4 * Copyright 1998 Jean-Claude Cote
5 * Copyright 2003 Jon Griffiths
6 * Copyright 2005 Daniel Remenak
7 * Copyright 2006 Google (Benjamin Arai)
9 * The algorithm for conversion from Julian days to day/month/year is based on
10 * that devised by Henry Fliegel, as implemented in PostgreSQL, which is
11 * Copyright 1994-7 Regents of the University of California
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2.1 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
33 #define NONAMELESSUNION
34 #define NONAMELESSSTRUCT
41 #include "wine/debug.h"
43 WINE_DEFAULT_DEBUG_CHANNEL(variant
);
45 static CRITICAL_SECTION cache_cs
;
46 static CRITICAL_SECTION_DEBUG critsect_debug
=
49 { &critsect_debug
.ProcessLocksList
, &critsect_debug
.ProcessLocksList
},
50 0, 0, { (DWORD_PTR
)(__FILE__
": cache_cs") }
52 static CRITICAL_SECTION cache_cs
= { &critsect_debug
, -1, 0, 0, 0, 0 };
54 /* Convert a variant from one type to another */
55 static inline HRESULT
VARIANT_Coerce(VARIANTARG
* pd
, LCID lcid
, USHORT wFlags
,
56 VARIANTARG
* ps
, VARTYPE vt
)
58 HRESULT res
= DISP_E_TYPEMISMATCH
;
59 VARTYPE vtFrom
= V_TYPE(ps
);
62 TRACE("(%s,0x%08x,0x%04x,%s,%s)\n", debugstr_variant(pd
), lcid
, wFlags
,
63 debugstr_variant(ps
), debugstr_vt(vt
));
65 if (vt
== VT_BSTR
|| vtFrom
== VT_BSTR
)
67 /* All flags passed to low level function are only used for
68 * changing to or from strings. Map these here.
70 if (wFlags
& VARIANT_LOCALBOOL
)
71 dwFlags
|= VAR_LOCALBOOL
;
72 if (wFlags
& VARIANT_CALENDAR_HIJRI
)
73 dwFlags
|= VAR_CALENDAR_HIJRI
;
74 if (wFlags
& VARIANT_CALENDAR_THAI
)
75 dwFlags
|= VAR_CALENDAR_THAI
;
76 if (wFlags
& VARIANT_CALENDAR_GREGORIAN
)
77 dwFlags
|= VAR_CALENDAR_GREGORIAN
;
78 if (wFlags
& VARIANT_NOUSEROVERRIDE
)
79 dwFlags
|= LOCALE_NOUSEROVERRIDE
;
80 if (wFlags
& VARIANT_USE_NLS
)
81 dwFlags
|= LOCALE_USE_NLS
;
84 /* Map int/uint to i4/ui4 */
87 else if (vt
== VT_UINT
)
92 else if (vtFrom
== VT_UINT
)
96 return VariantCopy(pd
, ps
);
98 if (wFlags
& VARIANT_NOVALUEPROP
&& vtFrom
== VT_DISPATCH
&& vt
!= VT_UNKNOWN
)
100 /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by
101 * accessing the default object property.
103 return DISP_E_TYPEMISMATCH
;
109 if (vtFrom
== VT_NULL
)
110 return DISP_E_TYPEMISMATCH
;
111 /* ... Fall through */
113 if (vtFrom
<= VT_UINT
&& vtFrom
!= (VARTYPE
)15 && vtFrom
!= VT_ERROR
)
115 res
= VariantClear( pd
);
116 if (vt
== VT_NULL
&& SUCCEEDED(res
))
124 case VT_EMPTY
: V_I1(pd
) = 0; return S_OK
;
125 case VT_I2
: return VarI1FromI2(V_I2(ps
), &V_I1(pd
));
126 case VT_I4
: return VarI1FromI4(V_I4(ps
), &V_I1(pd
));
127 case VT_UI1
: V_I1(pd
) = V_UI1(ps
); return S_OK
;
128 case VT_UI2
: return VarI1FromUI2(V_UI2(ps
), &V_I1(pd
));
129 case VT_UI4
: return VarI1FromUI4(V_UI4(ps
), &V_I1(pd
));
130 case VT_I8
: return VarI1FromI8(V_I8(ps
), &V_I1(pd
));
131 case VT_UI8
: return VarI1FromUI8(V_UI8(ps
), &V_I1(pd
));
132 case VT_R4
: return VarI1FromR4(V_R4(ps
), &V_I1(pd
));
133 case VT_R8
: return VarI1FromR8(V_R8(ps
), &V_I1(pd
));
134 case VT_DATE
: return VarI1FromDate(V_DATE(ps
), &V_I1(pd
));
135 case VT_BOOL
: return VarI1FromBool(V_BOOL(ps
), &V_I1(pd
));
136 case VT_CY
: return VarI1FromCy(V_CY(ps
), &V_I1(pd
));
137 case VT_DECIMAL
: return VarI1FromDec(&V_DECIMAL(ps
), &V_I1(pd
) );
138 case VT_DISPATCH
: return VarI1FromDisp(V_DISPATCH(ps
), lcid
, &V_I1(pd
) );
139 case VT_BSTR
: return VarI1FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I1(pd
) );
146 case VT_EMPTY
: V_I2(pd
) = 0; return S_OK
;
147 case VT_I1
: return VarI2FromI1(V_I1(ps
), &V_I2(pd
));
148 case VT_I4
: return VarI2FromI4(V_I4(ps
), &V_I2(pd
));
149 case VT_UI1
: return VarI2FromUI1(V_UI1(ps
), &V_I2(pd
));
150 case VT_UI2
: V_I2(pd
) = V_UI2(ps
); return S_OK
;
151 case VT_UI4
: return VarI2FromUI4(V_UI4(ps
), &V_I2(pd
));
152 case VT_I8
: return VarI2FromI8(V_I8(ps
), &V_I2(pd
));
153 case VT_UI8
: return VarI2FromUI8(V_UI8(ps
), &V_I2(pd
));
154 case VT_R4
: return VarI2FromR4(V_R4(ps
), &V_I2(pd
));
155 case VT_R8
: return VarI2FromR8(V_R8(ps
), &V_I2(pd
));
156 case VT_DATE
: return VarI2FromDate(V_DATE(ps
), &V_I2(pd
));
157 case VT_BOOL
: return VarI2FromBool(V_BOOL(ps
), &V_I2(pd
));
158 case VT_CY
: return VarI2FromCy(V_CY(ps
), &V_I2(pd
));
159 case VT_DECIMAL
: return VarI2FromDec(&V_DECIMAL(ps
), &V_I2(pd
));
160 case VT_DISPATCH
: return VarI2FromDisp(V_DISPATCH(ps
), lcid
, &V_I2(pd
));
161 case VT_BSTR
: return VarI2FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I2(pd
));
168 case VT_EMPTY
: V_I4(pd
) = 0; return S_OK
;
169 case VT_I1
: return VarI4FromI1(V_I1(ps
), &V_I4(pd
));
170 case VT_I2
: return VarI4FromI2(V_I2(ps
), &V_I4(pd
));
171 case VT_UI1
: return VarI4FromUI1(V_UI1(ps
), &V_I4(pd
));
172 case VT_UI2
: return VarI4FromUI2(V_UI2(ps
), &V_I4(pd
));
173 case VT_UI4
: V_I4(pd
) = V_UI4(ps
); return S_OK
;
174 case VT_I8
: return VarI4FromI8(V_I8(ps
), &V_I4(pd
));
175 case VT_UI8
: return VarI4FromUI8(V_UI8(ps
), &V_I4(pd
));
176 case VT_R4
: return VarI4FromR4(V_R4(ps
), &V_I4(pd
));
177 case VT_R8
: return VarI4FromR8(V_R8(ps
), &V_I4(pd
));
178 case VT_DATE
: return VarI4FromDate(V_DATE(ps
), &V_I4(pd
));
179 case VT_BOOL
: return VarI4FromBool(V_BOOL(ps
), &V_I4(pd
));
180 case VT_CY
: return VarI4FromCy(V_CY(ps
), &V_I4(pd
));
181 case VT_DECIMAL
: return VarI4FromDec(&V_DECIMAL(ps
), &V_I4(pd
));
182 case VT_DISPATCH
: return VarI4FromDisp(V_DISPATCH(ps
), lcid
, &V_I4(pd
));
183 case VT_BSTR
: return VarI4FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I4(pd
));
190 case VT_EMPTY
: V_UI1(pd
) = 0; return S_OK
;
191 case VT_I1
: V_UI1(pd
) = V_I1(ps
); return S_OK
;
192 case VT_I2
: return VarUI1FromI2(V_I2(ps
), &V_UI1(pd
));
193 case VT_I4
: return VarUI1FromI4(V_I4(ps
), &V_UI1(pd
));
194 case VT_UI2
: return VarUI1FromUI2(V_UI2(ps
), &V_UI1(pd
));
195 case VT_UI4
: return VarUI1FromUI4(V_UI4(ps
), &V_UI1(pd
));
196 case VT_I8
: return VarUI1FromI8(V_I8(ps
), &V_UI1(pd
));
197 case VT_UI8
: return VarUI1FromUI8(V_UI8(ps
), &V_UI1(pd
));
198 case VT_R4
: return VarUI1FromR4(V_R4(ps
), &V_UI1(pd
));
199 case VT_R8
: return VarUI1FromR8(V_R8(ps
), &V_UI1(pd
));
200 case VT_DATE
: return VarUI1FromDate(V_DATE(ps
), &V_UI1(pd
));
201 case VT_BOOL
: return VarUI1FromBool(V_BOOL(ps
), &V_UI1(pd
));
202 case VT_CY
: return VarUI1FromCy(V_CY(ps
), &V_UI1(pd
));
203 case VT_DECIMAL
: return VarUI1FromDec(&V_DECIMAL(ps
), &V_UI1(pd
));
204 case VT_DISPATCH
: return VarUI1FromDisp(V_DISPATCH(ps
), lcid
, &V_UI1(pd
));
205 case VT_BSTR
: return VarUI1FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI1(pd
));
212 case VT_EMPTY
: V_UI2(pd
) = 0; return S_OK
;
213 case VT_I1
: return VarUI2FromI1(V_I1(ps
), &V_UI2(pd
));
214 case VT_I2
: V_UI2(pd
) = V_I2(ps
); return S_OK
;
215 case VT_I4
: return VarUI2FromI4(V_I4(ps
), &V_UI2(pd
));
216 case VT_UI1
: return VarUI2FromUI1(V_UI1(ps
), &V_UI2(pd
));
217 case VT_UI4
: return VarUI2FromUI4(V_UI4(ps
), &V_UI2(pd
));
218 case VT_I8
: return VarUI4FromI8(V_I8(ps
), &V_UI4(pd
));
219 case VT_UI8
: return VarUI4FromUI8(V_UI8(ps
), &V_UI4(pd
));
220 case VT_R4
: return VarUI2FromR4(V_R4(ps
), &V_UI2(pd
));
221 case VT_R8
: return VarUI2FromR8(V_R8(ps
), &V_UI2(pd
));
222 case VT_DATE
: return VarUI2FromDate(V_DATE(ps
), &V_UI2(pd
));
223 case VT_BOOL
: return VarUI2FromBool(V_BOOL(ps
), &V_UI2(pd
));
224 case VT_CY
: return VarUI2FromCy(V_CY(ps
), &V_UI2(pd
));
225 case VT_DECIMAL
: return VarUI2FromDec(&V_DECIMAL(ps
), &V_UI2(pd
));
226 case VT_DISPATCH
: return VarUI2FromDisp(V_DISPATCH(ps
), lcid
, &V_UI2(pd
));
227 case VT_BSTR
: return VarUI2FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI2(pd
));
234 case VT_EMPTY
: V_UI4(pd
) = 0; return S_OK
;
235 case VT_I1
: return VarUI4FromI1(V_I1(ps
), &V_UI4(pd
));
236 case VT_I2
: return VarUI4FromI2(V_I2(ps
), &V_UI4(pd
));
237 case VT_I4
: V_UI4(pd
) = V_I4(ps
); return S_OK
;
238 case VT_UI1
: return VarUI4FromUI1(V_UI1(ps
), &V_UI4(pd
));
239 case VT_UI2
: return VarUI4FromUI2(V_UI2(ps
), &V_UI4(pd
));
240 case VT_I8
: return VarUI4FromI8(V_I8(ps
), &V_UI4(pd
));
241 case VT_UI8
: return VarUI4FromUI8(V_UI8(ps
), &V_UI4(pd
));
242 case VT_R4
: return VarUI4FromR4(V_R4(ps
), &V_UI4(pd
));
243 case VT_R8
: return VarUI4FromR8(V_R8(ps
), &V_UI4(pd
));
244 case VT_DATE
: return VarUI4FromDate(V_DATE(ps
), &V_UI4(pd
));
245 case VT_BOOL
: return VarUI4FromBool(V_BOOL(ps
), &V_UI4(pd
));
246 case VT_CY
: return VarUI4FromCy(V_CY(ps
), &V_UI4(pd
));
247 case VT_DECIMAL
: return VarUI4FromDec(&V_DECIMAL(ps
), &V_UI4(pd
));
248 case VT_DISPATCH
: return VarUI4FromDisp(V_DISPATCH(ps
), lcid
, &V_UI4(pd
));
249 case VT_BSTR
: return VarUI4FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI4(pd
));
256 case VT_EMPTY
: V_UI8(pd
) = 0; return S_OK
;
257 case VT_I4
: if (V_I4(ps
) < 0) return DISP_E_OVERFLOW
; V_UI8(pd
) = V_I4(ps
); return S_OK
;
258 case VT_I1
: return VarUI8FromI1(V_I1(ps
), &V_UI8(pd
));
259 case VT_I2
: return VarUI8FromI2(V_I2(ps
), &V_UI8(pd
));
260 case VT_UI1
: return VarUI8FromUI1(V_UI1(ps
), &V_UI8(pd
));
261 case VT_UI2
: return VarUI8FromUI2(V_UI2(ps
), &V_UI8(pd
));
262 case VT_UI4
: return VarUI8FromUI4(V_UI4(ps
), &V_UI8(pd
));
263 case VT_I8
: V_UI8(pd
) = V_I8(ps
); return S_OK
;
264 case VT_R4
: return VarUI8FromR4(V_R4(ps
), &V_UI8(pd
));
265 case VT_R8
: return VarUI8FromR8(V_R8(ps
), &V_UI8(pd
));
266 case VT_DATE
: return VarUI8FromDate(V_DATE(ps
), &V_UI8(pd
));
267 case VT_BOOL
: return VarUI8FromBool(V_BOOL(ps
), &V_UI8(pd
));
268 case VT_CY
: return VarUI8FromCy(V_CY(ps
), &V_UI8(pd
));
269 case VT_DECIMAL
: return VarUI8FromDec(&V_DECIMAL(ps
), &V_UI8(pd
));
270 case VT_DISPATCH
: return VarUI8FromDisp(V_DISPATCH(ps
), lcid
, &V_UI8(pd
));
271 case VT_BSTR
: return VarUI8FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_UI8(pd
));
278 case VT_EMPTY
: V_I8(pd
) = 0; return S_OK
;
279 case VT_I4
: V_I8(pd
) = V_I4(ps
); return S_OK
;
280 case VT_I1
: return VarI8FromI1(V_I1(ps
), &V_I8(pd
));
281 case VT_I2
: return VarI8FromI2(V_I2(ps
), &V_I8(pd
));
282 case VT_UI1
: return VarI8FromUI1(V_UI1(ps
), &V_I8(pd
));
283 case VT_UI2
: return VarI8FromUI2(V_UI2(ps
), &V_I8(pd
));
284 case VT_UI4
: return VarI8FromUI4(V_UI4(ps
), &V_I8(pd
));
285 case VT_UI8
: V_I8(pd
) = V_UI8(ps
); return S_OK
;
286 case VT_R4
: return VarI8FromR4(V_R4(ps
), &V_I8(pd
));
287 case VT_R8
: return VarI8FromR8(V_R8(ps
), &V_I8(pd
));
288 case VT_DATE
: return VarI8FromDate(V_DATE(ps
), &V_I8(pd
));
289 case VT_BOOL
: return VarI8FromBool(V_BOOL(ps
), &V_I8(pd
));
290 case VT_CY
: return VarI8FromCy(V_CY(ps
), &V_I8(pd
));
291 case VT_DECIMAL
: return VarI8FromDec(&V_DECIMAL(ps
), &V_I8(pd
));
292 case VT_DISPATCH
: return VarI8FromDisp(V_DISPATCH(ps
), lcid
, &V_I8(pd
));
293 case VT_BSTR
: return VarI8FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_I8(pd
));
300 case VT_EMPTY
: V_R4(pd
) = 0.0f
; return S_OK
;
301 case VT_I1
: return VarR4FromI1(V_I1(ps
), &V_R4(pd
));
302 case VT_I2
: return VarR4FromI2(V_I2(ps
), &V_R4(pd
));
303 case VT_I4
: return VarR4FromI4(V_I4(ps
), &V_R4(pd
));
304 case VT_UI1
: return VarR4FromUI1(V_UI1(ps
), &V_R4(pd
));
305 case VT_UI2
: return VarR4FromUI2(V_UI2(ps
), &V_R4(pd
));
306 case VT_UI4
: return VarR4FromUI4(V_UI4(ps
), &V_R4(pd
));
307 case VT_I8
: return VarR4FromI8(V_I8(ps
), &V_R4(pd
));
308 case VT_UI8
: return VarR4FromUI8(V_UI8(ps
), &V_R4(pd
));
309 case VT_R8
: return VarR4FromR8(V_R8(ps
), &V_R4(pd
));
310 case VT_DATE
: return VarR4FromDate(V_DATE(ps
), &V_R4(pd
));
311 case VT_BOOL
: return VarR4FromBool(V_BOOL(ps
), &V_R4(pd
));
312 case VT_CY
: return VarR4FromCy(V_CY(ps
), &V_R4(pd
));
313 case VT_DECIMAL
: return VarR4FromDec(&V_DECIMAL(ps
), &V_R4(pd
));
314 case VT_DISPATCH
: return VarR4FromDisp(V_DISPATCH(ps
), lcid
, &V_R4(pd
));
315 case VT_BSTR
: return VarR4FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_R4(pd
));
322 case VT_EMPTY
: V_R8(pd
) = 0.0; return S_OK
;
323 case VT_I1
: return VarR8FromI1(V_I1(ps
), &V_R8(pd
));
324 case VT_I2
: return VarR8FromI2(V_I2(ps
), &V_R8(pd
));
325 case VT_I4
: return VarR8FromI4(V_I4(ps
), &V_R8(pd
));
326 case VT_UI1
: return VarR8FromUI1(V_UI1(ps
), &V_R8(pd
));
327 case VT_UI2
: return VarR8FromUI2(V_UI2(ps
), &V_R8(pd
));
328 case VT_UI4
: return VarR8FromUI4(V_UI4(ps
), &V_R8(pd
));
329 case VT_I8
: return VarR8FromI8(V_I8(ps
), &V_R8(pd
));
330 case VT_UI8
: return VarR8FromUI8(V_UI8(ps
), &V_R8(pd
));
331 case VT_R4
: return VarR8FromR4(V_R4(ps
), &V_R8(pd
));
332 case VT_DATE
: return VarR8FromDate(V_DATE(ps
), &V_R8(pd
));
333 case VT_BOOL
: return VarR8FromBool(V_BOOL(ps
), &V_R8(pd
));
334 case VT_CY
: return VarR8FromCy(V_CY(ps
), &V_R8(pd
));
335 case VT_DECIMAL
: return VarR8FromDec(&V_DECIMAL(ps
), &V_R8(pd
));
336 case VT_DISPATCH
: return VarR8FromDisp(V_DISPATCH(ps
), lcid
, &V_R8(pd
));
337 case VT_BSTR
: return VarR8FromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_R8(pd
));
344 case VT_EMPTY
: V_DATE(pd
) = 0.0; return S_OK
;
345 case VT_I1
: return VarDateFromI1(V_I1(ps
), &V_DATE(pd
));
346 case VT_I2
: return VarDateFromI2(V_I2(ps
), &V_DATE(pd
));
347 case VT_I4
: return VarDateFromI4(V_I4(ps
), &V_DATE(pd
));
348 case VT_UI1
: return VarDateFromUI1(V_UI1(ps
), &V_DATE(pd
));
349 case VT_UI2
: return VarDateFromUI2(V_UI2(ps
), &V_DATE(pd
));
350 case VT_UI4
: return VarDateFromUI4(V_UI4(ps
), &V_DATE(pd
));
351 case VT_I8
: return VarDateFromI8(V_I8(ps
), &V_DATE(pd
));
352 case VT_UI8
: return VarDateFromUI8(V_UI8(ps
), &V_DATE(pd
));
353 case VT_R4
: return VarDateFromR4(V_R4(ps
), &V_DATE(pd
));
354 case VT_R8
: return VarDateFromR8(V_R8(ps
), &V_DATE(pd
));
355 case VT_BOOL
: return VarDateFromBool(V_BOOL(ps
), &V_DATE(pd
));
356 case VT_CY
: return VarDateFromCy(V_CY(ps
), &V_DATE(pd
));
357 case VT_DECIMAL
: return VarDateFromDec(&V_DECIMAL(ps
), &V_DATE(pd
));
358 case VT_DISPATCH
: return VarDateFromDisp(V_DISPATCH(ps
), lcid
, &V_DATE(pd
));
359 case VT_BSTR
: return VarDateFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_DATE(pd
));
366 case VT_EMPTY
: V_BOOL(pd
) = 0; return S_OK
;
367 case VT_I1
: return VarBoolFromI1(V_I1(ps
), &V_BOOL(pd
));
368 case VT_I2
: return VarBoolFromI2(V_I2(ps
), &V_BOOL(pd
));
369 case VT_I4
: return VarBoolFromI4(V_I4(ps
), &V_BOOL(pd
));
370 case VT_UI1
: return VarBoolFromUI1(V_UI1(ps
), &V_BOOL(pd
));
371 case VT_UI2
: return VarBoolFromUI2(V_UI2(ps
), &V_BOOL(pd
));
372 case VT_UI4
: return VarBoolFromUI4(V_UI4(ps
), &V_BOOL(pd
));
373 case VT_I8
: return VarBoolFromI8(V_I8(ps
), &V_BOOL(pd
));
374 case VT_UI8
: return VarBoolFromUI8(V_UI8(ps
), &V_BOOL(pd
));
375 case VT_R4
: return VarBoolFromR4(V_R4(ps
), &V_BOOL(pd
));
376 case VT_R8
: return VarBoolFromR8(V_R8(ps
), &V_BOOL(pd
));
377 case VT_DATE
: return VarBoolFromDate(V_DATE(ps
), &V_BOOL(pd
));
378 case VT_CY
: return VarBoolFromCy(V_CY(ps
), &V_BOOL(pd
));
379 case VT_DECIMAL
: return VarBoolFromDec(&V_DECIMAL(ps
), &V_BOOL(pd
));
380 case VT_DISPATCH
: return VarBoolFromDisp(V_DISPATCH(ps
), lcid
, &V_BOOL(pd
));
381 case VT_BSTR
: return VarBoolFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_BOOL(pd
));
389 V_BSTR(pd
) = SysAllocStringLen(NULL
, 0);
390 return V_BSTR(pd
) ? S_OK
: E_OUTOFMEMORY
;
392 if (wFlags
& (VARIANT_ALPHABOOL
|VARIANT_LOCALBOOL
))
393 return VarBstrFromBool(V_BOOL(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
394 return VarBstrFromI2(V_BOOL(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
395 case VT_I1
: return VarBstrFromI1(V_I1(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
396 case VT_I2
: return VarBstrFromI2(V_I2(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
397 case VT_I4
: return VarBstrFromI4(V_I4(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
398 case VT_UI1
: return VarBstrFromUI1(V_UI1(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
399 case VT_UI2
: return VarBstrFromUI2(V_UI2(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
400 case VT_UI4
: return VarBstrFromUI4(V_UI4(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
401 case VT_I8
: return VarBstrFromI8(V_I8(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
402 case VT_UI8
: return VarBstrFromUI8(V_UI8(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
403 case VT_R4
: return VarBstrFromR4(V_R4(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
404 case VT_R8
: return VarBstrFromR8(V_R8(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
405 case VT_DATE
: return VarBstrFromDate(V_DATE(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
406 case VT_CY
: return VarBstrFromCy(V_CY(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
407 case VT_DECIMAL
: return VarBstrFromDec(&V_DECIMAL(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
408 case VT_DISPATCH
: return VarBstrFromDisp(V_DISPATCH(ps
), lcid
, dwFlags
, &V_BSTR(pd
));
415 case VT_EMPTY
: V_CY(pd
).int64
= 0; return S_OK
;
416 case VT_I1
: return VarCyFromI1(V_I1(ps
), &V_CY(pd
));
417 case VT_I2
: return VarCyFromI2(V_I2(ps
), &V_CY(pd
));
418 case VT_I4
: return VarCyFromI4(V_I4(ps
), &V_CY(pd
));
419 case VT_UI1
: return VarCyFromUI1(V_UI1(ps
), &V_CY(pd
));
420 case VT_UI2
: return VarCyFromUI2(V_UI2(ps
), &V_CY(pd
));
421 case VT_UI4
: return VarCyFromUI4(V_UI4(ps
), &V_CY(pd
));
422 case VT_I8
: return VarCyFromI8(V_I8(ps
), &V_CY(pd
));
423 case VT_UI8
: return VarCyFromUI8(V_UI8(ps
), &V_CY(pd
));
424 case VT_R4
: return VarCyFromR4(V_R4(ps
), &V_CY(pd
));
425 case VT_R8
: return VarCyFromR8(V_R8(ps
), &V_CY(pd
));
426 case VT_DATE
: return VarCyFromDate(V_DATE(ps
), &V_CY(pd
));
427 case VT_BOOL
: return VarCyFromBool(V_BOOL(ps
), &V_CY(pd
));
428 case VT_DECIMAL
: return VarCyFromDec(&V_DECIMAL(ps
), &V_CY(pd
));
429 case VT_DISPATCH
: return VarCyFromDisp(V_DISPATCH(ps
), lcid
, &V_CY(pd
));
430 case VT_BSTR
: return VarCyFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_CY(pd
));
439 DEC_SIGNSCALE(&V_DECIMAL(pd
)) = SIGNSCALE(DECIMAL_POS
,0);
440 DEC_HI32(&V_DECIMAL(pd
)) = 0;
441 DEC_MID32(&V_DECIMAL(pd
)) = 0;
442 /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0.
