fdc: make optional
[qemu/mdroth.git] / cpu-exec.c
blobb03b3a749ae817b8267b93559cbca966f842644d
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "exec.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "kvm.h"
24 #include "qemu-barrier.h"
26 #if !defined(CONFIG_SOFTMMU)
27 #undef EAX
28 #undef ECX
29 #undef EDX
30 #undef EBX
31 #undef ESP
32 #undef EBP
33 #undef ESI
34 #undef EDI
35 #undef EIP
36 #include <signal.h>
37 #ifdef __linux__
38 #include <sys/ucontext.h>
39 #endif
40 #endif
42 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
43 // Work around ugly bugs in glibc that mangle global register contents
44 #undef env
45 #define env cpu_single_env
46 #endif
48 int tb_invalidated_flag;
50 //#define CONFIG_DEBUG_EXEC
51 //#define DEBUG_SIGNAL
53 int qemu_cpu_has_work(CPUState *env)
55 return cpu_has_work(env);
58 void cpu_loop_exit(void)
60 env->current_tb = NULL;
61 longjmp(env->jmp_env, 1);
64 /* exit the current TB from a signal handler. The host registers are
65 restored in a state compatible with the CPU emulator
67 void cpu_resume_from_signal(CPUState *env1, void *puc)
69 #if !defined(CONFIG_SOFTMMU)
70 #ifdef __linux__
71 struct ucontext *uc = puc;
72 #elif defined(__OpenBSD__)
73 struct sigcontext *uc = puc;
74 #endif
75 #endif
77 env = env1;
79 /* XXX: restore cpu registers saved in host registers */
81 #if !defined(CONFIG_SOFTMMU)
82 if (puc) {
83 /* XXX: use siglongjmp ? */
84 #ifdef __linux__
85 #ifdef __ia64
86 sigprocmask(SIG_SETMASK, (sigset_t *)&uc->uc_sigmask, NULL);
87 #else
88 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
89 #endif
90 #elif defined(__OpenBSD__)
91 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
92 #endif
94 #endif
95 env->exception_index = -1;
96 longjmp(env->jmp_env, 1);
99 /* Execute the code without caching the generated code. An interpreter
100 could be used if available. */
101 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
103 unsigned long next_tb;
104 TranslationBlock *tb;
106 /* Should never happen.
107 We only end up here when an existing TB is too long. */
108 if (max_cycles > CF_COUNT_MASK)
109 max_cycles = CF_COUNT_MASK;
111 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
112 max_cycles);
113 env->current_tb = tb;
114 /* execute the generated code */
115 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
116 env->current_tb = NULL;
118 if ((next_tb & 3) == 2) {
119 /* Restore PC. This may happen if async event occurs before
120 the TB starts executing. */
121 cpu_pc_from_tb(env, tb);
123 tb_phys_invalidate(tb, -1);
124 tb_free(tb);
127 static TranslationBlock *tb_find_slow(target_ulong pc,
128 target_ulong cs_base,
129 uint64_t flags)
131 TranslationBlock *tb, **ptb1;
132 unsigned int h;
133 tb_page_addr_t phys_pc, phys_page1, phys_page2;
134 target_ulong virt_page2;
136 tb_invalidated_flag = 0;
138 /* find translated block using physical mappings */
139 phys_pc = get_page_addr_code(env, pc);
140 phys_page1 = phys_pc & TARGET_PAGE_MASK;
141 phys_page2 = -1;
142 h = tb_phys_hash_func(phys_pc);
143 ptb1 = &tb_phys_hash[h];
144 for(;;) {
145 tb = *ptb1;
146 if (!tb)
147 goto not_found;
148 if (tb->pc == pc &&
149 tb->page_addr[0] == phys_page1 &&
150 tb->cs_base == cs_base &&
151 tb->flags == flags) {
152 /* check next page if needed */
153 if (tb->page_addr[1] != -1) {
154 virt_page2 = (pc & TARGET_PAGE_MASK) +
155 TARGET_PAGE_SIZE;
156 phys_page2 = get_page_addr_code(env, virt_page2);
157 if (tb->page_addr[1] == phys_page2)
158 goto found;
159 } else {
160 goto found;
163 ptb1 = &tb->phys_hash_next;
165 not_found:
166 /* if no translated code available, then translate it now */
167 tb = tb_gen_code(env, pc, cs_base, flags, 0);
169 found:
170 /* Move the last found TB to the head of the list */
171 if (likely(*ptb1)) {
172 *ptb1 = tb->phys_hash_next;
173 tb->phys_hash_next = tb_phys_hash[h];
174 tb_phys_hash[h] = tb;
176 /* we add the TB in the virtual pc hash table */
177 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
178 return tb;
181 static inline TranslationBlock *tb_find_fast(void)
183 TranslationBlock *tb;
184 target_ulong cs_base, pc;
185 int flags;
187 /* we record a subset of the CPU state. It will
188 always be the same before a given translated block
189 is executed. */
190 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
191 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
