add missing variable declaration.
[sgn.git] / R / GCPC.R
blob8ad62afd17cce08ba5f1a6874f1dbfd463661678
1 ################################################################################
2 # Genomic prediction of cross performance for YamBase
3 ################################################################################
5 # There are ten main steps to this protocol:
6 # 1. Load the software needed.
7 # 2. Declare user-supplied variables.
8 # 3. Read in the genotype data and convert to numeric allele counts.
9 # 4. Get the genetic predictors needed.
10 # 5. Process the phenotypic data.
11 # 6. Fit the mixed models in sommer.
12 # 7. Backsolve from individual estimates to marker effect estimates / GBLUP -> RR-BLUP
13 # 8. Weight the marker effects and add them together to form an index of merit.
14 # 9. Predict the crosses.
15 # 10. Format the information needed for output.
18 #Get Arguments
19 args = commandArgs(trailingOnly=TRUE)
20 if (length(args) < 3) {
21   stop('Two or more arguments are required.')
23 phenotypeFile = args[1]
24 genotypeFile = args[2]
25 traits = args[3]
26 weights = args[4]
27 userSexes = args[5]
28 userFixed = args[6]
29 userRandom = args[7]
31 #userSexes = as.vector(userSexes)
33 #L = length(userSexes)
34 #if (L==1 && userSexes[1]!="") {write('PLANT SEX is empty: ', stderr())}
35 write(paste('PLANT SEX CVTERM: |', userSexes, "|"), stderr())
38 ################################################################################
39 # 1. Load software needed
40 ################################################################################
42 library(sommer)
43 library(AGHmatrix)
44 library(VariantAnnotation) # Bioconductor package
45 library(tools)
46 Rcpp::sourceCpp("/home/production/cxgn/QuantGenResources/CalcCrossMeans.cpp") # this is called CalcCrossMean.cpp on Github
53 ################################################################################
54 # 2. Declare user-supplied variables
55 ################################################################################
57 # a. Define path with internal YamBase instructions such that the object 'userGeno'
58 #    is defined as a VCF file of genotypes.
60 #userGeno <- path
63 # b. Define path2 with internal YamBase instructions such that the object 'userPheno'
64 #    is defined as the phenotype file.
66 #userPheno <- path2
67 #write(paste("READING PHENOTYPEFILE: ",phenotypeFile), stderr())
68 userPheno <- read.delim(phenotypeFile, header = TRUE, sep="\t", fill=TRUE) #testing only
69 #write(colnames(userPheno), stderr())
70 #write(summary(userPheno), stderr())
71 ##userPheno <- userPheno[userPheno$Trial == "SCG", ] #testing only-- needs to replaced with 2-stage
73 #write("DONE WITH PHENOTYPEFILE"), stderr())
75 # c. The user should be able to select their fixed variables from a menu
76 #    of the column names of the userPheno object. The possible interaction terms
77 #    also need to be shown somehow. Then, those strings should be passed
78 #    to this vector, 'userFixed'. Please set userFixed to NA if no fixed effects
79 #    besides f are requested.
80 #    f is automatically included as a fixed effect- a note to the user would be good.
82 #userFixed <- c()
83 #userFixed <- c("studyYear") # for testing only
84 userFixed <-unlist(strsplit(userFixed, split=",", fixed=T))
87 # d. The user should be able to select their random variables from a menu
88 #    of the column names of the userPheno object. The possible interaction terms
89 #    also need to be shown somehow. Then, those strings should be passed
90 #    to this vector, 'userRandom'.
92 #userRandom <- c()
93 #userRandom <- "blockNumber" # for testing only
94 userRandom <-unlist(strsplit(userRandom, split=",", fixed=T))
96 # e. The user should be able to indicate which of the userPheno column names
97 #    represents individual genotypes identically as they are represented in the VCF
98 #    column names. No check to ensure matching at this stage. This single string
99 #    should be passed to this vector, userID.
101 #userID <- c()
102 userID <- "germplasmName" # for testing only
105 # f. The user must indicate the ploidy level of their organism, and the integer
106 #    provided should be passed to the vector 'userPloidy'. CalcCrossMeans.cpp
107 #    currently supports ploidy = {2, 4, 6}. Ideally, the user could select
108 #    their ploidy from a drop-down to avoid errors here, and there would be a note
109 #    that other ploidies are not currently supported. If not, a possible error is
110 #    provided.
112 userPloidy <- c()
113 userPloidy <- 2 # for testing only
115 # if(userPloidy %in% c(2, 4, 6) != TRUE){
116 #   stop("Only ploidies of 2, 4, and 6 are supported currently. \n
117 #        Please confirm your ploidy level is supported.")
