2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/ioport.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/spi/spi.h>
28 #include <linux/workqueue.h>
29 #include <linux/delay.h>
30 #include <linux/clk.h>
34 #include <asm/hardware.h>
35 #include <asm/delay.h>
38 #include <asm/arch/hardware.h>
39 #include <asm/arch/pxa-regs.h>
40 #include <asm/arch/regs-ssp.h>
41 #include <asm/arch/ssp.h>
42 #include <asm/arch/pxa2xx_spi.h>
44 MODULE_AUTHOR("Stephen Street");
45 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
46 MODULE_LICENSE("GPL");
50 #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
51 #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
52 #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
55 * for testing SSCR1 changes that require SSP restart, basically
56 * everything except the service and interrupt enables, the pxa270 developer
57 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
58 * list, but the PXA255 dev man says all bits without really meaning the
59 * service and interrupt enables
61 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
62 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
63 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
64 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
65 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
66 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
68 #define DEFINE_SSP_REG(reg, off) \
69 static inline u32 read_##reg(void *p) { return __raw_readl(p + (off)); } \
70 static inline void write_##reg(u32 v, void *p) { __raw_writel(v, p + (off)); }
72 DEFINE_SSP_REG(SSCR0
, 0x00)
73 DEFINE_SSP_REG(SSCR1
, 0x04)
74 DEFINE_SSP_REG(SSSR
, 0x08)
75 DEFINE_SSP_REG(SSITR
, 0x0c)
76 DEFINE_SSP_REG(SSDR
, 0x10)
77 DEFINE_SSP_REG(SSTO
, 0x28)
78 DEFINE_SSP_REG(SSPSP
, 0x2c)
80 #define START_STATE ((void*)0)
81 #define RUNNING_STATE ((void*)1)
82 #define DONE_STATE ((void*)2)
83 #define ERROR_STATE ((void*)-1)
85 #define QUEUE_RUNNING 0
86 #define QUEUE_STOPPED 1
89 /* Driver model hookup */
90 struct platform_device
*pdev
;
93 struct ssp_device
*ssp
;
95 /* SPI framework hookup */
96 enum pxa_ssp_type ssp_type
;
97 struct spi_master
*master
;
100 struct pxa2xx_spi_master
*master_info
;
102 /* DMA setup stuff */
107 /* SSP register addresses */
117 /* Driver message queue */
118 struct workqueue_struct
*workqueue
;
119 struct work_struct pump_messages
;
121 struct list_head queue
;
125 /* Message Transfer pump */
126 struct tasklet_struct pump_transfers
;
128 /* Current message transfer state info */
129 struct spi_message
* cur_msg
;
130 struct spi_transfer
* cur_transfer
;
131 struct chip_data
*cur_chip
;
145 int (*write
)(struct driver_data
*drv_data
);
146 int (*read
)(struct driver_data
*drv_data
);
147 irqreturn_t (*transfer_handler
)(struct driver_data
*drv_data
);
148 void (*cs_control
)(u32 command
);
164 int (*write
)(struct driver_data
*drv_data
);
165 int (*read
)(struct driver_data
*drv_data
);
166 void (*cs_control
)(u32 command
);
169 static void pump_messages(struct work_struct
*work
);
171 static int flush(struct driver_data
*drv_data
)
173 unsigned long limit
= loops_per_jiffy
<< 1;
175 void *reg
= drv_data
->ioaddr
;
178 while (read_SSSR(reg
) & SSSR_RNE
) {
181 } while ((read_SSSR(reg
) & SSSR_BSY
) && limit
--);
182 write_SSSR(SSSR_ROR
, reg
);
187 static void null_cs_control(u32 command
)
191 static int null_writer(struct driver_data
*drv_data
)
193 void *reg
= drv_data
->ioaddr
;
194 u8 n_bytes
= drv_data
->n_bytes
;
196 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
197 || (drv_data
->tx
== drv_data
->tx_end
))
201 drv_data
->tx
+= n_bytes
;
206 static int null_reader(struct driver_data
*drv_data
)
208 void *reg
= drv_data
->ioaddr
;
209 u8 n_bytes
= drv_data
->n_bytes
;
211 while ((read_SSSR(reg
) & SSSR_RNE
)
212 && (drv_data
->rx
< drv_data
->rx_end
)) {
214 drv_data
->rx
+= n_bytes
;
217 return drv_data
->rx
== drv_data
->rx_end
;
220 static int u8_writer(struct driver_data
*drv_data
)
222 void *reg
= drv_data
->ioaddr
;
224 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
225 || (drv_data
->tx
== drv_data
->tx_end
))
228 write_SSDR(*(u8
*)(drv_data
->tx
), reg
);
234 static int u8_reader(struct driver_data
*drv_data
)
236 void *reg
= drv_data
->ioaddr
;
238 while ((read_SSSR(reg
) & SSSR_RNE
)
239 && (drv_data
->rx
< drv_data
->rx_end
)) {
240 *(u8
*)(drv_data
->rx
) = read_SSDR(reg
);
244 return drv_data
->rx
== drv_data
->rx_end
;
247 static int u16_writer(struct driver_data
*drv_data
)
249 void *reg
= drv_data
->ioaddr
;
251 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
252 || (drv_data
->tx
== drv_data
->tx_end
))
255 write_SSDR(*(u16
*)(drv_data
->tx
), reg
);
261 static int u16_reader(struct driver_data
*drv_data
)
263 void *reg
= drv_data
->ioaddr
;
265 while ((read_SSSR(reg
) & SSSR_RNE
)
266 && (drv_data
->rx
< drv_data
->rx_end
)) {
267 *(u16
*)(drv_data
->rx
) = read_SSDR(reg
);
271 return drv_data
->rx
== drv_data
->rx_end
;
274 static int u32_writer(struct driver_data
*drv_data
)
276 void *reg
= drv_data
->ioaddr
;
278 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
279 || (drv_data
->tx
== drv_data
->tx_end
))
282 write_SSDR(*(u32
*)(drv_data
->tx
), reg
);
288 static int u32_reader(struct driver_data
*drv_data
)
290 void *reg
= drv_data
->ioaddr
;
292 while ((read_SSSR(reg
) & SSSR_RNE
)
293 && (drv_data
->rx
< drv_data
->rx_end
)) {
