2 #calculates genomic estimated breeding values (GEBVs) using rrBLUP,
6 # Isaak Y Tecle (iyt2@cornell.edu)
17 library(genoDataFilter
)
18 library(phenoAnalysis
)
27 allArgs
<- commandArgs()
30 inputFiles
<- scan(grep("input_files", allArgs
, value
= TRUE),
33 outputFiles
<- scan(grep("output_files", allArgs
, value
= TRUE),
36 traitsFile
<- grep("traits", inputFiles
, value
= TRUE)
37 modelInfoFile
<- grep("model_info", inputFiles
, value
= TRUE)
38 message('model_info_file ', modelInfoFile
)
40 modelInfo
<- read
.table(modelInfoFile
,
41 header
=TRUE, sep
="\t",
44 modelInfo
<- column_to_rownames(modelInfo
, var
="Name")
45 traitId
<- modelInfo
["trait_id", 1]
46 traitAbbr
<- modelInfo
["trait_abbr", 1]
47 modelId
<- modelInfo
["model_id", 1]
48 protocolId
<- modelInfo
["protocol_id", 1]
50 message('class ', class(traitAbbr
))
51 message('trait_id ', traitId
)
52 message('trait_abbr ', traitAbbr
)
53 message('protocol_id ', protocolId
)
54 message('model_id ', modelId
)
56 datasetInfoFile
<- grep("dataset_info", inputFiles
, value
= TRUE)
59 if (length(datasetInfoFile
) != 0 ) {
60 datasetInfo
<- scan(datasetInfoFile
, what
= "character")
61 datasetInfo
<- paste(datasetInfo
, collapse
= " ")
63 datasetInfo
<- c('single population')
66 #validationTrait <- paste("validation", trait, sep = "_")
67 validationFile
<- grep('validation', outputFiles
, value
= TRUE)
69 if (is
.null(validationFile
)) {
70 stop("Validation output file is missing.")
73 #kinshipTrait <- paste("rrblup_training_gebvs", trait, sep = "_")
74 blupFile
<- grep('rrblup_training_gebvs', outputFiles
, value
= TRUE)
76 if (is
.null(blupFile
)) {
77 stop("GEBVs file is missing.")
80 #markerTrait <- paste("marker_effects", trait, sep = "_")
81 markerFile
<- grep('marker_effects', outputFiles
, value
= TRUE)
83 #traitPhenoFile <- paste("trait_phenotype_data", traitId, sep = "_")
84 modelPhenoFile
<- grep('model_phenodata', outputFiles
, value
= TRUE)
85 message('model input trait pheno file ', modelPhenoFile
)
86 modelGenoFile
<- grep('model_genodata', outputFiles
, value
= TRUE)
87 message('model input trait geno file ', modelPhenoFile
)
88 traitRawPhenoFile
<- grep('trait_raw_phenodata', outputFiles
, value
= TRUE)
89 varianceComponentsFile
<- grep("variance_components", outputFiles
, value
= TRUE)
90 filteredTrainingGenoFile
<- grep("filtered_training_genotype_data", outputFiles
, value
= TRUE)
91 filteredSelGenoFile
<- grep("filtered_selection_genotype_data", outputFiles
, value
= TRUE)
92 formattedPhenoFile
<- grep("formatted_phenotype_data", inputFiles
, value
= TRUE)
94 genoFile
<- grep("genotype_data_", inputFiles
, value
= TRUE)
96 if (is
.null(genoFile
)) {
97 stop("genotype data file is missing.")
100 if (file
.info(genoFile
)$size
== 0) {
101 stop("genotype data file is empty.")
