1 /**********************************************************************
6 created at: Tue Oct 5 09:44:46 JST 1993
8 Copyright (C) 1993-2007 Yukihiro Matsumoto
9 Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
10 Copyright (C) 2000 Information-technology Promotion Agency, Japan
12 **********************************************************************/
14 #include "ruby/ruby.h"
15 #include "ruby/signal.h"
17 #include "ruby/node.h"
20 #include "ruby/util.h"
21 #include "eval_intern.h"
26 #include <sys/types.h>
28 #ifdef HAVE_SYS_TIME_H
32 #ifdef HAVE_SYS_RESOURCE_H
33 #include <sys/resource.h>
36 #if defined _WIN32 || defined __CYGWIN__
40 #ifdef HAVE_VALGRIND_MEMCHECK_H
41 # include <valgrind/memcheck.h>
42 # ifndef VALGRIND_MAKE_MEM_DEFINED
43 # define VALGRIND_MAKE_MEM_DEFINED(p, n) VALGRIND_MAKE_READABLE(p, n)
45 # ifndef VALGRIND_MAKE_MEM_UNDEFINED
46 # define VALGRIND_MAKE_MEM_UNDEFINED(p, n) VALGRIND_MAKE_WRITABLE(p, n)
49 # define VALGRIND_MAKE_MEM_DEFINED(p, n) /* empty */
50 # define VALGRIND_MAKE_MEM_UNDEFINED(p, n) /* empty */
53 int rb_io_fptr_finalize(struct rb_io_t
*);
55 #define rb_setjmp(env) RUBY_SETJMP(env)
56 #define rb_jmp_buf rb_jmpbuf_t
58 /* Make alloca work the best possible way. */
62 # define alloca __builtin_alloca
72 # ifndef alloca /* predefined by HP cc +Olibcalls */
76 # endif /* HAVE_ALLOCA_H */
79 #ifndef GC_MALLOC_LIMIT
80 #if defined(MSDOS) || defined(__human68k__)
81 #define GC_MALLOC_LIMIT 200000
83 #define GC_MALLOC_LIMIT 8000000
87 #define nomem_error GET_VM()->special_exceptions[ruby_error_nomemory]
89 #define MARK_STACK_MAX 1024
91 int ruby_gc_debug_indent
= 0;
96 #define GC_PROFILE_MORE_DETAIL 0
97 typedef struct gc_profile_record
{
100 double gc_sweep_time
;
101 double gc_invoke_time
;
102 size_t heap_use_slots
;
103 size_t heap_live_objects
;
104 size_t heap_free_objects
;
105 size_t heap_total_objects
;
106 size_t heap_use_size
;
107 size_t heap_total_size
;
109 size_t allocate_increase
;
110 size_t allocate_limit
;
119 getrusage(RUSAGE_SELF
, &usage
);
120 time
= usage
.ru_utime
;
121 return time
.tv_sec
+ time
.tv_usec
* 1e-6;
123 FILETIME creation_time
, exit_time
, kernel_time
, user_time
;
128 if (GetProcessTimes(GetCurrentProcess(),
129 &creation_time
, &exit_time
, &kernel_time
, &user_time
) == 0)
133 memcpy(&ui
, &user_time
, sizeof(FILETIME
));
134 q
= ui
.QuadPart
/ 10L;
135 t
= (DWORD
)(q
% 1000000L) * 1e-6;
140 t
+= (double)(DWORD
)(q
>> 16) * (1 << 16);
141 t
+= (DWORD
)q
& ~(~0 << 16);
148 #define GC_PROF_TIMER_START do {\
149 if (objspace->profile.run) {\
150 if (!objspace->profile.record) {\
151 objspace->profile.size = 1000;\
152 objspace->profile.record = malloc(sizeof(gc_profile_record) * objspace->profile.size);\
154 if (count >= objspace->profile.size) {\
155 objspace->profile.size += 1000;\
156 objspace->profile.record = realloc(objspace->profile.record, sizeof(gc_profile_record) * objspace->profile.size);\
158 if (!objspace->profile.record) {\
159 rb_bug("gc_profile malloc or realloc miss");\
161 MEMZERO(&objspace->profile.record[count], gc_profile_record, 1);\
162 gc_time = getrusage_time();\
163 objspace->profile.record[count].gc_invoke_time = gc_time - objspace->profile.invoke_time;\
167 #define GC_PROF_TIMER_STOP do {\
168 if (objspace->profile.run) {\
169 gc_time = getrusage_time() - gc_time;\
170 if (gc_time < 0) gc_time = 0;\
171 objspace->profile.record[count].gc_time = gc_time;\
172 objspace->profile.count++;\
176 #if GC_PROFILE_MORE_DETAIL
177 #define INIT_GC_PROF_PARAMS double gc_time = 0, mark_time = 0, sweep_time = 0;\
178 size_t count = objspace->profile.count
180 #define GC_PROF_MARK_TIMER_START do {\
181 if (objspace->profile.run) {\
182 mark_time = getrusage_time();\
186 #define GC_PROF_MARK_TIMER_STOP do {\
187 if (objspace->profile.run) {\
188 mark_time = getrusage_time() - mark_time;\
189 if (mark_time < 0) mark_time = 0;\
190 objspace->profile.record[count].gc_mark_time = mark_time;\
194 #define GC_PROF_SWEEP_TIMER_START do {\
195 if (objspace->profile.run) {\
196 sweep_time = getrusage_time();\
200 #define GC_PROF_SWEEP_TIMER_STOP do {\
201 if (objspace->profile.run) {\
202 sweep_time = getrusage_time() - sweep_time;\
203 if (sweep_time < 0) sweep_time = 0;\
204 objspace->profile.record[count].gc_sweep_time = sweep_time;\
207 #define GC_PROF_SET_MALLOC_INFO do {\
208 if (objspace->profile.run) {\
209 size_t count = objspace->profile.count;\
210 objspace->profile.record[count].allocate_increase = malloc_increase;\
211 objspace->profile.record[count].allocate_limit = malloc_limit; \
214 #define GC_PROF_SET_HEAP_INFO do {\
215 if (objspace->profile.run) {\
216 size_t count = objspace->profile.count;\
217 objspace->profile.record[count].heap_use_slots = heaps_used;\
218 objspace->profile.record[count].heap_live_objects = live;\
219 objspace->profile.record[count].heap_free_objects = freed;\
220 objspace->profile.record[count].heap_total_objects = heaps_used * HEAP_OBJ_LIMIT;\
221 objspace->profile.record[count].have_finalize = final_list ? Qtrue : Qfalse;\
222 objspace->profile.record[count].heap_use_size = live * sizeof(RVALUE);\
223 objspace->profile.record[count].heap_total_size = heaps_used * (HEAP_OBJ_LIMIT * sizeof(RVALUE));\
228 #define INIT_GC_PROF_PARAMS double gc_time = 0;\
229 size_t count = objspace->profile.count
230 #define GC_PROF_MARK_TIMER_START
231 #define GC_PROF_MARK_TIMER_STOP
232 #define GC_PROF_SWEEP_TIMER_START
233 #define GC_PROF_SWEEP_TIMER_STOP
234 #define GC_PROF_SET_MALLOC_INFO
235 #define GC_PROF_SET_HEAP_INFO do {\
236 if (objspace->profile.run) {\
237 size_t count = objspace->profile.count;\
238 objspace->profile.record[count].heap_total_objects = heaps_used * HEAP_OBJ_LIMIT;\
239 objspace->profile.record[count].heap_use_size = live * sizeof(RVALUE);\
240 objspace->profile.record[count].heap_total_size = heaps_used * HEAP_SIZE;\
246 #if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
247 #pragma pack(push, 1) /* magic for reducing sizeof(RVALUE): 24 -> 20 */
250 typedef struct RVALUE
{
253 VALUE flags
; /* always 0 for freed obj */
257 struct RObject object
;
259 struct RFloat flonum
;
260 struct RString string
;
262 struct RRegexp regexp
;
265 struct RStruct rstruct
;
266 struct RBignum bignum
;
270 struct RRational rational
;
271 struct RComplex
complex;
279 #if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
289 #define HEAP_MIN_SLOTS 10000
290 #define FREE_MIN 4096
294 struct gc_list
*next
;
297 #define CALC_EXACT_MALLOC_SIZE 0
299 typedef struct rb_objspace
{
303 #if CALC_EXACT_MALLOC_SIZE
304 size_t allocated_size
;
310 struct heaps_slot
*ptr
;
326 VALUE buffer
[MARK_STACK_MAX
];
332 gc_profile_record
*record
;
337 struct gc_list
*global_list
;
342 #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
343 #define rb_objspace (*GET_VM()->objspace)
344 static int ruby_initial_gc_stress
= 0;
345 int *ruby_initial_gc_stress_ptr
= &ruby_initial_gc_stress
;
347 static rb_objspace_t rb_objspace
= {{GC_MALLOC_LIMIT
}, {HEAP_MIN_SLOTS
}};
348 int *ruby_initial_gc_stress_ptr
= &rb_objspace
.gc_stress
;
350 #define malloc_limit objspace->malloc_params.limit
351 #define malloc_increase objspace->malloc_params.increase
352 #define heap_slots objspace->heap.slots
353 #define heaps objspace->heap.ptr
354 #define heaps_length objspace->heap.length
355 #define heaps_used objspace->heap.used
356 #define freelist objspace->heap.freelist
357 #define lomem objspace->heap.range[0]
358 #define himem objspace->heap.range[1]
359 #define heaps_inc objspace->heap.increment
360 #define heaps_freed objspace->heap.freed
361 #define dont_gc objspace->flags.dont_gc
362 #define during_gc objspace->flags.during_gc
363 #define finalizer_table objspace->final.table
364 #define deferred_final_list objspace->final.deferred
365 #define mark_stack objspace->markstack.buffer
366 #define mark_stack_ptr objspace->markstack.ptr
367 #define mark_stack_overflow objspace->markstack.overflow
368 #define global_List objspace->global_list
369 #define ruby_gc_stress objspace->gc_stress
371 #define need_call_final (finalizer_table && finalizer_table->num_entries)
373 #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
375 rb_objspace_alloc(void)
377 rb_objspace_t
*objspace
= malloc(sizeof(rb_objspace_t
));
378 memset(objspace
, 0, sizeof(*objspace
));
379 malloc_limit
= GC_MALLOC_LIMIT
;
380 ruby_gc_stress
= ruby_initial_gc_stress
;
388 /*#define HEAP_SIZE 0x8000 */
390 /*#define HEAP_SIZE 0x20000 */
392 /*#define HEAP_SIZE 0x10000 */
394 #define HEAP_SIZE 0x4000
396 /*#define HEAP_SIZE 0x2000 */
398 /*#define HEAP_SIZE 0x1000 */
400 /*#define HEAP_SIZE 0x800 */
402 #define HEAP_OBJ_LIMIT (HEAP_SIZE / sizeof(struct RVALUE))
404 extern st_table
*rb_class_tbl
;
406 int ruby_disable_gc_stress
= 0;
408 static void run_final(rb_objspace_t
*objspace
, VALUE obj
);
409 static int garbage_collect(rb_objspace_t
*objspace
);
412 rb_global_variable(VALUE
*var
)
414 rb_gc_register_address(var
);
420 rb_thread_t
*th
= GET_THREAD();
422 (rb_thread_raised_p(th
, RAISED_NOMEMORY
) && rb_safe_level() < 4)) {
423 fprintf(stderr
, "[FATAL] failed to allocate memory\n");
426 if (rb_thread_raised_p(th
, RAISED_NOMEMORY
)) {
427 rb_thread_raised_clear(th
);
428 GET_THREAD()->errinfo
= nomem_error
;
431 rb_thread_raised_set(th
, RAISED_NOMEMORY
);
432 rb_exc_raise(nomem_error
);
437 * GC.stress => true or false
439 * returns current status of GC stress mode.