294 *(u32
*)(drv_data
->rx
) = read_SSDR(reg
);
298 return drv_data
->rx
== drv_data
->rx_end
;
301 static void *next_transfer(struct driver_data
*drv_data
)
303 struct spi_message
*msg
= drv_data
->cur_msg
;
304 struct spi_transfer
*trans
= drv_data
->cur_transfer
;
306 /* Move to next transfer */
307 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
308 drv_data
->cur_transfer
=
309 list_entry(trans
->transfer_list
.next
,
312 return RUNNING_STATE
;
317 static int map_dma_buffers(struct driver_data
*drv_data
)
319 struct spi_message
*msg
= drv_data
->cur_msg
;
320 struct device
*dev
= &msg
->spi
->dev
;
322 if (!drv_data
->cur_chip
->enable_dma
)
325 if (msg
->is_dma_mapped
)
326 return drv_data
->rx_dma
&& drv_data
->tx_dma
;
328 if (!IS_DMA_ALIGNED(drv_data
->rx
) || !IS_DMA_ALIGNED(drv_data
->tx
))
331 /* Modify setup if rx buffer is null */
332 if (drv_data
->rx
== NULL
) {
333 *drv_data
->null_dma_buf
= 0;
334 drv_data
->rx
= drv_data
->null_dma_buf
;
335 drv_data
->rx_map_len
= 4;
337 drv_data
->rx_map_len
= drv_data
->len
;
340 /* Modify setup if tx buffer is null */
341 if (drv_data
->tx
== NULL
) {
342 *drv_data
->null_dma_buf
= 0;
343 drv_data
->tx
= drv_data
->null_dma_buf
;
344 drv_data
->tx_map_len
= 4;
346 drv_data
->tx_map_len
= drv_data
->len
;
348 /* Stream map the rx buffer */
349 drv_data
->rx_dma
= dma_map_single(dev
, drv_data
->rx
,
350 drv_data
->rx_map_len
,
352 if (dma_mapping_error(drv_data
->rx_dma
))
355 /* Stream map the tx buffer */
356 drv_data
->tx_dma
= dma_map_single(dev
, drv_data
->tx
,
357 drv_data
->tx_map_len
,
360 if (dma_mapping_error(drv_data
->tx_dma
)) {
361 dma_unmap_single(dev
, drv_data
->rx_dma
,
362 drv_data
->rx_map_len
, DMA_FROM_DEVICE
);
369 static void unmap_dma_buffers(struct driver_data
*drv_data
)
373 if (!drv_data
->dma_mapped
)
376 if (!drv_data
->cur_msg
->is_dma_mapped
) {
377 dev
= &drv_data
->cur_msg
->spi
->dev
;
378 dma_unmap_single(dev
, drv_data
->rx_dma
,
379 drv_data
->rx_map_len
, DMA_FROM_DEVICE
);
380 dma_unmap_single(dev
, drv_data
->tx_dma
,
381 drv_data
->tx_map_len
, DMA_TO_DEVICE
);
384 drv_data
->dma_mapped
= 0;
387 /* caller already set message->status; dma and pio irqs are blocked */
388 static void giveback(struct driver_data
*drv_data
)
390 struct spi_transfer
* last_transfer
;
392 struct spi_message
*msg
;
394 spin_lock_irqsave(&drv_data
->lock
, flags
);
395 msg
= drv_data
->cur_msg
;
396 drv_data
->cur_msg
= NULL
;
397 drv_data
->cur_transfer
= NULL
;
398 drv_data
->cur_chip
= NULL
;
399 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
400 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
402 last_transfer
= list_entry(msg
->transfers
.prev
,
406 if (!last_transfer
->cs_change
)
407 drv_data
->cs_control(PXA2XX_CS_DEASSERT
);
411 msg
->complete(msg
->context
);
414 static int wait_ssp_rx_stall(void *ioaddr
)
416 unsigned long limit
= loops_per_jiffy
<< 1;
418 while ((read_SSSR(ioaddr
) & SSSR_BSY
) && limit
--)
424 static int wait_dma_channel_stop(int channel
)
426 unsigned long limit
= loops_per_jiffy
<< 1;
428 while (!(DCSR(channel
) & DCSR_STOPSTATE
) && limit
--)
434 void dma_error_stop(struct driver_data
*drv_data
, const char *msg
)
436 void *reg
= drv_data
->ioaddr
;
439 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
440 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
441 write_SSSR(drv_data
->clear_sr
, reg
);
442 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->dma_cr1
, reg
);
443 if (drv_data
->ssp_type
!= PXA25x_SSP
)
446 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
448 unmap_dma_buffers(drv_data
);
450 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
452 drv_data
->cur_msg
->state
= ERROR_STATE
;
453 tasklet_schedule(&drv_data
->pump_transfers
);
456 static void dma_transfer_complete(struct driver_data
*drv_data
)
458 void *reg
= drv_data
->ioaddr
;
459 struct spi_message
*msg
= drv_data
->cur_msg
;
461 /* Clear and disable interrupts on SSP and DMA channels*/
462 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->dma_cr1
, reg
);
463 write_SSSR(drv_data
->clear_sr
, reg
);
464 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
465 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
467 if (wait_dma_channel_stop(drv_data
->rx_channel
) == 0)
468 dev_err(&drv_data
->pdev
->dev
,
469 "dma_handler: dma rx channel stop failed\n");
471 if (wait_ssp_rx_stall(drv_data
->ioaddr
) == 0)
472 dev_err(&drv_data
->pdev
->dev
,
473 "dma_transfer: ssp rx stall failed\n");
475 unmap_dma_buffers(drv_data
);
477 /* update the buffer pointer for the amount completed in dma */
478 drv_data
->rx
+= drv_data
->len
-
479 (DCMD(drv_data
->rx_channel
) & DCMD_LENGTH
);
481 /* read trailing data from fifo, it does not matter how many
482 * bytes are in the fifo just read until buffer is full
483 * or fifo is empty, which ever occurs first */
484 drv_data
->read(drv_data
);
486 /* return count of what was actually read */
487 msg
->actual_length
+= drv_data
->len
-
488 (drv_data
->rx_end
- drv_data
->rx
);
490 /* Release chip select if requested, transfer delays are
491 * handled in pump_transfers */
492 if (drv_data
->cs_change
)
493 drv_data
->cs_control(PXA2XX_CS_DEASSERT
);
495 /* Move to next transfer */
496 msg
->state
= next_transfer(drv_data
);
498 /* Schedule transfer tasklet */
499 tasklet_schedule(&drv_data
->pump_transfers
);
502 static void dma_handler(int channel
