638 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
5639 .access
= PL1_RW
, .accessfn
= access_tda
,
5640 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]),
5641 .writefn
= dbgbcr_write
, .raw_writefn
= raw_write
5645 define_arm_cp_regs(cpu
, dbgregs
);
5648 for (i
= 0; i
< wrps
+ 1; i
++) {
5649 ARMCPRegInfo dbgregs
[] = {
5650 { .name
= "DBGWVR", .state
= ARM_CP_STATE_BOTH
,
5651 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
5652 .access
= PL1_RW
, .accessfn
= access_tda
,
5653 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]),
5654 .writefn
= dbgwvr_write
, .raw_writefn
= raw_write
5656 { .name
= "DBGWCR", .state
= ARM_CP_STATE_BOTH
,
5657 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
5658 .access
= PL1_RW
, .accessfn
= access_tda
,
5659 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]),
5660 .writefn
= dbgwcr_write
, .raw_writefn
= raw_write
5664 define_arm_cp_regs(cpu
, dbgregs
);
5668 /* We don't know until after realize whether there's a GICv3
5669 * attached, and that is what registers the gicv3 sysregs.
5670 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5673 static uint64_t id_pfr1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
5675 ARMCPU
*cpu
= env_archcpu(env
);
5676 uint64_t pfr1
= cpu
->id_pfr1
;
5678 if (env
->gicv3state
) {
5684 static uint64_t id_aa64pfr0_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
5686 ARMCPU
*cpu
= env_archcpu(env
);
5687 uint64_t pfr0
= cpu
->isar
.id_aa64pfr0
;
5689 if (env
->gicv3state
) {
5695 /* Shared logic between LORID and the rest of the LOR* registers.
5696 * Secure state has already been delt with.
5698 static CPAccessResult
access_lor_ns(CPUARMState
*env
)
5700 int el
= arm_current_el(env
);
5702 if (el
< 2 && (arm_hcr_el2_eff(env
) & HCR_TLOR
)) {
5703 return CP_ACCESS_TRAP_EL2
;
5705 if (el
< 3 && (env
->cp15
.scr_el3
& SCR_TLOR
)) {
5706 return CP_ACCESS_TRAP_EL3
;
5708 return CP_ACCESS_OK
;
5711 static CPAccessResult
access_lorid(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5714 if (arm_is_secure_below_el3(env
)) {
5715 /* Access ok in secure mode. */
5716 return CP_ACCESS_OK
;
5718 return access_lor_ns(env
);
5721 static CPAccessResult
access_lor_other(CPUARMState
*env
,
5722 const ARMCPRegInfo
*ri
, bool isread
)
5724 if (arm_is_secure_below_el3(env
)) {
5725 /* Access denied in secure mode. */
5726 return CP_ACCESS_TRAP
;
5728 return access_lor_ns(env
);
5731 #ifdef TARGET_AARCH64
5732 static CPAccessResult
access_pauth(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5735 int el
= arm_current_el(env
);
5738 arm_feature(env
, ARM_FEATURE_EL2
) &&
5739 !(arm_hcr_el2_eff(env
) & HCR_APK
)) {
5740 return CP_ACCESS_TRAP_EL2
;
5743 arm_feature(env
, ARM_FEATURE_EL3
) &&
5744 !(env
->cp15
.scr_el3
& SCR_APK
)) {
5745 return CP_ACCESS_TRAP_EL3
;
5747 return CP_ACCESS_OK
;
5750 static const ARMCPRegInfo pauth_reginfo
[] = {
5751 { .name
= "APDAKEYLO_EL1", .state
= ARM_CP_STATE_AA64
,
5752 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 2, .opc2
= 0,
5753 .access
= PL1_RW
, .accessfn
= access_pauth
,
5754 .fieldoffset
= offsetof(CPUARMState
, keys
.apda
.lo
) },
5755 { .name
= "APDAKEYHI_EL1", .state
= ARM_CP_STATE_AA64
,
5756 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 2, .opc2
= 1,
5757 .access
= PL1_RW
, .accessfn
= access_pauth
,
5758 .fieldoffset
= offsetof(CPUARMState
, keys
.apda
.hi
) },
5759 { .name
= "APDBKEYLO_EL1", .state
= ARM_CP_STATE_AA64
,
5760 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 2, .opc2
= 2,
5761 .access
= PL1_RW
, .accessfn
= access_pauth
,
5762 .fieldoffset
= offsetof(CPUARMState
, keys
.apdb
.lo
) },
5763 { .name
= "APDBKEYHI_EL1", .state
= ARM_CP_STATE_AA64
,
5764 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 2, .opc2
= 3,
5765 .access
= PL1_RW
, .accessfn
= access_pauth
,
5766 .fieldoffset
= offsetof(CPUARMState
, keys
.apdb
.hi
) },
5767 { .name
= "APGAKEYLO_EL1", .state
= ARM_CP_STATE_AA64
,
5768 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 3, .opc2
= 0,
5769 .access
= PL1_RW
, .accessfn
= access_pauth
,
5770 .fieldoffset
= offsetof(CPUARMState
, keys
.apga
.lo
) },
5771 { .name
= "APGAKEYHI_EL1", .state
= ARM_CP_STATE_AA64
,
5772 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 3, .opc2
= 1,
5773 .access
= PL1_RW
, .accessfn
= access_pauth
,
5774 .fieldoffset
= offsetof(CPUARMState
, keys
.apga
.hi
) },
5775 { .name
= "APIAKEYLO_EL1", .state
= ARM_CP_STATE_AA64
,
5776 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 1, .opc2
= 0,
5777 .access
= PL1_RW
, .accessfn
= access_pauth
,
5778 .fieldoffset
= offsetof(CPUARMState
, keys
.apia
.lo
) },
5779 { .name
= "APIAKEYHI_EL1", .state
= ARM_CP_STATE_AA64
,
5780 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 1, .opc2
= 1,
5781 .access
= PL1_RW
, .accessfn
= access_pauth
,
5782 .fieldoffset
= offsetof(CPUARMState
, keys
.apia
.hi
) },
5783 { .name
= "APIBKEYLO_EL1", .state
= ARM_CP_STATE_AA64
,
5784 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 1, .opc2
= 2,
5785 .access
= PL1_RW
, .accessfn
= access_pauth
,
5786 .fieldoffset
= offsetof(CPUARMState
, keys
.apib
.lo
) },
5787 { .name
= "APIBKEYHI_EL1", .state
= ARM_CP_STATE_AA64
,
5788 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 1, .opc2
= 3,
5789 .access
= PL1_RW
, .accessfn
= access_pauth
,
5790 .fieldoffset
= offsetof(CPUARMState
, keys
.apib
.hi
) },
5794 static uint64_t rndr_readfn(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
5799 /* Success sets NZCV = 0000. */
5800 env
->NF
= env
->CF
= env
->VF
= 0, env
->ZF
= 1;
5802 if (qemu_guest_getrandom(&ret
, sizeof(ret
), &err
) < 0) {
5804 * ??? Failed, for unknown reasons in the crypto subsystem.
5805 * The best we can do is log the reason and return the
5806 * timed-out indication to the guest. There is no reason
5807 * we know to expect this failure to be transitory, so the
5808 * guest may well hang retrying the operation.
5810 qemu_log_mask(LOG_UNIMP
, "%s: Crypto failure: %s",
5811 ri
->name
, error_get_pretty(err
));
5814 env
->ZF
= 0; /* NZCF = 0100 */
5820 /* We do not support re-seeding, so the two registers operate the same. */
5821 static const ARMCPRegInfo rndr_reginfo
[] = {
5822 { .name
= "RNDR", .state
= ARM_CP_STATE_AA64
,
5823 .type
= ARM_CP_NO_RAW
| ARM_CP_SUPPRESS_TB_END
| ARM_CP_IO
,
5824 .opc0
= 3, .opc1
= 3, .crn
= 2, .crm
= 4, .opc2
= 0,
5825 .access
= PL0_R
, .readfn
= rndr_readfn
},
5826 { .name
= "RNDRRS", .state
= ARM_CP_STATE_AA64
,
5827 .type
= ARM_CP_NO_RAW
| ARM_CP_SUPPRESS_TB_END
| ARM_CP_IO
,
5828 .opc0
= 3, .opc1
= 3, .crn
= 2, .crm
= 4, .opc2
= 1,
5829 .access
= PL0_R
, .readfn
= rndr_readfn
},
5834 static CPAccessResult
access_predinv(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5837 int el
= arm_current_el(env
);
5840 uint64_t sctlr
= arm_sctlr(env
, el
);
5841 if (!(sctlr
& SCTLR_EnRCTX
)) {
5842 return CP_ACCESS_TRAP
;
5844 } else if (el
== 1) {
5845 uint64_t hcr
= arm_hcr_el2_eff(env
);
5847 return CP_ACCESS_TRAP_EL2
;
5850 return CP_ACCESS_OK
;
5853 static const ARMCPRegInfo predinv_reginfo
[] = {
5854 { .name
= "CFP_RCTX", .state
= ARM_CP_STATE_AA64
,
5855 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 3, .opc2
= 4,
5856 .type
= ARM_CP_NOP
, .access
= PL0_W
, .accessfn
= access_predinv
},
5857 { .name
= "DVP_RCTX", .state
= ARM_CP_STATE_AA64
,
5858 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 3, .opc2
= 5,
5859 .type
= ARM_CP_NOP
, .access
= PL0_W
, .accessfn
= access_predinv
},
5860 { .name
= "CPP_RCTX", .state
= ARM_CP_STATE_AA64
,
5861 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 3, .opc2
= 7,
5862 .type
= ARM_CP_NOP
, .access
= PL0_W
, .accessfn
= access_predinv
},
5864 * Note the AArch32 opcodes have a different OPC1.
5866 { .name
= "CFPRCTX", .state
= ARM_CP_STATE_AA32
,
5867 .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 3, .opc2
= 4,
5868 .type
= ARM_CP_NOP
, .access
= PL0_W
, .accessfn
= access_predinv
},
5869 { .name
= "DVPRCTX", .state
= ARM_CP_STATE_AA32
,
5870 .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 3, .opc2
= 5,
5871 .type
= ARM_CP_NOP
, .access
= PL0_W
, .accessfn
= access_predinv
},
5872 { .name
= "CPPRCTX", .state
= ARM_CP_STATE_AA32
,
5873 .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 3, .opc2
= 7,
5874 .type
= ARM_CP_NOP
, .access
= PL0_W
, .accessfn
= access_predinv
},
5878 void register_cp_regs_for_features(ARMCPU
*cpu
)
5880 /* Register all the coprocessor registers based on feature bits */
5881 CPUARMState
*env
= &cpu
->env
;
5882 if (arm_feature(env
, ARM_FEATURE_M
)) {
5883 /* M profile has no coprocessor registers */
5887 define_arm_cp_regs(cpu
, cp_reginfo
);
5888 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
5889 /* Must go early as it is full of wildcards that may be
5890 * overridden by later definitions.
5892 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
5895 if (arm_feature(env
, ARM_FEATURE_V6
)) {
5896 /* The ID registers all have impdef reset values */
5897 ARMCPRegInfo v6_idregs
[] = {
5898 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
5899 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
5900 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5901 .resetvalue
= cpu
->id_pfr0
},
5902 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5903 * the value of the GIC field until after we define these regs.
5905 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
5906 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
5907 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
,
5908 .readfn
= id_pfr1_read
,
5909 .writefn
= arm_cp_write_ignore
},
5910 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
5911 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
5912 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5913 .resetvalue
= cpu
->id_dfr0
},
5914 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
5915 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
5916 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5917 .resetvalue
= cpu
->id_afr0
},
5918 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
5919 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
5920 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5921 .resetvalue
= cpu
->id_mmfr0
},
5922 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
5923 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
5924 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5925 .resetvalue
= cpu
->id_mmfr1
},
5926 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
5927 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
5928 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5929 .resetvalue
= cpu
->id_mmfr2
},
5930 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
5931 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
5932 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5933 .resetvalue
= cpu
->id_mmfr3
},
5934 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
5935 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
5936 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5937 .resetvalue
= cpu
->isar
.id_isar0
},
5938 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
5939 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
5940 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5941 .resetvalue
= cpu
->isar
.id_isar1
},
5942 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
5943 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
5944 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5945 .resetvalue
= cpu
->isar
.id_isar2
},
5946 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
5947 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
5948 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5949 .resetvalue
= cpu
->isar
.id_isar3
},
5950 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
5951 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
5952 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5953 .resetvalue
= cpu
->isar
.id_isar4
},
5954 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
5955 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
5956 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5957 .resetvalue
= cpu
->isar
.id_isar5
},
5958 { .name
= "ID_MMFR4", .state
= ARM_CP_STATE_BOTH
,
5959 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 6,
5960 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5961 .resetvalue
= cpu
->id_mmfr4
},
5962 { .name
= "ID_ISAR6", .state
= ARM_CP_STATE_BOTH
,
5963 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 7,
5964 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5965 .resetvalue
= cpu
->isar
.id_isar6
},
5968 define_arm_cp_regs(cpu
, v6_idregs
);
5969 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
5971 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
5973 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
5974 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
5976 if (arm_feature(env
, ARM_FEATURE_V7MP
) &&
5977 !arm_feature(env
, ARM_FEATURE_PMSA
)) {
5978 define_arm_cp_regs(cpu
, v7mp_cp_reginfo
);
5980 if (arm_feature(env
, ARM_FEATURE_V7VE
)) {
5981 define_arm_cp_regs(cpu
, pmovsset_cp_reginfo
);
5983 if (arm_feature(env
, ARM_FEATURE_V7
)) {
5984 /* v7 performance monitor control register: same implementor
5985 * field as main ID register, and we implement four counters in
5986 * addition to the cycle count register.
5988 unsigned int i
, pmcrn
= 4;
5989 ARMCPRegInfo pmcr
= {
5990 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
5992 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
5993 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcr
),
5994 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
5995 .raw_writefn
= raw_write
,
5997 ARMCPRegInfo pmcr64
= {
5998 .name
= "PMCR_EL0", .state
= ARM_CP_STATE_AA64
,
5999 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 0,
6000 .access
= PL0_RW
, .accessfn
= pmreg_access
,
6002 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
6003 .resetvalue
= (cpu
->midr
& 0xff000000) | (pmcrn
<< PMCRN_SHIFT
),
6004 .writefn
= pmcr_write
, .raw_writefn
= raw_write
,
6006 define_one_arm_cp_reg(cpu
, &pmcr
);
6007 define_one_arm_cp_reg(cpu
, &pmcr64
);
6008 for (i
= 0; i
< pmcrn
; i
++) {
6009 char *pmevcntr_name
= g_strdup_printf("PMEVCNTR%d", i
);
6010 char *pmevcntr_el0_name
= g_strdup_printf("PMEVCNTR%d_EL0", i
);
6011 char *pmevtyper_name
= g_strdup_printf("PMEVTYPER%d", i
);
6012 char *pmevtyper_el0_name
= g_strdup_printf("PMEVTYPER%d_EL0", i
);
6013 ARMCPRegInfo pmev_regs
[] = {
6014 { .name
= pmevcntr_name
, .cp
= 15, .crn
= 14,
6015 .crm
= 8 | (3 & (i
>> 3)), .opc1
= 0, .opc2
= i
& 7,
6016 .access
= PL0_RW
, .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
6017 .readfn
= pmevcntr_readfn
, .writefn
= pmevcntr_writefn
,
6018 .accessfn
= pmreg_access
},
6019 { .name
= pmevcntr_el0_name
, .state
= ARM_CP_STATE_AA64
,
6020 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 8 | (3 & (i
>> 3)),
6021 .opc2
= i
& 7, .access
= PL0_RW
, .accessfn
= pmreg_access
,
6023 .readfn
= pmevcntr_readfn
, .writefn
= pmevcntr_writefn
,
6024 .raw_readfn
= pmevcntr_rawread
,
6025 .raw_writefn
= pmevcntr_rawwrite
},
6026 { .name
= pmevtyper_name
, .cp
= 15, .crn
= 14,
6027 .crm
= 12 | (3 & (i
>> 3)), .opc1
= 0, .opc2
= i
& 7,
6028 .access
= PL0_RW
, .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
6029 .readfn
= pmevtyper_readfn
, .writefn
= pmevtyper_writefn
,
6030 .accessfn
= pmreg_access
},
6031 { .name
= pmevtyper_el0_name
, .state
= ARM_CP_STATE_AA64
,
6032 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 12 | (3 & (i
>> 3)),
6033 .opc2
= i
& 7, .access
= PL0_RW
, .accessfn
= pmreg_access
,
6035 .readfn
= pmevtyper_readfn
, .writefn
= pmevtyper_writefn
,
6036 .raw_writefn
= pmevtyper_rawwrite
},
6039 define_arm_cp_regs(cpu
, pmev_regs
);
6040 g_free(pmevcntr_name
);
6041 g_free(pmevcntr_el0_name
);
6042 g_free(pmevtyper_name
);
6043 g_free(pmevtyper_el0_name
);
6045 ARMCPRegInfo clidr
= {
6046 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
6047 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
6048 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
6050 define_one_arm_cp_reg(cpu
, &clidr
);
6051 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
6052 define_debug_regs(cpu
);
6054 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
6056 if (FIELD_EX32(cpu
->id_dfr0
, ID_DFR0
, PERFMON
) >= 4 &&
6057 FIELD_EX32(cpu
->id_dfr0
, ID_DFR0
, PERFMON
) != 0xf) {
6058 ARMCPRegInfo v81_pmu_regs
[] = {
6059 { .name
= "PMCEID2", .state
= ARM_CP_STATE_AA32
,
6060 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 4,
6061 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
6062 .resetvalue
= extract64(cpu
->pmceid0
, 32, 32) },
6063 { .name
= "PMCEID3", .state
= ARM_CP_STATE_AA32
,
6064 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 5,
6065 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
6066 .resetvalue
= extract64(cpu
->pmceid1
, 32, 32) },
6069 define_arm_cp_regs(cpu
, v81_pmu_regs
);
6071 if (arm_feature(env
, ARM_FEATURE_V8
)) {
6072 /* AArch64 ID registers, which all have impdef reset values.
6073 * Note that within the ID register ranges the unused slots
6074 * must all RAZ, not UNDEF; future architecture versions may
6075 * define new registers here.
6077 ARMCPRegInfo v8_idregs
[] = {
6078 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
6079 * know the right value for the GIC field until after we
6080 * define these regs.