443 gc_stress_get(VALUE self
)
445 rb_objspace_t
*objspace
= &rb_objspace
;
446 return ruby_gc_stress
? Qtrue
: Qfalse
;
451 * GC.stress = bool => bool
453 * updates GC stress mode.
455 * When GC.stress = true, GC is invoked for all GC opportunity:
456 * all memory and object allocation.
458 * Since it makes Ruby very slow, it is only for debugging.
462 gc_stress_set(VALUE self
, VALUE
bool)
464 rb_objspace_t
*objspace
= &rb_objspace
;
466 ruby_gc_stress
= RTEST(bool);
472 * GC::Profiler.enable? => true or false
474 * returns current status of GC profile mode.
478 gc_profile_enable_get(VALUE self
)
480 rb_objspace_t
*objspace
= &rb_objspace
;
481 return objspace
->profile
.run
;
486 * GC::Profiler.enable => nil
488 * updates GC profile mode.
489 * start profiler for GC.
494 gc_profile_enable(void)
496 rb_objspace_t
*objspace
= &rb_objspace
;
498 objspace
->profile
.run
= Qtrue
;
504 * GC::Profiler.disable => nil
506 * updates GC profile mode.
507 * stop profiler for GC.
512 gc_profile_disable(void)
514 rb_objspace_t
*objspace
= &rb_objspace
;
516 objspace
->profile
.run
= Qfalse
;
522 * GC::Profiler.clear => nil
524 * clear before profile data.
529 gc_profile_clear(void)
531 rb_objspace_t
*objspace
= &rb_objspace
;
532 MEMZERO(objspace
->profile
.record
, gc_profile_record
, objspace
->profile
.size
);
533 objspace
->profile
.count
= 0;
538 vm_xmalloc(rb_objspace_t
*objspace
, size_t size
)
543 rb_raise(rb_eNoMemError
, "negative allocation size (or too big)");
545 if (size
== 0) size
= 1;
547 #if CALC_EXACT_MALLOC_SIZE
548 size
+= sizeof(size_t);
551 if ((ruby_gc_stress
&& !ruby_disable_gc_stress
) ||
552 (malloc_increase
+size
) > malloc_limit
) {
553 garbage_collect(objspace
);
555 RUBY_CRITICAL(mem
= malloc(size
));
557 if (garbage_collect(objspace
)) {
558 RUBY_CRITICAL(mem
= malloc(size
));
564 malloc_increase
+= size
;
566 #if CALC_EXACT_MALLOC_SIZE
567 objspace
->malloc_params
.allocated_size
+= size
;
568 objspace
->malloc_params
.allocations
++;
569 ((size_t *)mem
)[0] = size
;
570 mem
= (size_t *)mem
+ 1;
577 vm_xrealloc(rb_objspace_t
*objspace
, void *ptr
, size_t size
)
582 rb_raise(rb_eArgError
, "negative re-allocation size");
584 if (!ptr
) return ruby_xmalloc(size
);
585 if (size
== 0) size
= 1;
586 if (ruby_gc_stress
&& !ruby_disable_gc_stress
) garbage_collect(objspace
);
588 #if CALC_EXACT_MALLOC_SIZE
589 size
+= sizeof(size_t);
590 objspace
->malloc_params
.allocated_size
-= size
;
591 ptr
= (size_t *)ptr
- 1;
594 RUBY_CRITICAL(mem
= realloc(ptr
, size
));
596 if (garbage_collect(objspace
)) {
597 RUBY_CRITICAL(mem
= realloc(ptr
, size
));
603 malloc_increase
+= size
;
605 #if CALC_EXACT_MALLOC_SIZE
606 objspace
->malloc_params
.allocated_size
+= size
;
607 ((size_t *)mem
)[0] = size
;
608 mem
= (size_t *)mem
+ 1;
615 vm_xfree(rb_objspace_t
*objspace
, void *ptr
)
617 #if CALC_EXACT_MALLOC_SIZE
619 ptr
= ((size_t *)ptr
) - 1;
620 size
= ((size_t*)ptr
)[0];
621 objspace
->malloc_params
.allocated_size
-= size
;
622 objspace
->malloc_params
.allocations
--;
625 RUBY_CRITICAL(free(ptr
));
629 ruby_xmalloc(size_t size
)
631 return vm_xmalloc(&rb_objspace
, size
);
635 ruby_xmalloc2(size_t n
, size_t size
)
637 size_t len
= size
* n
;
638 if (n
!= 0 && size
!= len
/ n
) {
639 rb_raise(rb_eArgError
, "malloc: possible integer overflow");
641 return vm_xmalloc(&rb_objspace
, len
);
645 ruby_xcalloc(size_t n
, size_t size
)
647 void *mem
= ruby_xmalloc2(n
, size
);
648 memset(mem
, 0, n
* size
);
654 ruby_xrealloc(void *ptr
, size_t size
)
656 return vm_xrealloc(&rb_objspace
, ptr
, size
);
660 ruby_xrealloc2(void *ptr
, size_t n
, size_t size
)
662 size_t len
= size
* n
;
663 if (n
!= 0 && size
!= len
/ n
) {
664 rb_raise(rb_eArgError
, "realloc: possible integer overflow");
666 return ruby_xrealloc(ptr
, len
);
673 vm_xfree(&rb_objspace
, x
);
679 * GC.enable => true or false
681 * Enables garbage collection, returning <code>true</code> if garbage
682 * collection was previously disabled.
684 * GC.disable #=> false
686 * GC.enable #=> false
693 rb_objspace_t
*objspace
= &rb_objspace
;
702 * GC.disable => true or false
704 * Disables garbage collection, returning <code>true</code> if garbage
705 * collection was already disabled.