104 readfilteredTrainingGenoData
<- c()
105 filteredTrainingGenoData
<- c()
106 formattedPhenoData
<- c()
110 if (length(filteredTrainingGenoFile
) != 0 && file
.info(filteredTrainingGenoFile
)$size
!= 0) {
111 filteredTrainingGenoData
<- fread(filteredTrainingGenoFile
,
112 na
.strings
= c("NA", "", "--", "-"),
115 genoData
<- data
.frame(filteredTrainingGenoData
)
116 genoData
<- column_to_rownames(genoData
, 'V1')
117 readfilteredTrainingGenoData
<- 1
120 if (is
.null(filteredTrainingGenoData
)) {
121 genoData
<- fread(genoFile
,
122 na
.strings
= c("NA", "", "--", "-"),
124 genoData
<- unique(genoData
, by
='V1')
125 genoData
<- data
.frame(genoData
)
126 genoData
<- column_to_rownames(genoData
, 'V1')
127 #genoDataFilter::filterGenoData
128 genoData
<- convertToNumeric(genoData
)
129 genoData
<- filterGenoData(genoData
, maf
=0.01)
130 genoData
<- roundAlleleDosage(genoData
)
132 filteredTrainingGenoData
<- genoData
135 genoData
<- genoData
[order(row
.names(genoData
)), ]
137 if (length(formattedPhenoFile
) != 0 && file
.info(formattedPhenoFile
)$size
!= 0) {
138 formattedPhenoData
<- data
.frame(fread(formattedPhenoFile
,
140 na
.strings
= c("NA", "", "--", "-", ".")
145 if (datasetInfo
== 'combined populations') {
147 phenoFile
<- grep("model_phenodata", inputFiles
, value
= TRUE)
150 phenoFile
<- grep("\\/phenotype_data", inputFiles
, value
= TRUE)
153 if (is
.null(phenoFile
)) {
154 stop("phenotype data file is missing.")
157 if (file
.info(phenoFile
)$size
== 0) {
158 stop("phenotype data file is empty.")
161 phenoData
<- data
.frame(fread(phenoFile
,
163 na
.strings
= c("NA", "", "--", "-", "."),
170 traitRawPhenoData
<- c()
172 if (datasetInfo
== 'combined populations') {
174 if (!is
.null(formattedPhenoData
)) {
175 phenoTrait
<- subset(formattedPhenoData
, select
= traitAbbr
)
176 phenoTrait
<- na
.omit(phenoTrait
)
180 if (any(grepl('Average', names(phenoData
)))) {
181 phenoTrait
<- phenoData
%>% select(V1
, Average
) %>% data
.frame
183 phenoTrait
<- phenoData
186 colnames(phenoTrait
) <- c('genotypes', traitAbbr
)
190 if (!is
.null(formattedPhenoData
)) {
191 phenoTrait
<- subset(formattedPhenoData
, select
= c('V1', traitAbbr
))
192 phenoTrait
<- as
.data
.frame(phenoTrait
)
193 phenoTrait
<- na
.omit(phenoTrait
)
194 colnames(phenoTrait
)[1] <- 'genotypes'
196 } else if (length(grep('list', phenoFile
)) != 0) {
197 message('phenoTrait traitAbbr ', traitAbbr
)
198 phenoTrait
<- averageTrait(phenoData
, traitAbbr
)
201 message('phenoTrait trait_abbr ', traitAbbr
)
202 phenoTrait
<- getAdjMeans(phenoData
,
203 traitName
= traitAbbr
,
207 keepMetaCols
<- c('observationUnitName', 'germplasmName', 'studyDbId', 'locationName',
208 'studyYear', 'replicate', 'blockNumber', traitAbbr
)
210 traitRawPhenoData
<- phenoData
%>%
211 select(all_of(keepMetaCols
))
216 meanType
<- names(phenoTrait
)[2]
217 names(phenoTrait
) <- c('genotypes', traitAbbr
)
219 selectionTempFile
<- grep("selection_population", inputFiles
, value
= TRUE)
222 filteredPredGenoFile
<- c()
223 selectionAllFiles
<- c()
225 if (length(selectionTempFile
) !=0 ) {
