1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 ************************************************************************/
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
74 #include <linux/tcp.h>
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
80 #include <asm/div64.h>
85 #include "s2io-regs.h"
87 #define DRV_VERSION "2.0.26.17"
89 /* S2io Driver name & version. */
90 static char s2io_driver_name
[] = "Neterion";
91 static char s2io_driver_version
[] = DRV_VERSION
;
93 static int rxd_size
[2] = {32,48};
94 static int rxd_count
[2] = {127,85};
96 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
100 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
101 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
121 static inline int rx_buffer_level(struct s2io_nic
* sp
, int rxb_size
, int ring
)
123 struct mac_info
*mac_control
;
125 mac_control
= &sp
->mac_control
;
126 if (rxb_size
<= rxd_count
[sp
->rxd_mode
])
128 else if ((mac_control
->rings
[ring
].pkt_cnt
- rxb_size
) > 16)
133 static inline int is_s2io_card_up(const struct s2io_nic
* sp
)
135 return test_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
138 /* Ethtool related variables and Macros. */
139 static char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
140 "Register test\t(offline)",
141 "Eeprom test\t(offline)",
142 "Link test\t(online)",
143 "RLDRAM test\t(offline)",
144 "BIST Test\t(offline)"
147 static char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
149 {"tmac_data_octets"},
153 {"tmac_pause_ctrl_frms"},
157 {"tmac_any_err_frms"},
158 {"tmac_ttl_less_fb_octets"},
159 {"tmac_vld_ip_octets"},
167 {"rmac_data_octets"},
168 {"rmac_fcs_err_frms"},
170 {"rmac_vld_mcst_frms"},
171 {"rmac_vld_bcst_frms"},
172 {"rmac_in_rng_len_err_frms"},
173 {"rmac_out_rng_len_err_frms"},
175 {"rmac_pause_ctrl_frms"},
176 {"rmac_unsup_ctrl_frms"},
178 {"rmac_accepted_ucst_frms"},
179 {"rmac_accepted_nucst_frms"},
180 {"rmac_discarded_frms"},
181 {"rmac_drop_events"},
182 {"rmac_ttl_less_fb_octets"},
184 {"rmac_usized_frms"},
185 {"rmac_osized_frms"},
187 {"rmac_jabber_frms"},
188 {"rmac_ttl_64_frms"},
189 {"rmac_ttl_65_127_frms"},
190 {"rmac_ttl_128_255_frms"},
191 {"rmac_ttl_256_511_frms"},
192 {"rmac_ttl_512_1023_frms"},
193 {"rmac_ttl_1024_1518_frms"},
201 {"rmac_err_drp_udp"},
202 {"rmac_xgmii_err_sym"},
220 {"rmac_xgmii_data_err_cnt"},
221 {"rmac_xgmii_ctrl_err_cnt"},
222 {"rmac_accepted_ip"},
226 {"new_rd_req_rtry_cnt"},
228 {"wr_rtry_rd_ack_cnt"},
231 {"new_wr_req_rtry_cnt"},
234 {"rd_rtry_wr_ack_cnt"},
244 static char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
245 {"rmac_ttl_1519_4095_frms"},
246 {"rmac_ttl_4096_8191_frms"},
247 {"rmac_ttl_8192_max_frms"},
248 {"rmac_ttl_gt_max_frms"},
249 {"rmac_osized_alt_frms"},
250 {"rmac_jabber_alt_frms"},
251 {"rmac_gt_max_alt_frms"},
253 {"rmac_len_discard"},
254 {"rmac_fcs_discard"},
257 {"rmac_red_discard"},
258 {"rmac_rts_discard"},
259 {"rmac_ingm_full_discard"},
263 static char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
264 {"\n DRIVER STATISTICS"},
265 {"single_bit_ecc_errs"},
266 {"double_bit_ecc_errs"},
279 {"alarm_transceiver_temp_high"},
280 {"alarm_transceiver_temp_low"},
281 {"alarm_laser_bias_current_high"},
282 {"alarm_laser_bias_current_low"},
283 {"alarm_laser_output_power_high"},
284 {"alarm_laser_output_power_low"},
285 {"warn_transceiver_temp_high"},
286 {"warn_transceiver_temp_low"},
287 {"warn_laser_bias_current_high"},
288 {"warn_laser_bias_current_low"},
289 {"warn_laser_output_power_high"},
290 {"warn_laser_output_power_low"},
291 {"lro_aggregated_pkts"},
292 {"lro_flush_both_count"},
293 {"lro_out_of_sequence_pkts"},
294 {"lro_flush_due_to_max_pkts"},
295 {"lro_avg_aggr_pkts"},
296 {"mem_alloc_fail_cnt"},
297 {"pci_map_fail_cnt"},
298 {"watchdog_timer_cnt"},
305 {"tx_tcode_buf_abort_cnt"},
306 {"tx_tcode_desc_abort_cnt"},
307 {"tx_tcode_parity_err_cnt"},
308 {"tx_tcode_link_loss_cnt"},
309 {"tx_tcode_list_proc_err_cnt"},
310 {"rx_tcode_parity_err_cnt"},
311 {"rx_tcode_abort_cnt"},
312 {"rx_tcode_parity_abort_cnt"},
313 {"rx_tcode_rda_fail_cnt"},
314 {"rx_tcode_unkn_prot_cnt"},
315 {"rx_tcode_fcs_err_cnt"},
316 {"rx_tcode_buf_size_err_cnt"},
317 {"rx_tcode_rxd_corrupt_cnt"},
318 {"rx_tcode_unkn_err_cnt"},
326 {"mac_tmac_err_cnt"},
327 {"mac_rmac_err_cnt"},
328 {"xgxs_txgxs_err_cnt"},
329 {"xgxs_rxgxs_err_cnt"},
331 {"prc_pcix_err_cnt"},
338 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
339 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
340 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
342 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
343 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
345 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
346 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
348 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
349 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
351 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
352 init_timer(&timer); \
353 timer.function = handle; \
354 timer.data = (unsigned long) arg; \
355 mod_timer(&timer, (jiffies + exp)) \
357 /* copy mac addr to def_mac_addr array */
358 static void do_s2io_copy_mac_addr(struct s2io_nic
*sp
, int offset
, u64 mac_addr
)
360 sp
->def_mac_addr
[offset
].mac_addr
[5] = (u8
) (mac_addr
);
361 sp
->def_mac_addr
[offset
].mac_addr
[4] = (u8
) (mac_addr
>> 8);
362 sp
->def_mac_addr
[offset
].mac_addr
[3] = (u8
) (mac_addr
>> 16);
363 sp
->def_mac_addr
[offset
].mac_addr
[2] = (u8
) (mac_addr
>> 24);
364 sp
->def_mac_addr
[offset
].mac_addr
[1] = (u8
) (mac_addr
>> 32);
365 sp
->def_mac_addr
[offset
].mac_addr
[0] = (u8
) (mac_addr
>> 40);
368 static void s2io_vlan_rx_register(struct net_device
*dev
,
369 struct vlan_group
*grp
)
371 struct s2io_nic
*nic
= dev
->priv
;
374 spin_lock_irqsave(&nic
->tx_lock
, flags
);
376 spin_unlock_irqrestore(&nic
->tx_lock
, flags
);
379 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
380 static int vlan_strip_flag
;
383 * Constants to be programmed into the Xena's registers, to configure
388 static const u64 herc_act_dtx_cfg
[] = {
390 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
392 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
394 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
396 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
398 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
400 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
402 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
404 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
409 static const u64 xena_dtx_cfg
[] = {
411 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
413 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
415 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
417 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
419 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
421 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
426 * Constants for Fixing the MacAddress problem seen mostly on
429 static const u64 fix_mac
[] = {
430 0x0060000000000000ULL
, 0x0060600000000000ULL
,
431 0x0040600000000000ULL
, 0x0000600000000000ULL
,
432 0x0020600000000000ULL
, 0x0060600000000000ULL
,
433 0x0020600000000000ULL
, 0x0060600000000000ULL
,
434 0x0020600000000000ULL
, 0x0060600000000000ULL
,
435 0x0020600000000000ULL
, 0x0060600000000000ULL
,
436 0x0020600000000000ULL
, 0x0060600000000000ULL
,
437 0x0020600000000000ULL
, 0x0060600000000000ULL
,
438 0x0020600000000000ULL
, 0x0060600000000000ULL
,
439 0x0020600000000000ULL
, 0x0060600000000000ULL
,
440 0x0020600000000000ULL
, 0x0060600000000000ULL
,
441 0x0020600000000000ULL
, 0x0060600000000000ULL
,
442 0x0020600000000000ULL
, 0x0000600000000000ULL
,
443 0x0040600000000000ULL
, 0x0060600000000000ULL
,
447 MODULE_LICENSE("GPL");
448 MODULE_VERSION(DRV_VERSION
);
451 /* Module Loadable parameters. */
452 S2IO_PARM_INT(tx_fifo_num
, 1);
453 S2IO_PARM_INT(rx_ring_num
, 1);
456 S2IO_PARM_INT(rx_ring_mode
, 1);
457 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
458 S2IO_PARM_INT(rmac_pause_time
, 0x100);
459 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
460 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
461 S2IO_PARM_INT(shared_splits
, 0);
462 S2IO_PARM_INT(tmac_util_period
, 5);
463 S2IO_PARM_INT(rmac_util_period
, 5);
464 S2IO_PARM_INT(l3l4hdr_size
, 128);
465 /* Frequency of Rx desc syncs expressed as power of 2 */
466 S2IO_PARM_INT(rxsync_frequency
, 3);
467 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
468 S2IO_PARM_INT(intr_type
, 2);
469 /* Large receive offload feature */
470 static unsigned int lro_enable
;
471 module_param_named(lro
, lro_enable
, uint
, 0);
473 /* Max pkts to be aggregated by LRO at one time. If not specified,
474 * aggregation happens until we hit max IP pkt size(64K)
476 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
477 S2IO_PARM_INT(indicate_max_pkts
, 0);
479 S2IO_PARM_INT(napi
, 1);
480 S2IO_PARM_INT(ufo
, 0);
481 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
483 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
484 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
485 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
486 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
487 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
488 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
490 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
491 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
492 module_param_array(rts_frm_len
, uint
, NULL
, 0);
496 * This table lists all the devices that this driver supports.
498 static struct pci_device_id s2io_tbl
[] __devinitdata
= {
499 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
500 PCI_ANY_ID
, PCI_ANY_ID
},
501 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
502 PCI_ANY_ID
, PCI_ANY_ID
},
503 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
504 PCI_ANY_ID
, PCI_ANY_ID
},
505 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
506 PCI_ANY_ID
, PCI_ANY_ID
},
510 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
512 static struct pci_error_handlers s2io_err_handler
= {
513 .error_detected
= s2io_io_error_detected
,
514 .slot_reset
= s2io_io_slot_reset
,
515 .resume
= s2io_io_resume
,
518 static struct pci_driver s2io_driver
= {
520 .id_table
= s2io_tbl
,
521 .probe
= s2io_init_nic
,
522 .remove
= __devexit_p(s2io_rem_nic
),
523 .err_handler
= &s2io_err_handler
,
526 /* A simplifier macro used both by init and free shared_mem Fns(). */
527 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
530 * init_shared_mem - Allocation and Initialization of Memory
531 * @nic: Device private variable.
532 * Description: The function allocates all the memory areas shared
533 * between the NIC and the driver. This includes Tx descriptors,
534 * Rx descriptors and the statistics block.
537 static int init_shared_mem(struct s2io_nic
*nic
)
540 void *tmp_v_addr
, *tmp_v_addr_next
;
541 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
542 struct RxD_block
*pre_rxd_blk
= NULL
;
544 int lst_size
, lst_per_page
;
545 struct net_device
*dev
= nic
->dev
;
549 struct mac_info
*mac_control
;
550 struct config_param
*config
;
551 unsigned long long mem_allocated
= 0;
553 mac_control
= &nic
->mac_control
;
554 config
= &nic
->config
;
557 /* Allocation and initialization of TXDLs in FIOFs */
559 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
560 size
+= config
->tx_cfg
[i
].fifo_len
;
562 if (size
> MAX_AVAILABLE_TXDS
) {
563 DBG_PRINT(ERR_DBG
, "s2io: Requested TxDs too high, ");
564 DBG_PRINT(ERR_DBG
, "Requested: %d, max supported: 8192\n", size
);
568 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
569 lst_per_page
= PAGE_SIZE
/ lst_size
;
571 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
572 int fifo_len
= config
->tx_cfg
[i
].fifo_len
;
573 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
574 mac_control
->fifos
[i
].list_info
= kzalloc(list_holder_size
,
576 if (!mac_control
->fifos
[i
].list_info
) {
578 "Malloc failed for list_info\n");
581 mem_allocated
+= list_holder_size
;
583 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
584 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
586 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
587 mac_control
->fifos
[i
].tx_curr_put_info
.fifo_len
=
588 config
->tx_cfg
[i
].fifo_len
- 1;
589 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
590 mac_control
->fifos
[i
].tx_curr_get_info
.fifo_len
=
591 config
->tx_cfg
[i
].fifo_len
- 1;
592 mac_control
->fifos
[i
].fifo_no
= i
;
593 mac_control
->fifos
[i
].nic
= nic
;
594 mac_control
->fifos
[i
].max_txds
= MAX_SKB_FRAGS
+ 2;
596 for (j
= 0; j
< page_num
; j
++) {
600 tmp_v
= pci_alloc_consistent(nic
->pdev
,
604 "pci_alloc_consistent ");
605 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
608 /* If we got a zero DMA address(can happen on
609 * certain platforms like PPC), reallocate.
610 * Store virtual address of page we don't want,
614 mac_control
->zerodma_virt_addr
= tmp_v
;
616 "%s: Zero DMA address for TxDL. ", dev
->name
);
618 "Virtual address %p\n", tmp_v
);
619 tmp_v
= pci_alloc_consistent(nic
->pdev
,
623 "pci_alloc_consistent ");
624 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
627 mem_allocated
+= PAGE_SIZE
;
629 while (k
< lst_per_page
) {
630 int l
= (j
* lst_per_page
) + k
;
631 if (l
== config
->tx_cfg
[i
].fifo_len
)
633 mac_control
->fifos
[i
].list_info
[l
].list_virt_addr
=
634 tmp_v
+ (k
* lst_size
);
635 mac_control
->fifos
[i
].list_info
[l
].list_phy_addr
=
636 tmp_p
+ (k
* lst_size
);
642 nic
->ufo_in_band_v
= kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
643 if (!nic
->ufo_in_band_v
)
645 mem_allocated
+= (size
* sizeof(u64
));
647 /* Allocation and initialization of RXDs in Rings */
649 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
650 if (config
->rx_cfg
[i
].num_rxd
%
651 (rxd_count
[nic
->rxd_mode
] + 1)) {
652 DBG_PRINT(ERR_DBG
, "%s: RxD count of ", dev
->name
);
653 DBG_PRINT(ERR_DBG
, "Ring%d is not a multiple of ",
655 DBG_PRINT(ERR_DBG
, "RxDs per Block");
658 size
+= config
->rx_cfg
[i
].num_rxd
;
659 mac_control
->rings
[i
].block_count
=
660 config
->rx_cfg
[i
].num_rxd
/
661 (rxd_count
[nic
->rxd_mode
] + 1 );
662 mac_control
->rings
[i
].pkt_cnt
= config
->rx_cfg
[i
].num_rxd
-
663 mac_control
->rings
[i
].block_count
;
665 if (nic
->rxd_mode
== RXD_MODE_1
)
666 size
= (size
* (sizeof(struct RxD1
)));
668 size
= (size
* (sizeof(struct RxD3
)));
670 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
671 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
672 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
673 mac_control
->rings
[i
].rx_curr_get_info
.ring_len
=
674 config
->rx_cfg
[i
].num_rxd
- 1;
675 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
676 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
677 mac_control
->rings
[i
].rx_curr_put_info
.ring_len
=
678 config
->rx_cfg
[i
].num_rxd
- 1;
679 mac_control
->rings
[i
].nic
= nic
;
680 mac_control
->rings
[i
].ring_no
= i
;
682 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
683 (rxd_count
[nic
->rxd_mode
] + 1);
684 /* Allocating all the Rx blocks */
685 for (j
= 0; j
< blk_cnt
; j
++) {
686 struct rx_block_info
*rx_blocks
;
689 rx_blocks
= &mac_control
->rings
[i
].rx_blocks
[j
];
690 size
= SIZE_OF_BLOCK
; //size is always page size
691 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
693 if (tmp_v_addr
== NULL
) {
695 * In case of failure, free_shared_mem()
696 * is called, which should free any
697 * memory that was alloced till the
700 rx_blocks
->block_virt_addr
= tmp_v_addr
;
703 mem_allocated
+= size
;
704 memset(tmp_v_addr
, 0, size
);
705 rx_blocks
->block_virt_addr
= tmp_v_addr
;
706 rx_blocks
->block_dma_addr
= tmp_p_addr
;
707 rx_blocks
->rxds
= kmalloc(sizeof(struct rxd_info
)*
708 rxd_count
[nic
->rxd_mode
],
710 if (!rx_blocks
->rxds
)
713 (sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
714 for (l
=0; l
<rxd_count
[nic
->rxd_mode
];l
++) {
715 rx_blocks
->rxds
[l
].virt_addr
=
716 rx_blocks
->block_virt_addr
+
717 (rxd_size
[nic
->rxd_mode
] * l
);
718 rx_blocks
->rxds
[l
].dma_addr
=
719 rx_blocks
->block_dma_addr
+
720 (rxd_size
[nic
->rxd_mode
] * l
);
723 /* Interlinking all Rx Blocks */
724 for (j
= 0; j
< blk_cnt
; j
++) {
726 mac_control
->rings
[i
].rx_blocks
[j
].block_virt_addr
;
728 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
729 blk_cnt
].block_virt_addr
;
731 mac_control
->rings
[i
].rx_blocks
[j
].block_dma_addr
;
733 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
734 blk_cnt
].block_dma_addr
;
736 pre_rxd_blk
= (struct RxD_block
*) tmp_v_addr
;
737 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
738 (unsigned long) tmp_v_addr_next
;
739 pre_rxd_blk
->pNext_RxD_Blk_physical
=
740 (u64
) tmp_p_addr_next
;
743 if (nic
->rxd_mode
== RXD_MODE_3B
) {
745 * Allocation of Storages for buffer addresses in 2BUFF mode
746 * and the buffers as well.
748 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
749 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
750 (rxd_count
[nic
->rxd_mode
]+ 1);
751 mac_control
->rings
[i
].ba
=
752 kmalloc((sizeof(struct buffAdd
*) * blk_cnt
),
754 if (!mac_control
->rings
[i
].ba
)
756 mem_allocated
+=(sizeof(struct buffAdd
*) * blk_cnt
);
757 for (j
= 0; j
< blk_cnt
; j
++) {
759 mac_control
->rings
[i
].ba
[j
] =
760 kmalloc((sizeof(struct buffAdd
) *
761 (rxd_count
[nic
->rxd_mode
] + 1)),
763 if (!mac_control
->rings
[i
].ba
[j
])
765 mem_allocated
+= (sizeof(struct buffAdd
) * \
766 (rxd_count
[nic
->rxd_mode
] + 1));
767 while (k
!= rxd_count
[nic
->rxd_mode
]) {
768 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
770 ba
->ba_0_org
= (void *) kmalloc
771 (BUF0_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
775 (BUF0_LEN
+ ALIGN_SIZE
);
776 tmp
= (unsigned long)ba
->ba_0_org
;
778 tmp
&= ~((unsigned long) ALIGN_SIZE
);
779 ba
->ba_0
= (void *) tmp
;
781 ba
->ba_1_org
= (void *) kmalloc
782 (BUF1_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
786 += (BUF1_LEN
+ ALIGN_SIZE
);
787 tmp
= (unsigned long) ba
->ba_1_org
;
789 tmp
&= ~((unsigned long) ALIGN_SIZE
);
790 ba
->ba_1
= (void *) tmp
;
797 /* Allocation and initialization of Statistics block */
798 size
= sizeof(struct stat_block
);
799 mac_control
->stats_mem
= pci_alloc_consistent
800 (nic
->pdev
, size
, &mac_control
->stats_mem_phy
);
802 if (!mac_control
->stats_mem
) {
804 * In case of failure, free_shared_mem() is called, which
805 * should free any memory that was alloced till the
810 mem_allocated
+= size
;
811 mac_control
->stats_mem_sz
= size
;
813 tmp_v_addr
= mac_control
->stats_mem
;
814 mac_control
->stats_info
= (struct stat_block
*) tmp_v_addr
;
815 memset(tmp_v_addr
, 0, size
);
816 DBG_PRINT(INIT_DBG
, "%s:Ring Mem PHY: 0x%llx\n", dev
->name
,
817 (unsigned long long) tmp_p_addr
);
818 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
823 * free_shared_mem - Free the allocated Memory
824 * @nic: Device private variable.
825 * Description: This function is to free all memory locations allocated by
826 * the init_shared_mem() function and return it to the kernel.
829 static void free_shared_mem(struct s2io_nic
*nic
)
831 int i
, j
, blk_cnt
, size
;
834 dma_addr_t tmp_p_addr
;
835 struct mac_info
*mac_control
;
836 struct config_param
*config
;
837 int lst_size
, lst_per_page
;
838 struct net_device
*dev
;
846 mac_control
= &nic
->mac_control
;
847 config
= &nic
->config
;
849 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
850 lst_per_page
= PAGE_SIZE
/ lst_size
;
852 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
853 ufo_size
+= config
->tx_cfg
[i
].fifo_len
;
854 page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
856 for (j
= 0; j
< page_num
; j
++) {
857 int mem_blks
= (j
* lst_per_page
);
858 if (!mac_control
->fifos
[i
].list_info
)
860 if (!mac_control
->fifos
[i
].list_info
[mem_blks
].
863 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
864 mac_control
->fifos
[i
].
867 mac_control
->fifos
[i
].
870 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
873 /* If we got a zero DMA address during allocation,
876 if (mac_control
->zerodma_virt_addr
) {
877 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
878 mac_control
->zerodma_virt_addr
,
881 "%s: Freeing TxDL with zero DMA addr. ",
883 DBG_PRINT(INIT_DBG
, "Virtual address %p\n",
884 mac_control
->zerodma_virt_addr
);
885 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
888 kfree(mac_control
->fifos
[i
].list_info
);
889 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
890 (nic
->config
.tx_cfg
[i
].fifo_len
*sizeof(struct list_info_hold
));
893 size
= SIZE_OF_BLOCK
;
894 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
895 blk_cnt
= mac_control
->rings
[i
].block_count
;
896 for (j
= 0; j
< blk_cnt
; j
++) {
897 tmp_v_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
899 tmp_p_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
901 if (tmp_v_addr
== NULL
)
903 pci_free_consistent(nic
->pdev
, size
,
904 tmp_v_addr
, tmp_p_addr
);
905 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= size
;
906 kfree(mac_control
->rings
[i
].rx_blocks
[j
].rxds
);
907 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
908 ( sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
912 if (nic
->rxd_mode
== RXD_MODE_3B
) {
913 /* Freeing buffer storage addresses in 2BUFF mode. */
914 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
915 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
916 (rxd_count
[nic
->rxd_mode
] + 1);
917 for (j
= 0; j
< blk_cnt
; j
++) {
919 if (!mac_control
->rings
[i
].ba
[j
])
921 while (k
!= rxd_count
[nic
->rxd_mode
]) {
923 &mac_control
->rings
[i
].ba
[j
][k
];
925 nic
->mac_control
.stats_info
->sw_stat
.\
926 mem_freed
+= (BUF0_LEN
+ ALIGN_SIZE
);
928 nic
->mac_control
.stats_info
->sw_stat
.\
929 mem_freed
+= (BUF1_LEN
+ ALIGN_SIZE
);
932 kfree(mac_control
->rings
[i
].ba
[j
]);
933 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
934 (sizeof(struct buffAdd
) *
935 (rxd_count
[nic
->rxd_mode
] + 1));
937 kfree(mac_control
->rings
[i
].ba
);
938 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
939 (sizeof(struct buffAdd
*) * blk_cnt
);
943 if (mac_control
->stats_mem
) {
944 pci_free_consistent(nic
->pdev
,
945 mac_control
->stats_mem_sz
,
946 mac_control
->stats_mem
,
947 mac_control
->stats_mem_phy
);
948 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
949 mac_control
->stats_mem_sz
;
951 if (nic
->ufo_in_band_v
) {
952 kfree(nic
->ufo_in_band_v
);
953 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
954 += (ufo_size
* sizeof(u64
));
959 * s2io_verify_pci_mode -
962 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
964 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
965 register u64 val64
= 0;
968 val64
= readq(&bar0
->pci_mode
);
969 mode
= (u8
)GET_PCI_MODE(val64
);
971 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
972 return -1; /* Unknown PCI mode */
976 #define NEC_VENID 0x1033
977 #define NEC_DEVID 0x0125
978 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
980 struct pci_dev
*tdev
= NULL
;
981 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
982 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
983 if (tdev
->bus
== s2io_pdev
->bus
->parent
)
991 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
993 * s2io_print_pci_mode -
995 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
997 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
998 register u64 val64
= 0;
1000 struct config_param
*config
= &nic
->config
;
1002 val64
= readq(&bar0
->pci_mode
);
1003 mode
= (u8
)GET_PCI_MODE(val64
);
1005 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
1006 return -1; /* Unknown PCI mode */
1008 config
->bus_speed
= bus_speed
[mode
];
1010 if (s2io_on_nec_bridge(nic
->pdev
)) {
1011 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
1016 if (val64
& PCI_MODE_32_BITS
) {
1017 DBG_PRINT(ERR_DBG
, "%s: Device is on 32 bit ", nic
->dev
->name
);
1019 DBG_PRINT(ERR_DBG
, "%s: Device is on 64 bit ", nic
->dev
->name
);
1023 case PCI_MODE_PCI_33
:
1024 DBG_PRINT(ERR_DBG
, "33MHz PCI bus\n");
1026 case PCI_MODE_PCI_66
:
1027 DBG_PRINT(ERR_DBG
, "66MHz PCI bus\n");
1029 case PCI_MODE_PCIX_M1_66
:
1030 DBG_PRINT(ERR_DBG
, "66MHz PCIX(M1) bus\n");
1032 case PCI_MODE_PCIX_M1_100
:
1033 DBG_PRINT(ERR_DBG
, "100MHz PCIX(M1) bus\n");
1035 case PCI_MODE_PCIX_M1_133
:
1036 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M1) bus\n");
1038 case PCI_MODE_PCIX_M2_66
:
1039 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M2) bus\n");
1041 case PCI_MODE_PCIX_M2_100
:
1042 DBG_PRINT(ERR_DBG
, "200MHz PCIX(M2) bus\n");
1044 case PCI_MODE_PCIX_M2_133
:
1045 DBG_PRINT(ERR_DBG
, "266MHz PCIX(M2) bus\n");
1048 return -1; /* Unsupported bus speed */
1055 * init_nic - Initialization of hardware
1056 * @nic: device peivate variable
1057 * Description: The function sequentially configures every block
1058 * of the H/W from their reset values.
1059 * Return Value: SUCCESS on success and
1060 * '-1' on failure (endian settings incorrect).
1063 static int init_nic(struct s2io_nic
*nic
)
1065 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1066 struct net_device
*dev
= nic
->dev
;
1067 register u64 val64
= 0;
1071 struct mac_info
*mac_control
;
1072 struct config_param
*config
;
1074 unsigned long long mem_share
;
1077 mac_control
= &nic
->mac_control
;
1078 config
= &nic
->config
;
1080 /* to set the swapper controle on the card */
1081 if(s2io_set_swapper(nic
)) {
1082 DBG_PRINT(ERR_DBG
,"ERROR: Setting Swapper failed\n");
1087 * Herc requires EOI to be removed from reset before XGXS, so..