707 * GC.disable #=> false
708 * GC.disable #=> true
715 rb_objspace_t
*objspace
= &rb_objspace
;
725 rb_register_mark_object(VALUE obj
)
727 VALUE ary
= GET_THREAD()->vm
->mark_object_ary
;
728 rb_ary_push(ary
, obj
);
732 rb_gc_register_address(VALUE
*addr
)
734 rb_objspace_t
*objspace
= &rb_objspace
;
737 tmp
= ALLOC(struct gc_list
);
738 tmp
->next
= global_List
;
744 rb_gc_unregister_address(VALUE
*addr
)
746 rb_objspace_t
*objspace
= &rb_objspace
;
747 struct gc_list
*tmp
= global_List
;
749 if (tmp
->varptr
== addr
) {
750 global_List
= tmp
->next
;
755 if (tmp
->next
->varptr
== addr
) {
756 struct gc_list
*t
= tmp
->next
;
758 tmp
->next
= tmp
->next
->next
;
768 allocate_heaps(rb_objspace_t
*objspace
, size_t next_heaps_length
)
770 struct heaps_slot
*p
;
773 size
= next_heaps_length
*sizeof(struct heaps_slot
);
775 if (heaps_used
> 0) {
776 p
= (struct heaps_slot
*)realloc(heaps
, size
);
780 p
= heaps
= (struct heaps_slot
*)malloc(size
);
787 heaps_length
= next_heaps_length
;
791 assign_heap_slot(rb_objspace_t
*objspace
)
793 RVALUE
*p
, *pend
, *membase
;
797 objs
= HEAP_OBJ_LIMIT
;
798 RUBY_CRITICAL(p
= (RVALUE
*)malloc(HEAP_SIZE
));
805 if ((VALUE
)p
% sizeof(RVALUE
) != 0) {
806 p
= (RVALUE
*)((VALUE
)p
+ sizeof(RVALUE
) - ((VALUE
)p
% sizeof(RVALUE
)));
807 if ((HEAP_SIZE
- HEAP_OBJ_LIMIT
* sizeof(RVALUE
)) < ((char*)p
- (char*)membase
)) {
815 register RVALUE
*mid_membase
;
817 mid_membase
= heaps
[mid
].membase
;
818 if (mid_membase
< membase
) {
821 else if (mid_membase
> membase
) {
825 rb_bug("same heap slot is allocated: %p at %"PRIuVALUE
, membase
, (VALUE
)mid
);
828 if (hi
< heaps_used
) {
829 MEMMOVE(&heaps
[hi
+1], &heaps
[hi
], struct heaps_slot
, heaps_used
- hi
);
831 heaps
[hi
].membase
= membase
;
833 heaps
[hi
].limit
= objs
;
835 if (lomem
== 0 || lomem
> p
) lomem
= p
;
836 if (himem
< pend
) himem
= pend
;
840 p
->as
.free
.flags
= 0;
841 p
->as
.free
.next
= freelist
;
848 init_heap(rb_objspace_t
*objspace
)
852 add
= HEAP_MIN_SLOTS
/ HEAP_OBJ_LIMIT
;
854 if ((heaps_used
+ add
) > heaps_length
) {
855 allocate_heaps(objspace
, heaps_used
+ add
);
858 for (i
= 0; i
< add
; i
++) {
859 assign_heap_slot(objspace
);
862 objspace
->profile
.invoke_time
= getrusage_time();
867 set_heaps_increment(rb_objspace_t
*objspace
)
869 size_t next_heaps_length
= heaps_used
* 1.8;
870 heaps_inc
= next_heaps_length
- heaps_used
;
872 if (next_heaps_length
> heaps_length
) {
873 allocate_heaps(objspace
, next_heaps_length
);
878 heaps_increment(rb_objspace_t
*objspace
)
881 assign_heap_slot(objspace
);
888 #define RANY(o) ((RVALUE*)(o))
891 rb_newobj_from_heap(rb_objspace_t
*objspace
)
895 if ((ruby_gc_stress
&& !ruby_disable_gc_stress
) || !freelist
) {
896 if (!heaps_increment(objspace
) && !garbage_collect(objspace
)) {
902 obj
= (VALUE
)freelist
;
903 freelist
= freelist
->as
.free
.next
;
905 MEMZERO((void*)obj
, RVALUE
, 1);
907 RANY(obj
)->file
= rb_sourcefile();
908 RANY(obj
)->line
= rb_sourceline();
916 rb_fill_value_cache(rb_thread_t
*th
)
918 rb_objspace_t
*objspace
= &rb_objspace
;
923 for (i
=0; i
<RUBY_VM_VALUE_CACHE_SIZE
; i
++) {
924 VALUE v
= rb_newobj_from_heap(objspace
);
926 th
->value_cache
[i
] = v
;
927 RBASIC(v
)->flags
= FL_MARK
;
929 th
->value_cache_ptr
= &th
->value_cache
[0];
930 rv
= rb_newobj_from_heap(objspace
);
939 rb_objspace_t
*objspace
= &rb_objspace
;
946 #if USE_VALUE_CACHE || (defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE)
947 rb_thread_t
*th
= GET_THREAD();
950 VALUE v
= *th
->value_cache_ptr
;
952 #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
953 rb_objspace_t
*objspace
= th
->vm
->objspace
;
955 rb_objspace_t
*objspace
= &rb_objspace
;
961 rb_bug("object allocation during garbage collection phase");
966 RBASIC(v
)->flags
= 0;
967 th
->value_cache_ptr
++;
970 v
= rb_fill_value_cache(th
);
973 #if defined(GC_DEBUG)
974 printf("cache index: %d, v: %p, th: %p\n",
975 th
->value_cache_ptr
- th
->value_cache
, v
, th
);
979 return rb_newobj_from_heap(objspace
);
984 rb_node_newnode(enum node_type type
, VALUE a0
, VALUE a1
, VALUE a2
)
986 NODE
*n
= (NODE
*)rb_newobj();
989 nd_set_type(n
, type
);
999 rb_data_object_alloc(VALUE klass
, void *datap
, RUBY_DATA_FUNC dmark
, RUBY_DATA_FUNC dfree
)
1001 NEWOBJ(data
, struct RData
);
1002 if (klass
) Check_Type(klass
, T_CLASS
);
1003 OBJSETUP(data
, klass
, T_DATA
);
1005 data
->dfree
= dfree
;
1006 data
->dmark
= dmark
;
1012 #define SET_STACK_END (SET_MACHINE_STACK_END(&th->machine_stack_end), th->machine_register_stack_end = rb_ia64_bsp())
1014 #define SET_STACK_END SET_MACHINE_STACK_END(&th->machine_stack_end)
1017 #define STACK_START (th->machine_stack_start)
1018 #define STACK_END (th->machine_stack_end)
1019 #define STACK_LEVEL_MAX (th->machine_stack_maxsize/sizeof(VALUE))
1021 #if STACK_GROW_DIRECTION < 0
1022 # define STACK_LENGTH (STACK_START - STACK_END)
1023 #elif STACK_GROW_DIRECTION > 0
1024 # define STACK_LENGTH (STACK_END - STACK_START + 1)
1026 # define STACK_LENGTH ((STACK_END < STACK_START) ? STACK_START - STACK_END\
1027 : STACK_END - STACK_START + 1)
1029 #if !STACK_GROW_DIRECTION
1030 int ruby_stack_grow_direction
;
1032 ruby_get_stack_grow_direction(VALUE
*addr
)
1034 rb_thread_t
*th
= GET_THREAD();
1037 if (STACK_END
> addr
) return ruby_stack_grow_direction
= 1;
1038 return ruby_stack_grow_direction
= -1;
1042 #define GC_WATER_MARK 512
1045 ruby_stack_length(VALUE
**p
)
1047 rb_thread_t
*th
= GET_THREAD();
1049 if (p
) *p
= STACK_UPPER(STACK_END
, STACK_START
, STACK_END
);
1050 return STACK_LENGTH
;
1054 ruby_stack_check(void)
1057 rb_thread_t
*th
= GET_THREAD();
1059 ret
= STACK_LENGTH
> STACK_LEVEL_MAX
- GC_WATER_MARK
;
1062 ret
= (VALUE
*)rb_ia64_bsp() - th
->machine_register_stack_start
>
1063 th
->machine_register_stack_maxsize
/sizeof(VALUE
) - GC_WATER_MARK
;
1070 init_mark_stack(rb_objspace_t
*objspace
)
1072 mark_stack_overflow
= 0;
1073 mark_stack_ptr
= mark_stack
;
1076 #define MARK_STACK_EMPTY (mark_stack_ptr == mark_stack)
1078 static void gc_mark(rb_objspace_t
*objspace
, VALUE ptr
, int lev
);
1079 static void gc_mark_children(rb_objspace_t
*objspace
, VALUE ptr
, int lev
);
1082 gc_mark_all(rb_objspace_t
*objspace
)
1087 init_mark_stack(objspace
);
1088 for (i
= 0; i
< heaps_used
; i
++) {
1089 p
= heaps
[i
].slot
; pend
= p
+ heaps
[i
].limit
;
1091 if ((p
->as
.basic
.flags
& FL_MARK
) &&
1092 (p
->as
.basic
.flags
!= FL_MARK
)) {
1093 gc_mark_children(objspace
, (VALUE
)p
, 0);
1101 gc_mark_rest(rb_objspace_t
*objspace
)
1103 VALUE tmp_arry
[MARK_STACK_MAX
];
1106 p
= (mark_stack_ptr
- mark_stack
) + tmp_arry
;
1107 MEMCPY(tmp_arry
, mark_stack
, VALUE
, p
- tmp_arry
);
1109 init_mark_stack(objspace
);
1110 while (p
!= tmp_arry
) {
1112 gc_mark_children(objspace
, *p
, 0);
1117 is_pointer_to_heap(rb_objspace_t
*objspace
, void *ptr
)
1119 register RVALUE
*p
= RANY(ptr
);
1120 register struct heaps_slot
*heap
;
1121 register size_t hi
, lo
, mid
;
1123 if (p
< lomem
|| p
> himem
) return Qfalse
;
1124 if ((VALUE
)p
% sizeof(RVALUE
) != 0) return Qfalse
;
1126 /* check if p looks like a pointer using bsearch*/
1130 mid
= (lo
+ hi
) / 2;
1132 if (heap
->slot
<= p
) {
1133 if (p
< heap
->slot
+ heap
->limit
)
1145 mark_locations_array(rb_objspace_t
*objspace
, register VALUE
*x
, register long n
)
1150 VALGRIND_MAKE_MEM_DEFINED(&v
, sizeof(v
));
1151 if (is_pointer_to_heap(objspace
, (void *)v
)) {
1152 gc_mark(objspace
, v
, 0);
1159 gc_mark_locations(rb_objspace_t
*objspace
, VALUE
*start
, VALUE
*end
)
1163 if (end
<= start
) return;
1165 mark_locations_array(objspace
, start
, n
);
1169 rb_gc_mark_locations(VALUE
*start
, VALUE
*end
)
1171 gc_mark_locations(&rb_objspace
, start