6082 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
6083 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
6084 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
,
6085 .readfn
= id_aa64pfr0_read
,
6086 .writefn
= arm_cp_write_ignore
},
6087 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
6088 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
6089 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6090 .resetvalue
= cpu
->isar
.id_aa64pfr1
},
6091 { .name
= "ID_AA64PFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6092 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 2,
6093 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6095 { .name
= "ID_AA64PFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6096 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 3,
6097 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6099 { .name
= "ID_AA64ZFR0_EL1", .state
= ARM_CP_STATE_AA64
,
6100 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 4,
6101 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6102 /* At present, only SVEver == 0 is defined anyway. */
6104 { .name
= "ID_AA64PFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6105 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 5,
6106 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6108 { .name
= "ID_AA64PFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6109 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 6,
6110 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6112 { .name
= "ID_AA64PFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6113 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 7,
6114 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6116 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
6117 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
6118 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6119 .resetvalue
= cpu
->id_aa64dfr0
},
6120 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
6121 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
6122 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6123 .resetvalue
= cpu
->id_aa64dfr1
},
6124 { .name
= "ID_AA64DFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6125 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 2,
6126 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6128 { .name
= "ID_AA64DFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6129 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 3,
6130 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6132 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
6133 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
6134 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6135 .resetvalue
= cpu
->id_aa64afr0
},
6136 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
6137 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
6138 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6139 .resetvalue
= cpu
->id_aa64afr1
},
6140 { .name
= "ID_AA64AFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6141 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 6,
6142 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6144 { .name
= "ID_AA64AFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6145 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 7,
6146 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6148 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
6149 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
6150 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6151 .resetvalue
= cpu
->isar
.id_aa64isar0
},
6152 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
6153 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
6154 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6155 .resetvalue
= cpu
->isar
.id_aa64isar1
},
6156 { .name
= "ID_AA64ISAR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6157 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 2,
6158 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6160 { .name
= "ID_AA64ISAR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6161 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 3,
6162 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6164 { .name
= "ID_AA64ISAR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6165 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 4,
6166 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6168 { .name
= "ID_AA64ISAR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6169 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 5,
6170 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6172 { .name
= "ID_AA64ISAR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6173 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 6,
6174 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6176 { .name
= "ID_AA64ISAR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6177 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 7,
6178 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6180 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
6181 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
6182 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6183 .resetvalue
= cpu
->isar
.id_aa64mmfr0
},
6184 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
6185 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
6186 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6187 .resetvalue
= cpu
->isar
.id_aa64mmfr1
},
6188 { .name
= "ID_AA64MMFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6189 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 2,
6190 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6192 { .name
= "ID_AA64MMFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6193 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 3,
6194 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6196 { .name
= "ID_AA64MMFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6197 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 4,
6198 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6200 { .name
= "ID_AA64MMFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6201 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 5,
6202 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6204 { .name
= "ID_AA64MMFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6205 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 6,
6206 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6208 { .name
= "ID_AA64MMFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6209 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 7,
6210 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6212 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
6213 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
6214 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6215 .resetvalue
= cpu
->isar
.mvfr0
},
6216 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
6217 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
6218 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6219 .resetvalue
= cpu
->isar
.mvfr1
},
6220 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
6221 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
6222 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6223 .resetvalue
= cpu
->isar
.mvfr2
},
6224 { .name
= "MVFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6225 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 3,
6226 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6228 { .name
= "MVFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6229 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 4,
6230 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6232 { .name
= "MVFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6233 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 5,
6234 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6236 { .name
= "MVFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6237 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 6,
6238 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6240 { .name
= "MVFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6241 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 7,
6242 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6244 { .name
= "PMCEID0", .state
= ARM_CP_STATE_AA32
,
6245 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 12, .opc2
= 6,
6246 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
6247 .resetvalue
= extract64(cpu
->pmceid0
, 0, 32) },
6248 { .name
= "PMCEID0_EL0", .state
= ARM_CP_STATE_AA64
,
6249 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 6,
6250 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
6251 .resetvalue
= cpu
->pmceid0
},
6252 { .name
= "PMCEID1", .state
= ARM_CP_STATE_AA32
,
6253 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 12, .opc2
= 7,
6254 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
6255 .resetvalue
= extract64(cpu
->pmceid1
, 0, 32) },
6256 { .name
= "PMCEID1_EL0", .state
= ARM_CP_STATE_AA64
,
6257 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 7,
6258 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
6259 .resetvalue
= cpu
->pmceid1
},
6262 #ifdef CONFIG_USER_ONLY
6263 ARMCPRegUserSpaceInfo v8_user_idregs
[] = {
6264 { .name
= "ID_AA64PFR0_EL1",
6265 .exported_bits
= 0x000f000f00ff0000,
6266 .fixed_bits
= 0x0000000000000011 },
6267 { .name
= "ID_AA64PFR1_EL1",
6268 .exported_bits
= 0x00000000000000f0 },
6269 { .name
= "ID_AA64PFR*_EL1_RESERVED",
6271 { .name
= "ID_AA64ZFR0_EL1" },
6272 { .name
= "ID_AA64MMFR0_EL1",
6273 .fixed_bits
= 0x00000000ff000000 },
6274 { .name
= "ID_AA64MMFR1_EL1" },
6275 { .name
= "ID_AA64MMFR*_EL1_RESERVED",
6277 { .name
= "ID_AA64DFR0_EL1",
6278 .fixed_bits
= 0x0000000000000006 },
6279 { .name
= "ID_AA64DFR1_EL1" },
6280 { .name
= "ID_AA64DFR*_EL1_RESERVED",
6282 { .name
= "ID_AA64AFR*",
6284 { .name
= "ID_AA64ISAR0_EL1",
6285 .exported_bits
= 0x00fffffff0fffff0 },
6286 { .name
= "ID_AA64ISAR1_EL1",
6287 .exported_bits
= 0x000000f0ffffffff },
6288 { .name
= "ID_AA64ISAR*_EL1_RESERVED",
6290 REGUSERINFO_SENTINEL
6292 modify_arm_cp_regs(v8_idregs
, v8_user_idregs
);
6294 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6295 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
6296 !arm_feature(env
, ARM_FEATURE_EL2
)) {
6297 ARMCPRegInfo rvbar
= {
6298 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
6299 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
6300 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
6302 define_one_arm_cp_reg(cpu
, &rvbar
);
6304 define_arm_cp_regs(cpu
, v8_idregs
);
6305 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
6307 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
6308 uint64_t vmpidr_def
= mpidr_read_val(env
);
6309 ARMCPRegInfo vpidr_regs
[] = {
6310 { .name
= "VPIDR", .state
= ARM_CP_STATE_AA32
,
6311 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
6312 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
6313 .resetvalue
= cpu
->midr
, .type
= ARM_CP_ALIAS
,
6314 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.vpidr_el2
) },
6315 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
6316 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
6317 .access
= PL2_RW
, .resetvalue
= cpu
->midr
,
6318 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
6319 { .name
= "VMPIDR", .state
= ARM_CP_STATE_AA32
,
6320 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
6321 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
6322 .resetvalue
= vmpidr_def
, .type
= ARM_CP_ALIAS
,
6323 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.vmpidr_el2
) },
6324 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
6325 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
6327 .resetvalue
= vmpidr_def
,
6328 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
6331 define_arm_cp_regs(cpu
, vpidr_regs
);
6332 define_arm_cp_regs(cpu
, el2_cp_reginfo
);
6333 if (arm_feature(env
, ARM_FEATURE_V8
)) {
6334 define_arm_cp_regs(cpu
, el2_v8_cp_reginfo
);
6336 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6337 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
6338 ARMCPRegInfo rvbar
= {
6339 .name
= "RVBAR_EL2", .state
= ARM_CP_STATE_AA64
,
6340 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 1,
6341 .type
= ARM_CP_CONST
, .access
= PL2_R
, .resetvalue
= cpu
->rvbar
6343 define_one_arm_cp_reg(cpu
, &rvbar
);
6346 /* If EL2 is missing but higher ELs are enabled, we need to
6347 * register the no_el2 reginfos.
6349 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
6350 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6351 * of MIDR_EL1 and MPIDR_EL1.
6353 ARMCPRegInfo vpidr_regs
[] = {
6354 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
6355 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
6356 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
6357 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
,
6358 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
6359 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
6360 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
6361 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
6362 .type
= ARM_CP_NO_RAW
,
6363 .writefn
= arm_cp_write_ignore
, .readfn
= mpidr_read
},
6366 define_arm_cp_regs(cpu
, vpidr_regs
);
6367 define_arm_cp_regs(cpu
, el3_no_el2_cp_reginfo
);
6368 if (arm_feature(env
, ARM_FEATURE_V8
)) {
6369 define_arm_cp_regs(cpu
, el3_no_el2_v8_cp_reginfo
);
6373 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
6374 define_arm_cp_regs(cpu
, el3_cp_reginfo
);
6375 ARMCPRegInfo el3_regs
[] = {
6376 { .name
= "RVBAR_EL3", .state
= ARM_CP_STATE_AA64
,
6377 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 1,
6378 .type
= ARM_CP_CONST
, .access
= PL3_R
, .resetvalue
= cpu
->rvbar
},
6379 { .name
= "SCTLR_EL3", .state
= ARM_CP_STATE_AA64
,
6380 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 0,
6382 .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
6383 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[3]),
6384 .resetvalue
= cpu
->reset_sctlr
},
6388 define_arm_cp_regs(cpu
, el3_regs
);
6390 /* The behaviour of NSACR is sufficiently various that we don't
6391 * try to describe it in a single reginfo:
6392 * if EL3 is 64 bit, then trap to EL3 from S EL1,
6393 * reads as constant 0xc00 from NS EL1 and NS EL2
6394 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6395 * if v7 without EL3, register doesn't exist
6396 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6398 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
6399 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
6400 ARMCPRegInfo nsacr
= {
6401 .name
= "NSACR", .type
= ARM_CP_CONST
,
6402 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
6403 .access
= PL1_RW
, .accessfn
= nsacr_access
,
6406 define_one_arm_cp_reg(cpu
, &nsacr
);
6408 ARMCPRegInfo nsacr
= {
6410 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
6411 .access
= PL3_RW
| PL1_R
,
6413 .fieldoffset
= offsetof(CPUARMState
, cp15
.nsacr
)
6415 define_one_arm_cp_reg(cpu
, &nsacr
);
6418 if (arm_feature(env
, ARM_FEATURE_V8
)) {
6419 ARMCPRegInfo nsacr
= {
6420 .name
= "NSACR", .type
= ARM_CP_CONST
,
6421 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
6425 define_one_arm_cp_reg(cpu
, &nsacr
);
6429 if (arm_feature(env
, ARM_FEATURE_PMSA
)) {
6430 if (arm_feature(env
, ARM_FEATURE_V6
)) {
6431 /* PMSAv6 not implemented */
6432 assert(arm_feature(env
, ARM_FEATURE_V7
));
6433 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
6434 define_arm_cp_regs(cpu
, pmsav7_cp_reginfo
);
6436 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
6439 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
6440 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
6441 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */
6442 if (FIELD_EX32(cpu
->id_mmfr4
, ID_MMFR4
, HPDS
) != 0) {
6443 define_one_arm_cp_reg(cpu
, &ttbcr2_reginfo
);
6446 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
6447 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
6449 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
6450 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
6452 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
6453 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
6455 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
6456 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
6458 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
6459 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
6461 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
6462 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
6464 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
6465 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
6467 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
6468 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
6470 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
6471 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
6473 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
6474 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
6476 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
6477 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
6479 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6480 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6481 * be read-only (ie write causes UNDEF exception).
6484 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
6485 /* Pre-v8 MIDR space.
6486 * Note that the MIDR isn't a simple constant register because
6487 * of the TI925 behaviour where writes to another register can
6488 * cause the MIDR value to change.
6490 * Unimplemented registers in the c15 0 0 0 space default to
6491 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6492 * and friends override accordingly.
6495 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
6496 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
6497 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
6498 .readfn
= midr_read
,
6499 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
6500 .type
= ARM_CP_OVERRIDE
},
6501 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6503 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
6504 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6506 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
6507 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6509 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
6510 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6512 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
6513 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6515 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
6516 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6519 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
6520 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
6521 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
6522 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
, .resetvalue
= cpu
->midr
,
6523 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
6524 .readfn
= midr_read
},
6525 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6526 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
6527 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
6528 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
6529 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
6530 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 7,
6531 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
6532 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
6533 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
6534 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->revidr
},
6537 ARMCPRegInfo id_cp_reginfo
[] = {
6538 /* These are common to v8 and pre-v8 */
6540 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
6541 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
6542 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
6543 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
6544 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
6545 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
6546 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6548 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
6549 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6552 /* TLBTR is specific to VMSA */
6553 ARMCPRegInfo id_tlbtr_reginfo
= {
6555 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
6556 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
6558 /* MPUIR is specific to PMSA V6+ */
6559 ARMCPRegInfo id_mpuir_reginfo
= {
6561 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
6562 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6563 .resetvalue
= cpu
->pmsav7_dregion
<< 8
6565 ARMCPRegInfo crn0_wi_reginfo
= {
6566 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
6567 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
6568 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
6570 #ifdef CONFIG_USER_ONLY
6571 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo
[] = {
6572 { .name
= "MIDR_EL1",
6573 .exported_bits
= 0x00000000ffffffff },
6574 { .name
= "REVIDR_EL1" },
6575 REGUSERINFO_SENTINEL
6577 modify_arm_cp_regs(id_v8_midr_cp_reginfo
, id_v8_user_midr_cp_reginfo
);
6579 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
6580 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
6582 /* Register the blanket "writes ignored" value first to cover the
6583 * whole space. Then update the specific ID registers to allow write
6584 * access, so that they ignore writes rather than causing them to
6587 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
6588 for (r
= id_pre_v8_midr_cp_reginfo
;
6589 r
->type
!= ARM_CP_SENTINEL
; r
++) {
6592 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
6595 id_mpuir_reginfo
.access
= PL1_RW
;
6596 id_tlbtr_reginfo
.access
= PL1_RW
;
6598 if (arm_feature(env
, ARM_FEATURE_V8
)) {
6599 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
6601 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
6603 define_arm_cp_regs(cpu
, id_cp_reginfo
);
6604 if (!arm_feature(env
, ARM_FEATURE_PMSA
)) {
6605 define_one_arm_cp_reg(cpu
, &id_tlbtr_reginfo
);
6606 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
6607 define_one_arm_cp_reg(cpu
, &id_mpuir_reginfo
);
6611 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
6612 ARMCPRegInfo mpidr_cp_reginfo
[] = {
6613 { .name
= "MPIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
6614 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
6615 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_RAW
},
6618 #ifdef CONFIG_USER_ONLY
6619 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo
[] = {
6620 { .name
= "MPIDR_EL1",
6621 .fixed_bits
= 0x0000000080000000 },
6622 REGUSERINFO_SENTINEL
6624 modify_arm_cp_regs(mpidr_cp_reginfo
, mpidr_user_cp_reginfo
);
6626 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
6629 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
6630 ARMCPRegInfo auxcr_reginfo
[] = {
6631 { .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
6632 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
6633 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
6634 .resetvalue
= cpu
->reset_auxcr
},
6635 { .name
= "ACTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
6636 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 1,
6637 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
6639 { .name
= "ACTLR_EL3", .state
= ARM_CP_STATE_AA64
,
6640 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 1,
6641 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
6645 define_arm_cp_regs(cpu
, auxcr_reginfo
);
6646 if (arm_feature(env
, ARM_FEATURE_V8
)) {
6647 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6648 ARMCPRegInfo hactlr2_reginfo
= {
6649 .name
= "HACTLR2", .state
= ARM_CP_STATE_AA32
,
6650 .cp
= 15, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 3,
6651 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
6654 define_one_arm_cp_reg(cpu
, &hactlr2_reginfo
);
6658 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
6659 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
6660 /* 32 bit view is [31:18] 0...0 [43:32]. */
6661 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
6662 | extract64(cpu
->reset_cbar
, 32, 12);
6663 ARMCPRegInfo cbar_reginfo
[] = {
6665 .type
= ARM_CP_CONST
,
6666 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
6667 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
6668 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
6669 .type
= ARM_CP_CONST
,
6670 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
6671 .access
= PL1_R
, .resetvalue
= cbar32
},
6674 /* We don't implement a r/w 64 bit CBAR currently */
6675 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
6676 define_arm_cp_regs(cpu
, cbar_reginfo
);
6678 ARMCPRegInfo cbar
= {
6680 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
6681 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
6682 .fieldoffset
= offsetof(CPUARMState
,
6683 cp15
.c15_config_base_address
)
6685 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
6686 cbar
.access
= PL1_R
;
6687 cbar
.fieldoffset
= 0;
6688 cbar
.type
= ARM_CP_CONST
;
6690 define_one_arm_cp_reg(cpu
, &cbar
);
6694 if (arm_feature(env
, ARM_FEATURE_VBAR
)) {
6695 ARMCPRegInfo vbar_cp_reginfo
[] = {
6696 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
6697 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
6698 .access
= PL1_RW
, .writefn
= vbar_write
,
6699 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.vbar_s
),
6700 offsetof(CPUARMState
, cp15
.vbar_ns
) },
6704 define_arm_cp_regs(cpu
, vbar_cp_reginfo
);
6707 /* Generic registers whose values depend on the implementation */
6709 ARMCPRegInfo sctlr
= {
6710 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
6711 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
6713 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.sctlr_s
),
6714 offsetof(CPUARMState
, cp15
.sctlr_ns
) },
6715 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
6716 .raw_writefn
= raw_write
,
6718 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
6719 /* Normally we would always end the TB on an SCTLR write, but Linux
6720 * arch/arm/mach-pxa/sleep.S expects two instructions following
6721 * an MMU enable to execute from cache. Imitate this behaviour.
6723 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
6725 define_one_arm_cp_reg(cpu
, &sctlr
);
6728 if (cpu_isar_feature(aa64_lor
, cpu
)) {
6730 * A trivial implementation of ARMv8.1-LOR leaves all of these
6731 * registers fixed at 0, which indicates that there are zero
6732 * supported Limited Ordering regions.
6734 static const ARMCPRegInfo lor_reginfo
[] = {
6735 { .name
= "LORSA_EL1", .state
= ARM_CP_STATE_AA64
,
6736 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 0,
6737 .access
= PL1_RW
, .accessfn
= access_lor_other
,
6738 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6739 { .name
= "LOREA_EL1", .state
= ARM_CP_STATE_AA64
,
6740 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 1,
6741 .access
= PL1_RW
, .accessfn
= access_lor_other
,
6742 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6743 { .name
= "LORN_EL1", .state
= ARM_CP_STATE_AA64
,
6744 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 2,
6745 .access
= PL1_RW
, .accessfn
= access_lor_other
,
6746 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6747 { .name
= "LORC_EL1", .state
= ARM_CP_STATE_AA64
,
6748 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 3,
6749 .access
= PL1_RW
, .accessfn
= access_lor_other
,
6750 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6751 { .name
= "LORID_EL1", .state
= ARM_CP_STATE_AA64
,
6752 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 7,
6753 .access
= PL1_R
, .accessfn
= access_lorid
,
6754 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6757 define_arm_cp_regs(cpu
, lor_reginfo
);
6760 if (cpu_isar_feature(aa64_sve
, cpu
)) {
6761 define_one_arm_cp_reg(cpu
, &zcr_el1_reginfo
);
6762 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
6763 define_one_arm_cp_reg(cpu
, &zcr_el2_reginfo
);
6765 define_one_arm_cp_reg(cpu
, &zcr_no_el2_reginfo
);
6767 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
6768 define_one_arm_cp_reg(cpu
, &zcr_el3_reginfo
);
6772 #ifdef TARGET_AARCH64
6773 if (cpu_isar_feature(aa64_pauth
, cpu
)) {
6774 define_arm_cp_regs(cpu
, pauth_reginfo
);
6776 if (cpu_isar_feature(aa64_rndr
, cpu
)) {
6777 define_arm_cp_regs(cpu
, rndr_reginfo
);
6782 * While all v8.0 cpus support aarch64, QEMU does have configurations
6783 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max,
6784 * which will set ID_ISAR6.
6786 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)
6787 ? cpu_isar_feature(aa64_predinv
, cpu
)
6788 : cpu_isar_feature(aa32_predinv
, cpu
)) {
6789 define_arm_cp_regs(cpu
, predinv_reginfo
);
6793 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
6795 CPUState
*cs
= CPU(cpu
);
6796 CPUARMState
*env
= &cpu
->env
;
6798 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
6799 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
6800 aarch64_fpu_gdb_set_reg
,
6801 34, "aarch64-fpu.xml", 0);
6802 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
6803 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
6804 51, "arm-neon.xml", 0);
6805 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
6806 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
6807 35, "arm-vfp3.xml", 0);
6808 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
6809 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
6810 19, "arm-vfp.xml", 0);
6812 gdb_register_coprocessor(cs
, arm_gdb_get_sysreg
, arm_gdb_set_sysreg
,
6813 arm_gen_dynamic_xml(cs
),
6814 "system-registers.xml", 0);
6817 /* Sort alphabetically by type name, except for "any". */
6818 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
6820 ObjectClass
*class_a
= (ObjectClass
*)a
;
6821 ObjectClass
*class_b
= (ObjectClass
*)b
;
6822 const char *name_a
, *name_b
;
6824 name_a
= object_class_get_name(class_a
);
6825 name_b
= object_class_get_name(class_b
);
6826 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
6828 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
6831 return strcmp(name_a
, name_b
);
6835 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
6837 ObjectClass
*oc
= data
;
6838 const char *typename
;
6841 typename
= object_class_get_name(oc
);
6842 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
6843 qemu_printf(" %s\n", name
);
6847 void arm_cpu_list(void)
6851 list
= object_class_get_list(TYPE_ARM_CPU
, false);
6852 list
= g_slist_sort(list
, arm_cpu_list_compare
);
6853 qemu_printf("Available CPUs:\n");
6854 g_slist_foreach(list
, arm_cpu_list_entry
, NULL
);
6858 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
6860 ObjectClass
*oc
= data
;
6861 CpuDefinitionInfoList
**cpu_list
= user_data
;
6862 CpuDefinitionInfoList
*entry
;
6863 CpuDefinitionInfo
*info
;
6864 const char *typename
;
6866 typename
= object_class_get_name(oc
);
6867 info
= g_malloc0(sizeof(*info
));
6868 info
->name
= g_strndup(typename
,
6869 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
6870 info
->q_typename
= g_strdup(typename
);
6872 entry
= g_malloc0(sizeof(*entry
));
6873 entry
->value
= info
;
6874 entry
->next
= *cpu_list
;
6878 CpuDefinitionInfoList
*qmp_query_cpu_definitions(Error
**errp
)
6880 CpuDefinitionInfoList
*cpu_list
= NULL
;
6883 list
= object_class_get_list(TYPE_ARM_CPU
, false);
6884 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
6890 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
6891 void *opaque
, int state
, int secstate
,
6892 int crm
, int opc1
, int opc2
,
6895 /* Private utility function for define_one_arm_cp_reg_with_opaque():
6896 * add a single reginfo struct to the hash table.
6898 uint32_t *key
= g_new(uint32_t, 1);
6899 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
6900 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
6901 int ns
= (secstate
& ARM_CP_SECSTATE_NS
) ? 1 : 0;
6903 r2
->name
= g_strdup(name
);
6904 /* Reset the secure state to the specific incoming state. This is
6905 * necessary as the register may have been defined with both states.
6907 r2
->secure
= secstate
;
6909 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
6910 /* Register is banked (using both entries in array).
6911 * Overwriting fieldoffset as the array is only used to define
6912 * banked registers but later only fieldoffset is used.