443 * VT_NULL and VT_EMPTY always give a 0 value.
445 DEC_LO32(&V_DECIMAL(pd
)) = vtFrom
== VT_BOOL
&& V_BOOL(ps
) ? 1 : 0;
447 case VT_I1
: return VarDecFromI1(V_I1(ps
), &V_DECIMAL(pd
));
448 case VT_I2
: return VarDecFromI2(V_I2(ps
), &V_DECIMAL(pd
));
449 case VT_I4
: return VarDecFromI4(V_I4(ps
), &V_DECIMAL(pd
));
450 case VT_UI1
: return VarDecFromUI1(V_UI1(ps
), &V_DECIMAL(pd
));
451 case VT_UI2
: return VarDecFromUI2(V_UI2(ps
), &V_DECIMAL(pd
));
452 case VT_UI4
: return VarDecFromUI4(V_UI4(ps
), &V_DECIMAL(pd
));
453 case VT_I8
: return VarDecFromI8(V_I8(ps
), &V_DECIMAL(pd
));
454 case VT_UI8
: return VarDecFromUI8(V_UI8(ps
), &V_DECIMAL(pd
));
455 case VT_R4
: return VarDecFromR4(V_R4(ps
), &V_DECIMAL(pd
));
456 case VT_R8
: return VarDecFromR8(V_R8(ps
), &V_DECIMAL(pd
));
457 case VT_DATE
: return VarDecFromDate(V_DATE(ps
), &V_DECIMAL(pd
));
458 case VT_CY
: return VarDecFromCy(V_CY(ps
), &V_DECIMAL(pd
));
459 case VT_DISPATCH
: return VarDecFromDisp(V_DISPATCH(ps
), lcid
, &V_DECIMAL(pd
));
460 case VT_BSTR
: return VarDecFromStr(V_BSTR(ps
), lcid
, dwFlags
, &V_DECIMAL(pd
));
468 if (V_DISPATCH(ps
) == NULL
)
470 V_UNKNOWN(pd
) = NULL
;
474 res
= IDispatch_QueryInterface(V_DISPATCH(ps
), &IID_IUnknown
, (LPVOID
*)&V_UNKNOWN(pd
));
483 if (V_UNKNOWN(ps
) == NULL
)
485 V_DISPATCH(pd
) = NULL
;
489 res
= IUnknown_QueryInterface(V_UNKNOWN(ps
), &IID_IDispatch
, (LPVOID
*)&V_DISPATCH(pd
));
500 /* Coerce to/from an array */
501 static inline HRESULT
VARIANT_CoerceArray(VARIANTARG
* pd
, VARIANTARG
* ps
, VARTYPE vt
)
503 if (vt
== VT_BSTR
&& V_VT(ps
) == (VT_ARRAY
|VT_UI1
))
504 return BstrFromVector(V_ARRAY(ps
), &V_BSTR(pd
));
506 if (V_VT(ps
) == VT_BSTR
&& vt
== (VT_ARRAY
|VT_UI1
))
507 return VectorFromBstr(V_BSTR(ps
), &V_ARRAY(pd
));
510 return SafeArrayCopy(V_ARRAY(ps
), &V_ARRAY(pd
));
512 return DISP_E_TYPEMISMATCH
;
515 static HRESULT
VARIANT_FetchDispatchValue(LPVARIANT pvDispatch
, LPVARIANT pValue
)
518 static DISPPARAMS emptyParams
= { NULL
, NULL
, 0, 0 };
520 if ((V_VT(pvDispatch
) & VT_TYPEMASK
) == VT_DISPATCH
) {
521 if (NULL
== V_DISPATCH(pvDispatch
)) return DISP_E_TYPEMISMATCH
;
522 hres
= IDispatch_Invoke(V_DISPATCH(pvDispatch
), DISPID_VALUE
, &IID_NULL
,
523 LOCALE_USER_DEFAULT
, DISPATCH_PROPERTYGET
, &emptyParams
, pValue
,
526 hres
= DISP_E_TYPEMISMATCH
;
531 /******************************************************************************
532 * Check if a variants type is valid.
534 static inline HRESULT
VARIANT_ValidateType(VARTYPE vt
)
536 VARTYPE vtExtra
= vt
& VT_EXTRA_TYPE
;
540 if (!(vtExtra
& (VT_VECTOR
|VT_RESERVED
)))
542 if (vt
< VT_VOID
|| vt
== VT_RECORD
|| vt
== VT_CLSID
)
544 if ((vtExtra
& (VT_BYREF
|VT_ARRAY
)) && vt
<= VT_NULL
)
545 return DISP_E_BADVARTYPE
;
546 if (vt
!= (VARTYPE
)15)
550 return DISP_E_BADVARTYPE
;
553 /******************************************************************************
554 * VariantInit [OLEAUT32.8]
556 * Initialise a variant.
559 * pVarg [O] Variant to initialise
565 * This function simply sets the type of the variant to VT_EMPTY. It does not
566 * free any existing value, use VariantClear() for that.
568 void WINAPI
VariantInit(VARIANTARG
* pVarg
)
570 TRACE("(%p)\n", pVarg
);
572 /* Win8.1 zeroes whole struct. Previous implementations don't set any other fields. */
573 V_VT(pVarg
) = VT_EMPTY
;
576 HRESULT
VARIANT_ClearInd(VARIANTARG
*pVarg
)
580 TRACE("(%s)\n", debugstr_variant(pVarg
));
582 hres
= VARIANT_ValidateType(V_VT(pVarg
));
590 if (V_UNKNOWN(pVarg
))
591 IUnknown_Release(V_UNKNOWN(pVarg
));
593 case VT_UNKNOWN
| VT_BYREF
:
594 case VT_DISPATCH
| VT_BYREF
:
595 if(*V_UNKNOWNREF(pVarg
))
596 IUnknown_Release(*V_UNKNOWNREF(pVarg
));
599 SysFreeString(V_BSTR(pVarg
));
601 case VT_BSTR
| VT_BYREF
:
602 SysFreeString(*V_BSTRREF(pVarg
));
604 case VT_VARIANT
| VT_BYREF
:
605 VariantClear(V_VARIANTREF(pVarg
));
608 case VT_RECORD
| VT_BYREF
:
610 struct __tagBRECORD
* pBr
= &V_UNION(pVarg
,brecVal
);
613 IRecordInfo_RecordClear(pBr
->pRecInfo
, pBr
->pvRecord
);
614 IRecordInfo_Release(pBr
->pRecInfo
);
619 if (V_ISARRAY(pVarg
) || (V_VT(pVarg
) & ~VT_BYREF
) == VT_SAFEARRAY
)
621 if (V_ISBYREF(pVarg
))
623 if (*V_ARRAYREF(pVarg
))
624 hres
= SafeArrayDestroy(*V_ARRAYREF(pVarg
));
626 else if (V_ARRAY(pVarg
))
627 hres
= SafeArrayDestroy(V_ARRAY(pVarg
));
632 V_VT(pVarg
) = VT_EMPTY
;
636 /******************************************************************************
637 * VariantClear [OLEAUT32.9]
642 * pVarg [I/O] Variant to clear
645 * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY.
646 * Failure: DISP_E_BADVARTYPE, if the variant is not a valid variant type.
648 HRESULT WINAPI DECLSPEC_HOTPATCH
VariantClear(VARIANTARG
* pVarg
)
652 TRACE("(%s)\n", debugstr_variant(pVarg
));
654 hres
= VARIANT_ValidateType(V_VT(pVarg
));
658 if (!V_ISBYREF(pVarg
))
660 if (V_ISARRAY(pVarg
) || V_VT(pVarg
) == VT_SAFEARRAY
)
662 hres
= SafeArrayDestroy(V_ARRAY(pVarg
));
664 else if (V_VT(pVarg
) == VT_BSTR
)
666 SysFreeString(V_BSTR(pVarg
));
668 else if (V_VT(pVarg
) == VT_RECORD
)
670 struct __tagBRECORD
* pBr
= &V_UNION(pVarg
,brecVal
);
673 IRecordInfo_RecordClear(pBr
->pRecInfo
, pBr
->pvRecord
);
674 IRecordInfo_Release(pBr
->pRecInfo
);
677 else if (V_VT(pVarg
) == VT_DISPATCH
||
678 V_VT(pVarg
) == VT_UNKNOWN
)
680 if (V_UNKNOWN(pVarg
))
681 IUnknown_Release(V_UNKNOWN(pVarg
));
684 V_VT(pVarg
) = VT_EMPTY
;
689 /******************************************************************************
690 * Copy an IRecordInfo object contained in a variant.
692 static HRESULT
VARIANT_CopyIRecordInfo(VARIANT
*dest
, VARIANT
*src
)
694 struct __tagBRECORD
*dest_rec
= &V_UNION(dest
, brecVal
);
695 struct __tagBRECORD
*src_rec
= &V_UNION(src
, brecVal
);
699 if (!src_rec
->pRecInfo
)
701 if (src_rec
->pvRecord
) return E_INVALIDARG
;
705 hr
= IRecordInfo_GetSize(src_rec
->pRecInfo
, &size
);
706 if (FAILED(hr
)) return hr
;
708 /* This could look cleaner if only RecordCreate() was used, but native doesn't use it.
709 Memory should be allocated in a same way as RecordCreate() does, so RecordDestroy()
710 could free it later. */
711 dest_rec
->pvRecord
= HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY
, size
);
712 if (!dest_rec
->pvRecord
) return E_OUTOFMEMORY
;
714 dest_rec
->pRecInfo
= src_rec
->pRecInfo
;
715 IRecordInfo_AddRef(src_rec
->pRecInfo
);
717 return IRecordInfo_RecordCopy(src_rec
->pRecInfo
, src_rec
->pvRecord
, dest_rec
->pvRecord
);
720 /******************************************************************************
721 * VariantCopy [OLEAUT32.10]
726 * pvargDest [O] Destination for copy
727 * pvargSrc [I] Source variant to copy
730 * Success: S_OK. pvargDest contains a copy of pvargSrc.
731 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type.
732 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
733 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
734 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
737 * - If pvargSrc == pvargDest, this function does nothing, and succeeds if
738 * pvargSrc is valid. Otherwise, pvargDest is always cleared using
739 * VariantClear() before pvargSrc is copied to it. If clearing pvargDest
740 * fails, so does this function.
741 * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest.
742 * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value
743 * is copied rather than just any pointers to it.
744 * - For by-value object types the object pointer is copied and the objects
745 * reference count increased using IUnknown_AddRef().
746 * - For all by-reference types, only the referencing pointer is copied.
748 HRESULT WINAPI
VariantCopy(VARIANTARG
* pvargDest
, VARIANTARG
* pvargSrc
)
752 TRACE("(%s,%s)\n", debugstr_variant(pvargDest
), debugstr_variant(pvargSrc
));
754 if (V_TYPE(pvargSrc
) == VT_CLSID
|| /* VT_CLSID is a special case */
755 FAILED(VARIANT_ValidateType(V_VT(pvargSrc
))))
756 return DISP_E_BADVARTYPE
;
758 if (pvargSrc
!= pvargDest
&&
759 SUCCEEDED(hres
= VariantClear(pvargDest
)))
761 *pvargDest
= *pvargSrc
; /* Shallow copy the value */
763 if (!V_ISBYREF(pvargSrc
))
765 switch (V_VT(pvargSrc
))
768 V_BSTR(pvargDest
) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc
), SysStringByteLen(V_BSTR(pvargSrc
)));
769 if (!V_BSTR(pvargDest
))
770 hres
= E_OUTOFMEMORY
;
773 hres
= VARIANT_CopyIRecordInfo(pvargDest
, pvargSrc
);
777 V_UNKNOWN(pvargDest
) = V_UNKNOWN(pvargSrc
);
778 if (V_UNKNOWN(pvargSrc
))
779 IUnknown_AddRef(V_UNKNOWN(pvargSrc
));
782 if (V_ISARRAY(pvargSrc
))
783 hres
= SafeArrayCopy(V_ARRAY(pvargSrc
), &V_ARRAY(pvargDest
));
790 /* Return the byte size of a variants data */
791 static inline size_t VARIANT_DataSize(const VARIANT
* pv
)
796 case VT_UI1
: return sizeof(BYTE
);
798 case VT_UI2
: return sizeof(SHORT
);
802 case VT_UI4
: return sizeof(LONG
);
804 case VT_UI8
: return sizeof(LONGLONG
);
805 case VT_R4
: return sizeof(float);
806 case VT_R8
: return sizeof(double);
807 case VT_DATE
: return sizeof(DATE
);
808 case VT_BOOL
: return sizeof(VARIANT_BOOL
);
811 case VT_BSTR
: return sizeof(void*);
812 case VT_CY
: return sizeof(CY
);
813 case VT_ERROR
: return sizeof(SCODE
);
815 TRACE("Shouldn't be called for variant %s!\n", debugstr_variant(pv
));
819 /******************************************************************************
820 * VariantCopyInd [OLEAUT32.11]
822 * Copy a variant, dereferencing it if it is by-reference.
825 * pvargDest [O] Destination for copy
826 * pvargSrc [I] Source variant to copy
829 * Success: S_OK. pvargDest contains a copy of pvargSrc.
830 * Failure: An HRESULT error code indicating the error.
833 * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type.
834 * E_INVALIDARG, if pvargSrc is an invalid by-reference type.
835 * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an
836 * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(),
837 * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc.
840 * - If pvargSrc is by-value, this function behaves exactly as VariantCopy().
841 * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to
843 * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise,
844 * pvargDest is always cleared using VariantClear() before pvargSrc is copied
845 * to it. If clearing pvargDest fails, so does this function.
847 HRESULT WINAPI
VariantCopyInd(VARIANT
* pvargDest
, VARIANTARG
* pvargSrc
)
849 VARIANTARG vTmp
, *pSrc
= pvargSrc
;
853 TRACE("(%s,%s)\n", debugstr_variant(pvargDest
), debugstr_variant(pvargSrc
));
855 if (!V_ISBYREF(pvargSrc
))
856 return VariantCopy(pvargDest
, pvargSrc
);
858 /* Argument checking is more lax than VariantCopy()... */
859 vt
= V_TYPE(pvargSrc
);
860 if (V_ISARRAY(pvargSrc
) || (V_VT(pvargSrc
) == (VT_RECORD
|VT_BYREF
)) ||
861 (vt
> VT_NULL
&& vt
!= (VARTYPE
)15 && vt
< VT_VOID
&&
862 !(V_VT(pvargSrc
) & (VT_VECTOR
|VT_RESERVED
))))
867 return E_INVALIDARG
; /* ...And the return value for invalid types differs too */
869 if (pvargSrc
== pvargDest
)
871 /* In place copy. Use a shallow copy of pvargSrc & init pvargDest.
872 * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy().
876 V_VT(pvargDest
) = VT_EMPTY
;
880 /* Copy into another variant. Free the variant in pvargDest */
881 if (FAILED(hres
= VariantClear(pvargDest
)))
883 TRACE("VariantClear() of destination failed\n");
890 /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */
891 hres
= SafeArrayCopy(*V_ARRAYREF(pSrc
), &V_ARRAY(pvargDest
));
893 else if (V_VT(pSrc
) == (VT_BSTR
|VT_BYREF
))
895 /* Native doesn't check that *V_BSTRREF(pSrc) is valid */
896 V_BSTR(pvargDest
) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc
), SysStringByteLen(*V_BSTRREF(pSrc
)));
898 else if (V_VT(pSrc
) == (VT_RECORD
|VT_BYREF
))
900 hres
= VARIANT_CopyIRecordInfo(pvargDest
, pvargSrc
);
902 else if (V_VT(pSrc
) == (VT_DISPATCH
|VT_BYREF
) ||
903 V_VT(pSrc
) == (VT_UNKNOWN
|VT_BYREF
))
905 /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */
906 V_UNKNOWN(pvargDest
) = *V_UNKNOWNREF(pSrc
);
907 if (*V_UNKNOWNREF(pSrc
))
908 IUnknown_AddRef(*V_UNKNOWNREF(pSrc
));
910 else if (V_VT(pSrc
) == (VT_VARIANT
|VT_BYREF
))
912 /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */
913 if (V_VT(V_VARIANTREF(pSrc
)) == (VT_VARIANT
|VT_BYREF
))
914 hres
= E_INVALIDARG
; /* Don't dereference more than one level */
916 hres
= VariantCopyInd(pvargDest
, V_VARIANTREF(pSrc
));
918 /* Use the dereferenced variants type value, not VT_VARIANT */
919 goto VariantCopyInd_Return
;
921 else if (V_VT(pSrc
) == (VT_DECIMAL
|VT_BYREF
))
923 memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest
)), &DEC_SCALE(V_DECIMALREF(pSrc
)),
924 sizeof(DECIMAL
) - sizeof(USHORT
));
928 /* Copy the pointed to data into this variant */
929 memcpy(&V_BYREF(pvargDest
), V_BYREF(pSrc
), VARIANT_DataSize(pSrc
));
932 V_VT(pvargDest
) = V_VT(pSrc
) & ~VT_BYREF
;
934 VariantCopyInd_Return
:
936 if (pSrc
!= pvargSrc
)
939 TRACE("returning 0x%08x, %s\n", hres
, debugstr_variant(pvargDest
));
943 /******************************************************************************
944 * VariantChangeType [OLEAUT32.12]
946 * Change the type of a variant.
949 * pvargDest [O] Destination for the converted variant
950 * pvargSrc [O] Source variant to change the type of
951 * wFlags [I] VARIANT_ flags from "oleauto.h"
952 * vt [I] Variant type to change pvargSrc into
955 * Success: S_OK. pvargDest contains the converted value.
956 * Failure: An HRESULT error code describing the failure.
959 * The LCID used for the conversion is LOCALE_USER_DEFAULT.
960 * See VariantChangeTypeEx.
962 HRESULT WINAPI DECLSPEC_HOTPATCH
VariantChangeType(VARIANTARG
* pvargDest
, VARIANTARG
* pvargSrc
,
963 USHORT wFlags
, VARTYPE vt
)
965 return VariantChangeTypeEx( pvargDest
, pvargSrc
, LOCALE_USER_DEFAULT
, wFlags
, vt
);
968 /******************************************************************************
969 * VariantChangeTypeEx [OLEAUT32.147]
971 * Change the type of a variant.
974 * pvargDest [O] Destination for the converted variant
975 * pvargSrc [O] Source variant to change the type of
976 * lcid [I] LCID for the conversion
977 * wFlags [I] VARIANT_ flags from "oleauto.h"
978 * vt [I] Variant type to change pvargSrc into
981 * Success: S_OK. pvargDest contains the converted value.
982 * Failure: An HRESULT error code describing the failure.
985 * pvargDest and pvargSrc can point to the same variant to perform an in-place
986 * conversion. If the conversion is successful, pvargSrc will be freed.
988 HRESULT WINAPI
VariantChangeTypeEx(VARIANTARG
* pvargDest
, VARIANTARG
* pvargSrc
,
989 LCID lcid
, USHORT wFlags
, VARTYPE vt
)
993 TRACE("(%s,%s,0x%08x,0x%04x,%s)\n", debugstr_variant(pvargDest
),
994 debugstr_variant(pvargSrc
), lcid
, wFlags
, debugstr_vt(vt
));
997 res
= DISP_E_BADVARTYPE
;
1000 res
= VARIANT_ValidateType(V_VT(pvargSrc
));
1004 res
= VARIANT_ValidateType(vt
);
1008 VARIANTARG vTmp
, vSrcDeref
;
1010 if(V_ISBYREF(pvargSrc
) && !V_BYREF(pvargSrc
))
1011 res
= DISP_E_TYPEMISMATCH
;
1014 V_VT(&vTmp
) = VT_EMPTY
;
1015 V_VT(&vSrcDeref
) = VT_EMPTY
;
1016 VariantClear(&vTmp
);
1017 VariantClear(&vSrcDeref
);
1022 res
= VariantCopyInd(&vSrcDeref
, pvargSrc
);
1025 if (V_ISARRAY(&vSrcDeref
) || (vt
& VT_ARRAY
))
1026 res
= VARIANT_CoerceArray(&vTmp
, &vSrcDeref
, vt
);
1028 res
= VARIANT_Coerce(&vTmp
, lcid
, wFlags
, &vSrcDeref
, vt
);
1030 if (SUCCEEDED(res
)) {
1032 res
= VariantCopy(pvargDest
, &vTmp
);
1034 VariantClear(&vTmp
);
1035 VariantClear(&vSrcDeref
);
1042 TRACE("returning 0x%08x, %s\n", res
, debugstr_variant(pvargDest
));
1046 /* Date Conversions */
1048 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
1050 /* Convert a VT_DATE value to a Julian Date */
1051 static inline int VARIANT_JulianFromDate(int dateIn
)
1053 int julianDays
= dateIn
;
1055 julianDays
-= DATE_MIN
; /* Convert to + days from 1 Jan 100 AD */
1056 julianDays
+= 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */
1060 /* Convert a Julian Date to a VT_DATE value */
1061 static inline int VARIANT_DateFromJulian(int dateIn
)
1063 int julianDays
= dateIn
;
1065 julianDays
-= 1757585; /* Convert to + days from 1 Jan 100 AD */
1066 julianDays
+= DATE_MIN
; /* Convert to +/- days from 1 Jan 1899 AD */
1070 /* Convert a Julian date to Day/Month/Year - from PostgreSQL */
1071 static inline void VARIANT_DMYFromJulian(int jd
, USHORT
*year
, USHORT
*month
, USHORT
*day
)
1077 l
-= (n
* 146097 + 3) / 4;
1078 i
= (4000 * (l
+ 1)) / 1461001;
1079 l
+= 31 - (i
* 1461) / 4;
1080 j
= (l
* 80) / 2447;
1081 *day
= l
- (j
* 2447) / 80;
1083 *month
= (j
+ 2) - (12 * l
);
1084 *year
= 100 * (n
- 49) + i
+ l
;
1087 /* Convert Day/Month/Year to a Julian date - from PostgreSQL */
1088 static inline double VARIANT_JulianFromDMY(USHORT year
, USHORT month
, USHORT day
)
1090 int m12
= (month
- 14) / 12;
1092 return ((1461 * (year
+ 4800 + m12
)) / 4 + (367 * (month
- 2 - 12 * m12
)) / 12 -
1093 (3 * ((year
+ 4900 + m12
) / 100)) / 4 + day
- 32075);
1096 /* Macros for accessing DOS format date/time fields */
1097 #define DOS_YEAR(x) (1980 + (x >> 9))
1098 #define DOS_MONTH(x) ((x >> 5) & 0xf)
1099 #define DOS_DAY(x) (x & 0x1f)
1100 #define DOS_HOUR(x) (x >> 11)
1101 #define DOS_MINUTE(x) ((x >> 5) & 0x3f)
1102 #define DOS_SECOND(x) ((x & 0x1f) << 1)
1103 /* Create a DOS format date/time */
1104 #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9))
1105 #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11))
1107 /* Roll a date forwards or backwards to correct it */
1108 static HRESULT
VARIANT_RollUdate(UDATE
*lpUd
)
1110 static const BYTE days
[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
1111 short iYear
, iMonth
, iDay
, iHour
, iMinute
, iSecond
;
1113 /* interpret values signed */
1114 iYear
= lpUd
->st
.wYear
;
1115 iMonth
= lpUd
->st
.wMonth
;
1116 iDay
= lpUd
->st
.wDay
;
1117 iHour
= lpUd
->st
.wHour
;
1118 iMinute
= lpUd
->st
.wMinute
;
1119 iSecond
= lpUd
->st
.wSecond
;
1121 TRACE("Raw date: %d/%d/%d %d:%d:%d\n", iDay
, iMonth
,
1122 iYear
, iHour
, iMinute
, iSecond
);
1124 if (iYear
> 9999 || iYear
< -9999)
1125 return E_INVALIDARG
; /* Invalid value */
1126 /* Year 0 to 29 are treated as 2000 + year */
1127 if (iYear
>= 0 && iYear
< 30)
1129 /* Remaining years < 100 are treated as 1900 + year */
1130 else if (iYear
>= 30 && iYear
< 100)
1133 iMinute
+= iSecond
/ 60;
1134 iSecond
= iSecond
% 60;
1135 iHour
+= iMinute
/ 60;
1136 iMinute
= iMinute
% 60;
1139 iYear
+= iMonth
/ 12;
1140 iMonth
= iMonth
% 12;
1141 if (iMonth
<=0) {iMonth
+=12; iYear
--;}
1142 while (iDay
> days
[iMonth
])
1144 if (iMonth
== 2 && IsLeapYear(iYear
))
1147 iDay
-= days
[iMonth
];
1149 iYear
+= iMonth
/ 12;
1150 iMonth
= iMonth
% 12;
1155 if (iMonth
<=0) {iMonth
+=12; iYear
--;}
1156 if (iMonth
== 2 && IsLeapYear(iYear
))
1159 iDay
+= days
[iMonth
];
1162 if (iSecond
<0){iSecond
+=60; iMinute
--;}
1163 if (iMinute
<0){iMinute
+=60; iHour
--;}
1164 if (iHour
<0) {iHour
+=24; iDay
--;}
1165 if (iYear
<=0) iYear
+=2000;
1167 lpUd
->st
.wYear
= iYear
;
1168 lpUd
->st
.wMonth
= iMonth
;
1169 lpUd
->st
.wDay
= iDay
;
1170 lpUd
->st
.wHour
= iHour
;
1171 lpUd
->st
.wMinute
= iMinute
;
1172 lpUd
->st
.wSecond
= iSecond
;
1174 TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd
->st
.wDay
, lpUd
->st
.wMonth
,
1175 lpUd
->st
.wYear
, lpUd
->st
.wHour
, lpUd
->st
.wMinute
, lpUd
->st
.wSecond
);
1179 /**********************************************************************
1180 * DosDateTimeToVariantTime [OLEAUT32.14]
1182 * Convert a Dos format date and time into variant VT_DATE format.
1185 * wDosDate [I] Dos format date
1186 * wDosTime [I] Dos format time
1187 * pDateOut [O] Destination for VT_DATE format
1190 * Success: TRUE. pDateOut contains the converted time.
1191 * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes).
1194 * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099.
1195 * - Dos format times are accurate to only 2 second precision.
1196 * - The format of a Dos Date is:
1197 *| Bits Values Meaning
1198 *| ---- ------ -------
1199 *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than
1200 *| the days in the month rolls forward the extra days.