, end
);
1174 #define rb_gc_mark_locations(start, end) gc_mark_locations(objspace, start, end)
1176 struct mark_tbl_arg
{
1177 rb_objspace_t
*objspace
;
1182 mark_entry(ID key
, VALUE value
, st_data_t data
)
1184 struct mark_tbl_arg
*arg
= (void*)data
;
1185 gc_mark(arg
->objspace
, value
, arg
->lev
);
1190 mark_tbl(rb_objspace_t
*objspace
, st_table
*tbl
, int lev
)
1192 struct mark_tbl_arg arg
;
1194 arg
.objspace
= objspace
;
1196 st_foreach(tbl
, mark_entry
, (st_data_t
)&arg
);
1200 rb_mark_tbl(st_table
*tbl
)
1202 mark_tbl(&rb_objspace
, tbl
, 0);
1206 mark_key(VALUE key
, VALUE value
, st_data_t data
)
1208 struct mark_tbl_arg
*arg
= (void*)data
;
1209 gc_mark(arg
->objspace
, key
, arg
->lev
);
1214 mark_set(rb_objspace_t
*objspace
, st_table
*tbl
, int lev
)
1216 struct mark_tbl_arg arg
;
1218 arg
.objspace
= objspace
;
1220 st_foreach(tbl
, mark_key
, (st_data_t
)&arg
);
1224 rb_mark_set(st_table
*tbl
)
1226 mark_set(&rb_objspace
, tbl
, 0);
1230 mark_keyvalue(VALUE key
, VALUE value
, st_data_t data
)
1232 struct mark_tbl_arg
*arg
= (void*)data
;
1233 gc_mark(arg
->objspace
, key
, arg
->lev
);
1234 gc_mark(arg
->objspace
, value
, arg
->lev
);
1239 mark_hash(rb_objspace_t
*objspace
, st_table
*tbl
, int lev
)
1241 struct mark_tbl_arg arg
;
1243 arg
.objspace
= objspace
;
1245 st_foreach(tbl
, mark_keyvalue
, (st_data_t
)&arg
);
1249 rb_mark_hash(st_table
*tbl
)
1251 mark_hash(&rb_objspace
, tbl
, 0);
1255 rb_gc_mark_maybe(VALUE obj
)
1257 if (is_pointer_to_heap(&rb_objspace
, (void *)obj
)) {
1258 gc_mark(&rb_objspace
, obj
, 0);
1262 #define GC_LEVEL_MAX 250
1265 gc_mark(rb_objspace_t
*objspace
, VALUE ptr
, int lev
)
1267 register RVALUE
*obj
;
1270 if (rb_special_const_p(ptr
)) return; /* special const not marked */
1271 if (obj
->as
.basic
.flags
== 0) return; /* free cell */
1272 if (obj
->as
.basic
.flags
& FL_MARK
) return; /* already marked */
1273 obj
->as
.basic
.flags
|= FL_MARK
;
1275 if (lev
> GC_LEVEL_MAX
|| (lev
== 0 && ruby_stack_check())) {
1276 if (!mark_stack_overflow
) {
1277 if (mark_stack_ptr
- mark_stack
< MARK_STACK_MAX
) {
1278 *mark_stack_ptr
= ptr
;
1282 mark_stack_overflow
= 1;
1287 gc_mark_children(objspace
, ptr
, lev
+1);
1291 rb_gc_mark(VALUE ptr
)
1293 gc_mark(&rb_objspace
, ptr
, 0);
1297 gc_mark_children(rb_objspace_t
*objspace
, VALUE ptr
, int lev
)
1299 register RVALUE
*obj
= RANY(ptr
);
1301 goto marking
; /* skip */
1305 if (rb_special_const_p(ptr
)) return; /* special const not marked */
1306 if (obj
->as
.basic
.flags
== 0) return; /* free cell */
1307 if (obj
->as
.basic
.flags
& FL_MARK
) return; /* already marked */
1308 obj
->as
.basic
.flags
|= FL_MARK
;
1311 if (FL_TEST(obj
, FL_EXIVAR
)) {
1312 rb_mark_generic_ivar(ptr
);
1315 switch (BUILTIN_TYPE(obj
)) {
1318 rb_bug("rb_gc_mark() called for broken object");
1322 switch (nd_type(obj
)) {
1323 case NODE_IF
: /* 1,2,3 */
1331 case NODE_BLOCK_PASS
:
1332 gc_mark(objspace
, (VALUE
)obj
->as
.node
.u2
.node
, lev
);
1334 case NODE_BLOCK
: /* 1,3 */
1340 case NODE_DREGX_ONCE
:
1346 gc_mark(objspace
, (VALUE
)obj
->as
.node
.u1
.node
, lev
);
1348 case NODE_SUPER
: /* 3 */
1352 ptr
= (VALUE
)obj
->as
.node
.u3
.node
;
1355 case NODE_METHOD
: /* 1,2 */
1368 case NODE_OP_ASGN_OR
:
1369 case NODE_OP_ASGN_AND
:
1374 gc_mark(objspace
, (VALUE
)obj
->as
.node
.u1
.node
, lev
);
1376 case NODE_FBODY
: /* 2 */
1380 case NODE_DASGN_CURR
:
1389 ptr
= (VALUE
)obj
->as
.node
.u2
.node
;
1392 case NODE_HASH
: /* 1 */
1405 ptr
= (VALUE
)obj
->as
.node
.u1
.node
;
1408 case NODE_SCOPE
: /* 2,3 */
1411 gc_mark(objspace
, (VALUE
)obj
->as
.node
.u3
.node
, lev
);
1412 ptr
= (VALUE
)obj
->as
.node
.u2
.node
;
1415 case NODE_ZARRAY
: /* - */
1434 case NODE_BLOCK_ARG
:
1437 mark_locations_array(objspace
,
1438 (VALUE
*)obj
->as
.node
.u1
.value
,
1439 obj
->as
.node
.u3
.cnt
);
1440 ptr
= (VALUE
)obj
->as
.node
.u2
.node
;
1443 default: /* unlisted NODE */
1444 if (is_pointer_to_heap(objspace
, obj
->as
.node
.u1
.node
)) {
1445 gc_mark(objspace
, (VALUE
)obj
->as
.node
.u1
.node
, lev
);
1447 if (is_pointer_to_heap(objspace
, obj
->as
.node
.u2
.node
)) {
1448 gc_mark(objspace
, (VALUE
)obj
->as
.node
.u2
.node
, lev
);
1450 if (is_pointer_to_heap(objspace
, obj
->as
.node
.u3
.node
)) {
1451 gc_mark(objspace
, (VALUE
)obj
->as
.node
.u3
.node
, lev
);
1454 return; /* no need to mark class. */
1457 gc_mark(objspace
, obj
->as
.basic
.klass
, lev
);
1458 switch (BUILTIN_TYPE(obj
)) {
1462 mark_tbl(objspace
, RCLASS_M_TBL(obj
), lev
);
1463 mark_tbl(objspace
, RCLASS_IV_TBL(obj
), lev
);
1464 ptr
= RCLASS_SUPER(obj
);
1468 if (FL_TEST(obj
, ELTS_SHARED
)) {
1469 ptr
= obj
->as
.array
.aux
.shared
;
1473 long i
, len
= RARRAY_LEN(obj
);
1474 VALUE
*ptr
= RARRAY_PTR(obj
);
1475 for (i
=0; i
< len
; i
++) {
1476 gc_mark(objspace
, *ptr
++, lev
);
1482 mark_hash(objspace
, obj
->as
.hash
.ntbl
, lev
);
1483 ptr
= obj
->as
.hash
.ifnone
;
1487 #define STR_ASSOC FL_USER3 /* copied from string.c */
1488 if (FL_TEST(obj
, RSTRING_NOEMBED
) && FL_ANY(obj
, ELTS_SHARED
|STR_ASSOC
)) {
1489 ptr
= obj
->as
.string
.as
.heap
.aux
.shared
;
1495 if (obj
->as
.data
.dmark
) (*obj
->as
.data
.dmark
)(DATA_PTR(obj
));
1500 long i
, len
= ROBJECT_NUMIV(obj
);
1501 VALUE
*ptr
= ROBJECT_IVPTR(obj
);
1502 for (i
= 0; i
< len
; i
++) {
1503 gc_mark(objspace
, *ptr
++, lev
);
1509 if (obj
->as
.file
.fptr
)
1510 gc_mark(objspace
, obj
->as
.file
.fptr
->tied_io_for_writing
, lev
);
1514 gc_mark(objspace
, obj
->as
.regexp
.src
, lev
);
1522 gc_mark(objspace
, obj
->as
.match
.regexp
, lev
);
1523 if (obj
->as
.match
.str
) {
1524 ptr
= obj
->as
.match
.str
;
1530 gc_mark(objspace
, obj
->as
.rational
.num
, lev
);
1531 gc_mark(objspace
, obj
->as
.rational
.den
, lev
);
1535 gc_mark(objspace
, obj
->as
.complex.real
, lev
);
1536 gc_mark(objspace
, obj
->as
.complex.image
, lev
);
1541 long len
= RSTRUCT_LEN(obj
);
1542 VALUE
*ptr
= RSTRUCT_PTR(obj
);
1545 gc_mark(objspace
, *ptr
++, lev
);
1551 rb_bug("rb_gc_mark(): unknown data type 0x%lx(%p) %s",
1552 BUILTIN_TYPE(obj
), obj
,
1553 is_pointer_to_heap(objspace
, obj
) ? "corrupted object" : "non object");
1557 static int obj_free(rb_objspace_t
*, VALUE
);
1560 add_freelist(rb_objspace_t
*objspace
, RVALUE
*p
)
1562 VALGRIND_MAKE_MEM_UNDEFINED((void*)p
, sizeof(RVALUE
));
1563 p
->as
.free
.flags
= 0;
1564 p
->as
.free
.next
= freelist
;
1569 finalize_list(rb_objspace_t
*objspace
, RVALUE
*p
)
1572 RVALUE
*tmp
= p
->as
.free
.next
;
1573 run_final(objspace
, (VALUE
)p
);
1574 if (!FL_TEST(p
, FL_SINGLETON
)) { /* not freeing page */
1575 add_freelist(objspace
, p
);
1578 struct heaps_slot
*slot
= (struct heaps_slot
*)RDATA(p
)->dmark
;
1586 free_unused_heaps(rb_objspace_t
*objspace
)
1591 for (i
= j
= 1; j
< heaps_used
; i
++) {
1592 if (heaps
[i
].limit
== 0) {
1594 last
= heaps
[i
].membase
;
1597 free(heaps
[i
].membase
);
1603 heaps
[j
] = heaps
[i
];
1609 if (last
< heaps_freed
) {
1620 gc_sweep(rb_objspace_t
*objspace
)
1622 RVALUE
*p
, *pend
, *final_list
;
1625 size_t live
= 0, free_min
= 0, do_heap_free
= 0;
1627 do_heap_free
= (heaps_used
* HEAP_OBJ_LIMIT
) * 0.65;
1628 free_min
= (heaps_used
* HEAP_OBJ_LIMIT
) * 0.2;
1630 if (free_min
< FREE_MIN
) {
1631 do_heap_free
= heaps_used
* HEAP_OBJ_LIMIT
;
1632 free_min
= FREE_MIN
;
1636 final_list
= deferred_final_list
;
1637 deferred_final_list
= 0;
1638 for (i
= 0; i
< heaps_used
; i
++) {
1640 RVALUE
*free
= freelist
;
1641 RVALUE
*final
= final_list
;
1644 p
= heaps
[i
].slot
; pend
= p
+ heaps
[i
].limit
;
1646 if (!(p
->as
.basic
.flags
& FL_MARK
)) {
1647 if (p
->as
.basic
.flags
&&
1648 ((deferred
= obj_free(objspace
, (VALUE
)p
)) ||
1649 ((FL_TEST(p
, FL_FINALIZE