118 # }
121 # g. The user should be able to select their response variables from a drop-down menu
122 #    of the column names of the userPheno object. Then, those strings should be passed
123 #    to this vector, 'userResponse'.
125 write(paste("TRAIT STRING:", traits), stderr())
126 #userResponse <- c()
127 #userResponse <- c("YIELD", "DMC", "OXBI") # for testing only
128 userResponse <- unlist(strsplit(traits, split=",", fixed=T))
130 write(paste("USER RESPONSE", userResponse),stderr())
131 write(paste("first element: ", userResponse[1]), stderr())
132 # h. The user must indicate weights for each response. The order of the vector
133 #    of response weights must match the order of the responses in userResponse.
135 #userWeights <- c()
136 #userWeights <- c(1, 0.8, 0.2) # for YIELD, DMC, and OXBI respectively; for testing only
137 userWeights  <- as.numeric(unlist(strsplit(weights, split=",", fixed=T)))
139 write(paste("WEIGHTS", userWeights), stderr())
141 # i. The user can indicate the number of crosses they wish to output.
142 #    The maximum possible is a full diallel.
144 #userNCrosses <- c()
145 userNCrosses <- 100 # for testing only
148 # j. The user can (optionally) input the individuals' sexes and indicate the column
149 #    name of the userPheno object which corresponds to sex. The column name
150 #   string should be passed to the 'userSexes' object. If the user does not wish
151 #   to remove crosses with incompatible sexes (e.g. because the information is not available),
152 #   then userSexes should be set to NA.
155 #userSexes <- c()
156 #userSexes <- "Sex" # for testing only
157 #userPheno$Sex <- sample(c("M", "F"), size = nrow(userPheno), replace = TRUE, prob = c(0.7, 0.3)) # for testing only
158 # Please note that for the test above, sex is sampled randomly for each entry, so the same accession can have
159 # different sexes. This does not matter for the code or testing.
161 ################################################################################
162 # 3. Read in the genotype data and convert to numeric allele counts.
163 ################################################################################
165 # a. The VCF file object 'userGeno' needs to be converted to a numeric matrix
166 #    of allele counts in whic:
167 #    Rownames represent the individual genotype IDs
168 #    Colnames represent the site IDs
169 #    A cell within a given row and column represents the row individual's
170 #    genotype at the site in the column.
172 #   The individual's genotype should be an integer from 0... ploidy to represent
173 #   counts of the alternate allele at the site. Diploid example:
174 #    0 = homozygous reference
175 #    1 = heterozygous
176 #    2 = homozygous alternate
178 #    The genotypes must not contain monomorphic or non-biallelic sites.
179 #    Users need to pre-process their VCF to remove these (e.g. in TASSEL or R)
180 #    I can put an error message into this script if a user tries to input
181 #    monomorphic or biallelic sites which could be communicated through the GUI.
182 #    It's also possible to filter them here.
184 if (file_ext(genotypeFile) == 'vcf') {
185    write(paste("READING VARIANT FILE ", genotypeFile), stderr())
186    #  Import VCF with VariantAnnotation package and extract matrix of dosages
187    myVCF <- readVcf(genotypeFile)
188    #G <- t(geno(myVCF)$DS) # Individual in row, genotype in column
189    mat <- genotypeToSnpMatrix(myVCF)
190    #G <- t(geno(myVCF)$DS) # Individual in row, genotype in column
191    G <- as(mat$genotypes, "numeric")
192    G <- G[,colSums(is.na(G))<nrow(G)]
194    #   TEST temporarily import the genotypes via HapMap:
195    #source("R/hapMap2numeric.R") # replace and delete
196    #G <- hapMap2numeric(genotypeFile) # replace and delete
198 } else {
200   # accession_names     abc      abc2    abc3
201   # marker1                   0      0        2
202   # marker2                   1      0        0
203   # marker3                   0      0        0
205    write(paste("READING DOSAGE FILE ", genotypeFile), stderr())
206      GF <- read.delim(genotypeFile)
207      GD <- GF[,-1]
208      GM <- as.matrix(GD)
209      G <- t(GM)
214 write("G Matrix start --------", stderr())
215 write(G[1:5, 1:5], stderr())
216 write("G Matrix end =========", stderr())
221 ################################################################################
222 # 4. Get the genetic predictors needed.