, void *data
)
504 struct driver_data
*drv_data
= data
;
505 u32 irq_status
= DCSR(channel
) & DMA_INT_MASK
;
507 if (irq_status
& DCSR_BUSERR
) {
509 if (channel
== drv_data
->tx_channel
)
510 dma_error_stop(drv_data
,
512 "bad bus address on tx channel");
514 dma_error_stop(drv_data
,
516 "bad bus address on rx channel");
520 /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
521 if ((channel
== drv_data
->tx_channel
)
522 && (irq_status
& DCSR_ENDINTR
)
523 && (drv_data
->ssp_type
== PXA25x_SSP
)) {
525 /* Wait for rx to stall */
526 if (wait_ssp_rx_stall(drv_data
->ioaddr
) == 0)
527 dev_err(&drv_data
->pdev
->dev
,
528 "dma_handler: ssp rx stall failed\n");
530 /* finish this transfer, start the next */
531 dma_transfer_complete(drv_data
);
535 static irqreturn_t
dma_transfer(struct driver_data
*drv_data
)
538 void *reg
= drv_data
->ioaddr
;
540 irq_status
= read_SSSR(reg
) & drv_data
->mask_sr
;
541 if (irq_status
& SSSR_ROR
) {
542 dma_error_stop(drv_data
, "dma_transfer: fifo overrun");
546 /* Check for false positive timeout */
547 if ((irq_status
& SSSR_TINT
)
548 && (DCSR(drv_data
->tx_channel
) & DCSR_RUN
)) {
549 write_SSSR(SSSR_TINT
, reg
);
553 if (irq_status
& SSSR_TINT
|| drv_data
->rx
== drv_data
->rx_end
) {
555 /* Clear and disable timeout interrupt, do the rest in
556 * dma_transfer_complete */
557 if (drv_data
->ssp_type
!= PXA25x_SSP
)
560 /* finish this transfer, start the next */
561 dma_transfer_complete(drv_data
);
566 /* Opps problem detected */
570 static void int_error_stop(struct driver_data
*drv_data
, const char* msg
)
572 void *reg
= drv_data
->ioaddr
;
574 /* Stop and reset SSP */
575 write_SSSR(drv_data
->clear_sr
, reg
);
576 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
577 if (drv_data
->ssp_type
!= PXA25x_SSP
)
580 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
582 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
584 drv_data
->cur_msg
->state
= ERROR_STATE
;
585 tasklet_schedule(&drv_data
->pump_transfers
);
588 static void int_transfer_complete(struct driver_data
*drv_data
)
590 void *reg
= drv_data
->ioaddr
;
593 write_SSSR(drv_data
->clear_sr
, reg
);
594 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
595 if (drv_data
->ssp_type
!= PXA25x_SSP
)
598 /* Update total byte transfered return count actual bytes read */
599 drv_data
->cur_msg
->actual_length
+= drv_data
->len
-
600 (drv_data
->rx_end
- drv_data
->rx
);
602 /* Release chip select if requested, transfer delays are
603 * handled in pump_transfers */
604 if (drv_data
->cs_change
)
605 drv_data
->cs_control(PXA2XX_CS_DEASSERT
);
607 /* Move to next transfer */
608 drv_data
->cur_msg
->state
= next_transfer(drv_data
);
610 /* Schedule transfer tasklet */
611 tasklet_schedule(&drv_data
->pump_transfers
);
614 static irqreturn_t
interrupt_transfer(struct driver_data
*drv_data
)
616 void *reg
= drv_data
->ioaddr
;
618 u32 irq_mask
= (read_SSCR1(reg
) & SSCR1_TIE
) ?
619 drv_data
->mask_sr
: drv_data
->mask_sr
& ~SSSR_TFS
;
621 u32 irq_status
= read_SSSR(reg
) & irq_mask
;
623 if (irq_status
& SSSR_ROR
) {
624 int_error_stop(drv_data
, "interrupt_transfer: fifo overrun");
628 if (irq_status
& SSSR_TINT
) {
629 write_SSSR(SSSR_TINT
, reg
);
630 if (drv_data
->read(drv_data
)) {
631 int_transfer_complete(drv_data
);
636 /* Drain rx fifo, Fill tx fifo and prevent overruns */
638 if (drv_data
->read(drv_data
)) {
639 int_transfer_complete(drv_data
);
642 } while (drv_data
->write(drv_data
));
644 if (drv_data
->read(drv_data
)) {
645 int_transfer_complete(drv_data
);
649 if (drv_data
->tx
== drv_data
->tx_end
) {
650 write_SSCR1(read_SSCR1(reg
) & ~SSCR1_TIE
, reg
);
651 /* PXA25x_SSP has no timeout, read trailing bytes */
652 if (drv_data
->ssp_type
== PXA25x_SSP
) {
653 if (!wait_ssp_rx_stall(reg
))
655 int_error_stop(drv_data
, "interrupt_transfer: "
659 if (!drv_data
->read(drv_data
))
661 int_error_stop(drv_data
,
662 "interrupt_transfer: "
663 "trailing byte read failed");
666 int_transfer_complete(drv_data
);
670 /* We did something */
674 static irqreturn_t
ssp_int(int irq
, void *dev_id
)
676 struct driver_data
*drv_data
= dev_id
;
677 void *reg
= drv_data
->ioaddr
;
679 if (!drv_data
->cur_msg
) {
681 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
682 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
683 if (drv_data
->ssp_type
!= PXA25x_SSP
)
685 write_SSSR(drv_data
->clear_sr
, reg
);
687 dev_err(&drv_data
->pdev
->dev
, "bad message state "
688 "in interrupt handler\n");
694 return drv_data
->transfer_handler(drv_data
);
697 int set_dma_burst_and_threshold(struct chip_data
*chip
, struct spi_device
*spi
,
698 u8 bits_per_word
, u32
*burst_code
,
701 struct pxa2xx_spi_chip
*chip_info
=
702 (struct pxa2xx_spi_chip
*)spi
->controller_data
;
709 /* Set the threshold (in registers) to equal the same amount of data
710 * as represented by burst size (in bytes). The computation below
711 * is (burst_size rounded up to nearest 8 byte, word or long word)
712 * divided by (bytes/register); the tx threshold is the inverse of
713 * the rx, so that there will always be enough data in the rx fifo
714 * to satisfy a burst, and there will always be enough space in the
715 * tx fifo to accept a burst (a tx burst will overwrite the fifo if
716 * there is not enough space), there must always remain enough empty
717 * space in the rx fifo for any data loaded to the tx fifo.