)) && need_call_final
))) {
1651 p
->as
.free
.flags
= T_DEFERRED
;
1652 RDATA(p
)->dfree
= 0;
1654 p
->as
.free
.flags
|= FL_MARK
;
1655 p
->as
.free
.next
= final_list
;
1659 add_freelist(objspace
, p
);
1663 else if (BUILTIN_TYPE(p
) == T_DEFERRED
) {
1664 /* objects to be finalized */
1665 /* do nothing remain marked */
1668 RBASIC(p
)->flags
&= ~FL_MARK
;
1673 if (n
== heaps
[i
].limit
&& freed
> do_heap_free
) {
1677 for (pp
= final_list
; pp
!= final
; pp
= pp
->as
.free
.next
) {
1679 RDATA(pp
)->dmark
= (void *)&heaps
[i
];
1680 pp
->as
.free
.flags
|= FL_SINGLETON
; /* freeing page mark */
1682 heaps
[i
].limit
= f_count
;
1684 freelist
= free
; /* cancel this page from freelist */
1690 GC_PROF_SET_MALLOC_INFO
;
1691 if (malloc_increase
> malloc_limit
) {
1692 malloc_limit
+= (malloc_increase
- malloc_limit
) * (double)live
/ (live
+ freed
);
1693 if (malloc_limit
< GC_MALLOC_LIMIT
) malloc_limit
= GC_MALLOC_LIMIT
;
1695 malloc_increase
= 0;
1696 if (freed
< free_min
) {
1697 set_heaps_increment(objspace
);
1698 heaps_increment(objspace
);
1702 /* clear finalization list */
1704 GC_PROF_SET_HEAP_INFO
;
1705 deferred_final_list
= final_list
;
1706 RUBY_VM_SET_FINALIZER_INTERRUPT(GET_THREAD());
1709 free_unused_heaps(objspace
);
1710 GC_PROF_SET_HEAP_INFO
;
1715 rb_gc_force_recycle(VALUE p
)
1717 rb_objspace_t
*objspace
= &rb_objspace
;
1718 add_freelist(objspace
, (RVALUE
*)p
);
1722 make_deferred(RVALUE
*p
)
1724 p
->as
.basic
.flags
= (p
->as
.basic
.flags
& ~T_MASK
) | T_DEFERRED
;
1728 obj_free(rb_objspace_t
*objspace
, VALUE obj
)
1730 switch (BUILTIN_TYPE(obj
)) {
1735 rb_bug("obj_free() called for broken object");
1739 if (FL_TEST(obj
, FL_EXIVAR
)) {
1740 rb_free_generic_ivar((VALUE
)obj
);
1741 FL_UNSET(obj
, FL_EXIVAR
);
1744 switch (BUILTIN_TYPE(obj
)) {
1746 if (!(RANY(obj
)->as
.basic
.flags
& ROBJECT_EMBED
) &&
1747 RANY(obj
)->as
.object
.as
.heap
.ivptr
) {
1748 xfree(RANY(obj
)->as
.object
.as
.heap
.ivptr
);
1753 rb_clear_cache_by_class((VALUE
)obj
);
1754 st_free_table(RCLASS_M_TBL(obj
));
1755 if (RCLASS_IV_TBL(obj
)) {
1756 st_free_table(RCLASS_IV_TBL(obj
));
1758 if (RCLASS_IV_INDEX_TBL(obj
)) {
1759 st_free_table(RCLASS_IV_INDEX_TBL(obj
));
1761 xfree(RANY(obj
)->as
.klass
.ptr
);
1770 if (RANY(obj
)->as
.hash
.ntbl
) {
1771 st_free_table(RANY(obj
)->as
.hash
.ntbl
);
1775 if (RANY(obj
)->as
.regexp
.ptr
) {
1776 onig_free(RANY(obj
)->as
.regexp
.ptr
);
1780 if (DATA_PTR(obj
)) {
1781 if ((long)RANY(obj
)->as
.data
.dfree
== -1) {
1782 xfree(DATA_PTR(obj
));
1784 else if (RANY(obj
)->as
.data
.dfree
) {
1785 make_deferred(RANY(obj
));
1791 if (RANY(obj
)->as
.match
.rmatch
) {
1792 struct rmatch
*rm
= RANY(obj
)->as
.match
.rmatch
;
1793 onig_region_free(&rm
->regs
, 0);
1794 if (rm
->char_offset
)
1795 xfree(rm
->char_offset
);
1800 if (RANY(obj
)->as
.file
.fptr
) {
1801 rb_io_t
*fptr
= RANY(obj
)->as
.file
.fptr
;
1802 make_deferred(RANY(obj
));
1803 RDATA(obj
)->dfree
= (void (*)(void*))rb_io_fptr_finalize
;
1804 RDATA(obj
)->data
= fptr
;
1812 /* iClass shares table with the module */
1819 if (!(RBASIC(obj
)->flags
& RBIGNUM_EMBED_FLAG
) && RBIGNUM_DIGITS(obj
)) {
1820 xfree(RBIGNUM_DIGITS(obj
));
1824 switch (nd_type(obj
)) {
1826 if (RANY(obj
)->as
.node
.u1
.tbl
) {
1827 xfree(RANY(obj
)->as
.node
.u1
.tbl
);
1831 xfree(RANY(obj
)->as
.node
.u1
.node
);
1834 break; /* no need to free iv_tbl */
1837 if ((RBASIC(obj
)->flags
& RSTRUCT_EMBED_LEN_MASK
) == 0 &&
1838 RANY(obj
)->as
.rstruct
.as
.heap
.ptr
) {
1839 xfree(RANY(obj
)->as
.rstruct
.as
.heap
.ptr
);
1844 rb_bug("gc_sweep(): unknown data type 0x%lx(%p)",
1845 BUILTIN_TYPE(obj
), (void*)obj
);
1852 #if defined(__human68k__) || defined(DJGPP)
1855 #if defined(__human68k__)
1856 typedef unsigned long rb_jmp_buf
[8];
1860 movem.l d3-d7/a3-a5,(a0)\n\
1865 typedef unsigned long rb_jmp_buf
[6];
1866 __asm__ (".align 4\n\
1870 movl 8(%ebp),%ebp\n\
1872 movl %ebx,4(%ebp)\n\
1873 movl %ecx,8(%ebp)\n\
1874 movl %edx,12(%ebp)\n\
1875 movl %esi,16(%ebp)\n\
1876 movl %edi,20(%ebp)\n\
1882 int rb_setjmp (rb_jmp_buf
);
1883 #endif /* __human68k__ or DJGPP */
1884 #endif /* __GNUC__ */
1888 void rb_vm_mark(void *ptr
);
1891 mark_current_machine_context(rb_objspace_t
*objspace
, rb_thread_t
*th
)
1893 rb_jmp_buf save_regs_gc_mark
;
1894 VALUE
*stack_start
, *stack_end
;
1897 #if STACK_GROW_DIRECTION < 0
1898 stack_start
= th
->machine_stack_end
;
1899 stack_end
= th
->machine_stack_start
;
1900 #elif STACK_GROW_DIRECTION > 0
1901 stack_start
= th
->machine_stack_start
;
1902 stack_end
= th
->machine_stack_end
+ 1;
1904 if (th
->machine_stack_end
< th
->machine_stack_start
) {
1905 stack_start
= th
->machine_stack_end
;
1906 stack_end
= th
->machine_stack_start
;
1909 stack_start
= th
->machine_stack_start
;
1910 stack_end
= th
->machine_stack_end
+ 1;
1914 FLUSH_REGISTER_WINDOWS
;
1915 /* This assumes that all registers are saved into the jmp_buf (and stack) */
1916 rb_setjmp(save_regs_gc_mark
);
1917 mark_locations_array(objspace
,
1918 (VALUE
*)save_regs_gc_mark
,
1919 sizeof(save_regs_gc_mark
) / sizeof(VALUE
));
1921 rb_gc_mark_locations(stack_start
, stack_end
);
1923 rb_gc_mark_locations(th
->machine_register_stack_start
, th
->machine_register_stack_end
);
1925 #if defined(__human68k__) || defined(__mc68000__)
1926 mark_locations_array((VALUE
*)((char*)STACK_END
+ 2),
1927 (STACK_START
- STACK_END
));
1931 void rb_gc_mark_encodings(void);
1934 garbage_collect(rb_objspace_t
*objspace
)
1936 struct gc_list
*list
;
1937 rb_thread_t
*th
= GET_THREAD();
1938 INIT_GC_PROF_PARAMS
;
1940 if (GC_NOTIFY
) printf("start garbage_collect()\n");
1946 if (dont_gc
|| during_gc
) {
1948 if (!heaps_increment(objspace
)) {
1949 set_heaps_increment(objspace
);
1950 heaps_increment(objspace
);
1958 GC_PROF_TIMER_START
;
1959 GC_PROF_MARK_TIMER_START
;
1962 init_mark_stack(objspace
);
1964 th
->vm
->self
? rb_gc_mark(th
->vm
->self
) : rb_vm_mark(th
->vm
);
1966 if (finalizer_table
) {
1967 mark_tbl(objspace
, finalizer_table
, 0);
1970 mark_current_machine_context(objspace
, th
);
1972 rb_gc_mark_threads();
1973 rb_gc_mark_symbols();
1974 rb_gc_mark_encodings();
1976 /* mark protected global variables */
1977 for (list
= global_List
; list
; list
= list
->next
) {
1978 rb_gc_mark_maybe(*list
->varptr
);
1981 rb_gc_mark_global_tbl();
1983 mark_tbl(objspace
, rb_class_tbl
, 0);
1984 rb_gc_mark_trap_list();
1986 /* mark generic instance variables for special constants */
1987 rb_mark_generic_ivar_tbl();
1989 rb_gc_mark_parser();
1991 /* gc_mark objects whose marking are not completed*/
1992 while (!MARK_STACK_EMPTY
) {
1993 if (mark_stack_overflow
) {
1994 gc_mark_all(objspace
);
1997 gc_mark_rest(objspace
);
2000 GC_PROF_MARK_TIMER_STOP
;
2002 GC_PROF_SWEEP_TIMER_START
;
2004 GC_PROF_SWEEP_TIMER_STOP
;
2007 if (GC_NOTIFY
) printf("end garbage_collect()\n");
2012 rb_garbage_collect(void)
2014 return garbage_collect(&rb_objspace
);
2018 rb_gc_mark_machine_stack(rb_thread_t
*th
)
2020 rb_objspace_t
*objspace
= &rb_objspace
;
2021 #if STACK_GROW_DIRECTION < 0
2022 rb_gc_mark_locations(th
->machine_stack_end
, th
->machine_stack_start
);
2023 #elif STACK_GROW_DIRECTION > 0
2024 rb_gc_mark_locations(th
->machine_stack_start
, th
->machine_stack_end
);
2026 if (th
->machine_stack_start
< th
->machine_stack_end
) {
2027 rb_gc_mark_locations(th
->machine_stack_start
, th
->machine_stack_end
);
2030 rb_gc_mark_locations(th
->machine_stack_end
, th
->machine_stack_start
);
2034 rb_gc_mark_locations(th
->machine_register_stack_start
, th
->machine_register_stack_end
);
2042 * gc.garbage_collect => nil
2043 * ObjectSpace.garbage_collect => nil
2045 * Initiates garbage collection, unless manually disabled.