192 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
193 tb->flags != flags)) {
194 tb = tb_find_slow(pc, cs_base, flags);
196 return tb;
199 /* main execution loop */
201 volatile sig_atomic_t exit_request;
203 int cpu_exec(CPUState *env1)
205 volatile host_reg_t saved_env_reg;
206 int ret, interrupt_request;
207 TranslationBlock *tb;
208 uint8_t *tc_ptr;
209 unsigned long next_tb;
211 if (cpu_halted(env1) == EXCP_HALTED)
212 return EXCP_HALTED;
214 cpu_single_env = env1;
216 /* the access to env below is actually saving the global register's
217 value, so that files not including target-xyz/exec.h are free to
218 use it. */
219 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg) != sizeof (env));
220 saved_env_reg = (host_reg_t) env;
221 barrier();
222 env = env1;
224 if (unlikely(exit_request)) {
225 env->exit_request = 1;
228 #if defined(TARGET_I386)
229 /* put eflags in CPU temporary format */
230 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
231 DF = 1 - (2 * ((env->eflags >> 10) & 1));
232 CC_OP = CC_OP_EFLAGS;
233 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
234 #elif defined(TARGET_SPARC)
235 #elif defined(TARGET_M68K)
236 env->cc_op = CC_OP_FLAGS;
237 env->cc_dest = env->sr & 0xf;
238 env->cc_x = (env->sr >> 4) & 1;
239 #elif defined(TARGET_ALPHA)
240 #elif defined(TARGET_ARM)
241 #elif defined(TARGET_PPC)
242 #elif defined(TARGET_MICROBLAZE)
243 #elif defined(TARGET_MIPS)
244 #elif defined(TARGET_SH4)
245 #elif defined(TARGET_CRIS)
246 #elif defined(TARGET_S390X)
247 /* XXXXX */
248 #else
249 #error unsupported target CPU
250 #endif
251 env->exception_index = -1;
253 /* prepare setjmp context for exception handling */
254 for(;;) {
255 if (setjmp(env->jmp_env) == 0) {
256 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
257 #undef env
258 env = cpu_single_env;
259 #define env cpu_single_env
260 #endif
261 /* if an exception is pending, we execute it here */
262 if (env->exception_index >= 0) {
263 if (env->exception_index >= EXCP_INTERRUPT) {
264 /* exit request from the cpu execution loop */
265 ret = env->exception_index;
266 break;
267 } else {
268 #if defined(CONFIG_USER_ONLY)
269 /* if user mode only, we simulate a fake exception
270 which will be handled outside the cpu execution
271 loop */
272 #if defined(TARGET_I386)
273 do_interrupt_user(env->exception_index,
274 env->exception_is_int,
275 env->error_code,
276 env->exception_next_eip);
277 /* successfully delivered */
278 env->old_exception = -1;
279 #endif
280 ret = env->exception_index;
281 break;
282 #else
283 #if defined(TARGET_I386)
284 /* simulate a real cpu exception. On i386, it can
285 trigger new exceptions, but we do not handle
286 double or triple faults yet. */
287 do_interrupt(env->exception_index,
288 env->exception_is_int,
289 env->error_code,
290 env->exception_next_eip, 0);
291 /* successfully delivered */
292 env->old_exception = -1;
293 #elif defined(TARGET_PPC)
294 do_interrupt(env);
295 #elif defined(TARGET_MICROBLAZE)
296 do_interrupt(env);
297 #elif defined(TARGET_MIPS)
298 do_interrupt(env);
299 #elif defined(TARGET_SPARC)
300 do_interrupt(env);
301 #elif defined(TARGET_ARM)
302 do_interrupt(env);
303 #elif defined(TARGET_SH4)
304 do_interrupt(env);
305 #elif defined(TARGET_ALPHA)
306 do_interrupt(env);
307 #elif defined(TARGET_CRIS)
308 do_interrupt(env);
309 #elif defined(TARGET_M68K)
310 do_interrupt(0);
311 #endif
312 env->exception_index = -1;
313 #endif
317 next_tb = 0; /* force lookup of first TB */
318 for(;;) {
319 interrupt_request = env->interrupt_request;
320 if (unlikely(interrupt_request)) {
321 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
322 /* Mask out external interrupts for this step. */
323 interrupt_request &= ~(CPU_INTERRUPT_HARD |
324 CPU_INTERRUPT_FIQ |
325 CPU_INTERRUPT_SMI |
326 CPU_INTERRUPT_NMI);
328 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
329 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
330 env->exception_index = EXCP_DEBUG;
331 cpu_loop_exit();
333 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
334 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
335 defined(TARGET_MICROBLAZE)
336 if (interrupt_request & CPU_INTERRUPT_HALT) {
337 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
338 env->halted = 1;
339 env->exception_index = EXCP_HLT;
340 cpu_loop_exit();