718 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
719 * will be 8, or half the fifo;
720 * The threshold can only be set to 2, 4 or 8, but not 16, because
721 * to burst 16 to the tx fifo, the fifo would have to be empty;
722 * however, the minimum fifo trigger level is 1, and the tx will
723 * request service when the fifo is at this level, with only 15 spaces.
726 /* find bytes/word */
727 if (bits_per_word
<= 8)
729 else if (bits_per_word
<= 16)
734 /* use struct pxa2xx_spi_chip->dma_burst_size if available */
736 req_burst_size
= chip_info
->dma_burst_size
;
738 switch (chip
->dma_burst_size
) {
740 /* if the default burst size is not set,
742 chip
->dma_burst_size
= DCMD_BURST8
;
754 if (req_burst_size
<= 8) {
755 *burst_code
= DCMD_BURST8
;
757 } else if (req_burst_size
<= 16) {
758 if (bytes_per_word
== 1) {
759 /* don't burst more than 1/2 the fifo */
760 *burst_code
= DCMD_BURST8
;
764 *burst_code
= DCMD_BURST16
;
768 if (bytes_per_word
== 1) {
769 /* don't burst more than 1/2 the fifo */
770 *burst_code
= DCMD_BURST8
;
773 } else if (bytes_per_word
== 2) {
774 /* don't burst more than 1/2 the fifo */
775 *burst_code
= DCMD_BURST16
;
779 *burst_code
= DCMD_BURST32
;
784 thresh_words
= burst_bytes
/ bytes_per_word
;
786 /* thresh_words will be between 2 and 8 */
787 *threshold
= (SSCR1_RxTresh(thresh_words
) & SSCR1_RFT
)
788 | (SSCR1_TxTresh(16-thresh_words
) & SSCR1_TFT
);
793 static unsigned int ssp_get_clk_div(struct ssp_device
*ssp
, int rate
)
795 unsigned long ssp_clk
= clk_get_rate(ssp
->clk
);
797 if (ssp
->type
== PXA25x_SSP
)
798 return ((ssp_clk
/ (2 * rate
) - 1) & 0xff) << 8;
800 return ((ssp_clk
/ rate
- 1) & 0xfff) << 8;
803 static void pump_transfers(unsigned long data
)
805 struct driver_data
*drv_data
= (struct driver_data
*)data
;
806 struct spi_message
*message
= NULL
;
807 struct spi_transfer
*transfer
= NULL
;
808 struct spi_transfer
*previous
= NULL
;
809 struct chip_data
*chip
= NULL
;
810 struct ssp_device
*ssp
= drv_data
->ssp
;
811 void *reg
= drv_data
->ioaddr
;
817 u32 dma_thresh
= drv_data
->cur_chip
->dma_threshold
;
818 u32 dma_burst
= drv_data
->cur_chip
->dma_burst_size
;
820 /* Get current state information */
821 message
= drv_data
->cur_msg
;
822 transfer
= drv_data
->cur_transfer
;
823 chip
= drv_data
->cur_chip
;
825 /* Handle for abort */
826 if (message
->state
== ERROR_STATE
) {
827 message
->status
= -EIO
;
832 /* Handle end of message */
833 if (message
->state
== DONE_STATE
) {
839 /* Delay if requested at end of transfer*/
840 if (message
->state
== RUNNING_STATE
) {
841 previous
= list_entry(transfer
->transfer_list
.prev
,
844 if (previous
->delay_usecs
)
845 udelay(previous
->delay_usecs
);
848 /* Check transfer length */
849 if (transfer
->len
> 8191)
851 dev_warn(&drv_data
->pdev
->dev
, "pump_transfers: transfer "
852 "length greater than 8191\n");
853 message
->status
= -EINVAL
;
858 /* Setup the transfer state based on the type of transfer */
859 if (flush(drv_data
) == 0) {
860 dev_err(&drv_data
->pdev
->dev
, "pump_transfers: flush failed\n");
861 message
->status
= -EIO
;
865 drv_data
->n_bytes
= chip
->n_bytes
;
866 drv_data
->dma_width
= chip
->dma_width
;
867 drv_data
->cs_control
= chip
->cs_control
;
868 drv_data
->tx
= (void *)transfer
->tx_buf
;
869 drv_data
->tx_end
= drv_data
->tx
+ transfer
->len
;
870 drv_data
->rx
= transfer
->rx_buf
;
871 drv_data
->rx_end
= drv_data
->rx
+ transfer
->len
;
872 drv_data
->rx_dma
= transfer
->rx_dma
;
873 drv_data
->tx_dma
= transfer
->tx_dma
;
874 drv_data
->len
= transfer
->len
& DCMD_LENGTH
;
875 drv_data
->write
= drv_data
->tx
? chip
->write
: null_writer
;
876 drv_data
->read
= drv_data
->rx
? chip
->read
: null_reader
;
877 drv_data
->cs_change
= transfer
->cs_change
;
879 /* Change speed and bit per word on a per transfer */
881 if (transfer
->speed_hz
|| transfer
->bits_per_word
) {
883 bits
= chip
->bits_per_word
;
884 speed
= chip
->speed_hz
;
886 if (transfer
->speed_hz
)
887 speed
= transfer
->speed_hz
;
889 if (transfer
->bits_per_word
)
890 bits
= transfer
->bits_per_word
;
892 clk_div
= ssp_get_clk_div(ssp
, speed
);
895 drv_data
->n_bytes
= 1;
896 drv_data
->dma_width
= DCMD_WIDTH1
;
897 drv_data
->read
= drv_data
->read
!= null_reader
?