1201 *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous
1202 *| year. 13-15 are invalid.
1203 *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid.
1204 * - The format of a Dos Time is:
1205 *| Bits Values Meaning
1206 *| ---- ------ -------
1207 *| 0-4 0-29 Seconds/2. 30 and 31 are invalid.
1208 *| 5-10 0-59 Minutes. 60-63 are invalid.
1209 *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid.
1211 INT WINAPI
DosDateTimeToVariantTime(USHORT wDosDate
, USHORT wDosTime
,
1216 TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n",
1217 wDosDate
, DOS_YEAR(wDosDate
), DOS_MONTH(wDosDate
), DOS_DAY(wDosDate
),
1218 wDosTime
, DOS_HOUR(wDosTime
), DOS_MINUTE(wDosTime
), DOS_SECOND(wDosTime
),
1221 ud
.st
.wYear
= DOS_YEAR(wDosDate
);
1222 ud
.st
.wMonth
= DOS_MONTH(wDosDate
);
1223 if (ud
.st
.wYear
> 2099 || ud
.st
.wMonth
> 12)
1225 ud
.st
.wDay
= DOS_DAY(wDosDate
);
1226 ud
.st
.wHour
= DOS_HOUR(wDosTime
);
1227 ud
.st
.wMinute
= DOS_MINUTE(wDosTime
);
1228 ud
.st
.wSecond
= DOS_SECOND(wDosTime
);
1229 ud
.st
.wDayOfWeek
= ud
.st
.wMilliseconds
= 0;
1230 if (ud
.st
.wHour
> 23 || ud
.st
.wMinute
> 59 || ud
.st
.wSecond
> 59)
1231 return FALSE
; /* Invalid values in Dos*/
1233 return VarDateFromUdate(&ud
, 0, pDateOut
) == S_OK
;
1236 /**********************************************************************
1237 * VariantTimeToDosDateTime [OLEAUT32.13]
1239 * Convert a variant format date into a Dos format date and time.
1241 * dateIn [I] VT_DATE time format
1242 * pwDosDate [O] Destination for Dos format date
1243 * pwDosTime [O] Destination for Dos format time
1246 * Success: TRUE. pwDosDate and pwDosTime contains the converted values.
1247 * Failure: FALSE, if dateIn cannot be represented in Dos format.
1250 * See DosDateTimeToVariantTime() for Dos format details and bugs.
1252 INT WINAPI
VariantTimeToDosDateTime(double dateIn
, USHORT
*pwDosDate
, USHORT
*pwDosTime
)
1256 TRACE("(%g,%p,%p)\n", dateIn
, pwDosDate
, pwDosTime
);
1258 if (FAILED(VarUdateFromDate(dateIn
, 0, &ud
)))
1261 if (ud
.st
.wYear
< 1980 || ud
.st
.wYear
> 2099)
1264 *pwDosDate
= DOS_DATE(ud
.st
.wDay
, ud
.st
.wMonth
, ud
.st
.wYear
);
1265 *pwDosTime
= DOS_TIME(ud
.st
.wHour
, ud
.st
.wMinute
, ud
.st
.wSecond
);
1267 TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n",
1268 *pwDosDate
, DOS_YEAR(*pwDosDate
), DOS_MONTH(*pwDosDate
), DOS_DAY(*pwDosDate
),
1269 *pwDosTime
, DOS_HOUR(*pwDosTime
), DOS_MINUTE(*pwDosTime
), DOS_SECOND(*pwDosTime
));
1273 /***********************************************************************
1274 * SystemTimeToVariantTime [OLEAUT32.184]
1276 * Convert a System format date and time into variant VT_DATE format.
1279 * lpSt [I] System format date and time
1280 * pDateOut [O] Destination for VT_DATE format date
1283 * Success: TRUE. *pDateOut contains the converted value.
1284 * Failure: FALSE, if lpSt cannot be represented in VT_DATE format.
1286 INT WINAPI
SystemTimeToVariantTime(LPSYSTEMTIME lpSt
, double *pDateOut
)
1290 TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt
, lpSt
->wDay
, lpSt
->wMonth
,
1291 lpSt
->wYear
, lpSt
->wHour
, lpSt
->wMinute
, lpSt
->wSecond
, pDateOut
);
1293 if (lpSt
->wMonth
> 12)
1295 if (lpSt
->wDay
> 31)
1297 if ((short)lpSt
->wYear
< 0)
1301 return VarDateFromUdate(&ud
, 0, pDateOut
) == S_OK
;
1304 /***********************************************************************
1305 * VariantTimeToSystemTime [OLEAUT32.185]
1307 * Convert a variant VT_DATE into a System format date and time.
1310 * datein [I] Variant VT_DATE format date
1311 * lpSt [O] Destination for System format date and time
1314 * Success: TRUE. *lpSt contains the converted value.
1315 * Failure: FALSE, if dateIn is too large or small.
1317 INT WINAPI
VariantTimeToSystemTime(double dateIn
, LPSYSTEMTIME lpSt
)
1321 TRACE("(%g,%p)\n", dateIn
, lpSt
);
1323 if (FAILED(VarUdateFromDate(dateIn
, 0, &ud
)))
1330 /***********************************************************************
1331 * VarDateFromUdateEx [OLEAUT32.319]
1333 * Convert an unpacked format date and time to a variant VT_DATE.
1336 * pUdateIn [I] Unpacked format date and time to convert
1337 * lcid [I] Locale identifier for the conversion
1338 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1339 * pDateOut [O] Destination for variant VT_DATE.
1342 * Success: S_OK. *pDateOut contains the converted value.
1343 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1345 HRESULT WINAPI
VarDateFromUdateEx(UDATE
*pUdateIn
, LCID lcid
, ULONG dwFlags
, DATE
*pDateOut
)
1350 TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08x,0x%08x,%p)\n", pUdateIn
,
1351 pUdateIn
->st
.wMonth
, pUdateIn
->st
.wDay
, pUdateIn
->st
.wYear
,
1352 pUdateIn
->st
.wHour
, pUdateIn
->st
.wMinute
, pUdateIn
->st
.wSecond
,
1353 pUdateIn
->st
.wMilliseconds
, pUdateIn
->st
.wDayOfWeek
,
1354 pUdateIn
->wDayOfYear
, lcid
, dwFlags
, pDateOut
);
1356 if (lcid
!= MAKELCID(MAKELANGID(LANG_ENGLISH
, SUBLANG_ENGLISH_US
), SORT_DEFAULT
))
1357 FIXME("lcid possibly not handled, treating as en-us\n");
1358 if (dwFlags
& ~(VAR_TIMEVALUEONLY
|VAR_DATEVALUEONLY
))
1359 FIXME("unsupported flags: %x\n", dwFlags
);
1363 if (dwFlags
& VAR_VALIDDATE
)
1364 WARN("Ignoring VAR_VALIDDATE\n");
1366 if (FAILED(VARIANT_RollUdate(&ud
)))
1367 return E_INVALIDARG
;
1370 if (!(dwFlags
& VAR_TIMEVALUEONLY
))
1371 dateVal
= VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud
.st
.wYear
, ud
.st
.wMonth
, ud
.st
.wDay
));
1373 if ((dwFlags
& VAR_TIMEVALUEONLY
) || !(dwFlags
& VAR_DATEVALUEONLY
))
1375 double dateSign
= (dateVal
< 0.0) ? -1.0 : 1.0;
1378 dateVal
+= ud
.st
.wHour
/ 24.0 * dateSign
;
1379 dateVal
+= ud
.st
.wMinute
/ 1440.0 * dateSign
;
1380 dateVal
+= ud
.st
.wSecond
/ 86400.0 * dateSign
;
1383 TRACE("Returning %g\n", dateVal
);
1384 *pDateOut
= dateVal
;
1388 /***********************************************************************
1389 * VarDateFromUdate [OLEAUT32.330]
1391 * Convert an unpacked format date and time to a variant VT_DATE.
1394 * pUdateIn [I] Unpacked format date and time to convert
1395 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1396 * pDateOut [O] Destination for variant VT_DATE.
1399 * Success: S_OK. *pDateOut contains the converted value.
1400 * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format.
1403 * This function uses the United States English locale for the conversion. Use
1404 * VarDateFromUdateEx() for alternate locales.
1406 HRESULT WINAPI
VarDateFromUdate(UDATE
*pUdateIn
, ULONG dwFlags
, DATE
*pDateOut
)
1408 LCID lcid
= MAKELCID(MAKELANGID(LANG_ENGLISH
, SUBLANG_ENGLISH_US
), SORT_DEFAULT
);
1410 return VarDateFromUdateEx(pUdateIn
, lcid
, dwFlags
, pDateOut
);
1413 /***********************************************************************
1414 * VarUdateFromDate [OLEAUT32.331]
1416 * Convert a variant VT_DATE into an unpacked format date and time.
1419 * datein [I] Variant VT_DATE format date
1420 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1421 * lpUdate [O] Destination for unpacked format date and time
1424 * Success: S_OK. *lpUdate contains the converted value.
1425 * Failure: E_INVALIDARG, if dateIn is too large or small.
1427 HRESULT WINAPI
VarUdateFromDate(DATE dateIn
, ULONG dwFlags
, UDATE
*lpUdate
)
1429 /* Cumulative totals of days per month */
1430 static const USHORT cumulativeDays
[] =
1432 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
1434 double datePart
, timePart
;
1437 TRACE("(%g,0x%08x,%p)\n", dateIn
, dwFlags
, lpUdate
);
1439 if (dateIn
<= (DATE_MIN
- 1.0) || dateIn
>= (DATE_MAX
+ 1.0))
1440 return E_INVALIDARG
;
1442 datePart
= dateIn
< 0.0 ? ceil(dateIn
) : floor(dateIn
);
1443 /* Compensate for int truncation (always downwards) */
1444 timePart
= fabs(dateIn
- datePart
) + 0.00000000001;
1445 if (timePart
>= 1.0)
1446 timePart
-= 0.00000000001;
1449 julianDays
= VARIANT_JulianFromDate(dateIn
);
1450 VARIANT_DMYFromJulian(julianDays
, &lpUdate
->st
.wYear
, &lpUdate
->st
.wMonth
,
1453 datePart
= (datePart
+ 1.5) / 7.0;
1454 lpUdate
->st
.wDayOfWeek
= (datePart
- floor(datePart
)) * 7;
1455 if (lpUdate
->st
.wDayOfWeek
== 0)
1456 lpUdate
->st
.wDayOfWeek
= 5;
1457 else if (lpUdate
->st
.wDayOfWeek
== 1)
1458 lpUdate
->st
.wDayOfWeek
= 6;
1460 lpUdate
->st
.wDayOfWeek
-= 2;
1462 if (lpUdate
->st
.wMonth
> 2 && IsLeapYear(lpUdate
->st
.wYear
))
1463 lpUdate
->wDayOfYear
= 1; /* After February, in a leap year */
1465 lpUdate
->wDayOfYear
= 0;
1467 lpUdate
->wDayOfYear
+= cumulativeDays
[lpUdate
->st
.wMonth
];
1468 lpUdate
->wDayOfYear
+= lpUdate
->st
.wDay
;
1472 lpUdate
->st
.wHour
= timePart
;
1473 timePart
-= lpUdate
->st
.wHour
;
1475 lpUdate
->st
.wMinute
= timePart
;
1476 timePart
-= lpUdate
->st
.wMinute
;
1478 lpUdate
->st
.wSecond
= timePart
;
1479 timePart
-= lpUdate
->st
.wSecond
;
1480 lpUdate
->st
.wMilliseconds
= 0;
1483 /* Round the milliseconds, adjusting the time/date forward if needed */
1484 if (lpUdate
->st
.wSecond
< 59)
1485 lpUdate
->st
.wSecond
++;
1488 lpUdate
->st
.wSecond
= 0;
1489 if (lpUdate
->st
.wMinute
< 59)
1490 lpUdate
->st
.wMinute
++;
1493 lpUdate
->st
.wMinute
= 0;
1494 if (lpUdate
->st
.wHour
< 23)
1495 lpUdate
->st
.wHour
++;
1498 lpUdate
->st
.wHour
= 0;
1499 /* Roll over a whole day */
1500 if (++lpUdate
->st
.wDay
> 28)
1501 VARIANT_RollUdate(lpUdate
);
1509 #define GET_NUMBER_TEXT(fld,name) \
1511 if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \
1512 WARN("buffer too small for " #fld "\n"); \
1514 if (buff[0]) lpChars->name = buff[0]; \
1515 TRACE("lcid 0x%x, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name)
1517 /* Get the valid number characters for an lcid */
1518 static void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS
*lpChars
, LCID lcid
, DWORD dwFlags
)
1520 static const VARIANT_NUMBER_CHARS defaultChars
= { '-','+','.',',','$',0,'.',',' };
1521 static VARIANT_NUMBER_CHARS lastChars
;
1522 static LCID lastLcid
= -1;
1523 static DWORD lastFlags
= 0;
1524 LCTYPE lctype
= dwFlags
& LOCALE_NOUSEROVERRIDE
;
1527 /* To make caching thread-safe, a critical section is needed */
1528 EnterCriticalSection(&cache_cs
);
1530 /* Asking for default locale entries is very expensive: It is a registry
1531 server call. So cache one locally, as Microsoft does it too */
1532 if(lcid
== lastLcid
&& dwFlags
== lastFlags
)
1534 memcpy(lpChars
, &lastChars
, sizeof(defaultChars
));
1535 LeaveCriticalSection(&cache_cs
);
1539 memcpy(lpChars
, &defaultChars
, sizeof(defaultChars
));
1540 GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN
, cNegativeSymbol
);
1541 GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN
, cPositiveSymbol
);
1542 GET_NUMBER_TEXT(LOCALE_SDECIMAL
, cDecimalPoint
);
1543 GET_NUMBER_TEXT(LOCALE_STHOUSAND
, cDigitSeparator
);
1544 GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP
, cCurrencyDecimalPoint
);
1545 GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP
, cCurrencyDigitSeparator
);
1547 /* Local currency symbols are often 2 characters */
1548 lpChars
->cCurrencyLocal2
= '\0';
1549 switch(GetLocaleInfoW(lcid
, lctype
|LOCALE_SCURRENCY
, buff
, ARRAY_SIZE(buff
)))
1551 case 3: lpChars
->cCurrencyLocal2
= buff
[1]; /* Fall through */
1552 case 2: lpChars
->cCurrencyLocal
= buff
[0];
1554 default: WARN("buffer too small for LOCALE_SCURRENCY\n");
1556 TRACE("lcid 0x%x, cCurrencyLocal =%d,%d '%c','%c'\n", lcid
, lpChars
->cCurrencyLocal
,
1557 lpChars
->cCurrencyLocal2
, lpChars
->cCurrencyLocal
, lpChars
->cCurrencyLocal2
);
1559 memcpy(&lastChars
, lpChars
, sizeof(defaultChars
));
1561 lastFlags
= dwFlags
;
1562 LeaveCriticalSection(&cache_cs
);
1565 /* Number Parsing States */
1566 #define B_PROCESSING_EXPONENT 0x1
1567 #define B_NEGATIVE_EXPONENT 0x2
1568 #define B_EXPONENT_START 0x4
1569 #define B_INEXACT_ZEROS 0x8
1570 #define B_LEADING_ZERO 0x10
1571 #define B_PROCESSING_HEX 0x20
1572 #define B_PROCESSING_OCT 0x40
1574 static inline BOOL
is_digit(WCHAR c
)
1576 return '0' <= c
&& c
<= '9';
1579 /**********************************************************************
1580 * VarParseNumFromStr [OLEAUT32.46]
1582 * Parse a string containing a number into a NUMPARSE structure.
1585 * lpszStr [I] String to parse number from
1586 * lcid [I] Locale Id for the conversion
1587 * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars
1588 * pNumprs [I/O] Destination for parsed number
1589 * rgbDig [O] Destination for digits read in
1592 * Success: S_OK. pNumprs and rgbDig contain the parsed representation of
1594 * Failure: E_INVALIDARG, if any parameter is invalid.
1595 * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted
1597 * DISP_E_OVERFLOW, if rgbDig is too small to hold the number.
1600 * pNumprs must have the following fields set:
1601 * cDig: Set to the size of rgbDig.
1602 * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags
1606 * - I am unsure if this function should parse non-Arabic (e.g. Thai)
1607 * numerals, so this has not been implemented.
1609 HRESULT WINAPI
VarParseNumFromStr(OLECHAR
*lpszStr
, LCID lcid
, ULONG dwFlags
,
1610 NUMPARSE
*pNumprs
, BYTE
*rgbDig
)
1612 VARIANT_NUMBER_CHARS chars
;
1614 DWORD dwState
= B_EXPONENT_START
|B_INEXACT_ZEROS
;
1615 int iMaxDigits
= ARRAY_SIZE(rgbTmp
);
1618 TRACE("(%s,%d,0x%08x,%p,%p)\n", debugstr_w(lpszStr
), lcid
, dwFlags
, pNumprs
, rgbDig
);
1620 if (!pNumprs
|| !rgbDig
)
1621 return E_INVALIDARG
;
1623 if (pNumprs
->cDig
< iMaxDigits
)
1624 iMaxDigits
= pNumprs
->cDig
;
1627 pNumprs
->dwOutFlags
= 0;
1628 pNumprs
->cchUsed
= 0;
1629 pNumprs
->nBaseShift
= 0;
1630 pNumprs
->nPwr10
= 0;
1633 return DISP_E_TYPEMISMATCH
;
1635 VARIANT_GetLocalisedNumberChars(&chars
, lcid
, dwFlags
);
1637 /* First consume all the leading symbols and space from the string */
1640 if (pNumprs
->dwInFlags
& NUMPRS_LEADING_WHITE
&& iswspace(*lpszStr
))
1642 pNumprs
->dwOutFlags
|= NUMPRS_LEADING_WHITE
;
1647 } while (iswspace(*lpszStr
));
1649 else if (pNumprs
->dwInFlags
& NUMPRS_LEADING_PLUS
&&
1650 *lpszStr
== chars
.cPositiveSymbol
&&
1651 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_PLUS
))
1653 pNumprs
->dwOutFlags
|= NUMPRS_LEADING_PLUS
;
1657 else if (pNumprs
->dwInFlags
& NUMPRS_LEADING_MINUS
&&
1658 *lpszStr
== chars
.cNegativeSymbol
&&
1659 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_MINUS
))
1661 pNumprs
->dwOutFlags
|= (NUMPRS_LEADING_MINUS
|NUMPRS_NEG
);
1665 else if (pNumprs
->dwInFlags
& NUMPRS_CURRENCY
&&
1666 !(pNumprs
->dwOutFlags
& NUMPRS_CURRENCY
) &&
1667 *lpszStr
== chars
.cCurrencyLocal
&&
1668 (!chars
.cCurrencyLocal2
|| lpszStr
[1] == chars
.cCurrencyLocal2
))
1670 pNumprs
->dwOutFlags
|= NUMPRS_CURRENCY
;
1673 /* Only accept currency characters */
1674 chars
.cDecimalPoint
= chars
.cCurrencyDecimalPoint
;
1675 chars
.cDigitSeparator
= chars
.cCurrencyDigitSeparator
;
1677 else if (pNumprs
->dwInFlags
& NUMPRS_PARENS
&& *lpszStr
== '(' &&
1678 !(pNumprs
->dwOutFlags
& NUMPRS_PARENS
))
1680 pNumprs
->dwOutFlags
|= NUMPRS_PARENS
;
1688 if (!(pNumprs
->dwOutFlags
& NUMPRS_CURRENCY
))
1690 /* Only accept non-currency characters */
1691 chars
.cCurrencyDecimalPoint
= chars
.cDecimalPoint
;
1692 chars
.cCurrencyDigitSeparator
= chars
.cDigitSeparator
;
1695 if ((*lpszStr
== '&' && (*(lpszStr
+1) == 'H' || *(lpszStr
+1) == 'h')) &&
1696 pNumprs
->dwInFlags
& NUMPRS_HEX_OCT
)
1698 dwState
|= B_PROCESSING_HEX
;
1699 pNumprs
->dwOutFlags
|= NUMPRS_HEX_OCT
;
1703 else if ((*lpszStr
== '&' && (*(lpszStr
+1) == 'O' || *(lpszStr
+1) == 'o')) &&
1704 pNumprs
->dwInFlags
& NUMPRS_HEX_OCT
)
1706 dwState
|= B_PROCESSING_OCT
;
1707 pNumprs
->dwOutFlags
|= NUMPRS_HEX_OCT
;
1712 /* Strip Leading zeros */
1713 while (*lpszStr
== '0')
1715 dwState
|= B_LEADING_ZERO
;
1722 if (is_digit(*lpszStr
))
1724 if (dwState
& B_PROCESSING_EXPONENT
)
1726 int exponentSize
= 0;
1727 if (dwState
& B_EXPONENT_START
)
1729 if (!is_digit(*lpszStr
))
1730 break; /* No exponent digits - invalid */
1731 while (*lpszStr
== '0')
1733 /* Skip leading zero's in the exponent */
1739 while (is_digit(*lpszStr
))
1742 exponentSize
+= *lpszStr
- '0';
1746 if (dwState
& B_NEGATIVE_EXPONENT
)
1747 exponentSize
= -exponentSize
;
1748 /* Add the exponent into the powers of 10 */
1749 pNumprs
->nPwr10
+= exponentSize
;
1750 dwState
&= ~(B_PROCESSING_EXPONENT
|B_EXPONENT_START
);
1751 lpszStr
--; /* back up to allow processing of next char */
1755 if ((pNumprs
->cDig
>= iMaxDigits
) && !(dwState
& B_PROCESSING_HEX
)
1756 && !(dwState
& B_PROCESSING_OCT
))
1758 pNumprs
->dwOutFlags
|= NUMPRS_INEXACT
;
1760 if (*lpszStr
!= '0')
1761 dwState
&= ~B_INEXACT_ZEROS
; /* Inexact number with non-trailing zeros */
1763 /* This digit can't be represented, but count it in nPwr10 */
1764 if (pNumprs
->dwOutFlags
& NUMPRS_DECIMAL
)
1771 if ((dwState
& B_PROCESSING_OCT
) && ((*lpszStr
== '8') || (*lpszStr
== '9')))
1774 if (pNumprs
->dwOutFlags
& NUMPRS_DECIMAL
)
1775 pNumprs
->nPwr10
--; /* Count decimal points in nPwr10 */
1777 rgbTmp
[pNumprs
->cDig
] = *lpszStr
- '0';
1783 else if (*lpszStr
== chars
.cDigitSeparator
&& pNumprs
->dwInFlags
& NUMPRS_THOUSANDS
)
1785 pNumprs
->dwOutFlags
|= NUMPRS_THOUSANDS
;
1788 else if (*lpszStr
== chars
.cDecimalPoint
&&
1789 pNumprs
->dwInFlags
& NUMPRS_DECIMAL
&&
1790 !(pNumprs
->dwOutFlags
& (NUMPRS_DECIMAL
|NUMPRS_EXPONENT
)))
1792 pNumprs
->dwOutFlags
|= NUMPRS_DECIMAL
;
1795 /* If we have no digits so far, skip leading zeros */
1798 while (lpszStr
[1] == '0')
1800 dwState
|= B_LEADING_ZERO
;
1807 else if (((*lpszStr
>= 'a' && *lpszStr
<= 'f') ||
1808 (*lpszStr
>= 'A' && *lpszStr
<= 'F')) &&
1809 dwState
& B_PROCESSING_HEX
)
1811 if (pNumprs
->cDig
>= iMaxDigits
)
1813 return DISP_E_OVERFLOW
;
1817 if (*lpszStr
>= 'a')
1818 rgbTmp
[pNumprs
->cDig
] = *lpszStr
- 'a' + 10;
1820 rgbTmp
[pNumprs
->cDig
] = *lpszStr
- 'A' + 10;
1825 else if ((*lpszStr
== 'e' || *lpszStr
== 'E') &&
1826 pNumprs
->dwInFlags
& NUMPRS_EXPONENT
&&
1827 !(pNumprs
->dwOutFlags
& NUMPRS_EXPONENT
))
1829 dwState
|= B_PROCESSING_EXPONENT
;
1830 pNumprs
->dwOutFlags
|= NUMPRS_EXPONENT
;
1833 else if (dwState
& B_PROCESSING_EXPONENT
&& *lpszStr
== chars
.cPositiveSymbol
)
1835 cchUsed
++; /* Ignore positive exponent */
1837 else if (dwState
& B_PROCESSING_EXPONENT
&& *lpszStr
== chars
.cNegativeSymbol
)
1839 dwState
|= B_NEGATIVE_EXPONENT
;
1843 break; /* Stop at an unrecognised character */
1848 if (!pNumprs
->cDig
&& dwState
& B_LEADING_ZERO
)
1850 /* Ensure a 0 on its own gets stored */
1855 if (pNumprs
->dwOutFlags
& NUMPRS_EXPONENT
&& dwState
& B_PROCESSING_EXPONENT
)
1857 pNumprs
->cchUsed
= cchUsed
;
1858 WARN("didn't completely parse exponent\n");
1859 return DISP_E_TYPEMISMATCH
; /* Failed to completely parse the exponent */
1862 if (pNumprs
->dwOutFlags
& NUMPRS_INEXACT
)
1864 if (dwState
& B_INEXACT_ZEROS
)
1865 pNumprs
->dwOutFlags
&= ~NUMPRS_INEXACT
; /* All zeros doesn't set NUMPRS_INEXACT */
1866 } else if(pNumprs
->dwInFlags
& NUMPRS_HEX_OCT
)
1868 /* copy all of the digits into the output digit buffer */
1869 /* this is exactly what windows does although it also returns */
1870 /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */
1871 memcpy(rgbDig
, rgbTmp
, pNumprs
->cDig
* sizeof(BYTE
));
1873 if (dwState
& B_PROCESSING_HEX
) {
1874 /* hex numbers have always the same format */
1876 pNumprs
->nBaseShift
=4;
1878 if (dwState
& B_PROCESSING_OCT
) {
1879 /* oct numbers have always the same format */
1881 pNumprs
->nBaseShift
=3;
1883 while (pNumprs
->cDig
> 1 && !rgbTmp
[pNumprs
->cDig
- 1])
1892 /* Remove trailing zeros from the last (whole number or decimal) part */
1893 while (pNumprs
->cDig
> 1 && !rgbTmp
[pNumprs
->cDig
- 1])
1900 if (pNumprs
->cDig
<= iMaxDigits
)
1901 pNumprs
->dwOutFlags
&= ~NUMPRS_INEXACT
; /* Ignore stripped zeros for NUMPRS_INEXACT */
1903 pNumprs
->cDig
= iMaxDigits
; /* Only return iMaxDigits worth of digits */
1905 /* Copy the digits we processed into rgbDig */
1906 memcpy(rgbDig
, rgbTmp
, pNumprs
->cDig
* sizeof(BYTE
));
1908 /* Consume any trailing symbols and space */
1911 if ((pNumprs
->dwInFlags
& NUMPRS_TRAILING_WHITE
) && iswspace(*lpszStr
))
1913 pNumprs
->dwOutFlags
|= NUMPRS_TRAILING_WHITE
;
1918 } while (iswspace(*lpszStr
));
1920 else if (pNumprs
->dwInFlags
& NUMPRS_TRAILING_PLUS
&&
1921 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_PLUS
) &&
1922 *lpszStr
== chars
.cPositiveSymbol
)
1924 pNumprs
->dwOutFlags
|= NUMPRS_TRAILING_PLUS
;
1928 else if (pNumprs
->dwInFlags
& NUMPRS_TRAILING_MINUS
&&
1929 !(pNumprs
->dwOutFlags
& NUMPRS_LEADING_MINUS
) &&
1930 *lpszStr
== chars
.cNegativeSymbol
)
1932 pNumprs
->dwOutFlags
|= (NUMPRS_TRAILING_MINUS
|NUMPRS_NEG
);
1936 else if (pNumprs
->dwInFlags
& NUMPRS_PARENS
&& *lpszStr
== ')' &&
1937 pNumprs
->dwOutFlags
& NUMPRS_PARENS
)
1941 pNumprs
->dwOutFlags
|= NUMPRS_NEG
;
1947 if (pNumprs
->dwOutFlags
& NUMPRS_PARENS
&& !(pNumprs
->dwOutFlags
& NUMPRS_NEG
))
1949 pNumprs
->cchUsed
= cchUsed
;
1950 return DISP_E_TYPEMISMATCH
; /* Opening parenthesis not matched */
1953 if (pNumprs
->dwInFlags
& NUMPRS_USE_ALL
&& *lpszStr
!= '\0')
1954 return DISP_E_TYPEMISMATCH
; /* Not all chars were consumed */
1957 return DISP_E_TYPEMISMATCH
; /* No Number found */
1959 pNumprs
->cchUsed
= cchUsed
;
1963 /* VTBIT flags indicating an integer value */
1964 #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8)
1965 /* VTBIT flags indicating a real number value */
1966 #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY)
1968 /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */
1969 #define FITS_AS_I1(x) ((x) >> 8 == 0)
1970 #define FITS_AS_I2(x) ((x) >> 16 == 0)
1971 #define FITS_AS_I4(x) ((x) >> 32 == 0)
1973 /**********************************************************************
1974 * VarNumFromParseNum [OLEAUT32.47]
1976 * Convert a NUMPARSE structure into a numeric Variant type.