6914 r2
->fieldoffset
= r
->bank_fieldoffsets
[ns
];
6917 if (state
== ARM_CP_STATE_AA32
) {
6918 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
6919 /* If the register is banked then we don't need to migrate or
6920 * reset the 32-bit instance in certain cases:
6922 * 1) If the register has both 32-bit and 64-bit instances then we
6923 * can count on the 64-bit instance taking care of the
6925 * 2) If ARMv8 is enabled then we can count on a 64-bit version
6926 * taking care of the secure bank. This requires that separate
6927 * 32 and 64-bit definitions are provided.
6929 if ((r
->state
== ARM_CP_STATE_BOTH
&& ns
) ||
6930 (arm_feature(&cpu
->env
, ARM_FEATURE_V8
) && !ns
)) {
6931 r2
->type
|= ARM_CP_ALIAS
;
6933 } else if ((secstate
!= r
->secure
) && !ns
) {
6934 /* The register is not banked so we only want to allow migration of
6935 * the non-secure instance.
6937 r2
->type
|= ARM_CP_ALIAS
;
6940 if (r
->state
== ARM_CP_STATE_BOTH
) {
6941 /* We assume it is a cp15 register if the .cp field is left unset.
6947 #ifdef HOST_WORDS_BIGENDIAN
6948 if (r2
->fieldoffset
) {
6949 r2
->fieldoffset
+= sizeof(uint32_t);
6954 if (state
== ARM_CP_STATE_AA64
) {
6955 /* To allow abbreviation of ARMCPRegInfo
6956 * definitions, we treat cp == 0 as equivalent to
6957 * the value for "standard guest-visible sysreg".
6958 * STATE_BOTH definitions are also always "standard
6959 * sysreg" in their AArch64 view (the .cp value may
6960 * be non-zero for the benefit of the AArch32 view).
6962 if (r
->cp
== 0 || r
->state
== ARM_CP_STATE_BOTH
) {
6963 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
6965 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
6966 r2
->opc0
, opc1
, opc2
);
6968 *key
= ENCODE_CP_REG(r2
->cp
, is64
, ns
, r2
->crn
, crm
, opc1
, opc2
);
6971 r2
->opaque
= opaque
;
6973 /* reginfo passed to helpers is correct for the actual access,
6974 * and is never ARM_CP_STATE_BOTH:
6977 /* Make sure reginfo passed to helpers for wildcarded regs
6978 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
6983 /* By convention, for wildcarded registers only the first
6984 * entry is used for migration; the others are marked as
6985 * ALIAS so we don't try to transfer the register
6986 * multiple times. Special registers (ie NOP/WFI) are
6987 * never migratable and not even raw-accessible.
6989 if ((r
->type
& ARM_CP_SPECIAL
)) {
6990 r2
->type
|= ARM_CP_NO_RAW
;
6992 if (((r
->crm
== CP_ANY
) && crm
!= 0) ||
6993 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
6994 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
6995 r2
->type
|= ARM_CP_ALIAS
| ARM_CP_NO_GDB
;
6998 /* Check that raw accesses are either forbidden or handled. Note that
6999 * we can't assert this earlier because the setup of fieldoffset for
7000 * banked registers has to be done first.
7002 if (!(r2
->type
& ARM_CP_NO_RAW
)) {
7003 assert(!raw_accessors_invalid(r2
));
7006 /* Overriding of an existing definition must be explicitly
7009 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
7010 ARMCPRegInfo
*oldreg
;
7011 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
7012 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
7013 fprintf(stderr
, "Register redefined: cp=%d %d bit "
7014 "crn=%d crm=%d opc1=%d opc2=%d, "
7015 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
7016 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
7017 oldreg
->name
, r2
->name
);
7018 g_assert_not_reached();
7021 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
7025 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
7026 const ARMCPRegInfo
*r
, void *opaque
)
7028 /* Define implementations of coprocessor registers.
7029 * We store these in a hashtable because typically
7030 * there are less than 150 registers in a space which
7031 * is 16*16*16*8*8 = 262144 in size.
7032 * Wildcarding is supported for the crm, opc1 and opc2 fields.
7033 * If a register is defined twice then the second definition is
7034 * used, so this can be used to define some generic registers and
7035 * then override them with implementation specific variations.
7036 * At least one of the original and the second definition should
7037 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
7038 * against accidental use.
7040 * The state field defines whether the register is to be
7041 * visible in the AArch32 or AArch64 execution state. If the
7042 * state is set to ARM_CP_STATE_BOTH then we synthesise a
7043 * reginfo structure for the AArch32 view, which sees the lower
7044 * 32 bits of the 64 bit register.
7046 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
7047 * be wildcarded. AArch64 registers are always considered to be 64
7048 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
7049 * the register, if any.
7051 int crm
, opc1
, opc2
, state
;
7052 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
7053 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
7054 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
7055 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
7056 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
7057 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
7058 /* 64 bit registers have only CRm and Opc1 fields */
7059 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
7060 /* op0 only exists in the AArch64 encodings */
7061 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
7062 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
7063 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
7064 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
7065 * encodes a minimum access level for the register. We roll this
7066 * runtime check into our general permission check code, so check
7067 * here that the reginfo's specified permissions are strict enough
7068 * to encompass the generic architectural permission check.
7070 if (r
->state
!= ARM_CP_STATE_AA32
) {
7074 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
7075 mask
= PL0U_R
| PL1_RW
;
7090 /* unallocated encoding, so not possible */
7098 /* min_EL EL1, secure mode only (we don't check the latter) */
7102 /* broken reginfo with out-of-range opc1 */
7106 /* assert our permissions are not too lax (stricter is fine) */
7107 assert((r
->access
& ~mask
) == 0);
7110 /* Check that the register definition has enough info to handle
7111 * reads and writes if they are permitted.
7113 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
7114 if (r
->access
& PL3_R
) {
7115 assert((r
->fieldoffset
||
7116 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
7119 if (r
->access
& PL3_W
) {
7120 assert((r
->fieldoffset
||
7121 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
7125 /* Bad type field probably means missing sentinel at end of reg list */
7126 assert(cptype_valid(r
->type
));
7127 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
7128 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
7129 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
7130 for (state
= ARM_CP_STATE_AA32
;
7131 state
<= ARM_CP_STATE_AA64
; state
++) {
7132 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
7135 if (state
== ARM_CP_STATE_AA32
) {
7136 /* Under AArch32 CP registers can be common
7137 * (same for secure and non-secure world) or banked.
7141 switch (r
->secure
) {
7142 case ARM_CP_SECSTATE_S
:
7143 case ARM_CP_SECSTATE_NS
:
7144 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
7145 r
->secure
, crm
, opc1
, opc2
,
7149 name
= g_strdup_printf("%s_S", r
->name
);
7150 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
7152 crm
, opc1
, opc2
, name
);
7154 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
7156 crm
, opc1
, opc2
, r
->name
);
7160 /* AArch64 registers get mapped to non-secure instance
7162 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
7164 crm
, opc1
, opc2
, r
->name
);
7172 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
7173 const ARMCPRegInfo
*regs
, void *opaque
)
7175 /* Define a whole list of registers */
7176 const ARMCPRegInfo
*r
;
7177 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
7178 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
7183 * Modify ARMCPRegInfo for access from userspace.
7185 * This is a data driven modification directed by
7186 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7187 * user-space cannot alter any values and dynamic values pertaining to
7188 * execution state are hidden from user space view anyway.
7190 void modify_arm_cp_regs(ARMCPRegInfo
*regs
, const ARMCPRegUserSpaceInfo
*mods
)
7192 const ARMCPRegUserSpaceInfo
*m
;
7195 for (m
= mods
; m
->name
; m
++) {
7196 GPatternSpec
*pat
= NULL
;
7198 pat
= g_pattern_spec_new(m
->name
);
7200 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
7201 if (pat
&& g_pattern_match_string(pat
, r
->name
)) {
7202 r
->type
= ARM_CP_CONST
;
7206 } else if (strcmp(r
->name
, m
->name
) == 0) {
7207 r
->type
= ARM_CP_CONST
;
7209 r
->resetvalue
&= m
->exported_bits
;
7210 r
->resetvalue
|= m
->fixed_bits
;
7215 g_pattern_spec_free(pat
);
7220 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
7222 return g_hash_table_lookup(cpregs
, &encoded_cp
);
7225 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
7228 /* Helper coprocessor write function for write-ignore registers */
7231 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
7233 /* Helper coprocessor write function for read-as-zero registers */
7237 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
7239 /* Helper coprocessor reset function for do-nothing-on-reset registers */
7242 static int bad_mode_switch(CPUARMState
*env
, int mode
, CPSRWriteType write_type
)
7244 /* Return true if it is not valid for us to switch to
7245 * this CPU mode (ie all the UNPREDICTABLE cases in
7246 * the ARM ARM CPSRWriteByInstr pseudocode).
7249 /* Changes to or from Hyp via MSR and CPS are illegal. */
7250 if (write_type
== CPSRWriteByInstr
&&
7251 ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_HYP
||
7252 mode
== ARM_CPU_MODE_HYP
)) {
7257 case ARM_CPU_MODE_USR
:
7259 case ARM_CPU_MODE_SYS
:
7260 case ARM_CPU_MODE_SVC
:
7261 case ARM_CPU_MODE_ABT
:
7262 case ARM_CPU_MODE_UND
:
7263 case ARM_CPU_MODE_IRQ
:
7264 case ARM_CPU_MODE_FIQ
:
7265 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7266 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7268 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7269 * and CPS are treated as illegal mode changes.
7271 if (write_type
== CPSRWriteByInstr
&&
7272 (env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
&&
7273 (arm_hcr_el2_eff(env
) & HCR_TGE
)) {
7277 case ARM_CPU_MODE_HYP
:
7278 return !arm_feature(env
, ARM_FEATURE_EL2
)
7279 || arm_current_el(env
) < 2 || arm_is_secure_below_el3(env
);
7280 case ARM_CPU_MODE_MON
:
7281 return arm_current_el(env
) < 3;
7287 uint32_t cpsr_read(CPUARMState
*env
)
7290 ZF
= (env
->ZF
== 0);
7291 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
7292 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
7293 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
7294 | ((env
->condexec_bits
& 0xfc) << 8)
7295 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
7298 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
,
7299 CPSRWriteType write_type
)
7301 uint32_t changed_daif
;
7303 if (mask
& CPSR_NZCV
) {
7304 env
->ZF
= (~val
) & CPSR_Z
;
7306 env
->CF
= (val
>> 29) & 1;
7307 env
->VF
= (val
<< 3) & 0x80000000;
7310 env
->QF
= ((val
& CPSR_Q
) != 0);
7312 env
->thumb
= ((val
& CPSR_T
) != 0);
7313 if (mask
& CPSR_IT_0_1
) {
7314 env
->condexec_bits
&= ~3;
7315 env
->condexec_bits
|= (val
>> 25) & 3;
7317 if (mask
& CPSR_IT_2_7
) {
7318 env
->condexec_bits
&= 3;
7319 env
->condexec_bits
|= (val
>> 8) & 0xfc;
7321 if (mask
& CPSR_GE
) {
7322 env
->GE
= (val
>> 16) & 0xf;
7325 /* In a V7 implementation that includes the security extensions but does
7326 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7327 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7328 * bits respectively.
7330 * In a V8 implementation, it is permitted for privileged software to
7331 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7333 if (write_type
!= CPSRWriteRaw
&& !arm_feature(env
, ARM_FEATURE_V8
) &&
7334 arm_feature(env
, ARM_FEATURE_EL3
) &&
7335 !arm_feature(env
, ARM_FEATURE_EL2
) &&
7336 !arm_is_secure(env
)) {
7338 changed_daif
= (env
->daif
^ val
) & mask
;
7340 if (changed_daif
& CPSR_A
) {
7341 /* Check to see if we are allowed to change the masking of async
7342 * abort exceptions from a non-secure state.
7344 if (!(env
->cp15
.scr_el3
& SCR_AW
)) {
7345 qemu_log_mask(LOG_GUEST_ERROR
,
7346 "Ignoring attempt to switch CPSR_A flag from "
7347 "non-secure world with SCR.AW bit clear\n");
7352 if (changed_daif
& CPSR_F
) {
7353 /* Check to see if we are allowed to change the masking of FIQ
7354 * exceptions from a non-secure state.
7356 if (!(env
->cp15
.scr_el3
& SCR_FW
)) {
7357 qemu_log_mask(LOG_GUEST_ERROR
,
7358 "Ignoring attempt to switch CPSR_F flag from "
7359 "non-secure world with SCR.FW bit clear\n");
7363 /* Check whether non-maskable FIQ (NMFI) support is enabled.
7364 * If this bit is set software is not allowed to mask
7365 * FIQs, but is allowed to set CPSR_F to 0.
7367 if ((A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_NMFI
) &&
7369 qemu_log_mask(LOG_GUEST_ERROR
,
7370 "Ignoring attempt to enable CPSR_F flag "
7371 "(non-maskable FIQ [NMFI] support enabled)\n");
7377 env
->daif
&= ~(CPSR_AIF
& mask
);
7378 env
->daif
|= val
& CPSR_AIF
& mask
;
7380 if (write_type
!= CPSRWriteRaw
&&
7381 ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
)) {
7382 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_USR
) {
7383 /* Note that we can only get here in USR mode if this is a
7384 * gdb stub write; for this case we follow the architectural
7385 * behaviour for guest writes in USR mode of ignoring an attempt
7386 * to switch mode. (Those are caught by translate.c for writes
7387 * triggered by guest instructions.)
7390 } else if (bad_mode_switch(env
, val
& CPSR_M
, write_type
)) {
7391 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7392 * v7, and has defined behaviour in v8:
7393 * + leave CPSR.M untouched
7394 * + allow changes to the other CPSR fields
7396 * For user changes via the GDB stub, we don't set PSTATE.IL,
7397 * as this would be unnecessarily harsh for a user error.
7400 if (write_type
!= CPSRWriteByGDBStub
&&
7401 arm_feature(env
, ARM_FEATURE_V8
)) {
7405 qemu_log_mask(LOG_GUEST_ERROR
,
7406 "Illegal AArch32 mode switch attempt from %s to %s\n",
7407 aarch32_mode_name(env
->uncached_cpsr
),
7408 aarch32_mode_name(val
));
7410 qemu_log_mask(CPU_LOG_INT
, "%s %s to %s PC 0x%" PRIx32
"\n",
7411 write_type
== CPSRWriteExceptionReturn
?
7412 "Exception return from AArch32" :
7413 "AArch32 mode switch from",
7414 aarch32_mode_name(env
->uncached_cpsr
),
7415 aarch32_mode_name(val
), env
->regs
[15]);
7416 switch_mode(env
, val
& CPSR_M
);
7419 mask
&= ~CACHED_CPSR_BITS
;
7420 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
7423 /* Sign/zero extend */
7424 uint32_t HELPER(sxtb16
)(uint32_t x
)
7427 res
= (uint16_t)(int8_t)x
;
7428 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
7432 uint32_t HELPER(uxtb16
)(uint32_t x
)
7435 res
= (uint16_t)(uint8_t)x
;
7436 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
7440 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
7444 if (num
== INT_MIN
&& den
== -1)
7449 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
7456 uint32_t HELPER(rbit
)(uint32_t x
)
7461 #ifdef CONFIG_USER_ONLY
7463 static void switch_mode(CPUARMState
*env
, int mode
)
7465 ARMCPU
*cpu
= env_archcpu(env
);
7467 if (mode
!= ARM_CPU_MODE_USR
) {
7468 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
7472 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
7473 uint32_t cur_el
, bool secure
)
7478 void aarch64_sync_64_to_32(CPUARMState
*env
)
7480 g_assert_not_reached();
7485 static void switch_mode(CPUARMState
*env
, int mode
)
7490 old_mode
= env
->uncached_cpsr
& CPSR_M
;
7491 if (mode
== old_mode
)
7494 if (old_mode
== ARM_CPU_MODE_FIQ
) {
7495 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
7496 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
7497 } else if (mode
== ARM_CPU_MODE_FIQ
) {
7498 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
7499 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
7502 i
= bank_number(old_mode
);
7503 env
->banked_r13
[i
] = env
->regs
[13];
7504 env
->banked_spsr
[i
] = env
->spsr
;
7506 i
= bank_number(mode
);
7507 env
->regs
[13] = env
->banked_r13
[i
];
7508 env
->spsr
= env
->banked_spsr
[i
];
7510 env
->banked_r14
[r14_bank_number(old_mode
)] = env
->regs
[14];
7511 env
->regs
[14] = env
->banked_r14
[r14_bank_number(mode
)];
7514 /* Physical Interrupt Target EL Lookup Table
7516 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7518 * The below multi-dimensional table is used for looking up the target
7519 * exception level given numerous condition criteria. Specifically, the
7520 * target EL is based on SCR and HCR routing controls as well as the
7521 * currently executing EL and secure state.
7524 * target_el_table[2][2][2][2][2][4]
7525 * | | | | | +--- Current EL
7526 * | | | | +------ Non-secure(0)/Secure(1)
7527 * | | | +--------- HCR mask override
7528 * | | +------------ SCR exec state control
7529 * | +--------------- SCR mask override
7530 * +------------------ 32-bit(0)/64-bit(1) EL3
7532 * The table values are as such:
7536 * The ARM ARM target EL table includes entries indicating that an "exception
7537 * is not taken". The two cases where this is applicable are:
7538 * 1) An exception is taken from EL3 but the SCR does not have the exception
7540 * 2) An exception is taken from EL2 but the HCR does not have the exception
7542 * In these two cases, the below table contain a target of EL1. This value is
7543 * returned as it is expected that the consumer of the table data will check
7544 * for "target EL >= current EL" to ensure the exception is not taken.
7548 * BIT IRQ IMO Non-secure Secure
7549 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
7551 static const int8_t target_el_table
[2][2][2][2][2][4] = {
7552 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7553 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
7554 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7555 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
7556 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7557 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
7558 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7559 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
7560 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
7561 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
7562 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
7563 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
7564 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7565 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
7566 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7567 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
7571 * Determine the target EL for physical exceptions
7573 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
7574 uint32_t cur_el
, bool secure
)
7576 CPUARMState
*env
= cs
->env_ptr
;
7581 /* Is the highest EL AArch64? */
7582 bool is64
= arm_feature(env
, ARM_FEATURE_AARCH64
);
7585 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
7586 rw
= ((env
->cp15
.scr_el3
& SCR_RW
) == SCR_RW
);
7588 /* Either EL2 is the highest EL (and so the EL2 register width
7589 * is given by is64); or there is no EL2 or EL3, in which case
7590 * the value of 'rw' does not affect the table lookup anyway.
7595 hcr_el2
= arm_hcr_el2_eff(env
);
7598 scr
= ((env
->cp15
.scr_el3
& SCR_IRQ
) == SCR_IRQ
);
7599 hcr
= hcr_el2
& HCR_IMO
;
7602 scr
= ((env
->cp15
.scr_el3
& SCR_FIQ
) == SCR_FIQ
);
7603 hcr
= hcr_el2
& HCR_FMO
;
7606 scr
= ((env
->cp15
.scr_el3
& SCR_EA
) == SCR_EA
);
7607 hcr
= hcr_el2
& HCR_AMO
;
7611 /* Perform a table-lookup for the target EL given the current state */
7612 target_el
= target_el_table
[is64
][scr
][rw
][hcr
][secure
][cur_el
];
7614 assert(target_el
> 0);
7619 void arm_log_exception(int idx
)
7621 if (qemu_loglevel_mask(CPU_LOG_INT
)) {
7622 const char *exc
= NULL
;
7623 static const char * const excnames
[] = {
7624 [EXCP_UDEF
] = "Undefined Instruction",
7626 [EXCP_PREFETCH_ABORT
] = "Prefetch Abort",
7627 [EXCP_DATA_ABORT
] = "Data Abort",
7630 [EXCP_BKPT
] = "Breakpoint",
7631 [EXCP_EXCEPTION_EXIT
] = "QEMU v7M exception exit",
7632 [EXCP_KERNEL_TRAP
] = "QEMU intercept of kernel commpage",
7633 [EXCP_HVC
] = "Hypervisor Call",
7634 [EXCP_HYP_TRAP
] = "Hypervisor Trap",
7635 [EXCP_SMC
] = "Secure Monitor Call",
7636 [EXCP_VIRQ
] = "Virtual IRQ",
7637 [EXCP_VFIQ
] = "Virtual FIQ",
7638 [EXCP_SEMIHOST
] = "Semihosting call",
7639 [EXCP_NOCP
] = "v7M NOCP UsageFault",
7640 [EXCP_INVSTATE
] = "v7M INVSTATE UsageFault",
7641 [EXCP_STKOF
] = "v8M STKOF UsageFault",
7642 [EXCP_LAZYFP
] = "v7M exception during lazy FP stacking",
7643 [EXCP_LSERR
] = "v8M LSERR UsageFault",
7644 [EXCP_UNALIGNED
] = "v7M UNALIGNED UsageFault",
7647 if (idx
>= 0 && idx
< ARRAY_SIZE(excnames
)) {
7648 exc
= excnames
[idx
];
7653 qemu_log_mask(CPU_LOG_INT
, "Taking exception %d [%s]\n", idx
, exc
);
7658 * Function used to synchronize QEMU's AArch64 register set with AArch32
7659 * register set. This is necessary when switching between AArch32 and AArch64
7662 void aarch64_sync_32_to_64(CPUARMState
*env
)
7665 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
7667 /* We can blanket copy R[0:7] to X[0:7] */
7668 for (i
= 0; i
< 8; i
++) {
7669 env
->xregs
[i
] = env
->regs
[i
];
7673 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7674 * Otherwise, they come from the banked user regs.