1089 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1090 val64
= 0xA500000000ULL
;
1091 writeq(val64
, &bar0
->sw_reset
);
1093 val64
= readq(&bar0
->sw_reset
);
1096 /* Remove XGXS from reset state */
1098 writeq(val64
, &bar0
->sw_reset
);
1100 val64
= readq(&bar0
->sw_reset
);
1102 /* Ensure that it's safe to access registers by checking
1103 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1105 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1106 for (i
= 0; i
< 50; i
++) {
1107 val64
= readq(&bar0
->adapter_status
);
1108 if (!(val64
& ADAPTER_STATUS_RIC_RUNNING
))
1116 /* Enable Receiving broadcasts */
1117 add
= &bar0
->mac_cfg
;
1118 val64
= readq(&bar0
->mac_cfg
);
1119 val64
|= MAC_RMAC_BCAST_ENABLE
;
1120 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1121 writel((u32
) val64
, add
);
1122 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1123 writel((u32
) (val64
>> 32), (add
+ 4));
1125 /* Read registers in all blocks */
1126 val64
= readq(&bar0
->mac_int_mask
);
1127 val64
= readq(&bar0
->mc_int_mask
);
1128 val64
= readq(&bar0
->xgxs_int_mask
);
1132 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1134 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1135 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1136 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1137 &bar0
->dtx_control
, UF
);
1139 msleep(1); /* Necessary!! */
1143 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1144 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1145 &bar0
->dtx_control
, UF
);
1146 val64
= readq(&bar0
->dtx_control
);
1151 /* Tx DMA Initialization */
1153 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1154 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1155 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1156 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1159 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1161 vBIT(config
->tx_cfg
[i
].fifo_len
- 1, ((i
* 32) + 19),
1162 13) | vBIT(config
->tx_cfg
[i
].fifo_priority
,
1165 if (i
== (config
->tx_fifo_num
- 1)) {
1172 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1176 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1180 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1184 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1190 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1191 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1193 if ((nic
->device_type
== XFRAME_I_DEVICE
) &&
1194 (nic
->pdev
->revision
< 4))
1195 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1197 val64
= readq(&bar0
->tx_fifo_partition_0
);
1198 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1199 &bar0
->tx_fifo_partition_0
, (unsigned long long) val64
);
1202 * Initialization of Tx_PA_CONFIG register to ignore packet
1203 * integrity checking.
1205 val64
= readq(&bar0
->tx_pa_cfg
);
1206 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
| TX_PA_CFG_IGNORE_SNAP_OUI
|
1207 TX_PA_CFG_IGNORE_LLC_CTRL
| TX_PA_CFG_IGNORE_L2_ERR
;
1208 writeq(val64
, &bar0
->tx_pa_cfg
);
1210 /* Rx DMA intialization. */
1212 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1214 vBIT(config
->rx_cfg
[i
].ring_priority
, (5 + (i
* 8)),
1217 writeq(val64
, &bar0
->rx_queue_priority
);
1220 * Allocating equal share of memory to all the
1224 if (nic
->device_type
& XFRAME_II_DEVICE
)
1229 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1232 mem_share
= (mem_size
/ config
->rx_ring_num
+
1233 mem_size
% config
->rx_ring_num
);
1234 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1237 mem_share
= (mem_size
/ config
->rx_ring_num
);
1238 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1241 mem_share
= (mem_size
/ config
->rx_ring_num
);
1242 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1245 mem_share
= (mem_size
/ config
->rx_ring_num
);
1246 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1249 mem_share
= (mem_size
/ config
->rx_ring_num
);
1250 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1253 mem_share
= (mem_size
/ config
->rx_ring_num
);
1254 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1257 mem_share
= (mem_size
/ config
->rx_ring_num
);
1258 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1261 mem_share
= (mem_size
/ config
->rx_ring_num
);
1262 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1266 writeq(val64
, &bar0
->rx_queue_cfg
);
1269 * Filling Tx round robin registers
1270 * as per the number of FIFOs
1272 switch (config
->tx_fifo_num
) {
1274 val64
= 0x0000000000000000ULL
;
1275 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1276 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1277 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1278 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1279 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1282 val64
= 0x0000010000010000ULL
;
1283 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1284 val64
= 0x0100000100000100ULL
;
1285 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1286 val64
= 0x0001000001000001ULL
;
1287 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1288 val64
= 0x0000010000010000ULL
;
1289 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1290 val64
= 0x0100000000000000ULL
;
1291 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1294 val64
= 0x0001000102000001ULL
;
1295 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1296 val64
= 0x0001020000010001ULL
;
1297 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1298 val64
= 0x0200000100010200ULL
;
1299 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1300 val64
= 0x0001000102000001ULL
;
1301 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1302 val64
= 0x0001020000000000ULL
;
1303 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1306 val64
= 0x0001020300010200ULL
;
1307 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1308 val64
= 0x0100000102030001ULL
;
1309 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1310 val64
= 0x0200010000010203ULL
;
1311 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1312 val64
= 0x0001020001000001ULL
;
1313 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1314 val64
= 0x0203000100000000ULL
;
1315 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1318 val64
= 0x0001000203000102ULL
;
1319 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1320 val64
= 0x0001020001030004ULL
;
1321 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1322 val64
= 0x0001000203000102ULL
;
1323 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1324 val64
= 0x0001020001030004ULL
;
1325 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1326 val64
= 0x0001000000000000ULL
;
1327 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1330 val64
= 0x0001020304000102ULL
;
1331 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1332 val64
= 0x0304050001020001ULL
;
1333 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1334 val64
= 0x0203000100000102ULL
;
1335 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1336 val64
= 0x0304000102030405ULL
;
1337 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1338 val64
= 0x0001000200000000ULL
;
1339 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1342 val64
= 0x0001020001020300ULL
;
1343 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1344 val64
= 0x0102030400010203ULL
;
1345 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1346 val64
= 0x0405060001020001ULL
;
1347 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1348 val64
= 0x0304050000010200ULL
;
1349 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1350 val64
= 0x0102030000000000ULL
;
1351 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1354 val64
= 0x0001020300040105ULL
;
1355 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1356 val64
= 0x0200030106000204ULL
;
1357 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1358 val64
= 0x0103000502010007ULL
;
1359 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1360 val64
= 0x0304010002060500ULL
;
1361 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1362 val64
= 0x0103020400000000ULL
;
1363 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1367 /* Enable all configured Tx FIFO partitions */
1368 val64
= readq(&bar0
->tx_fifo_partition_0
);
1369 val64
|= (TX_FIFO_PARTITION_EN
);
1370 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1372 /* Filling the Rx round robin registers as per the
1373 * number of Rings and steering based on QoS.
1375 switch (config
->rx_ring_num
) {
1377 val64
= 0x8080808080808080ULL
;
1378 writeq(val64
, &bar0
->rts_qos_steering
);
1381 val64
= 0x0000010000010000ULL
;
1382 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1383 val64
= 0x0100000100000100ULL
;
1384 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1385 val64
= 0x0001000001000001ULL
;
1386 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1387 val64
= 0x0000010000010000ULL
;
1388 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1389 val64
= 0x0100000000000000ULL
;
1390 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1392 val64
= 0x8080808040404040ULL
;
1393 writeq(val64
, &bar0
->rts_qos_steering
);
1396 val64
= 0x0001000102000001ULL
;
1397 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1398 val64
= 0x0001020000010001ULL
;
1399 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1400 val64
= 0x0200000100010200ULL
;
1401 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1402 val64
= 0x0001000102000001ULL
;
1403 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1404 val64
= 0x0001020000000000ULL
;
1405 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1407 val64
= 0x8080804040402020ULL
;
1408 writeq(val64
, &bar0
->rts_qos_steering
);
1411 val64
= 0x0001020300010200ULL
;
1412 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1413 val64
= 0x0100000102030001ULL
;
1414 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1415 val64
= 0x0200010000010203ULL
;
1416 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1417 val64
= 0x0001020001000001ULL
;
1418 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1419 val64
= 0x0203000100000000ULL
;
1420 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1422 val64
= 0x8080404020201010ULL
;
1423 writeq(val64
, &bar0
->rts_qos_steering
);
1426 val64
= 0x0001000203000102ULL
;
1427 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1428 val64
= 0x0001020001030004ULL
;
1429 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1430 val64
= 0x0001000203000102ULL
;
1431 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1432 val64
= 0x0001020001030004ULL
;
1433 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1434 val64
= 0x0001000000000000ULL
;
1435 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1437 val64
= 0x8080404020201008ULL
;
1438 writeq(val64
, &bar0
->rts_qos_steering
);
1441 val64
= 0x0001020304000102ULL
;
1442 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1443 val64
= 0x0304050001020001ULL
;
1444 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1445 val64
= 0x0203000100000102ULL
;
1446 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1447 val64
= 0x0304000102030405ULL
;
1448 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1449 val64
= 0x0001000200000000ULL
;
1450 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1452 val64
= 0x8080404020100804ULL
;
1453 writeq(val64
, &bar0
->rts_qos_steering
);
1456 val64
= 0x0001020001020300ULL
;
1457 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1458 val64
= 0x0102030400010203ULL
;
1459 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1460 val64
= 0x0405060001020001ULL
;
1461 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1462 val64
= 0x0304050000010200ULL
;
1463 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1464 val64
= 0x0102030000000000ULL
;
1465 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1467 val64
= 0x8080402010080402ULL
;
1468 writeq(val64
, &bar0
->rts_qos_steering
);
1471 val64
= 0x0001020300040105ULL
;
1472 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1473 val64
= 0x0200030106000204ULL
;
1474 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1475 val64
= 0x0103000502010007ULL
;
1476 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1477 val64
= 0x0304010002060500ULL
;
1478 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1479 val64
= 0x0103020400000000ULL
;
1480 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1482 val64
= 0x8040201008040201ULL
;
1483 writeq(val64
, &bar0
->rts_qos_steering
);
1489 for (i
= 0; i
< 8; i
++)
1490 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1492 /* Set the default rts frame length for the rings configured */
1493 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1494 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1495 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1497 /* Set the frame length for the configured rings
1498 * desired by the user
1500 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1501 /* If rts_frm_len[i] == 0 then it is assumed that user not
1502 * specified frame length steering.
1503 * If the user provides the frame length then program
1504 * the rts_frm_len register for those values or else
1505 * leave it as it is.
1507 if (rts_frm_len
[i
] != 0) {
1508 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1509 &bar0
->rts_frm_len_n
[i
]);
1513 /* Disable differentiated services steering logic */
1514 for (i
= 0; i
< 64; i
++) {
1515 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1516 DBG_PRINT(ERR_DBG
, "%s: failed rts ds steering",
1518 DBG_PRINT(ERR_DBG
, "set on codepoint %d\n", i
);
1523 /* Program statistics memory */
1524 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1526 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1527 val64
= STAT_BC(0x320);
1528 writeq(val64
, &bar0
->stat_byte_cnt
);
1532 * Initializing the sampling rate for the device to calculate the
1533 * bandwidth utilization.
1535 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1536 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1537 writeq(val64
, &bar0
->mac_link_util
);
1541 * Initializing the Transmit and Receive Traffic Interrupt
1545 * TTI Initialization. Default Tx timer gets us about
1546 * 250 interrupts per sec. Continuous interrupts are enabled
1549 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1550 int count
= (nic
->config
.bus_speed
* 125)/2;
1551 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1554 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1556 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1557 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1558 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1559 if (use_continuous_tx_intrs
)
1560 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1561 writeq(val64
, &bar0
->tti_data1_mem
);
1563 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1564 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1565 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1566 writeq(val64
, &bar0
->tti_data2_mem
);
1568 val64
= TTI_CMD_MEM_WE
| TTI_CMD_MEM_STROBE_NEW_CMD
;
1569 writeq(val64
, &bar0
->tti_command_mem
);
1572 * Once the operation completes, the Strobe bit of the command
1573 * register will be reset. We poll for this particular condition
1574 * We wait for a maximum of 500ms for the operation to complete,
1575 * if it's not complete by then we return error.
1579 val64
= readq(&bar0
->tti_command_mem
);
1580 if (!(val64
& TTI_CMD_MEM_STROBE_NEW_CMD
)) {
1584 DBG_PRINT(ERR_DBG
, "%s: TTI init Failed\n",
1592 /* RTI Initialization */
1593 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1595 * Programmed to generate Apprx 500 Intrs per
1598 int count
= (nic
->config
.bus_speed
* 125)/4;
1599 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1601 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1602 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1603 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1604 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1606 writeq(val64
, &bar0
->rti_data1_mem
);
1608 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1609 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1610 if (nic
->config
.intr_type
== MSI_X
)
1611 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1612 RTI_DATA2_MEM_RX_UFC_D(0x40));
1614 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1615 RTI_DATA2_MEM_RX_UFC_D(0x80));
1616 writeq(val64
, &bar0
->rti_data2_mem
);
1618 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1619 val64
= RTI_CMD_MEM_WE
| RTI_CMD_MEM_STROBE_NEW_CMD
1620 | RTI_CMD_MEM_OFFSET(i
);
1621 writeq(val64
, &bar0
->rti_command_mem
);
1624 * Once the operation completes, the Strobe bit of the
1625 * command register will be reset. We poll for this
1626 * particular condition. We wait for a maximum of 500ms
1627 * for the operation to complete, if it's not complete
1628 * by then we return error.
1632 val64
= readq(&bar0
->rti_command_mem
);
1633 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
))
1637 DBG_PRINT(ERR_DBG
, "%s: RTI init Failed\n",
1647 * Initializing proper values as Pause threshold into all
1648 * the 8 Queues on Rx side.
1650 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1651 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1653 /* Disable RMAC PAD STRIPPING */
1654 add
= &bar0
->mac_cfg
;
1655 val64
= readq(&bar0
->mac_cfg
);
1656 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1657 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1658 writel((u32
) (val64
), add
);
1659 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1660 writel((u32
) (val64
>> 32), (add
+ 4));
1661 val64
= readq(&bar0
->mac_cfg
);
1663 /* Enable FCS stripping by adapter */
1664 add
= &bar0
->mac_cfg
;
1665 val64
= readq(&bar0
->mac_cfg
);
1666 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1667 if (nic
->device_type
== XFRAME_II_DEVICE
)
1668 writeq(val64
, &bar0
->mac_cfg
);
1670 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1671 writel((u32
) (val64
), add
);
1672 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1673 writel((u32
) (val64
>> 32), (add
+ 4));
1677 * Set the time value to be inserted in the pause frame
1678 * generated by xena.
1680 val64
= readq(&bar0
->rmac_pause_cfg
);
1681 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1682 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1683 writeq(val64
, &bar0
->rmac_pause_cfg
);
1686 * Set the Threshold Limit for Generating the pause frame
1687 * If the amount of data in any Queue exceeds ratio of
1688 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1689 * pause frame is generated
1692 for (i
= 0; i
< 4; i
++) {
1694 (((u64
) 0xFF00 | nic
->mac_control
.
1695 mc_pause_threshold_q0q3
)
1698 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1701 for (i
= 0; i
< 4; i
++) {
1703 (((u64
) 0xFF00 | nic
->mac_control
.
1704 mc_pause_threshold_q4q7
)
1707 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1710 * TxDMA will stop Read request if the number of read split has
1711 * exceeded the limit pointed by shared_splits
1713 val64
= readq(&bar0
->pic_control
);
1714 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1715 writeq(val64
, &bar0
->pic_control
);
1717 if (nic
->config
.bus_speed
== 266) {
1718 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1719 writeq(0x0, &bar0
->read_retry_delay
);
1720 writeq(0x0, &bar0
->write_retry_delay
);
1724 * Programming the Herc to split every write transaction
1725 * that does not start on an ADB to reduce disconnects.
1727 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1728 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1729 MISC_LINK_STABILITY_PRD(3);
1730 writeq(val64
, &bar0
->misc_control
);
1731 val64
= readq(&bar0
->pic_control2
);
1732 val64
&= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1733 writeq(val64
, &bar0
->pic_control2
);
1735 if (strstr(nic
->product_name
, "CX4")) {
1736 val64
= TMAC_AVG_IPG(0x17);
1737 writeq(val64
, &bar0
->tmac_avg_ipg
);
1742 #define LINK_UP_DOWN_INTERRUPT 1
1743 #define MAC_RMAC_ERR_TIMER 2
1745 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1747 if (nic
->config
.intr_type
!= INTA
)
1748 return MAC_RMAC_ERR_TIMER
;
1749 if (nic
->device_type
== XFRAME_II_DEVICE
)
1750 return LINK_UP_DOWN_INTERRUPT
;
1752 return MAC_RMAC_ERR_TIMER
;
1756 * do_s2io_write_bits - update alarm bits in alarm register
1757 * @value: alarm bits
1758 * @flag: interrupt status
1759 * @addr: address value
1760 * Description: update alarm bits in alarm register
1764 static void do_s2io_write_bits(u64 value
, int flag
, void __iomem
*addr
)
1768 temp64
= readq(addr
);
1770 if(flag
== ENABLE_INTRS
)
1771 temp64
&= ~((u64
) value
);
1773 temp64
|= ((u64
) value
);
1774 writeq(temp64
, addr
);
1777 static void en_dis_err_alarms(struct s2io_nic
*nic
, u16 mask
, int flag
)
1779 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1780 register u64 gen_int_mask
= 0;
1782 if (mask
& TX_DMA_INTR
) {
1784 gen_int_mask
|= TXDMA_INT_M
;
1786 do_s2io_write_bits(TXDMA_TDA_INT
| TXDMA_PFC_INT
|
1787 TXDMA_PCC_INT
| TXDMA_TTI_INT
|
1788 TXDMA_LSO_INT
| TXDMA_TPA_INT
|
1789 TXDMA_SM_INT
, flag
, &bar0
->txdma_int_mask
);
1791 do_s2io_write_bits(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
1792 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
1793 PFC_PCIX_ERR
| PFC_ECC_SG_ERR
, flag
,
1794 &bar0
->pfc_err_mask
);
1796 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
1797 TDA_SM1_ERR_ALARM
| TDA_Fn_ECC_SG_ERR
|
1798 TDA_PCIX_ERR
, flag
, &bar0
->tda_err_mask
);
1800 do_s2io_write_bits(PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR
|
1801 PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
1802 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
1803 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
1804 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_SG_ERR
|
1805 PCC_TXB_ECC_SG_ERR
, flag
, &bar0
->pcc_err_mask
);
1807 do_s2io_write_bits(TTI_SM_ERR_ALARM
| TTI_ECC_SG_ERR
|
1808 TTI_ECC_DB_ERR
, flag
, &bar0
->tti_err_mask
);
1810 do_s2io_write_bits(LSO6_ABORT
| LSO7_ABORT
|
1811 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
|
1812 LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
1813 flag
, &bar0
->lso_err_mask
);
1815 do_s2io_write_bits(TPA_SM_ERR_ALARM
| TPA_TX_FRM_DROP
,
1816 flag
, &bar0
->tpa_err_mask
);
1818 do_s2io_write_bits(SM_SM_ERR_ALARM
, flag
, &bar0
->sm_err_mask
);
1822 if (mask
& TX_MAC_INTR
) {
1823 gen_int_mask
|= TXMAC_INT_M
;
1824 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT
, flag
,
1825 &bar0
->mac_int_mask
);
1826 do_s2io_write_bits(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
|
1827 TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
1828 TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
1829 flag
, &bar0
->mac_tmac_err_mask
);
1832 if (mask
& TX_XGXS_INTR
) {
1833 gen_int_mask
|= TXXGXS_INT_M
;
1834 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS
, flag
,
1835 &bar0
->xgxs_int_mask
);
1836 do_s2io_write_bits(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
|
1837 TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
1838 flag
, &bar0
->xgxs_txgxs_err_mask
);
1841 if (mask
& RX_DMA_INTR
) {
1842 gen_int_mask
|= RXDMA_INT_M
;
1843 do_s2io_write_bits(RXDMA_INT_RC_INT_M
| RXDMA_INT_RPA_INT_M
|
1844 RXDMA_INT_RDA_INT_M
| RXDMA_INT_RTI_INT_M
,
1845 flag
, &bar0
->rxdma_int_mask
);
1846 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
|
1847 RC_PRCn_SM_ERR_ALARM
| RC_FTC_SM_ERR_ALARM
|
1848 RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
|
1849 RC_RDA_FAIL_WR_Rn
, flag
, &bar0
->rc_err_mask
);
1850 do_s2io_write_bits(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
|
1851 PRC_PCI_AB_F_WR_Rn
| PRC_PCI_DP_RD_Rn
|
1852 PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn
, flag
,
1853 &bar0
->prc_pcix_err_mask
);
1854 do_s2io_write_bits(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
|
1855 RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
, flag
,
1856 &bar0
->rpa_err_mask
);
1857 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR
|
1858 RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM
|
1859 RDA_RXD_ECC_DB_SERR
| RDA_RXDn_ECC_SG_ERR
|
1860 RDA_FRM_ECC_SG_ERR
| RDA_MISC_ERR
|RDA_PCIX_ERR
,
1861 flag
, &bar0
->rda_err_mask
);
1862 do_s2io_write_bits(RTI_SM_ERR_ALARM
|
1863 RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
1864 flag
, &bar0
->rti_err_mask
);
1867 if (mask
& RX_MAC_INTR
) {
1868 gen_int_mask
|= RXMAC_INT_M
;
1869 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT
, flag
,
1870 &bar0
->mac_int_mask
);
1871 do_s2io_write_bits(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
|
1872 RMAC_UNUSED_INT
| RMAC_SINGLE_ECC_ERR
|
1873 RMAC_DOUBLE_ECC_ERR
|
1874 RMAC_LINK_STATE_CHANGE_INT
,
1875 flag
, &bar0
->mac_rmac_err_mask
);
1878 if (mask
& RX_XGXS_INTR
)
1880 gen_int_mask
|= RXXGXS_INT_M
;
1881 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS
, flag
,
1882 &bar0
->xgxs_int_mask
);
1883 do_s2io_write_bits(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
, flag
,
1884 &bar0
->xgxs_rxgxs_err_mask
);
1887 if (mask
& MC_INTR
) {
1888 gen_int_mask
|= MC_INT_M
;
1889 do_s2io_write_bits(MC_INT_MASK_MC_INT
, flag
, &bar0
->mc_int_mask
);
1890 do_s2io_write_bits(MC_ERR_REG_SM_ERR
| MC_ERR_REG_ECC_ALL_SNG
|
1891 MC_ERR_REG_ECC_ALL_DBL
| PLL_LOCK_N
, flag
,
1892 &bar0
->mc_err_mask
);
1894 nic
->general_int_mask
= gen_int_mask
;
1896 /* Remove this line when alarm interrupts are enabled */
1897 nic
->general_int_mask
= 0;
1900 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1901 * @nic: device private variable,
1902 * @mask: A mask indicating which Intr block must be modified and,
1903 * @flag: A flag indicating whether to enable or disable the Intrs.
1904 * Description: This function will either disable or enable the interrupts
1905 * depending on the flag argument. The mask argument can be used to
1906 * enable/disable any Intr block.
1907 * Return Value: NONE.
1910 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
1912 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1913 register u64 temp64
= 0, intr_mask
= 0;
1915 intr_mask
= nic
->general_int_mask
;
1917 /* Top level interrupt classification */
1918 /* PIC Interrupts */
1919 if (mask
& TX_PIC_INTR
) {
1920 /* Enable PIC Intrs in the general intr mask register */
1921 intr_mask
|= TXPIC_INT_M
;
1922 if (flag
== ENABLE_INTRS
) {
1924 * If Hercules adapter enable GPIO otherwise
1925 * disable all PCIX, Flash, MDIO, IIC and GPIO
1926 * interrupts for now.
1929 if (s2io_link_fault_indication(nic
) ==
1930 LINK_UP_DOWN_INTERRUPT
) {
1931 do_s2io_write_bits(PIC_INT_GPIO
, flag
,
1932 &bar0
->pic_int_mask
);
1933 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP
, flag
,
1934 &bar0
->gpio_int_mask
);
1936 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
1937 } else if (flag
== DISABLE_INTRS
) {
1939 * Disable PIC Intrs in the general
1940 * intr mask register
1942 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
1946 /* Tx traffic interrupts */
1947 if (mask
& TX_TRAFFIC_INTR
) {
1948 intr_mask
|= TXTRAFFIC_INT_M
;
1949 if (flag
== ENABLE_INTRS
) {
1951 * Enable all the Tx side interrupts
1952 * writing 0 Enables all 64 TX interrupt levels
1954 writeq(0x0, &bar0
->tx_traffic_mask
);
1955 } else if (flag
== DISABLE_INTRS
) {
1957 * Disable Tx Traffic Intrs in the general intr mask
1960 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
1964 /* Rx traffic interrupts */
1965 if (mask
& RX_TRAFFIC_INTR
) {
1966 intr_mask
|= RXTRAFFIC_INT_M
;
1967 if (flag
== ENABLE_INTRS
) {
1968 /* writing 0 Enables all 8 RX interrupt levels */
1969 writeq(0x0, &bar0
->rx_traffic_mask
);
1970 } else if (flag
== DISABLE_INTRS
) {
1972 * Disable Rx Traffic Intrs in the general intr mask
1975 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
1979 temp64
= readq(&bar0
->general_int_mask
);
1980 if (flag
== ENABLE_INTRS
)
1981 temp64
&= ~((u64
) intr_mask
);
1983 temp64
= DISABLE_ALL_INTRS
;
1984 writeq(temp64
, &bar0
->general_int_mask
);
1986 nic
->general_int_mask
= readq(&bar0
->general_int_mask
);
1990 * verify_pcc_quiescent- Checks for PCC quiescent state
1991 * Return: 1 If PCC is quiescence
1992 * 0 If PCC is not quiescence
1994 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
1997 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
1998 u64 val64
= readq(&bar0
->adapter_status
);
2000 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
2002 if (flag
== FALSE
) {
2003 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2004 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
2007 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2011 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2012 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
2013 ADAPTER_STATUS_RMAC_PCC_IDLE
))
2016 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
2017 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2025 * verify_xena_quiescence - Checks whether the H/W is ready
2026 * Description: Returns whether the H/W is ready to go or not. Depending
2027 * on whether adapter enable bit was written or not the comparison
2028 * differs and the calling function passes the input argument flag to
2030 * Return: 1 If xena is quiescence
2031 * 0 If Xena is not quiescence
2034 static int verify_xena_quiescence(struct s2io_nic
*sp
)
2037 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2038 u64 val64
= readq(&bar0
->adapter_status
);
2039 mode
= s2io_verify_pci_mode(sp
);
2041 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
2042 DBG_PRINT(ERR_DBG
, "%s", "TDMA is not ready!");
2045 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
2046 DBG_PRINT(ERR_DBG
, "%s", "RDMA is not ready!");
2049 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
2050 DBG_PRINT(ERR_DBG
, "%s", "PFC is not ready!");
2053 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
2054 DBG_PRINT(ERR_DBG
, "%s", "TMAC BUF is not empty!");
2057 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
2058 DBG_PRINT(ERR_DBG
, "%s", "PIC is not QUIESCENT!");
2061 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
2062 DBG_PRINT(ERR_DBG
, "%s", "MC_DRAM is not ready!");
2065 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
2066 DBG_PRINT(ERR_DBG
, "%s", "MC_QUEUES is not ready!");
2069 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
2070 DBG_PRINT(ERR_DBG
, "%s", "M_PLL is not locked!");
2075 * In PCI 33 mode, the P_PLL is not used, and therefore,
2076 * the the P_PLL_LOCK bit in the adapter_status register will
2079 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
2080 sp
->device_type
== XFRAME_II_DEVICE
&& mode
!=
2082 DBG_PRINT(ERR_DBG
, "%s", "P_PLL is not locked!");
2085 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
2086 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
2087 DBG_PRINT(ERR_DBG
, "%s", "RC_PRC is not QUIESCENT!");
2094 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2095 * @sp: Pointer to device specifc structure
2097 * New procedure to clear mac address reading problems on Alpha platforms
2101 static void fix_mac_address(struct s2io_nic
* sp
)
2103 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2107 while (fix_mac
[i
] != END_SIGN
) {
2108 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
2110 val64
= readq(&bar0
->gpio_control
);
2115 * start_nic - Turns the device on
2116 * @nic : device private variable.
2118 * This function actually turns the device on. Before this function is
2119 * called,all Registers are configured from their reset states
2120 * and shared memory is allocated but the NIC is still quiescent. On
2121 * calling this function, the device interrupts are cleared and the NIC is
2122 * literally switched on by writing into the adapter control register.
2124 * SUCCESS on success and -1 on failure.