1979 * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig
1980 * rgbDig [I] Source for the numbers digits
1981 * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types
1982 * pVarDst [O] Destination for the converted Variant value.
1985 * Success: S_OK. pVarDst contains the converted value.
1986 * Failure: E_INVALIDARG, if any parameter is invalid.
1987 * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits.
1990 * - The smallest favoured type present in dwVtBits that can represent the
1991 * number in pNumprs without losing precision is used.
1992 * - Signed types are preferred over unsigned types of the same size.
1993 * - Preferred types in order are: integer, float, double, currency then decimal.
1994 * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8()
1995 * for details of the rounding method.
1996 * - pVarDst is not cleared before the result is stored in it.
1997 * - WinXP and Win2003 support VTBIT_I8, VTBIT_UI8 but that's buggy (by
1998 * design?): If some other VTBIT's for integers are specified together
1999 * with VTBIT_I8 and the number will fit only in a VT_I8 Windows will "cast"
2000 * the number to the smallest requested integer truncating this way the
2001 * number. Wine doesn't implement this "feature" (yet?).
2003 HRESULT WINAPI
VarNumFromParseNum(NUMPARSE
*pNumprs
, BYTE
*rgbDig
,
2004 ULONG dwVtBits
, VARIANT
*pVarDst
)
2006 /* Scale factors and limits for double arithmetic */
2007 static const double dblMultipliers
[11] = {
2008 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0,
2009 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0
2011 static const double dblMinimums
[11] = {
2012 R8_MIN
, R8_MIN
*10.0, R8_MIN
*100.0, R8_MIN
*1000.0, R8_MIN
*10000.0,
2013 R8_MIN
*100000.0, R8_MIN
*1000000.0, R8_MIN
*10000000.0,
2014 R8_MIN
*100000000.0, R8_MIN
*1000000000.0, R8_MIN
*10000000000.0
2016 static const double dblMaximums
[11] = {
2017 R8_MAX
, R8_MAX
/10.0, R8_MAX
/100.0, R8_MAX
/1000.0, R8_MAX
/10000.0,
2018 R8_MAX
/100000.0, R8_MAX
/1000000.0, R8_MAX
/10000000.0,
2019 R8_MAX
/100000000.0, R8_MAX
/1000000000.0, R8_MAX
/10000000000.0
2022 int wholeNumberDigits
, fractionalDigits
, divisor10
= 0, multiplier10
= 0;
2024 TRACE("(%p,%p,0x%x,%p)\n", pNumprs
, rgbDig
, dwVtBits
, pVarDst
);
2026 if (pNumprs
->nBaseShift
)
2028 /* nBaseShift indicates a hex or octal number */
2033 /* Convert the hex or octal number string into a UI64 */
2034 for (i
= 0; i
< pNumprs
->cDig
; i
++)
2036 if (ul64
> ((UI8_MAX
>>pNumprs
->nBaseShift
) - rgbDig
[i
]))
2038 TRACE("Overflow multiplying digits\n");
2039 return DISP_E_OVERFLOW
;
2041 ul64
= (ul64
<<pNumprs
->nBaseShift
) + rgbDig
[i
];
2044 /* also make a negative representation */
2047 /* Try signed and unsigned types in size order */
2048 if (dwVtBits
& VTBIT_I1
&& FITS_AS_I1(ul64
))
2050 V_VT(pVarDst
) = VT_I1
;
2051 V_I1(pVarDst
) = ul64
;
2054 else if (dwVtBits
& VTBIT_UI1
&& FITS_AS_I1(ul64
))
2056 V_VT(pVarDst
) = VT_UI1
;
2057 V_UI1(pVarDst
) = ul64
;
2060 else if (dwVtBits
& VTBIT_I2
&& FITS_AS_I2(ul64
))
2062 V_VT(pVarDst
) = VT_I2
;
2063 V_I2(pVarDst
) = ul64
;
2066 else if (dwVtBits
& VTBIT_UI2
&& FITS_AS_I2(ul64
))
2068 V_VT(pVarDst
) = VT_UI2
;
2069 V_UI2(pVarDst
) = ul64
;
2072 else if (dwVtBits
& VTBIT_I4
&& FITS_AS_I4(ul64
))
2074 V_VT(pVarDst
) = VT_I4
;
2075 V_I4(pVarDst
) = ul64
;
2078 else if (dwVtBits
& VTBIT_UI4
&& FITS_AS_I4(ul64
))
2080 V_VT(pVarDst
) = VT_UI4
;
2081 V_UI4(pVarDst
) = ul64
;
2084 else if (dwVtBits
& VTBIT_I8
&& ((ul64
<= I8_MAX
)||(l64
>=I8_MIN
)))
2086 V_VT(pVarDst
) = VT_I8
;
2087 V_I8(pVarDst
) = ul64
;
2090 else if (dwVtBits
& VTBIT_UI8
)
2092 V_VT(pVarDst
) = VT_UI8
;
2093 V_UI8(pVarDst
) = ul64
;
2096 else if ((dwVtBits
& VTBIT_DECIMAL
) == VTBIT_DECIMAL
)
2098 V_VT(pVarDst
) = VT_DECIMAL
;
2099 DEC_SIGNSCALE(&V_DECIMAL(pVarDst
)) = SIGNSCALE(DECIMAL_POS
,0);
2100 DEC_HI32(&V_DECIMAL(pVarDst
)) = 0;
2101 DEC_LO64(&V_DECIMAL(pVarDst
)) = ul64
;
2104 else if (dwVtBits
& VTBIT_R4
&& ((ul64
<= I4_MAX
)||(l64
>= I4_MIN
)))
2106 V_VT(pVarDst
) = VT_R4
;
2108 V_R4(pVarDst
) = ul64
;
2110 V_R4(pVarDst
) = l64
;
2113 else if (dwVtBits
& VTBIT_R8
&& ((ul64
<= I4_MAX
)||(l64
>= I4_MIN
)))
2115 V_VT(pVarDst
) = VT_R8
;
2117 V_R8(pVarDst
) = ul64
;
2119 V_R8(pVarDst
) = l64
;
2123 TRACE("Overflow: possible return types: 0x%x, value: %s\n", dwVtBits
, wine_dbgstr_longlong(ul64
));
2124 return DISP_E_OVERFLOW
;
2127 /* Count the number of relevant fractional and whole digits stored,
2128 * And compute the divisor/multiplier to scale the number by.
2130 if (pNumprs
->nPwr10
< 0)
2132 if (-pNumprs
->nPwr10
>= pNumprs
->cDig
)
2134 /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */
2135 wholeNumberDigits
= 0;
2136 fractionalDigits
= pNumprs
->cDig
;
2137 divisor10
= -pNumprs
->nPwr10
;
2141 /* An exactly represented real number e.g. 1.024 */
2142 wholeNumberDigits
= pNumprs
->cDig
+ pNumprs
->nPwr10
;
2143 fractionalDigits
= pNumprs
->cDig
- wholeNumberDigits
;
2144 divisor10
= pNumprs
->cDig
- wholeNumberDigits
;
2147 else if (pNumprs
->nPwr10
== 0)
2149 /* An exactly represented whole number e.g. 1024 */
2150 wholeNumberDigits
= pNumprs
->cDig
;
2151 fractionalDigits
= 0;
2153 else /* pNumprs->nPwr10 > 0 */
2155 /* A whole number followed by nPwr10 0's e.g. 102400 */
2156 wholeNumberDigits
= pNumprs
->cDig
;
2157 fractionalDigits
= 0;
2158 multiplier10
= pNumprs
->nPwr10
;
2161 TRACE("cDig %d; nPwr10 %d, whole %d, frac %d mult %d; div %d\n",
2162 pNumprs
->cDig
, pNumprs
->nPwr10
, wholeNumberDigits
, fractionalDigits
,
2163 multiplier10
, divisor10
);
2165 if (dwVtBits
& (INTEGER_VTBITS
|VTBIT_DECIMAL
) &&
2166 (!fractionalDigits
|| !(dwVtBits
& (REAL_VTBITS
|VTBIT_DECIMAL
))))
2168 /* We have one or more integer output choices, and either:
2169 * 1) An integer input value, or
2170 * 2) A real number input value but no floating output choices.
2171 * Alternately, we have a DECIMAL output available and an integer input.
2173 * So, place the integer value into pVarDst, using the smallest type
2174 * possible and preferring signed over unsigned types.
2176 BOOL bOverflow
= FALSE
, bNegative
;
2180 /* Convert the integer part of the number into a UI8 */
2181 for (i
= 0; i
< wholeNumberDigits
; i
++)
2183 if (ul64
> UI8_MAX
/ 10 || (ul64
== UI8_MAX
/ 10 && rgbDig
[i
] > UI8_MAX
% 10))
2185 TRACE("Overflow multiplying digits\n");
2189 ul64
= ul64
* 10 + rgbDig
[i
];
2192 /* Account for the scale of the number */
2193 if (!bOverflow
&& multiplier10
)
2195 for (i
= 0; i
< multiplier10
; i
++)
2197 if (ul64
> (UI8_MAX
/ 10))
2199 TRACE("Overflow scaling number\n");
2207 /* If we have any fractional digits, round the value.
2208 * Note we don't have to do this if divisor10 is < 1,
2209 * because this means the fractional part must be < 0.5
2211 if (!bOverflow
&& fractionalDigits
&& divisor10
> 0)
2213 const BYTE
* fracDig
= rgbDig
+ wholeNumberDigits
;
2214 BOOL bAdjust
= FALSE
;
2216 TRACE("first decimal value is %d\n", *fracDig
);
2219 bAdjust
= TRUE
; /* > 0.5 */
2220 else if (*fracDig
== 5)
2222 for (i
= 1; i
< fractionalDigits
; i
++)
2226 bAdjust
= TRUE
; /* > 0.5 */
2230 /* If exactly 0.5, round only odd values */
2231 if (i
== fractionalDigits
&& (ul64
& 1))
2237 if (ul64
== UI8_MAX
)
2239 TRACE("Overflow after rounding\n");
2246 /* Zero is not a negative number */
2247 bNegative
= pNumprs
->dwOutFlags
& NUMPRS_NEG
&& ul64
;
2249 TRACE("Integer value is 0x%s, bNeg %d\n", wine_dbgstr_longlong(ul64
), bNegative
);
2251 /* For negative integers, try the signed types in size order */
2252 if (!bOverflow
&& bNegative
)
2254 if (dwVtBits
& (VTBIT_I1
|VTBIT_I2
|VTBIT_I4
|VTBIT_I8
))
2256 if (dwVtBits
& VTBIT_I1
&& ul64
<= -I1_MIN
)
2258 V_VT(pVarDst
) = VT_I1
;
2259 V_I1(pVarDst
) = -ul64
;
2262 else if (dwVtBits
& VTBIT_I2
&& ul64
<= -I2_MIN
)
2264 V_VT(pVarDst
) = VT_I2
;
2265 V_I2(pVarDst
) = -ul64
;
2268 else if (dwVtBits
& VTBIT_I4
&& ul64
<= -((LONGLONG
)I4_MIN
))
2270 V_VT(pVarDst
) = VT_I4
;
2271 V_I4(pVarDst
) = -ul64
;
2274 else if (dwVtBits
& VTBIT_I8
&& ul64
<= (ULONGLONG
)I8_MAX
+ 1)
2276 V_VT(pVarDst
) = VT_I8
;
2277 V_I8(pVarDst
) = -ul64
;
2280 else if ((dwVtBits
& (REAL_VTBITS
|VTBIT_DECIMAL
)) == VTBIT_DECIMAL
)
2282 /* Decimal is only output choice left - fast path */
2283 V_VT(pVarDst
) = VT_DECIMAL
;
2284 DEC_SIGNSCALE(&V_DECIMAL(pVarDst
)) = SIGNSCALE(DECIMAL_NEG
,0);
2285 DEC_HI32(&V_DECIMAL(pVarDst
)) = 0;
2286 DEC_LO64(&V_DECIMAL(pVarDst
)) = -ul64
;
2291 else if (!bOverflow
)
2293 /* For positive integers, try signed then unsigned types in size order */
2294 if (dwVtBits
& VTBIT_I1
&& ul64
<= I1_MAX
)
2296 V_VT(pVarDst
) = VT_I1
;
2297 V_I1(pVarDst
) = ul64
;
2300 else if (dwVtBits
& VTBIT_UI1
&& ul64
<= UI1_MAX
)
2302 V_VT(pVarDst
) = VT_UI1
;
2303 V_UI1(pVarDst
) = ul64
;
2306 else if (dwVtBits
& VTBIT_I2
&& ul64
<= I2_MAX
)
2308 V_VT(pVarDst
) = VT_I2
;
2309 V_I2(pVarDst
) = ul64
;
2312 else if (dwVtBits
& VTBIT_UI2
&& ul64
<= UI2_MAX
)
2314 V_VT(pVarDst
) = VT_UI2
;
2315 V_UI2(pVarDst
) = ul64
;
2318 else if (dwVtBits
& VTBIT_I4
&& ul64
<= I4_MAX
)
2320 V_VT(pVarDst
) = VT_I4
;
2321 V_I4(pVarDst
) = ul64
;
2324 else if (dwVtBits
& VTBIT_UI4
&& ul64
<= UI4_MAX
)
2326 V_VT(pVarDst
) = VT_UI4
;
2327 V_UI4(pVarDst
) = ul64
;
2330 else if (dwVtBits
& VTBIT_I8
&& ul64
<= I8_MAX
)
2332 V_VT(pVarDst
) = VT_I8
;
2333 V_I8(pVarDst
) = ul64
;
2336 else if (dwVtBits
& VTBIT_UI8
)
2338 V_VT(pVarDst
) = VT_UI8
;
2339 V_UI8(pVarDst
) = ul64
;
2342 else if ((dwVtBits
& (REAL_VTBITS
|VTBIT_DECIMAL
)) == VTBIT_DECIMAL
)
2344 /* Decimal is only output choice left - fast path */
2345 V_VT(pVarDst
) = VT_DECIMAL
;
2346 DEC_SIGNSCALE(&V_DECIMAL(pVarDst
)) = SIGNSCALE(DECIMAL_POS
,0);
2347 DEC_HI32(&V_DECIMAL(pVarDst
)) = 0;
2348 DEC_LO64(&V_DECIMAL(pVarDst
)) = ul64
;
2354 if (dwVtBits
& REAL_VTBITS
)
2356 /* Try to put the number into a float or real */
2357 BOOL bOverflow
= FALSE
, bNegative
= pNumprs
->dwOutFlags
& NUMPRS_NEG
;
2361 /* Convert the number into a double */
2362 for (i
= 0; i
< pNumprs
->cDig
; i
++)
2363 whole
= whole
* 10.0 + rgbDig
[i
];
2365 TRACE("Whole double value is %16.16g\n", whole
);
2367 /* Account for the scale */
2368 while (multiplier10
> 10)
2370 if (whole
> dblMaximums
[10])
2372 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
);
2376 whole
= whole
* dblMultipliers
[10];
2379 if (multiplier10
&& !bOverflow
)
2381 if (whole
> dblMaximums
[multiplier10
])
2383 dwVtBits
&= ~(VTBIT_R4
|VTBIT_R8
|VTBIT_CY
);
2387 whole
= whole
* dblMultipliers
[multiplier10
];
2391 TRACE("Scaled double value is %16.16g\n", whole
);
2393 while (divisor10
> 10 && !bOverflow
)
2395 if (whole
< dblMinimums
[10] && whole
!= 0)
2397 whole
= 0; /* ignore underflow */
2401 whole
= whole
/ dblMultipliers
[10];
2404 if (divisor10
&& !bOverflow
)
2406 if (whole
< dblMinimums
[divisor10
] && whole
!= 0)
2408 whole
= 0; /* ignore underflow */
2412 whole
= whole
/ dblMultipliers
[divisor10
];
2415 TRACE("Final double value is %16.16g\n", whole
);
2417 if (dwVtBits
& VTBIT_R4
&&
2418 ((whole
<= R4_MAX
&& whole
>= R4_MIN
) || whole
== 0.0))
2420 TRACE("Set R4 to final value\n");
2421 V_VT(pVarDst
) = VT_R4
; /* Fits into a float */
2422 V_R4(pVarDst
) = pNumprs
->dwOutFlags
& NUMPRS_NEG
? -whole
: whole
;
2426 if (dwVtBits
& VTBIT_R8
)
2428 TRACE("Set R8 to final value\n");
2429 V_VT(pVarDst
) = VT_R8
; /* Fits into a double */
2430 V_R8(pVarDst
) = pNumprs
->dwOutFlags
& NUMPRS_NEG
? -whole
: whole
;
2434 if (dwVtBits
& VTBIT_CY
)
2436 if (SUCCEEDED(VarCyFromR8(bNegative
? -whole
: whole
, &V_CY(pVarDst
))))
2438 V_VT(pVarDst
) = VT_CY
; /* Fits into a currency */
2439 TRACE("Set CY to final value\n");
2442 TRACE("Value Overflows CY\n");
2446 if (dwVtBits
& VTBIT_DECIMAL
)
2451 DECIMAL
* pDec
= &V_DECIMAL(pVarDst
);
2453 DECIMAL_SETZERO(*pDec
);
2456 if (pNumprs
->dwOutFlags
& NUMPRS_NEG
)
2457 DEC_SIGN(pDec
) = DECIMAL_NEG
;
2459 DEC_SIGN(pDec
) = DECIMAL_POS
;
2461 /* Factor the significant digits */
2462 for (i
= 0; i
< pNumprs
->cDig
; i
++)
2464 tmp
= (ULONG64
)DEC_LO32(pDec
) * 10 + rgbDig
[i
];
2465 carry
= (ULONG
)(tmp
>> 32);
2466 DEC_LO32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2467 tmp
= (ULONG64
)DEC_MID32(pDec
) * 10 + carry
;
2468 carry
= (ULONG
)(tmp
>> 32);
2469 DEC_MID32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2470 tmp
= (ULONG64
)DEC_HI32(pDec
) * 10 + carry
;
2471 DEC_HI32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2473 if (tmp
>> 32 & UI4_MAX
)
2475 VarNumFromParseNum_DecOverflow
:
2476 TRACE("Overflow\n");
2477 DEC_LO32(pDec
) = DEC_MID32(pDec
) = DEC_HI32(pDec
) = UI4_MAX
;
2478 return DISP_E_OVERFLOW
;
2482 /* Account for the scale of the number */
2483 while (multiplier10
> 0)
2485 tmp
= (ULONG64
)DEC_LO32(pDec
) * 10;
2486 carry
= (ULONG
)(tmp
>> 32);
2487 DEC_LO32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2488 tmp
= (ULONG64
)DEC_MID32(pDec
) * 10 + carry
;
2489 carry
= (ULONG
)(tmp
>> 32);
2490 DEC_MID32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2491 tmp
= (ULONG64
)DEC_HI32(pDec
) * 10 + carry
;
2492 DEC_HI32(pDec
) = (ULONG
)(tmp
& UI4_MAX
);
2494 if (tmp
>> 32 & UI4_MAX
)
2495 goto VarNumFromParseNum_DecOverflow
;
2498 DEC_SCALE(pDec
) = divisor10
;
2500 V_VT(pVarDst
) = VT_DECIMAL
;
2503 return DISP_E_OVERFLOW
; /* No more output choices */
2506 /**********************************************************************
2507 * VarCat [OLEAUT32.318]
2509 * Concatenates one variant onto another.
2512 * left [I] First variant
2513 * right [I] Second variant
2514 * result [O] Result variant
2518 * Failure: An HRESULT error code indicating the error.
2520 HRESULT WINAPI
VarCat(LPVARIANT left
, LPVARIANT right
, LPVARIANT out
)
2522 BSTR left_str
= NULL
, right_str
= NULL
;
2523 VARTYPE leftvt
, rightvt
;
2526 TRACE("%s,%s,%p)\n", debugstr_variant(left
), debugstr_variant(right
), out
);
2528 leftvt
= V_VT(left
);
2529 rightvt
= V_VT(right
);
2531 /* when both left and right are NULL the result is NULL */
2532 if (leftvt
== VT_NULL
&& rightvt
== VT_NULL
)
2534 V_VT(out
) = VT_NULL
;
2538 /* There are many special case for errors and return types */
2539 if (leftvt
== VT_VARIANT
&& (rightvt
== VT_ERROR
||
2540 rightvt
== VT_DATE
|| rightvt
== VT_DECIMAL
))
2541 hres
= DISP_E_TYPEMISMATCH
;
2542 else if ((leftvt
== VT_I2
|| leftvt
== VT_I4
||
2543 leftvt
== VT_R4
|| leftvt
== VT_R8
||
2544 leftvt
== VT_CY
|| leftvt
== VT_BOOL
||
2545 leftvt
== VT_BSTR
|| leftvt
== VT_I1
||
2546 leftvt
== VT_UI1
|| leftvt
== VT_UI2
||
2547 leftvt
== VT_UI4
|| leftvt
== VT_I8
||
2548 leftvt
== VT_UI8
|| leftvt
== VT_INT
||
2549 leftvt
== VT_UINT
|| leftvt
== VT_EMPTY
||
2550 leftvt
== VT_NULL
|| leftvt
== VT_DATE
||
2551 leftvt
== VT_DECIMAL
|| leftvt
== VT_DISPATCH
)
2553 (rightvt
== VT_I2
|| rightvt
== VT_I4
||
2554 rightvt
== VT_R4
|| rightvt
== VT_R8
||
2555 rightvt
== VT_CY
|| rightvt
== VT_BOOL
||
2556 rightvt
== VT_BSTR
|| rightvt
== VT_I1
||
2557 rightvt
== VT_UI1
|| rightvt
== VT_UI2
||
2558 rightvt
== VT_UI4
|| rightvt
== VT_I8
||
2559 rightvt
== VT_UI8
|| rightvt
== VT_INT
||
2560 rightvt
== VT_UINT
|| rightvt
== VT_EMPTY
||
2561 rightvt
== VT_NULL
|| rightvt
== VT_DATE
||
2562 rightvt
== VT_DECIMAL
|| rightvt
== VT_DISPATCH
))
2564 else if (rightvt
== VT_ERROR
&& leftvt
< VT_VOID
)
2565 hres
= DISP_E_TYPEMISMATCH
;
2566 else if (leftvt
== VT_ERROR
&& (rightvt
== VT_DATE
||
2567 rightvt
== VT_ERROR
|| rightvt
== VT_DECIMAL
))
2568 hres
= DISP_E_TYPEMISMATCH
;
2569 else if (rightvt
== VT_DATE
|| rightvt
== VT_ERROR
||
2570 rightvt
== VT_DECIMAL
)
2571 hres
= DISP_E_BADVARTYPE
;
2572 else if (leftvt
== VT_ERROR
|| rightvt
== VT_ERROR
)
2573 hres
= DISP_E_TYPEMISMATCH
;
2574 else if (leftvt
== VT_VARIANT
)
2575 hres
= DISP_E_TYPEMISMATCH
;
2576 else if (rightvt
== VT_VARIANT
&& (leftvt
== VT_EMPTY
||
2577 leftvt
== VT_NULL
|| leftvt
== VT_I2
||
2578 leftvt
== VT_I4
|| leftvt
== VT_R4
||
2579 leftvt
== VT_R8
|| leftvt
== VT_CY
||
2580 leftvt
== VT_DATE
|| leftvt
== VT_BSTR
||
2581 leftvt
== VT_BOOL
|| leftvt
== VT_DECIMAL
||
2582 leftvt
== VT_I1
|| leftvt
== VT_UI1
||
2583 leftvt
== VT_UI2
|| leftvt
== VT_UI4
||
2584 leftvt
== VT_I8
|| leftvt
== VT_UI8
||
2585 leftvt
== VT_INT
|| leftvt
== VT_UINT
))
2586 hres
= DISP_E_TYPEMISMATCH
;
2588 hres
= DISP_E_BADVARTYPE
;
2590 /* if result type is not S_OK, then no need to go further */
2593 V_VT(out
) = VT_EMPTY
;
2597 if (leftvt
== VT_BSTR
)
2598 left_str
= V_BSTR(left
);
2601 VARIANT converted
, *tmp
= left
;
2603 VariantInit(&converted
);
2604 if(leftvt
== VT_DISPATCH
)
2606 hres
= VARIANT_FetchDispatchValue(left
, &converted
);
2613 hres
= VariantChangeTypeEx(&converted
, tmp
, 0, VARIANT_ALPHABOOL
|VARIANT_LOCALBOOL
, VT_BSTR
);
2614 if (SUCCEEDED(hres
))
2615 left_str
= V_BSTR(&converted
);
2616 else if (hres
!= DISP_E_TYPEMISMATCH
)
2618 VariantClear(&converted
);
2623 if (rightvt
== VT_BSTR
)
2624 right_str
= V_BSTR(right
);
2627 VARIANT converted
, *tmp
= right
;
2629 VariantInit(&converted
);
2630 if(rightvt
== VT_DISPATCH
)
2632 hres
= VARIANT_FetchDispatchValue(right
, &converted
);
2639 hres
= VariantChangeTypeEx(&converted
, tmp
, 0, VARIANT_ALPHABOOL
|VARIANT_LOCALBOOL
, VT_BSTR
);
2640 if (SUCCEEDED(hres
))
2641 right_str
= V_BSTR(&converted
);
2642 else if (hres
!= DISP_E_TYPEMISMATCH
)
2644 VariantClear(&converted
);
2650 V_VT(out
) = VT_BSTR
;
2651 hres
= VarBstrCat(left_str
, right_str
, &V_BSTR(out
));
2654 if(V_VT(left
) != VT_BSTR
)
2655 SysFreeString(left_str
);
2656 if(V_VT(right
) != VT_BSTR
)
2657 SysFreeString(right_str
);
2662 /* Wrapper around VariantChangeTypeEx() which permits changing a
2663 variant with VT_RESERVED flag set. Needed by VarCmp. */
2664 static HRESULT
_VarChangeTypeExWrap (VARIANTARG
* pvargDest
,
2665 VARIANTARG
* pvargSrc
, LCID lcid
, USHORT wFlags
, VARTYPE vt
)
2667 VARIANTARG vtmpsrc
= *pvargSrc
;
2669 V_VT(&vtmpsrc
) &= ~VT_RESERVED
;
2670 return VariantChangeTypeEx(pvargDest
,&vtmpsrc
,lcid
,wFlags
,vt
);
2673 /**********************************************************************
2674 * VarCmp [OLEAUT32.176]
2676 * Compare two variants.