226 selectionAllFiles
<- scan(selectionTempFile
, what
= "character")
228 selectionFile
<- grep("\\/genotype_data", selectionAllFiles
, value
= TRUE)
230 #filteredPredGenoFile <- grep("filtered_genotype_data_", selectionAllFiles, value = TRUE)
233 selectionPopGEBVsFile
<- grep("rrblup_selection_gebvs", outputFiles
, value
= TRUE)
236 readFilteredPredGenoData
<- c()
237 filteredPredGenoData
<- c()
239 ## if (length(filteredPredGenoFile) != 0 && file.info(filteredPredGenoFile)$size != 0) {
240 ## selectionData <- fread(filteredPredGenoFile, na.strings = c("NA", " ", "--", "-"),)
241 ## readFilteredPredGenoData <- 1
243 ## selectionData <- data.frame(selectionData)
244 ## rownames(selectionData) <- selectionData[, 1]
245 ## selectionData[, 1] <- NULL
249 if (length(selectionFile
) != 0) {
251 selectionData
<- fread(selectionFile
,
253 na
.strings
= c("NA", "", "--", "-"))
255 selectionData
<- data
.frame(selectionData
)
258 selectionData
<- unique(selectionData
, by
='V1')
260 selectionData
<- column_to_rownames(selectionData
, 'V1')
261 selectionData
<- convertToNumeric(selectionData
)
262 selectionData
<- filterGenoData(selectionData
, maf
=0.01)
263 selectionData
<- roundAlleleDosage(selectionData
)
268 #impute genotype values for obs with missing values,
269 genoDataMissing
<- c()
271 if (sum(is
.na(genoData
)) > 0) {
272 genoDataMissing
<- c('yes')
274 genoData
<- na
.roughfix(genoData
)
275 genoData
<- data
.frame(genoData
)
278 #create phenotype and genotype datasets with
281 #extract observation lines with both
282 #phenotype and genotype data only.
283 commonObs
<- intersect(phenoTrait$genotypes
, row
.names(genoData
))
284 commonObs
<- data
.frame(commonObs
)
285 rownames(commonObs
) <- commonObs
[, 1]
287 #include in the genotype dataset only phenotyped lines
288 genoDataFilteredObs
<- genoData
[(rownames(genoData
) %in% rownames(commonObs
)), ]
290 #drop phenotyped lines without genotype data
291 phenoTrait
<- phenoTrait
[(phenoTrait$genotypes
%in% rownames(commonObs
)), ]
293 phenoTraitMarker
<- data
.frame(phenoTrait
)
294 rownames(phenoTraitMarker
) <- phenoTraitMarker
[, 1]
295 phenoTraitMarker
[, 1] <- NULL
297 #impute missing data in prediction data
298 selectionDataMissing
<- c()
299 if (length(selectionData
) != 0) {
300 #purge markers unique to both populations
301 commonMarkers
<- intersect(names(data
.frame(genoDataFilteredObs
)), names(selectionData
))
302 selectionData
<- subset(selectionData
, select
= commonMarkers
)
303 genoDataFilteredObs
<- subset(genoDataFilteredObs
, select
= commonMarkers
)
305 if (sum(is
.na(selectionData
)) > 0) {
306 selectionDataMissing
<- c('yes')
307 selectionData
<- na
.roughfix(selectionData
)
308 selectionData
<- data
.frame(selectionData
)
311 #change genotype coding to [-1, 0, 1], to use the A.mat ) if [0, 1, 2]
312 genoTrCode
<- grep("2", genoDataFilteredObs
[1, ], value
= TRUE)
313 if(length(genoTrCode
)) {
314 genoData
<- genoData
- 1
315 genoDataFilteredObs
<- genoDataFilteredObs
- 1
318 if (length(selectionData
) != 0 ) {
319 genoSlCode
<- grep("2", selectionData
[1, ], value