2127 static int start_nic(struct s2io_nic
*nic
)
2129 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2130 struct net_device
*dev
= nic
->dev
;
2131 register u64 val64
= 0;
2133 struct mac_info
*mac_control
;
2134 struct config_param
*config
;
2136 mac_control
= &nic
->mac_control
;
2137 config
= &nic
->config
;
2139 /* PRC Initialization and configuration */
2140 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2141 writeq((u64
) mac_control
->rings
[i
].rx_blocks
[0].block_dma_addr
,
2142 &bar0
->prc_rxd0_n
[i
]);
2144 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2145 if (nic
->rxd_mode
== RXD_MODE_1
)
2146 val64
|= PRC_CTRL_RC_ENABLED
;
2148 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2149 if (nic
->device_type
== XFRAME_II_DEVICE
)
2150 val64
|= PRC_CTRL_GROUP_READS
;
2151 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2152 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2153 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2156 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2157 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2158 val64
= readq(&bar0
->rx_pa_cfg
);
2159 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2160 writeq(val64
, &bar0
->rx_pa_cfg
);
2163 if (vlan_tag_strip
== 0) {
2164 val64
= readq(&bar0
->rx_pa_cfg
);
2165 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2166 writeq(val64
, &bar0
->rx_pa_cfg
);
2167 vlan_strip_flag
= 0;
2171 * Enabling MC-RLDRAM. After enabling the device, we timeout
2172 * for around 100ms, which is approximately the time required
2173 * for the device to be ready for operation.
2175 val64
= readq(&bar0
->mc_rldram_mrs
);
2176 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2177 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2178 val64
= readq(&bar0
->mc_rldram_mrs
);
2180 msleep(100); /* Delay by around 100 ms. */
2182 /* Enabling ECC Protection. */
2183 val64
= readq(&bar0
->adapter_control
);
2184 val64
&= ~ADAPTER_ECC_EN
;
2185 writeq(val64
, &bar0
->adapter_control
);
2188 * Verify if the device is ready to be enabled, if so enable
2191 val64
= readq(&bar0
->adapter_status
);
2192 if (!verify_xena_quiescence(nic
)) {
2193 DBG_PRINT(ERR_DBG
, "%s: device is not ready, ", dev
->name
);
2194 DBG_PRINT(ERR_DBG
, "Adapter status reads: 0x%llx\n",
2195 (unsigned long long) val64
);
2200 * With some switches, link might be already up at this point.
2201 * Because of this weird behavior, when we enable laser,
2202 * we may not get link. We need to handle this. We cannot
2203 * figure out which switch is misbehaving. So we are forced to
2204 * make a global change.
2207 /* Enabling Laser. */
2208 val64
= readq(&bar0
->adapter_control
);
2209 val64
|= ADAPTER_EOI_TX_ON
;
2210 writeq(val64
, &bar0
->adapter_control
);
2212 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2214 * Dont see link state interrupts initally on some switches,
2215 * so directly scheduling the link state task here.
2217 schedule_work(&nic
->set_link_task
);
2219 /* SXE-002: Initialize link and activity LED */
2220 subid
= nic
->pdev
->subsystem_device
;
2221 if (((subid
& 0xFF) >= 0x07) &&
2222 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2223 val64
= readq(&bar0
->gpio_control
);
2224 val64
|= 0x0000800000000000ULL
;
2225 writeq(val64
, &bar0
->gpio_control
);
2226 val64
= 0x0411040400000000ULL
;
2227 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2233 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2235 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
, struct \
2236 TxD
*txdlp
, int get_off
)
2238 struct s2io_nic
*nic
= fifo_data
->nic
;
2239 struct sk_buff
*skb
;
2244 if (txds
->Host_Control
== (u64
)(long)nic
->ufo_in_band_v
) {
2245 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2246 txds
->Buffer_Pointer
, sizeof(u64
),
2251 skb
= (struct sk_buff
*) ((unsigned long)
2252 txds
->Host_Control
);
2254 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2257 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2258 txds
->Buffer_Pointer
,
2259 skb
->len
- skb
->data_len
,
2261 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2264 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2265 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2266 if (!txds
->Buffer_Pointer
)
2268 pci_unmap_page(nic
->pdev
, (dma_addr_t
)
2269 txds
->Buffer_Pointer
,
2270 frag
->size
, PCI_DMA_TODEVICE
);
2273 memset(txdlp
,0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2278 * free_tx_buffers - Free all queued Tx buffers
2279 * @nic : device private variable.
2281 * Free all queued Tx buffers.
2282 * Return Value: void
2285 static void free_tx_buffers(struct s2io_nic
*nic
)
2287 struct net_device
*dev
= nic
->dev
;
2288 struct sk_buff
*skb
;
2291 struct mac_info
*mac_control
;
2292 struct config_param
*config
;
2295 mac_control
= &nic
->mac_control
;
2296 config
= &nic
->config
;
2298 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2299 for (j
= 0; j
< config
->tx_cfg
[i
].fifo_len
- 1; j
++) {
2300 txdp
= (struct TxD
*) \
2301 mac_control
->fifos
[i
].list_info
[j
].list_virt_addr
;
2302 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2304 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
2311 "%s:forcibly freeing %d skbs on FIFO%d\n",
2313 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
2314 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
2319 * stop_nic - To stop the nic
2320 * @nic ; device private variable.
2322 * This function does exactly the opposite of what the start_nic()
2323 * function does. This function is called to stop the device.
2328 static void stop_nic(struct s2io_nic
*nic
)
2330 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2331 register u64 val64
= 0;
2333 struct mac_info
*mac_control
;
2334 struct config_param
*config
;
2336 mac_control
= &nic
->mac_control
;
2337 config
= &nic
->config
;
2339 /* Disable all interrupts */
2340 en_dis_err_alarms(nic
, ENA_ALL_INTRS
, DISABLE_INTRS
);
2341 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2342 interruptible
|= TX_PIC_INTR
;
2343 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2345 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2346 val64
= readq(&bar0
->adapter_control
);
2347 val64
&= ~(ADAPTER_CNTL_EN
);
2348 writeq(val64
, &bar0
->adapter_control
);
2352 * fill_rx_buffers - Allocates the Rx side skbs
2353 * @nic: device private variable
2354 * @ring_no: ring number
2356 * The function allocates Rx side skbs and puts the physical
2357 * address of these buffers into the RxD buffer pointers, so that the NIC
2358 * can DMA the received frame into these locations.
2359 * The NIC supports 3 receive modes, viz
2361 * 2. three buffer and
2362 * 3. Five buffer modes.
2363 * Each mode defines how many fragments the received frame will be split
2364 * up into by the NIC. The frame is split into L3 header, L4 Header,
2365 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2366 * is split into 3 fragments. As of now only single buffer mode is
2369 * SUCCESS on success or an appropriate -ve value on failure.
2372 static int fill_rx_buffers(struct s2io_nic
*nic
, int ring_no
)
2374 struct net_device
*dev
= nic
->dev
;
2375 struct sk_buff
*skb
;
2377 int off
, off1
, size
, block_no
, block_no1
;
2380 struct mac_info
*mac_control
;
2381 struct config_param
*config
;
2384 unsigned long flags
;
2385 struct RxD_t
*first_rxdp
= NULL
;
2386 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2389 struct swStat
*stats
= &nic
->mac_control
.stats_info
->sw_stat
;
2391 mac_control
= &nic
->mac_control
;
2392 config
= &nic
->config
;
2393 alloc_cnt
= mac_control
->rings
[ring_no
].pkt_cnt
-
2394 atomic_read(&nic
->rx_bufs_left
[ring_no
]);
2396 block_no1
= mac_control
->rings
[ring_no
].rx_curr_get_info
.block_index
;
2397 off1
= mac_control
->rings
[ring_no
].rx_curr_get_info
.offset
;
2398 while (alloc_tab
< alloc_cnt
) {
2399 block_no
= mac_control
->rings
[ring_no
].rx_curr_put_info
.
2401 off
= mac_control
->rings
[ring_no
].rx_curr_put_info
.offset
;
2403 rxdp
= mac_control
->rings
[ring_no
].
2404 rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2406 if ((block_no
== block_no1
) && (off
== off1
) &&
2407 (rxdp
->Host_Control
)) {
2408 DBG_PRINT(INTR_DBG
, "%s: Get and Put",
2410 DBG_PRINT(INTR_DBG
, " info equated\n");
2413 if (off
&& (off
== rxd_count
[nic
->rxd_mode
])) {
2414 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2416 if (mac_control
->rings
[ring_no
].rx_curr_put_info
.
2417 block_index
== mac_control
->rings
[ring_no
].
2419 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2421 block_no
= mac_control
->rings
[ring_no
].
2422 rx_curr_put_info
.block_index
;
2423 if (off
== rxd_count
[nic
->rxd_mode
])
2425 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2427 rxdp
= mac_control
->rings
[ring_no
].
2428 rx_blocks
[block_no
].block_virt_addr
;
2429 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2433 spin_lock_irqsave(&nic
->put_lock
, flags
);
2434 mac_control
->rings
[ring_no
].put_pos
=
2435 (block_no
* (rxd_count
[nic
->rxd_mode
] + 1)) + off
;
2436 spin_unlock_irqrestore(&nic
->put_lock
, flags
);
2438 mac_control
->rings
[ring_no
].put_pos
=
2439 (block_no
* (rxd_count
[nic
->rxd_mode
] + 1)) + off
;
2441 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2442 ((nic
->rxd_mode
== RXD_MODE_3B
) &&
2443 (rxdp
->Control_2
& s2BIT(0)))) {
2444 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2448 /* calculate size of skb based on ring mode */
2449 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
2450 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2451 if (nic
->rxd_mode
== RXD_MODE_1
)
2452 size
+= NET_IP_ALIGN
;
2454 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2457 skb
= dev_alloc_skb(size
);
2459 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
2460 DBG_PRINT(INFO_DBG
, "memory to allocate SKBs\n");
2463 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2465 nic
->mac_control
.stats_info
->sw_stat
. \
2466 mem_alloc_fail_cnt
++;
2469 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
2471 if (nic
->rxd_mode
== RXD_MODE_1
) {
2472 /* 1 buffer mode - normal operation mode */
2473 rxdp1
= (struct RxD1
*)rxdp
;
2474 memset(rxdp
, 0, sizeof(struct RxD1
));
2475 skb_reserve(skb
, NET_IP_ALIGN
);
2476 rxdp1
->Buffer0_ptr
= pci_map_single
2477 (nic
->pdev
, skb
->data
, size
- NET_IP_ALIGN
,
2478 PCI_DMA_FROMDEVICE
);
2479 if( (rxdp1
->Buffer0_ptr
== 0) ||
2480 (rxdp1
->Buffer0_ptr
==
2482 goto pci_map_failed
;
2485 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2487 } else if (nic
->rxd_mode
== RXD_MODE_3B
) {
2490 * 2 buffer mode provides 128
2491 * byte aligned receive buffers.
2494 rxdp3
= (struct RxD3
*)rxdp
;
2495 /* save buffer pointers to avoid frequent dma mapping */
2496 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2497 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2498 memset(rxdp
, 0, sizeof(struct RxD3
));
2499 /* restore the buffer pointers for dma sync*/
2500 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2501 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2503 ba
= &mac_control
->rings
[ring_no
].ba
[block_no
][off
];
2504 skb_reserve(skb
, BUF0_LEN
);
2505 tmp
= (u64
)(unsigned long) skb
->data
;
2508 skb
->data
= (void *) (unsigned long)tmp
;
2509 skb_reset_tail_pointer(skb
);
2511 if (!(rxdp3
->Buffer0_ptr
))
2512 rxdp3
->Buffer0_ptr
=
2513 pci_map_single(nic
->pdev
, ba
->ba_0
, BUF0_LEN
,
2514 PCI_DMA_FROMDEVICE
);
2516 pci_dma_sync_single_for_device(nic
->pdev
,
2517 (dma_addr_t
) rxdp3
->Buffer0_ptr
,
2518 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2519 if( (rxdp3
->Buffer0_ptr
== 0) ||
2520 (rxdp3
->Buffer0_ptr
== DMA_ERROR_CODE
))
2521 goto pci_map_failed
;
2523 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2524 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2525 /* Two buffer mode */
2528 * Buffer2 will have L3/L4 header plus
2531 rxdp3
->Buffer2_ptr
= pci_map_single
2532 (nic
->pdev
, skb
->data
, dev
->mtu
+ 4,
2533 PCI_DMA_FROMDEVICE
);
2535 if( (rxdp3
->Buffer2_ptr
== 0) ||
2536 (rxdp3
->Buffer2_ptr
== DMA_ERROR_CODE
))
2537 goto pci_map_failed
;
2539 rxdp3
->Buffer1_ptr
=
2540 pci_map_single(nic
->pdev
,
2542 PCI_DMA_FROMDEVICE
);
2543 if( (rxdp3
->Buffer1_ptr
== 0) ||
2544 (rxdp3
->Buffer1_ptr
== DMA_ERROR_CODE
)) {
2547 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
2549 PCI_DMA_FROMDEVICE
);
2550 goto pci_map_failed
;
2552 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2553 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2556 rxdp
->Control_2
|= s2BIT(0);
2558 rxdp
->Host_Control
= (unsigned long) (skb
);
2559 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2560 rxdp
->Control_1
|= RXD_OWN_XENA
;
2562 if (off
== (rxd_count
[nic
->rxd_mode
] + 1))
2564 mac_control
->rings
[ring_no
].rx_curr_put_info
.offset
= off
;
2566 rxdp
->Control_2
|= SET_RXD_MARKER
;
2567 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2570 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2574 atomic_inc(&nic
->rx_bufs_left
[ring_no
]);
2579 /* Transfer ownership of first descriptor to adapter just before
2580 * exiting. Before that, use memory barrier so that ownership
2581 * and other fields are seen by adapter correctly.
2585 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2590 stats
->pci_map_fail_cnt
++;
2591 stats
->mem_freed
+= skb
->truesize
;
2592 dev_kfree_skb_irq(skb
);
2596 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2598 struct net_device
*dev
= sp
->dev
;
2600 struct sk_buff
*skb
;
2602 struct mac_info
*mac_control
;
2607 mac_control
= &sp
->mac_control
;
2608 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2609 rxdp
= mac_control
->rings
[ring_no
].
2610 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2611 skb
= (struct sk_buff
*)
2612 ((unsigned long) rxdp
->Host_Control
);
2616 if (sp
->rxd_mode
== RXD_MODE_1
) {
2617 rxdp1
= (struct RxD1
*)rxdp
;
2618 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2621 HEADER_ETHERNET_II_802_3_SIZE
2622 + HEADER_802_2_SIZE
+
2624 PCI_DMA_FROMDEVICE
);
2625 memset(rxdp
, 0, sizeof(struct RxD1
));
2626 } else if(sp
->rxd_mode
== RXD_MODE_3B
) {
2627 rxdp3
= (struct RxD3
*)rxdp
;
2628 ba
= &mac_control
->rings
[ring_no
].
2630 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2633 PCI_DMA_FROMDEVICE
);
2634 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2637 PCI_DMA_FROMDEVICE
);
2638 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2641 PCI_DMA_FROMDEVICE
);
2642 memset(rxdp
, 0, sizeof(struct RxD3
));
2644 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
2646 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
2651 * free_rx_buffers - Frees all Rx buffers
2652 * @sp: device private variable.
2654 * This function will free all Rx buffers allocated by host.
2659 static void free_rx_buffers(struct s2io_nic
*sp
)
2661 struct net_device
*dev
= sp
->dev
;
2662 int i
, blk
= 0, buf_cnt
= 0;
2663 struct mac_info
*mac_control
;
2664 struct config_param
*config
;
2666 mac_control
= &sp
->mac_control
;
2667 config
= &sp
->config
;
2669 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2670 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2671 free_rxd_blk(sp
,i
,blk
);
2673 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
2674 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
2675 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
2676 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
2677 atomic_set(&sp
->rx_bufs_left
[i
], 0);
2678 DBG_PRINT(INIT_DBG
, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2679 dev
->name
, buf_cnt
, i
);
2684 * s2io_poll - Rx interrupt handler for NAPI support
2685 * @napi : pointer to the napi structure.
2686 * @budget : The number of packets that were budgeted to be processed
2687 * during one pass through the 'Poll" function.
2689 * Comes into picture only if NAPI support has been incorporated. It does
2690 * the same thing that rx_intr_handler does, but not in a interrupt context
2691 * also It will process only a given number of packets.
2693 * 0 on success and 1 if there are No Rx packets to be processed.
2696 static int s2io_poll(struct napi_struct
*napi
, int budget
)
2698 struct s2io_nic
*nic
= container_of(napi
, struct s2io_nic
, napi
);
2699 struct net_device
*dev
= nic
->dev
;
2700 int pkt_cnt
= 0, org_pkts_to_process
;
2701 struct mac_info
*mac_control
;
2702 struct config_param
*config
;
2703 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2706 mac_control
= &nic
->mac_control
;
2707 config
= &nic
->config
;
2709 nic
->pkts_to_process
= budget
;
2710 org_pkts_to_process
= nic
->pkts_to_process
;
2712 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
2713 readl(&bar0
->rx_traffic_int
);
2715 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2716 rx_intr_handler(&mac_control
->rings
[i
]);
2717 pkt_cnt
= org_pkts_to_process
- nic
->pkts_to_process
;
2718 if (!nic
->pkts_to_process
) {
2719 /* Quota for the current iteration has been met */
2724 netif_rx_complete(dev
, napi
);
2726 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2727 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2728 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2729 DBG_PRINT(INFO_DBG
, " in Rx Poll!!\n");
2733 /* Re enable the Rx interrupts. */
2734 writeq(0x0, &bar0
->rx_traffic_mask
);
2735 readl(&bar0
->rx_traffic_mask
);
2739 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2740 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2741 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2742 DBG_PRINT(INFO_DBG
, " in Rx Poll!!\n");
2749 #ifdef CONFIG_NET_POLL_CONTROLLER
2751 * s2io_netpoll - netpoll event handler entry point
2752 * @dev : pointer to the device structure.
2754 * This function will be called by upper layer to check for events on the
2755 * interface in situations where interrupts are disabled. It is used for
2756 * specific in-kernel networking tasks, such as remote consoles and kernel
2757 * debugging over the network (example netdump in RedHat).
2759 static void s2io_netpoll(struct net_device
*dev
)
2761 struct s2io_nic
*nic
= dev
->priv
;
2762 struct mac_info
*mac_control
;
2763 struct config_param
*config
;
2764 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2765 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2768 if (pci_channel_offline(nic
->pdev
))
2771 disable_irq(dev
->irq
);
2773 mac_control
= &nic
->mac_control
;
2774 config
= &nic
->config
;
2776 writeq(val64
, &bar0
->rx_traffic_int
);
2777 writeq(val64
, &bar0
->tx_traffic_int
);
2779 /* we need to free up the transmitted skbufs or else netpoll will
2780 * run out of skbs and will fail and eventually netpoll application such
2781 * as netdump will fail.
2783 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2784 tx_intr_handler(&mac_control
->fifos
[i
]);
2786 /* check for received packet and indicate up to network */
2787 for (i
= 0; i
< config
->rx_ring_num
; i
++)
2788 rx_intr_handler(&mac_control
->rings
[i
]);
2790 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2791 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2792 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2793 DBG_PRINT(INFO_DBG
, " in Rx Netpoll!!\n");
2797 enable_irq(dev
->irq
);
2803 * rx_intr_handler - Rx interrupt handler
2804 * @nic: device private variable.
2806 * If the interrupt is because of a received frame or if the
2807 * receive ring contains fresh as yet un-processed frames,this function is
2808 * called. It picks out the RxD at which place the last Rx processing had
2809 * stopped and sends the skb to the OSM's Rx handler and then increments
2814 static void rx_intr_handler(struct ring_info
*ring_data
)
2816 struct s2io_nic
*nic
= ring_data
->nic
;
2817 struct net_device
*dev
= (struct net_device
*) nic
->dev
;
2818 int get_block
, put_block
, put_offset
;
2819 struct rx_curr_get_info get_info
, put_info
;
2821 struct sk_buff
*skb
;
2827 spin_lock(&nic
->rx_lock
);
2829 get_info
= ring_data
->rx_curr_get_info
;
2830 get_block
= get_info
.block_index
;
2831 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2832 put_block
= put_info
.block_index
;
2833 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2835 spin_lock(&nic
->put_lock
);
2836 put_offset
= ring_data
->put_pos
;
2837 spin_unlock(&nic
->put_lock
);
2839 put_offset
= ring_data
->put_pos
;
2841 while (RXD_IS_UP2DT(rxdp
)) {
2843 * If your are next to put index then it's
2844 * FIFO full condition
2846 if ((get_block
== put_block
) &&
2847 (get_info
.offset
+ 1) == put_info
.offset
) {
2848 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",dev
->name
);
2851 skb
= (struct sk_buff
*) ((unsigned long)rxdp
->Host_Control
);
2853 DBG_PRINT(ERR_DBG
, "%s: The skb is ",
2855 DBG_PRINT(ERR_DBG
, "Null in Rx Intr\n");
2856 spin_unlock(&nic
->rx_lock
);
2859 if (nic
->rxd_mode
== RXD_MODE_1
) {
2860 rxdp1
= (struct RxD1
*)rxdp
;
2861 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2864 HEADER_ETHERNET_II_802_3_SIZE
+
2867 PCI_DMA_FROMDEVICE
);
2868 } else if (nic
->rxd_mode
== RXD_MODE_3B
) {
2869 rxdp3
= (struct RxD3
*)rxdp
;
2870 pci_dma_sync_single_for_cpu(nic
->pdev
, (dma_addr_t
)
2872 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2873 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2876 PCI_DMA_FROMDEVICE
);
2878 prefetch(skb
->data
);
2879 rx_osm_handler(ring_data
, rxdp
);
2881 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2882 rxdp
= ring_data
->rx_blocks
[get_block
].
2883 rxds
[get_info
.offset
].virt_addr
;
2884 if (get_info
.offset
== rxd_count
[nic
->rxd_mode
]) {
2885 get_info
.offset
= 0;
2886 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2888 if (get_block
== ring_data
->block_count
)
2890 ring_data
->rx_curr_get_info
.block_index
= get_block
;
2891 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
2894 nic
->pkts_to_process
-= 1;
2895 if ((napi
) && (!nic
->pkts_to_process
))
2898 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
2902 /* Clear all LRO sessions before exiting */
2903 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
2904 struct lro
*lro
= &nic
->lro0_n
[i
];
2906 update_L3L4_header(nic
, lro
);
2907 queue_rx_frame(lro
->parent
);
2908 clear_lro_session(lro
);
2913 spin_unlock(&nic
->rx_lock
);
2917 * tx_intr_handler - Transmit interrupt handler
2918 * @nic : device private variable
2920 * If an interrupt was raised to indicate DMA complete of the
2921 * Tx packet, this function is called. It identifies the last TxD
2922 * whose buffer was freed and frees all skbs whose data have already
2923 * DMA'ed into the NICs internal memory.
2928 static void tx_intr_handler(struct fifo_info
*fifo_data
)
2930 struct s2io_nic
*nic
= fifo_data
->nic
;
2931 struct net_device
*dev
= (struct net_device
*) nic
->dev
;
2932 struct tx_curr_get_info get_info
, put_info
;
2933 struct sk_buff
*skb
;
2937 get_info
= fifo_data
->tx_curr_get_info
;
2938 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
2939 txdlp
= (struct TxD
*) fifo_data
->list_info
[get_info
.offset
].
2941 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
2942 (get_info
.offset
!= put_info
.offset
) &&
2943 (txdlp
->Host_Control
)) {
2944 /* Check for TxD errors */
2945 if (txdlp
->Control_1
& TXD_T_CODE
) {
2946 unsigned long long err
;
2947 err
= txdlp
->Control_1
& TXD_T_CODE
;
2949 nic
->mac_control
.stats_info
->sw_stat
.
2953 /* update t_code statistics */
2954 err_mask
= err
>> 48;
2957 nic
->mac_control
.stats_info
->sw_stat
.
2962 nic
->mac_control
.stats_info
->sw_stat
.
2963 tx_desc_abort_cnt
++;
2967 nic
->mac_control
.stats_info
->sw_stat
.
2968 tx_parity_err_cnt
++;
2972 nic
->mac_control
.stats_info
->sw_stat
.
2977 nic
->mac_control
.stats_info
->sw_stat
.
2978 tx_list_proc_err_cnt
++;
2983 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
2985 DBG_PRINT(ERR_DBG
, "%s: Null skb ",
2987 DBG_PRINT(ERR_DBG
, "in Tx Free Intr\n");
2991 /* Updating the statistics block */
2992 nic
->stats
.tx_bytes
+= skb
->len
;
2993 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
2994 dev_kfree_skb_irq(skb
);
2997 if (get_info
.offset
== get_info
.fifo_len
+ 1)
2998 get_info
.offset
= 0;
2999 txdlp
= (struct TxD
*) fifo_data
->list_info
3000 [get_info
.offset
].list_virt_addr
;
3001 fifo_data
->tx_curr_get_info
.offset
=
3005 spin_lock(&nic
->tx_lock
);
3006 if (netif_queue_stopped(dev
))
3007 netif_wake_queue(dev
);
3008 spin_unlock(&nic
->tx_lock
);
3012 * s2io_mdio_write - Function to write in to MDIO registers
3013 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3014 * @addr : address value
3015 * @value : data value
3016 * @dev : pointer to net_device structure
3018 * This function is used to write values to the MDIO registers
3021 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
, struct net_device
*dev
)
3024 struct s2io_nic
*sp
= dev
->priv
;
3025 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3027 //address transaction
3028 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3029 | MDIO_MMD_DEV_ADDR(mmd_type
)
3030 | MDIO_MMS_PRT_ADDR(0x0);
3031 writeq(val64
, &bar0
->mdio_control
);
3032 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3033 writeq(val64
, &bar0
->mdio_control
);
3038 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3039 | MDIO_MMD_DEV_ADDR(mmd_type
)
3040 | MDIO_MMS_PRT_ADDR(0x0)
3041 | MDIO_MDIO_DATA(value
)
3042 | MDIO_OP(MDIO_OP_WRITE_TRANS
);
3043 writeq(val64
, &bar0
->mdio_control
);
3044 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3045 writeq(val64
, &bar0
->mdio_control
);
3049 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3050 | MDIO_MMD_DEV_ADDR(mmd_type
)
3051 | MDIO_MMS_PRT_ADDR(0x0)
3052 | MDIO_OP(MDIO_OP_READ_TRANS
);
3053 writeq(val64
, &bar0
->mdio_control
);
3054 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3055 writeq(val64
, &bar0
->mdio_control
);
3061 * s2io_mdio_read - Function to write in to MDIO registers
3062 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3063 * @addr : address value
3064 * @dev : pointer to net_device structure
3066 * This function is used to read values to the MDIO registers
3069 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3073 struct s2io_nic
*sp
= dev
->priv
;
3074 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3076 /* address transaction */
3077 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3078 | MDIO_MMD_DEV_ADDR(mmd_type
)
3079 | MDIO_MMS_PRT_ADDR(0x0);
3080 writeq(val64
, &bar0
->mdio_control
);
3081 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3082 writeq(val64
, &bar0
->mdio_control
);
3085 /* Data transaction */
3087 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3088 | MDIO_MMD_DEV_ADDR(mmd_type
)
3089 | MDIO_MMS_PRT_ADDR(0x0)
3090 | MDIO_OP(MDIO_OP_READ_TRANS
);
3091 writeq(val64
, &bar0
->mdio_control
);
3092 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3093 writeq(val64
, &bar0
->mdio_control
);
3096 /* Read the value from regs */
3097 rval64
= readq(&bar0
->mdio_control
);
3098 rval64
= rval64
& 0xFFFF0000;
3099 rval64
= rval64
>> 16;
3103 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3104 * @counter : couter value to be updated
3105 * @flag : flag to indicate the status
3106 * @type : counter type
3108 * This function is to check the status of the xpak counters value
3112 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
, u16 flag
, u16 type
)
3117 for(i
= 0; i
<index
; i
++)
3122 *counter
= *counter
+ 1;
3123 val64
= *regs_stat
& mask
;
3124 val64
= val64
>> (index
* 0x2);
3131 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3132 "service. Excessive temperatures may "
3133 "result in premature transceiver "
3137 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3138 "service Excessive bias currents may "
3139 "indicate imminent laser diode "
3143 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3144 "service Excessive laser output "
3145 "power may saturate far-end "
3149 DBG_PRINT(ERR_DBG
, "Incorrect XPAK Alarm "
3154 val64
= val64
<< (index
* 0x2);
3155 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3158 *regs_stat
= *regs_stat
& (~mask
);
3163 * s2io_updt_xpak_counter - Function to update the xpak counters
3164 * @dev : pointer to net_device struct
3166 * This function is to upate the status of the xpak counters value
3169 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3177 struct s2io_nic
*sp
= dev
->priv
;
3178 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
3180 /* Check the communication with the MDIO slave */
3183 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3184 if((val64
== 0xFFFF) || (val64
== 0x0000))
3186 DBG_PRINT(ERR_DBG
, "ERR: MDIO slave access failed - "
3187 "Returned %llx\n", (unsigned long long)val64
);
3191 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3194 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - ");
3195 DBG_PRINT(ERR_DBG
, "Returned: %llx- Expected: 0x2040\n",
3196 (unsigned long long)val64
);
3200 /* Loading the DOM register to MDIO register */
3202 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR
, addr
, val16
, dev
);
3203 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3205 /* Reading the Alarm flags */
3208 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3210 flag
= CHECKBIT(val64
, 0x7);
3212 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_transceiver_temp_high
,
3213 &stat_info
->xpak_stat
.xpak_regs_stat
,
3216 if(CHECKBIT(val64
, 0x6))
3217 stat_info
->xpak_stat
.alarm_transceiver_temp_low
++;
3219 flag
= CHECKBIT(val64
, 0x3);
3221 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_bias_current_high
,
3222 &stat_info
->xpak_stat
.xpak_regs_stat
,
3225 if(CHECKBIT(val64
, 0x2))
3226 stat_info
->xpak_stat
.alarm_laser_bias_current_low
++;
3228 flag
= CHECKBIT(val64
, 0x1);
3230 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_output_power_high
,
3231 &stat_info
->xpak_stat
.xpak_regs_stat
,
3234 if(CHECKBIT(val64
, 0x0))
3235 stat_info
->xpak_stat
.alarm_laser_output_power_low
++;
3237 /* Reading the Warning flags */
3240 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3242 if(CHECKBIT(val64
, 0x7))
3243 stat_info
->xpak_stat
.warn_transceiver_temp_high
++;
3245 if(CHECKBIT(val64
, 0x6))
3246 stat_info
->xpak_stat
.warn_transceiver_temp_low
++;
3248 if(CHECKBIT(val64
, 0x3))
3249 stat_info
->xpak_stat
.warn_laser_bias_current_high
++;
3251 if(CHECKBIT(val64
, 0x2))
3252 stat_info
->xpak_stat
.warn_laser_bias_current_low
++;
3254 if(CHECKBIT(val64
, 0x1))
3255 stat_info
->xpak_stat
.warn_laser_output_power_high
++;
3257 if(CHECKBIT(val64
, 0x0))
3258 stat_info
->xpak_stat
.warn_laser_output_power_low
++;
3262 * wait_for_cmd_complete - waits for a command to complete.