2679 * left [I] First variant
2680 * right [I] Second variant
2681 * lcid [I] LCID (locale identifier) for the comparison
2682 * flags [I] Flags to be used in the comparison:
2683 * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS,
2684 * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA
2687 * VARCMP_LT: left variant is less than right variant.
2688 * VARCMP_EQ: input variants are equal.
2689 * VARCMP_GT: left variant is greater than right variant.
2690 * VARCMP_NULL: either one of the input variants is NULL.
2691 * Failure: An HRESULT error code indicating the error.
2694 * Native VarCmp up to and including WinXP doesn't like I1, UI2, VT_UI4,
2695 * UI8 and UINT as input variants. INT is accepted only as left variant.
2697 * If both input variants are ERROR then VARCMP_EQ will be returned, else
2698 * an ERROR variant will trigger an error.
2700 * Both input variants can have VT_RESERVED flag set which is ignored
2701 * unless one and only one of the variants is a BSTR and the other one
2702 * is not an EMPTY variant. All four VT_RESERVED combinations have a
2703 * different meaning:
2704 * - BSTR and other: BSTR is always greater than the other variant.
2705 * - BSTR|VT_RESERVED and other: a string comparison is performed.
2706 * - BSTR and other|VT_RESERVED: If the BSTR is a number a numeric
2707 * comparison will take place else the BSTR is always greater.
2708 * - BSTR|VT_RESERVED and other|VT_RESERVED: It seems that the other
2709 * variant is ignored and the return value depends only on the sign
2710 * of the BSTR if it is a number else the BSTR is always greater. A
2711 * positive BSTR is greater, a negative one is smaller than the other
2715 * VarBstrCmp for the lcid and flags usage.
2717 HRESULT WINAPI
VarCmp(LPVARIANT left
, LPVARIANT right
, LCID lcid
, DWORD flags
)
2719 VARTYPE lvt
, rvt
, vt
;
2724 TRACE("(%s,%s,0x%08x,0x%08x)\n", debugstr_variant(left
), debugstr_variant(right
), lcid
, flags
);
2726 lvt
= V_VT(left
) & VT_TYPEMASK
;
2727 rvt
= V_VT(right
) & VT_TYPEMASK
;
2728 xmask
= (1 << lvt
) | (1 << rvt
);
2730 /* If we have any flag set except VT_RESERVED bail out.
2731 Same for the left input variant type > VT_INT and for the
2732 right input variant type > VT_I8. Yes, VT_INT is only supported
2733 as left variant. Go figure */
2734 if (((V_VT(left
) | V_VT(right
)) & ~VT_TYPEMASK
& ~VT_RESERVED
) ||
2735 lvt
> VT_INT
|| rvt
> VT_I8
) {
2736 return DISP_E_BADVARTYPE
;
2739 /* Don't ask me why but native VarCmp cannot handle: VT_I1, VT_UI2, VT_UI4,
2740 VT_UINT and VT_UI8. Tested with DCOM98, Win2k, WinXP */
2741 if (rvt
== VT_INT
|| xmask
& (VTBIT_I1
| VTBIT_UI2
| VTBIT_UI4
| VTBIT_UI8
|
2742 VTBIT_DISPATCH
| VTBIT_VARIANT
| VTBIT_UNKNOWN
| VTBIT_15
))
2743 return DISP_E_TYPEMISMATCH
;
2745 /* If both variants are VT_ERROR return VARCMP_EQ */
2746 if (xmask
== VTBIT_ERROR
)
2748 else if (xmask
& VTBIT_ERROR
)
2749 return DISP_E_TYPEMISMATCH
;
2751 if (xmask
& VTBIT_NULL
)
2757 /* Two BSTRs, ignore VT_RESERVED */
2758 if (xmask
== VTBIT_BSTR
)
2759 return VarBstrCmp(V_BSTR(left
), V_BSTR(right
), lcid
, flags
);
2761 /* A BSTR and another variant; we have to take care of VT_RESERVED */
2762 if (xmask
& VTBIT_BSTR
) {
2763 VARIANT
*bstrv
, *nonbv
;
2767 /* Swap the variants so the BSTR is always on the left */
2768 if (lvt
== VT_BSTR
) {
2779 /* BSTR and EMPTY: ignore VT_RESERVED */
2780 if (nonbvt
== VT_EMPTY
)
2781 rc
= (!V_BSTR(bstrv
) || !*V_BSTR(bstrv
)) ? VARCMP_EQ
: VARCMP_GT
;
2783 VARTYPE breserv
= V_VT(bstrv
) & ~VT_TYPEMASK
;
2784 VARTYPE nreserv
= V_VT(nonbv
) & ~VT_TYPEMASK
;
2786 if (!breserv
&& !nreserv
)
2787 /* No VT_RESERVED set ==> BSTR always greater */
2789 else if (breserv
&& !nreserv
) {
2790 /* BSTR has VT_RESERVED set. Do a string comparison */
2791 rc
= VariantChangeTypeEx(&rv
,nonbv
,lcid
,0,VT_BSTR
);
2794 rc
= VarBstrCmp(V_BSTR(bstrv
), V_BSTR(&rv
), lcid
, flags
);
2796 } else if (V_BSTR(bstrv
) && *V_BSTR(bstrv
)) {
2797 /* Non NULL nor empty BSTR */
2798 /* If the BSTR is not a number the BSTR is greater */
2799 rc
= _VarChangeTypeExWrap(&lv
,bstrv
,lcid
,0,VT_R8
);
2802 else if (breserv
&& nreserv
)
2803 /* FIXME: This is strange: with both VT_RESERVED set it
2804 looks like the result depends only on the sign of
2806 rc
= (V_R8(&lv
) >= 0) ? VARCMP_GT
: VARCMP_LT
;
2808 /* Numeric comparison, will be handled below.
2809 VARCMP_NULL used only to break out. */
2814 /* Empty or NULL BSTR */
2817 /* Fixup the return code if we swapped left and right */
2819 if (rc
== VARCMP_GT
)
2821 else if (rc
== VARCMP_LT
)
2824 if (rc
!= VARCMP_NULL
)
2828 if (xmask
& VTBIT_DECIMAL
)
2830 else if (xmask
& VTBIT_BSTR
)
2832 else if (xmask
& VTBIT_R4
)
2834 else if (xmask
& (VTBIT_R8
| VTBIT_DATE
))
2836 else if (xmask
& VTBIT_CY
)
2842 /* Coerce the variants */
2843 rc
= _VarChangeTypeExWrap(&lv
,left
,lcid
,0,vt
);
2844 if (rc
== DISP_E_OVERFLOW
&& vt
!= VT_R8
) {
2845 /* Overflow, change to R8 */
2847 rc
= _VarChangeTypeExWrap(&lv
,left
,lcid
,0,vt
);
2851 rc
= _VarChangeTypeExWrap(&rv
,right
,lcid
,0,vt
);
2852 if (rc
== DISP_E_OVERFLOW
&& vt
!= VT_R8
) {
2853 /* Overflow, change to R8 */
2855 rc
= _VarChangeTypeExWrap(&lv
,left
,lcid
,0,vt
);
2858 rc
= _VarChangeTypeExWrap(&rv
,right
,lcid
,0,vt
);
2863 #define _VARCMP(a,b) \
2864 (((a) == (b)) ? VARCMP_EQ : (((a) < (b)) ? VARCMP_LT : VARCMP_GT))
2868 return VarCyCmp(V_CY(&lv
), V_CY(&rv
));
2870 return VarDecCmp(&V_DECIMAL(&lv
), &V_DECIMAL(&rv
));
2872 return _VARCMP(V_I8(&lv
), V_I8(&rv
));
2874 return _VARCMP(V_R4(&lv
), V_R4(&rv
));
2876 return _VARCMP(V_R8(&lv
), V_R8(&rv
));
2878 /* We should never get here */
2884 /**********************************************************************
2885 * VarAnd [OLEAUT32.142]
2887 * Computes the logical AND of two variants.
2890 * left [I] First variant
2891 * right [I] Second variant
2892 * result [O] Result variant
2896 * Failure: An HRESULT error code indicating the error.
2898 HRESULT WINAPI
VarAnd(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
2900 HRESULT hres
= S_OK
;
2901 VARTYPE resvt
= VT_EMPTY
;
2902 VARTYPE leftvt
,rightvt
;
2903 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
2904 VARIANT varLeft
, varRight
;
2905 VARIANT tempLeft
, tempRight
;
2907 VariantInit(&varLeft
);
2908 VariantInit(&varRight
);
2909 VariantInit(&tempLeft
);
2910 VariantInit(&tempRight
);
2912 TRACE("(%s,%s,%p)\n", debugstr_variant(left
), debugstr_variant(right
), result
);
2914 /* Handle VT_DISPATCH by storing and taking address of returned value */
2915 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
2917 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
2918 if (FAILED(hres
)) goto VarAnd_Exit
;
2921 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
2923 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
2924 if (FAILED(hres
)) goto VarAnd_Exit
;
2928 leftvt
= V_VT(left
)&VT_TYPEMASK
;
2929 rightvt
= V_VT(right
)&VT_TYPEMASK
;
2930 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
2931 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
2933 if (leftExtraFlags
!= rightExtraFlags
)
2935 hres
= DISP_E_BADVARTYPE
;
2938 ExtraFlags
= leftExtraFlags
;
2940 /* Native VarAnd always returns an error when using extra
2941 * flags or if the variant combination is I8 and INT.
2943 if ((leftvt
== VT_I8
&& rightvt
== VT_INT
) ||
2944 (leftvt
== VT_INT
&& rightvt
== VT_I8
) ||
2947 hres
= DISP_E_BADVARTYPE
;
2951 /* Determine return type */
2952 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
2954 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
2955 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
2956 leftvt
== VT_INT
|| rightvt
== VT_INT
||
2957 leftvt
== VT_R4
|| rightvt
== VT_R4
||
2958 leftvt
== VT_R8
|| rightvt
== VT_R8
||
2959 leftvt
== VT_CY
|| rightvt
== VT_CY
||
2960 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
2961 leftvt
== VT_I1
|| rightvt
== VT_I1
||
2962 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
2963 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
2964 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
2965 leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
)
2967 else if (leftvt
== VT_UI1
|| rightvt
== VT_UI1
||
2968 leftvt
== VT_I2
|| rightvt
== VT_I2
||
2969 leftvt
== VT_EMPTY
|| rightvt
== VT_EMPTY
)
2970 if ((leftvt
== VT_NULL
&& rightvt
== VT_UI1
) ||
2971 (leftvt
== VT_UI1
&& rightvt
== VT_NULL
) ||
2972 (leftvt
== VT_UI1
&& rightvt
== VT_UI1
))
2976 else if (leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
2977 (leftvt
== VT_BSTR
&& rightvt
== VT_BSTR
))
2979 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
||
2980 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
)
2984 hres
= DISP_E_BADVARTYPE
;
2988 if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
2991 * Special cases for when left variant is VT_NULL
2992 * (VT_NULL & 0 = VT_NULL, VT_NULL & value = value)
2994 if (leftvt
== VT_NULL
)
2999 case VT_I1
: if (V_I1(right
)) resvt
= VT_NULL
; break;
3000 case VT_UI1
: if (V_UI1(right
)) resvt
= VT_NULL
; break;
3001 case VT_I2
: if (V_I2(right
)) resvt
= VT_NULL
; break;
3002 case VT_UI2
: if (V_UI2(right
)) resvt
= VT_NULL
; break;
3003 case VT_I4
: if (V_I4(right
)) resvt
= VT_NULL
; break;
3004 case VT_UI4
: if (V_UI4(right
)) resvt
= VT_NULL
; break;
3005 case VT_I8
: if (V_I8(right
)) resvt
= VT_NULL
; break;
3006 case VT_UI8
: if (V_UI8(right
)) resvt
= VT_NULL
; break;
3007 case VT_INT
: if (V_INT(right
)) resvt
= VT_NULL
; break;
3008 case VT_UINT
: if (V_UINT(right
)) resvt
= VT_NULL
; break;
3009 case VT_BOOL
: if (V_BOOL(right
)) resvt
= VT_NULL
; break;
3010 case VT_R4
: if (V_R4(right
)) resvt
= VT_NULL
; break;
3011 case VT_R8
: if (V_R8(right
)) resvt
= VT_NULL
; break;
3013 if(V_CY(right
).int64
)
3017 if (DEC_HI32(&V_DECIMAL(right
)) ||
3018 DEC_LO64(&V_DECIMAL(right
)))
3022 hres
= VarBoolFromStr(V_BSTR(right
),
3023 LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
3027 V_VT(result
) = VT_NULL
;
3030 V_VT(result
) = VT_BOOL
;
3036 V_VT(result
) = resvt
;
3040 hres
= VariantCopy(&varLeft
, left
);
3041 if (FAILED(hres
)) goto VarAnd_Exit
;
3043 hres
= VariantCopy(&varRight
, right
);
3044 if (FAILED(hres
)) goto VarAnd_Exit
;
3046 if (resvt
== VT_I4
&& V_VT(&varLeft
) == VT_UI4
)
3047 V_VT(&varLeft
) = VT_I4
; /* Don't overflow */
3052 if (V_VT(&varLeft
) == VT_BSTR
&&
3053 FAILED(VarR8FromStr(V_BSTR(&varLeft
),
3054 LOCALE_USER_DEFAULT
, 0, &d
)))
3055 hres
= VariantChangeType(&varLeft
,&varLeft
,
3056 VARIANT_LOCALBOOL
, VT_BOOL
);
3057 if (SUCCEEDED(hres
) && V_VT(&varLeft
) != resvt
)
3058 hres
= VariantChangeType(&varLeft
,&varLeft
,0,resvt
);
3059 if (FAILED(hres
)) goto VarAnd_Exit
;
3062 if (resvt
== VT_I4
&& V_VT(&varRight
) == VT_UI4
)
3063 V_VT(&varRight
) = VT_I4
; /* Don't overflow */
3068 if (V_VT(&varRight
) == VT_BSTR
&&
3069 FAILED(VarR8FromStr(V_BSTR(&varRight
),
3070 LOCALE_USER_DEFAULT
, 0, &d
)))
3071 hres
= VariantChangeType(&varRight
, &varRight
,
3072 VARIANT_LOCALBOOL
, VT_BOOL
);
3073 if (SUCCEEDED(hres
) && V_VT(&varRight
) != resvt
)
3074 hres
= VariantChangeType(&varRight
, &varRight
, 0, resvt
);
3075 if (FAILED(hres
)) goto VarAnd_Exit
;
3078 V_VT(result
) = resvt
;
3082 V_I8(result
) = V_I8(&varLeft
) & V_I8(&varRight
);
3085 V_I4(result
) = V_I4(&varLeft
) & V_I4(&varRight
);
3088 V_I2(result
) = V_I2(&varLeft
) & V_I2(&varRight
);
3091 V_UI1(result
) = V_UI1(&varLeft
) & V_UI1(&varRight
);
3094 V_BOOL(result
) = V_BOOL(&varLeft
) & V_BOOL(&varRight
);
3097 FIXME("Couldn't bitwise AND variant types %d,%d\n",
3102 VariantClear(&varLeft
);
3103 VariantClear(&varRight
);
3104 VariantClear(&tempLeft
);
3105 VariantClear(&tempRight
);
3110 /**********************************************************************
3111 * VarAdd [OLEAUT32.141]
3116 * left [I] First variant
3117 * right [I] Second variant
3118 * result [O] Result variant
3122 * Failure: An HRESULT error code indicating the error.
3125 * Native VarAdd up to and including WinXP doesn't like I1, UI2, UI4,
3126 * UI8, INT and UINT as input variants.
3128 * Native VarAdd doesn't check for NULL in/out pointers and crashes. We do the
3132 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3135 HRESULT WINAPI
VarAdd(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3138 VARTYPE lvt
, rvt
, resvt
, tvt
;
3140 VARIANT tempLeft
, tempRight
;
3143 /* Variant priority for coercion. Sorted from lowest to highest.
3144 VT_ERROR shows an invalid input variant type. */
3145 enum coerceprio
{ vt_EMPTY
, vt_UI1
, vt_I2
, vt_I4
, vt_I8
, vt_BSTR
,vt_R4
,
3146 vt_R8
, vt_CY
, vt_DATE
, vt_DECIMAL
, vt_DISPATCH
, vt_NULL
,
3148 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3149 static const VARTYPE prio2vt
[] = { VT_EMPTY
, VT_UI1
, VT_I2
, VT_I4
, VT_I8
, VT_BSTR
, VT_R4
,
3150 VT_R8
, VT_CY
, VT_DATE
, VT_DECIMAL
, VT_DISPATCH
,
3151 VT_NULL
, VT_ERROR
};
3153 /* Mapping for coercion from input variant to priority of result variant. */
3154 static const VARTYPE coerce
[] = {
3155 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3156 vt_EMPTY
, vt_NULL
, vt_I2
, vt_I4
, vt_R4
,
3157 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3158 vt_R8
, vt_CY
, vt_DATE
, vt_BSTR
, vt_DISPATCH
,
3159 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3160 vt_ERROR
, vt_I2
, vt_ERROR
, vt_ERROR
, vt_DECIMAL
,
3161 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3162 vt_ERROR
, vt_ERROR
, vt_UI1
, vt_ERROR
, vt_ERROR
, vt_I8
3165 TRACE("(%s,%s,%p)\n", debugstr_variant(left
), debugstr_variant(right
), result
);
3170 VariantInit(&tempLeft
);
3171 VariantInit(&tempRight
);
3173 /* Handle VT_DISPATCH by storing and taking address of returned value */
3174 if ((V_VT(left
) & VT_TYPEMASK
) != VT_NULL
&& (V_VT(right
) & VT_TYPEMASK
) != VT_NULL
)
3176 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
3178 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3179 if (FAILED(hres
)) goto end
;
3182 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
3184 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3185 if (FAILED(hres
)) goto end
;
3190 lvt
= V_VT(left
)&VT_TYPEMASK
;
3191 rvt
= V_VT(right
)&VT_TYPEMASK
;
3193 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3194 Same for any input variant type > VT_I8 */
3195 if (V_VT(left
) & ~VT_TYPEMASK
|| V_VT(right
) & ~VT_TYPEMASK
||
3196 lvt
> VT_I8
|| rvt
> VT_I8
) {
3197 hres
= DISP_E_BADVARTYPE
;
3201 /* Determine the variant type to coerce to. */
3202 if (coerce
[lvt
] > coerce
[rvt
]) {
3203 resvt
= prio2vt
[coerce
[lvt
]];
3204 tvt
= prio2vt
[coerce
[rvt
]];
3206 resvt
= prio2vt
[coerce
[rvt
]];
3207 tvt
= prio2vt
[coerce
[lvt
]];
3210 /* Special cases where the result variant type is defined by both
3211 input variants and not only that with the highest priority */
3212 if (resvt
== VT_BSTR
) {
3213 if (tvt
== VT_EMPTY
|| tvt
== VT_BSTR
)
3218 if (resvt
== VT_R4
&& (tvt
== VT_BSTR
|| tvt
== VT_I8
|| tvt
== VT_I4
))
3221 /* For overflow detection use the biggest compatible type for the
3225 hres
= DISP_E_BADVARTYPE
;
3229 V_VT(result
) = VT_NULL
;
3232 FIXME("cannot handle variant type VT_DISPATCH\n");
3233 hres
= DISP_E_TYPEMISMATCH
;
3252 /* Now coerce the variants */
3253 hres
= VariantChangeType(&lv
, left
, 0, tvt
);
3256 hres
= VariantChangeType(&rv
, right
, 0, tvt
);
3262 V_VT(result
) = resvt
;
3265 hres
= VarDecAdd(&V_DECIMAL(&lv
), &V_DECIMAL(&rv
),
3266 &V_DECIMAL(result
));
3269 hres
= VarCyAdd(V_CY(&lv
), V_CY(&rv
), &V_CY(result
));
3272 /* We do not add those, we concatenate them. */
3273 hres
= VarBstrCat(V_BSTR(&lv
), V_BSTR(&rv
), &V_BSTR(result
));
3276 /* Overflow detection */
3277 r8res
= (double)V_I8(&lv
) + (double)V_I8(&rv
);
3278 if (r8res
> (double)I8_MAX
|| r8res
< (double)I8_MIN
) {
3279 V_VT(result
) = VT_R8
;
3280 V_R8(result
) = r8res
;
3284 V_I8(&tv
) = V_I8(&lv
) + V_I8(&rv
);
3289 /* FIXME: overflow detection */
3290 V_R8(&tv
) = V_R8(&lv
) + V_R8(&rv
);
3293 ERR("We shouldn't get here! tvt = %d!\n", tvt
);
3297 if ((hres
= VariantChangeType(result
, &tv
, 0, resvt
)) != S_OK
) {
3298 /* Overflow! Change to the vartype with the next higher priority.
3299 With one exception: I4 ==> R8 even if it would fit in I8 */
3303 resvt
= prio2vt
[coerce
[resvt
] + 1];
3304 hres
= VariantChangeType(result
, &tv
, 0, resvt
);
3307 hres
= VariantCopy(result
, &tv
);
3311 V_VT(result
) = VT_EMPTY
;
3312 V_I4(result
) = 0; /* No V_EMPTY */
3317 VariantClear(&tempLeft
);
3318 VariantClear(&tempRight
);
3319 TRACE("returning 0x%8x %s\n", hres
, debugstr_variant(result
));
3323 /**********************************************************************
3324 * VarMul [OLEAUT32.156]
3326 * Multiply two variants.
3329 * left [I] First variant
3330 * right [I] Second variant
3331 * result [O] Result variant
3335 * Failure: An HRESULT error code indicating the error.
3338 * Native VarMul up to and including WinXP doesn't like I1, UI2, UI4,
3339 * UI8, INT and UINT as input variants. But it can multiply apples with oranges.
3341 * Native VarMul doesn't check for NULL in/out pointers and crashes. We do the
3345 * Overflow checking for R8 (double) overflow. Return DISP_E_OVERFLOW in that
3348 HRESULT WINAPI
VarMul(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3351 VARTYPE lvt
, rvt
, resvt
, tvt
;
3353 VARIANT tempLeft
, tempRight
;
3356 /* Variant priority for coercion. Sorted from lowest to highest.
3357 VT_ERROR shows an invalid input variant type. */
3358 enum coerceprio
{ vt_UI1
= 0, vt_I2
, vt_I4
, vt_I8
, vt_CY
, vt_R4
, vt_R8
,
3359 vt_DECIMAL
, vt_NULL
, vt_ERROR
};
3360 /* Mapping from priority to variant type. Keep in sync with coerceprio! */
3361 static const VARTYPE prio2vt
[] = { VT_UI1
, VT_I2
, VT_I4
, VT_I8
, VT_CY
, VT_R4
, VT_R8
,
3362 VT_DECIMAL
, VT_NULL
, VT_ERROR
};
3364 /* Mapping for coercion from input variant to priority of result variant. */
3365 static const VARTYPE coerce
[] = {
3366 /* VT_EMPTY, VT_NULL, VT_I2, VT_I4, VT_R4 */
3367 vt_UI1
, vt_NULL
, vt_I2
, vt_I4
, vt_R4
,
3368 /* VT_R8, VT_CY, VT_DATE, VT_BSTR, VT_DISPATCH */
3369 vt_R8
, vt_CY
, vt_R8
, vt_R8
, vt_ERROR
,
3370 /* VT_ERROR, VT_BOOL, VT_VARIANT, VT_UNKNOWN, VT_DECIMAL */
3371 vt_ERROR
, vt_I2
, vt_ERROR
, vt_ERROR
, vt_DECIMAL
,
3372 /* 15, VT_I1, VT_UI1, VT_UI2, VT_UI4 VT_I8 */
3373 vt_ERROR
, vt_ERROR
, vt_UI1
, vt_ERROR
, vt_ERROR
, vt_I8
3376 TRACE("(%s,%s,%p)\n", debugstr_variant(left
), debugstr_variant(right
), result
);
3381 VariantInit(&tempLeft
);
3382 VariantInit(&tempRight
);
3384 /* Handle VT_DISPATCH by storing and taking address of returned value */
3385 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
3387 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3388 if (FAILED(hres
)) goto end
;
3391 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
3393 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3394 if (FAILED(hres
)) goto end
;
3398 lvt
= V_VT(left
)&VT_TYPEMASK
;
3399 rvt
= V_VT(right
)&VT_TYPEMASK
;
3401 /* If we have any flag set (VT_ARRAY, VT_VECTOR, etc.) bail out.