342 #endif
343 #if defined(TARGET_I386)
344 if (interrupt_request & CPU_INTERRUPT_INIT) {
345 svm_check_intercept(SVM_EXIT_INIT);
346 do_cpu_init(env);
347 env->exception_index = EXCP_HALTED;
348 cpu_loop_exit();
349 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
350 do_cpu_sipi(env);
351 } else if (env->hflags2 & HF2_GIF_MASK) {
352 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
353 !(env->hflags & HF_SMM_MASK)) {
354 svm_check_intercept(SVM_EXIT_SMI);
355 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
356 do_smm_enter();
357 next_tb = 0;
358 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
359 !(env->hflags2 & HF2_NMI_MASK)) {
360 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
361 env->hflags2 |= HF2_NMI_MASK;
362 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
363 next_tb = 0;
364 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
365 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
366 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
367 next_tb = 0;
368 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
369 (((env->hflags2 & HF2_VINTR_MASK) &&
370 (env->hflags2 & HF2_HIF_MASK)) ||
371 (!(env->hflags2 & HF2_VINTR_MASK) &&
372 (env->eflags & IF_MASK &&
373 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
374 int intno;
375 svm_check_intercept(SVM_EXIT_INTR);
376 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
377 intno = cpu_get_pic_interrupt(env);
378 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
379 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
380 #undef env
381 env = cpu_single_env;
382 #define env cpu_single_env
383 #endif
384 do_interrupt(intno, 0, 0, 0, 1);
385 /* ensure that no TB jump will be modified as
386 the program flow was changed */
387 next_tb = 0;
388 #if !defined(CONFIG_USER_ONLY)
389 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
390 (env->eflags & IF_MASK) &&
391 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
392 int intno;
393 /* FIXME: this should respect TPR */
394 svm_check_intercept(SVM_EXIT_VINTR);
395 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
396 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
397 do_interrupt(intno, 0, 0, 0, 1);
398 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
399 next_tb = 0;
400 #endif
403 #elif defined(TARGET_PPC)
404 #if 0
405 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
406 cpu_reset(env);
408 #endif
409 if (interrupt_request & CPU_INTERRUPT_HARD) {
410 ppc_hw_interrupt(env);
411 if (env->pending_interrupts == 0)
412 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
413 next_tb = 0;
415 #elif defined(TARGET_MICROBLAZE)
416 if ((interrupt_request & CPU_INTERRUPT_HARD)
417 && (env->sregs[SR_MSR] & MSR_IE)
418 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
419 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
420 env->exception_index = EXCP_IRQ;
421 do_interrupt(env);
422 next_tb = 0;
424 #elif defined(TARGET_MIPS)
425 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
426 cpu_mips_hw_interrupts_pending(env)) {
427 /* Raise it */
428 env->exception_index = EXCP_EXT_INTERRUPT;
429 env->error_code = 0;
430 do_interrupt(env);
431 next_tb = 0;
433 #elif defined(TARGET_SPARC)
434 if (interrupt_request & CPU_INTERRUPT_HARD) {
435 if (cpu_interrupts_enabled(env) &&
436 env->interrupt_index > 0) {
437 int pil = env->interrupt_index & 0xf;
438 int type = env->interrupt_index & 0xf0;
440 if (((type == TT_EXTINT) &&
441 cpu_pil_allowed(env, pil)) ||
442 type != TT_EXTINT) {
443 env->exception_index = env->interrupt_index;
444 do_interrupt(env);
445 next_tb = 0;
448 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
449 //do_interrupt(0, 0, 0, 0, 0);
450 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
452 #elif defined(TARGET_ARM)
453 if (interrupt_request & CPU_INTERRUPT_FIQ
454 && !(env->uncached_cpsr & CPSR_F)) {
455 env->exception_index = EXCP_FIQ;
456 do_interrupt(env);
457 next_tb = 0;
459 /* ARMv7-M interrupt return works by loading a magic value
460 into the PC. On real hardware the load causes the
461 return to occur. The qemu implementation performs the
462 jump normally, then does the exception return when the
463 CPU tries to execute code at the magic address.
464 This will cause the magic PC value to be pushed to
465 the stack if an interrupt occured at the wrong time.