7676 if (mode
== ARM_CPU_MODE_FIQ
) {
7677 for (i
= 8; i
< 13; i
++) {
7678 env
->xregs
[i
] = env
->usr_regs
[i
- 8];
7681 for (i
= 8; i
< 13; i
++) {
7682 env
->xregs
[i
] = env
->regs
[i
];
7687 * Registers x13-x23 are the various mode SP and FP registers. Registers
7688 * r13 and r14 are only copied if we are in that mode, otherwise we copy
7689 * from the mode banked register.
7691 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
7692 env
->xregs
[13] = env
->regs
[13];
7693 env
->xregs
[14] = env
->regs
[14];
7695 env
->xregs
[13] = env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)];
7696 /* HYP is an exception in that it is copied from r14 */
7697 if (mode
== ARM_CPU_MODE_HYP
) {
7698 env
->xregs
[14] = env
->regs
[14];
7700 env
->xregs
[14] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_USR
)];
7704 if (mode
== ARM_CPU_MODE_HYP
) {
7705 env
->xregs
[15] = env
->regs
[13];
7707 env
->xregs
[15] = env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)];
7710 if (mode
== ARM_CPU_MODE_IRQ
) {
7711 env
->xregs
[16] = env
->regs
[14];
7712 env
->xregs
[17] = env
->regs
[13];
7714 env
->xregs
[16] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_IRQ
)];
7715 env
->xregs
[17] = env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)];
7718 if (mode
== ARM_CPU_MODE_SVC
) {
7719 env
->xregs
[18] = env
->regs
[14];
7720 env
->xregs
[19] = env
->regs
[13];
7722 env
->xregs
[18] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_SVC
)];
7723 env
->xregs
[19] = env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)];
7726 if (mode
== ARM_CPU_MODE_ABT
) {
7727 env
->xregs
[20] = env
->regs
[14];
7728 env
->xregs
[21] = env
->regs
[13];
7730 env
->xregs
[20] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_ABT
)];
7731 env
->xregs
[21] = env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)];
7734 if (mode
== ARM_CPU_MODE_UND
) {
7735 env
->xregs
[22] = env
->regs
[14];
7736 env
->xregs
[23] = env
->regs
[13];
7738 env
->xregs
[22] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_UND
)];
7739 env
->xregs
[23] = env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)];
7743 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7744 * mode, then we can copy from r8-r14. Otherwise, we copy from the
7745 * FIQ bank for r8-r14.
7747 if (mode
== ARM_CPU_MODE_FIQ
) {
7748 for (i
= 24; i
< 31; i
++) {
7749 env
->xregs
[i
] = env
->regs
[i
- 16]; /* X[24:30] <- R[8:14] */
7752 for (i
= 24; i
< 29; i
++) {
7753 env
->xregs
[i
] = env
->fiq_regs
[i
- 24];
7755 env
->xregs
[29] = env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)];
7756 env
->xregs
[30] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_FIQ
)];
7759 env
->pc
= env
->regs
[15];
7763 * Function used to synchronize QEMU's AArch32 register set with AArch64
7764 * register set. This is necessary when switching between AArch32 and AArch64
7767 void aarch64_sync_64_to_32(CPUARMState
*env
)
7770 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
7772 /* We can blanket copy X[0:7] to R[0:7] */
7773 for (i
= 0; i
< 8; i
++) {
7774 env
->regs
[i
] = env
->xregs
[i
];
7778 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7779 * Otherwise, we copy x8-x12 into the banked user regs.
7781 if (mode
== ARM_CPU_MODE_FIQ
) {
7782 for (i
= 8; i
< 13; i
++) {
7783 env
->usr_regs
[i
- 8] = env
->xregs
[i
];
7786 for (i
= 8; i
< 13; i
++) {
7787 env
->regs
[i
] = env
->xregs
[i
];
7792 * Registers r13 & r14 depend on the current mode.
7793 * If we are in a given mode, we copy the corresponding x registers to r13
7794 * and r14. Otherwise, we copy the x register to the banked r13 and r14
7797 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
7798 env
->regs
[13] = env
->xregs
[13];
7799 env
->regs
[14] = env
->xregs
[14];
7801 env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[13];
7804 * HYP is an exception in that it does not have its own banked r14 but
7805 * shares the USR r14
7807 if (mode
== ARM_CPU_MODE_HYP
) {
7808 env
->regs
[14] = env
->xregs
[14];
7810 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[14];
7814 if (mode
== ARM_CPU_MODE_HYP
) {
7815 env
->regs
[13] = env
->xregs
[15];
7817 env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)] = env
->xregs
[15];
7820 if (mode
== ARM_CPU_MODE_IRQ
) {
7821 env
->regs
[14] = env
->xregs
[16];
7822 env
->regs
[13] = env
->xregs
[17];
7824 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[16];
7825 env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[17];
7828 if (mode
== ARM_CPU_MODE_SVC
) {
7829 env
->regs
[14] = env
->xregs
[18];
7830 env
->regs
[13] = env
->xregs
[19];
7832 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[18];
7833 env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[19];
7836 if (mode
== ARM_CPU_MODE_ABT
) {
7837 env
->regs
[14] = env
->xregs
[20];
7838 env
->regs
[13] = env
->xregs
[21];
7840 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[20];
7841 env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[21];
7844 if (mode
== ARM_CPU_MODE_UND
) {
7845 env
->regs
[14] = env
->xregs
[22];
7846 env
->regs
[13] = env
->xregs
[23];
7848 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[22];
7849 env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[23];
7852 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7853 * mode, then we can copy to r8-r14. Otherwise, we copy to the
7854 * FIQ bank for r8-r14.
7856 if (mode
== ARM_CPU_MODE_FIQ
) {
7857 for (i
= 24; i
< 31; i
++) {
7858 env
->regs
[i
- 16] = env
->xregs
[i
]; /* X[24:30] -> R[8:14] */
7861 for (i
= 24; i
< 29; i
++) {
7862 env
->fiq_regs
[i
- 24] = env
->xregs
[i
];
7864 env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[29];
7865 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[30];
7868 env
->regs
[15] = env
->pc
;
7871 static void take_aarch32_exception(CPUARMState
*env
, int new_mode
,
7872 uint32_t mask
, uint32_t offset
,
7875 /* Change the CPU state so as to actually take the exception. */
7876 switch_mode(env
, new_mode
);
7878 * For exceptions taken to AArch32 we must clear the SS bit in both
7879 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
7881 env
->uncached_cpsr
&= ~PSTATE_SS
;
7882 env
->spsr
= cpsr_read(env
);
7883 /* Clear IT bits. */
7884 env
->condexec_bits
= 0;
7885 /* Switch to the new mode, and to the correct instruction set. */
7886 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
7887 /* Set new mode endianness */
7888 env
->uncached_cpsr
&= ~CPSR_E
;
7889 if (env
->cp15
.sctlr_el
[arm_current_el(env
)] & SCTLR_EE
) {
7890 env
->uncached_cpsr
|= CPSR_E
;
7892 /* J and IL must always be cleared for exception entry */
7893 env
->uncached_cpsr
&= ~(CPSR_IL
| CPSR_J
);
7896 if (new_mode
== ARM_CPU_MODE_HYP
) {
7897 env
->thumb
= (env
->cp15
.sctlr_el
[2] & SCTLR_TE
) != 0;
7898 env
->elr_el
[2] = env
->regs
[15];
7901 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
7902 * and we should just guard the thumb mode on V4
7904 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
7906 (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_TE
) != 0;
7908 env
->regs
[14] = env
->regs
[15] + offset
;
7910 env
->regs
[15] = newpc
;
7913 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState
*cs
)
7916 * Handle exception entry to Hyp mode; this is sufficiently
7917 * different to entry to other AArch32 modes that we handle it
7920 * The vector table entry used is always the 0x14 Hyp mode entry point,
7921 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
7922 * The offset applied to the preferred return address is always zero
7923 * (see DDI0487C.a section G1.12.3).
7924 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
7926 uint32_t addr
, mask
;
7927 ARMCPU
*cpu
= ARM_CPU(cs
);
7928 CPUARMState
*env
= &cpu
->env
;
7930 switch (cs
->exception_index
) {
7938 /* Fall through to prefetch abort. */
7939 case EXCP_PREFETCH_ABORT
:
7940 env
->cp15
.ifar_s
= env
->exception
.vaddress
;
7941 qemu_log_mask(CPU_LOG_INT
, "...with HIFAR 0x%x\n",
7942 (uint32_t)env
->exception
.vaddress
);
7945 case EXCP_DATA_ABORT
:
7946 env
->cp15
.dfar_s
= env
->exception
.vaddress
;
7947 qemu_log_mask(CPU_LOG_INT
, "...with HDFAR 0x%x\n",
7948 (uint32_t)env
->exception
.vaddress
);
7964 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
7967 if (cs
->exception_index
!= EXCP_IRQ
&& cs
->exception_index
!= EXCP_FIQ
) {
7968 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
7970 * QEMU syndrome values are v8-style. v7 has the IL bit
7971 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
7972 * If this is a v7 CPU, squash the IL bit in those cases.
7974 if (cs
->exception_index
== EXCP_PREFETCH_ABORT
||
7975 (cs
->exception_index
== EXCP_DATA_ABORT
&&
7976 !(env
->exception
.syndrome
& ARM_EL_ISV
)) ||
7977 syn_get_ec(env
->exception
.syndrome
) == EC_UNCATEGORIZED
) {
7978 env
->exception
.syndrome
&= ~ARM_EL_IL
;
7981 env
->cp15
.esr_el
[2] = env
->exception
.syndrome
;
7984 if (arm_current_el(env
) != 2 && addr
< 0x14) {
7989 if (!(env
->cp15
.scr_el3
& SCR_EA
)) {
7992 if (!(env
->cp15
.scr_el3
& SCR_IRQ
)) {
7995 if (!(env
->cp15
.scr_el3
& SCR_FIQ
)) {
7999 addr
+= env
->cp15
.hvbar
;
8001 take_aarch32_exception(env
, ARM_CPU_MODE_HYP
, mask
, 0, addr
);
8004 static void arm_cpu_do_interrupt_aarch32(CPUState
*cs
)
8006 ARMCPU
*cpu
= ARM_CPU(cs
);
8007 CPUARMState
*env
= &cpu
->env
;
8014 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
8015 switch (syn_get_ec(env
->exception
.syndrome
)) {
8017 case EC_BREAKPOINT_SAME_EL
:
8021 case EC_WATCHPOINT_SAME_EL
:
8027 case EC_VECTORCATCH
:
8036 env
->cp15
.mdscr_el1
= deposit64(env
->cp15
.mdscr_el1
, 2, 4, moe
);
8039 if (env
->exception
.target_el
== 2) {
8040 arm_cpu_do_interrupt_aarch32_hyp(cs
);
8044 switch (cs
->exception_index
) {
8046 new_mode
= ARM_CPU_MODE_UND
;
8055 new_mode
= ARM_CPU_MODE_SVC
;
8058 /* The PC already points to the next instruction. */
8062 /* Fall through to prefetch abort. */
8063 case EXCP_PREFETCH_ABORT
:
8064 A32_BANKED_CURRENT_REG_SET(env
, ifsr
, env
->exception
.fsr
);
8065 A32_BANKED_CURRENT_REG_SET(env
, ifar
, env
->exception
.vaddress
);
8066 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
8067 env
->exception
.fsr
, (uint32_t)env
->exception
.vaddress
);
8068 new_mode
= ARM_CPU_MODE_ABT
;
8070 mask
= CPSR_A
| CPSR_I
;
8073 case EXCP_DATA_ABORT
:
8074 A32_BANKED_CURRENT_REG_SET(env
, dfsr
, env
->exception
.fsr
);
8075 A32_BANKED_CURRENT_REG_SET(env
, dfar
, env
->exception
.vaddress
);
8076 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
8078 (uint32_t)env
->exception
.vaddress
);
8079 new_mode
= ARM_CPU_MODE_ABT
;
8081 mask
= CPSR_A
| CPSR_I
;
8085 new_mode
= ARM_CPU_MODE_IRQ
;
8087 /* Disable IRQ and imprecise data aborts. */
8088 mask
= CPSR_A
| CPSR_I
;
8090 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
8091 /* IRQ routed to monitor mode */
8092 new_mode
= ARM_CPU_MODE_MON
;
8097 new_mode
= ARM_CPU_MODE_FIQ
;
8099 /* Disable FIQ, IRQ and imprecise data aborts. */
8100 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
8101 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
8102 /* FIQ routed to monitor mode */
8103 new_mode
= ARM_CPU_MODE_MON
;
8108 new_mode
= ARM_CPU_MODE_IRQ
;
8110 /* Disable IRQ and imprecise data aborts. */
8111 mask
= CPSR_A
| CPSR_I
;
8115 new_mode
= ARM_CPU_MODE_FIQ
;
8117 /* Disable FIQ, IRQ and imprecise data aborts. */
8118 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
8122 new_mode
= ARM_CPU_MODE_MON
;
8124 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
8128 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
8129 return; /* Never happens. Keep compiler happy. */
8132 if (new_mode
== ARM_CPU_MODE_MON
) {
8133 addr
+= env
->cp15
.mvbar
;
8134 } else if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
8135 /* High vectors. When enabled, base address cannot be remapped. */
8138 /* ARM v7 architectures provide a vector base address register to remap
8139 * the interrupt vector table.
8140 * This register is only followed in non-monitor mode, and is banked.
8141 * Note: only bits 31:5 are valid.
8143 addr
+= A32_BANKED_CURRENT_REG_GET(env
, vbar
);
8146 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
) {
8147 env
->cp15
.scr_el3
&= ~SCR_NS
;
8150 take_aarch32_exception(env
, new_mode
, mask
, offset
, addr
);
8153 /* Handle exception entry to a target EL which is using AArch64 */
8154 static void arm_cpu_do_interrupt_aarch64(CPUState
*cs
)
8156 ARMCPU
*cpu
= ARM_CPU(cs
);
8157 CPUARMState
*env
= &cpu
->env
;
8158 unsigned int new_el
= env
->exception
.target_el
;
8159 target_ulong addr
= env
->cp15
.vbar_el
[new_el
];
8160 unsigned int new_mode
= aarch64_pstate_mode(new_el
, true);
8161 unsigned int cur_el
= arm_current_el(env
);
8164 * Note that new_el can never be 0. If cur_el is 0, then
8165 * el0_a64 is is_a64(), else el0_a64 is ignored.
8167 aarch64_sve_change_el(env
, cur_el
, new_el
, is_a64(env
));
8169 if (cur_el
< new_el
) {
8170 /* Entry vector offset depends on whether the implemented EL
8171 * immediately lower than the target level is using AArch32 or AArch64
8177 is_aa64
= (env
->cp15
.scr_el3
& SCR_RW
) != 0;
8180 is_aa64
= (env
->cp15
.hcr_el2
& HCR_RW
) != 0;
8183 is_aa64
= is_a64(env
);
8186 g_assert_not_reached();
8194 } else if (pstate_read(env
) & PSTATE_SP
) {
8198 switch (cs
->exception_index
) {
8199 case EXCP_PREFETCH_ABORT
:
8200 case EXCP_DATA_ABORT
:
8201 env
->cp15
.far_el
[new_el
] = env
->exception
.vaddress
;
8202 qemu_log_mask(CPU_LOG_INT
, "...with FAR 0x%" PRIx64
"\n",
8203 env
->cp15
.far_el
[new_el
]);
8211 if (syn_get_ec(env
->exception
.syndrome
) == EC_ADVSIMDFPACCESSTRAP
) {
8213 * QEMU internal FP/SIMD syndromes from AArch32 include the
8214 * TA and coproc fields which are only exposed if the exception
8215 * is taken to AArch32 Hyp mode. Mask them out to get a valid
8216 * AArch64 format syndrome.
8218 env
->exception
.syndrome
&= ~MAKE_64BIT_MASK(0, 20);
8220 env
->cp15
.esr_el
[new_el
] = env
->exception
.syndrome
;
8231 qemu_log_mask(CPU_LOG_INT
,
8232 "...handling as semihosting call 0x%" PRIx64
"\n",
8234 env
->xregs
[0] = do_arm_semihosting(env
);
8237 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
8241 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = pstate_read(env
);
8242 aarch64_save_sp(env
, arm_current_el(env
));
8243 env
->elr_el
[new_el
] = env
->pc
;
8245 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = cpsr_read(env
);
8246 env
->elr_el
[new_el
] = env
->regs
[15];
8248 aarch64_sync_32_to_64(env
);
8250 env
->condexec_bits
= 0;
8252 qemu_log_mask(CPU_LOG_INT
, "...with ELR 0x%" PRIx64
"\n",
8253 env
->elr_el
[new_el
]);
8255 pstate_write(env
, PSTATE_DAIF
| new_mode
);
8257 aarch64_restore_sp(env
, new_el
);
8261 qemu_log_mask(CPU_LOG_INT
, "...to EL%d PC 0x%" PRIx64
" PSTATE 0x%x\n",
8262 new_el
, env
->pc
, pstate_read(env
));
8265 static inline bool check_for_semihosting(CPUState
*cs
)
8268 /* Check whether this exception is a semihosting call; if so
8269 * then handle it and return true; otherwise return false.
8271 ARMCPU
*cpu
= ARM_CPU(cs
);
8272 CPUARMState
*env
= &cpu
->env
;
8275 if (cs
->exception_index
== EXCP_SEMIHOST
) {
8276 /* This is always the 64-bit semihosting exception.
8277 * The "is this usermode" and "is semihosting enabled"
8278 * checks have been done at translate time.
8280 qemu_log_mask(CPU_LOG_INT
,
8281 "...handling as semihosting call 0x%" PRIx64
"\n",
8283 env
->xregs
[0] = do_arm_semihosting(env
);
8290 /* Only intercept calls from privileged modes, to provide some
8291 * semblance of security.
8293 if (cs
->exception_index
!= EXCP_SEMIHOST
&&
8294 (!semihosting_enabled() ||
8295 ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_USR
))) {
8299 switch (cs
->exception_index
) {
8301 /* This is always a semihosting call; the "is this usermode"
8302 * and "is semihosting enabled" checks have been done at
8307 /* Check for semihosting interrupt. */
8309 imm
= arm_lduw_code(env
, env
->regs
[15] - 2, arm_sctlr_b(env
))
8315 imm
= arm_ldl_code(env
, env
->regs
[15] - 4, arm_sctlr_b(env
))
8317 if (imm
== 0x123456) {
8323 /* See if this is a semihosting syscall. */
8325 imm
= arm_lduw_code(env
, env
->regs
[15], arm_sctlr_b(env
))
8337 qemu_log_mask(CPU_LOG_INT
,
8338 "...handling as semihosting call 0x%x\n",
8340 env
->regs
[0] = do_arm_semihosting(env
);
8348 /* Handle a CPU exception for A and R profile CPUs.
8349 * Do any appropriate logging, handle PSCI calls, and then hand off
8350 * to the AArch64-entry or AArch32-entry function depending on the
8351 * target exception level's register width.
8353 void arm_cpu_do_interrupt(CPUState
*cs
)
8355 ARMCPU
*cpu
= ARM_CPU(cs
);
8356 CPUARMState
*env
= &cpu
->env
;
8357 unsigned int new_el
= env
->exception
.target_el
;
8359 assert(!arm_feature(env
, ARM_FEATURE_M
));
8361 arm_log_exception(cs
->exception_index
);
8362 qemu_log_mask(CPU_LOG_INT
, "...from EL%d to EL%d\n", arm_current_el(env
),
8364 if (qemu_loglevel_mask(CPU_LOG_INT
)
8365 && !excp_is_internal(cs
->exception_index
)) {
8366 qemu_log_mask(CPU_LOG_INT
, "...with ESR 0x%x/0x%" PRIx32
"\n",
8367 syn_get_ec(env
->exception
.syndrome
),
8368 env
->exception
.syndrome
);
8371 if (arm_is_psci_call(cpu
, cs
->exception_index
)) {
8372 arm_handle_psci_call(cpu
);
8373 qemu_log_mask(CPU_LOG_INT
, "...handled as PSCI call\n");
8377 /* Semihosting semantics depend on the register width of the
8378 * code that caused the exception, not the target exception level,
8379 * so must be handled here.
8381 if (check_for_semihosting(cs
)) {
8385 /* Hooks may change global state so BQL should be held, also the
8386 * BQL needs to be held for any modification of
8387 * cs->interrupt_request.
