2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include "qemu-barrier.h"
25 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
26 // Work around ugly bugs in glibc that mangle global register contents
28 #define env cpu_single_env
31 int tb_invalidated_flag
;
33 //#define CONFIG_DEBUG_EXEC
35 bool qemu_cpu_has_work(CPUState
*env
)
37 return cpu_has_work(env
);
40 void cpu_loop_exit(CPUState
*env1
)
42 env1
->current_tb
= NULL
;
43 longjmp(env1
->jmp_env
, 1);
46 /* exit the current TB from a signal handler. The host registers are
47 restored in a state compatible with the CPU emulator
49 #if defined(CONFIG_SOFTMMU)
50 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
54 /* XXX: restore cpu registers saved in host registers */
56 env
->exception_index
= -1;
57 longjmp(env
->jmp_env
, 1);
61 /* Execute the code without caching the generated code. An interpreter
62 could be used if available. */
63 static void cpu_exec_nocache(int max_cycles
, TranslationBlock
*orig_tb
)
65 unsigned long next_tb
;
68 /* Should never happen.
69 We only end up here when an existing TB is too long. */
70 if (max_cycles
> CF_COUNT_MASK
)
71 max_cycles
= CF_COUNT_MASK
;
73 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
76 /* execute the generated code */
77 next_tb
= tcg_qemu_tb_exec(tb
->tc_ptr
);
78 env
->current_tb
= NULL
;
80 if ((next_tb
& 3) == 2) {
81 /* Restore PC. This may happen if async event occurs before
82 the TB starts executing. */
83 cpu_pc_from_tb(env
, tb
);
85 tb_phys_invalidate(tb
, -1);
89 static TranslationBlock
*tb_find_slow(target_ulong pc
,
93 TranslationBlock
*tb
, **ptb1
;
95 tb_page_addr_t phys_pc
, phys_page1
, phys_page2
;
96 target_ulong virt_page2
;
98 tb_invalidated_flag
= 0;
100 /* find translated block using physical mappings */
101 phys_pc
= get_page_addr_code(env
, pc
);
102 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
104 h
= tb_phys_hash_func(phys_pc
);
105 ptb1
= &tb_phys_hash
[h
];
111 tb
->page_addr
[0] == phys_page1
&&
112 tb
->cs_base
== cs_base
&&
113 tb
->flags
== flags
) {
114 /* check next page if needed */
115 if (tb
->page_addr
[1] != -1) {
116 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
118 phys_page2
= get_page_addr_code(env
, virt_page2
);
119 if (tb
->page_addr
[1] == phys_page2
)
125 ptb1
= &tb
->phys_hash_next
;
128 /* if no translated code available, then translate it now */
129 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
132 /* Move the last found TB to the head of the list */
134 *ptb1
= tb
->phys_hash_next
;
135 tb
->phys_hash_next
= tb_phys_hash
[h
];
136 tb_phys_hash
[h
] = tb
;
138 /* we add the TB in the virtual pc hash table */
139 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
143 static inline TranslationBlock
*tb_find_fast(void)
145 TranslationBlock
*tb
;
146 target_ulong cs_base
, pc
;
149 /* we record a subset of the CPU state. It will
150 always be the same before a given translated block
152 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
153 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
154 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
155 tb
->flags
!= flags
)) {
156 tb
= tb_find_slow(pc
, cs_base
, flags
);
161 static CPUDebugExcpHandler
*debug_excp_handler
;
163 CPUDebugExcpHandler
*cpu_set_debug_excp_handler(CPUDebugExcpHandler
*handler
)
165 CPUDebugExcpHandler
*old_handler
= debug_excp_handler
;
167 debug_excp_handler
= handler
;
171 static void cpu_handle_debug_exception(CPUState
*env
)
175 if (!env
->watchpoint_hit
) {
176 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
177 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
180 if (debug_excp_handler
) {
181 debug_excp_handler(env
);
185 /* main execution loop */
187 volatile sig_atomic_t exit_request
;
189 int cpu_exec(CPUState
*env1
)
191 volatile host_reg_t saved_env_reg
;
192 int ret
, interrupt_request
;
193 TranslationBlock
*tb
;
195 unsigned long next_tb
;
198 if (!cpu_has_work(env1
)) {
205 cpu_single_env
= env1
;
207 /* the access to env below is actually saving the global register's
208 value, so that files not including target-xyz/exec.h are free to