466 We avoid this by disabling interrupts when
467 pc contains a magic address. */
468 if (interrupt_request & CPU_INTERRUPT_HARD
469 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
470 || !(env->uncached_cpsr & CPSR_I))) {
471 env->exception_index = EXCP_IRQ;
472 do_interrupt(env);
473 next_tb = 0;
475 #elif defined(TARGET_SH4)
476 if (interrupt_request & CPU_INTERRUPT_HARD) {
477 do_interrupt(env);
478 next_tb = 0;
480 #elif defined(TARGET_ALPHA)
481 if (interrupt_request & CPU_INTERRUPT_HARD) {
482 do_interrupt(env);
483 next_tb = 0;
485 #elif defined(TARGET_CRIS)
486 if (interrupt_request & CPU_INTERRUPT_HARD
487 && (env->pregs[PR_CCS] & I_FLAG)
488 && !env->locked_irq) {
489 env->exception_index = EXCP_IRQ;
490 do_interrupt(env);
491 next_tb = 0;
493 if (interrupt_request & CPU_INTERRUPT_NMI
494 && (env->pregs[PR_CCS] & M_FLAG)) {
495 env->exception_index = EXCP_NMI;
496 do_interrupt(env);
497 next_tb = 0;
499 #elif defined(TARGET_M68K)
500 if (interrupt_request & CPU_INTERRUPT_HARD
501 && ((env->sr & SR_I) >> SR_I_SHIFT)
502 < env->pending_level) {
503 /* Real hardware gets the interrupt vector via an
504 IACK cycle at this point. Current emulated
505 hardware doesn't rely on this, so we
506 provide/save the vector when the interrupt is
507 first signalled. */
508 env->exception_index = env->pending_vector;
509 do_interrupt(1);
510 next_tb = 0;
512 #endif
513 /* Don't use the cached interupt_request value,
514 do_interrupt may have updated the EXITTB flag. */
515 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
516 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
517 /* ensure that no TB jump will be modified as
518 the program flow was changed */
519 next_tb = 0;
522 if (unlikely(env->exit_request)) {
523 env->exit_request = 0;
524 env->exception_index = EXCP_INTERRUPT;
525 cpu_loop_exit();
527 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
528 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
529 /* restore flags in standard format */
530 #if defined(TARGET_I386)
531 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
532 log_cpu_state(env, X86_DUMP_CCOP);
533 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
534 #elif defined(TARGET_M68K)
535 cpu_m68k_flush_flags(env, env->cc_op);
536 env->cc_op = CC_OP_FLAGS;
537 env->sr = (env->sr & 0xffe0)
538 | env->cc_dest | (env->cc_x << 4);
539 log_cpu_state(env, 0);
540 #else
541 log_cpu_state(env, 0);
542 #endif
544 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
545 spin_lock(&tb_lock);
546 tb = tb_find_fast();
547 /* Note: we do it here to avoid a gcc bug on Mac OS X when
548 doing it in tb_find_slow */
549 if (tb_invalidated_flag) {
550 /* as some TB could have been invalidated because
551 of memory exceptions while generating the code, we
552 must recompute the hash index here */
553 next_tb = 0;
554 tb_invalidated_flag = 0;
556 #ifdef CONFIG_DEBUG_EXEC
557 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
558 (long)tb->tc_ptr, tb->pc,
559 lookup_symbol(tb->pc));
560 #endif
561 /* see if we can patch the calling TB. When the TB
562 spans two pages, we cannot safely do a direct
563 jump. */
564 if (next_tb != 0 && tb->page_addr[1] == -1) {
565 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
567 spin_unlock(&tb_lock);
569 /* cpu_interrupt might be called while translating the
570 TB, but before it is linked into a potentially
571 infinite loop and becomes env->current_tb. Avoid
572 starting execution if there is a pending interrupt. */
573 env->current_tb = tb;
574 barrier();
575 if (likely(!env->exit_request)) {
576 tc_ptr = tb->tc_ptr;
577 /* execute the generated code */
578 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
579 #undef env
580 env = cpu_single_env;
581 #define env cpu_single_env
582 #endif
583 next_tb = tcg_qemu_tb_exec(tc_ptr);
584 if ((next_tb & 3) == 2) {
585 /* Instruction counter expired. */
586 int insns_left;
587 tb = (TranslationBlock *)(long)(next_tb & ~3);
588 /* Restore PC. */
589 cpu_pc_from_tb(env, tb);
590 insns_left = env->icount_decr.u32;
591 if (env->icount_extra && insns_left >= 0) {
592 /* Refill decrementer and continue execution. */
593 env->icount_extra += insns_left;
594 if (env->icount_extra > 0xffff) {
595 insns_left = 0xffff;
596 } else {
597 insns_left = env->icount_extra;
599 env->icount_extra -= insns_left;
600 env->icount_decr.u16.low = insns_left;
601 } else {
602 if (insns_left > 0) {
603 /* Execute remaining instructions. */
604 cpu_exec_nocache(insns_left, tb);
606 env->exception_index = EXCP_INTERRUPT;
607 next_tb = 0;
608 cpu_loop_exit();
612 env->current_tb = NULL;
613 /* reset soft MMU for next block (it can currently
614 only be set by a memory fault) */
615 } /* for(;;) */
617 } /* for(;;) */
620 #if defined(TARGET_I386)
621 /* restore flags in standard format */
622 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
623 #elif defined(TARGET_ARM)
624 /* XXX: Save/restore host fpu exception state?. */
625 #elif defined(TARGET_SPARC)
626 #elif defined(TARGET_PPC)
627 #elif defined(TARGET_M68K)
628 cpu_m68k_flush_flags(env, env->cc_op);
629 env->cc_op = CC_OP_FLAGS;
630 env->sr = (env->sr & 0xffe0)
631 | env->cc_dest | (env->cc_x << 4);
632 #elif defined(TARGET_MICROBLAZE)
633 #elif defined(TARGET_MIPS)