= TRUE)
320 if (length(genoSlCode
) != 0 ) {
321 selectionData
<- selectionData
- 1
325 ordered
.markerEffects
<- c()
328 combinedGebvsFile
<- c()
330 modelPhenoData
<- c()
331 relationshipMatrix
<- c()
333 #additive relationship model
334 #calculate the inner products for
335 #genotypes (realized relationship matrix)
336 relationshipMatrixFile
<- grep("relationship_matrix_table", outputFiles
, value
= TRUE)
337 relationshipMatrixJsonFile
<- grep("relationship_matrix_json", outputFiles
, value
= TRUE)
339 traitRelationshipMatrixFile
<- grep("relationship_matrix_adjusted_table", outputFiles
, value
= TRUE)
340 traitRelationshipMatrixJsonFile
<- grep("relationship_matrix_adjusted_json", outputFiles
, value
= TRUE)
342 inbreedingFile
<- grep('inbreeding_coefficients', outputFiles
, value
=TRUE)
343 aveKinshipFile
<- grep('average_kinship', outputFiles
, value
=TRUE)
348 if (length(relationshipMatrixFile
) != 0) {
349 if (file
.info(relationshipMatrixFile
)$size
> 0 ) {
350 relationshipMatrix
<- data
.frame(fread(relationshipMatrixFile
,
353 rownames(relationshipMatrix
) <- relationshipMatrix
[, 1]
354 relationshipMatrix
[, 1] <- NULL
355 colnames(relationshipMatrix
) <- rownames(relationshipMatrix
)
356 relationshipMatrix
<- data
.matrix(relationshipMatrix
)
359 relationshipMatrix
<- A
.mat(genoData
)
360 diag(relationshipMatrix
) <- diag(relationshipMatrix
) %>% replace(., . < 1, 1)
361 relationshipMatrix
<- relationshipMatrix
%>% replace(., . < 0, 0)
363 inbreeding
<- diag(relationshipMatrix
)
364 inbreeding
<- inbreeding
- 1
365 inbreeding
<- data
.frame(inbreeding
)
367 inbreeding
<- inbreeding
%>%
368 rownames_to_column('genotypes') %>%
369 rename(Inbreeding
= inbreeding
) %>%
370 arrange(Inbreeding
) %>%
371 mutate_at('Inbreeding', round
, 3) %>%
372 column_to_rownames('genotypes')
376 relationshipMatrix
<- data
.frame(relationshipMatrix
)
377 colnames(relationshipMatrix
) <- rownames(relationshipMatrix
)
379 relationshipMatrix
<- rownames_to_column(relationshipMatrix
, var
="genotypes")
380 relationshipMatrix
<- relationshipMatrix
%>% mutate_if(is
.numeric
, round
, 3)
381 relationshipMatrix
<- column_to_rownames(relationshipMatrix
, var
="genotypes")
383 traitRelationshipMatrix
<- relationshipMatrix
[(rownames(relationshipMatrix
) %in% rownames(commonObs
)), ]
384 traitRelationshipMatrix
<- traitRelationshipMatrix
[, (colnames(traitRelationshipMatrix
) %in% rownames(commonObs
))]
386 traitRelationshipMatrix
<- data
.matrix(traitRelationshipMatrix
)
388 nCores
<- detectCores()
391 nCores
<- (nCores
%/% 2)
396 if (length(selectionData
) == 0) {
398 trModel
<- kin
.blup(data
= phenoTrait
,
401 K
= traitRelationshipMatrix
,
407 trGEBVPEV
<- trModel$PEV
408 trGEBVSE
<- sqrt(trGEBVPEV
)
409 trGEBVSE
<- data
.frame(round(trGEBVSE
, 2))
411 trGEBV
<- data
.frame(round(trGEBV
, 2))
413 colnames(trGEBVSE
) <- c('SE')
414 colnames(trGEBV
) <- traitAbbr
416 trGEBVSE
<- rownames_to_column(trGEBVSE
, var
="genotypes")
417 trGEBV
<- rownames_to_column(trGEBV
, var
="genotypes")
419 trGEBVSE
<- full_join(trGEBV
, trGEBVSE
)
421 trGEBVSE
<- trGEBVSE