210 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg
) != sizeof (env
));
211 saved_env_reg
= (host_reg_t
) env
;
215 if (unlikely(exit_request
)) {
216 env
->exit_request
= 1;
219 #if defined(TARGET_I386)
220 /* put eflags in CPU temporary format */
221 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
222 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
223 CC_OP
= CC_OP_EFLAGS
;
224 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
225 #elif defined(TARGET_SPARC)
226 #elif defined(TARGET_M68K)
227 env
->cc_op
= CC_OP_FLAGS
;
228 env
->cc_dest
= env
->sr
& 0xf;
229 env
->cc_x
= (env
->sr
>> 4) & 1;
230 #elif defined(TARGET_ALPHA)
231 #elif defined(TARGET_ARM)
232 #elif defined(TARGET_UNICORE32)
233 #elif defined(TARGET_PPC)
234 #elif defined(TARGET_LM32)
235 #elif defined(TARGET_MICROBLAZE)
236 #elif defined(TARGET_MIPS)
237 #elif defined(TARGET_SH4)
238 #elif defined(TARGET_CRIS)
239 #elif defined(TARGET_S390X)
242 #error unsupported target CPU
244 env
->exception_index
= -1;
246 /* prepare setjmp context for exception handling */
248 if (setjmp(env
->jmp_env
) == 0) {
249 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
251 env
= cpu_single_env
;
252 #define env cpu_single_env
254 /* if an exception is pending, we execute it here */
255 if (env
->exception_index
>= 0) {
256 if (env
->exception_index
>= EXCP_INTERRUPT
) {
257 /* exit request from the cpu execution loop */
258 ret
= env
->exception_index
;
259 if (ret
== EXCP_DEBUG
) {
260 cpu_handle_debug_exception(env
);
264 #if defined(CONFIG_USER_ONLY)
265 /* if user mode only, we simulate a fake exception
266 which will be handled outside the cpu execution
268 #if defined(TARGET_I386)
271 ret
= env
->exception_index
;
275 env
->exception_index
= -1;
280 next_tb
= 0; /* force lookup of first TB */
282 interrupt_request
= env
->interrupt_request
;
283 if (unlikely(interrupt_request
)) {
284 if (unlikely(env
->singlestep_enabled
& SSTEP_NOIRQ
)) {
285 /* Mask out external interrupts for this step. */
286 interrupt_request
&= ~CPU_INTERRUPT_SSTEP_MASK
;
288 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
289 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
290 env
->exception_index
= EXCP_DEBUG
;
293 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
294 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
295 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
296 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
297 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
299 env
->exception_index
= EXCP_HLT
;
303 #if defined(TARGET_I386)
304 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
305 svm_check_intercept(env
, SVM_EXIT_INIT
);
307 env
->exception_index
= EXCP_HALTED
;
309 } else if (interrupt_request
& CPU_INTERRUPT_SIPI
) {
311 } else if (env
->hflags2
& HF2_GIF_MASK
) {
312 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
313 !(env
->hflags
& HF_SMM_MASK
)) {
314 svm_check_intercept(env
, SVM_EXIT_SMI
);
315 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
318 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
319 !(env
->hflags2
& HF2_NMI_MASK
)) {
320 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
321 env
->hflags2
|= HF2_NMI_MASK
;
322 do_interrupt_x86_hardirq(env
, EXCP02_NMI
, 1);
324 } else if (interrupt_request
& CPU_INTERRUPT_MCE
) {
325 env
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
326 do_interrupt_x86_hardirq(env
, EXCP12_MCHK
, 0);
328 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
329 (((env
->hflags2
& HF2_VINTR_MASK
) &&
330 (env
->hflags2
& HF2_HIF_MASK
)) ||
331 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
332 (env
->eflags
& IF_MASK
&&
333 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
335 svm_check_intercept(env
, SVM_EXIT_INTR
);
336 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
337 intno
= cpu_get_pic_interrupt(env
);
338 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
339 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
341 env
= cpu_single_env
;
342 #define env cpu_single_env
344 do_interrupt_x86_hardirq(env
, intno
, 1);
345 /* ensure that no TB jump will be modified as