898 u8_reader
: null_reader
;
899 drv_data
->write
= drv_data
->write
!= null_writer
?
900 u8_writer
: null_writer
;
901 } else if (bits
<= 16) {
902 drv_data
->n_bytes
= 2;
903 drv_data
->dma_width
= DCMD_WIDTH2
;
904 drv_data
->read
= drv_data
->read
!= null_reader
?
905 u16_reader
: null_reader
;
906 drv_data
->write
= drv_data
->write
!= null_writer
?
907 u16_writer
: null_writer
;
908 } else if (bits
<= 32) {
909 drv_data
->n_bytes
= 4;
910 drv_data
->dma_width
= DCMD_WIDTH4
;
911 drv_data
->read
= drv_data
->read
!= null_reader
?
912 u32_reader
: null_reader
;
913 drv_data
->write
= drv_data
->write
!= null_writer
?
914 u32_writer
: null_writer
;
916 /* if bits/word is changed in dma mode, then must check the
917 * thresholds and burst also */
918 if (chip
->enable_dma
) {
919 if (set_dma_burst_and_threshold(chip
, message
->spi
,
922 if (printk_ratelimit())
923 dev_warn(&message
->spi
->dev
,
925 "DMA burst size reduced to "
926 "match bits_per_word\n");
931 | SSCR0_DataSize(bits
> 16 ? bits
- 16 : bits
)
933 | (bits
> 16 ? SSCR0_EDSS
: 0);
936 message
->state
= RUNNING_STATE
;
938 /* Try to map dma buffer and do a dma transfer if successful */
939 if ((drv_data
->dma_mapped
= map_dma_buffers(drv_data
))) {
941 /* Ensure we have the correct interrupt handler */
942 drv_data
->transfer_handler
= dma_transfer
;
944 /* Setup rx DMA Channel */
945 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
946 DSADR(drv_data
->rx_channel
) = drv_data
->ssdr_physical
;
947 DTADR(drv_data
->rx_channel
) = drv_data
->rx_dma
;
948 if (drv_data
->rx
== drv_data
->null_dma_buf
)
949 /* No target address increment */
950 DCMD(drv_data
->rx_channel
) = DCMD_FLOWSRC
951 | drv_data
->dma_width
955 DCMD(drv_data
->rx_channel
) = DCMD_INCTRGADDR
957 | drv_data
->dma_width
961 /* Setup tx DMA Channel */
962 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
963 DSADR(drv_data
->tx_channel
) = drv_data
->tx_dma
;
964 DTADR(drv_data
->tx_channel
) = drv_data
->ssdr_physical
;
965 if (drv_data
->tx
== drv_data
->null_dma_buf
)
966 /* No source address increment */
967 DCMD(drv_data
->tx_channel
) = DCMD_FLOWTRG
968 | drv_data
->dma_width
972 DCMD(drv_data
->tx_channel
) = DCMD_INCSRCADDR
974 | drv_data
->dma_width
978 /* Enable dma end irqs on SSP to detect end of transfer */
979 if (drv_data
->ssp_type
== PXA25x_SSP
)
980 DCMD(drv_data
->tx_channel
) |= DCMD_ENDIRQEN
;
982 /* Clear status and start DMA engine */
983 cr1
= chip
->cr1
| dma_thresh
| drv_data
->dma_cr1
;
984 write_SSSR(drv_data
->clear_sr
, reg
);
985 DCSR(drv_data
->rx_channel
) |= DCSR_RUN
;
986 DCSR(drv_data
->tx_channel
) |= DCSR_RUN
;
988 /* Ensure we have the correct interrupt handler */
989 drv_data
->transfer_handler
= interrupt_transfer
;
992 cr1
= chip
->cr1
| chip
->threshold
| drv_data
->int_cr1
;
993 write_SSSR(drv_data
->clear_sr
, reg
);
996 /* see if we need to reload the config registers */
997 if ((read_SSCR0(reg
) != cr0
)
998 || (read_SSCR1(reg
) & SSCR1_CHANGE_MASK
) !=
999 (cr1
& SSCR1_CHANGE_MASK
)) {
1001 /* stop the SSP, and update the other bits */
1002 write_SSCR0(cr0
& ~SSCR0_SSE
, reg
);
1003 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1004 write_SSTO(chip
->timeout
, reg
);
1005 /* first set CR1 without interrupt and service enables */
1006 write_SSCR1(cr1
& SSCR1_CHANGE_MASK
, reg
);
1007 /* restart the SSP */
1008 write_SSCR0(cr0
, reg
);
1011 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1012 write_SSTO(chip
->timeout
, reg
);
1015 /* FIXME, need to handle cs polarity,
1016 * this driver uses struct pxa2xx_spi_chip.cs_control to
1017 * specify a CS handling function, and it ignores most
1018 * struct spi_device.mode[s], including SPI_CS_HIGH */
1019 drv_data
->cs_control(PXA2XX_CS_ASSERT
);
1021 /* after chip select, release the data by enabling service
1022 * requests and interrupts, without changing any mode bits */
1023 write_SSCR1(cr1
, reg
);
1026 static void pump_messages(struct work_struct
*work
)
1028 struct driver_data
*drv_data
=
1029 container_of(work
, struct driver_data
, pump_messages
);
1030 unsigned long flags
;
1032 /* Lock queue and check for queue work */
1033 spin_lock_irqsave(&drv_data
->lock
, flags
);
1034 if (list_empty(&drv_data
->queue
) || drv_data
->run
== QUEUE_STOPPED
) {