3263 * @sp : private member of the device structure, which is a pointer to the
3264 * s2io_nic structure.
3265 * Description: Function that waits for a command to Write into RMAC
3266 * ADDR DATA registers to be completed and returns either success or
3267 * error depending on whether the command was complete or not.
3269 * SUCCESS on success and FAILURE on failure.
3272 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3275 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3278 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3282 val64
= readq(addr
);
3283 if (bit_state
== S2IO_BIT_RESET
) {
3284 if (!(val64
& busy_bit
)) {
3289 if (!(val64
& busy_bit
)) {
3306 * check_pci_device_id - Checks if the device id is supported
3308 * Description: Function to check if the pci device id is supported by driver.
3309 * Return value: Actual device id if supported else PCI_ANY_ID
3311 static u16
check_pci_device_id(u16 id
)
3314 case PCI_DEVICE_ID_HERC_WIN
:
3315 case PCI_DEVICE_ID_HERC_UNI
:
3316 return XFRAME_II_DEVICE
;
3317 case PCI_DEVICE_ID_S2IO_UNI
:
3318 case PCI_DEVICE_ID_S2IO_WIN
:
3319 return XFRAME_I_DEVICE
;
3326 * s2io_reset - Resets the card.
3327 * @sp : private member of the device structure.
3328 * Description: Function to Reset the card. This function then also
3329 * restores the previously saved PCI configuration space registers as
3330 * the card reset also resets the configuration space.
3335 static void s2io_reset(struct s2io_nic
* sp
)
3337 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3342 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3343 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3345 DBG_PRINT(INIT_DBG
,"%s - Resetting XFrame card %s\n",
3346 __FUNCTION__
, sp
->dev
->name
);
3348 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3349 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3351 val64
= SW_RESET_ALL
;
3352 writeq(val64
, &bar0
->sw_reset
);
3353 if (strstr(sp
->product_name
, "CX4")) {
3357 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3359 /* Restore the PCI state saved during initialization. */
3360 pci_restore_state(sp
->pdev
);
3361 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3362 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3367 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
) {
3368 DBG_PRINT(ERR_DBG
,"%s SW_Reset failed!\n", __FUNCTION__
);
3371 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3375 /* Set swapper to enable I/O register access */
3376 s2io_set_swapper(sp
);
3378 /* restore mac_addr entries */
3379 do_s2io_restore_unicast_mc(sp
);
3381 /* Restore the MSIX table entries from local variables */
3382 restore_xmsi_data(sp
);
3384 /* Clear certain PCI/PCI-X fields after reset */
3385 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3386 /* Clear "detected parity error" bit */
3387 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3389 /* Clearing PCIX Ecc status register */
3390 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3392 /* Clearing PCI_STATUS error reflected here */
3393 writeq(s2BIT(62), &bar0
->txpic_int_reg
);
3396 /* Reset device statistics maintained by OS */
3397 memset(&sp
->stats
, 0, sizeof (struct net_device_stats
));
3399 up_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
;
3400 down_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
;
3401 up_time
= sp
->mac_control
.stats_info
->sw_stat
.link_up_time
;
3402 down_time
= sp
->mac_control
.stats_info
->sw_stat
.link_down_time
;
3403 reset_cnt
= sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
;
3404 mem_alloc_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
;
3405 mem_free_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_freed
;
3406 watchdog_cnt
= sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
;
3407 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3408 memset(sp
->mac_control
.stats_info
, 0, sizeof(struct stat_block
));
3409 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3410 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
= up_cnt
;
3411 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
= down_cnt
;
3412 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
= up_time
;
3413 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
= down_time
;
3414 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
= reset_cnt
;
3415 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
= mem_alloc_cnt
;
3416 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
= mem_free_cnt
;
3417 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
= watchdog_cnt
;
3419 /* SXE-002: Configure link and activity LED to turn it off */
3420 subid
= sp
->pdev
->subsystem_device
;
3421 if (((subid
& 0xFF) >= 0x07) &&
3422 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3423 val64
= readq(&bar0
->gpio_control
);
3424 val64
|= 0x0000800000000000ULL
;
3425 writeq(val64
, &bar0
->gpio_control
);
3426 val64
= 0x0411040400000000ULL
;
3427 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3431 * Clear spurious ECC interrupts that would have occured on
3432 * XFRAME II cards after reset.
3434 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3435 val64
= readq(&bar0
->pcc_err_reg
);
3436 writeq(val64
, &bar0
->pcc_err_reg
);
3439 sp
->device_enabled_once
= FALSE
;
3443 * s2io_set_swapper - to set the swapper controle on the card
3444 * @sp : private member of the device structure,
3445 * pointer to the s2io_nic structure.
3446 * Description: Function to set the swapper control on the card
3447 * correctly depending on the 'endianness' of the system.
3449 * SUCCESS on success and FAILURE on failure.
3452 static int s2io_set_swapper(struct s2io_nic
* sp
)
3454 struct net_device
*dev
= sp
->dev
;
3455 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3456 u64 val64
, valt
, valr
;
3459 * Set proper endian settings and verify the same by reading
3460 * the PIF Feed-back register.
3463 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3464 if (val64
!= 0x0123456789ABCDEFULL
) {
3466 u64 value
[] = { 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3467 0x8100008181000081ULL
, /* FE=1, SE=0 */
3468 0x4200004242000042ULL
, /* FE=0, SE=1 */
3469 0}; /* FE=0, SE=0 */
3472 writeq(value
[i
], &bar0
->swapper_ctrl
);
3473 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3474 if (val64
== 0x0123456789ABCDEFULL
)
3479 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3481 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3482 (unsigned long long) val64
);
3487 valr
= readq(&bar0
->swapper_ctrl
);
3490 valt
= 0x0123456789ABCDEFULL
;
3491 writeq(valt
, &bar0
->xmsi_address
);
3492 val64
= readq(&bar0
->xmsi_address
);
3496 u64 value
[] = { 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3497 0x0081810000818100ULL
, /* FE=1, SE=0 */
3498 0x0042420000424200ULL
, /* FE=0, SE=1 */
3499 0}; /* FE=0, SE=0 */
3502 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3503 writeq(valt
, &bar0
->xmsi_address
);
3504 val64
= readq(&bar0
->xmsi_address
);
3510 unsigned long long x
= val64
;
3511 DBG_PRINT(ERR_DBG
, "Write failed, Xmsi_addr ");
3512 DBG_PRINT(ERR_DBG
, "reads:0x%llx\n", x
);
3516 val64
= readq(&bar0
->swapper_ctrl
);
3517 val64
&= 0xFFFF000000000000ULL
;
3521 * The device by default set to a big endian format, so a
3522 * big endian driver need not set anything.
3524 val64
|= (SWAPPER_CTRL_TXP_FE
|
3525 SWAPPER_CTRL_TXP_SE
|
3526 SWAPPER_CTRL_TXD_R_FE
|
3527 SWAPPER_CTRL_TXD_W_FE
|
3528 SWAPPER_CTRL_TXF_R_FE
|
3529 SWAPPER_CTRL_RXD_R_FE
|
3530 SWAPPER_CTRL_RXD_W_FE
|
3531 SWAPPER_CTRL_RXF_W_FE
|
3532 SWAPPER_CTRL_XMSI_FE
|
3533 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3534 if (sp
->config
.intr_type
== INTA
)
3535 val64
|= SWAPPER_CTRL_XMSI_SE
;
3536 writeq(val64
, &bar0
->swapper_ctrl
);
3539 * Initially we enable all bits to make it accessible by the
3540 * driver, then we selectively enable only those bits that
3543 val64
|= (SWAPPER_CTRL_TXP_FE
|
3544 SWAPPER_CTRL_TXP_SE
|
3545 SWAPPER_CTRL_TXD_R_FE
|
3546 SWAPPER_CTRL_TXD_R_SE
|
3547 SWAPPER_CTRL_TXD_W_FE
|
3548 SWAPPER_CTRL_TXD_W_SE
|
3549 SWAPPER_CTRL_TXF_R_FE
|
3550 SWAPPER_CTRL_RXD_R_FE
|
3551 SWAPPER_CTRL_RXD_R_SE
|
3552 SWAPPER_CTRL_RXD_W_FE
|
3553 SWAPPER_CTRL_RXD_W_SE
|
3554 SWAPPER_CTRL_RXF_W_FE
|
3555 SWAPPER_CTRL_XMSI_FE
|
3556 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3557 if (sp
->config
.intr_type
== INTA
)
3558 val64
|= SWAPPER_CTRL_XMSI_SE
;
3559 writeq(val64
, &bar0
->swapper_ctrl
);
3561 val64
= readq(&bar0
->swapper_ctrl
);
3564 * Verifying if endian settings are accurate by reading a
3565 * feedback register.
3567 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3568 if (val64
!= 0x0123456789ABCDEFULL
) {
3569 /* Endian settings are incorrect, calls for another dekko. */
3570 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3572 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3573 (unsigned long long) val64
);
3580 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3582 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3584 int ret
= 0, cnt
= 0;
3587 val64
= readq(&bar0
->xmsi_access
);
3588 if (!(val64
& s2BIT(15)))
3594 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3601 static void restore_xmsi_data(struct s2io_nic
*nic
)
3603 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3607 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3608 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3609 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3610 val64
= (s2BIT(7) | s2BIT(15) | vBIT(i
, 26, 6));
3611 writeq(val64
, &bar0
->xmsi_access
);
3612 if (wait_for_msix_trans(nic
, i
)) {
3613 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3619 static void store_xmsi_data(struct s2io_nic
*nic
)
3621 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3622 u64 val64
, addr
, data
;
3625 /* Store and display */
3626 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3627 val64
= (s2BIT(15) | vBIT(i
, 26, 6));
3628 writeq(val64
, &bar0
->xmsi_access
);
3629 if (wait_for_msix_trans(nic
, i
)) {
3630 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3633 addr
= readq(&bar0
->xmsi_address
);
3634 data
= readq(&bar0
->xmsi_data
);
3636 nic
->msix_info
[i
].addr
= addr
;
3637 nic
->msix_info
[i
].data
= data
;
3642 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3644 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3646 u16 msi_control
; /* Temp variable */
3647 int ret
, i
, j
, msix_indx
= 1;
3649 nic
->entries
= kcalloc(MAX_REQUESTED_MSI_X
, sizeof(struct msix_entry
),
3651 if (!nic
->entries
) {
3652 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n", \
3654 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3657 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3658 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3661 kcalloc(MAX_REQUESTED_MSI_X
, sizeof(struct s2io_msix_entry
),
3663 if (!nic
->s2io_entries
) {
3664 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3666 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3667 kfree(nic
->entries
);
3668 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3669 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3672 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3673 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3675 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3676 nic
->entries
[i
].entry
= i
;
3677 nic
->s2io_entries
[i
].entry
= i
;
3678 nic
->s2io_entries
[i
].arg
= NULL
;
3679 nic
->s2io_entries
[i
].in_use
= 0;
3682 tx_mat
= readq(&bar0
->tx_mat0_n
[0]);
3683 for (i
=0; i
<nic
->config
.tx_fifo_num
; i
++, msix_indx
++) {
3684 tx_mat
|= TX_MAT_SET(i
, msix_indx
);
3685 nic
->s2io_entries
[msix_indx
].arg
= &nic
->mac_control
.fifos
[i
];
3686 nic
->s2io_entries
[msix_indx
].type
= MSIX_FIFO_TYPE
;
3687 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3689 writeq(tx_mat
, &bar0
->tx_mat0_n
[0]);
3691 rx_mat
= readq(&bar0
->rx_mat
);
3692 for (j
= 0; j
< nic
->config
.rx_ring_num
; j
++, msix_indx
++) {
3693 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3694 nic
->s2io_entries
[msix_indx
].arg
3695 = &nic
->mac_control
.rings
[j
];
3696 nic
->s2io_entries
[msix_indx
].type
= MSIX_RING_TYPE
;
3697 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3699 writeq(rx_mat
, &bar0
->rx_mat
);
3701 nic
->avail_msix_vectors
= 0;
3702 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, MAX_REQUESTED_MSI_X
);
3703 /* We fail init if error or we get less vectors than min required */
3704 if (ret
>= (nic
->config
.tx_fifo_num
+ nic
->config
.rx_ring_num
+ 1)) {
3705 nic
->avail_msix_vectors
= ret
;
3706 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, ret
);
3709 DBG_PRINT(ERR_DBG
, "%s: Enabling MSIX failed\n", nic
->dev
->name
);
3710 kfree(nic
->entries
);
3711 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3712 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3713 kfree(nic
->s2io_entries
);
3714 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3715 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3716 nic
->entries
= NULL
;
3717 nic
->s2io_entries
= NULL
;
3718 nic
->avail_msix_vectors
= 0;
3721 if (!nic
->avail_msix_vectors
)
3722 nic
->avail_msix_vectors
= MAX_REQUESTED_MSI_X
;
3725 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3726 * in the herc NIC. (Temp change, needs to be removed later)
3728 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3729 msi_control
|= 0x1; /* Enable MSI */
3730 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3735 /* Handle software interrupt used during MSI(X) test */
3736 static irqreturn_t
s2io_test_intr(int irq
, void *dev_id
)
3738 struct s2io_nic
*sp
= dev_id
;
3740 sp
->msi_detected
= 1;
3741 wake_up(&sp
->msi_wait
);
3746 /* Test interrupt path by forcing a a software IRQ */
3747 static int s2io_test_msi(struct s2io_nic
*sp
)
3749 struct pci_dev
*pdev
= sp
->pdev
;
3750 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3754 err
= request_irq(sp
->entries
[1].vector
, s2io_test_intr
, 0,
3757 DBG_PRINT(ERR_DBG
, "%s: PCI %s: cannot assign irq %d\n",
3758 sp
->dev
->name
, pci_name(pdev
), pdev
->irq
);
3762 init_waitqueue_head (&sp
->msi_wait
);
3763 sp
->msi_detected
= 0;
3765 saved64
= val64
= readq(&bar0
->scheduled_int_ctrl
);
3766 val64
|= SCHED_INT_CTRL_ONE_SHOT
;
3767 val64
|= SCHED_INT_CTRL_TIMER_EN
;
3768 val64
|= SCHED_INT_CTRL_INT2MSI(1);
3769 writeq(val64
, &bar0
->scheduled_int_ctrl
);
3771 wait_event_timeout(sp
->msi_wait
, sp
->msi_detected
, HZ
/10);
3773 if (!sp
->msi_detected
) {
3774 /* MSI(X) test failed, go back to INTx mode */
3775 DBG_PRINT(ERR_DBG
, "%s: PCI %s: No interrupt was generated "
3776 "using MSI(X) during test\n", sp
->dev
->name
,
3782 free_irq(sp
->entries
[1].vector
, sp
);
3784 writeq(saved64
, &bar0
->scheduled_int_ctrl
);
3789 static void remove_msix_isr(struct s2io_nic
*sp
)
3794 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3795 if (sp
->s2io_entries
[i
].in_use
==
3796 MSIX_REGISTERED_SUCCESS
) {
3797 int vector
= sp
->entries
[i
].vector
;
3798 void *arg
= sp
->s2io_entries
[i
].arg
;
3799 free_irq(vector
, arg
);
3804 kfree(sp
->s2io_entries
);
3806 sp
->s2io_entries
= NULL
;
3808 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
3809 msi_control
&= 0xFFFE; /* Disable MSI */
3810 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
3812 pci_disable_msix(sp
->pdev
);
3815 static void remove_inta_isr(struct s2io_nic
*sp
)
3817 struct net_device
*dev
= sp
->dev
;
3819 free_irq(sp
->pdev
->irq
, dev
);
3822 /* ********************************************************* *
3823 * Functions defined below concern the OS part of the driver *
3824 * ********************************************************* */
3827 * s2io_open - open entry point of the driver
3828 * @dev : pointer to the device structure.
3830 * This function is the open entry point of the driver. It mainly calls a
3831 * function to allocate Rx buffers and inserts them into the buffer
3832 * descriptors and then enables the Rx part of the NIC.
3834 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3838 static int s2io_open(struct net_device
*dev
)
3840 struct s2io_nic
*sp
= dev
->priv
;
3844 * Make sure you have link off by default every time
3845 * Nic is initialized
3847 netif_carrier_off(dev
);
3848 sp
->last_link_state
= 0;
3850 if (sp
->config
.intr_type
== MSI_X
) {
3851 int ret
= s2io_enable_msi_x(sp
);
3854 ret
= s2io_test_msi(sp
);
3855 /* rollback MSI-X, will re-enable during add_isr() */
3856 remove_msix_isr(sp
);
3861 "%s: MSI-X requested but failed to enable\n",
3863 sp
->config
.intr_type
= INTA
;
3867 /* NAPI doesn't work well with MSI(X) */
3868 if (sp
->config
.intr_type
!= INTA
) {
3870 sp
->config
.napi
= 0;
3873 /* Initialize H/W and enable interrupts */
3874 err
= s2io_card_up(sp
);
3876 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
3878 goto hw_init_failed
;
3881 if (do_s2io_prog_unicast(dev
, dev
->dev_addr
) == FAILURE
) {
3882 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
3885 goto hw_init_failed
;
3888 netif_start_queue(dev
);
3892 if (sp
->config
.intr_type
== MSI_X
) {
3895 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
3896 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3898 if (sp
->s2io_entries
) {
3899 kfree(sp
->s2io_entries
);
3900 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
3901 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3908 * s2io_close -close entry point of the driver
3909 * @dev : device pointer.
3911 * This is the stop entry point of the driver. It needs to undo exactly
3912 * whatever was done by the open entry point,thus it's usually referred to
3913 * as the close function.Among other things this function mainly stops the
3914 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3916 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3920 static int s2io_close(struct net_device
*dev
)
3922 struct s2io_nic
*sp
= dev
->priv
;
3923 struct config_param
*config
= &sp
->config
;
3927 /* Return if the device is already closed *
3928 * Can happen when s2io_card_up failed in change_mtu *
3930 if (!is_s2io_card_up(sp
))
3933 netif_stop_queue(dev
);
3935 /* delete all populated mac entries */
3936 for (offset
= 1; offset
< config
->max_mc_addr
; offset
++) {
3937 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
3938 if (tmp64
!= S2IO_DISABLE_MAC_ENTRY
)
3939 do_s2io_delete_unicast_mc(sp
, tmp64
);
3942 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3949 * s2io_xmit - Tx entry point of te driver
3950 * @skb : the socket buffer containing the Tx data.
3951 * @dev : device pointer.
3953 * This function is the Tx entry point of the driver. S2IO NIC supports
3954 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3955 * NOTE: when device cant queue the pkt,just the trans_start variable will
3958 * 0 on success & 1 on failure.
3961 static int s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
3963 struct s2io_nic
*sp
= dev
->priv
;
3964 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
3967 struct TxFIFO_element __iomem
*tx_fifo
;
3968 unsigned long flags
;
3970 int vlan_priority
= 0;
3971 struct mac_info
*mac_control
;
3972 struct config_param
*config
;
3974 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
3976 mac_control
= &sp
->mac_control
;
3977 config
= &sp
->config
;
3979 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
3981 if (unlikely(skb
->len
<= 0)) {
3982 DBG_PRINT(TX_DBG
, "%s:Buffer has no data..\n", dev
->name
);
3983 dev_kfree_skb_any(skb
);
3987 spin_lock_irqsave(&sp
->tx_lock
, flags
);
3988 if (!is_s2io_card_up(sp
)) {
3989 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
3991 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
3997 /* Get Fifo number to Transmit based on vlan priority */
3998 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
3999 vlan_tag
= vlan_tx_tag_get(skb
);
4000 vlan_priority
= vlan_tag
>> 13;
4001 queue
= config
->fifo_mapping
[vlan_priority
];
4004 put_off
= (u16
) mac_control
->fifos
[queue
].tx_curr_put_info
.offset
;
4005 get_off
= (u16
) mac_control
->fifos
[queue
].tx_curr_get_info
.offset
;
4006 txdp
= (struct TxD
*) mac_control
->fifos
[queue
].list_info
[put_off
].
4009 queue_len
= mac_control
->fifos
[queue
].tx_curr_put_info
.fifo_len
+ 1;
4010 /* Avoid "put" pointer going beyond "get" pointer */
4011 if (txdp
->Host_Control
||
4012 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4013 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4014 netif_stop_queue(dev
);
4016 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
4020 offload_type
= s2io_offload_type(skb
);
4021 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4022 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4023 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4025 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4027 (TXD_TX_CKO_IPV4_EN
| TXD_TX_CKO_TCP_EN
|
4030 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4031 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4032 txdp
->Control_2
|= config
->tx_intr_type
;
4034 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
4035 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4036 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4039 frg_len
= skb
->len
- skb
->data_len
;
4040 if (offload_type
== SKB_GSO_UDP
) {
4043 ufo_size
= s2io_udp_mss(skb
);
4045 txdp
->Control_1
|= TXD_UFO_EN
;
4046 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
4047 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
4049 sp
->ufo_in_band_v
[put_off
] =
4050 (u64
)skb_shinfo(skb
)->ip6_frag_id
;
4052 sp
->ufo_in_band_v
[put_off
] =
4053 (u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
4055 txdp
->Host_Control
= (unsigned long)sp
->ufo_in_band_v
;
4056 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
4058 sizeof(u64
), PCI_DMA_TODEVICE
);
4059 if((txdp
->Buffer_Pointer
== 0) ||
4060 (txdp
->Buffer_Pointer
== DMA_ERROR_CODE
))
4061 goto pci_map_failed
;
4065 txdp
->Buffer_Pointer
= pci_map_single
4066 (sp
->pdev
, skb
->data
, frg_len
, PCI_DMA_TODEVICE
);
4067 if((txdp
->Buffer_Pointer
== 0) ||
4068 (txdp
->Buffer_Pointer
== DMA_ERROR_CODE
))
4069 goto pci_map_failed
;
4071 txdp
->Host_Control
= (unsigned long) skb
;
4072 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4073 if (offload_type
== SKB_GSO_UDP
)
4074 txdp
->Control_1
|= TXD_UFO_EN
;
4076 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4077 /* For fragmented SKB. */
4078 for (i
= 0; i
< frg_cnt
; i
++) {
4079 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4080 /* A '0' length fragment will be ignored */
4084 txdp
->Buffer_Pointer
= (u64
) pci_map_page
4085 (sp
->pdev
, frag
->page
, frag
->page_offset
,
4086 frag
->size
, PCI_DMA_TODEVICE
);
4087 txdp
->Control_1
= TXD_BUFFER0_SIZE(frag
->size
);
4088 if (offload_type
== SKB_GSO_UDP
)
4089 txdp
->Control_1
|= TXD_UFO_EN
;
4091 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4093 if (offload_type
== SKB_GSO_UDP
)
4094 frg_cnt
++; /* as Txd0 was used for inband header */
4096 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4097 val64
= mac_control
->fifos
[queue
].list_info
[put_off
].list_phy_addr
;
4098 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4100 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4103 val64
|= TX_FIFO_SPECIAL_FUNC
;
4105 writeq(val64
, &tx_fifo
->List_Control
);
4110 if (put_off
== mac_control
->fifos
[queue
].tx_curr_put_info
.fifo_len
+ 1)
4112 mac_control
->fifos
[queue
].tx_curr_put_info
.offset
= put_off
;
4114 /* Avoid "put" pointer going beyond "get" pointer */
4115 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4116 sp
->mac_control
.stats_info
->sw_stat
.fifo_full_cnt
++;
4118 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4120 netif_stop_queue(dev
);
4122 mac_control
->stats_info
->sw_stat
.mem_allocated
+= skb
->truesize
;
4123 dev
->trans_start
= jiffies
;
4124 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
4128 stats
->pci_map_fail_cnt
++;
4129 netif_stop_queue(dev
);
4130 stats
->mem_freed
+= skb
->truesize
;
4132 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
4137 s2io_alarm_handle(unsigned long data
)
4139 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4140 struct net_device
*dev
= sp
->dev
;
4142 s2io_handle_errors(dev
);
4143 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4146 static int s2io_chk_rx_buffers(struct s2io_nic
*sp
, int rng_n
)
4148 int rxb_size
, level
;
4151 rxb_size
= atomic_read(&sp
->rx_bufs_left
[rng_n
]);
4152 level
= rx_buffer_level(sp
, rxb_size
, rng_n
);
4154 if ((level
== PANIC
) && (!TASKLET_IN_USE
)) {
4156 DBG_PRINT(INTR_DBG
, "%s: Rx BD hit ", __FUNCTION__
);
4157 DBG_PRINT(INTR_DBG
, "PANIC levels\n");
4158 if ((ret
= fill_rx_buffers(sp
, rng_n
)) == -ENOMEM
) {
4159 DBG_PRINT(INFO_DBG
, "Out of memory in %s",
4161 clear_bit(0, (&sp
->tasklet_status
));
4164 clear_bit(0, (&sp
->tasklet_status
));
4165 } else if (level
== LOW
)
4166 tasklet_schedule(&sp
->task
);
4168 } else if (fill_rx_buffers(sp
, rng_n
) == -ENOMEM
) {
4169 DBG_PRINT(INFO_DBG
, "%s:Out of memory", sp
->dev
->name
);
4170 DBG_PRINT(INFO_DBG
, " in Rx Intr!!\n");
4175 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4177 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4178 struct s2io_nic
*sp
= ring
->nic
;
4180 if (!is_s2io_card_up(sp
))
4183 rx_intr_handler(ring
);
4184 s2io_chk_rx_buffers(sp
, ring
->ring_no
);
4189 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4191 struct fifo_info
*fifo
= (struct fifo_info
*)dev_id
;
4192 struct s2io_nic
*sp
= fifo
->nic
;
4194 if (!is_s2io_card_up(sp
))
4197 tx_intr_handler(fifo
);
4200 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4202 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4205 val64
= readq(&bar0
->pic_int_status
);
4206 if (val64
& PIC_INT_GPIO
) {
4207 val64
= readq(&bar0
->gpio_int_reg
);
4208 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4209 (val64
& GPIO_INT_REG_LINK_UP
)) {
4211 * This is unstable state so clear both up/down
4212 * interrupt and adapter to re-evaluate the link state.