223 ################################################################################
225 write("GENETIC PREDICTIONS...", stderr())
226 # 4a. Get the inbreeding coefficent, f, as described by Xiang et al., 2016
227 # The following constructs f as the average heterozygosity of the individual
228 # The coefficient of f estimated later then needs to be divided by the number of markers
229 # in the matrix D before adding it to the estimated dominance marker effects
230 # One unit of change in f represents changing all loci from homozygous to heterozygous
232 ###GC <- G - (userPloidy/2) #this centers G
233 GC <- G * (userPloidy - G) * (2 / userPloidy)^2 # center at G
234 f <- rowSums(GC, na.rm = TRUE) / apply(GC, 1, function(x) sum(!is.na(x)))
236 # Another alternate way to construct f is the total number of heterozygous loci in the individual
237 # The coefficient of this construction of f does not need to be divided by the number of markers
238 # It is simply added to each marker dominance effect
239 # The coefficient of this construction of f represents the average dominance effect of a marker
240 # One unit of change in f represents changing one locus from homozygous to heterozygous
241 # f <- rowSums(D, na.rm = TRUE)
244 write("DISTANCE MATRIX...", stderr())
245 # 4b. Get the additive and dominance relationship matrices following Batista et al., 2021
246 # https://doi.org/10.1007/s00122-021-03994-w
248 # Additive: this gives a different result than AGHmatrix VanRaden's Gmatrix
249 # AGHmatrix: Weights are implemented for "VanRaden" method as described in Liu (2020)?
250 allele_freq = colSums(G) / (userPloidy * nrow(G))
251 W = t(G) - userPloidy * allele_freq
252 WWt = crossprod(W)
253 denom = sum(userPloidy * allele_freq * (1 - allele_freq))
254 A = WWt / denom
256 # Check with paper equation:
257 #w <- G - (userPloidy/2)
258 #num <- w %*% t(w)
259 #denom = sum(userPloidy * allele_freq * (1 - allele_freq))
260 #A2 <- num/denom
261 #table(A == A2)
262 #cor(as.vector(A), as.vector(A2)) # 0.9996...
265 # Dominance or digenic dominance
266 if(userPloidy == 2){
267   D <- Gmatrix(G, method = "Su", ploidy = userPloidy, missingValue = NA)
270 if(userPloidy > 2){
271 # Digenic dominance
272 C_matrix = matrix(length(combn(userPloidy, 2)) / 2,
273                   nrow = nrow(t(G)),
274                   ncol = ncol(t(G)))
276 Ploidy_matrix = matrix(userPloidy,
277                        nrow = nrow(t(G)),
278                        ncol = ncol(t(G)))
280 Q = (allele_freq^2 * C_matrix) -
281   (Ploidy_matrix - 1) * allele_freq * t(G) +
282   0.5 * t(G) * (t(G) - 1)
284 Dnum = crossprod(Q)
285 denomDom = sum(C_matrix[ ,1] * allele_freq^2 * (1 - allele_freq)^2)
286 D = Dnum/denomDom
294 ################################################################################
295 # 5. Process the phenotypic data.
296 ################################################################################
298 #write(summary(userPheno), stderr())
300 # a. Paste f into the phenotype dataframe
301 write("processing phenotypic data...", stderr())
302 userPheno$f <- f[as.character(userPheno[ , userID])]
304 #write(summary(userPheno), stderr())
306 # b. Scale the response variables.
307 write("processing phenotypic data... scaling...", stderr())
308 write(paste("USER RESPONSE LENGTH = ", length(userResponse)), stderr())
309 for(i in 1:length(userResponse)){
310   write(paste("working on user response ", userResponse[i]), stderr())
311   userPheno[ , userResponse[i]] <- (userPheno[ , userResponse[i]] - mean(userPheno[ , userResponse[i]], na.rm = TRUE)) / sd(userPheno[ , userResponse[i]], na.rm = TRUE)
314 write(paste("accession count: ", length(userPheno[ , userID])), stderr())
315 write("processing phenotypic data... adding dominance effects", stderr())
316 # c. Paste in a second ID column for the dominance effects.
318 #write(summary(userPheno), stderr())
320 dominanceEffectCol = paste(userID, "2", sep="")
321 write(paste("NEW COL NAME: ", dominanceEffectCol), stderr())
323 write(paste("USER_ID COLUMN: ", userPheno[ , userID]), stderr());
326 userPheno[ , dominanceEffectCol] <- userPheno[ , userID]
328 write(paste("USER PHENO userID2 COL", userPheno[ , dominanceEffectCol]), stderr())
331 # Additional steps could be added here to remove outliers etc.
337 ################################################################################
338 # 6. Fit the mixed models in sommer.
339 ################################################################################
341 write("Fit mixed model in sommer", stderr());
343 # 6a. Make a list to save the models.