634 #elif defined(TARGET_SH4)
635 #elif defined(TARGET_ALPHA)
636 #elif defined(TARGET_CRIS)
637 #elif defined(TARGET_S390X)
638 /* XXXXX */
639 #else
640 #error unsupported target CPU
641 #endif
643 /* restore global registers */
644 barrier();
645 env = (void *) saved_env_reg;
647 /* fail safe : never use cpu_single_env outside cpu_exec() */
648 cpu_single_env = NULL;
649 return ret;
652 /* must only be called from the generated code as an exception can be
653 generated */
654 void tb_invalidate_page_range(target_ulong start, target_ulong end)
656 /* XXX: cannot enable it yet because it yields to MMU exception
657 where NIP != read address on PowerPC */
658 #if 0
659 target_ulong phys_addr;
660 phys_addr = get_phys_addr_code(env, start);
661 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
662 #endif
665 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
667 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
669 CPUX86State *saved_env;
671 saved_env = env;
672 env = s;
673 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
674 selector &= 0xffff;
675 cpu_x86_load_seg_cache(env, seg_reg, selector,
676 (selector << 4), 0xffff, 0);
677 } else {
678 helper_load_seg(seg_reg, selector);
680 env = saved_env;
683 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
685 CPUX86State *saved_env;
687 saved_env = env;
688 env = s;
690 helper_fsave(ptr, data32);
692 env = saved_env;
695 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
697 CPUX86State *saved_env;
699 saved_env = env;
700 env = s;
702 helper_frstor(ptr, data32);
704 env = saved_env;
707 #endif /* TARGET_I386 */
709 #if !defined(CONFIG_SOFTMMU)
711 #if defined(TARGET_I386)
712 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
713 #else
714 #define EXCEPTION_ACTION cpu_loop_exit()
715 #endif
717 /* 'pc' is the host PC at which the exception was raised. 'address' is
718 the effective address of the memory exception. 'is_write' is 1 if a
719 write caused the exception and otherwise 0'. 'old_set' is the
720 signal set which should be restored */
721 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
722 int is_write, sigset_t *old_set,
723 void *puc)
725 TranslationBlock *tb;
726 int ret;
728 if (cpu_single_env)
729 env = cpu_single_env; /* XXX: find a correct solution for multithread */
730 #if defined(DEBUG_SIGNAL)
731 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
732 pc, address, is_write, *(unsigned long *)old_set);
733 #endif
734 /* XXX: locking issue */
735 if (is_write && page_unprotect(h2g(address), pc, puc)) {
736 return 1;
739 /* see if it is an MMU fault */
740 ret = cpu_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
741 if (ret < 0)
742 return 0; /* not an MMU fault */
743 if (ret == 0)
744 return 1; /* the MMU fault was handled without causing real CPU fault */
745 /* now we have a real cpu fault */
746 tb = tb_find_pc(pc);
747 if (tb) {
748 /* the PC is inside the translated code. It means that we have
749 a virtual CPU fault */
750 cpu_restore_state(tb, env, pc, puc);
753 /* we restore the process signal mask as the sigreturn should
754 do it (XXX: use sigsetjmp) */
755 sigprocmask(SIG_SETMASK, old_set, NULL);
756 EXCEPTION_ACTION;
758 /* never comes here */
759 return 1;
762 #if defined(__i386__)
764 #if defined(__APPLE__)
765 # include <sys/ucontext.h>
767 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
768 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
769 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
770 # define MASK_sig(context) ((context)->uc_sigmask)
771 #elif defined (__NetBSD__)
772 # include <ucontext.h>
774 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
775 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
776 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
777 # define MASK_sig(context) ((context)->uc_sigmask)
778 #elif defined (__FreeBSD__) || defined(__DragonFly__)
779 # include <ucontext.h>
781 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
782 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
783 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
784 # define MASK_sig(context) ((context)->uc_sigmask)
785 #elif defined(__OpenBSD__)
786 # define EIP_sig(context) ((context)->sc_eip)
787 # define TRAP_sig(context) ((context)->sc_trapno)
788 # define ERROR_sig(context) ((context)->sc_err)
789 # define MASK_sig(context) ((context)->sc_mask)
790 #else
791 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
792 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
793 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
794 # define MASK_sig(context) ((context)->uc_sigmask)
795 #endif
797 int cpu_signal_handler(int host_signum, void *pinfo,
798 void *puc)
800 siginfo_t *info = pinfo;
801 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
802 ucontext_t *uc = puc;
803 #elif defined(__OpenBSD__)
804 struct sigcontext *uc = puc;
805 #else
806 struct ucontext *uc = puc;
807 #endif
808 unsigned long pc;
809 int trapno;
811 #ifndef REG_EIP
812 /* for glibc 2.1 */
813 #define REG_EIP EIP
814 #define REG_ERR ERR
815 #define REG_TRAPNO TRAPNO
816 #endif
817 pc = EIP_sig(uc);
818 trapno = TRAP_sig(uc);
819 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
820 trapno == 0xe ?