8389 g_assert(qemu_mutex_iothread_locked());
8391 arm_call_pre_el_change_hook(cpu
);
8393 assert(!excp_is_internal(cs
->exception_index
));
8394 if (arm_el_is_aa64(env
, new_el
)) {
8395 arm_cpu_do_interrupt_aarch64(cs
);
8397 arm_cpu_do_interrupt_aarch32(cs
);
8400 arm_call_el_change_hook(cpu
);
8402 if (!kvm_enabled()) {
8403 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
8406 #endif /* !CONFIG_USER_ONLY */
8408 /* Return the exception level which controls this address translation regime */
8409 static inline uint32_t regime_el(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
8412 case ARMMMUIdx_S2NS
:
8413 case ARMMMUIdx_S1E2
:
8415 case ARMMMUIdx_S1E3
:
8417 case ARMMMUIdx_S1SE0
:
8418 return arm_el_is_aa64(env
, 3) ? 1 : 3;
8419 case ARMMMUIdx_S1SE1
:
8420 case ARMMMUIdx_S1NSE0
:
8421 case ARMMMUIdx_S1NSE1
:
8422 case ARMMMUIdx_MPrivNegPri
:
8423 case ARMMMUIdx_MUserNegPri
:
8424 case ARMMMUIdx_MPriv
:
8425 case ARMMMUIdx_MUser
:
8426 case ARMMMUIdx_MSPrivNegPri
:
8427 case ARMMMUIdx_MSUserNegPri
:
8428 case ARMMMUIdx_MSPriv
:
8429 case ARMMMUIdx_MSUser
:
8432 g_assert_not_reached();
8436 #ifndef CONFIG_USER_ONLY
8438 /* Return the SCTLR value which controls this address translation regime */
8439 static inline uint32_t regime_sctlr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
8441 return env
->cp15
.sctlr_el
[regime_el(env
, mmu_idx
)];
8444 /* Return true if the specified stage of address translation is disabled */
8445 static inline bool regime_translation_disabled(CPUARMState
*env
,
8448 if (arm_feature(env
, ARM_FEATURE_M
)) {
8449 switch (env
->v7m
.mpu_ctrl
[regime_is_secure(env
, mmu_idx
)] &
8450 (R_V7M_MPU_CTRL_ENABLE_MASK
| R_V7M_MPU_CTRL_HFNMIENA_MASK
)) {
8451 case R_V7M_MPU_CTRL_ENABLE_MASK
:
8452 /* Enabled, but not for HardFault and NMI */
8453 return mmu_idx
& ARM_MMU_IDX_M_NEGPRI
;
8454 case R_V7M_MPU_CTRL_ENABLE_MASK
| R_V7M_MPU_CTRL_HFNMIENA_MASK
:
8455 /* Enabled for all cases */
8459 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8460 * we warned about that in armv7m_nvic.c when the guest set it.
8466 if (mmu_idx
== ARMMMUIdx_S2NS
) {
8467 /* HCR.DC means HCR.VM behaves as 1 */
8468 return (env
->cp15
.hcr_el2
& (HCR_DC
| HCR_VM
)) == 0;
8471 if (env
->cp15
.hcr_el2
& HCR_TGE
) {
8472 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
8473 if (!regime_is_secure(env
, mmu_idx
) && regime_el(env
, mmu_idx
) == 1) {
8478 if ((env
->cp15
.hcr_el2
& HCR_DC
) &&
8479 (mmu_idx
== ARMMMUIdx_S1NSE0
|| mmu_idx
== ARMMMUIdx_S1NSE1
)) {
8480 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
8484 return (regime_sctlr(env
, mmu_idx
) & SCTLR_M
) == 0;
8487 static inline bool regime_translation_big_endian(CPUARMState
*env
,
8490 return (regime_sctlr(env
, mmu_idx
) & SCTLR_EE
) != 0;
8493 /* Return the TTBR associated with this translation regime */
8494 static inline uint64_t regime_ttbr(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
8497 if (mmu_idx
== ARMMMUIdx_S2NS
) {
8498 return env
->cp15
.vttbr_el2
;
8501 return env
->cp15
.ttbr0_el
[regime_el(env
, mmu_idx
)];
8503 return env
->cp15
.ttbr1_el
[regime_el(env
, mmu_idx
)];
8507 #endif /* !CONFIG_USER_ONLY */
8509 /* Return the TCR controlling this translation regime */
8510 static inline TCR
*regime_tcr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
8512 if (mmu_idx
== ARMMMUIdx_S2NS
) {
8513 return &env
->cp15
.vtcr_el2
;
8515 return &env
->cp15
.tcr_el
[regime_el(env
, mmu_idx
)];
8518 /* Convert a possible stage1+2 MMU index into the appropriate
8521 static inline ARMMMUIdx
stage_1_mmu_idx(ARMMMUIdx mmu_idx
)
8523 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
8524 mmu_idx
+= (ARMMMUIdx_S1NSE0
- ARMMMUIdx_S12NSE0
);
8529 /* Return true if the translation regime is using LPAE format page tables */
8530 static inline bool regime_using_lpae_format(CPUARMState
*env
,
8533 int el
= regime_el(env
, mmu_idx
);
8534 if (el
== 2 || arm_el_is_aa64(env
, el
)) {
8537 if (arm_feature(env
, ARM_FEATURE_LPAE
)
8538 && (regime_tcr(env
, mmu_idx
)->raw_tcr
& TTBCR_EAE
)) {
8544 /* Returns true if the stage 1 translation regime is using LPAE format page
8545 * tables. Used when raising alignment exceptions, whose FSR changes depending
8546 * on whether the long or short descriptor format is in use. */
8547 bool arm_s1_regime_using_lpae_format(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
8549 mmu_idx
= stage_1_mmu_idx(mmu_idx
);
8551 return regime_using_lpae_format(env
, mmu_idx
);
8554 #ifndef CONFIG_USER_ONLY
8555 static inline bool regime_is_user(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
8558 case ARMMMUIdx_S1SE0
:
8559 case ARMMMUIdx_S1NSE0
:
8560 case ARMMMUIdx_MUser
:
8561 case ARMMMUIdx_MSUser
:
8562 case ARMMMUIdx_MUserNegPri
:
8563 case ARMMMUIdx_MSUserNegPri
:
8567 case ARMMMUIdx_S12NSE0
:
8568 case ARMMMUIdx_S12NSE1
:
8569 g_assert_not_reached();
8573 /* Translate section/page access permissions to page
8574 * R/W protection flags
8577 * @mmu_idx: MMU index indicating required translation regime
8578 * @ap: The 3-bit access permissions (AP[2:0])
8579 * @domain_prot: The 2-bit domain access permissions
8581 static inline int ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
8582 int ap
, int domain_prot
)
8584 bool is_user
= regime_is_user(env
, mmu_idx
);
8586 if (domain_prot
== 3) {
8587 return PAGE_READ
| PAGE_WRITE
;
8592 if (arm_feature(env
, ARM_FEATURE_V7
)) {
8595 switch (regime_sctlr(env
, mmu_idx
) & (SCTLR_S
| SCTLR_R
)) {
8597 return is_user
? 0 : PAGE_READ
;
8604 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
8609 return PAGE_READ
| PAGE_WRITE
;
8612 return PAGE_READ
| PAGE_WRITE
;
8613 case 4: /* Reserved. */
8616 return is_user
? 0 : PAGE_READ
;
8620 if (!arm_feature(env
, ARM_FEATURE_V6K
)) {
8625 g_assert_not_reached();
8629 /* Translate section/page access permissions to page
8630 * R/W protection flags.
8632 * @ap: The 2-bit simple AP (AP[2:1])
8633 * @is_user: TRUE if accessing from PL0
8635 static inline int simple_ap_to_rw_prot_is_user(int ap
, bool is_user
)
8639 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
8641 return PAGE_READ
| PAGE_WRITE
;
8643 return is_user
? 0 : PAGE_READ
;
8647 g_assert_not_reached();
8652 simple_ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, int ap
)
8654 return simple_ap_to_rw_prot_is_user(ap
, regime_is_user(env
, mmu_idx
));
8657 /* Translate S2 section/page access permissions to protection flags
8660 * @s2ap: The 2-bit stage2 access permissions (S2AP)
8661 * @xn: XN (execute-never) bit
8663 static int get_S2prot(CPUARMState
*env
, int s2ap
, int xn
)
8674 if (arm_el_is_aa64(env
, 2) || prot
& PAGE_READ
) {
8681 /* Translate section/page access permissions to protection flags
8684 * @mmu_idx: MMU index indicating required translation regime
8685 * @is_aa64: TRUE if AArch64
8686 * @ap: The 2-bit simple AP (AP[2:1])
8687 * @ns: NS (non-secure) bit
8688 * @xn: XN (execute-never) bit
8689 * @pxn: PXN (privileged execute-never) bit
8691 static int get_S1prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, bool is_aa64
,
8692 int ap
, int ns
, int xn
, int pxn
)
8694 bool is_user
= regime_is_user(env
, mmu_idx
);
8695 int prot_rw
, user_rw
;
8699 assert(mmu_idx
!= ARMMMUIdx_S2NS
);
8701 user_rw
= simple_ap_to_rw_prot_is_user(ap
, true);
8705 prot_rw
= simple_ap_to_rw_prot_is_user(ap
, false);
8708 if (ns
&& arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_SIF
)) {
8712 /* TODO have_wxn should be replaced with
8713 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8714 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8715 * compatible processors have EL2, which is required for [U]WXN.
8717 have_wxn
= arm_feature(env
, ARM_FEATURE_LPAE
);
8720 wxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_WXN
;
8724 switch (regime_el(env
, mmu_idx
)) {
8727 xn
= pxn
|| (user_rw
& PAGE_WRITE
);
8734 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
8735 switch (regime_el(env
, mmu_idx
)) {
8739 xn
= xn
|| !(user_rw
& PAGE_READ
);
8743 uwxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_UWXN
;
8745 xn
= xn
|| !(prot_rw
& PAGE_READ
) || pxn
||
8746 (uwxn
&& (user_rw
& PAGE_WRITE
));
8756 if (xn
|| (wxn
&& (prot_rw
& PAGE_WRITE
))) {
8759 return prot_rw
| PAGE_EXEC
;
8762 static bool get_level1_table_address(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
8763 uint32_t *table
, uint32_t address
)
8765 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8766 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
8768 if (address
& tcr
->mask
) {
8769 if (tcr
->raw_tcr
& TTBCR_PD1
) {
8770 /* Translation table walk disabled for TTBR1 */
8773 *table
= regime_ttbr(env
, mmu_idx
, 1) & 0xffffc000;
8775 if (tcr
->raw_tcr
& TTBCR_PD0
) {
8776 /* Translation table walk disabled for TTBR0 */
8779 *table
= regime_ttbr(env
, mmu_idx
, 0) & tcr
->base_mask
;
8781 *table
|= (address
>> 18) & 0x3ffc;
8785 /* Translate a S1 pagetable walk through S2 if needed. */
8786 static hwaddr
S1_ptw_translate(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
8787 hwaddr addr
, MemTxAttrs txattrs
,
8788 ARMMMUFaultInfo
*fi
)
8790 if ((mmu_idx
== ARMMMUIdx_S1NSE0
|| mmu_idx
== ARMMMUIdx_S1NSE1
) &&
8791 !regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
8792 target_ulong s2size
;
8796 ARMCacheAttrs cacheattrs
= {};
8797 ARMCacheAttrs
*pcacheattrs
= NULL
;
8799 if (env
->cp15
.hcr_el2
& HCR_PTW
) {
8801 * PTW means we must fault if this S1 walk touches S2 Device
8802 * memory; otherwise we don't care about the attributes and can
8803 * save the S2 translation the effort of computing them.
8805 pcacheattrs
= &cacheattrs
;
8808 ret
= get_phys_addr_lpae(env
, addr
, 0, ARMMMUIdx_S2NS
, &s2pa
,
8809 &txattrs
, &s2prot
, &s2size
, fi
, pcacheattrs
);
8811 assert(fi
->type
!= ARMFault_None
);
8817 if (pcacheattrs
&& (pcacheattrs
->attrs
& 0xf0) == 0) {
8818 /* Access was to Device memory: generate Permission fault */
8819 fi
->type
= ARMFault_Permission
;
8830 /* All loads done in the course of a page table walk go through here. */
8831 static uint32_t arm_ldl_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
8832 ARMMMUIdx mmu_idx
, ARMMMUFaultInfo
*fi
)
8834 ARMCPU
*cpu
= ARM_CPU(cs
);
8835 CPUARMState
*env
= &cpu
->env
;
8836 MemTxAttrs attrs
= {};
8837 MemTxResult result
= MEMTX_OK
;
8841 attrs
.secure
= is_secure
;
8842 as
= arm_addressspace(cs
, attrs
);
8843 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fi
);
8847 if (regime_translation_big_endian(env
, mmu_idx
)) {
8848 data
= address_space_ldl_be(as
, addr
, attrs
, &result
);
8850 data
= address_space_ldl_le(as
, addr
, attrs
, &result
);
8852 if (result
== MEMTX_OK
) {
8855 fi
->type
= ARMFault_SyncExternalOnWalk
;
8856 fi
->ea
= arm_extabort_type(result
);
8860 static uint64_t arm_ldq_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
8861 ARMMMUIdx mmu_idx
, ARMMMUFaultInfo
*fi
)
8863 ARMCPU
*cpu
= ARM_CPU(cs
);
8864 CPUARMState
*env
= &cpu
->env
;
8865 MemTxAttrs attrs
= {};
8866 MemTxResult result
= MEMTX_OK
;
8870 attrs
.secure
= is_secure
;
8871 as
= arm_addressspace(cs
, attrs
);
8872 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fi
);
8876 if (regime_translation_big_endian(env
, mmu_idx
)) {
8877 data
= address_space_ldq_be(as
, addr
, attrs
, &result
);
8879 data
= address_space_ldq_le(as
, addr
, attrs
, &result
);
8881 if (result
== MEMTX_OK
) {
8884 fi
->type
= ARMFault_SyncExternalOnWalk
;
8885 fi
->ea
= arm_extabort_type(result
);
8889 static bool get_phys_addr_v5(CPUARMState
*env
, uint32_t address
,
8890 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
8891 hwaddr
*phys_ptr
, int *prot
,
8892 target_ulong
*page_size
,
8893 ARMMMUFaultInfo
*fi
)
8895 CPUState
*cs
= env_cpu(env
);
8906 /* Pagetable walk. */
8907 /* Lookup l1 descriptor. */
8908 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
8909 /* Section translation fault if page walk is disabled by PD0 or PD1 */
8910 fi
->type
= ARMFault_Translation
;
8913 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
8915 if (fi
->type
!= ARMFault_None
) {
8919 domain
= (desc
>> 5) & 0x0f;
8920 if (regime_el(env
, mmu_idx
) == 1) {
8921 dacr
= env
->cp15
.dacr_ns
;
8923 dacr
= env
->cp15
.dacr_s
;
8925 domain_prot
= (dacr
>> (domain
* 2)) & 3;
8927 /* Section translation fault. */
8928 fi
->type
= ARMFault_Translation
;
8934 if (domain_prot
== 0 || domain_prot
== 2) {
8935 fi
->type
= ARMFault_Domain
;
8940 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
8941 ap
= (desc
>> 10) & 3;
8942 *page_size
= 1024 * 1024;
8944 /* Lookup l2 entry. */
8946 /* Coarse pagetable. */
8947 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
8949 /* Fine pagetable. */
8950 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
8952 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
8954 if (fi
->type
!= ARMFault_None
) {
8958 case 0: /* Page translation fault. */
8959 fi
->type
= ARMFault_Translation
;
8961 case 1: /* 64k page. */
8962 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
8963 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
8964 *page_size
= 0x10000;
8966 case 2: /* 4k page. */
8967 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
8968 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
8969 *page_size
= 0x1000;
8971 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8973 /* ARMv6/XScale extended small page format */
8974 if (arm_feature(env
, ARM_FEATURE_XSCALE
)
8975 || arm_feature(env
, ARM_FEATURE_V6
)) {
8976 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
8977 *page_size
= 0x1000;
8979 /* UNPREDICTABLE in ARMv5; we choose to take a
8980 * page translation fault.
8982 fi
->type
= ARMFault_Translation
;
8986 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
8989 ap
= (desc
>> 4) & 3;
8992 /* Never happens, but compiler isn't smart enough to tell. */
8996 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
8997 *prot
|= *prot
? PAGE_EXEC
: 0;
8998 if (!(*prot
& (1 << access_type
))) {
8999 /* Access permission fault. */
9000 fi
->type
= ARMFault_Permission
;
9003 *phys_ptr
= phys_addr
;
9006 fi
->domain
= domain
;
9011 static bool get_phys_addr_v6(CPUARMState
*env
, uint32_t address
,
9012 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
9013 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
9014 target_ulong
*page_size
, ARMMMUFaultInfo
*fi
)
9016 CPUState
*cs
= env_cpu(env
);
9030 /* Pagetable walk. */
9031 /* Lookup l1 descriptor. */
9032 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
9033 /* Section translation fault if page walk is disabled by PD0 or PD1 */
9034 fi
->type
= ARMFault_Translation
;
9037 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
9039 if (fi
->type
!= ARMFault_None
) {
9043 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
9044 /* Section translation fault, or attempt to use the encoding
9045 * which is Reserved on implementations without PXN.
9047 fi
->type
= ARMFault_Translation
;
9050 if ((type
== 1) || !(desc
& (1 << 18))) {
9051 /* Page or Section. */
9052 domain
= (desc
>> 5) & 0x0f;
9054 if (regime_el(env
, mmu_idx
) == 1) {
9055 dacr
= env
->cp15
.dacr_ns
;
9057 dacr
= env
->cp15
.dacr_s
;
9062 domain_prot
= (dacr
>> (domain
* 2)) & 3;
9063 if (domain_prot
== 0 || domain_prot
== 2) {
9064 /* Section or Page domain fault */
9065 fi
->type
= ARMFault_Domain
;
9069 if (desc
& (1 << 18)) {
9071 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
9072 phys_addr
|= (uint64_t)extract32(desc
, 20, 4) << 32;
9073 phys_addr
|= (uint64_t)extract32(desc
, 5, 4) << 36;
9074 *page_size
= 0x1000000;
9077 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
9078 *page_size
= 0x100000;
9080 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
9081 xn
= desc
& (1 << 4);
9083 ns
= extract32(desc
, 19, 1);
9085 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
9086 pxn
= (desc
>> 2) & 1;
9088 ns
= extract32(desc
, 3, 1);
9089 /* Lookup l2 entry. */
9090 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
9091 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
9093 if (fi
->type
!= ARMFault_None
) {
9096 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
9098 case 0: /* Page translation fault. */
9099 fi
->type
= ARMFault_Translation
;
9101 case 1: /* 64k page. */
9102 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
9103 xn
= desc
& (1 << 15);
9104 *page_size
= 0x10000;
9106 case 2: case 3: /* 4k page. */
9107 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
9109 *page_size
= 0x1000;
9112 /* Never happens, but compiler isn't smart enough to tell. */
9116 if (domain_prot
== 3) {
9117 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
9119 if (pxn
&& !regime_is_user(env
, mmu_idx
)) {
9122 if (xn
&& access_type
== MMU_INST_FETCH
) {
9123 fi
->type
= ARMFault_Permission
;
9127 if (arm_feature(env
, ARM_FEATURE_V6K
) &&
9128 (regime_sctlr(env
, mmu_idx
) & SCTLR_AFE
)) {
9129 /* The simplified model uses AP[0] as an access control bit. */
9130 if ((ap
& 1) == 0) {
9131 /* Access flag fault. */
9132 fi
->type
= ARMFault_AccessFlag
;
9135 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
>> 1);
9137 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
9142 if (!(*prot
& (1 << access_type
))) {
9143 /* Access permission fault. */
9144 fi
->type
= ARMFault_Permission
;
9149 /* The NS bit will (as required by the architecture) have no effect if
9150 * the CPU doesn't support TZ or this is a non-secure translation
9151 * regime, because the attribute will already be non-secure.
9153 attrs
->secure
= false;
9155 *phys_ptr
= phys_addr
;
9158 fi
->domain
= domain
;
9164 * check_s2_mmu_setup
9166 * @is_aa64: True if the translation regime is in AArch64 state
9167 * @startlevel: Suggested starting level
9168 * @inputsize: Bitsize of IPAs
9169 * @stride: Page-table stride (See the ARM ARM)
9171 * Returns true if the suggested S2 translation parameters are OK and
9174 static bool check_s2_mmu_setup(ARMCPU
*cpu
, bool is_aa64
, int level
,
9175 int inputsize
, int stride
)
9177 const int grainsize
= stride
+ 3;
9180 /* Negative levels are never allowed. */
9185 startsizecheck
= inputsize
- ((3 - level
) * stride
+ grainsize
);
9186 if (startsizecheck
< 1 || startsizecheck
> stride
+ 4) {
9191 CPUARMState
*env
= &cpu
->env
;
9192 unsigned int pamax
= arm_pamax(cpu
);
9195 case 13: /* 64KB Pages. */
9196 if (level
== 0 || (level
== 1 && pamax
<= 42)) {
9200 case 11: /* 16KB Pages. */
9201 if (level
== 0 || (level
== 1 && pamax
<= 40)) {
9205 case 9: /* 4KB Pages. */
9206 if (level
== 0 && pamax
<= 42) {
9211 g_assert_not_reached();
9214 /* Inputsize checks. */
9215 if (inputsize
> pamax
&&
9216 (arm_el_is_aa64(env
, 1) || inputsize
> 40)) {
9217 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
9221 /* AArch32 only supports 4KB pages. Assert on that. */
9222 assert(stride
== 9);
9231 /* Translate from the 4-bit stage 2 representation of
9232 * memory attributes (without cache-allocation hints) to
9233 * the 8-bit representation of the stage 1 MAIR registers
9234 * (which includes allocation hints).