345 userModels <- list()
347 for(i in 1:length(userResponse)){
349   write(paste("User response: ", userResponse[i]), stderr())
350   # check if fixed effects besides f are requested, then paste together
351   # response variable and fixed effects
352   if(!is.na(userFixed[1])){
353   fixedEff <- paste(userFixed, collapse = " + ")
354   fixedEff <- paste(fixedEff, "f", sep = " + ")
355   fixedArg <- paste(userResponse[i], " ~ ", fixedEff, sep = "")
356   }
357   if(is.na(userFixed[1])){
358     fixedArg <- paste(userResponse[i], " ~ ", "f")
359   }
362   # check if random effects besides genotypic additive and dominance effects
363   # are requested, then paste together the formula
365   write("Generate formula...", stderr())
367   if(!is.na(userRandom[1])){
368     randEff <- paste(userRandom, collapse = " + ")
369     ID2 <- paste(userID, 2, sep = "")
370     randEff2 <- paste("~vsr(", userID, ", Gu = A) + vsr(", ID2, ", Gu = D)", sep = "")
371     randArg <- paste(randEff2, randEff, sep = " + ")
372   }
373   if(is.na(userRandom[1])){
374     ID2 <- paste(userID, 2, sep ="")
375     randArg <- paste("~vsr(", userID, ", Gu = A) + vsr(", ID2, ", Gu = D)", sep = "")
376   }
378   write(paste("Fit mixed GBLUP model...", randArg), stderr())
380   #  write(paste("USER PHENO:", userPheno), stderr())
381   #  write(paste("COLNAMES: ", colnames(userPheno)), stderr())
382   # fit the mixed GBLUP model
383   myMod <- mmer(fixed = as.formula(fixedArg),
384                 random = as.formula(randArg),
385                 rcov = ~units,
386                 getPEV = FALSE,
387                 data = userPheno)
390   # save the fit model
392   write(paste("I = ", i), stderr());
394   userModels[[i]] <- myMod
402 ######################################################################################
403 # 7. Backsolve from individual estimates to marker effect estimates / GBLUP -> RR-BLUP
404 ######################################################################################
406 # a. Get the matrices and inverses needed
407 #    This is not correct for polyploids yet.
408 A.G <- G - (userPloidy / 2) # this is the additive genotype matrix (coded -1 0 1 for diploids)
409 D.G <- 1 - abs(A.G)     # this is the dominance genotype matrix (coded 0 1 0 for diploids)
412 A.T <- A.G %*% t(A.G) ## additive genotype matrix
413 A.Tinv <- solve(A.T) # inverse; may cause an error sometimes, if so, add a small amount to the diag
414 A.TTinv <- t(A.G) %*% A.Tinv # M'%*% (M'M)-
416 D.T <- D.G %*% t(D.G) ## dominance genotype matrix
417 D.Tinv <- solve(D.T) ## inverse
418 D.TTinv <- t(D.G) %*% D.Tinv # M'%*% (M'M)-
421 # b. Loop through and backsolve to marker effects.
423 write("backsolve marker effects...", stderr())
425 userAddEff <- list() # save them in order
426 userDomEff <- list() # save them in order
428 for(i in 1:length(userModels)){
430   myMod <- userModels[[i]]
432   # get the additive and dominance effects out of the sommer list
433   subMod <- myMod$U
434   subModA <- subMod[[1]]
435   subModA <- subModA[[1]]
436   subModD <- subMod[[2]]
437   subModD <- subModD[[1]]
439   # backsolve
440   addEff <- A.TTinv %*% matrix(subModA[colnames(A.TTinv)], ncol = 1) # these must be reordered to match A.TTinv
441   domEff <- D.TTinv %*% matrix(subModD[colnames(D.TTinv)], ncol=1)   # these must be reordered to match D.TTinv
443   # add f coefficient back into the dominance effects
444   subModf <- myMod$Beta
445   fCoef <- subModf[subModf$Effect == "f", "Estimate"] # raw f coefficient
446   fCoefScal <- fCoef / ncol(G) # divides f coefficient by number of markers
447   dirDomEff <- domEff + fCoefScal
449   # save
450   userAddEff[[i]] <- addEff
451   userDomEff[[i]] <- dirDomEff
459 ################################################################################
460 # 8. Weight the marker effects and add them together to form an index of merit.