821 (ERROR_sig(uc) >> 1) & 1 : 0,
822 &MASK_sig(uc), puc);
825 #elif defined(__x86_64__)
827 #ifdef __NetBSD__
828 #define PC_sig(context) _UC_MACHINE_PC(context)
829 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
830 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
831 #define MASK_sig(context) ((context)->uc_sigmask)
832 #elif defined(__OpenBSD__)
833 #define PC_sig(context) ((context)->sc_rip)
834 #define TRAP_sig(context) ((context)->sc_trapno)
835 #define ERROR_sig(context) ((context)->sc_err)
836 #define MASK_sig(context) ((context)->sc_mask)
837 #elif defined (__FreeBSD__) || defined(__DragonFly__)
838 #include <ucontext.h>
840 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
841 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
842 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
843 #define MASK_sig(context) ((context)->uc_sigmask)
844 #else
845 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
846 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
847 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
848 #define MASK_sig(context) ((context)->uc_sigmask)
849 #endif
851 int cpu_signal_handler(int host_signum, void *pinfo,
852 void *puc)
854 siginfo_t *info = pinfo;
855 unsigned long pc;
856 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
857 ucontext_t *uc = puc;
858 #elif defined(__OpenBSD__)
859 struct sigcontext *uc = puc;
860 #else
861 struct ucontext *uc = puc;
862 #endif
864 pc = PC_sig(uc);
865 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
866 TRAP_sig(uc) == 0xe ?
867 (ERROR_sig(uc) >> 1) & 1 : 0,
868 &MASK_sig(uc), puc);
871 #elif defined(_ARCH_PPC)
873 /***********************************************************************
874 * signal context platform-specific definitions
875 * From Wine
877 #ifdef linux
878 /* All Registers access - only for local access */
879 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
880 /* Gpr Registers access */
881 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
882 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
883 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
884 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
885 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
886 # define LR_sig(context) REG_sig(link, context) /* Link register */
887 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
888 /* Float Registers access */
889 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
890 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
891 /* Exception Registers access */
892 # define DAR_sig(context) REG_sig(dar, context)
893 # define DSISR_sig(context) REG_sig(dsisr, context)
894 # define TRAP_sig(context) REG_sig(trap, context)
895 #endif /* linux */
897 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
898 #include <ucontext.h>
899 # define IAR_sig(context) ((context)->uc_mcontext.mc_srr0)
900 # define MSR_sig(context) ((context)->uc_mcontext.mc_srr1)
901 # define CTR_sig(context) ((context)->uc_mcontext.mc_ctr)
902 # define XER_sig(context) ((context)->uc_mcontext.mc_xer)
903 # define LR_sig(context) ((context)->uc_mcontext.mc_lr)
904 # define CR_sig(context) ((context)->uc_mcontext.mc_cr)
905 /* Exception Registers access */
906 # define DAR_sig(context) ((context)->uc_mcontext.mc_dar)
907 # define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr)
908 # define TRAP_sig(context) ((context)->uc_mcontext.mc_exc)
909 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
911 #ifdef __APPLE__
912 # include <sys/ucontext.h>
913 typedef struct ucontext SIGCONTEXT;
914 /* All Registers access - only for local access */
915 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
916 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
917 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
918 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
919 /* Gpr Registers access */
920 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
921 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