346 the program flow was changed */
348 #if !defined(CONFIG_USER_ONLY)
349 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
350 (env
->eflags
& IF_MASK
) &&
351 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
353 /* FIXME: this should respect TPR */
354 svm_check_intercept(env
, SVM_EXIT_VINTR
);
355 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
356 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
357 do_interrupt_x86_hardirq(env
, intno
, 1);
358 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
363 #elif defined(TARGET_PPC)
365 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
369 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
370 ppc_hw_interrupt(env
);
371 if (env
->pending_interrupts
== 0)
372 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
375 #elif defined(TARGET_LM32)
376 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
377 && (env
->ie
& IE_IE
)) {
378 env
->exception_index
= EXCP_IRQ
;
382 #elif defined(TARGET_MICROBLAZE)
383 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
384 && (env
->sregs
[SR_MSR
] & MSR_IE
)
385 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
386 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
387 env
->exception_index
= EXCP_IRQ
;
391 #elif defined(TARGET_MIPS)
392 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
393 cpu_mips_hw_interrupts_pending(env
)) {
395 env
->exception_index
= EXCP_EXT_INTERRUPT
;
400 #elif defined(TARGET_SPARC)
401 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
402 if (cpu_interrupts_enabled(env
) &&
403 env
->interrupt_index
> 0) {
404 int pil
= env
->interrupt_index
& 0xf;
405 int type
= env
->interrupt_index
& 0xf0;
407 if (((type
== TT_EXTINT
) &&
408 cpu_pil_allowed(env
, pil
)) ||
410 env
->exception_index
= env
->interrupt_index
;
416 #elif defined(TARGET_ARM)
417 if (interrupt_request
& CPU_INTERRUPT_FIQ
418 && !(env
->uncached_cpsr
& CPSR_F
)) {
419 env
->exception_index
= EXCP_FIQ
;
423 /* ARMv7-M interrupt return works by loading a magic value
424 into the PC. On real hardware the load causes the
425 return to occur. The qemu implementation performs the
426 jump normally, then does the exception return when the
427 CPU tries to execute code at the magic address.
428 This will cause the magic PC value to be pushed to
429 the stack if an interrupt occurred at the wrong time.
430 We avoid this by disabling interrupts when
431 pc contains a magic address. */
432 if (interrupt_request
& CPU_INTERRUPT_HARD
433 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
434 || !(env
->uncached_cpsr
& CPSR_I
))) {
435 env
->exception_index
= EXCP_IRQ
;
439 #elif defined(TARGET_UNICORE32)
440 if (interrupt_request
& CPU_INTERRUPT_HARD
441 && !(env
->uncached_asr
& ASR_I
)) {
445 #elif defined(TARGET_SH4)
446 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
450 #elif defined(TARGET_ALPHA)
453 /* ??? This hard-codes the OSF/1 interrupt levels. */
454 switch (env
->pal_mode
? 7 : env
->ps
& PS_INT_MASK
) {
456 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
457 idx
= EXCP_DEV_INTERRUPT
;
461 if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
462 idx
= EXCP_CLK_INTERRUPT
;
466 if (interrupt_request
& CPU_INTERRUPT_SMP
) {
467 idx
= EXCP_SMP_INTERRUPT
;
471 if (interrupt_request
& CPU_INTERRUPT_MCHK
) {
476 env
->exception_index
= idx
;
482 #elif defined(TARGET_CRIS)
483 if (interrupt_request
& CPU_INTERRUPT_HARD
484 && (env
->pregs
[PR_CCS
] & I_FLAG
)
485 && !env
->locked_irq
) {
486 env
->exception_index
= EXCP_IRQ
;
490 if (interrupt_request
& CPU_INTERRUPT_NMI
491 && (env
->pregs
[PR_CCS
] & M_FLAG
)) {
492 env
->exception_index
= EXCP_NMI
;
496 #elif defined(TARGET_M68K)
497 if (interrupt_request
& CPU_INTERRUPT_HARD
498 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
499 < env
->pending_level
) {
500 /* Real hardware gets the interrupt vector via an
501 IACK cycle at this point. Current emulated
502 hardware doesn't rely on this, so we
503 provide/save the vector when the interrupt is
505 env
->exception_index
= env
->pending_vector
;
506 do_interrupt_m68k_hardirq(env
);