%>% arrange_(.dots
= paste0('desc(', traitAbbr
, ')'))
423 trGEBVSE
<- column_to_rownames(trGEBVSE
, var
="genotypes")
425 trGEBV
<- trGEBV
%>% arrange_(.dots
= paste0('desc(', traitAbbr
, ')'))
426 trGEBV
<- column_to_rownames(trGEBV
, var
="genotypes")
428 phenoTraitMarker
<- data
.matrix(phenoTraitMarker
)
429 genoDataFilteredObs
<- data
.matrix(genoDataFilteredObs
)
431 markerEffects
<- mixed
.solve(y
= phenoTraitMarker
,
432 Z
= genoDataFilteredObs
435 ordered
.markerEffects
<- data
.matrix(markerEffects$u
)
436 ordered
.markerEffects
<- data
.matrix(ordered
.markerEffects
[order (-ordered
.markerEffects
[, 1]), ])
437 ordered
.markerEffects
<- round(ordered
.markerEffects
, 5)
439 colnames(ordered
.markerEffects
) <- c("Marker Effects")
440 ordered
.markerEffects
<- data
.frame(ordered
.markerEffects
)
443 modelPhenoData
<- data
.frame(round(phenoTraitMarker
, 2))
445 heritability
<- round((trModel$Vg
/(trModel$Ve
+ trModel$Vg
)), 2)
446 additiveVar
<- round(trModel$Vg
, 2)
447 errorVar
<- round(trModel$Ve
, 2)
449 cat("\n", file
= varianceComponentsFile
, append
= FALSE)
450 cat('Additive genetic variance', additiveVar
, file
= varianceComponentsFile
, sep
= '\t', append
= TRUE)
451 cat("\n", file
= varianceComponentsFile
, append
= TRUE)
452 cat('Error variance', errorVar
, file
= varianceComponentsFile
, sep
= "\t", append
= TRUE)
453 cat("\n", file
= varianceComponentsFile
, append
= TRUE)
454 cat('SNP heritability (h)', heritability
, file
= varianceComponentsFile
, sep
= '\t', append
= TRUE)
456 combinedGebvsFile
<- grep('selected_traits_gebv', outputFiles
, ignore
.case
= TRUE,value
= TRUE)
458 if (length(combinedGebvsFile
) != 0) {
459 fileSize
<- file
.info(combinedGebvsFile
)$size
460 if (fileSize
!= 0 ) {
461 combinedGebvs
<- data
.frame(fread(combinedGebvsFile
,
464 rownames(combinedGebvs
) <- combinedGebvs
[,1]
465 combinedGebvs
[,1] <- NULL
467 allGebvs
<- merge(combinedGebvs
, trGEBV
,
472 rownames(allGebvs
) <- allGebvs
[,1]
479 if (is
.null(selectionFile
)) {
480 genoNum
<- nrow(phenoTrait
)
483 warning(genoNum
, " is too small number of genotypes.")
491 cvFolds
<- createMultiFolds(phenoTrait
[, 2], k
=k
, times
=times
)
493 for ( r
in 1:times
) {
494 re
<- paste0('Rep', r
)
497 fo
<- ifelse(i
< 10, 'Fold0', 'Fold')
499 trFoRe
<- paste0(fo
, i
, '.', re
)
500 trG
<- cvFolds
[[trFoRe
]]
501 slG
<- as
.numeric(rownames(phenoTrait
[-trG
,]))
503 kblup
<- paste("rKblup", i
, sep
= ".")
505 result
<- kin
.blup(data
= phenoTrait
[trG
,],
508 K
= traitRelationshipMatrix
,
513 assign(kblup
, result
)
515 #calculate cross-validation accuracy
518 valBlups
<- data
.frame(valBlups
)
520 slG
<- slG
[which(slG
<= nrow(phenoTrait
))]
522 slGDf
<- phenoTrait
[(rownames(phenoTrait
) %in% slG
),]
523 rownames(slGDf
) <- slGDf
[, 1]
526 valBlups
<- rownames_to_column(valBlups
, var
="genotypes")
527 slGDf
<- rownames_to_column(slGDf
, var
="genotypes")
529 valCorData
<- inner_join(slGDf
, valBlups
, by
="genotypes")
530 valCorData$genotypes
<- NULL
532 accuracy
<- try(cor(valCorData
))
533 validation
<- paste("validation", trFoRe
, sep
= ".")