2059 Init_stack(VALUE
*addr
)
2061 ruby_init_stack(addr
);
2065 * Document-class: ObjectSpace
2067 * The <code>ObjectSpace</code> module contains a number of routines
2068 * that interact with the garbage collection facility and allow you to
2069 * traverse all living objects with an iterator.
2071 * <code>ObjectSpace</code> also provides support for object
2072 * finalizers, procs that will be called when a specific object is
2073 * about to be destroyed by garbage collection.
2075 * include ObjectSpace
2083 * define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" })
2084 * define_finalizer(a, proc {|id| puts "Finalizer two on #{id}" })
2085 * define_finalizer(b, proc {|id| puts "Finalizer three on #{id}" })
2087 * <em>produces:</em>
2089 * Finalizer three on 537763470
2090 * Finalizer one on 537763480
2091 * Finalizer two on 537763480
2098 init_heap(&rb_objspace
);
2102 os_obj_of(rb_objspace_t
*objspace
, VALUE of
)
2106 RVALUE
*membase
= 0;
2111 while (i
< heaps_used
) {
2112 while (0 < i
&& (uintptr_t)membase
< (uintptr_t)heaps
[i
-1].membase
)
2114 while (i
< heaps_used
&& (uintptr_t)heaps
[i
].membase
<= (uintptr_t)membase
)
2116 if (heaps_used
<= i
)
2118 membase
= heaps
[i
].membase
;
2120 p
= heaps
[i
].slot
; pend
= p
+ heaps
[i
].limit
;
2121 for (;p
< pend
; p
++) {
2122 if (p
->as
.basic
.flags
) {
2123 switch (BUILTIN_TYPE(p
)) {
2130 if (FL_TEST(p
, FL_SINGLETON
)) continue;
2132 if (!p
->as
.basic
.klass
) continue;
2134 if (!of
|| rb_obj_is_kind_of(v
, of
)) {
2143 return SIZET2NUM(n
);
2148 * ObjectSpace.each_object([module]) {|obj| ... } => fixnum
2150 * Calls the block once for each living, nonimmediate object in this
2151 * Ruby process. If <i>module</i> is specified, calls the block
2152 * for only those classes or modules that match (or are a subclass of)
2153 * <i>module</i>. Returns the number of objects found. Immediate
2154 * objects (<code>Fixnum</code>s, <code>Symbol</code>s
2155 * <code>true</code>, <code>false</code>, and <code>nil</code>) are
2156 * never returned. In the example below, <code>each_object</code>
2157 * returns both the numbers we defined and several constants defined in
2158 * the <code>Math</code> module.
2161 * b = 95 # Won't be returned
2162 * c = 12345678987654321
2163 * count = ObjectSpace.each_object(Numeric) {|x| p x }
2164 * puts "Total count: #{count}"
2166 * <em>produces:</em>
2172 * 2.22044604925031e-16
2173 * 1.7976931348623157e+308
2174 * 2.2250738585072e-308
2180 os_each_obj(int argc
, VALUE
*argv
, VALUE os
)
2189 rb_scan_args(argc
, argv
, "01", &of
);
2191 RETURN_ENUMERATOR(os
, 1, &of
);
2192 return os_obj_of(&rb_objspace
, of
);
2197 * ObjectSpace.undefine_finalizer(obj)
2199 * Removes all finalizers for <i>obj</i>.
2204 undefine_final(VALUE os
, VALUE obj
)
2206 rb_objspace_t
*objspace
= &rb_objspace
;
2207 if (finalizer_table
) {
2208 st_delete(finalizer_table
, (st_data_t
*)&obj
, 0);
2215 * ObjectSpace.define_finalizer(obj, aProc=proc())
2217 * Adds <i>aProc</i> as a finalizer, to be called after <i>obj</i>
2223 define_final(int argc
, VALUE
*argv
, VALUE os
)
2225 rb_objspace_t
*objspace
= &rb_objspace
;
2226 VALUE obj
, block
, table
;
2228 rb_scan_args(argc
, argv
, "11", &obj
, &block
);
2230 block
= rb_block_proc();
2232 else if (!rb_respond_to(block
, rb_intern("call"))) {
2233 rb_raise(rb_eArgError
, "wrong type argument %s (should be callable)",
2234 rb_obj_classname(block
));
2236 FL_SET(obj
, FL_FINALIZE
);
2238 block
= rb_ary_new3(2, INT2FIX(rb_safe_level()), block
);
2240 if (!finalizer_table
) {
2241 finalizer_table
= st_init_numtable();
2243 if (st_lookup(finalizer_table
, obj
, &table
)) {
2244 rb_ary_push(table
, block
);
2247 st_add_direct(finalizer_table
, obj
, rb_ary_new3(1, block
));
2253 rb_gc_copy_finalizer(VALUE dest
, VALUE obj
)
2255 rb_objspace_t
*objspace
= &rb_objspace
;
2258 if (!finalizer_table
) return;
2259 if (!FL_TEST(obj
, FL_FINALIZE
)) return;
2260 if (st_lookup(finalizer_table
, obj
, &table
)) {
2261 st_insert(finalizer_table
, dest
, table
);
2263 FL_SET(dest
, FL_FINALIZE
);
2267 run_single_final(VALUE arg
)
2269 VALUE
*args
= (VALUE
*)arg
;
2270 rb_eval_cmd(args
[0], args
[1], (int)args
[2]);
2275 run_final(rb_objspace_t
*objspace
, VALUE obj
)
2279 VALUE args
[3], table
, objid
;
2281 objid
= rb_obj_id(obj
); /* make obj into id */
2282 RBASIC(obj
)->klass
= 0;
2284 if (RDATA(obj
)->dfree
) {
2285 (*RDATA(obj
)->dfree
)(DATA_PTR(obj
));
2288 if (finalizer_table
&&
2289 st_delete(finalizer_table
, (st_data_t
*)&obj
, &table
)) {
2291 args
[2] = (VALUE
)rb_safe_level();
2292 if (!args
[1] && RARRAY_LEN(table
) > 0) {
2293 args
[1] = rb_obj_freeze(rb_ary_new3(1, objid
));
2295 for (i
=0; i
<RARRAY_LEN(table
); i
++) {
2296 VALUE final
= RARRAY_PTR(table
)[i
];
2297 args
[0] = RARRAY_PTR(final
)[1];
2298 args
[2] = FIX2INT(RARRAY_PTR(final
)[0]);
2299 rb_protect(run_single_final
, (VALUE
)args
, &status
);
2305 gc_finalize_deferred(rb_objspace_t
*objspace
)
2307 RVALUE
*p
= deferred_final_list
;
2308 deferred_final_list
= 0;
2311 finalize_list(objspace
, p
);
2313 free_unused_heaps(objspace
);
2317 rb_gc_finalize_deferred(void)
2319 gc_finalize_deferred(&rb_objspace
);
2323 chain_finalized_object(st_data_t key
, st_data_t val
, st_data_t arg
)
2325 RVALUE
*p
= (RVALUE
*)key
, **final_list
= (RVALUE
**)arg
;
2326 if (p
->as
.basic
.flags
& FL_FINALIZE
) {
2327 if (BUILTIN_TYPE(p
) != T_DEFERRED
) {
2328 p
->as
.free
.flags
= FL_MARK
| T_DEFERRED
; /* remain marked */
2329 RDATA(p
)->dfree
= 0;
2331 p
->as
.free
.next
= *final_list
;
2341 rb_gc_call_finalizer_at_exit(void)
2343 rb_objspace_t
*objspace
= &rb_objspace
;
2347 /* run finalizers */
2348 if (finalizer_table
) {
2349 p
= deferred_final_list
;
2350 deferred_final_list
= 0;
2351 finalize_list(objspace
, p
);
2352 while (finalizer_table
->num_entries
> 0) {
2353 RVALUE
*final_list
= 0;
2354 st_foreach(finalizer_table
, chain_finalized_object
,
2355 (st_data_t
)&final_list
);
2356 if (!(p
= final_list
)) break;
2358 final_list
= p
->as
.free
.next
;
2359 run_final(objspace
, (VALUE
)p
);
2360 } while ((p
= final_list
) != 0);
2362 st_free_table(finalizer_table
);
2363 finalizer_table
= 0;
2365 /* finalizers are part of garbage collection */
2367 /* run data object's finalizers */
2368 for (i
= 0; i
< heaps_used
; i
++) {
2369 p
= heaps
[i
].slot
; pend
= p
+ heaps
[i
].limit
;
2371 if (BUILTIN_TYPE(p
) == T_DATA
&&
2372 DATA_PTR(p
) && RANY(p
)->as
.data
.dfree
&&
2373 RANY(p
)->as
.basic
.klass
!= rb_cThread
) {
2374 p
->as
.free
.flags
= 0;
2375 if ((long)RANY(p
)->as
.data
.dfree
== -1) {
2378 else if (RANY(p
)->as
.data
.dfree
) {
2379 (*RANY(p
)->as
.data
.dfree
)(DATA_PTR(p
));
2381 VALGRIND_MAKE_MEM_UNDEFINED((void*)p
, sizeof(RVALUE
));
2383 else if (BUILTIN_TYPE(p
) == T_FILE
) {
2384 if (rb_io_fptr_finalize(RANY(p
)->as
.file
.fptr
)) {
2385 p
->as
.free
.flags
= 0;
2386 VALGRIND_MAKE_MEM_UNDEFINED((void*)p
, sizeof(RVALUE
));
2398 rb_objspace_t
*objspace
= &rb_objspace
;
2399 garbage_collect(objspace
);
2400 gc_finalize_deferred(objspace
);
2405 * ObjectSpace._id2ref(object_id) -> an_object
2407 * Converts an object id to a reference to the object. May not be
2408 * called on an object id passed as a parameter to a finalizer.