9236 * ref: shared/translation/attrs/S2AttrDecode()
9237 * .../S2ConvertAttrsHints()
9239 static uint8_t convert_stage2_attrs(CPUARMState
*env
, uint8_t s2attrs
)
9241 uint8_t hiattr
= extract32(s2attrs
, 2, 2);
9242 uint8_t loattr
= extract32(s2attrs
, 0, 2);
9243 uint8_t hihint
= 0, lohint
= 0;
9245 if (hiattr
!= 0) { /* normal memory */
9246 if ((env
->cp15
.hcr_el2
& HCR_CD
) != 0) { /* cache disabled */
9247 hiattr
= loattr
= 1; /* non-cacheable */
9249 if (hiattr
!= 1) { /* Write-through or write-back */
9250 hihint
= 3; /* RW allocate */
9252 if (loattr
!= 1) { /* Write-through or write-back */
9253 lohint
= 3; /* RW allocate */
9258 return (hiattr
<< 6) | (hihint
<< 4) | (loattr
<< 2) | lohint
;
9260 #endif /* !CONFIG_USER_ONLY */
9262 ARMVAParameters
aa64_va_parameters_both(CPUARMState
*env
, uint64_t va
,
9265 uint64_t tcr
= regime_tcr(env
, mmu_idx
)->raw_tcr
;
9266 uint32_t el
= regime_el(env
, mmu_idx
);
9267 bool tbi
, tbid
, epd
, hpd
, using16k
, using64k
;
9271 * Bit 55 is always between the two regions, and is canonical for
9272 * determining if address tagging is enabled.
9274 select
= extract64(va
, 55, 1);
9277 tsz
= extract32(tcr
, 0, 6);
9278 using64k
= extract32(tcr
, 14, 1);
9279 using16k
= extract32(tcr
, 15, 1);
9280 if (mmu_idx
== ARMMMUIdx_S2NS
) {
9282 tbi
= tbid
= hpd
= false;
9284 tbi
= extract32(tcr
, 20, 1);
9285 hpd
= extract32(tcr
, 24, 1);
9286 tbid
= extract32(tcr
, 29, 1);
9289 } else if (!select
) {
9290 tsz
= extract32(tcr
, 0, 6);
9291 epd
= extract32(tcr
, 7, 1);
9292 using64k
= extract32(tcr
, 14, 1);
9293 using16k
= extract32(tcr
, 15, 1);
9294 tbi
= extract64(tcr
, 37, 1);
9295 hpd
= extract64(tcr
, 41, 1);
9296 tbid
= extract64(tcr
, 51, 1);
9298 int tg
= extract32(tcr
, 30, 2);
9301 tsz
= extract32(tcr
, 16, 6);
9302 epd
= extract32(tcr
, 23, 1);
9303 tbi
= extract64(tcr
, 38, 1);
9304 hpd
= extract64(tcr
, 42, 1);
9305 tbid
= extract64(tcr
, 52, 1);
9307 tsz
= MIN(tsz
, 39); /* TODO: ARMv8.4-TTST */
9308 tsz
= MAX(tsz
, 16); /* TODO: ARMv8.2-LVA */
9310 return (ARMVAParameters
) {
9317 .using16k
= using16k
,
9318 .using64k
= using64k
,
9322 ARMVAParameters
aa64_va_parameters(CPUARMState
*env
, uint64_t va
,
9323 ARMMMUIdx mmu_idx
, bool data
)
9325 ARMVAParameters ret
= aa64_va_parameters_both(env
, va
, mmu_idx
);
9327 /* Present TBI as a composite with TBID. */
9328 ret
.tbi
&= (data
|| !ret
.tbid
);
9332 #ifndef CONFIG_USER_ONLY
9333 static ARMVAParameters
aa32_va_parameters(CPUARMState
*env
, uint32_t va
,
9336 uint64_t tcr
= regime_tcr(env
, mmu_idx
)->raw_tcr
;
9337 uint32_t el
= regime_el(env
, mmu_idx
);
9341 if (mmu_idx
== ARMMMUIdx_S2NS
) {
9343 bool sext
= extract32(tcr
, 4, 1);
9344 bool sign
= extract32(tcr
, 3, 1);
9347 * If the sign-extend bit is not the same as t0sz[3], the result
9348 * is unpredictable. Flag this as a guest error.
9351 qemu_log_mask(LOG_GUEST_ERROR
,
9352 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9354 tsz
= sextract32(tcr
, 0, 4) + 8;
9358 } else if (el
== 2) {
9360 tsz
= extract32(tcr
, 0, 3);
9362 hpd
= extract64(tcr
, 24, 1);
9365 int t0sz
= extract32(tcr
, 0, 3);
9366 int t1sz
= extract32(tcr
, 16, 3);
9369 select
= va
> (0xffffffffu
>> t0sz
);
9371 /* Note that we will detect errors later. */
9372 select
= va
>= ~(0xffffffffu
>> t1sz
);
9376 epd
= extract32(tcr
, 7, 1);
9377 hpd
= extract64(tcr
, 41, 1);
9380 epd
= extract32(tcr
, 23, 1);
9381 hpd
= extract64(tcr
, 42, 1);
9383 /* For aarch32, hpd0 is not enabled without t2e as well. */
9384 hpd
&= extract32(tcr
, 6, 1);
9387 return (ARMVAParameters
) {
9395 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
9396 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
9397 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
9398 target_ulong
*page_size_ptr
,
9399 ARMMMUFaultInfo
*fi
, ARMCacheAttrs
*cacheattrs
)
9401 ARMCPU
*cpu
= env_archcpu(env
);
9402 CPUState
*cs
= CPU(cpu
);
9403 /* Read an LPAE long-descriptor translation table. */
9404 ARMFaultType fault_type
= ARMFault_Translation
;
9406 ARMVAParameters param
;
9408 hwaddr descaddr
, indexmask
, indexmask_grainsize
;
9409 uint32_t tableattrs
;
9410 target_ulong page_size
;
9413 int addrsize
, inputsize
;
9414 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
9415 int ap
, ns
, xn
, pxn
;
9416 uint32_t el
= regime_el(env
, mmu_idx
);
9418 uint64_t descaddrmask
;
9419 bool aarch64
= arm_el_is_aa64(env
, el
);
9420 bool guarded
= false;
9423 * This code does not handle the different format TCR for VTCR_EL2.
9424 * This code also does not support shareability levels.
9425 * Attribute and permission bit handling should also be checked when adding
9426 * support for those page table walks.
9429 param
= aa64_va_parameters(env
, address
, mmu_idx
,
9430 access_type
!= MMU_INST_FETCH
);
9432 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9435 ttbr1_valid
= (el
< 2);
9436 addrsize
= 64 - 8 * param
.tbi
;
9437 inputsize
= 64 - param
.tsz
;
9439 param
= aa32_va_parameters(env
, address
, mmu_idx
);
9441 /* There is no TTBR1 for EL2 */
9442 ttbr1_valid
= (el
!= 2);
9443 addrsize
= (mmu_idx
== ARMMMUIdx_S2NS
? 40 : 32);
9444 inputsize
= addrsize
- param
.tsz
;
9448 * We determined the region when collecting the parameters, but we
9449 * have not yet validated that the address is valid for the region.
9450 * Extract the top bits and verify that they all match select.
9452 * For aa32, if inputsize == addrsize, then we have selected the
9453 * region by exclusion in aa32_va_parameters and there is no more
9454 * validation to do here.
9456 if (inputsize
< addrsize
) {
9457 target_ulong top_bits
= sextract64(address
, inputsize
,
9458 addrsize
- inputsize
);
9459 if (-top_bits
!= param
.select
|| (param
.select
&& !ttbr1_valid
)) {
9460 /* The gap between the two regions is a Translation fault */
9461 fault_type
= ARMFault_Translation
;
9466 if (param
.using64k
) {
9468 } else if (param
.using16k
) {
9474 /* Note that QEMU ignores shareability and cacheability attributes,
9475 * so we don't need to do anything with the SH, ORGN, IRGN fields
9476 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
9477 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9478 * implement any ASID-like capability so we can ignore it (instead
9479 * we will always flush the TLB any time the ASID is changed).
9481 ttbr
= regime_ttbr(env
, mmu_idx
, param
.select
);
9483 /* Here we should have set up all the parameters for the translation:
9484 * inputsize, ttbr, epd, stride, tbi
9488 /* Translation table walk disabled => Translation fault on TLB miss
9489 * Note: This is always 0 on 64-bit EL2 and EL3.
9494 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
9495 /* The starting level depends on the virtual address size (which can
9496 * be up to 48 bits) and the translation granule size. It indicates
9497 * the number of strides (stride bits at a time) needed to
9498 * consume the bits of the input address. In the pseudocode this is:
9499 * level = 4 - RoundUp((inputsize - grainsize) / stride)
9500 * where their 'inputsize' is our 'inputsize', 'grainsize' is
9501 * our 'stride + 3' and 'stride' is our 'stride'.
9502 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9503 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9504 * = 4 - (inputsize - 4) / stride;
9506 level
= 4 - (inputsize
- 4) / stride
;
9508 /* For stage 2 translations the starting level is specified by the
9509 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9511 uint32_t sl0
= extract32(tcr
->raw_tcr
, 6, 2);
9512 uint32_t startlevel
;
9515 if (!aarch64
|| stride
== 9) {
9516 /* AArch32 or 4KB pages */
9517 startlevel
= 2 - sl0
;
9519 /* 16KB or 64KB pages */
9520 startlevel
= 3 - sl0
;
9523 /* Check that the starting level is valid. */
9524 ok
= check_s2_mmu_setup(cpu
, aarch64
, startlevel
,
9527 fault_type
= ARMFault_Translation
;
9533 indexmask_grainsize
= (1ULL << (stride
+ 3)) - 1;
9534 indexmask
= (1ULL << (inputsize
- (stride
* (4 - level
)))) - 1;
9536 /* Now we can extract the actual base address from the TTBR */
9537 descaddr
= extract64(ttbr
, 0, 48);
9538 descaddr
&= ~indexmask
;
9540 /* The address field in the descriptor goes up to bit 39 for ARMv7
9541 * but up to bit 47 for ARMv8, but we use the descaddrmask
9542 * up to bit 39 for AArch32, because we don't need other bits in that case
9543 * to construct next descriptor address (anyway they should be all zeroes).
9545 descaddrmask
= ((1ull << (aarch64
? 48 : 40)) - 1) &
9546 ~indexmask_grainsize
;
9548 /* Secure accesses start with the page table in secure memory and
9549 * can be downgraded to non-secure at any step. Non-secure accesses
9550 * remain non-secure. We implement this by just ORing in the NSTable/NS
9551 * bits at each step.
9553 tableattrs
= regime_is_secure(env
, mmu_idx
) ? 0 : (1 << 4);
9555 uint64_t descriptor
;
9558 descaddr
|= (address
>> (stride
* (4 - level
))) & indexmask
;
9560 nstable
= extract32(tableattrs
, 4, 1);
9561 descriptor
= arm_ldq_ptw(cs
, descaddr
, !nstable
, mmu_idx
, fi
);
9562 if (fi
->type
!= ARMFault_None
) {
9566 if (!(descriptor
& 1) ||
9567 (!(descriptor
& 2) && (level
== 3))) {
9568 /* Invalid, or the Reserved level 3 encoding */
9571 descaddr
= descriptor
& descaddrmask
;
9573 if ((descriptor
& 2) && (level
< 3)) {
9574 /* Table entry. The top five bits are attributes which may
9575 * propagate down through lower levels of the table (and
9576 * which are all arranged so that 0 means "no effect", so
9577 * we can gather them up by ORing in the bits at each level).
9579 tableattrs
|= extract64(descriptor
, 59, 5);
9581 indexmask
= indexmask_grainsize
;
9584 /* Block entry at level 1 or 2, or page entry at level 3.
9585 * These are basically the same thing, although the number
9586 * of bits we pull in from the vaddr varies.
9588 page_size
= (1ULL << ((stride
* (4 - level
)) + 3));
9589 descaddr
|= (address
& (page_size
- 1));
9590 /* Extract attributes from the descriptor */
9591 attrs
= extract64(descriptor
, 2, 10)
9592 | (extract64(descriptor
, 52, 12) << 10);
9594 if (mmu_idx
== ARMMMUIdx_S2NS
) {
9595 /* Stage 2 table descriptors do not include any attribute fields */
9598 /* Merge in attributes from table descriptors */
9599 attrs
|= nstable
<< 3; /* NS */
9600 guarded
= extract64(descriptor
, 50, 1); /* GP */
9602 /* HPD disables all the table attributes except NSTable. */
9605 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
9606 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9607 * means "force PL1 access only", which means forcing AP[1] to 0.
9609 attrs
&= ~(extract32(tableattrs
, 2, 1) << 4); /* !APT[0] => AP[1] */
9610 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APT[1] => AP[2] */
9613 /* Here descaddr is the final physical address, and attributes
9616 fault_type
= ARMFault_AccessFlag
;
9617 if ((attrs
& (1 << 8)) == 0) {
9622 ap
= extract32(attrs
, 4, 2);
9623 xn
= extract32(attrs
, 12, 1);
9625 if (mmu_idx
== ARMMMUIdx_S2NS
) {
9627 *prot
= get_S2prot(env
, ap
, xn
);
9629 ns
= extract32(attrs
, 3, 1);
9630 pxn
= extract32(attrs
, 11, 1);
9631 *prot
= get_S1prot(env
, mmu_idx
, aarch64
, ap
, ns
, xn
, pxn
);
9634 fault_type
= ARMFault_Permission
;
9635 if (!(*prot
& (1 << access_type
))) {
9640 /* The NS bit will (as required by the architecture) have no effect if
9641 * the CPU doesn't support TZ or this is a non-secure translation
9642 * regime, because the attribute will already be non-secure.
9644 txattrs
->secure
= false;
9646 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
9647 if (aarch64
&& guarded
&& cpu_isar_feature(aa64_bti
, cpu
)) {
9648 txattrs
->target_tlb_bit0
= true;
9651 if (cacheattrs
!= NULL
) {
9652 if (mmu_idx
== ARMMMUIdx_S2NS
) {
9653 cacheattrs
->attrs
= convert_stage2_attrs(env
,
9654 extract32(attrs
, 0, 4));
9656 /* Index into MAIR registers for cache attributes */
9657 uint8_t attrindx
= extract32(attrs
, 0, 3);
9658 uint64_t mair
= env
->cp15
.mair_el
[regime_el(env
, mmu_idx
)];
9659 assert(attrindx
<= 7);
9660 cacheattrs
->attrs
= extract64(mair
, attrindx
* 8, 8);
9662 cacheattrs
->shareability
= extract32(attrs
, 6, 2);
9665 *phys_ptr
= descaddr
;
9666 *page_size_ptr
= page_size
;
9670 fi
->type
= fault_type
;
9672 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
9673 fi
->stage2
= fi
->s1ptw
|| (mmu_idx
== ARMMMUIdx_S2NS
);
9677 static inline void get_phys_addr_pmsav7_default(CPUARMState
*env
,
9679 int32_t address
, int *prot
)
9681 if (!arm_feature(env
, ARM_FEATURE_M
)) {
9682 *prot
= PAGE_READ
| PAGE_WRITE
;
9684 case 0xF0000000 ... 0xFFFFFFFF:
9685 if (regime_sctlr(env
, mmu_idx
) & SCTLR_V
) {
9686 /* hivecs execing is ok */
9690 case 0x00000000 ... 0x7FFFFFFF:
9695 /* Default system address map for M profile cores.
9696 * The architecture specifies which regions are execute-never;
9697 * at the MPU level no other checks are defined.
9700 case 0x00000000 ... 0x1fffffff: /* ROM */
9701 case 0x20000000 ... 0x3fffffff: /* SRAM */
9702 case 0x60000000 ... 0x7fffffff: /* RAM */
9703 case 0x80000000 ... 0x9fffffff: /* RAM */
9704 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
9706 case 0x40000000 ... 0x5fffffff: /* Peripheral */
9707 case 0xa0000000 ... 0xbfffffff: /* Device */
9708 case 0xc0000000 ... 0xdfffffff: /* Device */
9709 case 0xe0000000 ... 0xffffffff: /* System */
9710 *prot
= PAGE_READ
| PAGE_WRITE
;
9713 g_assert_not_reached();
9718 static bool pmsav7_use_background_region(ARMCPU
*cpu
,
9719 ARMMMUIdx mmu_idx
, bool is_user
)
9721 /* Return true if we should use the default memory map as a
9722 * "background" region if there are no hits against any MPU regions.
9724 CPUARMState
*env
= &cpu
->env
;
9730 if (arm_feature(env
, ARM_FEATURE_M
)) {
9731 return env
->v7m
.mpu_ctrl
[regime_is_secure(env
, mmu_idx
)]
9732 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK
;
9734 return regime_sctlr(env
, mmu_idx
) & SCTLR_BR
;
9738 static inline bool m_is_ppb_region(CPUARMState
*env
, uint32_t address
)
9740 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9741 return arm_feature(env
, ARM_FEATURE_M
) &&
9742 extract32(address
, 20, 12) == 0xe00;
9745 static inline bool m_is_system_region(CPUARMState
*env
, uint32_t address
)
9747 /* True if address is in the M profile system region
9748 * 0xe0000000 - 0xffffffff
9750 return arm_feature(env
, ARM_FEATURE_M
) && extract32(address
, 29, 3) == 0x7;
9753 static bool get_phys_addr_pmsav7(CPUARMState
*env
, uint32_t address
,
9754 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
9755 hwaddr
*phys_ptr
, int *prot
,
9756 target_ulong
*page_size
,
9757 ARMMMUFaultInfo
*fi
)
9759 ARMCPU
*cpu
= env_archcpu(env
);
9761 bool is_user
= regime_is_user(env
, mmu_idx
);
9763 *phys_ptr
= address
;
9764 *page_size
= TARGET_PAGE_SIZE
;
9767 if (regime_translation_disabled(env
, mmu_idx
) ||
9768 m_is_ppb_region(env
, address
)) {
9769 /* MPU disabled or M profile PPB access: use default memory map.
9770 * The other case which uses the default memory map in the
9771 * v7M ARM ARM pseudocode is exception vector reads from the vector
9772 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9773 * which always does a direct read using address_space_ldl(), rather
9774 * than going via this function, so we don't need to check that here.
9776 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
9777 } else { /* MPU enabled */
9778 for (n
= (int)cpu
->pmsav7_dregion
- 1; n
>= 0; n
--) {
9780 uint32_t base
= env
->pmsav7
.drbar
[n
];
9781 uint32_t rsize
= extract32(env
->pmsav7
.drsr
[n
], 1, 5);
9785 if (!(env
->pmsav7
.drsr
[n
] & 0x1)) {
9790 qemu_log_mask(LOG_GUEST_ERROR
,
9791 "DRSR[%d]: Rsize field cannot be 0\n", n
);
9795 rmask
= (1ull << rsize
) - 1;
9798 qemu_log_mask(LOG_GUEST_ERROR
,
9799 "DRBAR[%d]: 0x%" PRIx32
" misaligned "
9800 "to DRSR region size, mask = 0x%" PRIx32
"\n",
9805 if (address
< base
|| address
> base
+ rmask
) {
9807 * Address not in this region. We must check whether the
9808 * region covers addresses in the same page as our address.
9809 * In that case we must not report a size that covers the
9810 * whole page for a subsequent hit against a different MPU
9811 * region or the background region, because it would result in
9812 * incorrect TLB hits for subsequent accesses to addresses that
9813 * are in this MPU region.
9815 if (ranges_overlap(base
, rmask
,
9816 address
& TARGET_PAGE_MASK
,
9817 TARGET_PAGE_SIZE
)) {
9823 /* Region matched */
9825 if (rsize
>= 8) { /* no subregions for regions < 256 bytes */
9827 uint32_t srdis_mask
;
9829 rsize
-= 3; /* sub region size (power of 2) */
9830 snd
= ((address
- base
) >> rsize
) & 0x7;
9831 srdis
= extract32(env
->pmsav7
.drsr
[n
], snd
+ 8, 1);
9833 srdis_mask
= srdis
? 0x3 : 0x0;
9834 for (i
= 2; i
<= 8 && rsize
< TARGET_PAGE_BITS
; i
*= 2) {
9835 /* This will check in groups of 2, 4 and then 8, whether
9836 * the subregion bits are consistent. rsize is incremented
9837 * back up to give the region size, considering consistent
9838 * adjacent subregions as one region. Stop testing if rsize
9839 * is already big enough for an entire QEMU page.