4214 val64
|= GPIO_INT_REG_LINK_DOWN
;
4215 val64
|= GPIO_INT_REG_LINK_UP
;
4216 writeq(val64
, &bar0
->gpio_int_reg
);
4217 val64
= readq(&bar0
->gpio_int_mask
);
4218 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4219 GPIO_INT_MASK_LINK_DOWN
);
4220 writeq(val64
, &bar0
->gpio_int_mask
);
4222 else if (val64
& GPIO_INT_REG_LINK_UP
) {
4223 val64
= readq(&bar0
->adapter_status
);
4224 /* Enable Adapter */
4225 val64
= readq(&bar0
->adapter_control
);
4226 val64
|= ADAPTER_CNTL_EN
;
4227 writeq(val64
, &bar0
->adapter_control
);
4228 val64
|= ADAPTER_LED_ON
;
4229 writeq(val64
, &bar0
->adapter_control
);
4230 if (!sp
->device_enabled_once
)
4231 sp
->device_enabled_once
= 1;
4233 s2io_link(sp
, LINK_UP
);
4235 * unmask link down interrupt and mask link-up
4238 val64
= readq(&bar0
->gpio_int_mask
);
4239 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4240 val64
|= GPIO_INT_MASK_LINK_UP
;
4241 writeq(val64
, &bar0
->gpio_int_mask
);
4243 }else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4244 val64
= readq(&bar0
->adapter_status
);
4245 s2io_link(sp
, LINK_DOWN
);
4246 /* Link is down so unmaks link up interrupt */
4247 val64
= readq(&bar0
->gpio_int_mask
);
4248 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4249 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4250 writeq(val64
, &bar0
->gpio_int_mask
);
4253 val64
= readq(&bar0
->adapter_control
);
4254 val64
= val64
&(~ADAPTER_LED_ON
);
4255 writeq(val64
, &bar0
->adapter_control
);
4258 val64
= readq(&bar0
->gpio_int_mask
);
4262 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4263 * @value: alarm bits
4264 * @addr: address value
4265 * @cnt: counter variable
4266 * Description: Check for alarm and increment the counter
4268 * 1 - if alarm bit set
4269 * 0 - if alarm bit is not set
4271 static int do_s2io_chk_alarm_bit(u64 value
, void __iomem
* addr
,
4272 unsigned long long *cnt
)
4275 val64
= readq(addr
);
4276 if ( val64
& value
) {
4277 writeq(val64
, addr
);
4286 * s2io_handle_errors - Xframe error indication handler
4287 * @nic: device private variable
4288 * Description: Handle alarms such as loss of link, single or
4289 * double ECC errors, critical and serious errors.
4293 static void s2io_handle_errors(void * dev_id
)
4295 struct net_device
*dev
= (struct net_device
*) dev_id
;
4296 struct s2io_nic
*sp
= dev
->priv
;
4297 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4298 u64 temp64
= 0,val64
=0;
4301 struct swStat
*sw_stat
= &sp
->mac_control
.stats_info
->sw_stat
;
4302 struct xpakStat
*stats
= &sp
->mac_control
.stats_info
->xpak_stat
;
4304 if (!is_s2io_card_up(sp
))
4307 if (pci_channel_offline(sp
->pdev
))
4310 memset(&sw_stat
->ring_full_cnt
, 0,
4311 sizeof(sw_stat
->ring_full_cnt
));
4313 /* Handling the XPAK counters update */
4314 if(stats
->xpak_timer_count
< 72000) {
4315 /* waiting for an hour */
4316 stats
->xpak_timer_count
++;
4318 s2io_updt_xpak_counter(dev
);
4319 /* reset the count to zero */
4320 stats
->xpak_timer_count
= 0;
4323 /* Handling link status change error Intr */
4324 if (s2io_link_fault_indication(sp
) == MAC_RMAC_ERR_TIMER
) {
4325 val64
= readq(&bar0
->mac_rmac_err_reg
);
4326 writeq(val64
, &bar0
->mac_rmac_err_reg
);
4327 if (val64
& RMAC_LINK_STATE_CHANGE_INT
)
4328 schedule_work(&sp
->set_link_task
);
4331 /* In case of a serious error, the device will be Reset. */
4332 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY
, &bar0
->serr_source
,
4333 &sw_stat
->serious_err_cnt
))
4336 /* Check for data parity error */
4337 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT
, &bar0
->gpio_int_reg
,
4338 &sw_stat
->parity_err_cnt
))
4341 /* Check for ring full counter */
4342 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4343 val64
= readq(&bar0
->ring_bump_counter1
);
4344 for (i
=0; i
<4; i
++) {
4345 temp64
= ( val64
& vBIT(0xFFFF,(i
*16),16));
4346 temp64
>>= 64 - ((i
+1)*16);
4347 sw_stat
->ring_full_cnt
[i
] += temp64
;
4350 val64
= readq(&bar0
->ring_bump_counter2
);
4351 for (i
=0; i
<4; i
++) {
4352 temp64
= ( val64
& vBIT(0xFFFF,(i
*16),16));
4353 temp64
>>= 64 - ((i
+1)*16);
4354 sw_stat
->ring_full_cnt
[i
+4] += temp64
;
4358 val64
= readq(&bar0
->txdma_int_status
);
4359 /*check for pfc_err*/
4360 if (val64
& TXDMA_PFC_INT
) {
4361 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
4362 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
4363 PFC_PCIX_ERR
, &bar0
->pfc_err_reg
,
4364 &sw_stat
->pfc_err_cnt
))
4366 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR
, &bar0
->pfc_err_reg
,
4367 &sw_stat
->pfc_err_cnt
);
4370 /*check for tda_err*/
4371 if (val64
& TXDMA_TDA_INT
) {
4372 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
4373 TDA_SM1_ERR_ALARM
, &bar0
->tda_err_reg
,
4374 &sw_stat
->tda_err_cnt
))
4376 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR
| TDA_PCIX_ERR
,
4377 &bar0
->tda_err_reg
, &sw_stat
->tda_err_cnt
);
4379 /*check for pcc_err*/
4380 if (val64
& TXDMA_PCC_INT
) {
4381 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
4382 | PCC_N_SERR
| PCC_6_COF_OV_ERR
4383 | PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
4384 | PCC_7_LSO_OV_ERR
| PCC_FB_ECC_DB_ERR
4385 | PCC_TXB_ECC_DB_ERR
, &bar0
->pcc_err_reg
,
4386 &sw_stat
->pcc_err_cnt
))
4388 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR
| PCC_TXB_ECC_SG_ERR
,
4389 &bar0
->pcc_err_reg
, &sw_stat
->pcc_err_cnt
);
4392 /*check for tti_err*/
4393 if (val64
& TXDMA_TTI_INT
) {
4394 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM
, &bar0
->tti_err_reg
,
4395 &sw_stat
->tti_err_cnt
))
4397 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR
| TTI_ECC_DB_ERR
,
4398 &bar0
->tti_err_reg
, &sw_stat
->tti_err_cnt
);
4401 /*check for lso_err*/
4402 if (val64
& TXDMA_LSO_INT
) {
4403 if (do_s2io_chk_alarm_bit(LSO6_ABORT
| LSO7_ABORT
4404 | LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
,
4405 &bar0
->lso_err_reg
, &sw_stat
->lso_err_cnt
))
4407 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
4408 &bar0
->lso_err_reg
, &sw_stat
->lso_err_cnt
);
4411 /*check for tpa_err*/
4412 if (val64
& TXDMA_TPA_INT
) {
4413 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM
, &bar0
->tpa_err_reg
,
4414 &sw_stat
->tpa_err_cnt
))
4416 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP
, &bar0
->tpa_err_reg
,
4417 &sw_stat
->tpa_err_cnt
);
4420 /*check for sm_err*/
4421 if (val64
& TXDMA_SM_INT
) {
4422 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM
, &bar0
->sm_err_reg
,
4423 &sw_stat
->sm_err_cnt
))
4427 val64
= readq(&bar0
->mac_int_status
);
4428 if (val64
& MAC_INT_STATUS_TMAC_INT
) {
4429 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
,
4430 &bar0
->mac_tmac_err_reg
,
4431 &sw_stat
->mac_tmac_err_cnt
))
4433 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
4434 | TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
4435 &bar0
->mac_tmac_err_reg
,
4436 &sw_stat
->mac_tmac_err_cnt
);
4439 val64
= readq(&bar0
->xgxs_int_status
);
4440 if (val64
& XGXS_INT_STATUS_TXGXS
) {
4441 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
,
4442 &bar0
->xgxs_txgxs_err_reg
,
4443 &sw_stat
->xgxs_txgxs_err_cnt
))
4445 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
4446 &bar0
->xgxs_txgxs_err_reg
,
4447 &sw_stat
->xgxs_txgxs_err_cnt
);
4450 val64
= readq(&bar0
->rxdma_int_status
);
4451 if (val64
& RXDMA_INT_RC_INT_M
) {
4452 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
4453 | RC_PRCn_SM_ERR_ALARM
|RC_FTC_SM_ERR_ALARM
,
4454 &bar0
->rc_err_reg
, &sw_stat
->rc_err_cnt
))
4456 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
4457 | RC_RDA_FAIL_WR_Rn
, &bar0
->rc_err_reg
,
4458 &sw_stat
->rc_err_cnt
);
4459 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
4460 | PRC_PCI_AB_F_WR_Rn
, &bar0
->prc_pcix_err_reg
,
4461 &sw_stat
->prc_pcix_err_cnt
))
4463 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn
| PRC_PCI_DP_WR_Rn
4464 | PRC_PCI_DP_F_WR_Rn
, &bar0
->prc_pcix_err_reg
,
4465 &sw_stat
->prc_pcix_err_cnt
);
4468 if (val64
& RXDMA_INT_RPA_INT_M
) {
4469 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
,
4470 &bar0
->rpa_err_reg
, &sw_stat
->rpa_err_cnt
))
4472 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
,
4473 &bar0
->rpa_err_reg
, &sw_stat
->rpa_err_cnt
);
4476 if (val64
& RXDMA_INT_RDA_INT_M
) {
4477 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4478 | RDA_FRM_ECC_DB_N_AERR
| RDA_SM1_ERR_ALARM
4479 | RDA_SM0_ERR_ALARM
| RDA_RXD_ECC_DB_SERR
,
4480 &bar0
->rda_err_reg
, &sw_stat
->rda_err_cnt
))
4482 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR
| RDA_FRM_ECC_SG_ERR
4483 | RDA_MISC_ERR
| RDA_PCIX_ERR
,
4484 &bar0
->rda_err_reg
, &sw_stat
->rda_err_cnt
);
4487 if (val64
& RXDMA_INT_RTI_INT_M
) {
4488 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM
, &bar0
->rti_err_reg
,
4489 &sw_stat
->rti_err_cnt
))
4491 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
4492 &bar0
->rti_err_reg
, &sw_stat
->rti_err_cnt
);
4495 val64
= readq(&bar0
->mac_int_status
);
4496 if (val64
& MAC_INT_STATUS_RMAC_INT
) {
4497 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
,
4498 &bar0
->mac_rmac_err_reg
,
4499 &sw_stat
->mac_rmac_err_cnt
))
4501 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT
|RMAC_SINGLE_ECC_ERR
|
4502 RMAC_DOUBLE_ECC_ERR
, &bar0
->mac_rmac_err_reg
,
4503 &sw_stat
->mac_rmac_err_cnt
);
4506 val64
= readq(&bar0
->xgxs_int_status
);
4507 if (val64
& XGXS_INT_STATUS_RXGXS
) {
4508 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
,
4509 &bar0
->xgxs_rxgxs_err_reg
,
4510 &sw_stat
->xgxs_rxgxs_err_cnt
))
4514 val64
= readq(&bar0
->mc_int_status
);
4515 if(val64
& MC_INT_STATUS_MC_INT
) {
4516 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR
, &bar0
->mc_err_reg
,
4517 &sw_stat
->mc_err_cnt
))
4520 /* Handling Ecc errors */
4521 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
4522 writeq(val64
, &bar0
->mc_err_reg
);
4523 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
4524 sw_stat
->double_ecc_errs
++;
4525 if (sp
->device_type
!= XFRAME_II_DEVICE
) {
4527 * Reset XframeI only if critical error
4530 (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
4531 MC_ERR_REG_MIRI_ECC_DB_ERR_1
))
4535 sw_stat
->single_ecc_errs
++;
4541 netif_stop_queue(dev
);
4542 schedule_work(&sp
->rst_timer_task
);
4543 sw_stat
->soft_reset_cnt
++;
4548 * s2io_isr - ISR handler of the device .
4549 * @irq: the irq of the device.
4550 * @dev_id: a void pointer to the dev structure of the NIC.
4551 * Description: This function is the ISR handler of the device. It
4552 * identifies the reason for the interrupt and calls the relevant
4553 * service routines. As a contongency measure, this ISR allocates the
4554 * recv buffers, if their numbers are below the panic value which is
4555 * presently set to 25% of the original number of rcv buffers allocated.
4557 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4558 * IRQ_NONE: will be returned if interrupt is not from our device
4560 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4562 struct net_device
*dev
= (struct net_device
*) dev_id
;
4563 struct s2io_nic
*sp
= dev
->priv
;
4564 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4567 struct mac_info
*mac_control
;
4568 struct config_param
*config
;
4570 /* Pretend we handled any irq's from a disconnected card */
4571 if (pci_channel_offline(sp
->pdev
))
4574 if (!is_s2io_card_up(sp
))
4577 mac_control
= &sp
->mac_control
;
4578 config
= &sp
->config
;
4581 * Identify the cause for interrupt and call the appropriate
4582 * interrupt handler. Causes for the interrupt could be;
4587 reason
= readq(&bar0
->general_int_status
);
4589 if (unlikely(reason
== S2IO_MINUS_ONE
) ) {
4590 /* Nothing much can be done. Get out */
4594 if (reason
& (GEN_INTR_RXTRAFFIC
|
4595 GEN_INTR_TXTRAFFIC
| GEN_INTR_TXPIC
))
4597 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4600 if (reason
& GEN_INTR_RXTRAFFIC
) {
4601 if (likely(netif_rx_schedule_prep(dev
,
4603 __netif_rx_schedule(dev
, &sp
->napi
);
4604 writeq(S2IO_MINUS_ONE
,
4605 &bar0
->rx_traffic_mask
);
4607 writeq(S2IO_MINUS_ONE
,
4608 &bar0
->rx_traffic_int
);
4612 * rx_traffic_int reg is an R1 register, writing all 1's
4613 * will ensure that the actual interrupt causing bit
4614 * get's cleared and hence a read can be avoided.
4616 if (reason
& GEN_INTR_RXTRAFFIC
)
4617 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4619 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4620 rx_intr_handler(&mac_control
->rings
[i
]);
4624 * tx_traffic_int reg is an R1 register, writing all 1's
4625 * will ensure that the actual interrupt causing bit get's
4626 * cleared and hence a read can be avoided.
4628 if (reason
& GEN_INTR_TXTRAFFIC
)
4629 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4631 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4632 tx_intr_handler(&mac_control
->fifos
[i
]);
4634 if (reason
& GEN_INTR_TXPIC
)
4635 s2io_txpic_intr_handle(sp
);
4638 * Reallocate the buffers from the interrupt handler itself.
4640 if (!config
->napi
) {
4641 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4642 s2io_chk_rx_buffers(sp
, i
);
4644 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4645 readl(&bar0
->general_int_status
);
4651 /* The interrupt was not raised by us */
4661 static void s2io_updt_stats(struct s2io_nic
*sp
)
4663 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4667 if (is_s2io_card_up(sp
)) {
4668 /* Apprx 30us on a 133 MHz bus */
4669 val64
= SET_UPDT_CLICKS(10) |
4670 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4671 writeq(val64
, &bar0
->stat_cfg
);
4674 val64
= readq(&bar0
->stat_cfg
);
4675 if (!(val64
& s2BIT(0)))
4679 break; /* Updt failed */
4685 * s2io_get_stats - Updates the device statistics structure.
4686 * @dev : pointer to the device structure.
4688 * This function updates the device statistics structure in the s2io_nic
4689 * structure and returns a pointer to the same.
4691 * pointer to the updated net_device_stats structure.
4694 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4696 struct s2io_nic
*sp
= dev
->priv
;
4697 struct mac_info
*mac_control
;
4698 struct config_param
*config
;
4701 mac_control
= &sp
->mac_control
;
4702 config
= &sp
->config
;
4704 /* Configure Stats for immediate updt */
4705 s2io_updt_stats(sp
);
4707 sp
->stats
.tx_packets
=
4708 le32_to_cpu(mac_control
->stats_info
->tmac_frms
);
4709 sp
->stats
.tx_errors
=
4710 le32_to_cpu(mac_control
->stats_info
->tmac_any_err_frms
);
4711 sp
->stats
.rx_errors
=
4712 le64_to_cpu(mac_control
->stats_info
->rmac_drop_frms
);
4713 sp
->stats
.multicast
=
4714 le32_to_cpu(mac_control
->stats_info
->rmac_vld_mcst_frms
);
4715 sp
->stats
.rx_length_errors
=
4716 le64_to_cpu(mac_control
->stats_info
->rmac_long_frms
);
4718 return (&sp
->stats
);
4722 * s2io_set_multicast - entry point for multicast address enable/disable.
4723 * @dev : pointer to the device structure
4725 * This function is a driver entry point which gets called by the kernel
4726 * whenever multicast addresses must be enabled/disabled. This also gets
4727 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4728 * determine, if multicast address must be enabled or if promiscuous mode
4729 * is to be disabled etc.
4734 static void s2io_set_multicast(struct net_device
*dev
)
4737 struct dev_mc_list
*mclist
;
4738 struct s2io_nic
*sp
= dev
->priv
;
4739 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4740 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4742 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, mac_addr
= 0;
4744 struct config_param
*config
= &sp
->config
;
4746 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
4747 /* Enable all Multicast addresses */
4748 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
4749 &bar0
->rmac_addr_data0_mem
);
4750 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
4751 &bar0
->rmac_addr_data1_mem
);
4752 val64
= RMAC_ADDR_CMD_MEM_WE
|
4753 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4754 RMAC_ADDR_CMD_MEM_OFFSET(config
->max_mc_addr
- 1);
4755 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4756 /* Wait till command completes */
4757 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4758 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4762 sp
->all_multi_pos
= config
->max_mc_addr
- 1;
4763 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
4764 /* Disable all Multicast addresses */
4765 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4766 &bar0
->rmac_addr_data0_mem
);
4767 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4768 &bar0
->rmac_addr_data1_mem
);
4769 val64
= RMAC_ADDR_CMD_MEM_WE
|
4770 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4771 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
4772 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4773 /* Wait till command completes */
4774 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4775 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4779 sp
->all_multi_pos
= 0;
4782 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
4783 /* Put the NIC into promiscuous mode */
4784 add
= &bar0
->mac_cfg
;
4785 val64
= readq(&bar0
->mac_cfg
);
4786 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
4788 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4789 writel((u32
) val64
, add
);
4790 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4791 writel((u32
) (val64
>> 32), (add
+ 4));
4793 if (vlan_tag_strip
!= 1) {
4794 val64
= readq(&bar0
->rx_pa_cfg
);
4795 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
4796 writeq(val64
, &bar0
->rx_pa_cfg
);
4797 vlan_strip_flag
= 0;
4800 val64
= readq(&bar0
->mac_cfg
);
4801 sp
->promisc_flg
= 1;
4802 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
4804 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
4805 /* Remove the NIC from promiscuous mode */
4806 add
= &bar0
->mac_cfg
;
4807 val64
= readq(&bar0
->mac_cfg
);
4808 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
4810 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4811 writel((u32
) val64
, add
);
4812 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4813 writel((u32
) (val64
>> 32), (add
+ 4));
4815 if (vlan_tag_strip
!= 0) {
4816 val64
= readq(&bar0
->rx_pa_cfg
);
4817 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
4818 writeq(val64
, &bar0
->rx_pa_cfg
);
4819 vlan_strip_flag
= 1;
4822 val64
= readq(&bar0
->mac_cfg
);
4823 sp
->promisc_flg
= 0;
4824 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n",
4828 /* Update individual M_CAST address list */
4829 if ((!sp
->m_cast_flg
) && dev
->mc_count
) {
4831 (config
->max_mc_addr
- config
->max_mac_addr
)) {
4832 DBG_PRINT(ERR_DBG
, "%s: No more Rx filters ",
4834 DBG_PRINT(ERR_DBG
, "can be added, please enable ");
4835 DBG_PRINT(ERR_DBG
, "ALL_MULTI instead\n");
4839 prev_cnt
= sp
->mc_addr_count
;
4840 sp
->mc_addr_count
= dev
->mc_count
;
4842 /* Clear out the previous list of Mc in the H/W. */
4843 for (i
= 0; i
< prev_cnt
; i
++) {
4844 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4845 &bar0
->rmac_addr_data0_mem
);
4846 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4847 &bar0
->rmac_addr_data1_mem
);
4848 val64
= RMAC_ADDR_CMD_MEM_WE
|
4849 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4850 RMAC_ADDR_CMD_MEM_OFFSET
4851 (config
->mc_start_offset
+ i
);
4852 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4854 /* Wait for command completes */
4855 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4856 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4858 DBG_PRINT(ERR_DBG
, "%s: Adding ",
4860 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
4865 /* Create the new Rx filter list and update the same in H/W. */
4866 for (i
= 0, mclist
= dev
->mc_list
; i
< dev
->mc_count
;
4867 i
++, mclist
= mclist
->next
) {
4868 memcpy(sp
->usr_addrs
[i
].addr
, mclist
->dmi_addr
,
4871 for (j
= 0; j
< ETH_ALEN
; j
++) {
4872 mac_addr
|= mclist
->dmi_addr
[j
];
4876 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
4877 &bar0
->rmac_addr_data0_mem
);
4878 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4879 &bar0
->rmac_addr_data1_mem
);
4880 val64
= RMAC_ADDR_CMD_MEM_WE
|
4881 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4882 RMAC_ADDR_CMD_MEM_OFFSET
4883 (i
+ config
->mc_start_offset
);
4884 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4886 /* Wait for command completes */
4887 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4888 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4890 DBG_PRINT(ERR_DBG
, "%s: Adding ",
4892 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
4899 /* read from CAM unicast & multicast addresses and store it in
4900 * def_mac_addr structure
4902 void do_s2io_store_unicast_mc(struct s2io_nic
*sp
)
4906 struct config_param
*config
= &sp
->config
;
4908 /* store unicast & multicast mac addresses */
4909 for (offset
= 0; offset
< config
->max_mc_addr
; offset
++) {
4910 mac_addr
= do_s2io_read_unicast_mc(sp
, offset
);
4911 /* if read fails disable the entry */
4912 if (mac_addr
== FAILURE
)
4913 mac_addr
= S2IO_DISABLE_MAC_ENTRY
;
4914 do_s2io_copy_mac_addr(sp
, offset
, mac_addr
);
4918 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
4919 static void do_s2io_restore_unicast_mc(struct s2io_nic
*sp
)
4922 struct config_param
*config
= &sp
->config
;
4923 /* restore unicast mac address */
4924 for (offset
= 0; offset
< config
->max_mac_addr
; offset
++)
4925 do_s2io_prog_unicast(sp
->dev
,
4926 sp
->def_mac_addr
[offset
].mac_addr
);
4928 /* restore multicast mac address */
4929 for (offset
= config
->mc_start_offset
;
4930 offset
< config
->max_mc_addr
; offset
++)
4931 do_s2io_add_mc(sp
, sp
->def_mac_addr
[offset
].mac_addr
);
4934 /* add a multicast MAC address to CAM */
4935 static int do_s2io_add_mc(struct s2io_nic
*sp
, u8
*addr
)
4939 struct config_param
*config
= &sp
->config
;
4941 for (i
= 0; i
< ETH_ALEN
; i
++) {
4943 mac_addr
|= addr
[i
];
4945 if ((0ULL == mac_addr
) || (mac_addr
== S2IO_DISABLE_MAC_ENTRY
))
4948 /* check if the multicast mac already preset in CAM */
4949 for (i
= config
->mc_start_offset
; i
< config
->max_mc_addr
; i
++) {
4951 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
4952 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
4955 if (tmp64
== mac_addr
)
4958 if (i
== config
->max_mc_addr
) {
4960 "CAM full no space left for multicast MAC\n");
4963 /* Update the internal structure with this new mac address */
4964 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
4966 return (do_s2io_add_mac(sp
, mac_addr
, i
));
4969 /* add MAC address to CAM */
4970 static int do_s2io_add_mac(struct s2io_nic
*sp
, u64 addr
, int off
)
4973 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4975 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr
),
4976 &bar0
->rmac_addr_data0_mem
);
4979 RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4980 RMAC_ADDR_CMD_MEM_OFFSET(off
);
4981 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4983 /* Wait till command completes */
4984 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4985 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4987 DBG_PRINT(INFO_DBG
, "do_s2io_add_mac failed\n");
4992 /* deletes a specified unicast/multicast mac entry from CAM */
4993 static int do_s2io_delete_unicast_mc(struct s2io_nic
*sp
, u64 addr
)
4996 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, tmp64
;
4997 struct config_param
*config
= &sp
->config
;
5000 offset
< config
->max_mc_addr
; offset
++) {
5001 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
5002 if (tmp64
== addr
) {
5003 /* disable the entry by writing 0xffffffffffffULL */
5004 if (do_s2io_add_mac(sp
, dis_addr
, offset
) == FAILURE
)
5006 /* store the new mac list from CAM */
5007 do_s2io_store_unicast_mc(sp
);
5011 DBG_PRINT(ERR_DBG
, "MAC address 0x%llx not found in CAM\n",
5012 (unsigned long long)addr
);
5016 /* read mac entries from CAM */
5017 static u64
do_s2io_read_unicast_mc(struct s2io_nic
*sp
, int offset
)
5019 u64 tmp64
= 0xffffffffffff0000ULL
, val64
;
5020 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5024 RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5025 RMAC_ADDR_CMD_MEM_OFFSET(offset
);
5026 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5028 /* Wait till command completes */
5029 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5030 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5032 DBG_PRINT(INFO_DBG
, "do_s2io_read_unicast_mc failed\n");
5035 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
5036 return (tmp64
>> 16);
5040 * s2io_set_mac_addr driver entry point
5043 static int s2io_set_mac_addr(struct net_device
*dev
, void *p
)
5045 struct sockaddr
*addr
= p
;
5047 if (!is_valid_ether_addr(addr
->sa_data
))
5050 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5052 /* store the MAC address in CAM */
5053 return (do_s2io_prog_unicast(dev
, dev
->dev_addr
));
5056 * do_s2io_prog_unicast - Programs the Xframe mac address
5057 * @dev : pointer to the device structure.
5058 * @addr: a uchar pointer to the new mac address which is to be set.
5059 * Description : This procedure will program the Xframe to receive
5060 * frames with new Mac Address
5061 * Return value: SUCCESS on success and an appropriate (-)ve integer
5062 * as defined in errno.h file on failure.
5065 static int do_s2io_prog_unicast(struct net_device
*dev
, u8
*addr
)
5067 struct s2io_nic
*sp
= dev
->priv
;
5068 register u64 mac_addr
= 0, perm_addr
= 0;
5071 struct config_param
*config
= &sp
->config
;
5074 * Set the new MAC address as the new unicast filter and reflect this
5075 * change on the device address registered with the OS. It will be
5078 for (i
= 0; i
< ETH_ALEN
; i
++) {
5080 mac_addr
|= addr
[i
];
5082 perm_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
5085 /* check if the dev_addr is different than perm_addr */
5086 if (mac_addr
== perm_addr
)
5089 /* check if the mac already preset in CAM */
5090 for (i
= 1; i
< config
->max_mac_addr
; i
++) {
5091 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5092 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5095 if (tmp64
== mac_addr
) {
5097 "MAC addr:0x%llx already present in CAM\n",
5098 (unsigned long long)mac_addr
);
5102 if (i
== config
->max_mac_addr
) {
5103 DBG_PRINT(ERR_DBG
, "CAM full no space left for Unicast MAC\n");
5106 /* Update the internal structure with this new mac address */
5107 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5108 return (do_s2io_add_mac(sp
, mac_addr
, i
));
5112 * s2io_ethtool_sset - Sets different link parameters.
5113 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5114 * @info: pointer to the structure with parameters given by ethtool to set
5117 * The function sets different link parameters provided by the user onto
5123 static int s2io_ethtool_sset(struct net_device
*dev
,
5124 struct ethtool_cmd
*info
)
5126 struct s2io_nic
*sp
= dev
->priv
;
5127 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
5128 (info
->speed
!= SPEED_10000
) || (info
->duplex
!= DUPLEX_FULL
))
5131 s2io_close(sp
->dev
);
5139 * s2io_ethtol_gset - Return link specific information.