2410 * s = "I am a string" #=> "I am a string"
2411 * r = ObjectSpace._id2ref(s.object_id) #=> "I am a string"
2417 id2ref(VALUE obj
, VALUE objid
)
2419 #if SIZEOF_LONG == SIZEOF_VOIDP
2420 #define NUM2PTR(x) NUM2ULONG(x)
2421 #elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
2422 #define NUM2PTR(x) NUM2ULL(x)
2424 rb_objspace_t
*objspace
= &rb_objspace
;
2429 ptr
= NUM2PTR(objid
);
2432 if (ptr
== Qtrue
) return Qtrue
;
2433 if (ptr
== Qfalse
) return Qfalse
;
2434 if (ptr
== Qnil
) return Qnil
;
2435 if (FIXNUM_P(ptr
)) return (VALUE
)ptr
;
2436 ptr
= objid
^ FIXNUM_FLAG
; /* unset FIXNUM_FLAG */
2438 if ((ptr
% sizeof(RVALUE
)) == (4 << 2)) {
2439 ID symid
= ptr
/ sizeof(RVALUE
);
2440 if (rb_id2name(symid
) == 0)
2441 rb_raise(rb_eRangeError
, "%p is not symbol id value", p0
);
2442 return ID2SYM(symid
);
2445 if (!is_pointer_to_heap(objspace
, (void *)ptr
) ||
2446 BUILTIN_TYPE(ptr
) > T_FIXNUM
|| BUILTIN_TYPE(ptr
) == T_ICLASS
) {
2447 rb_raise(rb_eRangeError
, "%p is not id value", p0
);
2449 if (BUILTIN_TYPE(ptr
) == 0 || RBASIC(ptr
)->klass
== 0) {
2450 rb_raise(rb_eRangeError
, "%p is recycled object", p0
);
2456 * Document-method: __id__
2457 * Document-method: object_id
2460 * obj.__id__ => fixnum
2461 * obj.object_id => fixnum
2463 * Returns an integer identifier for <i>obj</i>. The same number will
2464 * be returned on all calls to <code>id</code> for a given object, and
2465 * no two active objects will share an id.
2466 * <code>Object#object_id</code> is a different concept from the
2467 * <code>:name</code> notation, which returns the symbol id of
2468 * <code>name</code>. Replaces the deprecated <code>Object#id</code>.
2473 * obj.hash => fixnum
2475 * Generates a <code>Fixnum</code> hash value for this object. This
2476 * function must have the property that <code>a.eql?(b)</code> implies
2477 * <code>a.hash == b.hash</code>. The hash value is used by class
2478 * <code>Hash</code>. Any hash value that exceeds the capacity of a
2479 * <code>Fixnum</code> will be truncated before being used.
2483 rb_obj_id(VALUE obj
)
2486 * 32-bit VALUE space
2487 * MSB ------------------------ LSB
2488 * false 00000000000000000000000000000000
2489 * true 00000000000000000000000000000010
2490 * nil 00000000000000000000000000000100
2491 * undef 00000000000000000000000000000110
2492 * symbol ssssssssssssssssssssssss00001110
2493 * object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE))
2494 * fixnum fffffffffffffffffffffffffffffff1
2498 * false 00000000000000000000000000000000
2499 * true 00000000000000000000000000000010
2500 * nil 00000000000000000000000000000100
2501 * undef 00000000000000000000000000000110
2502 * symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4)
2503 * object oooooooooooooooooooooooooooooo0 o...o % A = 0
2504 * fixnum fffffffffffffffffffffffffffffff1 bignum if required
2506 * where A = sizeof(RVALUE)/4
2509 * 20 if 32-bit, double is 4-byte aligned
2510 * 24 if 32-bit, double is 8-byte aligned
2513 if (TYPE(obj
) == T_SYMBOL
) {
2514 return (SYM2ID(obj
) * sizeof(RVALUE
) + (4 << 2)) | FIXNUM_FLAG
;
2516 if (SPECIAL_CONST_P(obj
)) {
2517 return LONG2NUM((SIGNED_VALUE
)obj
);
2519 return (VALUE
)((SIGNED_VALUE
)obj
|FIXNUM_FLAG
);
2523 set_zero(st_data_t key
, st_data_t val
, st_data_t arg
)
2525 VALUE k
= (VALUE
)key
;
2526 VALUE hash
= (VALUE
)arg
;
2527 rb_hash_aset(hash
, k
, INT2FIX(0));
2533 * ObjectSpace.count_objects([result_hash]) -> hash
2535 * Counts objects for each type.
2537 * It returns a hash as:
2538 * {:TOTAL=>10000, :FREE=>3011, :T_OBJECT=>6, :T_CLASS=>404, ...}
2540 * If the optional argument, result_hash, is given,
2541 * it is overwritten and returned.
2542 * This is intended to avoid probe effect.
2544 * The contents of the returned hash is implementation defined.
2545 * It may be changed in future.
2547 * This method is not expected to work except C Ruby.
2552 count_objects(int argc
, VALUE
*argv
, VALUE os
)
2554 rb_objspace_t
*objspace
= &rb_objspace
;
2555 size_t counts
[T_MASK
+1];
2561 if (rb_scan_args(argc
, argv
, "01", &hash
) == 1) {
2562 if (TYPE(hash
) != T_HASH
)
2563 rb_raise(rb_eTypeError
, "non-hash given");
2566 for (i
= 0; i
<= T_MASK
; i
++) {
2570 for (i
= 0; i
< heaps_used
; i
++) {
2573 p
= heaps
[i
].slot
; pend
= p
+ heaps
[i
].limit
;
2574 for (;p
< pend
; p
++) {
2575 if (p
->as
.basic
.flags
) {
2576 counts
[BUILTIN_TYPE(p
)]++;
2582 total
+= heaps
[i
].limit
;
2586 hash
= rb_hash_new();
2588 else if (!RHASH_EMPTY_P(hash
)) {
2589 st_foreach(RHASH_TBL(hash
), set_zero
, hash
);
2591 rb_hash_aset(hash
, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total
));
2592 rb_hash_aset(hash
, ID2SYM(rb_intern("FREE")), SIZET2NUM(freed
));
2594 for (i
= 0; i
<= T_MASK
; i
++) {
2597 #define COUNT_TYPE(t) case t: type = ID2SYM(rb_intern(#t)); break;
2599 COUNT_TYPE(T_OBJECT
);
2600 COUNT_TYPE(T_CLASS
);
2601 COUNT_TYPE(T_MODULE
);
2602 COUNT_TYPE(T_FLOAT
);
2603 COUNT_TYPE(T_STRING
);
2604 COUNT_TYPE(T_REGEXP
);
2605 COUNT_TYPE(T_ARRAY
);
2607 COUNT_TYPE(T_STRUCT
);
2608 COUNT_TYPE(T_BIGNUM
);
2611 COUNT_TYPE(T_MATCH
);
2612 COUNT_TYPE(T_COMPLEX
);
2613 COUNT_TYPE(T_RATIONAL
);
2616 COUNT_TYPE(T_FALSE
);
2617 COUNT_TYPE(T_SYMBOL
);
2618 COUNT_TYPE(T_FIXNUM
);
2619 COUNT_TYPE(T_UNDEF
);
2621 COUNT_TYPE(T_ICLASS
);
2622 COUNT_TYPE(T_DEFERRED
);
2624 default: type
= INT2NUM(i
); break;
2627 rb_hash_aset(hash
, type
, SIZET2NUM(counts
[i
]));
2635 * GC.count -> Integer
2637 * The number of times GC occured.