3402 Same for any input variant type > VT_I8 */
3403 if (V_VT(left
) & ~VT_TYPEMASK
|| V_VT(right
) & ~VT_TYPEMASK
||
3404 lvt
> VT_I8
|| rvt
> VT_I8
) {
3405 hres
= DISP_E_BADVARTYPE
;
3409 /* Determine the variant type to coerce to. */
3410 if (coerce
[lvt
] > coerce
[rvt
]) {
3411 resvt
= prio2vt
[coerce
[lvt
]];
3412 tvt
= prio2vt
[coerce
[rvt
]];
3414 resvt
= prio2vt
[coerce
[rvt
]];
3415 tvt
= prio2vt
[coerce
[lvt
]];
3418 /* Special cases where the result variant type is defined by both
3419 input variants and not only that with the highest priority */
3420 if (resvt
== VT_R4
&& (tvt
== VT_CY
|| tvt
== VT_I8
|| tvt
== VT_I4
))
3422 if (lvt
== VT_EMPTY
&& rvt
== VT_EMPTY
)
3425 /* For overflow detection use the biggest compatible type for the
3429 hres
= DISP_E_BADVARTYPE
;
3433 V_VT(result
) = VT_NULL
;
3448 /* Now coerce the variants */
3449 hres
= VariantChangeType(&lv
, left
, 0, tvt
);
3452 hres
= VariantChangeType(&rv
, right
, 0, tvt
);
3459 V_VT(result
) = resvt
;
3462 hres
= VarDecMul(&V_DECIMAL(&lv
), &V_DECIMAL(&rv
),
3463 &V_DECIMAL(result
));
3466 hres
= VarCyMul(V_CY(&lv
), V_CY(&rv
), &V_CY(result
));
3469 /* Overflow detection */
3470 r8res
= (double)V_I8(&lv
) * (double)V_I8(&rv
);
3471 if (r8res
> (double)I8_MAX
|| r8res
< (double)I8_MIN
) {
3472 V_VT(result
) = VT_R8
;
3473 V_R8(result
) = r8res
;
3476 V_I8(&tv
) = V_I8(&lv
) * V_I8(&rv
);
3479 /* FIXME: overflow detection */
3480 V_R8(&tv
) = V_R8(&lv
) * V_R8(&rv
);
3483 ERR("We shouldn't get here! tvt = %d!\n", tvt
);
3487 while ((hres
= VariantChangeType(result
, &tv
, 0, resvt
)) != S_OK
) {
3488 /* Overflow! Change to the vartype with the next higher priority.
3489 With one exception: I4 ==> R8 even if it would fit in I8 */
3493 resvt
= prio2vt
[coerce
[resvt
] + 1];
3496 hres
= VariantCopy(result
, &tv
);
3500 V_VT(result
) = VT_EMPTY
;
3501 V_I4(result
) = 0; /* No V_EMPTY */
3506 VariantClear(&tempLeft
);
3507 VariantClear(&tempRight
);
3508 TRACE("returning 0x%8x %s\n", hres
, debugstr_variant(result
));
3512 /**********************************************************************
3513 * VarDiv [OLEAUT32.143]
3515 * Divides one variant with another.
3518 * left [I] First variant
3519 * right [I] Second variant
3520 * result [O] Result variant
3524 * Failure: An HRESULT error code indicating the error.
3526 HRESULT WINAPI
VarDiv(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3528 HRESULT hres
= S_OK
;
3529 VARTYPE resvt
= VT_EMPTY
;
3530 VARTYPE leftvt
,rightvt
;
3531 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
3533 VARIANT tempLeft
, tempRight
;
3535 VariantInit(&tempLeft
);
3536 VariantInit(&tempRight
);
3540 TRACE("(%s,%s,%p)\n", debugstr_variant(left
), debugstr_variant(right
), result
);
3542 /* Handle VT_DISPATCH by storing and taking address of returned value */
3543 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
3545 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3546 if (FAILED(hres
)) goto end
;
3549 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
3551 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3552 if (FAILED(hres
)) goto end
;
3556 leftvt
= V_VT(left
)&VT_TYPEMASK
;
3557 rightvt
= V_VT(right
)&VT_TYPEMASK
;
3558 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
3559 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
3561 if (leftExtraFlags
!= rightExtraFlags
)
3563 hres
= DISP_E_BADVARTYPE
;
3566 ExtraFlags
= leftExtraFlags
;
3568 /* Native VarDiv always returns an error when using extra flags */
3569 if (ExtraFlags
!= 0)
3571 hres
= DISP_E_BADVARTYPE
;
3575 /* Determine return type */
3576 if (rightvt
!= VT_EMPTY
)
3578 if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
3580 V_VT(result
) = VT_NULL
;
3584 else if (leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
)
3586 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
||
3587 leftvt
== VT_CY
|| rightvt
== VT_CY
||
3588 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
3589 leftvt
== VT_I4
|| rightvt
== VT_I4
||
3590 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
||
3591 leftvt
== VT_I2
|| rightvt
== VT_I2
||
3592 leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
3593 leftvt
== VT_R8
|| rightvt
== VT_R8
||
3594 leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
3596 if ((leftvt
== VT_UI1
&& rightvt
== VT_R4
) ||
3597 (leftvt
== VT_R4
&& rightvt
== VT_UI1
))
3599 else if ((leftvt
== VT_R4
&& (rightvt
== VT_BOOL
||
3600 rightvt
== VT_I2
)) || (rightvt
== VT_R4
&&
3601 (leftvt
== VT_BOOL
|| leftvt
== VT_I2
)))
3606 else if (leftvt
== VT_R4
|| rightvt
== VT_R4
)
3609 else if (leftvt
== VT_NULL
)
3611 V_VT(result
) = VT_NULL
;
3617 hres
= DISP_E_BADVARTYPE
;
3621 /* coerce to the result type */
3622 hres
= VariantChangeType(&lv
, left
, 0, resvt
);
3623 if (hres
!= S_OK
) goto end
;
3625 hres
= VariantChangeType(&rv
, right
, 0, resvt
);
3626 if (hres
!= S_OK
) goto end
;
3629 V_VT(result
) = resvt
;
3633 if (V_R4(&lv
) == 0.0 && V_R4(&rv
) == 0.0)
3635 hres
= DISP_E_OVERFLOW
;
3636 V_VT(result
) = VT_EMPTY
;
3638 else if (V_R4(&rv
) == 0.0)
3640 hres
= DISP_E_DIVBYZERO
;
3641 V_VT(result
) = VT_EMPTY
;
3644 V_R4(result
) = V_R4(&lv
) / V_R4(&rv
);
3647 if (V_R8(&lv
) == 0.0 && V_R8(&rv
) == 0.0)
3649 hres
= DISP_E_OVERFLOW
;
3650 V_VT(result
) = VT_EMPTY
;
3652 else if (V_R8(&rv
) == 0.0)
3654 hres
= DISP_E_DIVBYZERO
;
3655 V_VT(result
) = VT_EMPTY
;
3658 V_R8(result
) = V_R8(&lv
) / V_R8(&rv
);
3661 hres
= VarDecDiv(&(V_DECIMAL(&lv
)), &(V_DECIMAL(&rv
)), &(V_DECIMAL(result
)));
3668 VariantClear(&tempLeft
);
3669 VariantClear(&tempRight
);
3670 TRACE("returning 0x%8x %s\n", hres
, debugstr_variant(result
));
3674 /**********************************************************************
3675 * VarSub [OLEAUT32.159]
3677 * Subtract two variants.
3680 * left [I] First variant
3681 * right [I] Second variant
3682 * result [O] Result variant
3686 * Failure: An HRESULT error code indicating the error.
3688 HRESULT WINAPI
VarSub(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
3690 HRESULT hres
= S_OK
;
3691 VARTYPE resvt
= VT_EMPTY
;
3692 VARTYPE leftvt
,rightvt
;
3693 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
3695 VARIANT tempLeft
, tempRight
;
3699 VariantInit(&tempLeft
);
3700 VariantInit(&tempRight
);
3702 TRACE("(%s,%s,%p)\n", debugstr_variant(left
), debugstr_variant(right
), result
);
3704 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
&&
3705 (V_VT(left
)&(~VT_TYPEMASK
)) == 0 &&
3706 (V_VT(right
) & VT_TYPEMASK
) != VT_NULL
)
3708 if (NULL
== V_DISPATCH(left
)) {
3709 if ((V_VT(right
) & VT_TYPEMASK
) >= VT_INT_PTR
)
3710 hres
= DISP_E_BADVARTYPE
;
3711 else if ((V_VT(right
) & VT_TYPEMASK
) >= VT_UI8
&&
3712 (V_VT(right
) & VT_TYPEMASK
) < VT_RECORD
)
3713 hres
= DISP_E_BADVARTYPE
;
3714 else switch (V_VT(right
) & VT_TYPEMASK
)
3722 hres
= DISP_E_BADVARTYPE
;
3724 if (FAILED(hres
)) goto end
;
3726 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
3727 if (FAILED(hres
)) goto end
;
3730 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
&&
3731 (V_VT(right
)&(~VT_TYPEMASK
)) == 0 &&
3732 (V_VT(left
) & VT_TYPEMASK
) != VT_NULL
)
3734 if (NULL
== V_DISPATCH(right
))
3736 if ((V_VT(left
) & VT_TYPEMASK
) >= VT_INT_PTR
)
3737 hres
= DISP_E_BADVARTYPE
;
3738 else if ((V_VT(left
) & VT_TYPEMASK
) >= VT_UI8
&&
3739 (V_VT(left
) & VT_TYPEMASK
) < VT_RECORD
)
3740 hres
= DISP_E_BADVARTYPE
;
3741 else switch (V_VT(left
) & VT_TYPEMASK
)
3749 hres
= DISP_E_BADVARTYPE
;
3751 if (FAILED(hres
)) goto end
;
3753 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
3754 if (FAILED(hres
)) goto end
;
3758 leftvt
= V_VT(left
)&VT_TYPEMASK
;
3759 rightvt
= V_VT(right
)&VT_TYPEMASK
;
3760 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
3761 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
3763 if (leftExtraFlags
!= rightExtraFlags
)
3765 hres
= DISP_E_BADVARTYPE
;
3768 ExtraFlags
= leftExtraFlags
;
3770 /* determine return type and return code */
3771 /* All extra flags produce errors */
3772 if (ExtraFlags
== (VT_VECTOR
|VT_BYREF
|VT_RESERVED
) ||
3773 ExtraFlags
== (VT_VECTOR
|VT_RESERVED
) ||
3774 ExtraFlags
== (VT_VECTOR
|VT_BYREF
) ||
3775 ExtraFlags
== (VT_BYREF
|VT_RESERVED
) ||
3776 ExtraFlags
== VT_VECTOR
||
3777 ExtraFlags
== VT_BYREF
||
3778 ExtraFlags
== VT_RESERVED
)
3780 hres
= DISP_E_BADVARTYPE
;
3783 else if (ExtraFlags
>= VT_ARRAY
)
3785 hres
= DISP_E_TYPEMISMATCH
;
3788 /* Native VarSub cannot handle: VT_I1, VT_UI2, VT_UI4,
3789 VT_INT, VT_UINT and VT_UI8. Tested with WinXP */
3790 else if (leftvt
== VT_CLSID
|| rightvt
== VT_CLSID
||
3791 leftvt
== VT_VARIANT
|| rightvt
== VT_VARIANT
||
3792 leftvt
== VT_I1
|| rightvt
== VT_I1
||
3793 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
3794 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
3795 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
3796 leftvt
== VT_INT
|| rightvt
== VT_INT
||
3797 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
3798 leftvt
== VT_UNKNOWN
|| rightvt
== VT_UNKNOWN
||
3799 leftvt
== VT_RECORD
|| rightvt
== VT_RECORD
)
3801 if (leftvt
== VT_RECORD
&& rightvt
== VT_I8
)
3802 hres
= DISP_E_TYPEMISMATCH
;
3803 else if (leftvt
< VT_UI1
&& rightvt
== VT_RECORD
)
3804 hres
= DISP_E_TYPEMISMATCH
;
3805 else if (leftvt
>= VT_UI1
&& rightvt
== VT_RECORD
)
3806 hres
= DISP_E_TYPEMISMATCH
;
3807 else if (leftvt
== VT_RECORD
&& rightvt
<= VT_UI1
)
3808 hres
= DISP_E_TYPEMISMATCH
;
3809 else if (leftvt
== VT_RECORD
&& rightvt
> VT_UI1
)
3810 hres
= DISP_E_BADVARTYPE
;
3812 hres
= DISP_E_BADVARTYPE
;
3815 /* The following flags/types are invalid for left variant */
3816 else if (!((leftvt
<= VT_LPWSTR
|| leftvt
== VT_RECORD
||
3817 leftvt
== VT_CLSID
) && leftvt
!= (VARTYPE
)15 /* undefined vt */ &&
3818 (leftvt
< VT_VOID
|| leftvt
> VT_LPWSTR
)))
3820 hres
= DISP_E_BADVARTYPE
;
3823 /* The following flags/types are invalid for right variant */
3824 else if (!((rightvt
<= VT_LPWSTR
|| rightvt
== VT_RECORD
||
3825 rightvt
== VT_CLSID
) && rightvt
!= (VARTYPE
)15 /* undefined vt */ &&
3826 (rightvt
< VT_VOID
|| rightvt
> VT_LPWSTR
)))
3828 hres
= DISP_E_BADVARTYPE
;
3831 else if ((leftvt
== VT_NULL
&& rightvt
== VT_DISPATCH
) ||
3832 (leftvt
== VT_DISPATCH
&& rightvt
== VT_NULL
))
3834 else if (leftvt
== VT_DISPATCH
|| rightvt
== VT_DISPATCH
||
3835 leftvt
== VT_ERROR
|| rightvt
== VT_ERROR
)
3837 hres
= DISP_E_TYPEMISMATCH
;
3840 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
3842 else if ((leftvt
== VT_EMPTY
&& rightvt
== VT_BSTR
) ||
3843 (leftvt
== VT_DATE
&& rightvt
== VT_DATE
) ||
3844 (leftvt
== VT_BSTR
&& rightvt
== VT_EMPTY
) ||
3845 (leftvt
== VT_BSTR
&& rightvt
== VT_BSTR
))
3847 else if (leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
)
3849 else if (leftvt
== VT_DATE
|| rightvt
== VT_DATE
)
3851 else if (leftvt
== VT_CY
|| rightvt
== VT_CY
)
3853 else if (leftvt
== VT_R8
|| rightvt
== VT_R8
)
3855 else if (leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
)
3857 else if (leftvt
== VT_R4
|| rightvt
== VT_R4
)
3859 if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
3860 leftvt
== VT_I8
|| rightvt
== VT_I8
)
3865 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
3867 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
)
3869 else if (leftvt
== VT_I2
|| rightvt
== VT_I2
||
3870 leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
3871 (leftvt
== VT_EMPTY
&& rightvt
== VT_EMPTY
))
3873 else if (leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
3877 hres
= DISP_E_TYPEMISMATCH
;
3881 /* coerce to the result type */
3882 if (leftvt
== VT_BSTR
&& rightvt
== VT_DATE
)
3883 hres
= VariantChangeType(&lv
, left
, 0, VT_R8
);
3885 hres
= VariantChangeType(&lv
, left
, 0, resvt
);
3886 if (hres
!= S_OK
) goto end
;
3887 if (leftvt
== VT_DATE
&& rightvt
== VT_BSTR
)
3888 hres
= VariantChangeType(&rv
, right
, 0, VT_R8
);
3890 hres
= VariantChangeType(&rv
, right
, 0, resvt
);
3891 if (hres
!= S_OK
) goto end
;
3894 V_VT(result
) = resvt
;
3900 V_DATE(result
) = V_DATE(&lv
) - V_DATE(&rv
);
3903 hres
= VarCySub(V_CY(&lv
), V_CY(&rv
), &(V_CY(result
)));
3906 V_R4(result
) = V_R4(&lv
) - V_R4(&rv
);
3909 V_I8(result
) = V_I8(&lv
) - V_I8(&rv
);
3912 V_I4(result
) = V_I4(&lv
) - V_I4(&rv
);
3915 V_I2(result
) = V_I2(&lv
) - V_I2(&rv
);
3918 V_UI1(result
) = V_UI2(&lv
) - V_UI1(&rv
);
3921 V_R8(result
) = V_R8(&lv
) - V_R8(&rv
);
3924 hres
= VarDecSub(&(V_DECIMAL(&lv
)), &(V_DECIMAL(&rv
)), &(V_DECIMAL(result
)));
3931 VariantClear(&tempLeft
);
3932 VariantClear(&tempRight
);
3933 TRACE("returning 0x%8x %s\n", hres
, debugstr_variant(result
));
3938 /**********************************************************************
3939 * VarOr [OLEAUT32.157]
3941 * Perform a logical or (OR) operation on two variants.
3944 * pVarLeft [I] First variant
3945 * pVarRight [I] Variant to OR with pVarLeft
3946 * pVarOut [O] Destination for OR result
3949 * Success: S_OK. pVarOut contains the result of the operation with its type
3950 * taken from the table listed under VarXor().
3951 * Failure: An HRESULT error code indicating the error.
3954 * See the Notes section of VarXor() for further information.
3956 HRESULT WINAPI
VarOr(LPVARIANT pVarLeft
, LPVARIANT pVarRight
, LPVARIANT pVarOut
)
3959 VARIANT varLeft
, varRight
, varStr
;
3961 VARIANT tempLeft
, tempRight
;
3963 VariantInit(&tempLeft
);
3964 VariantInit(&tempRight
);
3965 VariantInit(&varLeft
);
3966 VariantInit(&varRight
);
3967 VariantInit(&varStr
);
3969 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft
), debugstr_variant(pVarRight
), pVarOut
);
3971 /* Handle VT_DISPATCH by storing and taking address of returned value */
3972 if ((V_VT(pVarLeft
) & VT_TYPEMASK
) == VT_DISPATCH
)
3974 hRet
= VARIANT_FetchDispatchValue(pVarLeft
, &tempLeft
);
3975 if (FAILED(hRet
)) goto VarOr_Exit
;
3976 pVarLeft
= &tempLeft
;
3978 if ((V_VT(pVarRight
) & VT_TYPEMASK
) == VT_DISPATCH
)
3980 hRet
= VARIANT_FetchDispatchValue(pVarRight
, &tempRight
);
3981 if (FAILED(hRet
)) goto VarOr_Exit
;
3982 pVarRight
= &tempRight
;
3985 if (V_EXTRA_TYPE(pVarLeft
) || V_EXTRA_TYPE(pVarRight
) ||
3986 V_VT(pVarLeft
) == VT_UNKNOWN
|| V_VT(pVarRight
) == VT_UNKNOWN
||
3987 V_VT(pVarLeft
) == VT_DISPATCH
|| V_VT(pVarRight
) == VT_DISPATCH
||
3988 V_VT(pVarLeft
) == VT_RECORD
|| V_VT(pVarRight
) == VT_RECORD
)
3990 hRet
= DISP_E_BADVARTYPE
;
3994 V_VT(&varLeft
) = V_VT(&varRight
) = V_VT(&varStr
) = VT_EMPTY
;
3996 if (V_VT(pVarLeft
) == VT_NULL
|| V_VT(pVarRight
) == VT_NULL
)
3998 /* NULL OR Zero is NULL, NULL OR value is value */
3999 if (V_VT(pVarLeft
) == VT_NULL
)
4000 pVarLeft
= pVarRight
; /* point to the non-NULL var */
4002 V_VT(pVarOut
) = VT_NULL
;
4005 switch (V_VT(pVarLeft
))
4007 case VT_DATE
: case VT_R8
:
4013 if (V_BOOL(pVarLeft
))
4014 *pVarOut
= *pVarLeft
;
4017 case VT_I2
: case VT_UI2
:
4028 if (V_UI1(pVarLeft
))
4029 *pVarOut
= *pVarLeft
;
4037 case VT_I4
: case VT_UI4
: case VT_INT
: case VT_UINT
:
4043 if (V_CY(pVarLeft
).int64
)
4047 case VT_I8
: case VT_UI8
:
4053 if (DEC_HI32(&V_DECIMAL(pVarLeft
)) || DEC_LO64(&V_DECIMAL(pVarLeft
)))
4061 if (!V_BSTR(pVarLeft
))
4063 hRet
= DISP_E_BADVARTYPE
;
4067 hRet
= VarBoolFromStr(V_BSTR(pVarLeft
), LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
4068 if (SUCCEEDED(hRet
) && b
)
4070 V_VT(pVarOut
) = VT_BOOL
;
4071 V_BOOL(pVarOut
) = b
;
4075 case VT_NULL
: case VT_EMPTY
:
4076 V_VT(pVarOut
) = VT_NULL
;
4080 hRet
= DISP_E_BADVARTYPE
;
4085 if (V_VT(pVarLeft
) == VT_EMPTY
|| V_VT(pVarRight
) == VT_EMPTY
)
4087 if (V_VT(pVarLeft
) == VT_EMPTY
)
4088 pVarLeft
= pVarRight
; /* point to the non-EMPTY var */
4091 /* Since one argument is empty (0), OR'ing it with the other simply
4092 * gives the others value (as 0|x => x). So just convert the other
4093 * argument to the required result type.
4095 switch (V_VT(pVarLeft
))
4098 if (!V_BSTR(pVarLeft
))
4100 hRet
= DISP_E_BADVARTYPE
;
4104 hRet
= VariantCopy(&varStr
, pVarLeft
);
4108 hRet
= VariantChangeType(pVarLeft
, pVarLeft
, 0, VT_BOOL
);
4111 /* Fall Through ... */
4112 case VT_EMPTY
: case VT_UI1
: case VT_BOOL
: case VT_I2
:
4113 V_VT(pVarOut
) = VT_I2
;
4115 case VT_DATE
: case VT_CY
: case VT_DECIMAL
: case VT_R4
: case VT_R8
:
4116 case VT_I1
: case VT_UI2
: case VT_I4
: case VT_UI4
:
4117 case VT_INT
: case VT_UINT
: case VT_UI8
:
4118 V_VT(pVarOut
) = VT_I4
;
4121 V_VT(pVarOut
) = VT_I8
;
4124 hRet
= DISP_E_BADVARTYPE
;
4127 hRet
= VariantCopy(&varLeft
, pVarLeft
);
4130 pVarLeft
= &varLeft
;
4131 hRet
= VariantChangeType(pVarOut
, pVarLeft
, 0, V_VT(pVarOut
));
4135 if (V_VT(pVarLeft
) == VT_BOOL
&& V_VT(pVarRight
) == VT_BOOL
)
4137 V_VT(pVarOut
) = VT_BOOL
;
4138 V_BOOL(pVarOut
) = V_BOOL(pVarLeft
) | V_BOOL(pVarRight
);
4143 if (V_VT(pVarLeft
) == VT_UI1
&& V_VT(pVarRight
) == VT_UI1
)
4145 V_VT(pVarOut
) = VT_UI1
;
4146 V_UI1(pVarOut
) = V_UI1(pVarLeft
) | V_UI1(pVarRight
);
4151 if (V_VT(pVarLeft
) == VT_BSTR
)
4153 hRet
= VariantCopy(&varStr
, pVarLeft
);
4157 hRet
= VariantChangeType(pVarLeft
, pVarLeft
, 0, VT_BOOL
);
4162 if (V_VT(pVarLeft
) == VT_BOOL
&&
4163 (V_VT(pVarRight
) == VT_BOOL
|| V_VT(pVarRight
) == VT_BSTR
))
4167 else if ((V_VT(pVarLeft
) == VT_BOOL
|| V_VT(pVarLeft
) == VT_UI1
||
4168 V_VT(pVarLeft
) == VT_I2
|| V_VT(pVarLeft
) == VT_BSTR
) &&
4169 (V_VT(pVarRight
) == VT_BOOL
|| V_VT(pVarRight
) == VT_UI1
||
4170 V_VT(pVarRight
) == VT_I2
|| V_VT(pVarRight
) == VT_BSTR
))
4174 else if (V_VT(pVarLeft
) == VT_I8
|| V_VT(pVarRight
) == VT_I8
)
4176 if (V_VT(pVarLeft
) == VT_INT
|| V_VT(pVarRight
) == VT_INT
)
4178 hRet
= DISP_E_TYPEMISMATCH
;
4184 hRet
= VariantCopy(&varLeft
, pVarLeft
);
4188 hRet
= VariantCopy(&varRight
, pVarRight
);
4192 if (vt
== VT_I4
&& V_VT(&varLeft
) == VT_UI4
)
4193 V_VT(&varLeft
) = VT_I4
; /* Don't overflow */
4198 if (V_VT(&varLeft
) == VT_BSTR
&&
4199 FAILED(VarR8FromStr(V_BSTR(&varLeft
), LOCALE_USER_DEFAULT
, 0, &d
)))
4200 hRet
= VariantChangeType(&varLeft
, &varLeft
, VARIANT_LOCALBOOL
, VT_BOOL
);
4201 if (SUCCEEDED(hRet
) && V_VT(&varLeft
) != vt
)
4202 hRet
= VariantChangeType(&varLeft
, &varLeft
, 0, vt
);
4207 if (vt
== VT_I4
&& V_VT(&varRight
) == VT_UI4
)
4208 V_VT(&varRight
) = VT_I4
; /* Don't overflow */
4213 if (V_VT(&varRight
) == VT_BSTR
&&
4214 FAILED(VarR8FromStr(V_BSTR(&varRight
), LOCALE_USER_DEFAULT
, 0, &d
)))
4215 hRet
= VariantChangeType(&varRight
, &varRight
, VARIANT_LOCALBOOL
, VT_BOOL
);
4216 if (SUCCEEDED(hRet
) && V_VT(&varRight
) != vt
)
4217 hRet
= VariantChangeType(&varRight
, &varRight
, 0, vt
);
4225 V_I8(pVarOut
) = V_I8(&varLeft
) | V_I8(&varRight
);
4227 else if (vt
== VT_I4
)
4229 V_I4(pVarOut
) = V_I4(&varLeft
) | V_I4(&varRight
);
4233 V_I2(pVarOut
) = V_I2(&varLeft
) | V_I2(&varRight
);
4237 VariantClear(&varStr
);
4238 VariantClear(&varLeft
);
4239 VariantClear(&varRight
);
4240 VariantClear(&tempLeft
);
4241 VariantClear(&tempRight
);
4245 /**********************************************************************
4246 * VarAbs [OLEAUT32.168]
4248 * Convert a variant to its absolute value.