922 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
923 # define CTR_sig(context) REG_sig(ctr, context)
924 # define XER_sig(context) REG_sig(xer, context) /* Link register */
925 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
926 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
927 /* Float Registers access */
928 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
929 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
930 /* Exception Registers access */
931 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
932 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
933 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
934 #endif /* __APPLE__ */
936 int cpu_signal_handler(int host_signum, void *pinfo,
937 void *puc)
939 siginfo_t *info = pinfo;
940 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
941 ucontext_t *uc = puc;
942 #else
943 struct ucontext *uc = puc;
944 #endif
945 unsigned long pc;
946 int is_write;
948 pc = IAR_sig(uc);
949 is_write = 0;
950 #if 0
951 /* ppc 4xx case */
952 if (DSISR_sig(uc) & 0x00800000)
953 is_write = 1;
954 #else
955 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
956 is_write = 1;
957 #endif
958 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
959 is_write, &uc->uc_sigmask, puc);
962 #elif defined(__alpha__)
964 int cpu_signal_handler(int host_signum, void *pinfo,
965 void *puc)
967 siginfo_t *info = pinfo;
968 struct ucontext *uc = puc;
969 uint32_t *pc = uc->uc_mcontext.sc_pc;
970 uint32_t insn = *pc;
971 int is_write = 0;
973 /* XXX: need kernel patch to get write flag faster */
974 switch (insn >> 26) {
975 case 0x0d: // stw
976 case 0x0e: // stb
977 case 0x0f: // stq_u
978 case 0x24: // stf
979 case 0x25: // stg
980 case 0x26: // sts
981 case 0x27: // stt
982 case 0x2c: // stl
983 case 0x2d: // stq
984 case 0x2e: // stl_c
985 case 0x2f: // stq_c
986 is_write = 1;
989 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
990 is_write, &uc->uc_sigmask, puc);
992 #elif defined(__sparc__)
994 int cpu_signal_handler(int host_signum, void *pinfo,
995 void *puc)
997 siginfo_t *info = pinfo;
998 int is_write;
999 uint32_t insn;
1000 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1001 uint32_t *regs = (uint32_t *)(info + 1);
1002 void *sigmask = (regs + 20);
1003 /* XXX: is there a standard glibc define ? */
1004 unsigned long pc = regs[1];
1005 #else
1006 #ifdef __linux__
1007 struct sigcontext *sc = puc;
1008 unsigned long pc = sc->sigc_regs.tpc;
1009 void *sigmask = (void *)sc->sigc_mask;
1010 #elif defined(__OpenBSD__)
1011 struct sigcontext *uc = puc;
1012 unsigned long pc = uc->sc_pc;
1013 void *sigmask = (void *)(long)uc->sc_mask;
1014 #endif
1015 #endif
1017 /* XXX: need kernel patch to get write flag faster */
1018 is_write = 0;
1019 insn = *(uint32_t *)pc;
1020 if ((insn >> 30) == 3) {
1021 switch((insn >> 19) & 0x3f) {
1022 case 0x05: // stb
1023 case 0x15: // stba
1024 case 0x06: // sth
1025 case 0x16: // stha
1026 case 0x04: // st
1027 case 0x14: // sta
1028 case 0x07: // std
1029 case 0x17: // stda
1030 case 0x0e: // stx
1031 case 0x1e: // stxa
1032 case 0x24: // stf
1033 case 0x34: // stfa
1034 case 0x27: // stdf
1035 case 0x37: // stdfa
1036 case 0x26: // stqf
1037 case 0x36: // stqfa
1038 case 0x25: // stfsr
1039 case 0x3c: // casa
1040 case 0x3e: // casxa
1041 is_write = 1;
1042 break;
1045 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1046 is_write, sigmask, NULL);
1049 #elif defined(__arm__)
1051 int cpu_signal_handler(int host_signum, void *pinfo,
1052 void *puc)
1054 siginfo_t *info = pinfo;
1055 struct ucontext *uc = puc;
1056 unsigned long pc;
1057 int is_write;
1059 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1060 pc = uc->uc_mcontext.gregs[R15];
1061 #else
1062 pc = uc->uc_mcontext.arm_pc;
1063 #endif
1064 /* XXX: compute is_write */
1065 is_write = 0;
1066 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1067 is_write,
1068 &uc->uc_sigmask, puc);
1071 #elif defined(__mc68000)
1073 int cpu_signal_handler(int host_signum, void *pinfo,
1074 void *puc)