509 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
510 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
511 (env
->psw
.mask
& PSW_MASK_EXT
)) {
516 /* Don't use the cached interrupt_request value,
517 do_interrupt may have updated the EXITTB flag. */
518 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
519 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
520 /* ensure that no TB jump will be modified as
521 the program flow was changed */
525 if (unlikely(env
->exit_request
)) {
526 env
->exit_request
= 0;
527 env
->exception_index
= EXCP_INTERRUPT
;
530 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
531 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
532 /* restore flags in standard format */
533 #if defined(TARGET_I386)
534 env
->eflags
= env
->eflags
| cpu_cc_compute_all(env
, CC_OP
)
536 log_cpu_state(env
, X86_DUMP_CCOP
);
537 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
538 #elif defined(TARGET_M68K)
539 cpu_m68k_flush_flags(env
, env
->cc_op
);
540 env
->cc_op
= CC_OP_FLAGS
;
541 env
->sr
= (env
->sr
& 0xffe0)
542 | env
->cc_dest
| (env
->cc_x
<< 4);
543 log_cpu_state(env
, 0);
545 log_cpu_state(env
, 0);
548 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
551 /* Note: we do it here to avoid a gcc bug on Mac OS X when
552 doing it in tb_find_slow */
553 if (tb_invalidated_flag
) {
554 /* as some TB could have been invalidated because
555 of memory exceptions while generating the code, we
556 must recompute the hash index here */
558 tb_invalidated_flag
= 0;
560 #ifdef CONFIG_DEBUG_EXEC
561 qemu_log_mask(CPU_LOG_EXEC
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
562 (long)tb
->tc_ptr
, tb
->pc
,
563 lookup_symbol(tb
->pc
));
565 /* see if we can patch the calling TB. When the TB
566 spans two pages, we cannot safely do a direct
568 if (next_tb
!= 0 && tb
->page_addr
[1] == -1) {
569 tb_add_jump((TranslationBlock
*)(next_tb
& ~3), next_tb
& 3, tb
);
571 spin_unlock(&tb_lock
);
573 /* cpu_interrupt might be called while translating the
574 TB, but before it is linked into a potentially
575 infinite loop and becomes env->current_tb. Avoid
576 starting execution if there is a pending interrupt. */
577 env
->current_tb
= tb
;
579 if (likely(!env
->exit_request
)) {
581 /* execute the generated code */
582 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
584 env
= cpu_single_env
;
585 #define env cpu_single_env
587 next_tb
= tcg_qemu_tb_exec(tc_ptr
);
588 if ((next_tb
& 3) == 2) {
589 /* Instruction counter expired. */
591 tb
= (TranslationBlock
*)(long)(next_tb
& ~3);
593 cpu_pc_from_tb(env
, tb
);
594 insns_left
= env
->icount_decr
.u32
;
595 if (env
->icount_extra
&& insns_left
>= 0) {
596 /* Refill decrementer and continue execution. */
597 env
->icount_extra
+= insns_left
;
598 if (env
->icount_extra
> 0xffff) {
601 insns_left
= env
->icount_extra
;
603 env
->icount_extra
-= insns_left
;
604 env
->icount_decr
.u16
.low
= insns_left
;
606 if (insns_left
> 0) {
607 /* Execute remaining instructions. */
608 cpu_exec_nocache(insns_left
, tb
);
610 env
->exception_index
= EXCP_INTERRUPT
;
616 env
->current_tb
= NULL
;
617 /* reset soft MMU for next block (it can currently
618 only be set by a memory fault) */
624 #if defined(TARGET_I386)
625 /* restore flags in standard format */
626 env
->eflags
= env
->eflags
| cpu_cc_compute_all(env
, CC_OP
)
628 #elif defined(TARGET_ARM)
629 /* XXX: Save/restore host fpu exception state?. */
630 #elif defined(TARGET_UNICORE32)
631 #elif defined(TARGET_SPARC)
632 #elif defined(TARGET_PPC)
633 #elif defined(TARGET_LM32)
634 #elif defined(TARGET_M68K)
635 cpu_m68k_flush_flags(env
, env
->cc_op
);
636 env
->cc_op
= CC_OP_FLAGS
;
637 env
->sr
= (env
->sr
& 0xffe0)
638 | env
->cc_dest
| (env
->cc_x
<< 4);
639 #elif defined(TARGET_MICROBLAZE)
640 #elif defined(TARGET_MIPS)
641 #elif defined(TARGET_SH4)
642 #elif defined(TARGET_ALPHA)
643 #elif defined(TARGET_CRIS)
644 #elif defined(TARGET_S390X)
647 #error unsupported target CPU
650 /* restore global registers */
652 env
= (void *) saved_env_reg
;
654 /* fail safe : never use cpu_single_env outside cpu_exec() */
655 cpu_single_env
= NULL
;