5140 * @sp : private member of the device structure, pointer to the
5141 * s2io_nic structure.
5142 * @info : pointer to the structure with parameters given by ethtool
5143 * to return link information.
5145 * Returns link specific information like speed, duplex etc.. to ethtool.
5147 * return 0 on success.
5150 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
5152 struct s2io_nic
*sp
= dev
->priv
;
5153 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5154 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5155 info
->port
= PORT_FIBRE
;
5157 /* info->transceiver */
5158 info
->transceiver
= XCVR_EXTERNAL
;
5160 if (netif_carrier_ok(sp
->dev
)) {
5161 info
->speed
= 10000;
5162 info
->duplex
= DUPLEX_FULL
;
5168 info
->autoneg
= AUTONEG_DISABLE
;
5173 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5174 * @sp : private member of the device structure, which is a pointer to the
5175 * s2io_nic structure.
5176 * @info : pointer to the structure with parameters given by ethtool to
5177 * return driver information.
5179 * Returns driver specefic information like name, version etc.. to ethtool.
5184 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
5185 struct ethtool_drvinfo
*info
)
5187 struct s2io_nic
*sp
= dev
->priv
;
5189 strncpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
5190 strncpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
5191 strncpy(info
->fw_version
, "", sizeof(info
->fw_version
));
5192 strncpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
5193 info
->regdump_len
= XENA_REG_SPACE
;
5194 info
->eedump_len
= XENA_EEPROM_SPACE
;
5198 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5199 * @sp: private member of the device structure, which is a pointer to the
5200 * s2io_nic structure.
5201 * @regs : pointer to the structure with parameters given by ethtool for
5202 * dumping the registers.
5203 * @reg_space: The input argumnet into which all the registers are dumped.
5205 * Dumps the entire register space of xFrame NIC into the user given
5211 static void s2io_ethtool_gregs(struct net_device
*dev
,
5212 struct ethtool_regs
*regs
, void *space
)
5216 u8
*reg_space
= (u8
*) space
;
5217 struct s2io_nic
*sp
= dev
->priv
;
5219 regs
->len
= XENA_REG_SPACE
;
5220 regs
->version
= sp
->pdev
->subsystem_device
;
5222 for (i
= 0; i
< regs
->len
; i
+= 8) {
5223 reg
= readq(sp
->bar0
+ i
);
5224 memcpy((reg_space
+ i
), ®
, 8);
5229 * s2io_phy_id - timer function that alternates adapter LED.
5230 * @data : address of the private member of the device structure, which
5231 * is a pointer to the s2io_nic structure, provided as an u32.
5232 * Description: This is actually the timer function that alternates the
5233 * adapter LED bit of the adapter control bit to set/reset every time on
5234 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5235 * once every second.
5237 static void s2io_phy_id(unsigned long data
)
5239 struct s2io_nic
*sp
= (struct s2io_nic
*) data
;
5240 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5244 subid
= sp
->pdev
->subsystem_device
;
5245 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
5246 ((subid
& 0xFF) >= 0x07)) {
5247 val64
= readq(&bar0
->gpio_control
);
5248 val64
^= GPIO_CTRL_GPIO_0
;
5249 writeq(val64
, &bar0
->gpio_control
);
5251 val64
= readq(&bar0
->adapter_control
);
5252 val64
^= ADAPTER_LED_ON
;
5253 writeq(val64
, &bar0
->adapter_control
);
5256 mod_timer(&sp
->id_timer
, jiffies
+ HZ
/ 2);
5260 * s2io_ethtool_idnic - To physically identify the nic on the system.
5261 * @sp : private member of the device structure, which is a pointer to the
5262 * s2io_nic structure.
5263 * @id : pointer to the structure with identification parameters given by
5265 * Description: Used to physically identify the NIC on the system.
5266 * The Link LED will blink for a time specified by the user for
5268 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5269 * identification is possible only if it's link is up.
5271 * int , returns 0 on success
5274 static int s2io_ethtool_idnic(struct net_device
*dev
, u32 data
)
5276 u64 val64
= 0, last_gpio_ctrl_val
;
5277 struct s2io_nic
*sp
= dev
->priv
;
5278 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5281 subid
= sp
->pdev
->subsystem_device
;
5282 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5283 if ((sp
->device_type
== XFRAME_I_DEVICE
) &&
5284 ((subid
& 0xFF) < 0x07)) {
5285 val64
= readq(&bar0
->adapter_control
);
5286 if (!(val64
& ADAPTER_CNTL_EN
)) {
5288 "Adapter Link down, cannot blink LED\n");
5292 if (sp
->id_timer
.function
== NULL
) {
5293 init_timer(&sp
->id_timer
);
5294 sp
->id_timer
.function
= s2io_phy_id
;
5295 sp
->id_timer
.data
= (unsigned long) sp
;
5297 mod_timer(&sp
->id_timer
, jiffies
);
5299 msleep_interruptible(data
* HZ
);
5301 msleep_interruptible(MAX_FLICKER_TIME
);
5302 del_timer_sync(&sp
->id_timer
);
5304 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
)) {
5305 writeq(last_gpio_ctrl_val
, &bar0
->gpio_control
);
5306 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5312 static void s2io_ethtool_gringparam(struct net_device
*dev
,
5313 struct ethtool_ringparam
*ering
)
5315 struct s2io_nic
*sp
= dev
->priv
;
5316 int i
,tx_desc_count
=0,rx_desc_count
=0;
5318 if (sp
->rxd_mode
== RXD_MODE_1
)
5319 ering
->rx_max_pending
= MAX_RX_DESC_1
;
5320 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5321 ering
->rx_max_pending
= MAX_RX_DESC_2
;
5323 ering
->tx_max_pending
= MAX_TX_DESC
;
5324 for (i
= 0 ; i
< sp
->config
.tx_fifo_num
; i
++)
5325 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
5327 DBG_PRINT(INFO_DBG
,"\nmax txds : %d\n",sp
->config
.max_txds
);
5328 ering
->tx_pending
= tx_desc_count
;
5330 for (i
= 0 ; i
< sp
->config
.rx_ring_num
; i
++)
5331 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
5333 ering
->rx_pending
= rx_desc_count
;
5335 ering
->rx_mini_max_pending
= 0;
5336 ering
->rx_mini_pending
= 0;
5337 if(sp
->rxd_mode
== RXD_MODE_1
)
5338 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
5339 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5340 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
5341 ering
->rx_jumbo_pending
= rx_desc_count
;
5345 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5346 * @sp : private member of the device structure, which is a pointer to the
5347 * s2io_nic structure.
5348 * @ep : pointer to the structure with pause parameters given by ethtool.
5350 * Returns the Pause frame generation and reception capability of the NIC.
5354 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
5355 struct ethtool_pauseparam
*ep
)
5358 struct s2io_nic
*sp
= dev
->priv
;
5359 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5361 val64
= readq(&bar0
->rmac_pause_cfg
);
5362 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
5363 ep
->tx_pause
= TRUE
;
5364 if (val64
& RMAC_PAUSE_RX_ENABLE
)
5365 ep
->rx_pause
= TRUE
;
5366 ep
->autoneg
= FALSE
;
5370 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5371 * @sp : private member of the device structure, which is a pointer to the
5372 * s2io_nic structure.
5373 * @ep : pointer to the structure with pause parameters given by ethtool.
5375 * It can be used to set or reset Pause frame generation or reception
5376 * support of the NIC.
5378 * int, returns 0 on Success
5381 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
5382 struct ethtool_pauseparam
*ep
)
5385 struct s2io_nic
*sp
= dev
->priv
;
5386 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5388 val64
= readq(&bar0
->rmac_pause_cfg
);
5390 val64
|= RMAC_PAUSE_GEN_ENABLE
;
5392 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
5394 val64
|= RMAC_PAUSE_RX_ENABLE
;
5396 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5397 writeq(val64
, &bar0
->rmac_pause_cfg
);
5402 * read_eeprom - reads 4 bytes of data from user given offset.
5403 * @sp : private member of the device structure, which is a pointer to the
5404 * s2io_nic structure.
5405 * @off : offset at which the data must be written
5406 * @data : Its an output parameter where the data read at the given
5409 * Will read 4 bytes of data from the user given offset and return the
5411 * NOTE: Will allow to read only part of the EEPROM visible through the
5414 * -1 on failure and 0 on success.
5417 #define S2IO_DEV_ID 5
5418 static int read_eeprom(struct s2io_nic
* sp
, int off
, u64
* data
)
5423 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5425 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5426 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
5427 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ
|
5428 I2C_CONTROL_CNTL_START
;
5429 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5431 while (exit_cnt
< 5) {
5432 val64
= readq(&bar0
->i2c_control
);
5433 if (I2C_CONTROL_CNTL_END(val64
)) {
5434 *data
= I2C_CONTROL_GET_DATA(val64
);
5443 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5444 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5445 SPI_CONTROL_BYTECNT(0x3) |
5446 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5447 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5448 val64
|= SPI_CONTROL_REQ
;
5449 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5450 while (exit_cnt
< 5) {
5451 val64
= readq(&bar0
->spi_control
);
5452 if (val64
& SPI_CONTROL_NACK
) {
5455 } else if (val64
& SPI_CONTROL_DONE
) {
5456 *data
= readq(&bar0
->spi_data
);
5469 * write_eeprom - actually writes the relevant part of the data value.
5470 * @sp : private member of the device structure, which is a pointer to the
5471 * s2io_nic structure.
5472 * @off : offset at which the data must be written
5473 * @data : The data that is to be written
5474 * @cnt : Number of bytes of the data that are actually to be written into
5475 * the Eeprom. (max of 3)
5477 * Actually writes the relevant part of the data value into the Eeprom
5478 * through the I2C bus.
5480 * 0 on success, -1 on failure.
5483 static int write_eeprom(struct s2io_nic
* sp
, int off
, u64 data
, int cnt
)
5485 int exit_cnt
= 0, ret
= -1;
5487 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5489 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5490 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
5491 I2C_CONTROL_BYTE_CNT(cnt
) | I2C_CONTROL_SET_DATA((u32
)data
) |
5492 I2C_CONTROL_CNTL_START
;
5493 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5495 while (exit_cnt
< 5) {
5496 val64
= readq(&bar0
->i2c_control
);
5497 if (I2C_CONTROL_CNTL_END(val64
)) {
5498 if (!(val64
& I2C_CONTROL_NACK
))
5507 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5508 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5509 writeq(SPI_DATA_WRITE(data
,(cnt
<<3)), &bar0
->spi_data
);
5511 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5512 SPI_CONTROL_BYTECNT(write_cnt
) |
5513 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5514 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5515 val64
|= SPI_CONTROL_REQ
;
5516 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5517 while (exit_cnt
< 5) {
5518 val64
= readq(&bar0
->spi_control
);
5519 if (val64
& SPI_CONTROL_NACK
) {
5522 } else if (val64
& SPI_CONTROL_DONE
) {
5532 static void s2io_vpd_read(struct s2io_nic
*nic
)
5536 int i
=0, cnt
, fail
= 0;
5537 int vpd_addr
= 0x80;
5539 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5540 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5544 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5547 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5549 vpd_data
= kmalloc(256, GFP_KERNEL
);
5551 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
5554 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
+= 256;
5556 for (i
= 0; i
< 256; i
+=4 ) {
5557 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5558 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5559 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5560 for (cnt
= 0; cnt
<5; cnt
++) {
5562 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5567 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5571 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5572 (u32
*)&vpd_data
[i
]);
5576 /* read serial number of adapter */
5577 for (cnt
= 0; cnt
< 256; cnt
++) {
5578 if ((vpd_data
[cnt
] == 'S') &&
5579 (vpd_data
[cnt
+1] == 'N') &&
5580 (vpd_data
[cnt
+2] < VPD_STRING_LEN
)) {
5581 memset(nic
->serial_num
, 0, VPD_STRING_LEN
);
5582 memcpy(nic
->serial_num
, &vpd_data
[cnt
+ 3],
5589 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5590 memset(nic
->product_name
, 0, vpd_data
[1]);
5591 memcpy(nic
->product_name
, &vpd_data
[3], vpd_data
[1]);
5594 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= 256;
5598 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5599 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5600 * @eeprom : pointer to the user level structure provided by ethtool,
5601 * containing all relevant information.
5602 * @data_buf : user defined value to be written into Eeprom.
5603 * Description: Reads the values stored in the Eeprom at given offset
5604 * for a given length. Stores these values int the input argument data
5605 * buffer 'data_buf' and returns these to the caller (ethtool.)
5610 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5611 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5615 struct s2io_nic
*sp
= dev
->priv
;
5617 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5619 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5620 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5622 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5623 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5624 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5628 memcpy((data_buf
+ i
), &valid
, 4);
5634 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5635 * @sp : private member of the device structure, which is a pointer to the
5636 * s2io_nic structure.
5637 * @eeprom : pointer to the user level structure provided by ethtool,
5638 * containing all relevant information.
5639 * @data_buf ; user defined value to be written into Eeprom.
5641 * Tries to write the user provided value in the Eeprom, at the offset
5642 * given by the user.
5644 * 0 on success, -EFAULT on failure.
5647 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5648 struct ethtool_eeprom
*eeprom
,
5651 int len
= eeprom
->len
, cnt
= 0;
5652 u64 valid
= 0, data
;
5653 struct s2io_nic
*sp
= dev
->priv
;
5655 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5657 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5658 DBG_PRINT(ERR_DBG
, "is wrong, Its not 0x%x\n",
5664 data
= (u32
) data_buf
[cnt
] & 0x000000FF;
5666 valid
= (u32
) (data
<< 24);
5670 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5672 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5674 "write into the specified offset\n");
5685 * s2io_register_test - reads and writes into all clock domains.
5686 * @sp : private member of the device structure, which is a pointer to the
5687 * s2io_nic structure.
5688 * @data : variable that returns the result of each of the test conducted b
5691 * Read and write into all clock domains. The NIC has 3 clock domains,
5692 * see that registers in all the three regions are accessible.
5697 static int s2io_register_test(struct s2io_nic
* sp
, uint64_t * data
)
5699 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5700 u64 val64
= 0, exp_val
;
5703 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5704 if (val64
!= 0x123456789abcdefULL
) {
5706 DBG_PRINT(INFO_DBG
, "Read Test level 1 fails\n");
5709 val64
= readq(&bar0
->rmac_pause_cfg
);
5710 if (val64
!= 0xc000ffff00000000ULL
) {
5712 DBG_PRINT(INFO_DBG
, "Read Test level 2 fails\n");
5715 val64
= readq(&bar0
->rx_queue_cfg
);
5716 if (sp
->device_type
== XFRAME_II_DEVICE
)
5717 exp_val
= 0x0404040404040404ULL
;
5719 exp_val
= 0x0808080808080808ULL
;
5720 if (val64
!= exp_val
) {
5722 DBG_PRINT(INFO_DBG
, "Read Test level 3 fails\n");
5725 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5726 if (val64
!= 0x000000001923141EULL
) {
5728 DBG_PRINT(INFO_DBG
, "Read Test level 4 fails\n");
5731 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5732 writeq(val64
, &bar0
->xmsi_data
);
5733 val64
= readq(&bar0
->xmsi_data
);
5734 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5736 DBG_PRINT(ERR_DBG
, "Write Test level 1 fails\n");
5739 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5740 writeq(val64
, &bar0
->xmsi_data
);
5741 val64
= readq(&bar0
->xmsi_data
);
5742 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
5744 DBG_PRINT(ERR_DBG
, "Write Test level 2 fails\n");
5752 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5753 * @sp : private member of the device structure, which is a pointer to the
5754 * s2io_nic structure.
5755 * @data:variable that returns the result of each of the test conducted by
5758 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5764 static int s2io_eeprom_test(struct s2io_nic
* sp
, uint64_t * data
)
5767 u64 ret_data
, org_4F0
, org_7F0
;
5768 u8 saved_4F0
= 0, saved_7F0
= 0;
5769 struct net_device
*dev
= sp
->dev
;
5771 /* Test Write Error at offset 0 */
5772 /* Note that SPI interface allows write access to all areas
5773 * of EEPROM. Hence doing all negative testing only for Xframe I.
5775 if (sp
->device_type
== XFRAME_I_DEVICE
)
5776 if (!write_eeprom(sp
, 0, 0, 3))
5779 /* Save current values at offsets 0x4F0 and 0x7F0 */
5780 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
5782 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
5785 /* Test Write at offset 4f0 */
5786 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
5788 if (read_eeprom(sp
, 0x4F0, &ret_data
))
5791 if (ret_data
!= 0x012345) {
5792 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
5793 "Data written %llx Data read %llx\n",
5794 dev
->name
, (unsigned long long)0x12345,
5795 (unsigned long long)ret_data
);
5799 /* Reset the EEPROM data go FFFF */
5800 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
5802 /* Test Write Request Error at offset 0x7c */
5803 if (sp
->device_type
== XFRAME_I_DEVICE
)
5804 if (!write_eeprom(sp
, 0x07C, 0, 3))
5807 /* Test Write Request at offset 0x7f0 */
5808 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
5810 if (read_eeprom(sp
, 0x7F0, &ret_data
))
5813 if (ret_data
!= 0x012345) {
5814 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
5815 "Data written %llx Data read %llx\n",
5816 dev
->name
, (unsigned long long)0x12345,
5817 (unsigned long long)ret_data
);
5821 /* Reset the EEPROM data go FFFF */
5822 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
5824 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5825 /* Test Write Error at offset 0x80 */
5826 if (!write_eeprom(sp
, 0x080, 0, 3))
5829 /* Test Write Error at offset 0xfc */
5830 if (!write_eeprom(sp
, 0x0FC, 0, 3))
5833 /* Test Write Error at offset 0x100 */
5834 if (!write_eeprom(sp
, 0x100, 0, 3))
5837 /* Test Write Error at offset 4ec */
5838 if (!write_eeprom(sp
, 0x4EC, 0, 3))
5842 /* Restore values at offsets 0x4F0 and 0x7F0 */
5844 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
5846 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
5853 * s2io_bist_test - invokes the MemBist test of the card .
5854 * @sp : private member of the device structure, which is a pointer to the
5855 * s2io_nic structure.
5856 * @data:variable that returns the result of each of the test conducted by
5859 * This invokes the MemBist test of the card. We give around
5860 * 2 secs time for the Test to complete. If it's still not complete
5861 * within this peiod, we consider that the test failed.
5863 * 0 on success and -1 on failure.
5866 static int s2io_bist_test(struct s2io_nic
* sp
, uint64_t * data
)
5869 int cnt
= 0, ret
= -1;
5871 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
5872 bist
|= PCI_BIST_START
;
5873 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
5876 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
5877 if (!(bist
& PCI_BIST_START
)) {
5878 *data
= (bist
& PCI_BIST_CODE_MASK
);
5890 * s2io-link_test - verifies the link state of the nic
5891 * @sp ; private member of the device structure, which is a pointer to the
5892 * s2io_nic structure.
5893 * @data: variable that returns the result of each of the test conducted by
5896 * The function verifies the link state of the NIC and updates the input
5897 * argument 'data' appropriately.
5902 static int s2io_link_test(struct s2io_nic
* sp
, uint64_t * data
)
5904 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5907 val64
= readq(&bar0
->adapter_status
);
5908 if(!(LINK_IS_UP(val64
)))
5917 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5918 * @sp - private member of the device structure, which is a pointer to the
5919 * s2io_nic structure.
5920 * @data - variable that returns the result of each of the test
5921 * conducted by the driver.
5923 * This is one of the offline test that tests the read and write
5924 * access to the RldRam chip on the NIC.
5929 static int s2io_rldram_test(struct s2io_nic
* sp
, uint64_t * data
)
5931 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5933 int cnt
, iteration
= 0, test_fail
= 0;
5935 val64
= readq(&bar0
->adapter_control
);
5936 val64
&= ~ADAPTER_ECC_EN
;
5937 writeq(val64
, &bar0
->adapter_control
);
5939 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5940 val64
|= MC_RLDRAM_TEST_MODE
;
5941 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
5943 val64
= readq(&bar0
->mc_rldram_mrs
);
5944 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
5945 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
5947 val64
|= MC_RLDRAM_MRS_ENABLE
;
5948 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
5950 while (iteration
< 2) {
5951 val64
= 0x55555555aaaa0000ULL
;
5952 if (iteration
== 1) {
5953 val64
^= 0xFFFFFFFFFFFF0000ULL
;
5955 writeq(val64
, &bar0
->mc_rldram_test_d0
);
5957 val64
= 0xaaaa5a5555550000ULL
;
5958 if (iteration
== 1) {
5959 val64
^= 0xFFFFFFFFFFFF0000ULL
;
5961 writeq(val64
, &bar0
->mc_rldram_test_d1
);
5963 val64
= 0x55aaaaaaaa5a0000ULL
;
5964 if (iteration
== 1) {
5965 val64
^= 0xFFFFFFFFFFFF0000ULL
;
5967 writeq(val64
, &bar0
->mc_rldram_test_d2
);
5969 val64
= (u64
) (0x0000003ffffe0100ULL
);
5970 writeq(val64
, &bar0
->mc_rldram_test_add
);
5972 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_WRITE
|
5974 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
5976 for (cnt
= 0; cnt
< 5; cnt
++) {
5977 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5978 if (val64
& MC_RLDRAM_TEST_DONE
)
5986 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
5987 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
5989 for (cnt
= 0; cnt
< 5; cnt
++) {
5990 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5991 if (val64
& MC_RLDRAM_TEST_DONE
)
5999 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6000 if (!(val64
& MC_RLDRAM_TEST_PASS
))
6008 /* Bring the adapter out of test mode */
6009 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
6015 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6016 * @sp : private member of the device structure, which is a pointer to the
6017 * s2io_nic structure.
6018 * @ethtest : pointer to a ethtool command specific structure that will be
6019 * returned to the user.
6020 * @data : variable that returns the result of each of the test
6021 * conducted by the driver.
6023 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6024 * the health of the card.
6029 static void s2io_ethtool_test(struct net_device
*dev
,
6030 struct ethtool_test
*ethtest
,
6033 struct s2io_nic
*sp
= dev
->priv
;
6034 int orig_state
= netif_running(sp
->dev
);
6036 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
6037 /* Offline Tests. */
6039 s2io_close(sp
->dev
);
6041 if (s2io_register_test(sp
, &data
[0]))
6042 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6046 if (s2io_rldram_test(sp
, &data
[3]))
6047 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6051 if (s2io_eeprom_test(sp
, &data
[1]))
6052 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6054 if (s2io_bist_test(sp
, &data
[4]))
6055 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6065 "%s: is not up, cannot run test\n",
6074 if (s2io_link_test(sp
, &data
[2]))
6075 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6084 static void s2io_get_ethtool_stats(struct net_device
*dev
,
6085 struct ethtool_stats
*estats
,
6089 struct s2io_nic
*sp
= dev
->priv
;
6090 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
6092 s2io_updt_stats(sp
);
6094 (u64
)le32_to_cpu(stat_info
->tmac_frms_oflow
) << 32 |
6095 le32_to_cpu(stat_info
->tmac_frms
);
6097 (u64
)le32_to_cpu(stat_info
->tmac_data_octets_oflow
) << 32 |
6098 le32_to_cpu(stat_info
->tmac_data_octets
);
6099 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_drop_frms
);
6101 (u64
)le32_to_cpu(stat_info
->tmac_mcst_frms_oflow
) << 32 |
6102 le32_to_cpu(stat_info
->tmac_mcst_frms
);
6104 (u64
)le32_to_cpu(stat_info
->tmac_bcst_frms_oflow
) << 32 |
6105 le32_to_cpu(stat_info
->tmac_bcst_frms
);
6106 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_pause_ctrl_frms
);
6108 (u64
)le32_to_cpu(stat_info
->tmac_ttl_octets_oflow
) << 32 |
6109 le32_to_cpu(stat_info
->tmac_ttl_octets
);
6111 (u64
)le32_to_cpu(stat_info
->tmac_ucst_frms_oflow
) << 32 |
6112 le32_to_cpu(stat_info
->tmac_ucst_frms
);
6114 (u64
)le32_to_cpu(stat_info
->tmac_nucst_frms_oflow
) << 32 |
6115 le32_to_cpu(stat_info
->tmac_nucst_frms
);
6117 (u64
)le32_to_cpu(stat_info
->tmac_any_err_frms_oflow
) << 32 |
6118 le32_to_cpu(stat_info
->tmac_any_err_frms
);
6119 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_ttl_less_fb_octets
);
6120 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_vld_ip_octets
);
6122 (u64
)le32_to_cpu(stat_info
->tmac_vld_ip_oflow
) << 32 |
6123 le32_to_cpu(stat_info
->tmac_vld_ip
);
6125 (u64
)le32_to_cpu(stat_info
->tmac_drop_ip_oflow
) << 32 |
6126 le32_to_cpu(stat_info
->tmac_drop_ip
);
6128 (u64
)le32_to_cpu(stat_info
->tmac_icmp_oflow
) << 32 |
6129 le32_to_cpu(stat_info
->tmac_icmp
);
6131 (u64
)le32_to_cpu(stat_info
->tmac_rst_tcp_oflow
) << 32 |
6132 le32_to_cpu(stat_info
->tmac_rst_tcp
);
6133 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_tcp
);
6134 tmp_stats
[i
++] = (u64
)le32_to_cpu(stat_info
->tmac_udp_oflow
) << 32 |
6135 le32_to_cpu(stat_info
->tmac_udp
);
6137 (u64
)le32_to_cpu(stat_info
->rmac_vld_frms_oflow
) << 32 |
6138 le32_to_cpu(stat_info
->rmac_vld_frms
);
6140 (u64
)le32_to_cpu(stat_info
->rmac_data_octets_oflow
) << 32 |
6141 le32_to_cpu(stat_info
->rmac_data_octets
);
6142 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_fcs_err_frms
);
6143 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_drop_frms
);
6145 (u64
)le32_to_cpu(stat_info
->rmac_vld_mcst_frms_oflow
) << 32 |
6146 le32_to_cpu(stat_info
->rmac_vld_mcst_frms
);
6148 (u64
)le32_to_cpu(stat_info
->rmac_vld_bcst_frms_oflow
) << 32 |
6149 le32_to_cpu(stat_info
->rmac_vld_bcst_frms
);
6150 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_in_rng_len_err_frms
);
6151 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_out_rng_len_err_frms
);
6152 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_long_frms
);
6153 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_pause_ctrl_frms
);
6154 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_unsup_ctrl_frms
);
6156 (u64
)le32_to_cpu(stat_info
->rmac_ttl_octets_oflow
) << 32 |
6157 le32_to_cpu(stat_info
->rmac_ttl_octets
);
6159 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ucst_frms_oflow
)
6160 << 32 | le32_to_cpu(stat_info
->rmac_accepted_ucst_frms
);
6162 (u64
)le32_to_cpu(stat_info
->rmac_accepted_nucst_frms_oflow
)
6163 << 32 | le32_to_cpu(stat_info
->rmac_accepted_nucst_frms
);
6165 (u64
)le32_to_cpu(stat_info
->rmac_discarded_frms_oflow
) << 32 |
6166 le32_to_cpu(stat_info
->rmac_discarded_frms
);
6168 (u64
)le32_to_cpu(stat_info
->rmac_drop_events_oflow
)
6169 << 32 | le32_to_cpu(stat_info
->rmac_drop_events
);
6170 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_less_fb_octets
);
6171 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_frms
);
6173 (u64
)le32_to_cpu(stat_info
->rmac_usized_frms_oflow
) << 32 |
6174 le32_to_cpu(stat_info
->rmac_usized_frms
);
6176 (u64
)le32_to_cpu(stat_info
->rmac_osized_frms_oflow
) << 32 |
6177 le32_to_cpu(stat_info
->rmac_osized_frms
);
6179 (u64
)le32_to_cpu(stat_info
->rmac_frag_frms_oflow
) << 32 |
6180 le32_to_cpu(stat_info
->rmac_frag_frms
);
6182 (u64
)le32_to_cpu(stat_info
->rmac_jabber_frms_oflow
) << 32 |
6183 le32_to_cpu(stat_info
->rmac_jabber_frms
);
6184 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_64_frms
);
6185 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_65_127_frms
);
6186 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_128_255_frms
);
6187 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_256_511_frms
);
6188 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_512_1023_frms
);
6189 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_1024_1518_frms
);
6191 (u64
)le32_to_cpu(stat_info
->rmac_ip_oflow
) << 32 |
6192 le32_to_cpu(stat_info
->rmac_ip
);
6193 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ip_octets
);
6194 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_hdr_err_ip
);
6196 (u64
)le32_to_cpu(stat_info
->rmac_drop_ip_oflow
) << 32 |
6197 le32_to_cpu(stat_info
->rmac_drop_ip
);
6199 (u64
)le32_to_cpu(stat_info
->rmac_icmp_oflow
) << 32 |
6200 le32_to_cpu(stat_info
->rmac_icmp
);
6201 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_tcp
);
6203 (u64
)le32_to_cpu(stat_info
->rmac_udp_oflow
) << 32 |
6204 le32_to_cpu(stat_info
->rmac_udp
);
6206 (u64
)le32_to_cpu(stat_info
->rmac_err_drp_udp_oflow
) << 32 |
6207 le32_to_cpu(stat_info
->rmac_err_drp_udp
);
6208 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_err_sym
);
6209 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q0
);
6210 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q1
);
6211 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q2
);
6212 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q3
);
6213 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q4
);
6214 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q5
);
6215 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q6
);
6216 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q7
);
6217 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q0
);
6218 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q1
);
6219 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q2
);
6220 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q3
);
6221 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q4
);
6222 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q5
);
6223 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q6
);
6224 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q7
);
6226 (u64
)le32_to_cpu(stat_info
->rmac_pause_cnt_oflow
) << 32 |
6227 le32_to_cpu(stat_info
->rmac_pause_cnt
);
6228 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_data_err_cnt
);
6229 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_ctrl_err_cnt
);
6231 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ip_oflow
) << 32 |
6232 le32_to_cpu(stat_info
->rmac_accepted_ip
);
6233 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_err_tcp
);
6234 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_req_cnt
);
6235 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_cnt
);
6236 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_rtry_cnt
);
6237 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_cnt
);
6238 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_rd_ack_cnt
);
6239 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_req_cnt
);
6240 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_cnt
);
6241 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_rtry_cnt
);
6242 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_cnt
);
6243 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_disc_cnt
);
6244 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_wr_ack_cnt
);
6245 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txp_wr_cnt
);
6246 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_rd_cnt
);
6247 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_wr_cnt
);
6248 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_rd_cnt
);
6249 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_wr_cnt
);
6250 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txf_rd_cnt
);
6251 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxf_wr_cnt
);
6253 /* Enhanced statistics exist only for Hercules */
6254 if(sp
->device_type
== XFRAME_II_DEVICE
) {
6256 le64_to_cpu(stat_info
->rmac_ttl_1519_4095_frms
);
6258 le64_to_cpu(stat_info
->rmac_ttl_4096_8191_frms
);
6260 le64_to_cpu(stat_info
->rmac_ttl_8192_max_frms
);
6261 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_gt_max_frms
);
6262 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_osized_alt_frms
);
6263 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_jabber_alt_frms
);
6264 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_gt_max_alt_frms
);
6265 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_vlan_frms
);
6266 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_len_discard
);
6267 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_fcs_discard
);
6268 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_pf_discard
);
6269 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_da_discard
);
6270 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_red_discard
);
6271 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_rts_discard
);
6272 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_ingm_full_discard
);
6273 tmp_stats
[i
++] = le32_to_cpu(stat_info
->link_fault_cnt
);
6277 tmp_stats
[i
++] = stat_info
->sw_stat
.single_ecc_errs
;
6278 tmp_stats
[i
++] = stat_info
->sw_stat
.double_ecc_errs
;
6279 tmp_stats
[i
++] = stat_info
->sw_stat
.parity_err_cnt
;
6280 tmp_stats
[i
++] = stat_info
->sw_stat
.serious_err_cnt
;
6281 tmp_stats
[i
++] = stat_info
->sw_stat
.soft_reset_cnt
;
6282 tmp_stats
[i
++] = stat_info
->sw_stat
.fifo_full_cnt
;
6283 for (k
= 0; k
< MAX_RX_RINGS
; k
++)
6284 tmp_stats
[i
++] = stat_info
->sw_stat
.ring_full_cnt
[k
];
6285 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_high
;
6286 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_low
;
6287 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_high
;
6288 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_low
;
6289 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_high
;
6290 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_low
;
6291 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_high
;
6292 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_low
;
6293 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_high
;
6294 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_low
;
6295 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_high
;
6296 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_low
;
6297 tmp_stats
[i
++] = stat_info
->sw_stat
.clubbed_frms_cnt
;
6298 tmp_stats
[i
++] = stat_info
->sw_stat
.sending_both
;
6299 tmp_stats
[i
++] = stat_info
->sw_stat
.outof_sequence_pkts
;
6300 tmp_stats
[i
++] = stat_info
->sw_stat
.flush_max_pkts
;
6301 if (stat_info
->sw_stat
.num_aggregations
) {
6302 u64 tmp
= stat_info
->sw_stat
.sum_avg_pkts_aggregated
;
6305 * Since 64-bit divide does not work on all platforms,
6306 * do repeated subtraction.