1036 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1040 /* Make sure we are not already running a message */
1041 if (drv_data
->cur_msg
) {
1042 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1046 /* Extract head of queue */
1047 drv_data
->cur_msg
= list_entry(drv_data
->queue
.next
,
1048 struct spi_message
, queue
);
1049 list_del_init(&drv_data
->cur_msg
->queue
);
1051 /* Initial message state*/
1052 drv_data
->cur_msg
->state
= START_STATE
;
1053 drv_data
->cur_transfer
= list_entry(drv_data
->cur_msg
->transfers
.next
,
1054 struct spi_transfer
,
1057 /* prepare to setup the SSP, in pump_transfers, using the per
1058 * chip configuration */
1059 drv_data
->cur_chip
= spi_get_ctldata(drv_data
->cur_msg
->spi
);
1061 /* Mark as busy and launch transfers */
1062 tasklet_schedule(&drv_data
->pump_transfers
);
1065 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1068 static int transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1070 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1071 unsigned long flags
;
1073 spin_lock_irqsave(&drv_data
->lock
, flags
);
1075 if (drv_data
->run
== QUEUE_STOPPED
) {
1076 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1080 msg
->actual_length
= 0;
1081 msg
->status
= -EINPROGRESS
;
1082 msg
->state
= START_STATE
;
1084 list_add_tail(&msg
->queue
, &drv_data
->queue
);
1086 if (drv_data
->run
== QUEUE_RUNNING
&& !drv_data
->busy
)
1087 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
1089 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1094 /* the spi->mode bits understood by this driver: */
1095 #define MODEBITS (SPI_CPOL | SPI_CPHA)
1097 static int setup(struct spi_device
*spi
)
1099 struct pxa2xx_spi_chip
*chip_info
= NULL
;
1100 struct chip_data
*chip
;
1101 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1102 struct ssp_device
*ssp
= drv_data
->ssp
;
1103 unsigned int clk_div
;
1105 if (!spi
->bits_per_word
)
1106 spi
->bits_per_word
= 8;
1108 if (drv_data
->ssp_type
!= PXA25x_SSP
1109 && (spi
->bits_per_word
< 4 || spi
->bits_per_word
> 32)) {
1110 dev_err(&spi
->dev
, "failed setup: ssp_type=%d, bits/wrd=%d "
1111 "b/w not 4-32 for type non-PXA25x_SSP\n",
1112 drv_data
->ssp_type
, spi
->bits_per_word
);
1115 else if (drv_data
->ssp_type
== PXA25x_SSP
1116 && (spi
->bits_per_word
< 4
1117 || spi
->bits_per_word
> 16)) {
1118 dev_err(&spi
->dev
, "failed setup: ssp_type=%d, bits/wrd=%d "
1119 "b/w not 4-16 for type PXA25x_SSP\n",
1120 drv_data
->ssp_type
, spi
->bits_per_word
);
1124 if (spi
->mode
& ~MODEBITS
) {
1125 dev_dbg(&spi
->dev
, "setup: unsupported mode bits %x\n",
1126 spi
->mode
& ~MODEBITS
);
1130 /* Only alloc on first setup */
1131 chip
= spi_get_ctldata(spi
);
1133 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1136 "failed setup: can't allocate chip data\n");
1140 chip
->cs_control
= null_cs_control
;
1141 chip
->enable_dma
= 0;
1142 chip
->timeout
= 1000;
1143 chip
->threshold
= SSCR1_RxTresh(1) | SSCR1_TxTresh(1);
1144 chip
->dma_burst_size
= drv_data
->master_info
->enable_dma
?
1148 /* protocol drivers may change the chip settings, so...
1149 * if chip_info exists, use it */
1150 chip_info
= spi
->controller_data
;
1152 /* chip_info isn't always needed */
1155 if (chip_info
->cs_control
)
1156 chip
->cs_control
= chip_info
->cs_control
;
1158 chip
->timeout
= chip_info
->timeout
;
1160 chip
->threshold
= (SSCR1_RxTresh(chip_info
->rx_threshold
) &
1162 (SSCR1_TxTresh(chip_info
->tx_threshold
) &
1165 chip
->enable_dma
= chip_info
->dma_burst_size
!= 0
1166 && drv_data
->master_info
->enable_dma
;
1167 chip
->dma_threshold
= 0;
1169 if (chip_info
->enable_loopback
)
1170 chip
->cr1
= SSCR1_LBM
;
1173 /* set dma burst and threshold outside of chip_info path so that if
1174 * chip_info goes away after setting chip->enable_dma, the
1175 * burst and threshold can still respond to changes in bits_per_word */
1176 if (chip
->enable_dma
) {
1177 /* set up legal burst and threshold for dma */
1178 if (set_dma_burst_and_threshold(chip
, spi
, spi
->bits_per_word
,
1179 &chip
->dma_burst_size
,
1180 &chip
->dma_threshold
)) {
1181 dev_warn(&spi
->dev
, "in setup: DMA burst size reduced "
1182 "to match bits_per_word\n");
1186 clk_div
= ssp_get_clk_div(ssp
, spi
->max_speed_hz
);
1187 chip
->speed_hz
= spi
->max_speed_hz
;
1191 | SSCR0_DataSize(spi
->bits_per_word
> 16 ?