9841 int snd_rounded
= snd
& ~(i
- 1);
9842 uint32_t srdis_multi
= extract32(env
->pmsav7
.drsr
[n
],
9843 snd_rounded
+ 8, i
);
9844 if (srdis_mask
^ srdis_multi
) {
9847 srdis_mask
= (srdis_mask
<< i
) | srdis_mask
;
9854 if (rsize
< TARGET_PAGE_BITS
) {
9855 *page_size
= 1 << rsize
;
9860 if (n
== -1) { /* no hits */
9861 if (!pmsav7_use_background_region(cpu
, mmu_idx
, is_user
)) {
9862 /* background fault */
9863 fi
->type
= ARMFault_Background
;
9866 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
9867 } else { /* a MPU hit! */
9868 uint32_t ap
= extract32(env
->pmsav7
.dracr
[n
], 8, 3);
9869 uint32_t xn
= extract32(env
->pmsav7
.dracr
[n
], 12, 1);
9871 if (m_is_system_region(env
, address
)) {
9872 /* System space is always execute never */
9876 if (is_user
) { /* User mode AP bit decoding */
9881 break; /* no access */
9883 *prot
|= PAGE_WRITE
;
9887 *prot
|= PAGE_READ
| PAGE_EXEC
;
9890 /* for v7M, same as 6; for R profile a reserved value */
9891 if (arm_feature(env
, ARM_FEATURE_M
)) {
9892 *prot
|= PAGE_READ
| PAGE_EXEC
;
9897 qemu_log_mask(LOG_GUEST_ERROR
,
9898 "DRACR[%d]: Bad value for AP bits: 0x%"
9899 PRIx32
"\n", n
, ap
);
9901 } else { /* Priv. mode AP bits decoding */
9904 break; /* no access */
9908 *prot
|= PAGE_WRITE
;
9912 *prot
|= PAGE_READ
| PAGE_EXEC
;
9915 /* for v7M, same as 6; for R profile a reserved value */
9916 if (arm_feature(env
, ARM_FEATURE_M
)) {
9917 *prot
|= PAGE_READ
| PAGE_EXEC
;
9922 qemu_log_mask(LOG_GUEST_ERROR
,
9923 "DRACR[%d]: Bad value for AP bits: 0x%"
9924 PRIx32
"\n", n
, ap
);
9930 *prot
&= ~PAGE_EXEC
;
9935 fi
->type
= ARMFault_Permission
;
9937 return !(*prot
& (1 << access_type
));
9940 static bool v8m_is_sau_exempt(CPUARMState
*env
,
9941 uint32_t address
, MMUAccessType access_type
)
9943 /* The architecture specifies that certain address ranges are
9944 * exempt from v8M SAU/IDAU checks.
9947 (access_type
== MMU_INST_FETCH
&& m_is_system_region(env
, address
)) ||
9948 (address
>= 0xe0000000 && address
<= 0xe0002fff) ||
9949 (address
>= 0xe000e000 && address
<= 0xe000efff) ||
9950 (address
>= 0xe002e000 && address
<= 0xe002efff) ||
9951 (address
>= 0xe0040000 && address
<= 0xe0041fff) ||
9952 (address
>= 0xe00ff000 && address
<= 0xe00fffff);
9955 void v8m_security_lookup(CPUARMState
*env
, uint32_t address
,
9956 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
9957 V8M_SAttributes
*sattrs
)
9959 /* Look up the security attributes for this address. Compare the
9960 * pseudocode SecurityCheck() function.
9961 * We assume the caller has zero-initialized *sattrs.
9963 ARMCPU
*cpu
= env_archcpu(env
);
9965 bool idau_exempt
= false, idau_ns
= true, idau_nsc
= true;
9966 int idau_region
= IREGION_NOTVALID
;
9967 uint32_t addr_page_base
= address
& TARGET_PAGE_MASK
;
9968 uint32_t addr_page_limit
= addr_page_base
+ (TARGET_PAGE_SIZE
- 1);
9971 IDAUInterfaceClass
*iic
= IDAU_INTERFACE_GET_CLASS(cpu
->idau
);
9972 IDAUInterface
*ii
= IDAU_INTERFACE(cpu
->idau
);
9974 iic
->check(ii
, address
, &idau_region
, &idau_exempt
, &idau_ns
,
9978 if (access_type
== MMU_INST_FETCH
&& extract32(address
, 28, 4) == 0xf) {
9979 /* 0xf0000000..0xffffffff is always S for insn fetches */
9983 if (idau_exempt
|| v8m_is_sau_exempt(env
, address
, access_type
)) {
9984 sattrs
->ns
= !regime_is_secure(env
, mmu_idx
);
9988 if (idau_region
!= IREGION_NOTVALID
) {
9989 sattrs
->irvalid
= true;
9990 sattrs
->iregion
= idau_region
;
9993 switch (env
->sau
.ctrl
& 3) {
9994 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
9996 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
9999 default: /* SAU.ENABLE == 1 */
10000 for (r
= 0; r
< cpu
->sau_sregion
; r
++) {
10001 if (env
->sau
.rlar
[r
] & 1) {
10002 uint32_t base
= env
->sau
.rbar
[r
] & ~0x1f;
10003 uint32_t limit
= env
->sau
.rlar
[r
] | 0x1f;
10005 if (base
<= address
&& limit
>= address
) {
10006 if (base
> addr_page_base
|| limit
< addr_page_limit
) {
10007 sattrs
->subpage
= true;
10009 if (sattrs
->srvalid
) {
10010 /* If we hit in more than one region then we must report
10011 * as Secure, not NS-Callable, with no valid region
10014 sattrs
->ns
= false;
10015 sattrs
->nsc
= false;
10016 sattrs
->sregion
= 0;
10017 sattrs
->srvalid
= false;
10020 if (env
->sau
.rlar
[r
] & 2) {
10021 sattrs
->nsc
= true;
10025 sattrs
->srvalid
= true;
10026 sattrs
->sregion
= r
;
10030 * Address not in this region. We must check whether the
10031 * region covers addresses in the same page as our address.
10032 * In that case we must not report a size that covers the
10033 * whole page for a subsequent hit against a different MPU
10034 * region or the background region, because it would result
10035 * in incorrect TLB hits for subsequent accesses to
10036 * addresses that are in this MPU region.
10038 if (limit
>= base
&&
10039 ranges_overlap(base
, limit
- base
+ 1,
10041 TARGET_PAGE_SIZE
)) {
10042 sattrs
->subpage
= true;
10051 * The IDAU will override the SAU lookup results if it specifies
10052 * higher security than the SAU does.
10055 if (sattrs
->ns
|| (!idau_nsc
&& sattrs
->nsc
)) {
10056 sattrs
->ns
= false;
10057 sattrs
->nsc
= idau_nsc
;
10062 bool pmsav8_mpu_lookup(CPUARMState
*env
, uint32_t address
,
10063 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
10064 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
,
10065 int *prot
, bool *is_subpage
,
10066 ARMMMUFaultInfo
*fi
, uint32_t *mregion
)
10068 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
10069 * that a full phys-to-virt translation does).
10070 * mregion is (if not NULL) set to the region number which matched,
10071 * or -1 if no region number is returned (MPU off, address did not
10072 * hit a region, address hit in multiple regions).
10073 * We set is_subpage to true if the region hit doesn't cover the
10074 * entire TARGET_PAGE the address is within.
10076 ARMCPU
*cpu
= env_archcpu(env
);
10077 bool is_user
= regime_is_user(env
, mmu_idx
);
10078 uint32_t secure
= regime_is_secure(env
, mmu_idx
);
10080 int matchregion
= -1;
10082 uint32_t addr_page_base
= address
& TARGET_PAGE_MASK
;
10083 uint32_t addr_page_limit
= addr_page_base
+ (TARGET_PAGE_SIZE
- 1);
10085 *is_subpage
= false;
10086 *phys_ptr
= address
;
10092 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
10093 * was an exception vector read from the vector table (which is always
10094 * done using the default system address map), because those accesses
10095 * are done in arm_v7m_load_vector(), which always does a direct
10096 * read using address_space_ldl(), rather than going via this function.
10098 if (regime_translation_disabled(env
, mmu_idx
)) { /* MPU disabled */
10100 } else if (m_is_ppb_region(env
, address
)) {
10103 if (pmsav7_use_background_region(cpu
, mmu_idx
, is_user
)) {
10107 for (n
= (int)cpu
->pmsav7_dregion
- 1; n
>= 0; n
--) {
10108 /* region search */
10109 /* Note that the base address is bits [31:5] from the register
10110 * with bits [4:0] all zeroes, but the limit address is bits
10111 * [31:5] from the register with bits [4:0] all ones.
10113 uint32_t base
= env
->pmsav8
.rbar
[secure
][n
] & ~0x1f;
10114 uint32_t limit
= env
->pmsav8
.rlar
[secure
][n
] | 0x1f;
10116 if (!(env
->pmsav8
.rlar
[secure
][n
] & 0x1)) {
10117 /* Region disabled */
10121 if (address
< base
|| address
> limit
) {
10123 * Address not in this region. We must check whether the
10124 * region covers addresses in the same page as our address.
10125 * In that case we must not report a size that covers the
10126 * whole page for a subsequent hit against a different MPU
10127 * region or the background region, because it would result in
10128 * incorrect TLB hits for subsequent accesses to addresses that
10129 * are in this MPU region.
10131 if (limit
>= base
&&
10132 ranges_overlap(base
, limit
- base
+ 1,
10134 TARGET_PAGE_SIZE
)) {
10135 *is_subpage
= true;
10140 if (base
> addr_page_base
|| limit
< addr_page_limit
) {
10141 *is_subpage
= true;
10144 if (matchregion
!= -1) {
10145 /* Multiple regions match -- always a failure (unlike
10146 * PMSAv7 where highest-numbered-region wins)
10148 fi
->type
= ARMFault_Permission
;
10159 /* background fault */
10160 fi
->type
= ARMFault_Background
;
10164 if (matchregion
== -1) {
10165 /* hit using the background region */
10166 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
10168 uint32_t ap
= extract32(env
->pmsav8
.rbar
[secure
][matchregion
], 1, 2);
10169 uint32_t xn
= extract32(env
->pmsav8
.rbar
[secure
][matchregion
], 0, 1);
10171 if (m_is_system_region(env
, address
)) {
10172 /* System space is always execute never */
10176 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
);
10177 if (*prot
&& !xn
) {
10178 *prot
|= PAGE_EXEC
;
10180 /* We don't need to look the attribute up in the MAIR0/MAIR1
10181 * registers because that only tells us about cacheability.
10184 *mregion
= matchregion
;
10188 fi
->type
= ARMFault_Permission
;
10190 return !(*prot
& (1 << access_type
));
10194 static bool get_phys_addr_pmsav8(CPUARMState
*env
, uint32_t address
,
10195 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
10196 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
,
10197 int *prot
, target_ulong
*page_size
,
10198 ARMMMUFaultInfo
*fi
)
10200 uint32_t secure
= regime_is_secure(env
, mmu_idx
);
10201 V8M_SAttributes sattrs
= {};
10203 bool mpu_is_subpage
;
10205 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
10206 v8m_security_lookup(env
, address
, access_type
, mmu_idx
, &sattrs
);
10207 if (access_type
== MMU_INST_FETCH
) {
10208 /* Instruction fetches always use the MMU bank and the
10209 * transaction attribute determined by the fetch address,
10210 * regardless of CPU state. This is painful for QEMU
10211 * to handle, because it would mean we need to encode
10212 * into the mmu_idx not just the (user, negpri) information
10213 * for the current security state but also that for the
10214 * other security state, which would balloon the number
10215 * of mmu_idx values needed alarmingly.
10216 * Fortunately we can avoid this because it's not actually
10217 * possible to arbitrarily execute code from memory with
10218 * the wrong security attribute: it will always generate
10219 * an exception of some kind or another, apart from the
10220 * special case of an NS CPU executing an SG instruction
10221 * in S&NSC memory. So we always just fail the translation
10222 * here and sort things out in the exception handler
10223 * (including possibly emulating an SG instruction).
10225 if (sattrs
.ns
!= !secure
) {
10227 fi
->type
= ARMFault_QEMU_NSCExec
;
10229 fi
->type
= ARMFault_QEMU_SFault
;
10231 *page_size
= sattrs
.subpage
? 1 : TARGET_PAGE_SIZE
;
10232 *phys_ptr
= address
;
10237 /* For data accesses we always use the MMU bank indicated
10238 * by the current CPU state, but the security attributes
10239 * might downgrade a secure access to nonsecure.
10242 txattrs
->secure
= false;
10243 } else if (!secure
) {
10244 /* NS access to S memory must fault.
10245 * Architecturally we should first check whether the
10246 * MPU information for this address indicates that we
10247 * are doing an unaligned access to Device memory, which
10248 * should generate a UsageFault instead. QEMU does not
10249 * currently check for that kind of unaligned access though.
10250 * If we added it we would need to do so as a special case
10251 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
10253 fi
->type
= ARMFault_QEMU_SFault
;
10254 *page_size
= sattrs
.subpage
? 1 : TARGET_PAGE_SIZE
;
10255 *phys_ptr
= address
;
10262 ret
= pmsav8_mpu_lookup(env
, address
, access_type
, mmu_idx
, phys_ptr
,
10263 txattrs
, prot
, &mpu_is_subpage
, fi
, NULL
);
10264 *page_size
= sattrs
.subpage
|| mpu_is_subpage
? 1 : TARGET_PAGE_SIZE
;
10268 static bool get_phys_addr_pmsav5(CPUARMState
*env
, uint32_t address
,
10269 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
10270 hwaddr
*phys_ptr
, int *prot
,
10271 ARMMMUFaultInfo
*fi
)
10276 bool is_user
= regime_is_user(env
, mmu_idx
);
10278 if (regime_translation_disabled(env
, mmu_idx
)) {
10279 /* MPU disabled. */
10280 *phys_ptr
= address
;
10281 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
10285 *phys_ptr
= address
;
10286 for (n
= 7; n
>= 0; n
--) {
10287 base
= env
->cp15
.c6_region
[n
];
10288 if ((base
& 1) == 0) {
10291 mask
= 1 << ((base
>> 1) & 0x1f);
10292 /* Keep this shift separate from the above to avoid an
10293 (undefined) << 32. */
10294 mask
= (mask
<< 1) - 1;
10295 if (((base
^ address
) & ~mask
) == 0) {
10300 fi
->type
= ARMFault_Background
;
10304 if (access_type
== MMU_INST_FETCH
) {
10305 mask
= env
->cp15
.pmsav5_insn_ap
;
10307 mask
= env
->cp15
.pmsav5_data_ap
;
10309 mask
= (mask
>> (n
* 4)) & 0xf;
10312 fi
->type
= ARMFault_Permission
;
10317 fi
->type
= ARMFault_Permission
;
10321 *prot
= PAGE_READ
| PAGE_WRITE
;
10326 *prot
|= PAGE_WRITE
;
10330 *prot
= PAGE_READ
| PAGE_WRITE
;
10334 fi
->type
= ARMFault_Permission
;
10344 /* Bad permission. */
10345 fi
->type
= ARMFault_Permission
;
10349 *prot
|= PAGE_EXEC
;
10353 /* Combine either inner or outer cacheability attributes for normal
10354 * memory, according to table D4-42 and pseudocode procedure
10355 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10357 * NB: only stage 1 includes allocation hints (RW bits), leading to
10360 static uint8_t combine_cacheattr_nibble(uint8_t s1
, uint8_t s2
)
10362 if (s1
== 4 || s2
== 4) {
10363 /* non-cacheable has precedence */
10365 } else if (extract32(s1
, 2, 2) == 0 || extract32(s1
, 2, 2) == 2) {
10366 /* stage 1 write-through takes precedence */
10368 } else if (extract32(s2
, 2, 2) == 2) {
10369 /* stage 2 write-through takes precedence, but the allocation hint
10370 * is still taken from stage 1
10372 return (2 << 2) | extract32(s1
, 0, 2);
10373 } else { /* write-back */
10378 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10379 * and CombineS1S2Desc()
10381 * @s1: Attributes from stage 1 walk
10382 * @s2: Attributes from stage 2 walk
10384 static ARMCacheAttrs
combine_cacheattrs(ARMCacheAttrs s1
, ARMCacheAttrs s2
)
10386 uint8_t s1lo
= extract32(s1
.attrs
, 0, 4), s2lo
= extract32(s2
.attrs
, 0, 4);
10387 uint8_t s1hi
= extract32(s1
.attrs
, 4, 4), s2hi
= extract32(s2
.attrs
, 4, 4);
10390 /* Combine shareability attributes (table D4-43) */
10391 if (s1
.shareability
== 2 || s2
.shareability
== 2) {
10392 /* if either are outer-shareable, the result is outer-shareable */
10393 ret
.shareability
= 2;
10394 } else if (s1
.shareability
== 3 || s2
.shareability
== 3) {
10395 /* if either are inner-shareable, the result is inner-shareable */
10396 ret
.shareability
= 3;
10398 /* both non-shareable */
10399 ret
.shareability
= 0;
10402 /* Combine memory type and cacheability attributes */
10403 if (s1hi
== 0 || s2hi
== 0) {
10404 /* Device has precedence over normal */
10405 if (s1lo
== 0 || s2lo
== 0) {
10406 /* nGnRnE has precedence over anything */
10408 } else if (s1lo
== 4 || s2lo
== 4) {
10409 /* non-Reordering has precedence over Reordering */
10410 ret
.attrs
= 4; /* nGnRE */
10411 } else if (s1lo
== 8 || s2lo
== 8) {
10412 /* non-Gathering has precedence over Gathering */
10413 ret
.attrs
= 8; /* nGRE */
10415 ret
.attrs
= 0xc; /* GRE */
10418 /* Any location for which the resultant memory type is any
10419 * type of Device memory is always treated as Outer Shareable.
10421 ret
.shareability
= 2;
10422 } else { /* Normal memory */
10423 /* Outer/inner cacheability combine independently */
10424 ret
.attrs
= combine_cacheattr_nibble(s1hi
, s2hi
) << 4
10425 | combine_cacheattr_nibble(s1lo
, s2lo
);
10427 if (ret
.attrs
== 0x44) {
10428 /* Any location for which the resultant memory type is Normal
10429 * Inner Non-cacheable, Outer Non-cacheable is always treated
10430 * as Outer Shareable.
10432 ret
.shareability
= 2;
10440 /* get_phys_addr - get the physical address for this virtual address
10442 * Find the physical address corresponding to the given virtual address,
10443 * by doing a translation table walk on MMU based systems or using the
10444 * MPU state on MPU based systems.
10446 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10447 * prot and page_size may not be filled in, and the populated fsr value provides
10448 * information on why the translation aborted, in the format of a
10449 * DFSR/IFSR fault register, with the following caveats:
10450 * * we honour the short vs long DFSR format differences.
10451 * * the WnR bit is never set (the caller must do this).
10452 * * for PSMAv5 based systems we don't bother to return a full FSR format
10455 * @env: CPUARMState
10456 * @address: virtual address to get physical address for
10457 * @access_type: 0 for read, 1 for write, 2 for execute
10458 * @mmu_idx: MMU index indicating required translation regime
10459 * @phys_ptr: set to the physical address corresponding to the virtual address
10460 * @attrs: set to the memory transaction attributes to use
10461 * @prot: set to the permissions for the page containing phys_ptr
10462 * @page_size: set to the size of the page containing phys_ptr
10463 * @fi: set to fault info if the translation fails
10464 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10466 bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
10467 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
10468 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
10469 target_ulong
*page_size
,
10470 ARMMMUFaultInfo
*fi
, ARMCacheAttrs
*cacheattrs
)
10472 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
10473 /* Call ourselves recursively to do the stage 1 and then stage 2
10476 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
10480 ARMCacheAttrs cacheattrs2
= {};
10482 ret
= get_phys_addr(env
, address
, access_type
,
10483 stage_1_mmu_idx(mmu_idx
), &ipa
, attrs
,
10484 prot
, page_size
, fi
, cacheattrs
);
10486 /* If S1 fails or S2 is disabled, return early. */
10487 if (ret
|| regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
10492 /* S1 is done. Now do S2 translation. */
10493 ret
= get_phys_addr_lpae(env
, ipa
, access_type
, ARMMMUIdx_S2NS
,
10494 phys_ptr
, attrs
, &s2_prot
,
10496 cacheattrs
!= NULL
? &cacheattrs2
: NULL
);
10498 /* Combine the S1 and S2 perms. */
10501 /* Combine the S1 and S2 cache attributes, if needed */
10502 if (!ret
&& cacheattrs
!= NULL
) {
10503 if (env
->cp15
.hcr_el2
& HCR_DC
) {
10505 * HCR.DC forces the first stage attributes to
10506 * Normal Non-Shareable,
10507 * Inner Write-Back Read-Allocate Write-Allocate,
10508 * Outer Write-Back Read-Allocate Write-Allocate.
10510 cacheattrs
->attrs
= 0xff;
10511 cacheattrs
->shareability
= 0;
10513 *cacheattrs
= combine_cacheattrs(*cacheattrs
, cacheattrs2
);
10519 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10521 mmu_idx
= stage_1_mmu_idx(mmu_idx
);
10525 /* The page table entries may downgrade secure to non-secure, but
10526 * cannot upgrade an non-secure translation regime's attributes
10529 attrs
->secure
= regime_is_secure(env
, mmu_idx
);
10530 attrs
->user
= regime_is_user(env
, mmu_idx
);
10532 /* Fast Context Switch Extension. This doesn't exist at all in v8.
10533 * In v7 and earlier it affects all stage 1 translations.