1076 siginfo_t *info = pinfo;
1077 struct ucontext *uc = puc;
1078 unsigned long pc;
1079 int is_write;
1081 pc = uc->uc_mcontext.gregs[16];
1082 /* XXX: compute is_write */
1083 is_write = 0;
1084 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1085 is_write,
1086 &uc->uc_sigmask, puc);
1089 #elif defined(__ia64)
1091 #ifndef __ISR_VALID
1092 /* This ought to be in <bits/siginfo.h>... */
1093 # define __ISR_VALID 1
1094 #endif
1096 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1098 siginfo_t *info = pinfo;
1099 struct ucontext *uc = puc;
1100 unsigned long ip;
1101 int is_write = 0;
1103 ip = uc->uc_mcontext.sc_ip;
1104 switch (host_signum) {
1105 case SIGILL:
1106 case SIGFPE:
1107 case SIGSEGV:
1108 case SIGBUS:
1109 case SIGTRAP:
1110 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1111 /* ISR.W (write-access) is bit 33: */
1112 is_write = (info->si_isr >> 33) & 1;
1113 break;
1115 default:
1116 break;
1118 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1119 is_write,
1120 (sigset_t *)&uc->uc_sigmask, puc);
1123 #elif defined(__s390__)
1125 int cpu_signal_handler(int host_signum, void *pinfo,
1126 void *puc)
1128 siginfo_t *info = pinfo;
1129 struct ucontext *uc = puc;
1130 unsigned long pc;
1131 uint16_t *pinsn;
1132 int is_write = 0;
1134 pc = uc->uc_mcontext.psw.addr;
1136 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
1137 of the normal 2 arguments. The 3rd argument contains the "int_code"
1138 from the hardware which does in fact contain the is_write value.
1139 The rt signal handler, as far as I can tell, does not give this value
1140 at all. Not that we could get to it from here even if it were. */
1141 /* ??? This is not even close to complete, since it ignores all
1142 of the read-modify-write instructions. */
1143 pinsn = (uint16_t *)pc;
1144 switch (pinsn[0] >> 8) {
1145 case 0x50: /* ST */
1146 case 0x42: /* STC */
1147 case 0x40: /* STH */
1148 is_write = 1;
1149 break;
1150 case 0xc4: /* RIL format insns */
1151 switch (pinsn[0] & 0xf) {
1152 case 0xf: /* STRL */
1153 case 0xb: /* STGRL */
1154 case 0x7: /* STHRL */
1155 is_write = 1;
1157 break;
1158 case 0xe3: /* RXY format insns */
1159 switch (pinsn[2] & 0xff) {
1160 case 0x50: /* STY */
1161 case 0x24: /* STG */
1162 case 0x72: /* STCY */
1163 case 0x70: /* STHY */
1164 case 0x8e: /* STPQ */
1165 case 0x3f: /* STRVH */
1166 case 0x3e: /* STRV */
1167 case 0x2f: /* STRVG */
1168 is_write = 1;
1170 break;
1172 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1173 is_write, &uc->uc_sigmask, puc);
1176 #elif defined(__mips__)
1178 int cpu_signal_handler(int host_signum, void *pinfo,
1179 void *puc)
1181 siginfo_t *info = pinfo;
1182 struct ucontext *uc = puc;
1183 greg_t pc = uc->uc_mcontext.pc;
1184 int is_write;
1186 /* XXX: compute is_write */
1187 is_write = 0;
1188 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1189 is_write, &uc->uc_sigmask, puc);
1192 #elif defined(__hppa__)
1194 int cpu_signal_handler(int host_signum, void *pinfo,
1195 void *puc)
1197 struct siginfo *info = pinfo;
1198 struct ucontext *uc = puc;
1199 unsigned long pc = uc->uc_mcontext.sc_iaoq[0];
1200 uint32_t insn = *(uint32_t *)pc;
1201 int is_write = 0;
1203 /* XXX: need kernel patch to get write flag faster. */
1204 switch (insn >> 26) {
1205 case 0x1a: /* STW */
1206 case 0x19: /* STH */
1207 case 0x18: /* STB */
1208 case 0x1b: /* STWM */
1209 is_write = 1;
1210 break;
1212 case 0x09: /* CSTWX, FSTWX, FSTWS */
1213 case 0x0b: /* CSTDX, FSTDX, FSTDS */
1214 /* Distinguish from coprocessor load ... */
1215 is_write = (insn >> 9) & 1;
1216 break;
1218 case 0x03:
1219 switch ((insn >> 6) & 15) {
1220 case 0xa: /* STWS */
1221 case 0x9: /* STHS */
1222 case 0x8: /* STBS */
1223 case 0xe: /* STWAS */
1224 case 0xc: /* STBYS */
1225 is_write = 1;
1227 break;
1230 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1231 is_write, &uc->uc_sigmask, puc);
1234 #else
1236 #error host CPU specific signal handler needed
1238 #endif
1240 #endif /* !defined(CONFIG_SOFTMMU) */