linux: shared memory interface - link with librt
[supercollider.git] / HelpSource / Classes / Gendy1.schelp
blobf84f7e3d5731afe261d87bc3b72d36d3172f1f29
1 class:: Gendy1
2 summary:: Dynamic stochastic synthesis generator.
3 related:: Classes/Gendy2, Classes/Gendy3
4 categories::  UGens>Generators>Stochastic
7 Description::
9 An implementation of the dynamic stochastic synthesis generator conceived
10 by Iannis Xenakis and described in  emphasis::Formalized Music (1992, Stuyvesant, NY: Pendragon Press) chapter 9 (pp 246-254) and chapters 13 and 14 (pp 289-322)::.
12 The BASIC program in the book was written by Marie-Helene Serra so I
13 think it helpful to credit her too.
15 The program code has been adapted to avoid infinities in the probability
16 distribution functions.
18 The distributions are hard-coded in C but there is an option to have new
19 amplitude or time breakpoints sampled from a continuous controller input.
21 subsection:: Technical notes
22 X's plan as described in chapter 13 allows the 12 segments in the period to be successively modified with each new period.
23 Yet the period is allowed to vary as the sum of the segment durations, as figure 1 demonstrates.
24 We can setup some memory of n (conventionally 12) points, or even simply vary successively a single point's ordinate and
25 duration. There are thus various schemes available to us. In one, fix period T and only move the (ti, Ei) within the period. In another, have a memory of 12 segments but allow continuous modification of the inter point intervals and the amplitudes.
26 In yet another, just have one point and random walk its amplitude and duration based on the probability distribution.
27 In this implementation I allow the user to initialise a certain number of memory points which is up to them.
28 To restrict the period to be unchanging, you must set rate variation to zero (dscale=0).
30 SuperCollider implementation by Nick Collins.
33 classmethods::
35 method::ar, kr
37 discussion::
38 All parameters can be modulated at control rate except for code::initCPs:: which is used only at initialisation.
40 argument::ampdist
42 Choice of probability distribution for the next perturbation of
43 the amplitude of a control point.
45 The distributions are (adapted from the GENDYN program in Formalized Music):
47 table::
48 ## 0: || LINEAR.
49 ## 1: || CAUCHY.
50 ## 2: || LOGIST.
51 ## 3: || HYPERBCOS.
52 ## 4: || ARCSINE.
53 ## 5: || EXPON.
54 ## 6: || SINUS.
57 Where the sinus (Xenakis' name) is in this implementation taken
58 as sampling from a third party oscillator. See example below.
61 argument::durdist
63 Choice of distribution for the perturbation of the current inter
64 control point duration.
67 argument::adparam
69 A parameter for the shape of the amplitude probability
70 distribution, requires values in the range 0.0001 to 1 (there are
71 safety checks in the code so don't worry too much if you want to
72 modulate!).
75 argument::ddparam
77 A parameter for the shape of the duration probability
78 distribution, requires values in the range 0.0001 to 1.
81 argument::minfreq
83 Minimum allowed frequency of oscillation for the Gendy1
84 oscillator, so gives the largest period the duration is allowed
85 to take on.
88 argument::maxfreq
90 Maximum allowed frequency of oscillation for the Gendy1
91 oscillator, so gives the smallest period the duration is allowed
92 to take on.
95 argument::ampscale
97 Normally 0.0 to 1.0, multiplier for the distribution's delta
98 value for amplitude. An ampscale of 1.0 allows the full range
99 of  -1 to 1 for a change of amplitude.
102 argument::durscale
104 Normally 0.0 to 1.0, multiplier for the distribution's delta
105 value for duration. An ampscale of 1.0 allows the full range of
106 -1 to 1 for a change of duration.
109 argument::initCPs
111 Initialise the number of control points in the memory.
112 Xenakis specifies 12. There would be this number of control
113 points per cycle of the oscillator, though the oscillator's
114 period will constantly change due to the duration distribution.
117 argument::knum
119 Current number of utilised control points, allows modulation.
122 Examples::
124 warning::
125 if you have lots of CPs and you have fast frequencies, the CPU cost goes up a lot because a new CP move happens every sample!
128 code::
129 //defaults
130 {Pan2.ar(Gendy1.ar)}.play
132 //wandering bass/ powerline
133 {Pan2.ar(Gendy1.ar(1,1,1.0,1.0,30,100,0.3,0.05,5))}.play
135 //play me
136 {Pan2.ar(RLPF.ar(Gendy1.ar(2,3,minfreq:20,maxfreq:MouseX.kr(100,1000),durscale:0.0,initCPs:40),500,0.3,0.2),0.0)}.play
138 //scream! - careful with your ears for this one!