2639 * It returns the number of times GC occured since the process started.
2644 gc_count(VALUE self
)
2646 return UINT2NUM((&rb_objspace
)->count
);
2649 #if CALC_EXACT_MALLOC_SIZE
2652 * GC.malloc_allocated_size -> Integer
2654 * The allocated size by malloc().
2656 * It returns the allocated size by malloc().
2660 gc_malloc_allocated_size(VALUE self
)
2662 return UINT2NUM((&rb_objspace
)->malloc_params
.allocated_size
);
2667 * GC.malloc_allocations -> Integer
2669 * The number of allocated memory object by malloc().
2671 * It returns the number of allocated memory object by malloc().
2675 gc_malloc_allocations(VALUE self
)
2677 return UINT2NUM((&rb_objspace
)->malloc_params
.allocations
);
2682 gc_profile_record_get(void)
2685 VALUE gc_profile
= rb_ary_new();
2687 rb_objspace_t
*objspace
= (&rb_objspace
);
2689 if (!objspace
->profile
.run
) {
2693 for (i
=0; i
< objspace
->profile
.count
; i
++) {
2694 prof
= rb_hash_new();
2695 rb_hash_aset(prof
, ID2SYM(rb_intern("GC_TIME")), DOUBLE2NUM(objspace
->profile
.record
[i
].gc_time
));
2696 rb_hash_aset(prof
, ID2SYM(rb_intern("GC_INVOKE_TIME")), DOUBLE2NUM(objspace
->profile
.record
[i
].gc_invoke_time
));
2697 rb_hash_aset(prof
, ID2SYM(rb_intern("HEAP_USE_SIZE")), rb_uint2inum(objspace
->profile
.record
[i
].heap_use_size
));
2698 rb_hash_aset(prof
, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")), rb_uint2inum(objspace
->profile
.record
[i
].heap_total_size
));
2699 rb_hash_aset(prof
, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")), rb_uint2inum(objspace
->profile
.record
[i
].heap_total_objects
));
2700 #if GC_PROFILE_MORE_DETAIL
2701 rb_hash_aset(prof
, ID2SYM(rb_intern("GC_MARK_TIME")), DOUBLE2NUM(objspace
->profile
.record
[i
].gc_mark_time
));
2702 rb_hash_aset(prof
, ID2SYM(rb_intern("GC_SWEEP_TIME")), DOUBLE2NUM(objspace
->profile
.record
[i
].gc_sweep_time
));
2703 rb_hash_aset(prof
, ID2SYM(rb_intern("ALLOCATE_INCREASE")), rb_uint2inum(objspace
->profile
.record
[i
].allocate_increase
));
2704 rb_hash_aset(prof
, ID2SYM(rb_intern("ALLOCATE_LIMIT")), rb_uint2inum(objspace
->profile
.record
[i
].allocate_limit
));
2705 rb_hash_aset(prof
, ID2SYM(rb_intern("HEAP_USE_SLOTS")), rb_uint2inum(objspace
->profile
.record
[i
].heap_use_slots
));
2706 rb_hash_aset(prof
, ID2SYM(rb_intern("HEAP_LIVE_OBJECTS")), rb_uint2inum(objspace
->profile
.record
[i
].heap_live_objects
));
2707 rb_hash_aset(prof
, ID2SYM(rb_intern("HEAP_FREE_OBJECTS")), rb_uint2inum(objspace
->profile
.record
[i
].heap_free_objects
));
2708 rb_hash_aset(prof
, ID2SYM(rb_intern("HAVE_FINALIZE")), objspace
->profile
.record
[i
].have_finalize
);
2710 rb_ary_push(gc_profile
, prof
);
2718 * GC::Profiler.result -> string
2720 * Report profile data to string.
2722 * It returns a string as:
2724 * Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC time(ms)
2725 * 1 0.012 159240 212940 10647 0.00000000000001530000
2729 gc_profile_result(void)
2731 rb_objspace_t
*objspace
= &rb_objspace
;
2732 VALUE record
= gc_profile_record_get();
2736 if (objspace
->profile
.run
&& objspace
->profile
.count
) {
2737 result
= rb_sprintf("GC %d invokes.\n", NUM2INT(gc_count(0)));
2738 rb_str_cat2(result
, "Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC Time(ms)\n");
2739 for (i
= 0; i
< (int)RARRAY_LEN(record
); i
++) {
2740 VALUE r
= RARRAY_PTR(record
)[i
];
2741 rb_str_catf(result
, "%5d %19.3f %20d %20d %20d %30.20f\n",
2742 i
+1, NUM2DBL(rb_hash_aref(r
, ID2SYM(rb_intern("GC_INVOKE_TIME")))),
2743 NUM2INT(rb_hash_aref(r
, ID2SYM(rb_intern("HEAP_USE_SIZE")))),
2744 NUM2INT(rb_hash_aref(r
, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")))),
2745 NUM2INT(rb_hash_aref(r
, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")))),
2746 NUM2DBL(rb_hash_aref(r
, ID2SYM(rb_intern("GC_TIME"))))*100);
2748 #if GC_PROFILE_MORE_DETAIL
2749 rb_str_cat2(result
, "\n\n");
2750 rb_str_cat2(result
, "More detail.\n");
2751 rb_str_cat2(result
, "Index Allocate Increase Allocate Limit Use Slot Have Finalize Mark Time(ms) Sweep Time(ms)\n");
2752 for (i
= 0; i
< (int)RARRAY_LEN(record
); i
++) {
2753 VALUE r
= RARRAY_PTR(record
)[i
];
2754 rb_str_catf(result
, "%5d %17d %17d %9d %14s %25.20f %25.20f\n",
2755 i
+1, NUM2INT(rb_hash_aref(r
, ID2SYM(rb_intern("ALLOCATE_INCREASE")))),
2756 NUM2INT(rb_hash_aref(r
, ID2SYM(rb_intern("ALLOCATE_LIMIT")))),
2757 NUM2INT(rb_hash_aref(r
, ID2SYM(rb_intern("HEAP_USE_SLOTS")))),
2758 rb_hash_aref(r
, ID2SYM(rb_intern("HAVE_FINALIZE")))? "true" : "false",
2759 NUM2DBL(rb_hash_aref(r
, ID2SYM(rb_intern("GC_MARK_TIME"))))*100,
2760 NUM2DBL(rb_hash_aref(r
, ID2SYM(rb_intern("GC_SWEEP_TIME"))))*100);
2765 result
= rb_str_new2("");
2773 * GC::Profiler.report
2775 * GC::Profiler.result display
2780 gc_profile_report(int argc
, VALUE
*argv
, VALUE self
)
2788 rb_scan_args(argc
, argv
, "01", &out
);
2790 rb_io_write(out
, gc_profile_result());
2797 * The <code>GC</code> module provides an interface to Ruby's mark and
2798 * sweep garbage collection mechanism. Some of the underlying methods
2799 * are also available via the <code>ObjectSpace</code> module.
2808 rb_mGC
= rb_define_module("GC");
2809 rb_define_singleton_method(rb_mGC
, "start", rb_gc_start
, 0);
2810 rb_define_singleton_method(rb_mGC
, "enable", rb_gc_enable
, 0);
2811 rb_define_singleton_method(rb_mGC
, "disable", rb_gc_disable
, 0);
2812 rb_define_singleton_method(rb_mGC
, "stress", gc_stress_get
, 0);
2813 rb_define_singleton_method(rb_mGC
, "stress=", gc_stress_set
, 1);
2814 rb_define_singleton_method(rb_mGC
, "count", gc_count
, 0);
2815 rb_define_method(rb_mGC
, "garbage_collect", rb_gc_start
, 0);
2817 rb_mProfiler
= rb_define_module_under(rb_mGC
, "Profiler");
2818 rb_define_singleton_method(rb_mProfiler
, "enabled?", gc_profile_enable_get
, 0);
2819 rb_define_singleton_method(rb_mProfiler
, "enable", gc_profile_enable
, 0);
2820 rb_define_singleton_method(rb_mProfiler
, "disable", gc_profile_disable
, 0);
2821 rb_define_singleton_method(rb_mProfiler
, "clear", gc_profile_clear
, 0);
2822 rb_define_singleton_method(rb_mProfiler
, "result", gc_profile_result
, 0);
2823 rb_define_singleton_method(rb_mProfiler
, "report", gc_profile_report
, -1);
2825 rb_mObSpace
= rb_define_module("ObjectSpace");
2826 rb_define_module_function(rb_mObSpace
, "each_object", os_each_obj
, -1);
2827 rb_define_module_function(rb_mObSpace
, "garbage_collect", rb_gc_start
, 0);
2829 rb_define_module_function(rb_mObSpace
, "define_finalizer", define_final
, -1);
2830 rb_define_module_function(rb_mObSpace
, "undefine_finalizer", undefine_final
, 1);
2832 rb_define_module_function(rb_mObSpace
, "_id2ref", id2ref
, 1);
2834 nomem_error
= rb_exc_new3(rb_eNoMemError
,
2835 rb_obj_freeze(rb_str_new2("failed to allocate memory")));
2836 OBJ_TAINT(nomem_error
);
2837 OBJ_FREEZE(nomem_error
);
2839 rb_define_method(rb_mKernel
, "hash", rb_obj_id
, 0);
2840 rb_define_method(rb_mKernel
, "__id__", rb_obj_id
, 0);
2841 rb_define_method(rb_mKernel
, "object_id", rb_obj_id
, 0);
2843 rb_define_module_function(rb_mObSpace
, "count_objects", count_objects
, -1);
2845 #if CALC_EXACT_MALLOC_SIZE
2846 rb_define_singleton_method(rb_mGC
, "malloc_allocated_size", gc_malloc_allocated_size
, 0);
2847 rb_define_singleton_method(rb_mGC
, "malloc_allocations", gc_malloc_allocations
, 0);