6308 while (tmp
>= stat_info
->sw_stat
.num_aggregations
) {
6309 tmp
-= stat_info
->sw_stat
.num_aggregations
;
6312 tmp_stats
[i
++] = count
;
6316 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_alloc_fail_cnt
;
6317 tmp_stats
[i
++] = stat_info
->sw_stat
.pci_map_fail_cnt
;
6318 tmp_stats
[i
++] = stat_info
->sw_stat
.watchdog_timer_cnt
;
6319 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_allocated
;
6320 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_freed
;
6321 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_cnt
;
6322 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_cnt
;
6323 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_time
;
6324 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_time
;
6326 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_buf_abort_cnt
;
6327 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_desc_abort_cnt
;
6328 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_parity_err_cnt
;
6329 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_link_loss_cnt
;
6330 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_list_proc_err_cnt
;
6332 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_err_cnt
;
6333 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_abort_cnt
;
6334 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_abort_cnt
;
6335 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rda_fail_cnt
;
6336 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_prot_cnt
;
6337 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_fcs_err_cnt
;
6338 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_buf_size_err_cnt
;
6339 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rxd_corrupt_cnt
;
6340 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_err_cnt
;
6341 tmp_stats
[i
++] = stat_info
->sw_stat
.tda_err_cnt
;
6342 tmp_stats
[i
++] = stat_info
->sw_stat
.pfc_err_cnt
;
6343 tmp_stats
[i
++] = stat_info
->sw_stat
.pcc_err_cnt
;
6344 tmp_stats
[i
++] = stat_info
->sw_stat
.tti_err_cnt
;
6345 tmp_stats
[i
++] = stat_info
->sw_stat
.tpa_err_cnt
;
6346 tmp_stats
[i
++] = stat_info
->sw_stat
.sm_err_cnt
;
6347 tmp_stats
[i
++] = stat_info
->sw_stat
.lso_err_cnt
;
6348 tmp_stats
[i
++] = stat_info
->sw_stat
.mac_tmac_err_cnt
;
6349 tmp_stats
[i
++] = stat_info
->sw_stat
.mac_rmac_err_cnt
;
6350 tmp_stats
[i
++] = stat_info
->sw_stat
.xgxs_txgxs_err_cnt
;
6351 tmp_stats
[i
++] = stat_info
->sw_stat
.xgxs_rxgxs_err_cnt
;
6352 tmp_stats
[i
++] = stat_info
->sw_stat
.rc_err_cnt
;
6353 tmp_stats
[i
++] = stat_info
->sw_stat
.prc_pcix_err_cnt
;
6354 tmp_stats
[i
++] = stat_info
->sw_stat
.rpa_err_cnt
;
6355 tmp_stats
[i
++] = stat_info
->sw_stat
.rda_err_cnt
;
6356 tmp_stats
[i
++] = stat_info
->sw_stat
.rti_err_cnt
;
6357 tmp_stats
[i
++] = stat_info
->sw_stat
.mc_err_cnt
;
6360 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
6362 return (XENA_REG_SPACE
);
6366 static u32
s2io_ethtool_get_rx_csum(struct net_device
* dev
)
6368 struct s2io_nic
*sp
= dev
->priv
;
6370 return (sp
->rx_csum
);
6373 static int s2io_ethtool_set_rx_csum(struct net_device
*dev
, u32 data
)
6375 struct s2io_nic
*sp
= dev
->priv
;
6385 static int s2io_get_eeprom_len(struct net_device
*dev
)
6387 return (XENA_EEPROM_SPACE
);
6390 static int s2io_get_sset_count(struct net_device
*dev
, int sset
)
6392 struct s2io_nic
*sp
= dev
->priv
;
6396 return S2IO_TEST_LEN
;
6398 switch(sp
->device_type
) {
6399 case XFRAME_I_DEVICE
:
6400 return XFRAME_I_STAT_LEN
;
6401 case XFRAME_II_DEVICE
:
6402 return XFRAME_II_STAT_LEN
;
6411 static void s2io_ethtool_get_strings(struct net_device
*dev
,
6412 u32 stringset
, u8
* data
)
6415 struct s2io_nic
*sp
= dev
->priv
;
6417 switch (stringset
) {
6419 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
6422 stat_size
= sizeof(ethtool_xena_stats_keys
);
6423 memcpy(data
, ðtool_xena_stats_keys
,stat_size
);
6424 if(sp
->device_type
== XFRAME_II_DEVICE
) {
6425 memcpy(data
+ stat_size
,
6426 ðtool_enhanced_stats_keys
,
6427 sizeof(ethtool_enhanced_stats_keys
));
6428 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
6431 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6432 sizeof(ethtool_driver_stats_keys
));
6436 static int s2io_ethtool_op_set_tx_csum(struct net_device
*dev
, u32 data
)
6439 dev
->features
|= NETIF_F_IP_CSUM
;
6441 dev
->features
&= ~NETIF_F_IP_CSUM
;
6446 static u32
s2io_ethtool_op_get_tso(struct net_device
*dev
)
6448 return (dev
->features
& NETIF_F_TSO
) != 0;
6450 static int s2io_ethtool_op_set_tso(struct net_device
*dev
, u32 data
)
6453 dev
->features
|= (NETIF_F_TSO
| NETIF_F_TSO6
);
6455 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
);
6460 static const struct ethtool_ops netdev_ethtool_ops
= {
6461 .get_settings
= s2io_ethtool_gset
,
6462 .set_settings
= s2io_ethtool_sset
,
6463 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6464 .get_regs_len
= s2io_ethtool_get_regs_len
,
6465 .get_regs
= s2io_ethtool_gregs
,
6466 .get_link
= ethtool_op_get_link
,
6467 .get_eeprom_len
= s2io_get_eeprom_len
,
6468 .get_eeprom
= s2io_ethtool_geeprom
,
6469 .set_eeprom
= s2io_ethtool_seeprom
,
6470 .get_ringparam
= s2io_ethtool_gringparam
,
6471 .get_pauseparam
= s2io_ethtool_getpause_data
,
6472 .set_pauseparam
= s2io_ethtool_setpause_data
,
6473 .get_rx_csum
= s2io_ethtool_get_rx_csum
,
6474 .set_rx_csum
= s2io_ethtool_set_rx_csum
,
6475 .set_tx_csum
= s2io_ethtool_op_set_tx_csum
,
6476 .set_sg
= ethtool_op_set_sg
,
6477 .get_tso
= s2io_ethtool_op_get_tso
,
6478 .set_tso
= s2io_ethtool_op_set_tso
,
6479 .set_ufo
= ethtool_op_set_ufo
,
6480 .self_test
= s2io_ethtool_test
,
6481 .get_strings
= s2io_ethtool_get_strings
,
6482 .phys_id
= s2io_ethtool_idnic
,
6483 .get_ethtool_stats
= s2io_get_ethtool_stats
,
6484 .get_sset_count
= s2io_get_sset_count
,
6488 * s2io_ioctl - Entry point for the Ioctl
6489 * @dev : Device pointer.
6490 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6491 * a proprietary structure used to pass information to the driver.
6492 * @cmd : This is used to distinguish between the different commands that
6493 * can be passed to the IOCTL functions.
6495 * Currently there are no special functionality supported in IOCTL, hence
6496 * function always return EOPNOTSUPPORTED
6499 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6505 * s2io_change_mtu - entry point to change MTU size for the device.
6506 * @dev : device pointer.
6507 * @new_mtu : the new MTU size for the device.
6508 * Description: A driver entry point to change MTU size for the device.
6509 * Before changing the MTU the device must be stopped.
6511 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6515 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6517 struct s2io_nic
*sp
= dev
->priv
;
6520 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
6521 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n",
6527 if (netif_running(dev
)) {
6529 netif_stop_queue(dev
);
6530 ret
= s2io_card_up(sp
);
6532 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6536 if (netif_queue_stopped(dev
))
6537 netif_wake_queue(dev
);
6538 } else { /* Device is down */
6539 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6540 u64 val64
= new_mtu
;
6542 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6549 * s2io_tasklet - Bottom half of the ISR.
6550 * @dev_adr : address of the device structure in dma_addr_t format.
6552 * This is the tasklet or the bottom half of the ISR. This is
6553 * an extension of the ISR which is scheduled by the scheduler to be run
6554 * when the load on the CPU is low. All low priority tasks of the ISR can
6555 * be pushed into the tasklet. For now the tasklet is used only to
6556 * replenish the Rx buffers in the Rx buffer descriptors.
6561 static void s2io_tasklet(unsigned long dev_addr
)
6563 struct net_device
*dev
= (struct net_device
*) dev_addr
;
6564 struct s2io_nic
*sp
= dev
->priv
;
6566 struct mac_info
*mac_control
;
6567 struct config_param
*config
;
6569 mac_control
= &sp
->mac_control
;
6570 config
= &sp
->config
;
6572 if (!TASKLET_IN_USE
) {
6573 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6574 ret
= fill_rx_buffers(sp
, i
);
6575 if (ret
== -ENOMEM
) {
6576 DBG_PRINT(INFO_DBG
, "%s: Out of ",
6578 DBG_PRINT(INFO_DBG
, "memory in tasklet\n");
6580 } else if (ret
== -EFILL
) {
6582 "%s: Rx Ring %d is full\n",
6587 clear_bit(0, (&sp
->tasklet_status
));
6592 * s2io_set_link - Set the LInk status
6593 * @data: long pointer to device private structue
6594 * Description: Sets the link status for the adapter
6597 static void s2io_set_link(struct work_struct
*work
)
6599 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
, set_link_task
);
6600 struct net_device
*dev
= nic
->dev
;
6601 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6607 if (!netif_running(dev
))
6610 if (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
))) {
6611 /* The card is being reset, no point doing anything */
6615 subid
= nic
->pdev
->subsystem_device
;
6616 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6618 * Allow a small delay for the NICs self initiated
6619 * cleanup to complete.
6624 val64
= readq(&bar0
->adapter_status
);
6625 if (LINK_IS_UP(val64
)) {
6626 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6627 if (verify_xena_quiescence(nic
)) {
6628 val64
= readq(&bar0
->adapter_control
);
6629 val64
|= ADAPTER_CNTL_EN
;
6630 writeq(val64
, &bar0
->adapter_control
);
6631 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6632 nic
->device_type
, subid
)) {
6633 val64
= readq(&bar0
->gpio_control
);
6634 val64
|= GPIO_CTRL_GPIO_0
;
6635 writeq(val64
, &bar0
->gpio_control
);
6636 val64
= readq(&bar0
->gpio_control
);
6638 val64
|= ADAPTER_LED_ON
;
6639 writeq(val64
, &bar0
->adapter_control
);
6641 nic
->device_enabled_once
= TRUE
;
6643 DBG_PRINT(ERR_DBG
, "%s: Error: ", dev
->name
);
6644 DBG_PRINT(ERR_DBG
, "device is not Quiescent\n");
6645 netif_stop_queue(dev
);
6648 val64
= readq(&bar0
->adapter_control
);
6649 val64
|= ADAPTER_LED_ON
;
6650 writeq(val64
, &bar0
->adapter_control
);
6651 s2io_link(nic
, LINK_UP
);
6653 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6655 val64
= readq(&bar0
->gpio_control
);
6656 val64
&= ~GPIO_CTRL_GPIO_0
;
6657 writeq(val64
, &bar0
->gpio_control
);
6658 val64
= readq(&bar0
->gpio_control
);
6661 val64
= readq(&bar0
->adapter_control
);
6662 val64
= val64
&(~ADAPTER_LED_ON
);
6663 writeq(val64
, &bar0
->adapter_control
);
6664 s2io_link(nic
, LINK_DOWN
);
6666 clear_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
));
6672 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6674 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6675 u64
*temp2
, int size
)
6677 struct net_device
*dev
= sp
->dev
;
6678 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6680 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6681 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6684 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6686 * As Rx frame are not going to be processed,
6687 * using same mapped address for the Rxd
6690 rxdp1
->Buffer0_ptr
= *temp0
;
6692 *skb
= dev_alloc_skb(size
);
6694 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6695 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6696 DBG_PRINT(INFO_DBG
, "1 buf mode SKBs\n");
6697 sp
->mac_control
.stats_info
->sw_stat
. \
6698 mem_alloc_fail_cnt
++;
6701 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6702 += (*skb
)->truesize
;
6703 /* storing the mapped addr in a temp variable
6704 * such it will be used for next rxd whose
6705 * Host Control is NULL
6707 rxdp1
->Buffer0_ptr
= *temp0
=
6708 pci_map_single( sp
->pdev
, (*skb
)->data
,
6709 size
- NET_IP_ALIGN
,
6710 PCI_DMA_FROMDEVICE
);
6711 if( (rxdp1
->Buffer0_ptr
== 0) ||
6712 (rxdp1
->Buffer0_ptr
== DMA_ERROR_CODE
)) {
6713 goto memalloc_failed
;
6715 rxdp
->Host_Control
= (unsigned long) (*skb
);
6717 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6718 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6719 /* Two buffer Mode */
6721 rxdp3
->Buffer2_ptr
= *temp2
;
6722 rxdp3
->Buffer0_ptr
= *temp0
;
6723 rxdp3
->Buffer1_ptr
= *temp1
;
6725 *skb
= dev_alloc_skb(size
);
6727 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6728 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6729 DBG_PRINT(INFO_DBG
, "2 buf mode SKBs\n");
6730 sp
->mac_control
.stats_info
->sw_stat
. \
6731 mem_alloc_fail_cnt
++;
6734 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6735 += (*skb
)->truesize
;
6736 rxdp3
->Buffer2_ptr
= *temp2
=
6737 pci_map_single(sp
->pdev
, (*skb
)->data
,
6739 PCI_DMA_FROMDEVICE
);
6740 if( (rxdp3
->Buffer2_ptr
== 0) ||
6741 (rxdp3
->Buffer2_ptr
== DMA_ERROR_CODE
)) {
6742 goto memalloc_failed
;
6744 rxdp3
->Buffer0_ptr
= *temp0
=
6745 pci_map_single( sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6746 PCI_DMA_FROMDEVICE
);
6747 if( (rxdp3
->Buffer0_ptr
== 0) ||
6748 (rxdp3
->Buffer0_ptr
== DMA_ERROR_CODE
)) {
6749 pci_unmap_single (sp
->pdev
,
6750 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6751 dev
->mtu
+ 4, PCI_DMA_FROMDEVICE
);
6752 goto memalloc_failed
;
6754 rxdp
->Host_Control
= (unsigned long) (*skb
);
6756 /* Buffer-1 will be dummy buffer not used */
6757 rxdp3
->Buffer1_ptr
= *temp1
=
6758 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
6759 PCI_DMA_FROMDEVICE
);
6760 if( (rxdp3
->Buffer1_ptr
== 0) ||
6761 (rxdp3
->Buffer1_ptr
== DMA_ERROR_CODE
)) {
6762 pci_unmap_single (sp
->pdev
,
6763 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
6764 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
6765 pci_unmap_single (sp
->pdev
,
6766 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6767 dev
->mtu
+ 4, PCI_DMA_FROMDEVICE
);
6768 goto memalloc_failed
;
6774 stats
->pci_map_fail_cnt
++;
6775 stats
->mem_freed
+= (*skb
)->truesize
;
6776 dev_kfree_skb(*skb
);
6780 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6783 struct net_device
*dev
= sp
->dev
;
6784 if (sp
->rxd_mode
== RXD_MODE_1
) {
6785 rxdp
->Control_2
= SET_BUFFER0_SIZE_1( size
- NET_IP_ALIGN
);
6786 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6787 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6788 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
6789 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3( dev
->mtu
+ 4);
6793 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
6795 int i
, j
, k
, blk_cnt
= 0, size
;
6796 struct mac_info
* mac_control
= &sp
->mac_control
;
6797 struct config_param
*config
= &sp
->config
;
6798 struct net_device
*dev
= sp
->dev
;
6799 struct RxD_t
*rxdp
= NULL
;
6800 struct sk_buff
*skb
= NULL
;
6801 struct buffAdd
*ba
= NULL
;
6802 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
6804 /* Calculate the size based on ring mode */
6805 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
6806 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
6807 if (sp
->rxd_mode
== RXD_MODE_1
)
6808 size
+= NET_IP_ALIGN
;
6809 else if (sp
->rxd_mode
== RXD_MODE_3B
)
6810 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6812 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6813 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
6814 (rxd_count
[sp
->rxd_mode
] +1);
6816 for (j
= 0; j
< blk_cnt
; j
++) {
6817 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
6818 rxdp
= mac_control
->rings
[i
].
6819 rx_blocks
[j
].rxds
[k
].virt_addr
;
6820 if(sp
->rxd_mode
== RXD_MODE_3B
)
6821 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
6822 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
,
6823 &skb
,(u64
*)&temp0_64
,
6830 set_rxd_buffer_size(sp
, rxdp
, size
);
6832 /* flip the Ownership bit to Hardware */
6833 rxdp
->Control_1
|= RXD_OWN_XENA
;
6841 static int s2io_add_isr(struct s2io_nic
* sp
)
6844 struct net_device
*dev
= sp
->dev
;
6847 if (sp
->config
.intr_type
== MSI_X
)
6848 ret
= s2io_enable_msi_x(sp
);
6850 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
6851 sp
->config
.intr_type
= INTA
;
6854 /* Store the values of the MSIX table in the struct s2io_nic structure */
6855 store_xmsi_data(sp
);
6857 /* After proper initialization of H/W, register ISR */
6858 if (sp
->config
.intr_type
== MSI_X
) {
6859 int i
, msix_tx_cnt
=0,msix_rx_cnt
=0;
6861 for (i
=1; (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
); i
++) {
6862 if (sp
->s2io_entries
[i
].type
== MSIX_FIFO_TYPE
) {
6863 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
6865 err
= request_irq(sp
->entries
[i
].vector
,
6866 s2io_msix_fifo_handle
, 0, sp
->desc
[i
],
6867 sp
->s2io_entries
[i
].arg
);
6868 /* If either data or addr is zero print it */
6869 if(!(sp
->msix_info
[i
].addr
&&
6870 sp
->msix_info
[i
].data
)) {
6871 DBG_PRINT(ERR_DBG
, "%s @ Addr:0x%llx "
6872 "Data:0x%lx\n",sp
->desc
[i
],
6873 (unsigned long long)
6874 sp
->msix_info
[i
].addr
,
6876 ntohl(sp
->msix_info
[i
].data
));
6881 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
6883 err
= request_irq(sp
->entries
[i
].vector
,
6884 s2io_msix_ring_handle
, 0, sp
->desc
[i
],
6885 sp
->s2io_entries
[i
].arg
);
6886 /* If either data or addr is zero print it */
6887 if(!(sp
->msix_info
[i
].addr
&&
6888 sp
->msix_info
[i
].data
)) {
6889 DBG_PRINT(ERR_DBG
, "%s @ Addr:0x%llx "
6890 "Data:0x%lx\n",sp
->desc
[i
],
6891 (unsigned long long)
6892 sp
->msix_info
[i
].addr
,
6894 ntohl(sp
->msix_info
[i
].data
));
6900 remove_msix_isr(sp
);
6901 DBG_PRINT(ERR_DBG
,"%s:MSI-X-%d registration "
6902 "failed\n", dev
->name
, i
);
6903 DBG_PRINT(ERR_DBG
, "%s: defaulting to INTA\n",
6905 sp
->config
.intr_type
= INTA
;
6908 sp
->s2io_entries
[i
].in_use
= MSIX_REGISTERED_SUCCESS
;
6911 printk(KERN_INFO
"MSI-X-TX %d entries enabled\n",
6913 printk(KERN_INFO
"MSI-X-RX %d entries enabled\n",
6917 if (sp
->config
.intr_type
== INTA
) {
6918 err
= request_irq((int) sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
6921 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
6928 static void s2io_rem_isr(struct s2io_nic
* sp
)
6930 if (sp
->config
.intr_type
== MSI_X
)
6931 remove_msix_isr(sp
);
6933 remove_inta_isr(sp
);
6936 static void do_s2io_card_down(struct s2io_nic
* sp
, int do_io
)
6939 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6940 unsigned long flags
;
6941 register u64 val64
= 0;
6942 struct config_param
*config
;
6943 config
= &sp
->config
;
6945 if (!is_s2io_card_up(sp
))
6948 del_timer_sync(&sp
->alarm_timer
);
6949 /* If s2io_set_link task is executing, wait till it completes. */
6950 while (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
))) {
6953 clear_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
6957 napi_disable(&sp
->napi
);
6959 /* disable Tx and Rx traffic on the NIC */
6966 tasklet_kill(&sp
->task
);
6968 /* Check if the device is Quiescent and then Reset the NIC */
6970 /* As per the HW requirement we need to replenish the
6971 * receive buffer to avoid the ring bump. Since there is
6972 * no intention of processing the Rx frame at this pointwe are
6973 * just settting the ownership bit of rxd in Each Rx
6974 * ring to HW and set the appropriate buffer size
6975 * based on the ring mode
6977 rxd_owner_bit_reset(sp
);
6979 val64
= readq(&bar0
->adapter_status
);
6980 if (verify_xena_quiescence(sp
)) {
6981 if(verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
6989 "s2io_close:Device not Quiescent ");
6990 DBG_PRINT(ERR_DBG
, "adaper status reads 0x%llx\n",
6991 (unsigned long long) val64
);
6998 spin_lock_irqsave(&sp
->tx_lock
, flags
);
6999 /* Free all Tx buffers */
7000 free_tx_buffers(sp
);
7001 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
7003 /* Free all Rx buffers */
7004 spin_lock_irqsave(&sp
->rx_lock
, flags
);
7005 free_rx_buffers(sp
);
7006 spin_unlock_irqrestore(&sp
->rx_lock
, flags
);
7008 clear_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
));
7011 static void s2io_card_down(struct s2io_nic
* sp
)
7013 do_s2io_card_down(sp
, 1);
7016 static int s2io_card_up(struct s2io_nic
* sp
)
7019 struct mac_info
*mac_control
;
7020 struct config_param
*config
;
7021 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7024 /* Initialize the H/W I/O registers */
7027 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
7035 * Initializing the Rx buffers. For now we are considering only 1
7036 * Rx ring and initializing buffers into 30 Rx blocks
7038 mac_control
= &sp
->mac_control
;
7039 config
= &sp
->config
;
7041 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7042 if ((ret
= fill_rx_buffers(sp
, i
))) {
7043 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
7046 free_rx_buffers(sp
);
7049 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
7050 atomic_read(&sp
->rx_bufs_left
[i
]));
7053 /* Initialise napi */
7055 napi_enable(&sp
->napi
);
7057 /* Maintain the state prior to the open */
7058 if (sp
->promisc_flg
)
7059 sp
->promisc_flg
= 0;
7060 if (sp
->m_cast_flg
) {
7062 sp
->all_multi_pos
= 0;
7065 /* Setting its receive mode */
7066 s2io_set_multicast(dev
);
7069 /* Initialize max aggregatable pkts per session based on MTU */
7070 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
7071 /* Check if we can use(if specified) user provided value */
7072 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
7073 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
7076 /* Enable Rx Traffic and interrupts on the NIC */
7077 if (start_nic(sp
)) {
7078 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
7080 free_rx_buffers(sp
);
7084 /* Add interrupt service routine */
7085 if (s2io_add_isr(sp
) != 0) {
7086 if (sp
->config
.intr_type
== MSI_X
)
7089 free_rx_buffers(sp
);
7093 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
7095 /* Enable tasklet for the device */
7096 tasklet_init(&sp
->task
, s2io_tasklet
, (unsigned long) dev
);
7098 /* Enable select interrupts */
7099 en_dis_err_alarms(sp
, ENA_ALL_INTRS
, ENABLE_INTRS
);
7100 if (sp
->config
.intr_type
!= INTA
)
7101 en_dis_able_nic_intrs(sp
, ENA_ALL_INTRS
, DISABLE_INTRS
);
7103 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
7104 interruptible
|= TX_PIC_INTR
;
7105 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7108 set_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7113 * s2io_restart_nic - Resets the NIC.