1192 spi
->bits_per_word
- 16 : spi
->bits_per_word
)
1194 | (spi
->bits_per_word
> 16 ? SSCR0_EDSS
: 0);
1195 chip
->cr1
&= ~(SSCR1_SPO
| SSCR1_SPH
);
1196 chip
->cr1
|= (((spi
->mode
& SPI_CPHA
) != 0) ? SSCR1_SPH
: 0)
1197 | (((spi
->mode
& SPI_CPOL
) != 0) ? SSCR1_SPO
: 0);
1199 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1200 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1201 dev_dbg(&spi
->dev
, "%d bits/word, %ld Hz, mode %d\n",
1203 clk_get_rate(ssp
->clk
)
1204 / (1 + ((chip
->cr0
& SSCR0_SCR
) >> 8)),
1207 dev_dbg(&spi
->dev
, "%d bits/word, %ld Hz, mode %d\n",
1209 clk_get_rate(ssp
->clk
)
1210 / (1 + ((chip
->cr0
& SSCR0_SCR
) >> 8)),
1213 if (spi
->bits_per_word
<= 8) {
1215 chip
->dma_width
= DCMD_WIDTH1
;
1216 chip
->read
= u8_reader
;
1217 chip
->write
= u8_writer
;
1218 } else if (spi
->bits_per_word
<= 16) {
1220 chip
->dma_width
= DCMD_WIDTH2
;
1221 chip
->read
= u16_reader
;
1222 chip
->write
= u16_writer
;
1223 } else if (spi
->bits_per_word
<= 32) {
1224 chip
->cr0
|= SSCR0_EDSS
;
1226 chip
->dma_width
= DCMD_WIDTH4
;
1227 chip
->read
= u32_reader
;
1228 chip
->write
= u32_writer
;
1230 dev_err(&spi
->dev
, "invalid wordsize\n");
1233 chip
->bits_per_word
= spi
->bits_per_word
;
1235 spi_set_ctldata(spi
, chip
);
1240 static void cleanup(struct spi_device
*spi
)
1242 struct chip_data
*chip
= spi_get_ctldata(spi
);
1247 static int __init
init_queue(struct driver_data
*drv_data
)
1249 INIT_LIST_HEAD(&drv_data
->queue
);
1250 spin_lock_init(&drv_data
->lock
);
1252 drv_data
->run
= QUEUE_STOPPED
;
1255 tasklet_init(&drv_data
->pump_transfers
,
1256 pump_transfers
, (unsigned long)drv_data
);
1258 INIT_WORK(&drv_data
->pump_messages
, pump_messages
);
1259 drv_data
->workqueue
= create_singlethread_workqueue(
1260 drv_data
->master
->dev
.parent
->bus_id
);
1261 if (drv_data
->workqueue
== NULL
)
1267 static int start_queue(struct driver_data
*drv_data
)
1269 unsigned long flags
;
1271 spin_lock_irqsave(&drv_data
->lock
, flags
);
1273 if (drv_data
->run
== QUEUE_RUNNING
|| drv_data
->busy
) {
1274 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1278 drv_data
->run
= QUEUE_RUNNING
;
1279 drv_data
->cur_msg
= NULL
;
1280 drv_data
->cur_transfer
= NULL
;
1281 drv_data
->cur_chip
= NULL
;
1282 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1284 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
1289 static int stop_queue(struct driver_data
*drv_data
)
1291 unsigned long flags
;
1292 unsigned limit
= 500;
1295 spin_lock_irqsave(&drv_data
->lock
, flags
);
1297 /* This is a bit lame, but is optimized for the common execution path.
1298 * A wait_queue on the drv_data->busy could be used, but then the common
1299 * execution path (pump_messages) would be required to call wake_up or
1300 * friends on every SPI message. Do this instead */
1301 drv_data
->run
= QUEUE_STOPPED
;
1302 while (!list_empty(&drv_data
->queue
) && drv_data
->busy
&& limit
--) {
1303 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1305 spin_lock_irqsave(&drv_data
->lock
, flags
);
1308 if (!list_empty(&drv_data
->queue
) || drv_data
->busy
)
1311 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1316 static int destroy_queue(struct driver_data
*drv_data
)
1320 status
= stop_queue(drv_data
);
1321 /* we are unloading the module or failing to load (only two calls
1322 * to this routine), and neither call can handle a return value.
1323 * However, destroy_workqueue calls flush_workqueue, and that will
1324 * block until all work is done. If the reason that stop_queue
1325 * timed out is that the work will never finish, then it does no
1326 * good to call destroy_workqueue, so return anyway. */
1330 destroy_workqueue(drv_data
->workqueue
);
1335 static int __init
pxa2xx_spi_probe(struct platform_device
*pdev
)
1337 struct device
*dev
= &pdev
->dev
;
1338 struct pxa2xx_spi_master
*platform_info
;
1339 struct spi_master
*master
;
1340 struct driver_data
*drv_data
= 0;
1341 struct ssp_device
*ssp
;
1344 platform_info
= dev
->platform_data
;
1346 ssp
= ssp_request(pdev
->id
, pdev
->name
);
1348 dev_err(&pdev
->dev
, "failed to request SSP%d\n", pdev
->id
);
1352 /* Allocate master with space for drv_data and null dma buffer */
1353 master
= spi_alloc_master(dev
, sizeof(struct driver_data
) + 16);
1355 dev_err(&pdev
->dev
, "can not alloc spi_master\n");
1359 drv_data
= spi_master_get_devdata(master
);
1360 drv_data
->master
= master
;
1361 drv_data
->master_info
= platform_info
;
1362 drv_data
->pdev
= pdev
;
1363 drv_data
->ssp
= ssp
;
1365 master
->bus_num
= pdev
->id
;
1366 master
->num_chipselect
= platform_info
->num_chipselect
;
1367 master
->cleanup
= cleanup
;
1368 master
->setup
= setup
;
1369 master
->transfer
= transfer
;
1371 drv_data
->ssp_type
= ssp
->type
;
1372 drv_data
->null_dma_buf
= (u32
*)ALIGN((u32
)(drv_data
+
1373 sizeof(struct driver_data
)), 8);
1375 drv_data
->ioaddr
= ssp
->mmio_base
;
1376 drv_data
->ssdr_physical
= ssp
->phys_base
+ SSDR
;
1377 if (ssp
->type
== PXA25x_SSP
) {
1378 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
;
1379 drv_data
->dma_cr1
= 0;
1380 drv_data
->clear_sr
= SSSR_ROR
;
1381 drv_data
->mask_sr
= SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1383 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
| SSCR1_TINTE
;
1384 drv_data
->dma_cr1