4251 * pVarIn [I] Source variant
4252 * pVarOut [O] Destination for converted value
4255 * Success: S_OK. pVarOut contains the absolute value of pVarIn.
4256 * Failure: An HRESULT error code indicating the error.
4259 * - This function does not process by-reference variants.
4260 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4261 * according to the following table:
4262 *| Input Type Output Type
4263 *| ---------- -----------
4266 *| (All others) Unchanged
4268 HRESULT WINAPI
VarAbs(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4271 HRESULT hRet
= S_OK
;
4276 TRACE("(%s,%p)\n", debugstr_variant(pVarIn
), pVarOut
);
4278 /* Handle VT_DISPATCH by storing and taking address of returned value */
4279 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4281 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4282 if (FAILED(hRet
)) goto VarAbs_Exit
;
4286 if (V_ISARRAY(pVarIn
) || V_VT(pVarIn
) == VT_UNKNOWN
||
4287 V_VT(pVarIn
) == VT_DISPATCH
|| V_VT(pVarIn
) == VT_RECORD
||
4288 V_VT(pVarIn
) == VT_ERROR
)
4290 hRet
= DISP_E_TYPEMISMATCH
;
4293 *pVarOut
= *pVarIn
; /* Shallow copy the value, and invert it if needed */
4295 #define ABS_CASE(typ,min) \
4296 case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \
4297 else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \
4300 switch (V_VT(pVarIn
))
4302 ABS_CASE(I1
,I1_MIN
);
4304 V_VT(pVarOut
) = VT_I2
;
4305 /* BOOL->I2, Fall through ... */
4306 ABS_CASE(I2
,I2_MIN
);
4308 ABS_CASE(I4
,I4_MIN
);
4309 ABS_CASE(I8
,I8_MIN
);
4310 ABS_CASE(R4
,R4_MIN
);
4312 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(&varIn
));
4315 V_VT(pVarOut
) = VT_R8
;
4317 /* Fall through ... */
4319 ABS_CASE(R8
,R8_MIN
);
4321 hRet
= VarCyAbs(V_CY(pVarIn
), & V_CY(pVarOut
));
4324 DEC_SIGN(&V_DECIMAL(pVarOut
)) &= ~DECIMAL_NEG
;
4334 V_VT(pVarOut
) = VT_I2
;
4339 hRet
= DISP_E_BADVARTYPE
;
4343 VariantClear(&temp
);
4347 /**********************************************************************
4348 * VarFix [OLEAUT32.169]
4350 * Truncate a variants value to a whole number.
4353 * pVarIn [I] Source variant
4354 * pVarOut [O] Destination for converted value
4357 * Success: S_OK. pVarOut contains the converted value.
4358 * Failure: An HRESULT error code indicating the error.
4361 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4362 * according to the following table:
4363 *| Input Type Output Type
4364 *| ---------- -----------
4368 *| All Others Unchanged
4369 * - The difference between this function and VarInt() is that VarInt() rounds
4370 * negative numbers away from 0, while this function rounds them towards zero.
4372 HRESULT WINAPI
VarFix(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4374 HRESULT hRet
= S_OK
;
4379 TRACE("(%s,%p)\n", debugstr_variant(pVarIn
), pVarOut
);
4381 /* Handle VT_DISPATCH by storing and taking address of returned value */
4382 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4384 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4385 if (FAILED(hRet
)) goto VarFix_Exit
;
4388 V_VT(pVarOut
) = V_VT(pVarIn
);
4390 switch (V_VT(pVarIn
))
4393 V_UI1(pVarOut
) = V_UI1(pVarIn
);
4396 V_VT(pVarOut
) = VT_I2
;
4399 V_I2(pVarOut
) = V_I2(pVarIn
);
4402 V_I4(pVarOut
) = V_I4(pVarIn
);
4405 V_I8(pVarOut
) = V_I8(pVarIn
);
4408 if (V_R4(pVarIn
) < 0.0f
)
4409 V_R4(pVarOut
) = (float)ceil(V_R4(pVarIn
));
4411 V_R4(pVarOut
) = (float)floor(V_R4(pVarIn
));
4414 V_VT(pVarOut
) = VT_R8
;
4415 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(pVarOut
));
4420 if (V_R8(pVarIn
) < 0.0)
4421 V_R8(pVarOut
) = ceil(V_R8(pVarIn
));
4423 V_R8(pVarOut
) = floor(V_R8(pVarIn
));
4426 hRet
= VarCyFix(V_CY(pVarIn
), &V_CY(pVarOut
));
4429 hRet
= VarDecFix(&V_DECIMAL(pVarIn
), &V_DECIMAL(pVarOut
));
4432 V_VT(pVarOut
) = VT_I2
;
4439 if (V_TYPE(pVarIn
) == VT_CLSID
|| /* VT_CLSID is a special case */
4440 FAILED(VARIANT_ValidateType(V_VT(pVarIn
))))
4441 hRet
= DISP_E_BADVARTYPE
;
4443 hRet
= DISP_E_TYPEMISMATCH
;
4447 V_VT(pVarOut
) = VT_EMPTY
;
4448 VariantClear(&temp
);
4453 /**********************************************************************
4454 * VarInt [OLEAUT32.172]
4456 * Truncate a variants value to a whole number.
4459 * pVarIn [I] Source variant
4460 * pVarOut [O] Destination for converted value
4463 * Success: S_OK. pVarOut contains the converted value.
4464 * Failure: An HRESULT error code indicating the error.
4467 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4468 * according to the following table:
4469 *| Input Type Output Type
4470 *| ---------- -----------
4474 *| All Others Unchanged
4475 * - The difference between this function and VarFix() is that VarFix() rounds
4476 * negative numbers towards 0, while this function rounds them away from zero.
4478 HRESULT WINAPI
VarInt(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4480 HRESULT hRet
= S_OK
;
4485 TRACE("(%s,%p)\n", debugstr_variant(pVarIn
), pVarOut
);
4487 /* Handle VT_DISPATCH by storing and taking address of returned value */
4488 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4490 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4491 if (FAILED(hRet
)) goto VarInt_Exit
;
4494 V_VT(pVarOut
) = V_VT(pVarIn
);
4496 switch (V_VT(pVarIn
))
4499 V_R4(pVarOut
) = (float)floor(V_R4(pVarIn
));
4502 V_VT(pVarOut
) = VT_R8
;
4503 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(pVarOut
));
4508 V_R8(pVarOut
) = floor(V_R8(pVarIn
));
4511 hRet
= VarCyInt(V_CY(pVarIn
), &V_CY(pVarOut
));
4514 hRet
= VarDecInt(&V_DECIMAL(pVarIn
), &V_DECIMAL(pVarOut
));
4517 hRet
= VarFix(pVarIn
, pVarOut
);
4520 VariantClear(&temp
);
4525 /**********************************************************************
4526 * VarXor [OLEAUT32.167]
4528 * Perform a logical exclusive-or (XOR) operation on two variants.
4531 * pVarLeft [I] First variant
4532 * pVarRight [I] Variant to XOR with pVarLeft
4533 * pVarOut [O] Destination for XOR result
4536 * Success: S_OK. pVarOut contains the result of the operation with its type
4537 * taken from the table below).
4538 * Failure: An HRESULT error code indicating the error.
4541 * - Neither pVarLeft or pVarRight are modified by this function.
4542 * - This function does not process by-reference variants.
4543 * - Input types of VT_BSTR may be numeric strings or boolean text.
4544 * - The type of result stored in pVarOut depends on the types of pVarLeft
4545 * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL,
4546 * or VT_NULL if the function succeeds.
4547 * - Type promotion is inconsistent and as a result certain combinations of
4548 * values will return DISP_E_OVERFLOW even when they could be represented.
4549 * This matches the behaviour of native oleaut32.
4551 HRESULT WINAPI
VarXor(LPVARIANT pVarLeft
, LPVARIANT pVarRight
, LPVARIANT pVarOut
)
4554 VARIANT varLeft
, varRight
;
4555 VARIANT tempLeft
, tempRight
;
4559 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft
), debugstr_variant(pVarRight
), pVarOut
);
4561 if (V_EXTRA_TYPE(pVarLeft
) || V_EXTRA_TYPE(pVarRight
) ||
4562 V_VT(pVarLeft
) > VT_UINT
|| V_VT(pVarRight
) > VT_UINT
||
4563 V_VT(pVarLeft
) == VT_VARIANT
|| V_VT(pVarRight
) == VT_VARIANT
||
4564 V_VT(pVarLeft
) == VT_UNKNOWN
|| V_VT(pVarRight
) == VT_UNKNOWN
||
4565 V_VT(pVarLeft
) == (VARTYPE
)15 || V_VT(pVarRight
) == (VARTYPE
)15 ||
4566 V_VT(pVarLeft
) == VT_ERROR
|| V_VT(pVarRight
) == VT_ERROR
)
4567 return DISP_E_BADVARTYPE
;
4569 if (V_VT(pVarLeft
) == VT_NULL
|| V_VT(pVarRight
) == VT_NULL
)
4571 /* NULL XOR anything valid is NULL */
4572 V_VT(pVarOut
) = VT_NULL
;
4576 VariantInit(&tempLeft
);
4577 VariantInit(&tempRight
);
4579 /* Handle VT_DISPATCH by storing and taking address of returned value */
4580 if ((V_VT(pVarLeft
) & VT_TYPEMASK
) == VT_DISPATCH
)
4582 hRet
= VARIANT_FetchDispatchValue(pVarLeft
, &tempLeft
);
4583 if (FAILED(hRet
)) goto VarXor_Exit
;
4584 pVarLeft
= &tempLeft
;
4586 if ((V_VT(pVarRight
) & VT_TYPEMASK
) == VT_DISPATCH
)
4588 hRet
= VARIANT_FetchDispatchValue(pVarRight
, &tempRight
);
4589 if (FAILED(hRet
)) goto VarXor_Exit
;
4590 pVarRight
= &tempRight
;
4593 /* Copy our inputs so we don't disturb anything */
4594 V_VT(&varLeft
) = V_VT(&varRight
) = VT_EMPTY
;
4596 hRet
= VariantCopy(&varLeft
, pVarLeft
);
4600 hRet
= VariantCopy(&varRight
, pVarRight
);
4604 /* Try any strings first as numbers, then as VT_BOOL */
4605 if (V_VT(&varLeft
) == VT_BSTR
)
4607 hRet
= VarR8FromStr(V_BSTR(&varLeft
), LOCALE_USER_DEFAULT
, 0, &d
);
4608 hRet
= VariantChangeType(&varLeft
, &varLeft
, VARIANT_LOCALBOOL
,
4609 FAILED(hRet
) ? VT_BOOL
: VT_I4
);
4614 if (V_VT(&varRight
) == VT_BSTR
)
4616 hRet
= VarR8FromStr(V_BSTR(&varRight
), LOCALE_USER_DEFAULT
, 0, &d
);
4617 hRet
= VariantChangeType(&varRight
, &varRight
, VARIANT_LOCALBOOL
,
4618 FAILED(hRet
) ? VT_BOOL
: VT_I4
);
4623 /* Determine the result type */
4624 if (V_VT(&varLeft
) == VT_I8
|| V_VT(&varRight
) == VT_I8
)
4626 if (V_VT(pVarLeft
) == VT_INT
|| V_VT(pVarRight
) == VT_INT
)
4628 hRet
= DISP_E_TYPEMISMATCH
;
4635 switch ((V_VT(&varLeft
) << 16) | V_VT(&varRight
))
4637 case (VT_BOOL
<< 16) | VT_BOOL
:
4640 case (VT_UI1
<< 16) | VT_UI1
:
4643 case (VT_EMPTY
<< 16) | VT_EMPTY
:
4644 case (VT_EMPTY
<< 16) | VT_UI1
:
4645 case (VT_EMPTY
<< 16) | VT_I2
:
4646 case (VT_EMPTY
<< 16) | VT_BOOL
:
4647 case (VT_UI1
<< 16) | VT_EMPTY
:
4648 case (VT_UI1
<< 16) | VT_I2
:
4649 case (VT_UI1
<< 16) | VT_BOOL
:
4650 case (VT_I2
<< 16) | VT_EMPTY
:
4651 case (VT_I2
<< 16) | VT_UI1
:
4652 case (VT_I2
<< 16) | VT_I2
:
4653 case (VT_I2
<< 16) | VT_BOOL
:
4654 case (VT_BOOL
<< 16) | VT_EMPTY
:
4655 case (VT_BOOL
<< 16) | VT_UI1
:
4656 case (VT_BOOL
<< 16) | VT_I2
:
4665 /* VT_UI4 does not overflow */
4668 if (V_VT(&varLeft
) == VT_UI4
)
4669 V_VT(&varLeft
) = VT_I4
;
4670 if (V_VT(&varRight
) == VT_UI4
)
4671 V_VT(&varRight
) = VT_I4
;
4674 /* Convert our input copies to the result type */
4675 if (V_VT(&varLeft
) != vt
)
4676 hRet
= VariantChangeType(&varLeft
, &varLeft
, 0, vt
);
4680 if (V_VT(&varRight
) != vt
)
4681 hRet
= VariantChangeType(&varRight
, &varRight
, 0, vt
);
4687 /* Calculate the result */
4691 V_I8(pVarOut
) = V_I8(&varLeft
) ^ V_I8(&varRight
);
4694 V_I4(pVarOut
) = V_I4(&varLeft
) ^ V_I4(&varRight
);
4698 V_I2(pVarOut
) = V_I2(&varLeft
) ^ V_I2(&varRight
);
4701 V_UI1(pVarOut
) = V_UI1(&varLeft
) ^ V_UI1(&varRight
);
4706 VariantClear(&varLeft
);
4707 VariantClear(&varRight
);
4708 VariantClear(&tempLeft
);
4709 VariantClear(&tempRight
);
4713 /**********************************************************************
4714 * VarEqv [OLEAUT32.172]
4716 * Determine if two variants contain the same value.
4719 * pVarLeft [I] First variant to compare
4720 * pVarRight [I] Variant to compare to pVarLeft
4721 * pVarOut [O] Destination for comparison result
4724 * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE
4725 * if equivalent or non-zero otherwise.
4726 * Failure: An HRESULT error code indicating the error.
4729 * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts
4732 HRESULT WINAPI
VarEqv(LPVARIANT pVarLeft
, LPVARIANT pVarRight
, LPVARIANT pVarOut
)
4736 TRACE("(%s,%s,%p)\n", debugstr_variant(pVarLeft
), debugstr_variant(pVarRight
), pVarOut
);
4738 hRet
= VarXor(pVarLeft
, pVarRight
, pVarOut
);
4739 if (SUCCEEDED(hRet
))
4741 if (V_VT(pVarOut
) == VT_I8
)
4742 V_I8(pVarOut
) = ~V_I8(pVarOut
);
4744 V_UI4(pVarOut
) = ~V_UI4(pVarOut
);
4749 /**********************************************************************
4750 * VarNeg [OLEAUT32.173]
4752 * Negate the value of a variant.
4755 * pVarIn [I] Source variant
4756 * pVarOut [O] Destination for converted value
4759 * Success: S_OK. pVarOut contains the converted value.
4760 * Failure: An HRESULT error code indicating the error.
4763 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4764 * according to the following table:
4765 *| Input Type Output Type
4766 *| ---------- -----------
4771 *| All Others Unchanged (unless promoted)
4772 * - Where the negated value of a variant does not fit in its base type, the type
4773 * is promoted according to the following table:
4774 *| Input Type Promoted To
4775 *| ---------- -----------
4779 * - The native version of this function returns DISP_E_BADVARTYPE for valid
4780 * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH
4781 * for types which are not valid. Since this is in contravention of the
4782 * meaning of those error codes and unlikely to be relied on by applications,
4783 * this implementation returns errors consistent with the other high level
4784 * variant math functions.
4786 HRESULT WINAPI
VarNeg(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4788 HRESULT hRet
= S_OK
;
4793 TRACE("(%s,%p)\n", debugstr_variant(pVarIn
), pVarOut
);
4795 /* Handle VT_DISPATCH by storing and taking address of returned value */
4796 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4798 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4799 if (FAILED(hRet
)) goto VarNeg_Exit
;
4802 V_VT(pVarOut
) = V_VT(pVarIn
);
4804 switch (V_VT(pVarIn
))
4807 V_VT(pVarOut
) = VT_I2
;
4808 V_I2(pVarOut
) = -V_UI1(pVarIn
);
4811 V_VT(pVarOut
) = VT_I2
;
4814 if (V_I2(pVarIn
) == I2_MIN
)
4816 V_VT(pVarOut
) = VT_I4
;
4817 V_I4(pVarOut
) = -(int)V_I2(pVarIn
);
4820 V_I2(pVarOut
) = -V_I2(pVarIn
);
4823 if (V_I4(pVarIn
) == I4_MIN
)
4825 V_VT(pVarOut
) = VT_R8
;
4826 V_R8(pVarOut
) = -(double)V_I4(pVarIn
);
4829 V_I4(pVarOut
) = -V_I4(pVarIn
);
4832 if (V_I8(pVarIn
) == I8_MIN
)
4834 V_VT(pVarOut
) = VT_R8
;
4835 hRet
= VarR8FromI8(V_I8(pVarIn
), &V_R8(pVarOut
));
4836 V_R8(pVarOut
) *= -1.0;
4839 V_I8(pVarOut
) = -V_I8(pVarIn
);
4842 V_R4(pVarOut
) = -V_R4(pVarIn
);
4846 V_R8(pVarOut
) = -V_R8(pVarIn
);
4849 hRet
= VarCyNeg(V_CY(pVarIn
), &V_CY(pVarOut
));
4852 hRet
= VarDecNeg(&V_DECIMAL(pVarIn
), &V_DECIMAL(pVarOut
));
4855 V_VT(pVarOut
) = VT_R8
;
4856 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(pVarOut
));
4857 V_R8(pVarOut
) = -V_R8(pVarOut
);
4860 V_VT(pVarOut
) = VT_I2
;
4867 if (V_TYPE(pVarIn
) == VT_CLSID
|| /* VT_CLSID is a special case */
4868 FAILED(VARIANT_ValidateType(V_VT(pVarIn
))))
4869 hRet
= DISP_E_BADVARTYPE
;
4871 hRet
= DISP_E_TYPEMISMATCH
;
4875 V_VT(pVarOut
) = VT_EMPTY
;
4876 VariantClear(&temp
);
4881 /**********************************************************************
4882 * VarNot [OLEAUT32.174]
4884 * Perform a not operation on a variant.
4887 * pVarIn [I] Source variant
4888 * pVarOut [O] Destination for converted value
4891 * Success: S_OK. pVarOut contains the converted value.
4892 * Failure: An HRESULT error code indicating the error.
4895 * - Strictly speaking, this function performs a bitwise ones complement
4896 * on the variants value (after possibly converting to VT_I4, see below).
4897 * This only behaves like a boolean not operation if the value in
4898 * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed.
4899 * - To perform a genuine not operation, convert the variant to a VT_BOOL
4900 * before calling this function.
4901 * - This function does not process by-reference variants.
4902 * - The type of the value stored in pVarOut depends on the type of pVarIn,
4903 * according to the following table:
4904 *| Input Type Output Type
4905 *| ---------- -----------
4912 *| (All others) Unchanged
4914 HRESULT WINAPI
VarNot(LPVARIANT pVarIn
, LPVARIANT pVarOut
)
4917 HRESULT hRet
= S_OK
;
4922 TRACE("(%s,%p)\n", debugstr_variant(pVarIn
), pVarOut
);
4924 /* Handle VT_DISPATCH by storing and taking address of returned value */
4925 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
4927 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
4928 if (FAILED(hRet
)) goto VarNot_Exit
;
4932 if (V_VT(pVarIn
) == VT_BSTR
)
4934 V_VT(&varIn
) = VT_R8
;
4935 hRet
= VarR8FromStr( V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(&varIn
) );
4938 V_VT(&varIn
) = VT_BOOL
;
4939 hRet
= VarBoolFromStr( V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &V_BOOL(&varIn
) );
4941 if (FAILED(hRet
)) goto VarNot_Exit
;
4945 V_VT(pVarOut
) = V_VT(pVarIn
);
4947 switch (V_VT(pVarIn
))
4950 V_I4(pVarOut
) = ~V_I1(pVarIn
);
4951 V_VT(pVarOut
) = VT_I4
;
4953 case VT_UI1
: V_UI1(pVarOut
) = ~V_UI1(pVarIn
); break;
4955 case VT_I2
: V_I2(pVarOut
) = ~V_I2(pVarIn
); break;
4957 V_I4(pVarOut
) = ~V_UI2(pVarIn
);
4958 V_VT(pVarOut
) = VT_I4
;
4961 hRet
= VarI4FromDec(&V_DECIMAL(pVarIn
), &V_I4(&varIn
));
4965 /* Fall through ... */
4967 V_VT(pVarOut
) = VT_I4
;
4968 /* Fall through ... */
4969 case VT_I4
: V_I4(pVarOut
) = ~V_I4(pVarIn
); break;
4972 V_I4(pVarOut
) = ~V_UI4(pVarIn
);
4973 V_VT(pVarOut
) = VT_I4
;
4975 case VT_I8
: V_I8(pVarOut
) = ~V_I8(pVarIn
); break;
4977 V_I4(pVarOut
) = ~V_UI8(pVarIn
);
4978 V_VT(pVarOut
) = VT_I4
;
4981 hRet
= VarI4FromR4(V_R4(pVarIn
), &V_I4(pVarOut
));
4982 V_I4(pVarOut
) = ~V_I4(pVarOut
);
4983 V_VT(pVarOut
) = VT_I4
;
4987 hRet
= VarI4FromR8(V_R8(pVarIn
), &V_I4(pVarOut
));
4988 V_I4(pVarOut
) = ~V_I4(pVarOut
);
4989 V_VT(pVarOut
) = VT_I4
;
4992 hRet
= VarI4FromCy(V_CY(pVarIn
), &V_I4(pVarOut
));
4993 V_I4(pVarOut
) = ~V_I4(pVarOut
);
4994 V_VT(pVarOut
) = VT_I4
;
4998 V_VT(pVarOut
) = VT_I2
;
5004 if (V_TYPE(pVarIn
) == VT_CLSID
|| /* VT_CLSID is a special case */
5005 FAILED(VARIANT_ValidateType(V_VT(pVarIn
))))
5006 hRet
= DISP_E_BADVARTYPE
;
5008 hRet
= DISP_E_TYPEMISMATCH
;
5012 V_VT(pVarOut
) = VT_EMPTY
;
5013 VariantClear(&temp
);
5018 /**********************************************************************
5019 * VarRound [OLEAUT32.175]
5021 * Perform a round operation on a variant.
5024 * pVarIn [I] Source variant
5025 * deci [I] Number of decimals to round to
5026 * pVarOut [O] Destination for converted value
5029 * Success: S_OK. pVarOut contains the converted value.
5030 * Failure: An HRESULT error code indicating the error.
5033 * - Floating point values are rounded to the desired number of decimals.
5034 * - Some integer types are just copied to the return variable.
5035 * - Some other integer types are not handled and fail.
5037 HRESULT WINAPI
VarRound(LPVARIANT pVarIn
, int deci
, LPVARIANT pVarOut
)
5040 HRESULT hRet
= S_OK
;
5046 TRACE("(%s,%d)\n", debugstr_variant(pVarIn
), deci
);
5048 /* Handle VT_DISPATCH by storing and taking address of returned value */
5049 if ((V_VT(pVarIn
) & VT_TYPEMASK
) == VT_DISPATCH
&& ((V_VT(pVarIn
) & ~VT_TYPEMASK
) == 0))
5051 hRet
= VARIANT_FetchDispatchValue(pVarIn
, &temp
);
5052 if (FAILED(hRet
)) goto VarRound_Exit
;
5056 switch (V_VT(pVarIn
))
5058 /* cases that fail on windows */
5063 hRet
= DISP_E_BADVARTYPE
;
5066 /* cases just copying in to out */
5068 V_VT(pVarOut
) = V_VT(pVarIn
);
5069 V_UI1(pVarOut
) = V_UI1(pVarIn
);
5072 V_VT(pVarOut
) = V_VT(pVarIn
);
5073 V_I2(pVarOut
) = V_I2(pVarIn
);
5076 V_VT(pVarOut
) = V_VT(pVarIn
);
5077 V_I4(pVarOut
) = V_I4(pVarIn
);
5080 V_VT(pVarOut
) = V_VT(pVarIn
);
5081 /* value unchanged */
5084 /* cases that change type */
5086 V_VT(pVarOut
) = VT_I2
;
5090 V_VT(pVarOut
) = VT_I2
;
5091 V_I2(pVarOut
) = V_BOOL(pVarIn
);
5094 hRet
= VarR8FromStr(V_BSTR(pVarIn
), LOCALE_USER_DEFAULT
, 0, &V_R8(&varIn
));
5099 /* Fall through ... */
5101 /* cases we need to do math */
5103 if (V_R8(pVarIn
)>0) {
5104 V_R8(pVarOut
)=floor(V_R8(pVarIn
)*pow(10, deci
)+0.5)/pow(10, deci
);
5106 V_R8(pVarOut
)=ceil(V_R8(pVarIn
)*pow(10, deci
)-0.5)/pow(10, deci
);
5108 V_VT(pVarOut
) = V_VT(pVarIn
);
5111 if (V_R4(pVarIn
)>0) {
5112 V_R4(pVarOut
)=floor(V_R4(pVarIn
)*pow(10, deci
)+0.5)/pow(10, deci
);
5114 V_R4(pVarOut
)=ceil(V_R4(pVarIn
)*pow(10, deci
)-0.5)/pow(10, deci
);
5116 V_VT(pVarOut
) = V_VT(pVarIn
);
5119 if (V_DATE(pVarIn
)>0) {
5120 V_DATE(pVarOut
)=floor(V_DATE(pVarIn
)*pow(10, deci
)+0.5)/pow(10, deci
);
5122 V_DATE(pVarOut
)=ceil(V_DATE(pVarIn
)*pow(10, deci
)-0.5)/pow(10, deci
);
5124 V_VT(pVarOut
) = V_VT(pVarIn
);
5130 factor
=pow(10, 4-deci
);
5132 if (V_CY(pVarIn
).int64
>0) {
5133 V_CY(pVarOut
).int64
=floor(V_CY(pVarIn
).int64
/factor
)*factor
;
5135 V_CY(pVarOut
).int64
=ceil(V_CY(pVarIn
).int64
/factor
)*factor
;
5137 V_VT(pVarOut
) = V_VT(pVarIn
);
5143 hRet
= VarR8FromDec(&V_DECIMAL(pVarIn
), &dbl
);
5148 dbl
= floor(dbl
*pow(10,deci
)+0.5);
5150 dbl
= ceil(dbl
*pow(10,deci
)-0.5);
5152 V_VT(pVarOut
)=VT_DECIMAL
;
5153 hRet
= VarDecFromR8(dbl
, &V_DECIMAL(pVarOut
));
5156 /* cases we don't know yet */
5158 FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n",
5159 V_VT(pVarIn
) & VT_TYPEMASK
, deci
);
5160 hRet
= DISP_E_BADVARTYPE
;
5164 V_VT(pVarOut
) = VT_EMPTY
;
5165 VariantClear(&temp
);
5167 TRACE("returning 0x%08x %s\n", hRet
, debugstr_variant(pVarOut
));
5171 /**********************************************************************
5172 * VarIdiv [OLEAUT32.153]
5174 * Converts input variants to integers and divides them.