461 ################################################################################
463 write("weight marker effects...", stderr())
465 ai <- 0
466 di <- 0
467 for(i in 1:length(userWeights)){
468   #write(paste("USER ADD EFF : ", userAddEff[[i]]), stderr())
469   #  write(paste("USER DOM EFF : ", userDomEff[[i]]), stderr())
470   #write(paste("USER WEIGHT : ", userWeights[i]), stderr())
473        ai <- ai + userAddEff[[i]] *  userWeights[i]
475  write("DONE WITH ADDITIVE EFFECTS!\n", stderr())
476   di <- di + userDomEff[[i]] * userWeights[i]
477    write("DONE WITH DOM EFFECTS!\n", stderr())
485 ################################################################################
486 # 9. Predict the crosses.
487 ################################################################################
489 # If the genotype matrix provides information about individuals for which
490 # cross prediction is not desired, then the genotype matrix must be subset
491 # for use in calcCrossMean(). calcCrossMean will return predicted cross
492 # values for all individuals in the genotype file otherwise.
494 write("Predict crosses...", stderr())
496 GP <- G[rownames(G) %in% userPheno[ , userID], ]
498 print("GP:")
499 print(head(GP))
501 write("calcCrossMean...", stderr())
503 crossPlan <- calcCrossMean(GP,
504                            ai,
505                            di,
506                            userPloidy)
509 write("Done with calcCrossMean!!!!!!", stderr())
513 ################################################################################
514 # 10. Format the information needed for output.
515 ################################################################################
517 # Add option to remove crosses with incompatible sexes.
520 #hash <- new.env(hash = TRUE, parent = emptyenv(), size = 100L)
522 #assign_hash(userPheno$germplasmName, userPheno$userSexes, hash)
524 if(userSexes!=""){  # "plant sex estimation 0-4"
525 #!is.na(userSexes)
527   write(paste("userSexes", head(userSexes)), stderr())
529   # Reformat the cross plan
530   crossPlan <- as.data.frame(crossPlan)
532   write(paste("CROSSPLAN = ", head(crossPlan)), stderr())
533   crossPlan <- crossPlan[order(crossPlan[,3], decreasing = TRUE), ] # orders the plan by predicted merit
534   crossPlan[ ,1] <- rownames(GP)[crossPlan[ ,1]] # replaces internal ID with genotye file ID
535   crossPlan[ ,2] <- rownames(GP)[crossPlan[ ,2]] # replaces internal ID with genotye file ID
536   colnames(crossPlan) <- c("Parent1", "Parent2", "CrossPredictedMerit")
538   write(paste("CROSSPLAN REPLACED = ", head(crossPlan)), stderr());
540   # Look up the parent sexes and subset
541   crossPlan$P1Sex <- userPheno[match(crossPlan$Parent1, userPheno$germplasmName), userSexes] # get sexes ordered by Parent1
543   write(paste("PARENTS1 ", head(crossPlan)), stderr())
545   crossPlan$P2Sex <- userPheno[match(crossPlan$Parent2, userPheno$germplasmName), userSexes] # get sexes ordered by Parent2
547   write(paste("PARENTS2 ", head(crossPlan)), stderr())
549   crossPlan <- crossPlan[!(crossPlan$P1Sex==0 | crossPlan$P2Sex==0),] #remove the 0s
550   crossPlan <- crossPlan[!(crossPlan$P1Sex==1 & crossPlan$P2Sex==1),] #remove same sex crosses with score of 1
551   crossPlan <- crossPlan[!(crossPlan$P1Sex==2 & crossPlan$P2Sex==2),] #remove same sex crosses with score of 2
553   write(paste("CROSSPLAN FILTERED = ", head(crossPlan)), stderr())
554   #crossPlan <- crossPlan[crossPlan$P1Sex != crossPlan$P2Sex, ] # remove crosses with same-sex parents
556   # subset the number of crosses the user wishes to output
557   crossPlan[1:userNCrosses, ]
558   finalcrosses=crossPlan[1:userNCrosses, ]
559   outputFile= paste(phenotypeFile, ".out", sep="")
561   write.csv(finalcrosses, outputFile)
566 if(userSexes==""){
568   # only subset the number of crosses the user wishes to output
569   crossPlan <- as.data.frame(crossPlan)
571   crossPlan <- crossPlan[order(crossPlan[,3], decreasing = TRUE), ] # orders the plan by predicted merit
572   crossPlan[ ,1] <- rownames(GP)[crossPlan[ ,1]] # replaces internal ID with genotye file ID
573   crossPlan[ ,2] <- rownames(GP)[crossPlan[ ,2]] # replaces internal ID with genotye file ID
574   colnames(crossPlan) <- c("Parent1", "Parent2", "CrossPredictedMerit")
576   crossPlan[1:userNCrosses, ]
577   finalcrosses=crossPlan[1:userNCrosses, ]
578   outputFile= paste(phenotypeFile, ".out", sep="")
580   write.csv(finalcrosses, outputFile)