10535 if (address
< 0x02000000 && mmu_idx
!= ARMMMUIdx_S2NS
10536 && !arm_feature(env
, ARM_FEATURE_V8
)) {
10537 if (regime_el(env
, mmu_idx
) == 3) {
10538 address
+= env
->cp15
.fcseidr_s
;
10540 address
+= env
->cp15
.fcseidr_ns
;
10544 if (arm_feature(env
, ARM_FEATURE_PMSA
)) {
10546 *page_size
= TARGET_PAGE_SIZE
;
10548 if (arm_feature(env
, ARM_FEATURE_V8
)) {
10550 ret
= get_phys_addr_pmsav8(env
, address
, access_type
, mmu_idx
,
10551 phys_ptr
, attrs
, prot
, page_size
, fi
);
10552 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
10554 ret
= get_phys_addr_pmsav7(env
, address
, access_type
, mmu_idx
,
10555 phys_ptr
, prot
, page_size
, fi
);
10558 ret
= get_phys_addr_pmsav5(env
, address
, access_type
, mmu_idx
,
10559 phys_ptr
, prot
, fi
);
10561 qemu_log_mask(CPU_LOG_MMU
, "PMSA MPU lookup for %s at 0x%08" PRIx32
10562 " mmu_idx %u -> %s (prot %c%c%c)\n",
10563 access_type
== MMU_DATA_LOAD
? "reading" :
10564 (access_type
== MMU_DATA_STORE
? "writing" : "execute"),
10565 (uint32_t)address
, mmu_idx
,
10566 ret
? "Miss" : "Hit",
10567 *prot
& PAGE_READ
? 'r' : '-',
10568 *prot
& PAGE_WRITE
? 'w' : '-',
10569 *prot
& PAGE_EXEC
? 'x' : '-');
10574 /* Definitely a real MMU, not an MPU */
10576 if (regime_translation_disabled(env
, mmu_idx
)) {
10577 /* MMU disabled. */
10578 *phys_ptr
= address
;
10579 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
10580 *page_size
= TARGET_PAGE_SIZE
;
10584 if (regime_using_lpae_format(env
, mmu_idx
)) {
10585 return get_phys_addr_lpae(env
, address
, access_type
, mmu_idx
,
10586 phys_ptr
, attrs
, prot
, page_size
,
10588 } else if (regime_sctlr(env
, mmu_idx
) & SCTLR_XP
) {
10589 return get_phys_addr_v6(env
, address
, access_type
, mmu_idx
,
10590 phys_ptr
, attrs
, prot
, page_size
, fi
);
10592 return get_phys_addr_v5(env
, address
, access_type
, mmu_idx
,
10593 phys_ptr
, prot
, page_size
, fi
);
10597 hwaddr
arm_cpu_get_phys_page_attrs_debug(CPUState
*cs
, vaddr addr
,
10600 ARMCPU
*cpu
= ARM_CPU(cs
);
10601 CPUARMState
*env
= &cpu
->env
;
10603 target_ulong page_size
;
10606 ARMMMUFaultInfo fi
= {};
10607 ARMMMUIdx mmu_idx
= arm_mmu_idx(env
);
10609 *attrs
= (MemTxAttrs
) {};
10611 ret
= get_phys_addr(env
, addr
, 0, mmu_idx
, &phys_addr
,
10612 attrs
, &prot
, &page_size
, &fi
, NULL
);
10622 /* Note that signed overflow is undefined in C. The following routines are
10623 careful to use unsigned types where modulo arithmetic is required.
10624 Failure to do so _will_ break on newer gcc. */
10626 /* Signed saturating arithmetic. */
10628 /* Perform 16-bit signed saturating addition. */
10629 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
10634 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
10643 /* Perform 8-bit signed saturating addition. */
10644 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
10649 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
10658 /* Perform 16-bit signed saturating subtraction. */
10659 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
10664 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
10673 /* Perform 8-bit signed saturating subtraction. */
10674 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
10679 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
10688 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10689 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10690 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
10691 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
10694 #include "op_addsub.h"
10696 /* Unsigned saturating arithmetic. */
10697 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
10706 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
10714 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
10723 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
10731 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10732 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10733 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
10734 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
10737 #include "op_addsub.h"
10739 /* Signed modulo arithmetic. */
10740 #define SARITH16(a, b, n, op) do { \
10742 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10743 RESULT(sum, n, 16); \
10745 ge |= 3 << (n * 2); \
10748 #define SARITH8(a, b, n, op) do { \
10750 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10751 RESULT(sum, n, 8); \
10757 #define ADD16(a, b, n) SARITH16(a, b, n, +)
10758 #define SUB16(a, b, n) SARITH16(a, b, n, -)
10759 #define ADD8(a, b, n) SARITH8(a, b, n, +)
10760 #define SUB8(a, b, n) SARITH8(a, b, n, -)
10764 #include "op_addsub.h"
10766 /* Unsigned modulo arithmetic. */
10767 #define ADD16(a, b, n) do { \
10769 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10770 RESULT(sum, n, 16); \
10771 if ((sum >> 16) == 1) \
10772 ge |= 3 << (n * 2); \
10775 #define ADD8(a, b, n) do { \
10777 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10778 RESULT(sum, n, 8); \
10779 if ((sum >> 8) == 1) \
10783 #define SUB16(a, b, n) do { \
10785 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10786 RESULT(sum, n, 16); \
10787 if ((sum >> 16) == 0) \
10788 ge |= 3 << (n * 2); \
10791 #define SUB8(a, b, n) do { \
10793 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10794 RESULT(sum, n, 8); \
10795 if ((sum >> 8) == 0) \
10802 #include "op_addsub.h"
10804 /* Halved signed arithmetic. */
10805 #define ADD16(a, b, n) \
10806 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10807 #define SUB16(a, b, n) \
10808 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10809 #define ADD8(a, b, n) \
10810 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10811 #define SUB8(a, b, n) \
10812 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10815 #include "op_addsub.h"
10817 /* Halved unsigned arithmetic. */
10818 #define ADD16(a, b, n) \
10819 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10820 #define SUB16(a, b, n) \
10821 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10822 #define ADD8(a, b, n) \
10823 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10824 #define SUB8(a, b, n) \
10825 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10828 #include "op_addsub.h"
10830 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
10838 /* Unsigned sum of absolute byte differences. */
10839 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
10842 sum
= do_usad(a
, b
);
10843 sum
+= do_usad(a
>> 8, b
>> 8);
10844 sum
+= do_usad(a
>> 16, b
>>16);
10845 sum
+= do_usad(a
>> 24, b
>> 24);
10849 /* For ARMv6 SEL instruction. */
10850 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
10862 mask
|= 0xff000000;
10863 return (a
& mask
) | (b
& ~mask
);
10867 * The upper bytes of val (above the number specified by 'bytes') must have
10868 * been zeroed out by the caller.
10870 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
10874 stl_le_p(buf
, val
);
10876 /* zlib crc32 converts the accumulator and output to one's complement. */
10877 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
10880 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
10884 stl_le_p(buf
, val
);
10886 /* Linux crc32c converts the output to one's complement. */
10887 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;
10890 /* Return the exception level to which FP-disabled exceptions should
10891 * be taken, or 0 if FP is enabled.
10893 int fp_exception_el(CPUARMState
*env
, int cur_el
)
10895 #ifndef CONFIG_USER_ONLY
10898 /* CPACR and the CPTR registers don't exist before v6, so FP is
10899 * always accessible
10901 if (!arm_feature(env
, ARM_FEATURE_V6
)) {
10905 if (arm_feature(env
, ARM_FEATURE_M
)) {
10906 /* CPACR can cause a NOCP UsageFault taken to current security state */
10907 if (!v7m_cpacr_pass(env
, env
->v7m
.secure
, cur_el
!= 0)) {
10911 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
) && !env
->v7m
.secure
) {
10912 if (!extract32(env
->v7m
.nsacr
, 10, 1)) {
10913 /* FP insns cause a NOCP UsageFault taken to Secure */
10921 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
10922 * 0, 2 : trap EL0 and EL1/PL1 accesses
10923 * 1 : trap only EL0 accesses
10924 * 3 : trap no accesses
10926 fpen
= extract32(env
->cp15
.cpacr_el1
, 20, 2);
10930 if (cur_el
== 0 || cur_el
== 1) {
10931 /* Trap to PL1, which might be EL1 or EL3 */
10932 if (arm_is_secure(env
) && !arm_el_is_aa64(env
, 3)) {
10937 if (cur_el
== 3 && !is_a64(env
)) {
10938 /* Secure PL1 running at EL3 */
10952 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
10953 * to control non-secure access to the FPU. It doesn't have any
10954 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
10956 if ((arm_feature(env
, ARM_FEATURE_EL3
) && !arm_el_is_aa64(env
, 3) &&
10957 cur_el
<= 2 && !arm_is_secure_below_el3(env
))) {
10958 if (!extract32(env
->cp15
.nsacr
, 10, 1)) {
10959 /* FP insns act as UNDEF */
10960 return cur_el
== 2 ? 2 : 1;
10964 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
10965 * check because zero bits in the registers mean "don't trap".
10968 /* CPTR_EL2 : present in v7VE or v8 */
10969 if (cur_el
<= 2 && extract32(env
->cp15
.cptr_el
[2], 10, 1)
10970 && !arm_is_secure_below_el3(env
)) {
10971 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
10975 /* CPTR_EL3 : present in v8 */
10976 if (extract32(env
->cp15
.cptr_el
[3], 10, 1)) {
10977 /* Trap all FP ops to EL3 */
10985 ARMMMUIdx
arm_v7m_mmu_idx_for_secstate(CPUARMState
*env
, bool secstate
)
10987 g_assert_not_reached();
10991 ARMMMUIdx
arm_mmu_idx(CPUARMState
*env
)
10995 if (arm_feature(env
, ARM_FEATURE_M
)) {
10996 return arm_v7m_mmu_idx_for_secstate(env
, env
->v7m
.secure
);
10999 el
= arm_current_el(env
);
11000 if (el
< 2 && arm_is_secure_below_el3(env
)) {
11001 return ARMMMUIdx_S1SE0
+ el
;
11003 return ARMMMUIdx_S12NSE0
+ el
;
11007 int cpu_mmu_index(CPUARMState
*env
, bool ifetch
)
11009 return arm_to_core_mmu_idx(arm_mmu_idx(env
));
11012 #ifndef CONFIG_USER_ONLY
11013 ARMMMUIdx
arm_stage1_mmu_idx(CPUARMState
*env
)
11015 return stage_1_mmu_idx(arm_mmu_idx(env
));
11019 void cpu_get_tb_cpu_state(CPUARMState
*env
, target_ulong
*pc
,
11020 target_ulong
*cs_base
, uint32_t *pflags
)
11022 ARMMMUIdx mmu_idx
= arm_mmu_idx(env
);
11023 int current_el
= arm_current_el(env
);
11024 int fp_el
= fp_exception_el(env
, current_el
);
11025 uint32_t flags
= 0;
11028 ARMCPU
*cpu
= env_archcpu(env
);
11032 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, AARCH64_STATE
, 1);
11034 /* Get control bits for tagged addresses. */
11036 ARMMMUIdx stage1
= stage_1_mmu_idx(mmu_idx
);
11037 ARMVAParameters p0
= aa64_va_parameters_both(env
, 0, stage1
);
11040 /* FIXME: ARMv8.1-VHE S2 translation regime. */
11041 if (regime_el(env
, stage1
) < 2) {
11042 ARMVAParameters p1
= aa64_va_parameters_both(env
, -1, stage1
);
11043 tbid
= (p1
.tbi
<< 1) | p0
.tbi
;
11044 tbii
= tbid
& ~((p1
.tbid
<< 1) | p0
.tbid
);
11047 tbii
= tbid
& !p0
.tbid
;
11050 flags
= FIELD_DP32(flags
, TBFLAG_A64
, TBII
, tbii
);
11051 flags
= FIELD_DP32(flags
, TBFLAG_A64
, TBID
, tbid
);
11054 if (cpu_isar_feature(aa64_sve
, cpu
)) {
11055 int sve_el
= sve_exception_el(env
, current_el
);
11058 /* If SVE is disabled, but FP is enabled,
11059 * then the effective len is 0.
11061 if (sve_el
!= 0 && fp_el
== 0) {
11064 zcr_len
= sve_zcr_len_for_el(env
, current_el
);
11066 flags
= FIELD_DP32(flags
, TBFLAG_A64
, SVEEXC_EL
, sve_el
);
11067 flags
= FIELD_DP32(flags
, TBFLAG_A64
, ZCR_LEN
, zcr_len
);
11070 sctlr
= arm_sctlr(env
, current_el
);
11072 if (cpu_isar_feature(aa64_pauth
, cpu
)) {
11074 * In order to save space in flags, we record only whether
11075 * pauth is "inactive", meaning all insns are implemented as
11076 * a nop, or "active" when some action must be performed.
11077 * The decision of which action to take is left to a helper.
11079 if (sctlr
& (SCTLR_EnIA
| SCTLR_EnIB
| SCTLR_EnDA
| SCTLR_EnDB
)) {
11080 flags
= FIELD_DP32(flags
, TBFLAG_A64
, PAUTH_ACTIVE
, 1);
11084 if (cpu_isar_feature(aa64_bti
, cpu
)) {
11085 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
11086 if (sctlr
& (current_el
== 0 ? SCTLR_BT0
: SCTLR_BT1
)) {
11087 flags
= FIELD_DP32(flags
, TBFLAG_A64
, BT
, 1);
11089 flags
= FIELD_DP32(flags
, TBFLAG_A64
, BTYPE
, env
->btype
);
11092 *pc
= env
->regs
[15];
11093 flags
= FIELD_DP32(flags
, TBFLAG_A32
, THUMB
, env
->thumb
);
11094 flags
= FIELD_DP32(flags
, TBFLAG_A32
, VECLEN
, env
->vfp
.vec_len
);
11095 flags
= FIELD_DP32(flags
, TBFLAG_A32
, VECSTRIDE
, env
->vfp
.vec_stride
);
11096 flags
= FIELD_DP32(flags
, TBFLAG_A32
, CONDEXEC
, env
->condexec_bits
);
11097 flags
= FIELD_DP32(flags
, TBFLAG_A32
, SCTLR_B
, arm_sctlr_b(env
));
11098 flags
= FIELD_DP32(flags
, TBFLAG_A32
, NS
, !access_secure_reg(env
));
11099 if (env
->vfp
.xregs
[ARM_VFP_FPEXC
] & (1 << 30)
11100 || arm_el_is_aa64(env
, 1) || arm_feature(env
, ARM_FEATURE_M
)) {
11101 flags
= FIELD_DP32(flags
, TBFLAG_A32
, VFPEN
, 1);
11103 /* Note that XSCALE_CPAR shares bits with VECSTRIDE */
11104 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
11105 flags
= FIELD_DP32(flags
, TBFLAG_A32
,
11106 XSCALE_CPAR
, env
->cp15
.c15_cpar
);
11110 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, MMUIDX
, arm_to_core_mmu_idx(mmu_idx
));
11112 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
11113 * states defined in the ARM ARM for software singlestep:
11114 * SS_ACTIVE PSTATE.SS State
11115 * 0 x Inactive (the TB flag for SS is always 0)
11116 * 1 0 Active-pending
11117 * 1 1 Active-not-pending
11119 if (arm_singlestep_active(env
)) {
11120 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, SS_ACTIVE
, 1);
11122 if (env
->pstate
& PSTATE_SS
) {
11123 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, PSTATE_SS
, 1);
11126 if (env
->uncached_cpsr
& PSTATE_SS
) {
11127 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, PSTATE_SS
, 1);
11131 if (arm_cpu_data_is_big_endian(env
)) {
11132 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, BE_DATA
, 1);
11134 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, FPEXC_EL
, fp_el
);
11136 if (arm_v7m_is_handler_mode(env
)) {
11137 flags
= FIELD_DP32(flags
, TBFLAG_A32
, HANDLER
, 1);
11140 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
11141 * suppressing them because the requested execution priority is less than 0.
11143 if (arm_feature(env
, ARM_FEATURE_V8
) &&
11144 arm_feature(env
, ARM_FEATURE_M
) &&
11145 !((mmu_idx
& ARM_MMU_IDX_M_NEGPRI
) &&
11146 (env
->v7m
.ccr
[env
->v7m
.secure
] & R_V7M_CCR_STKOFHFNMIGN_MASK
))) {
11147 flags
= FIELD_DP32(flags
, TBFLAG_A32
, STACKCHECK
, 1);
11150 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
) &&
11151 FIELD_EX32(env
->v7m
.fpccr
[M_REG_S
], V7M_FPCCR
, S
) != env
->v7m
.secure
) {
11152 flags
= FIELD_DP32(flags
, TBFLAG_A32
, FPCCR_S_WRONG
, 1);
11155 if (arm_feature(env
, ARM_FEATURE_M
) &&
11156 (env
->v7m
.fpccr
[env
->v7m
.secure
] & R_V7M_FPCCR_ASPEN_MASK
) &&
11157 (!(env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_FPCA_MASK
) ||
11158 (env
->v7m
.secure
&&
11159 !(env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_SFPA_MASK
)))) {
11161 * ASPEN is set, but FPCA/SFPA indicate that there is no active
11162 * FP context; we must create a new FP context before executing
11165 flags
= FIELD_DP32(flags
, TBFLAG_A32
, NEW_FP_CTXT_NEEDED
, 1);
11168 if (arm_feature(env
, ARM_FEATURE_M
)) {
11169 bool is_secure
= env
->v7m
.fpccr
[M_REG_S
] & R_V7M_FPCCR_S_MASK
;
11171 if (env
->v7m
.fpccr
[is_secure
] & R_V7M_FPCCR_LSPACT_MASK
) {
11172 flags
= FIELD_DP32(flags
, TBFLAG_A32
, LSPACT
, 1);
11176 if (!arm_feature(env
, ARM_FEATURE_M
)) {
11177 int target_el
= arm_debug_target_el(env
);
11179 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, DEBUG_TARGET_EL
, target_el
);
11186 #ifdef TARGET_AARCH64
11188 * The manual says that when SVE is enabled and VQ is widened the
11189 * implementation is allowed to zero the previously inaccessible
11190 * portion of the registers. The corollary to that is that when
11191 * SVE is enabled and VQ is narrowed we are also allowed to zero
11192 * the now inaccessible portion of the registers.
11194 * The intent of this is that no predicate bit beyond VQ is ever set.
11195 * Which means that some operations on predicate registers themselves
11196 * may operate on full uint64_t or even unrolled across the maximum
11197 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
11198 * may well be cheaper than conditionals to restrict the operation
11199 * to the relevant portion of a uint16_t[16].
11201 void aarch64_sve_narrow_vq(CPUARMState
*env
, unsigned vq
)
11206 assert(vq
>= 1 && vq
<= ARM_MAX_VQ
);
11207 assert(vq
<= env_archcpu(env
)->sve_max_vq
);
11209 /* Zap the high bits of the zregs. */
11210 for (i
= 0; i
< 32; i
++) {
11211 memset(&env
->vfp
.zregs
[i
].d
[2 * vq
], 0, 16 * (ARM_MAX_VQ
- vq
));
11214 /* Zap the high bits of the pregs and ffr. */
11217 pmask
= ~(-1ULL << (16 * (vq
& 3)));
11219 for (j
= vq
/ 4; j
< ARM_MAX_VQ
/ 4; j
++) {
11220 for (i
= 0; i
< 17; ++i
) {
11221 env
->vfp
.pregs
[i
].p
[j
] &= pmask
;
11228 * Notice a change in SVE vector size when changing EL.
11230 void aarch64_sve_change_el(CPUARMState
*env
, int old_el
,
11231 int new_el
, bool el0_a64
)
11233 ARMCPU
*cpu
= env_archcpu(env
);
11234 int old_len
, new_len
;
11235 bool old_a64
, new_a64
;
11237 /* Nothing to do if no SVE. */
11238 if (!cpu_isar_feature(aa64_sve
, cpu
)) {
11242 /* Nothing to do if FP is disabled in either EL. */
11243 if (fp_exception_el(env
, old_el
) || fp_exception_el(env
, new_el
)) {
11248 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
11249 * at ELx, or not available because the EL is in AArch32 state, then
11250 * for all purposes other than a direct read, the ZCR_ELx.LEN field
11251 * has an effective value of 0".
11253 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
11254 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
11255 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
11256 * we already have the correct register contents when encountering the
11257 * vq0->vq0 transition between EL0->EL1.
11259 old_a64
= old_el
? arm_el_is_aa64(env
, old_el
) : el0_a64
;
11260 old_len
= (old_a64
&& !sve_exception_el(env
, old_el
)
11261 ? sve_zcr_len_for_el(env
, old_el
) : 0);
11262 new_a64
= new_el
? arm_el_is_aa64(env
, new_el
) : el0_a64
;
11263 new_len
= (new_a64
&& !sve_exception_el(env
, new_el
)
11264 ? sve_zcr_len_for_el(env
, new_el
) : 0);
11266 /* When changing vector length, clear inaccessible state. */
11267 if (new_len
< old_len
) {
11268 aarch64_sve_narrow_vq(env
, new_len
+ 1);