5177 * left [I] Left hand variant
5178 * right [I] Right hand variant
5179 * result [O] Destination for quotient
5182 * Success: S_OK. result contains the quotient.
5183 * Failure: An HRESULT error code indicating the error.
5186 * If either expression is null, null is returned, as per MSDN
5188 HRESULT WINAPI
VarIdiv(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5190 HRESULT hres
= S_OK
;
5191 VARTYPE resvt
= VT_EMPTY
;
5192 VARTYPE leftvt
,rightvt
;
5193 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
5195 VARIANT tempLeft
, tempRight
;
5197 TRACE("(%s,%s,%p)\n", debugstr_variant(left
), debugstr_variant(right
), result
);
5201 VariantInit(&tempLeft
);
5202 VariantInit(&tempRight
);
5204 leftvt
= V_VT(left
)&VT_TYPEMASK
;
5205 rightvt
= V_VT(right
)&VT_TYPEMASK
;
5206 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
5207 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
5209 if (leftExtraFlags
!= rightExtraFlags
)
5211 hres
= DISP_E_BADVARTYPE
;
5214 ExtraFlags
= leftExtraFlags
;
5216 /* Native VarIdiv always returns an error when using extra
5217 * flags or if the variant combination is I8 and INT.
5219 if ((leftvt
== VT_I8
&& rightvt
== VT_INT
) ||
5220 (leftvt
== VT_INT
&& rightvt
== VT_I8
) ||
5221 (rightvt
== VT_EMPTY
&& leftvt
!= VT_NULL
) ||
5224 hres
= DISP_E_BADVARTYPE
;
5228 /* Determine variant type */
5229 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
)
5231 V_VT(result
) = VT_NULL
;
5235 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
5237 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
5238 leftvt
== VT_INT
|| rightvt
== VT_INT
||
5239 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
5240 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
5241 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
5242 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
5243 leftvt
== VT_I1
|| rightvt
== VT_I1
||
5244 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
||
5245 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
5246 leftvt
== VT_CY
|| rightvt
== VT_CY
||
5247 leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
||
5248 leftvt
== VT_R8
|| rightvt
== VT_R8
||
5249 leftvt
== VT_R4
|| rightvt
== VT_R4
)
5251 else if (leftvt
== VT_I2
|| rightvt
== VT_I2
||
5252 leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
5255 else if (leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
5259 hres
= DISP_E_BADVARTYPE
;
5263 /* coerce to the result type */
5264 hres
= VariantChangeType(&lv
, left
, 0, resvt
);
5265 if (hres
!= S_OK
) goto end
;
5266 hres
= VariantChangeType(&rv
, right
, 0, resvt
);
5267 if (hres
!= S_OK
) goto end
;
5270 V_VT(result
) = resvt
;
5274 if (V_UI1(&rv
) == 0)
5276 hres
= DISP_E_DIVBYZERO
;
5277 V_VT(result
) = VT_EMPTY
;
5280 V_UI1(result
) = V_UI1(&lv
) / V_UI1(&rv
);
5285 hres
= DISP_E_DIVBYZERO
;
5286 V_VT(result
) = VT_EMPTY
;
5289 V_I2(result
) = V_I2(&lv
) / V_I2(&rv
);
5294 hres
= DISP_E_DIVBYZERO
;
5295 V_VT(result
) = VT_EMPTY
;
5298 V_I4(result
) = V_I4(&lv
) / V_I4(&rv
);
5303 hres
= DISP_E_DIVBYZERO
;
5304 V_VT(result
) = VT_EMPTY
;
5307 V_I8(result
) = V_I8(&lv
) / V_I8(&rv
);
5310 FIXME("Couldn't integer divide variant types %d,%d\n",
5317 VariantClear(&tempLeft
);
5318 VariantClear(&tempRight
);
5324 /**********************************************************************
5325 * VarMod [OLEAUT32.155]
5327 * Perform the modulus operation of the right hand variant on the left
5330 * left [I] Left hand variant
5331 * right [I] Right hand variant
5332 * result [O] Destination for converted value
5335 * Success: S_OK. result contains the remainder.
5336 * Failure: An HRESULT error code indicating the error.
5339 * If an error occurs the type of result will be modified but the value will not be.
5340 * Doesn't support arrays or any special flags yet.
5342 HRESULT WINAPI
VarMod(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5345 HRESULT rc
= E_FAIL
;
5348 VARIANT tempLeft
, tempRight
;
5350 VariantInit(&tempLeft
);
5351 VariantInit(&tempRight
);
5355 TRACE("(%s,%s,%p)\n", debugstr_variant(left
), debugstr_variant(right
), result
);
5357 /* Handle VT_DISPATCH by storing and taking address of returned value */
5358 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
5360 rc
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
5361 if (FAILED(rc
)) goto end
;
5364 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
5366 rc
= VARIANT_FetchDispatchValue(right
, &tempRight
);
5367 if (FAILED(rc
)) goto end
;
5371 /* check for invalid inputs */
5373 switch (V_VT(left
) & VT_TYPEMASK
) {
5395 V_VT(result
) = VT_EMPTY
;
5396 rc
= DISP_E_TYPEMISMATCH
;
5399 rc
= DISP_E_TYPEMISMATCH
;
5402 V_VT(result
) = VT_EMPTY
;
5403 rc
= DISP_E_TYPEMISMATCH
;
5408 V_VT(result
) = VT_EMPTY
;
5409 rc
= DISP_E_BADVARTYPE
;
5414 switch (V_VT(right
) & VT_TYPEMASK
) {
5420 if((V_VT(left
) == VT_INT
) && (V_VT(right
) == VT_I8
))
5422 V_VT(result
) = VT_EMPTY
;
5423 rc
= DISP_E_TYPEMISMATCH
;
5427 if((V_VT(right
) == VT_INT
) && (V_VT(left
) == VT_I8
))
5429 V_VT(result
) = VT_EMPTY
;
5430 rc
= DISP_E_TYPEMISMATCH
;
5441 if(V_VT(left
) == VT_EMPTY
)
5443 V_VT(result
) = VT_I4
;
5450 if(V_VT(left
) == VT_ERROR
)
5452 V_VT(result
) = VT_EMPTY
;
5453 rc
= DISP_E_TYPEMISMATCH
;
5457 if(V_VT(left
) == VT_NULL
)
5459 V_VT(result
) = VT_NULL
;
5466 V_VT(result
) = VT_EMPTY
;
5467 rc
= DISP_E_BADVARTYPE
;
5470 if(V_VT(left
) == VT_VOID
)
5472 V_VT(result
) = VT_EMPTY
;
5473 rc
= DISP_E_BADVARTYPE
;
5474 } else if((V_VT(left
) == VT_NULL
) || (V_VT(left
) == VT_EMPTY
) || (V_VT(left
) == VT_ERROR
) ||
5477 V_VT(result
) = VT_NULL
;
5481 V_VT(result
) = VT_NULL
;
5482 rc
= DISP_E_BADVARTYPE
;
5487 V_VT(result
) = VT_EMPTY
;
5488 rc
= DISP_E_TYPEMISMATCH
;
5491 rc
= DISP_E_TYPEMISMATCH
;
5494 if((V_VT(left
) == 15) || ((V_VT(left
) >= 24) && (V_VT(left
) <= 35)) || !lOk
)
5496 V_VT(result
) = VT_EMPTY
;
5497 rc
= DISP_E_BADVARTYPE
;
5500 V_VT(result
) = VT_EMPTY
;
5501 rc
= DISP_E_TYPEMISMATCH
;
5505 V_VT(result
) = VT_EMPTY
;
5506 rc
= DISP_E_BADVARTYPE
;
5510 /* determine the result type */
5511 if((V_VT(left
) == VT_I8
) || (V_VT(right
) == VT_I8
)) resT
= VT_I8
;
5512 else if((V_VT(left
) == VT_UI1
) && (V_VT(right
) == VT_BOOL
)) resT
= VT_I2
;
5513 else if((V_VT(left
) == VT_UI1
) && (V_VT(right
) == VT_UI1
)) resT
= VT_UI1
;
5514 else if((V_VT(left
) == VT_UI1
) && (V_VT(right
) == VT_I2
)) resT
= VT_I2
;
5515 else if((V_VT(left
) == VT_I2
) && (V_VT(right
) == VT_BOOL
)) resT
= VT_I2
;
5516 else if((V_VT(left
) == VT_I2
) && (V_VT(right
) == VT_UI1
)) resT
= VT_I2
;
5517 else if((V_VT(left
) == VT_I2
) && (V_VT(right
) == VT_I2
)) resT
= VT_I2
;
5518 else if((V_VT(left
) == VT_BOOL
) && (V_VT(right
) == VT_BOOL
)) resT
= VT_I2
;
5519 else if((V_VT(left
) == VT_BOOL
) && (V_VT(right
) == VT_UI1
)) resT
= VT_I2
;
5520 else if((V_VT(left
) == VT_BOOL
) && (V_VT(right
) == VT_I2
)) resT
= VT_I2
;
5521 else resT
= VT_I4
; /* most outputs are I4 */
5523 /* convert to I8 for the modulo */
5524 rc
= VariantChangeType(&lv
, left
, 0, VT_I8
);
5527 FIXME("Could not convert left type %d to %d? rc == 0x%X\n", V_VT(left
), VT_I8
, rc
);
5531 rc
= VariantChangeType(&rv
, right
, 0, VT_I8
);
5534 FIXME("Could not convert right type %d to %d? rc == 0x%X\n", V_VT(right
), VT_I8
, rc
);
5538 /* if right is zero set VT_EMPTY and return divide by zero */
5541 V_VT(result
) = VT_EMPTY
;
5542 rc
= DISP_E_DIVBYZERO
;
5546 /* perform the modulo operation */
5547 V_VT(result
) = VT_I8
;
5548 V_I8(result
) = V_I8(&lv
) % V_I8(&rv
);
5550 TRACE("V_I8(left) == %s, V_I8(right) == %s, V_I8(result) == %s\n",
5551 wine_dbgstr_longlong(V_I8(&lv
)), wine_dbgstr_longlong(V_I8(&rv
)),
5552 wine_dbgstr_longlong(V_I8(result
)));
5554 /* convert left and right to the destination type */
5555 rc
= VariantChangeType(result
, result
, 0, resT
);
5558 FIXME("Could not convert 0x%x to %d?\n", V_VT(result
), resT
);
5559 /* fall to end of function */
5565 VariantClear(&tempLeft
);
5566 VariantClear(&tempRight
);
5570 /**********************************************************************
5571 * VarPow [OLEAUT32.158]
5573 * Computes the power of one variant to another variant.
5576 * left [I] First variant
5577 * right [I] Second variant
5578 * result [O] Result variant
5582 * Failure: An HRESULT error code indicating the error.
5584 HRESULT WINAPI
VarPow(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5588 VARTYPE resvt
= VT_EMPTY
;
5589 VARTYPE leftvt
,rightvt
;
5590 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
5591 VARIANT tempLeft
, tempRight
;
5593 TRACE("(%s,%s,%p)\n", debugstr_variant(left
), debugstr_variant(right
), result
);
5597 VariantInit(&tempLeft
);
5598 VariantInit(&tempRight
);
5600 /* Handle VT_DISPATCH by storing and taking address of returned value */
5601 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
5603 hr
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
5604 if (FAILED(hr
)) goto end
;
5607 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
5609 hr
= VARIANT_FetchDispatchValue(right
, &tempRight
);
5610 if (FAILED(hr
)) goto end
;
5614 leftvt
= V_VT(left
)&VT_TYPEMASK
;
5615 rightvt
= V_VT(right
)&VT_TYPEMASK
;
5616 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
5617 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
5619 if (leftExtraFlags
!= rightExtraFlags
)
5621 hr
= DISP_E_BADVARTYPE
;
5624 ExtraFlags
= leftExtraFlags
;
5626 /* Native VarPow always returns an error when using extra flags */
5627 if (ExtraFlags
!= 0)
5629 hr
= DISP_E_BADVARTYPE
;
5633 /* Determine return type */
5634 else if (leftvt
== VT_NULL
|| rightvt
== VT_NULL
) {
5635 V_VT(result
) = VT_NULL
;
5639 else if ((leftvt
== VT_EMPTY
|| leftvt
== VT_I2
||
5640 leftvt
== VT_I4
|| leftvt
== VT_R4
||
5641 leftvt
== VT_R8
|| leftvt
== VT_CY
||
5642 leftvt
== VT_DATE
|| leftvt
== VT_BSTR
||
5643 leftvt
== VT_BOOL
|| leftvt
== VT_DECIMAL
||
5644 (leftvt
>= VT_I1
&& leftvt
<= VT_UINT
)) &&
5645 (rightvt
== VT_EMPTY
|| rightvt
== VT_I2
||
5646 rightvt
== VT_I4
|| rightvt
== VT_R4
||
5647 rightvt
== VT_R8
|| rightvt
== VT_CY
||
5648 rightvt
== VT_DATE
|| rightvt
== VT_BSTR
||
5649 rightvt
== VT_BOOL
|| rightvt
== VT_DECIMAL
||
5650 (rightvt
>= VT_I1
&& rightvt
<= VT_UINT
)))
5654 hr
= DISP_E_BADVARTYPE
;
5658 hr
= VariantChangeType(&dl
,left
,0,resvt
);
5660 ERR("Could not change passed left argument to VT_R8, handle it differently.\n");
5665 hr
= VariantChangeType(&dr
,right
,0,resvt
);
5667 ERR("Could not change passed right argument to VT_R8, handle it differently.\n");
5672 V_VT(result
) = VT_R8
;
5673 V_R8(result
) = pow(V_R8(&dl
),V_R8(&dr
));
5678 VariantClear(&tempLeft
);
5679 VariantClear(&tempRight
);
5684 /**********************************************************************
5685 * VarImp [OLEAUT32.154]
5687 * Bitwise implication of two variants.
5690 * left [I] First variant
5691 * right [I] Second variant
5692 * result [O] Result variant
5696 * Failure: An HRESULT error code indicating the error.
5698 HRESULT WINAPI
VarImp(LPVARIANT left
, LPVARIANT right
, LPVARIANT result
)
5700 HRESULT hres
= S_OK
;
5701 VARTYPE resvt
= VT_EMPTY
;
5702 VARTYPE leftvt
,rightvt
;
5703 VARTYPE rightExtraFlags
,leftExtraFlags
,ExtraFlags
;
5706 VARIANT tempLeft
, tempRight
;
5710 VariantInit(&tempLeft
);
5711 VariantInit(&tempRight
);
5713 TRACE("(%s,%s,%p)\n", debugstr_variant(left
), debugstr_variant(right
), result
);
5715 /* Handle VT_DISPATCH by storing and taking address of returned value */
5716 if ((V_VT(left
) & VT_TYPEMASK
) == VT_DISPATCH
)
5718 hres
= VARIANT_FetchDispatchValue(left
, &tempLeft
);
5719 if (FAILED(hres
)) goto VarImp_Exit
;
5722 if ((V_VT(right
) & VT_TYPEMASK
) == VT_DISPATCH
)
5724 hres
= VARIANT_FetchDispatchValue(right
, &tempRight
);
5725 if (FAILED(hres
)) goto VarImp_Exit
;
5729 leftvt
= V_VT(left
)&VT_TYPEMASK
;
5730 rightvt
= V_VT(right
)&VT_TYPEMASK
;
5731 leftExtraFlags
= V_VT(left
)&(~VT_TYPEMASK
);
5732 rightExtraFlags
= V_VT(right
)&(~VT_TYPEMASK
);
5734 if (leftExtraFlags
!= rightExtraFlags
)
5736 hres
= DISP_E_BADVARTYPE
;
5739 ExtraFlags
= leftExtraFlags
;
5741 /* Native VarImp always returns an error when using extra
5742 * flags or if the variants are I8 and INT.
5744 if ((leftvt
== VT_I8
&& rightvt
== VT_INT
) ||
5747 hres
= DISP_E_BADVARTYPE
;
5751 /* Determine result type */
5752 else if ((leftvt
== VT_NULL
&& rightvt
== VT_NULL
) ||
5753 (leftvt
== VT_NULL
&& rightvt
== VT_EMPTY
))
5755 V_VT(result
) = VT_NULL
;
5759 else if (leftvt
== VT_I8
|| rightvt
== VT_I8
)
5761 else if (leftvt
== VT_I4
|| rightvt
== VT_I4
||
5762 leftvt
== VT_INT
|| rightvt
== VT_INT
||
5763 leftvt
== VT_UINT
|| rightvt
== VT_UINT
||
5764 leftvt
== VT_UI4
|| rightvt
== VT_UI4
||
5765 leftvt
== VT_UI8
|| rightvt
== VT_UI8
||
5766 leftvt
== VT_UI2
|| rightvt
== VT_UI2
||
5767 leftvt
== VT_DECIMAL
|| rightvt
== VT_DECIMAL
||
5768 leftvt
== VT_DATE
|| rightvt
== VT_DATE
||
5769 leftvt
== VT_CY
|| rightvt
== VT_CY
||
5770 leftvt
== VT_R8
|| rightvt
== VT_R8
||
5771 leftvt
== VT_R4
|| rightvt
== VT_R4
||
5772 leftvt
== VT_I1
|| rightvt
== VT_I1
)
5774 else if ((leftvt
== VT_UI1
&& rightvt
== VT_UI1
) ||
5775 (leftvt
== VT_UI1
&& rightvt
== VT_NULL
) ||
5776 (leftvt
== VT_NULL
&& rightvt
== VT_UI1
))
5778 else if (leftvt
== VT_EMPTY
|| rightvt
== VT_EMPTY
||
5779 leftvt
== VT_I2
|| rightvt
== VT_I2
||
5780 leftvt
== VT_UI1
|| rightvt
== VT_UI1
)
5782 else if (leftvt
== VT_BOOL
|| rightvt
== VT_BOOL
||
5783 leftvt
== VT_BSTR
|| rightvt
== VT_BSTR
)
5786 /* VT_NULL requires special handling for when the opposite
5787 * variant is equal to something other than -1.
5788 * (NULL Imp 0 = NULL, NULL Imp n = n)
5790 if (leftvt
== VT_NULL
)
5795 case VT_I1
: if (!V_I1(right
)) resvt
= VT_NULL
; break;
5796 case VT_UI1
: if (!V_UI1(right
)) resvt
= VT_NULL
; break;
5797 case VT_I2
: if (!V_I2(right
)) resvt
= VT_NULL
; break;
5798 case VT_UI2
: if (!V_UI2(right
)) resvt
= VT_NULL
; break;
5799 case VT_I4
: if (!V_I4(right
)) resvt
= VT_NULL
; break;
5800 case VT_UI4
: if (!V_UI4(right
)) resvt
= VT_NULL
; break;
5801 case VT_I8
: if (!V_I8(right
)) resvt
= VT_NULL
; break;
5802 case VT_UI8
: if (!V_UI8(right
)) resvt
= VT_NULL
; break;
5803 case VT_INT
: if (!V_INT(right
)) resvt
= VT_NULL
; break;
5804 case VT_UINT
: if (!V_UINT(right
)) resvt
= VT_NULL
; break;
5805 case VT_BOOL
: if (!V_BOOL(right
)) resvt
= VT_NULL
; break;
5806 case VT_R4
: if (!V_R4(right
)) resvt
= VT_NULL
; break;
5807 case VT_R8
: if (!V_R8(right
)) resvt
= VT_NULL
; break;
5808 case VT_DATE
: if (!V_DATE(right
)) resvt
= VT_NULL
; break;
5809 case VT_CY
: if (!V_CY(right
).int64
) resvt
= VT_NULL
; break;
5811 if (!(DEC_HI32(&V_DECIMAL(right
)) || DEC_LO64(&V_DECIMAL(right
))))
5815 hres
= VarBoolFromStr(V_BSTR(right
),LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
5816 if (FAILED(hres
)) goto VarImp_Exit
;
5818 V_VT(result
) = VT_NULL
;
5821 V_VT(result
) = VT_BOOL
;
5826 if (resvt
== VT_NULL
)
5828 V_VT(result
) = resvt
;
5833 hres
= VariantChangeType(result
,right
,0,resvt
);
5838 /* Special handling is required when NULL is the right variant.
5839 * (-1 Imp NULL = NULL, n Imp NULL = n Imp 0)
5841 else if (rightvt
== VT_NULL
)
5846 case VT_I1
: if (V_I1(left
) == -1) resvt
= VT_NULL
; break;
5847 case VT_UI1
: if (V_UI1(left
) == 0xff) resvt
= VT_NULL
; break;
5848 case VT_I2
: if (V_I2(left
) == -1) resvt
= VT_NULL
; break;
5849 case VT_UI2
: if (V_UI2(left
) == 0xffff) resvt
= VT_NULL
; break;
5850 case VT_INT
: if (V_INT(left
) == -1) resvt
= VT_NULL
; break;
5851 case VT_UINT
: if (V_UINT(left
) == ~0u) resvt
= VT_NULL
; break;
5852 case VT_I4
: if (V_I4(left
) == -1) resvt
= VT_NULL
; break;
5853 case VT_UI4
: if (V_UI4(left
) == ~0u) resvt
= VT_NULL
; break;
5854 case VT_I8
: if (V_I8(left
) == -1) resvt
= VT_NULL
; break;
5855 case VT_UI8
: if (V_UI8(left
) == ~(ULONGLONG
)0) resvt
= VT_NULL
; break;
5856 case VT_BOOL
: if (V_BOOL(left
) == VARIANT_TRUE
) resvt
= VT_NULL
; break;
5857 case VT_R4
: if (V_R4(left
) == -1.0) resvt
= VT_NULL
; break;
5858 case VT_R8
: if (V_R8(left
) == -1.0) resvt
= VT_NULL
; break;
5859 case VT_CY
: if (V_CY(left
).int64
== -1) resvt
= VT_NULL
; break;
5861 if (DEC_HI32(&V_DECIMAL(left
)) == 0xffffffff)
5865 hres
= VarBoolFromStr(V_BSTR(left
),LOCALE_USER_DEFAULT
, VAR_LOCALBOOL
, &b
);
5866 if (FAILED(hres
)) goto VarImp_Exit
;
5867 else if (b
== VARIANT_TRUE
)
5870 if (resvt
== VT_NULL
)
5872 V_VT(result
) = resvt
;
5877 hres
= VariantCopy(&lv
, left
);
5878 if (FAILED(hres
)) goto VarImp_Exit
;
5880 if (rightvt
== VT_NULL
)
5882 memset( &rv
, 0, sizeof(rv
) );
5887 hres
= VariantCopy(&rv
, right
);
5888 if (FAILED(hres
)) goto VarImp_Exit
;
5891 if (V_VT(&lv
) == VT_BSTR
&&
5892 FAILED(VarR8FromStr(V_BSTR(&lv
),LOCALE_USER_DEFAULT
, 0, &d
)))
5893 hres
= VariantChangeType(&lv
,&lv
,VARIANT_LOCALBOOL
, VT_BOOL
);
5894 if (SUCCEEDED(hres
) && V_VT(&lv
) != resvt
)
5895 hres
= VariantChangeType(&lv
,&lv
,0,resvt
);
5896 if (FAILED(hres
)) goto VarImp_Exit
;
5898 if (V_VT(&rv
) == VT_BSTR
&&
5899 FAILED(VarR8FromStr(V_BSTR(&rv
),LOCALE_USER_DEFAULT
, 0, &d
)))
5900 hres
= VariantChangeType(&rv
, &rv
,VARIANT_LOCALBOOL
, VT_BOOL
);
5901 if (SUCCEEDED(hres
) && V_VT(&rv
) != resvt
)
5902 hres
= VariantChangeType(&rv
, &rv
, 0, resvt
);
5903 if (FAILED(hres
)) goto VarImp_Exit
;
5906 V_VT(result
) = resvt
;
5910 V_I8(result
) = (~V_I8(&lv
)) | V_I8(&rv
);
5913 V_I4(result
) = (~V_I4(&lv
)) | V_I4(&rv
);
5916 V_I2(result
) = (~V_I2(&lv
)) | V_I2(&rv
);
5919 V_UI1(result
) = (~V_UI1(&lv
)) | V_UI1(&rv
);
5922 V_BOOL(result
) = (~V_BOOL(&lv
)) | V_BOOL(&rv
);
5925 FIXME("Couldn't perform bitwise implication on variant types %d,%d\n",
5933 VariantClear(&tempLeft
);
5934 VariantClear(&tempRight
);