534 cvTest
<- paste("CV", trFoRe
, sep
= " ")
536 if (inherits(accuracy
, 'try-error') == FALSE)
538 accuracy
<- round(accuracy
[1,2], digits
= 3)
539 accuracy
<- data
.matrix(accuracy
)
541 colnames(accuracy
) <- c("correlation")
542 rownames(accuracy
) <- cvTest
544 assign(validation
, accuracy
)
546 if (!is
.na(accuracy
[1,1])) {
547 validationAll
<- rbind(validationAll
, accuracy
)
553 validationAll
<- data
.frame(validationAll
[order(-validationAll
[, 1]), ])
554 colnames(validationAll
) <- c('Correlation')
558 selectionPopResult
<- c()
559 selectionPopGEBVs
<- c()
560 selectionPopGEBVSE
<- c()
562 #selection pop geno data after cleaning up and removing unique markers to selection pop
563 filteredSelGenoData
<- selectionData
564 if (length(selectionData
) != 0) {
566 genoDataTrSl
<- rbind(genoDataFilteredObs
, selectionData
)
567 rTrSl
<- A
.mat(genoDataTrSl
)
569 selectionPopResult
<- kin
.blup(data
= phenoTrait
,
577 selectionPopGEBVs
<- round(data
.frame(selectionPopResult$g
), 2)
578 colnames(selectionPopGEBVs
) <- traitAbbr
579 selectionPopGEBVs
<- rownames_to_column(selectionPopGEBVs
, var
="genotypes")
581 selectionPopPEV
<- selectionPopResult$PEV
582 selectionPopSE
<- sqrt(selectionPopPEV
)
583 selectionPopSE
<- data
.frame(round(selectionPopSE
, 2))
584 colnames(selectionPopSE
) <- 'SE'
585 genotypesSl
<- rownames(selectionData
)
587 selectionPopSE
<- rownames_to_column(selectionPopSE
, var
="genotypes")
588 selectionPopSE
<- selectionPopSE
%>% filter(genotypes
%in% genotypesSl
)
590 selectionPopGEBVs
<- selectionPopGEBVs
%>% filter(genotypes
%in% genotypesSl
)
592 selectionPopGEBVSE
<- inner_join(selectionPopGEBVs
, selectionPopSE
, by
="genotypes")
594 sortVar
<- parse_expr(traitAbbr
)
595 selectionPopGEBVs
<- selectionPopGEBVs
%>% arrange(desc((!!sortVar
)))
596 selectionPopGEBVs
<- column_to_rownames(selectionPopGEBVs
, var
="genotypes")
598 selectionPopGEBVSE
<- selectionPopGEBVSE
%>% arrange(desc((!!sortVar
)))
599 selectionPopGEBVSE
<- column_to_rownames(selectionPopGEBVSE
, var
="genotypes")
602 if (!is
.null(selectionPopGEBVs
) & length(selectionPopGEBVsFile
) != 0) {
603 fwrite(selectionPopGEBVs
,
604 file
= selectionPopGEBVsFile
,
611 if(!is
.null(validationAll
)) {
612 fwrite(validationAll
,
613 file
= validationFile
,
621 if (!is
.null(ordered
.markerEffects
)) {
622 fwrite(ordered
.markerEffects
,
631 if (!is
.null(trGEBV
)) {
640 if (length(combinedGebvsFile
) != 0 ) {
641 if(file
.info(combinedGebvsFile
)$size
== 0) {
643 file
= combinedGebvsFile
,
650 file
= combinedGebvsFile
,
659 if (!is
.null(modelPhenoData
) && length(modelPhenoFile
) != 0) {
661 if (!is
.null(meanType
)) {
662 colnames(modelPhenoData
) <- meanType
665 fwrite(modelPhenoData
,
666 file
= modelPhenoFile
,
673 if (!is
.null(genoDataFilteredObs
) && length(modelGenoFile
) != 0) {
675 fwrite(genoDataFilteredObs
,
676 file
= modelGenoFile
,
683 if (!is