141     var mx, my;
143     mx= MouseX.kr(220,440);
144     my= MouseY.kr(0.0,1.0);
146     Pan2.ar(Gendy1.ar(2,3,1,1,minfreq:mx, maxfreq:8*mx, ampscale:my, durscale:my, initCPs:7, mul:0.3), 0.0)
147 }.play
151 //1 CP = random noise effect
152 {Pan2.ar(Gendy1.ar(initCPs:1))}.play
154 //2 CPs = suudenly an oscillator (though a fast modulating one here)
155 {Pan2.ar(Gendy1.ar(initCPs:2))}.play
158 //used as an LFO
161     Pan2.ar(
162         SinOsc.ar(
163             Gendy1.kr(2, 4,
164                 SinOsc.kr(0.1,0,0.49,0.51),
165                 SinOsc.kr(0.13,0,0.49,0.51),
166                 3.4, 3.5,
167                 SinOsc.kr(0.17,0,0.49,0.51),
168                 SinOsc.kr(0.19,0,0.49,0.51),
169                 10,10,50, 350),
170         0, 0.3),
171     0.0)
172 }.play
175 //wasp
176 {Pan2.ar(Gendy1.ar(0, 0, SinOsc.kr(0.1, 0, 0.1, 0.9),1.0, 50,1000, 1,0.005, 12, 12, 0.2), 0.0)}.play
179 //modulate distributions
180 //change of pitch as distributions change the duration structure and spectrum
181 {Pan2.ar(Gendy1.ar(MouseX.kr(0,7),MouseY.kr(0,7),mul:0.2), 0.0)}.play
184 //modulate num of CPs
185 {Pan2.ar(Gendy1.ar(knum:MouseX.kr(1,13),mul:0.2), 0.0)}.play
188 (//Gendy into Gendy...with cartoon side effects
189 {Pan2.ar(Gendy1.ar(
190     maxfreq:Gendy1.kr(5,4,0.3, 0.7, 0.1, MouseY.kr(0.1,10), 1.0, 1.0, 5,5, 500, 600),
191     knum:MouseX.kr(1,13),mul:0.2), 0.0)
192 }.play
195 //use SINUS to track any oscillator and take CP positions from it, use adparam and ddparam as the inputs to sample
196 {Pan2.ar(Gendy1.ar(6,6,LFPulse.kr(100, 0, 0.4, 1.0), SinOsc.kr(30, 0, 0.5),mul:0.2), 0.0)}.play
199 //try out near the corners especially
201 {Pan2.ar(Gendy1.ar(6,6,LFPulse.kr(MouseX.kr(0,200), 0, 0.4, 1.0),
202     SinOsc.kr(MouseY.kr(0,200), 0, 0.5),mul:0.2), 0.0)}.play
205 //texture
208 Mix.fill(10,{
209 var freq;
211 freq= rrand(130,160.3);
212 Pan2.ar(SinOsc.ar(Gendy1.ar(6.rand,6.rand,SinOsc.kr(0.1,0,0.49,0.51),
213     SinOsc.kr(0.13,0,0.49,0.51),freq ,freq, SinOsc.kr(0.17,0,0.49,0.51),
214     SinOsc.kr(0.19,0,0.49,0.51), 12, 12, 200, 400), 0, 0.1), 1.0.rand2)
216 }.play
219 //wahhhhhhhh- try durscale 10.0 and 0.0 too
221 {Pan2.ar(
222 CombN.ar(
223 Resonz.ar(
224 Gendy1.ar(2,3,minfreq:1, maxfreq:MouseX.kr(10,700), durscale:0.1, initCPs:10),
225 MouseY.kr(50,1000), 0.1)
226 ,0.1,0.1,5, 0.6
228 , 0.0)}.play
231 //overkill
234 var n;
235 n=10;
237 Mix.fill(n,{
238 var freq, numcps;
240 freq= rrand(130,160.3);
241 numcps= rrand(2,20);
242 Pan2.ar(Gendy1.ar(6.rand,6.rand,1.0.rand,1.0.rand,freq ,freq, 1.0.rand, 1.0.rand, numcps,
243     SinOsc.kr(exprand(0.02,0.2), 0, numcps/2, numcps/2), 0.5/(n.sqrt)), 1.0.rand2)
245 }.play
248 //another traffic moment
251     var n;
252     n=10;
254     Resonz.ar(
255     Mix.fill(n,{
256     var freq, numcps;
258     freq= rrand(50,560.3);
259     numcps= rrand(2,20);
260     Pan2.ar(Gendy1.ar(6.rand,6.rand,1.0.rand,1.0.rand,freq ,freq, 1.0.rand, 1.0.rand, numcps,
261         SinOsc.kr(exprand(0.02,0.2), 0, numcps/2, numcps/2), 0.5/(n.sqrt)), 1.0.rand2)
262     })
263     ,MouseX.kr(100,2000), MouseY.kr(0.01,1.0))
264     ;
265 }.play
270 var n;
271 n=15;
273 Out.ar(0,
274 Resonz.ar(
275 Mix.fill(n,{
276 var freq, numcps;
278 freq= rrand(330,460.3);
279 numcps= rrand(2,20);
280 Pan2.ar(Gendy1.ar(6.rand,6.rand,1.0.rand,1.0.rand,freq,MouseX.kr(freq,2*freq), 1.0.rand, 1.0.rand, numcps,
281     SinOsc.kr(exprand(0.02,0.2), 0, numcps/2, numcps/2), 0.5/(n.sqrt)), 1.0.rand2)
283 ,MouseX.kr(100,2000), MouseY.kr(0.01,1.0))
286 }.play;