= SSCR1_TSRE
| SSCR1_RSRE
| SSCR1_TINTE
;
1385 drv_data
->clear_sr
= SSSR_ROR
| SSSR_TINT
;
1386 drv_data
->mask_sr
= SSSR_TINT
| SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1389 status
= request_irq(ssp
->irq
, ssp_int
, 0, dev
->bus_id
, drv_data
);
1391 dev_err(&pdev
->dev
, "can not get IRQ\n");
1392 goto out_error_master_alloc
;
1395 /* Setup DMA if requested */
1396 drv_data
->tx_channel
= -1;
1397 drv_data
->rx_channel
= -1;
1398 if (platform_info
->enable_dma
) {
1400 /* Get two DMA channels (rx and tx) */
1401 drv_data
->rx_channel
= pxa_request_dma("pxa2xx_spi_ssp_rx",
1405 if (drv_data
->rx_channel
< 0) {
1406 dev_err(dev
, "problem (%d) requesting rx channel\n",
1407 drv_data
->rx_channel
);
1409 goto out_error_irq_alloc
;
1411 drv_data
->tx_channel
= pxa_request_dma("pxa2xx_spi_ssp_tx",
1415 if (drv_data
->tx_channel
< 0) {
1416 dev_err(dev
, "problem (%d) requesting tx channel\n",
1417 drv_data
->tx_channel
);
1419 goto out_error_dma_alloc
;
1422 DRCMR(ssp
->drcmr_rx
) = DRCMR_MAPVLD
| drv_data
->rx_channel
;
1423 DRCMR(ssp
->drcmr_tx
) = DRCMR_MAPVLD
| drv_data
->tx_channel
;
1426 /* Enable SOC clock */
1427 clk_enable(ssp
->clk
);
1429 /* Load default SSP configuration */
1430 write_SSCR0(0, drv_data
->ioaddr
);
1431 write_SSCR1(SSCR1_RxTresh(4) | SSCR1_TxTresh(12), drv_data
->ioaddr
);
1432 write_SSCR0(SSCR0_SerClkDiv(2)
1434 | SSCR0_DataSize(8),
1436 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1437 write_SSTO(0, drv_data
->ioaddr
);
1438 write_SSPSP(0, drv_data
->ioaddr
);
1440 /* Initial and start queue */
1441 status
= init_queue(drv_data
);
1443 dev_err(&pdev
->dev
, "problem initializing queue\n");
1444 goto out_error_clock_enabled
;
1446 status
= start_queue(drv_data
);
1448 dev_err(&pdev
->dev
, "problem starting queue\n");
1449 goto out_error_clock_enabled
;
1452 /* Register with the SPI framework */
1453 platform_set_drvdata(pdev
, drv_data
);
1454 status
= spi_register_master(master
);
1456 dev_err(&pdev
->dev
, "problem registering spi master\n");
1457 goto out_error_queue_alloc
;
1462 out_error_queue_alloc
:
1463 destroy_queue(drv_data
);
1465 out_error_clock_enabled
:
1466 clk_disable(ssp
->clk
);
1468 out_error_dma_alloc
:
1469 if (drv_data
->tx_channel
!= -1)
1470 pxa_free_dma(drv_data
->tx_channel
);
1471 if (drv_data
->rx_channel
!= -1)
1472 pxa_free_dma(drv_data
->rx_channel
);
1474 out_error_irq_alloc
:
1475 free_irq(ssp
->irq
, drv_data
);
1477 out_error_master_alloc
:
1478 spi_master_put(master
);
1483 static int pxa2xx_spi_remove(struct platform_device
*pdev
)
1485 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1486 struct ssp_device
*ssp
= drv_data
->ssp
;
1492 /* Remove the queue */
1493 status
= destroy_queue(drv_data
);
1495 /* the kernel does not check the return status of this
1496 * this routine (mod->exit, within the kernel). Therefore
1497 * nothing is gained by returning from here, the module is
1498 * going away regardless, and we should not leave any more
1499 * resources allocated than necessary. We cannot free the
1500 * message memory in drv_data->queue, but we can release the
1501 * resources below. I think the kernel should honor -EBUSY
1503 dev_err(&pdev
->dev
, "pxa2xx_spi_remove: workqueue will not "
1504 "complete, message memory not freed\n");
1506 /* Disable the SSP at the peripheral and SOC level */
1507 write_SSCR0(0, drv_data
->ioaddr
);
1508 clk_disable(ssp
->clk
);
1511 if (drv_data
->master_info
->enable_dma
) {
1512 DRCMR(ssp
->drcmr_rx
) = 0;
1513 DRCMR(ssp
->drcmr_tx
) = 0;
1514 pxa_free_dma(drv_data
->tx_channel
);
1515 pxa_free_dma(drv_data
->rx_channel
);
1519 free_irq(ssp
->irq
, drv_data
);
1524 /* Disconnect from the SPI framework */
1525 spi_unregister_master(drv_data
->master
);
1527 /* Prevent double remove */
1528 platform_set_drvdata(pdev
, NULL
);
1533 static void pxa2xx_spi_shutdown(struct platform_device
*pdev
)
1537 if ((status
= pxa2xx_spi_remove(pdev
)) != 0)
1538 dev_err(&pdev
->dev
, "shutdown failed with %d\n", status
);
1543 static int pxa2xx_spi_suspend(struct platform_device
*pdev
, pm_message_t state
)
1545 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1546 struct ssp_device
*ssp
= drv_data
->ssp
;
1549 status
= stop_queue(drv_data
);
1552 write_SSCR0(0, drv_data
->ioaddr
);
1553 clk_disable(ssp
->clk
);
1558 static int pxa2xx_spi_resume(struct platform_device
*pdev
)
1560 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1561 struct ssp_device
*ssp
= drv_data
->ssp
;
1564 /* Enable the SSP clock */
1565 clk_disable(ssp
->clk
);
1567 /* Start the queue running */
1568 status
= start_queue(drv_data
);
1570 dev_err(&pdev
->dev
, "problem starting queue (%d)\n", status
);
1577 #define pxa2xx_spi_suspend NULL
1578 #define pxa2xx_spi_resume NULL
1579 #endif /* CONFIG_PM */
1581 static struct platform_driver driver
= {
1583 .name
= "pxa2xx-spi",
1584 .bus
= &platform_bus_type
,
1585 .owner
= THIS_MODULE
,
1587 .remove
= pxa2xx_spi_remove
,
1588 .shutdown
= pxa2xx_spi_shutdown
,
1589 .suspend
= pxa2xx_spi_suspend
,
1590 .resume
= pxa2xx_spi_resume
,
1593 static int __init
pxa2xx_spi_init(void)
1595 return platform_driver_probe(&driver
, pxa2xx_spi_probe
);
1597 module_init(pxa2xx_spi_init
);
1599 static void __exit
pxa2xx_spi_exit(void)
1601 platform_driver_unregister(&driver
);
1603 module_exit(pxa2xx_spi_exit
);