.null(traitRawPhenoData
) && length(traitRawPhenoFile
) != 0) {
685 fwrite(traitRawPhenoData
,
686 file
= traitRawPhenoFile
,
694 message('filteredTrainingGenoFile: ', filteredTrainingGenoFile
)
696 if (!is
.null(filteredTrainingGenoData
) && file
.info(filteredTrainingGenoFile
)$size
== 0) {
697 fwrite(filteredTrainingGenoData
,
698 file
= filteredTrainingGenoFile
,
706 if (length(filteredSelGenoFile
) != 0 && file
.info(filteredSelGenoFile
)$size
== 0) {
707 fwrite(filteredSelGenoData
,
708 file
= filteredSelGenoFile
,
715 ## if (!is.null(genoDataMissing)) {
716 ## write.table(genoData,
725 ## if (!is.null(predictionDataMissing)) {
726 ## write.table(predictionData,
727 ## file = predictionFile,
735 if (file
.info(relationshipMatrixFile
)$size
== 0) {
737 fwrite(relationshipMatrix
,
738 file
= relationshipMatrixFile
,
745 if (file
.info(relationshipMatrixJsonFile
)$size
== 0) {
747 relationshipMatrixJson
<- relationshipMatrix
748 relationshipMatrixJson
[upper
.tri(relationshipMatrixJson
)] <- NA
751 relationshipMatrixJson
<- data
.frame(relationshipMatrixJson
)
753 relationshipMatrixList
<- list(labels
= names(relationshipMatrixJson
),
754 values
= relationshipMatrixJson
)
756 relationshipMatrixJson
<- jsonlite
::toJSON(relationshipMatrixList
)
759 write(relationshipMatrixJson
,
760 file
= relationshipMatrixJsonFile
,
765 if (file
.info(traitRelationshipMatrixFile
)$size
== 0) {
767 inbre
<- diag(traitRelationshipMatrix
)
770 diag(traitRelationshipMatrix
) <- inbre
772 traitRelationshipMatrix
<- data
.frame(traitRelationshipMatrix
) %>% replace(., . < 0, 0)
774 fwrite(traitRelationshipMatrix
,
775 file
= traitRelationshipMatrixFile
,
781 if (file
.info(traitRelationshipMatrixJsonFile
)$size
== 0) {
783 traitRelationshipMatrixJson
<- traitRelationshipMatrix
784 traitRelationshipMatrixJson
[upper
.tri(traitRelationshipMatrixJson
)] <- NA
786 traitRelationshipMatrixJson
<- data
.frame(traitRelationshipMatrixJson
)
788 traitRelationshipMatrixList
<- list(labels
= names(traitRelationshipMatrixJson
),
789 values
= traitRelationshipMatrixJson
)
791 traitRelationshipMatrixJson
<- jsonlite
::toJSON(traitRelationshipMatrixList
)
793 write(traitRelationshipMatrixJson
,
794 file
= traitRelationshipMatrixJsonFile
,
800 if (file
.info(inbreedingFile
)$size
== 0) {
803 file
= inbreedingFile
,
811 if (file
.info(aveKinshipFile
)$size
== 0) {
813 aveKinship
<- data
.frame(apply(traitRelationshipMatrix
, 1, mean
))
815 aveKinship
<- aveKinship
%>%
816 rownames_to_column('genotypes') %>%
817 rename(Mean_kinship
= contains('traitRe')) %>%
818 arrange(Mean_kinship
) %>%
819 mutate_at('Mean_kinship', round
, 3) %>%
820 column_to_rownames('genotypes')
823 file
= aveKinshipFile
,
831 if (file
.info(formattedPhenoFile
)$size
== 0 && !is
.null(formattedPhenoData
) ) {
832 fwrite(formattedPhenoData
,
833 file
= formattedPhenoFile
,
842 q(save
= "no", runLast
= FALSE)