7114 * @data : long pointer to the device private structure
7116 * This function is scheduled to be run by the s2io_tx_watchdog
7117 * function after 0.5 secs to reset the NIC. The idea is to reduce
7118 * the run time of the watch dog routine which is run holding a
7122 static void s2io_restart_nic(struct work_struct
*work
)
7124 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
7125 struct net_device
*dev
= sp
->dev
;
7129 if (!netif_running(dev
))
7133 if (s2io_card_up(sp
)) {
7134 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
7137 netif_wake_queue(dev
);
7138 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n",
7145 * s2io_tx_watchdog - Watchdog for transmit side.
7146 * @dev : Pointer to net device structure
7148 * This function is triggered if the Tx Queue is stopped
7149 * for a pre-defined amount of time when the Interface is still up.
7150 * If the Interface is jammed in such a situation, the hardware is
7151 * reset (by s2io_close) and restarted again (by s2io_open) to
7152 * overcome any problem that might have been caused in the hardware.
7157 static void s2io_tx_watchdog(struct net_device
*dev
)
7159 struct s2io_nic
*sp
= dev
->priv
;
7161 if (netif_carrier_ok(dev
)) {
7162 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
++;
7163 schedule_work(&sp
->rst_timer_task
);
7164 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
++;
7169 * rx_osm_handler - To perform some OS related operations on SKB.
7170 * @sp: private member of the device structure,pointer to s2io_nic structure.
7171 * @skb : the socket buffer pointer.
7172 * @len : length of the packet
7173 * @cksum : FCS checksum of the frame.
7174 * @ring_no : the ring from which this RxD was extracted.
7176 * This function is called by the Rx interrupt serivce routine to perform
7177 * some OS related operations on the SKB before passing it to the upper
7178 * layers. It mainly checks if the checksum is OK, if so adds it to the
7179 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7180 * to the upper layer. If the checksum is wrong, it increments the Rx
7181 * packet error count, frees the SKB and returns error.
7183 * SUCCESS on success and -1 on failure.
7185 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
7187 struct s2io_nic
*sp
= ring_data
->nic
;
7188 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7189 struct sk_buff
*skb
= (struct sk_buff
*)
7190 ((unsigned long) rxdp
->Host_Control
);
7191 int ring_no
= ring_data
->ring_no
;
7192 u16 l3_csum
, l4_csum
;
7193 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
7200 /* Check for parity error */
7202 sp
->mac_control
.stats_info
->sw_stat
.parity_err_cnt
++;
7204 err_mask
= err
>> 48;
7207 sp
->mac_control
.stats_info
->sw_stat
.
7208 rx_parity_err_cnt
++;
7212 sp
->mac_control
.stats_info
->sw_stat
.
7217 sp
->mac_control
.stats_info
->sw_stat
.
7218 rx_parity_abort_cnt
++;
7222 sp
->mac_control
.stats_info
->sw_stat
.
7227 sp
->mac_control
.stats_info
->sw_stat
.
7232 sp
->mac_control
.stats_info
->sw_stat
.
7237 sp
->mac_control
.stats_info
->sw_stat
.
7238 rx_buf_size_err_cnt
++;
7242 sp
->mac_control
.stats_info
->sw_stat
.
7243 rx_rxd_corrupt_cnt
++;
7247 sp
->mac_control
.stats_info
->sw_stat
.
7252 * Drop the packet if bad transfer code. Exception being
7253 * 0x5, which could be due to unsupported IPv6 extension header.
7254 * In this case, we let stack handle the packet.
7255 * Note that in this case, since checksum will be incorrect,
7256 * stack will validate the same.
7258 if (err_mask
!= 0x5) {
7259 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
7260 dev
->name
, err_mask
);
7261 sp
->stats
.rx_crc_errors
++;
7262 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
7265 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
7266 rxdp
->Host_Control
= 0;
7271 /* Updating statistics */
7272 sp
->stats
.rx_packets
++;
7273 rxdp
->Host_Control
= 0;
7274 if (sp
->rxd_mode
== RXD_MODE_1
) {
7275 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
7277 sp
->stats
.rx_bytes
+= len
;
7280 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7281 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
7282 int get_off
= ring_data
->rx_curr_get_info
.offset
;
7283 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
7284 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
7285 unsigned char *buff
= skb_push(skb
, buf0_len
);
7287 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
7288 sp
->stats
.rx_bytes
+= buf0_len
+ buf2_len
;
7289 memcpy(buff
, ba
->ba_0
, buf0_len
);
7290 skb_put(skb
, buf2_len
);
7293 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) && ((!sp
->lro
) ||
7294 (sp
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
7296 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
7297 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
7298 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
7300 * NIC verifies if the Checksum of the received
7301 * frame is Ok or not and accordingly returns
7302 * a flag in the RxD.
7304 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
7310 ret
= s2io_club_tcp_session(skb
->data
, &tcp
,
7314 case 3: /* Begin anew */
7317 case 1: /* Aggregate */
7319 lro_append_pkt(sp
, lro
,
7323 case 4: /* Flush session */
7325 lro_append_pkt(sp
, lro
,
7327 queue_rx_frame(lro
->parent
);
7328 clear_lro_session(lro
);
7329 sp
->mac_control
.stats_info
->
7330 sw_stat
.flush_max_pkts
++;
7333 case 2: /* Flush both */
7334 lro
->parent
->data_len
=
7336 sp
->mac_control
.stats_info
->
7337 sw_stat
.sending_both
++;
7338 queue_rx_frame(lro
->parent
);
7339 clear_lro_session(lro
);
7341 case 0: /* sessions exceeded */
7342 case -1: /* non-TCP or not
7346 * First pkt in session not
7347 * L3/L4 aggregatable
7352 "%s: Samadhana!!\n",
7359 * Packet with erroneous checksum, let the
7360 * upper layers deal with it.
7362 skb
->ip_summed
= CHECKSUM_NONE
;
7365 skb
->ip_summed
= CHECKSUM_NONE
;
7367 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
7369 skb
->protocol
= eth_type_trans(skb
, dev
);
7370 if ((sp
->vlgrp
&& RXD_GET_VLAN_TAG(rxdp
->Control_2
) &&
7372 /* Queueing the vlan frame to the upper layer */
7374 vlan_hwaccel_receive_skb(skb
, sp
->vlgrp
,
7375 RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7377 vlan_hwaccel_rx(skb
, sp
->vlgrp
,
7378 RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7381 netif_receive_skb(skb
);
7387 queue_rx_frame(skb
);
7389 dev
->last_rx
= jiffies
;
7391 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
7396 * s2io_link - stops/starts the Tx queue.
7397 * @sp : private member of the device structure, which is a pointer to the
7398 * s2io_nic structure.
7399 * @link : inidicates whether link is UP/DOWN.
7401 * This function stops/starts the Tx queue depending on whether the link
7402 * status of the NIC is is down or up. This is called by the Alarm
7403 * interrupt handler whenever a link change interrupt comes up.
7408 static void s2io_link(struct s2io_nic
* sp
, int link
)
7410 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7412 if (link
!= sp
->last_link_state
) {
7413 if (link
== LINK_DOWN
) {
7414 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7415 netif_carrier_off(dev
);
7416 if(sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
)
7417 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
=
7418 jiffies
- sp
->start_time
;
7419 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
++;
7421 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7422 if (sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
)
7423 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
=
7424 jiffies
- sp
->start_time
;
7425 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
++;
7426 netif_carrier_on(dev
);
7429 sp
->last_link_state
= link
;
7430 sp
->start_time
= jiffies
;
7434 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7435 * @sp : private member of the device structure, which is a pointer to the
7436 * s2io_nic structure.
7438 * This function initializes a few of the PCI and PCI-X configuration registers
7439 * with recommended values.
7444 static void s2io_init_pci(struct s2io_nic
* sp
)
7446 u16 pci_cmd
= 0, pcix_cmd
= 0;
7448 /* Enable Data Parity Error Recovery in PCI-X command register. */
7449 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7451 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7453 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7456 /* Set the PErr Response bit in PCI command register. */
7457 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7458 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7459 (pci_cmd
| PCI_COMMAND_PARITY
));
7460 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7463 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
)
7465 if ( tx_fifo_num
> 8) {
7466 DBG_PRINT(ERR_DBG
, "s2io: Requested number of Tx fifos not "
7468 DBG_PRINT(ERR_DBG
, "s2io: Default to 8 Tx fifos\n");
7471 if ( rx_ring_num
> 8) {
7472 DBG_PRINT(ERR_DBG
, "s2io: Requested number of Rx rings not "
7474 DBG_PRINT(ERR_DBG
, "s2io: Default to 8 Rx rings\n");
7477 if (*dev_intr_type
!= INTA
)
7480 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
7481 DBG_PRINT(ERR_DBG
, "s2io: Wrong intr_type requested. "
7482 "Defaulting to INTA\n");
7483 *dev_intr_type
= INTA
;
7486 if ((*dev_intr_type
== MSI_X
) &&
7487 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7488 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7489 DBG_PRINT(ERR_DBG
, "s2io: Xframe I does not support MSI_X. "
7490 "Defaulting to INTA\n");
7491 *dev_intr_type
= INTA
;
7494 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
7495 DBG_PRINT(ERR_DBG
, "s2io: Requested ring mode not supported\n");
7496 DBG_PRINT(ERR_DBG
, "s2io: Defaulting to 1-buffer mode\n");
7503 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7504 * or Traffic class respectively.
7505 * @nic: device peivate variable
7506 * Description: The function configures the receive steering to
7507 * desired receive ring.
7508 * Return Value: SUCCESS on success and
7509 * '-1' on failure (endian settings incorrect).
7511 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7513 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7514 register u64 val64
= 0;
7516 if (ds_codepoint
> 63)
7519 val64
= RTS_DS_MEM_DATA(ring
);
7520 writeq(val64
, &bar0
->rts_ds_mem_data
);
7522 val64
= RTS_DS_MEM_CTRL_WE
|
7523 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7524 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7526 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7528 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7529 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7534 * s2io_init_nic - Initialization of the adapter .
7535 * @pdev : structure containing the PCI related information of the device.
7536 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7538 * The function initializes an adapter identified by the pci_dec structure.
7539 * All OS related initialization including memory and device structure and
7540 * initlaization of the device private variable is done. Also the swapper
7541 * control register is initialized to enable read and write into the I/O
7542 * registers of the device.
7544 * returns 0 on success and negative on failure.
7547 static int __devinit
7548 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7550 struct s2io_nic
*sp
;
7551 struct net_device
*dev
;
7553 int dma_flag
= FALSE
;
7554 u32 mac_up
, mac_down
;
7555 u64 val64
= 0, tmp64
= 0;
7556 struct XENA_dev_config __iomem
*bar0
= NULL
;
7558 struct mac_info
*mac_control
;
7559 struct config_param
*config
;
7561 u8 dev_intr_type
= intr_type
;
7562 DECLARE_MAC_BUF(mac
);
7564 if ((ret
= s2io_verify_parm(pdev
, &dev_intr_type
)))
7567 if ((ret
= pci_enable_device(pdev
))) {
7569 "s2io_init_nic: pci_enable_device failed\n");
7573 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
7574 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 64bit DMA\n");
7576 if (pci_set_consistent_dma_mask
7577 (pdev
, DMA_64BIT_MASK
)) {
7579 "Unable to obtain 64bit DMA for \
7580 consistent allocations\n");
7581 pci_disable_device(pdev
);
7584 } else if (!pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) {
7585 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 32bit DMA\n");
7587 pci_disable_device(pdev
);
7590 if ((ret
= pci_request_regions(pdev
, s2io_driver_name
))) {
7591 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x \n", __FUNCTION__
, ret
);
7592 pci_disable_device(pdev
);
7596 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7598 DBG_PRINT(ERR_DBG
, "Device allocation failed\n");
7599 pci_disable_device(pdev
);
7600 pci_release_regions(pdev
);
7604 pci_set_master(pdev
);
7605 pci_set_drvdata(pdev
, dev
);
7606 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7608 /* Private member variable initialized to s2io NIC structure */
7610 memset(sp
, 0, sizeof(struct s2io_nic
));
7613 sp
->high_dma_flag
= dma_flag
;
7614 sp
->device_enabled_once
= FALSE
;
7615 if (rx_ring_mode
== 1)
7616 sp
->rxd_mode
= RXD_MODE_1
;
7617 if (rx_ring_mode
== 2)
7618 sp
->rxd_mode
= RXD_MODE_3B
;
7620 sp
->config
.intr_type
= dev_intr_type
;
7622 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7623 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7624 sp
->device_type
= XFRAME_II_DEVICE
;
7626 sp
->device_type
= XFRAME_I_DEVICE
;
7628 sp
->lro
= lro_enable
;
7630 /* Initialize some PCI/PCI-X fields of the NIC. */
7634 * Setting the device configuration parameters.
7635 * Most of these parameters can be specified by the user during
7636 * module insertion as they are module loadable parameters. If
7637 * these parameters are not not specified during load time, they
7638 * are initialized with default values.
7640 mac_control
= &sp
->mac_control
;
7641 config
= &sp
->config
;
7643 config
->napi
= napi
;
7645 /* Tx side parameters. */
7646 config
->tx_fifo_num
= tx_fifo_num
;
7647 for (i
= 0; i
< MAX_TX_FIFOS
; i
++) {
7648 config
->tx_cfg
[i
].fifo_len
= tx_fifo_len
[i
];
7649 config
->tx_cfg
[i
].fifo_priority
= i
;
7652 /* mapping the QoS priority to the configured fifos */
7653 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7654 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
][i
];
7656 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7657 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7658 config
->tx_cfg
[i
].f_no_snoop
=
7659 (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7660 if (config
->tx_cfg
[i
].fifo_len
< 65) {
7661 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7665 /* + 2 because one Txd for skb->data and one Txd for UFO */
7666 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7668 /* Rx side parameters. */
7669 config
->rx_ring_num
= rx_ring_num
;
7670 for (i
= 0; i
< MAX_RX_RINGS
; i
++) {
7671 config
->rx_cfg
[i
].num_rxd
= rx_ring_sz
[i
] *
7672 (rxd_count
[sp
->rxd_mode
] + 1);
7673 config
->rx_cfg
[i
].ring_priority
= i
;
7676 for (i
= 0; i
< rx_ring_num
; i
++) {
7677 config
->rx_cfg
[i
].ring_org
= RING_ORG_BUFF1
;
7678 config
->rx_cfg
[i
].f_no_snoop
=
7679 (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7682 /* Setting Mac Control parameters */
7683 mac_control
->rmac_pause_time
= rmac_pause_time
;
7684 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7685 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
7688 /* Initialize Ring buffer parameters. */
7689 for (i
= 0; i
< config
->rx_ring_num
; i
++)
7690 atomic_set(&sp
->rx_bufs_left
[i
], 0);
7692 /* initialize the shared memory used by the NIC and the host */
7693 if (init_shared_mem(sp
)) {
7694 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n",
7697 goto mem_alloc_failed
;
7700 sp
->bar0
= ioremap(pci_resource_start(pdev
, 0),
7701 pci_resource_len(pdev
, 0));
7703 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
7706 goto bar0_remap_failed
;
7709 sp
->bar1
= ioremap(pci_resource_start(pdev
, 2),
7710 pci_resource_len(pdev
, 2));
7712 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
7715 goto bar1_remap_failed
;
7718 dev
->irq
= pdev
->irq
;
7719 dev
->base_addr
= (unsigned long) sp
->bar0
;
7721 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7722 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
7723 mac_control
->tx_FIFO_start
[j
] = (struct TxFIFO_element __iomem
*)
7724 (sp
->bar1
+ (j
* 0x00020000));
7727 /* Driver entry points */
7728 dev
->open
= &s2io_open
;
7729 dev
->stop
= &s2io_close
;
7730 dev
->hard_start_xmit
= &s2io_xmit
;
7731 dev
->get_stats
= &s2io_get_stats
;
7732 dev
->set_multicast_list
= &s2io_set_multicast
;
7733 dev
->do_ioctl
= &s2io_ioctl
;
7734 dev
->set_mac_address
= &s2io_set_mac_addr
;
7735 dev
->change_mtu
= &s2io_change_mtu
;
7736 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
7737 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7738 dev
->vlan_rx_register
= s2io_vlan_rx_register
;
7741 * will use eth_mac_addr() for dev->set_mac_address
7742 * mac address will be set every time dev->open() is called
7744 netif_napi_add(dev
, &sp
->napi
, s2io_poll
, 32);
7746 #ifdef CONFIG_NET_POLL_CONTROLLER
7747 dev
->poll_controller
= s2io_netpoll
;
7750 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
7751 if (sp
->high_dma_flag
== TRUE
)
7752 dev
->features
|= NETIF_F_HIGHDMA
;
7753 dev
->features
|= NETIF_F_TSO
;
7754 dev
->features
|= NETIF_F_TSO6
;
7755 if ((sp
->device_type
& XFRAME_II_DEVICE
) && (ufo
)) {
7756 dev
->features
|= NETIF_F_UFO
;
7757 dev
->features
|= NETIF_F_HW_CSUM
;
7760 dev
->tx_timeout
= &s2io_tx_watchdog
;
7761 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
7762 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
7763 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
7765 pci_save_state(sp
->pdev
);
7767 /* Setting swapper control on the NIC, for proper reset operation */
7768 if (s2io_set_swapper(sp
)) {
7769 DBG_PRINT(ERR_DBG
, "%s:swapper settings are wrong\n",
7772 goto set_swap_failed
;
7775 /* Verify if the Herc works on the slot its placed into */
7776 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7777 mode
= s2io_verify_pci_mode(sp
);
7779 DBG_PRINT(ERR_DBG
, "%s: ", __FUNCTION__
);
7780 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
7782 goto set_swap_failed
;
7786 /* Not needed for Herc */
7787 if (sp
->device_type
& XFRAME_I_DEVICE
) {
7789 * Fix for all "FFs" MAC address problems observed on
7792 fix_mac_address(sp
);
7797 * MAC address initialization.
7798 * For now only one mac address will be read and used.
7801 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
7802 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET
);
7803 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
7804 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
7805 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
, S2IO_BIT_RESET
);
7806 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
7807 mac_down
= (u32
) tmp64
;
7808 mac_up
= (u32
) (tmp64
>> 32);
7810 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
7811 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
7812 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
7813 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
7814 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
7815 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
7817 /* Set the factory defined MAC address initially */
7818 dev
->addr_len
= ETH_ALEN
;
7819 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
7820 memcpy(dev
->perm_addr
, dev
->dev_addr
, ETH_ALEN
);
7822 /* initialize number of multicast & unicast MAC entries variables */
7823 if (sp
->device_type
== XFRAME_I_DEVICE
) {
7824 config
->max_mc_addr
= S2IO_XENA_MAX_MC_ADDRESSES
;
7825 config
->max_mac_addr
= S2IO_XENA_MAX_MAC_ADDRESSES
;
7826 config
->mc_start_offset
= S2IO_XENA_MC_ADDR_START_OFFSET
;
7827 } else if (sp
->device_type
== XFRAME_II_DEVICE
) {
7828 config
->max_mc_addr
= S2IO_HERC_MAX_MC_ADDRESSES
;
7829 config
->max_mac_addr
= S2IO_HERC_MAX_MAC_ADDRESSES
;
7830 config
->mc_start_offset
= S2IO_HERC_MC_ADDR_START_OFFSET
;
7833 /* store mac addresses from CAM to s2io_nic structure */
7834 do_s2io_store_unicast_mc(sp
);
7836 /* Store the values of the MSIX table in the s2io_nic structure */
7837 store_xmsi_data(sp
);
7838 /* reset Nic and bring it to known state */
7842 * Initialize the tasklet status and link state flags
7843 * and the card state parameter
7845 sp
->tasklet_status
= 0;
7848 /* Initialize spinlocks */
7849 spin_lock_init(&sp
->tx_lock
);
7852 spin_lock_init(&sp
->put_lock
);
7853 spin_lock_init(&sp
->rx_lock
);
7856 * SXE-002: Configure link and activity LED to init state
7859 subid
= sp
->pdev
->subsystem_device
;
7860 if ((subid
& 0xFF) >= 0x07) {
7861 val64
= readq(&bar0
->gpio_control
);
7862 val64
|= 0x0000800000000000ULL
;
7863 writeq(val64
, &bar0
->gpio_control
);
7864 val64
= 0x0411040400000000ULL
;
7865 writeq(val64
, (void __iomem
*) bar0
+ 0x2700);
7866 val64
= readq(&bar0
->gpio_control
);
7869 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
7871 if (register_netdev(dev
)) {
7872 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
7874 goto register_failed
;
7877 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2007 Neterion Inc.\n");
7878 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n",dev
->name
,
7879 sp
->product_name
, pdev
->revision
);
7880 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
7881 s2io_driver_version
);
7882 DBG_PRINT(ERR_DBG
, "%s: MAC ADDR: %s\n",
7883 dev
->name
, print_mac(mac
, dev
->dev_addr
));
7884 DBG_PRINT(ERR_DBG
, "SERIAL NUMBER: %s\n", sp
->serial_num
);
7885 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7886 mode
= s2io_print_pci_mode(sp
);
7888 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
7890 unregister_netdev(dev
);
7891 goto set_swap_failed
;
7894 switch(sp
->rxd_mode
) {
7896 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
7900 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
7906 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
7907 switch(sp
->config
.intr_type
) {
7909 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
7912 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
7916 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
7919 DBG_PRINT(ERR_DBG
, "%s: UDP Fragmentation Offload(UFO)"
7920 " enabled\n", dev
->name
);
7921 /* Initialize device name */
7922 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
7925 * Make Link state as off at this point, when the Link change
7926 * interrupt comes the state will be automatically changed to
7929 netif_carrier_off(dev
);
7940 free_shared_mem(sp
);
7941 pci_disable_device(pdev
);
7942 pci_release_regions(pdev
);
7943 pci_set_drvdata(pdev
, NULL
);
7950 * s2io_rem_nic - Free the PCI device
7951 * @pdev: structure containing the PCI related information of the device.
7952 * Description: This function is called by the Pci subsystem to release a
7953 * PCI device and free up all resource held up by the device. This could
7954 * be in response to a Hot plug event or when the driver is to be removed
7958 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
7960 struct net_device
*dev
=
7961 (struct net_device
*) pci_get_drvdata(pdev
);
7962 struct s2io_nic
*sp
;
7965 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
7969 flush_scheduled_work();
7972 unregister_netdev(dev
);
7974 free_shared_mem(sp
);
7977 pci_release_regions(pdev
);
7978 pci_set_drvdata(pdev
, NULL
);
7980 pci_disable_device(pdev
);
7984 * s2io_starter - Entry point for the driver
7985 * Description: This function is the entry point for the driver. It verifies
7986 * the module loadable parameters and initializes PCI configuration space.
7989 static int __init
s2io_starter(void)
7991 return pci_register_driver(&s2io_driver
);
7995 * s2io_closer - Cleanup routine for the driver
7996 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7999 static __exit
void s2io_closer(void)
8001 pci_unregister_driver(&s2io_driver
);
8002 DBG_PRINT(INIT_DBG
, "cleanup done\n");
8005 module_init(s2io_starter
);
8006 module_exit(s2io_closer
);
8008 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
8009 struct tcphdr
**tcp
, struct RxD_t
*rxdp
)
8012 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
8014 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
8015 DBG_PRINT(INIT_DBG
,"%s: Non-TCP frames not supported for LRO\n",
8021 * By default the VLAN field in the MAC is stripped by the card, if this
8022 * feature is turned off in rx_pa_cfg register, then the ip_off field
8023 * has to be shifted by a further 2 bytes
8026 case 0: /* DIX type */
8027 case 4: /* DIX type with VLAN */
8028 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
8030 /* LLC, SNAP etc are considered non-mergeable */
8035 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
8036 ip_len
= (u8
)((*ip
)->ihl
);
8038 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
8043 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
8046 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8047 if ((lro
->iph
->saddr
!= ip
->saddr
) || (lro
->iph
->daddr
!= ip
->daddr
) ||
8048 (lro
->tcph
->source
!= tcp
->source
) || (lro
->tcph
->dest
!= tcp
->dest
))
8053 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
8055 return(ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2));
8058 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
8059 struct iphdr
*ip
, struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8061 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8065 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
8066 lro
->tcp_ack
= ntohl(tcp
->ack_seq
);
8068 lro
->total_len
= ntohs(ip
->tot_len
);
8071 * check if we saw TCP timestamp. Other consistency checks have
8072 * already been done.
8074 if (tcp
->doff
== 8) {
8076 ptr
= (u32
*)(tcp
+1);
8078 lro
->cur_tsval
= *(ptr
+1);
8079 lro
->cur_tsecr
= *(ptr
+2);
8084 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
8086 struct iphdr
*ip
= lro
->iph
;
8087 struct tcphdr
*tcp
= lro
->tcph
;
8089 struct stat_block
*statinfo
= sp
->mac_control
.stats_info
;
8090 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8092 /* Update L3 header */
8093 ip
->tot_len
= htons(lro
->total_len
);
8095 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
8098 /* Update L4 header */
8099 tcp
->ack_seq
= lro
->tcp_ack
;
8100 tcp
->window
= lro
->window
;
8102 /* Update tsecr field if this session has timestamps enabled */
8104 u32
*ptr
= (u32
*)(tcp
+ 1);
8105 *(ptr
+2) = lro
->cur_tsecr
;
8108 /* Update counters required for calculation of
8109 * average no. of packets aggregated.
8111 statinfo
->sw_stat
.sum_avg_pkts_aggregated
+= lro
->sg_num
;
8112 statinfo
->sw_stat
.num_aggregations
++;
8115 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
8116 struct tcphdr
*tcp
, u32 l4_pyld
)
8118 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8119 lro
->total_len
+= l4_pyld
;
8120 lro
->frags_len
+= l4_pyld
;
8121 lro
->tcp_next_seq
+= l4_pyld
;
8124 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8125 lro
->tcp_ack
= tcp
->ack_seq
;
8126 lro
->window
= tcp
->window
;
8130 /* Update tsecr and tsval from this packet */
8131 ptr
= (u32
*) (tcp
+ 1);
8132 lro
->cur_tsval
= *(ptr
+ 1);
8133 lro
->cur_tsecr
= *(ptr
+ 2);
8137 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
8138 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8142 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8144 if (!tcp_pyld_len
) {
8145 /* Runt frame or a pure ack */
8149 if (ip
->ihl
!= 5) /* IP has options */
8152 /* If we see CE codepoint in IP header, packet is not mergeable */
8153 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
8156 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8157 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
|| tcp
->syn
|| tcp
->fin
||
8158 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
8160 * Currently recognize only the ack control word and
8161 * any other control field being set would result in
8162 * flushing the LRO session
8168 * Allow only one TCP timestamp option. Don't aggregate if
8169 * any other options are detected.
8171 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
8174 if (tcp
->doff
== 8) {
8175 ptr
= (u8
*)(tcp
+ 1);
8176 while (*ptr
== TCPOPT_NOP
)
8178 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
8181 /* Ensure timestamp value increases monotonically */
8183 if (l_lro
->cur_tsval
> *((u32
*)(ptr
+2)))
8186 /* timestamp echo reply should be non-zero */
8187 if (*((u32
*)(ptr
+6)) == 0)
8195 s2io_club_tcp_session(u8
*buffer
, u8
**tcp
, u32
*tcp_len
, struct lro
**lro
,
8196 struct RxD_t
*rxdp
, struct s2io_nic
*sp
)
8199 struct tcphdr
*tcph
;
8202 if (!(ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
8204 DBG_PRINT(INFO_DBG
,"IP Saddr: %x Daddr: %x\n",
8205 ip
->saddr
, ip
->daddr
);
8210 tcph
= (struct tcphdr
*)*tcp
;
8211 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
8212 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
8213 struct lro
*l_lro
= &sp
->lro0_n
[i
];
8214 if (l_lro
->in_use
) {
8215 if (check_for_socket_match(l_lro
, ip
, tcph
))
8217 /* Sock pair matched */
8220 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
8221 DBG_PRINT(INFO_DBG
, "%s:Out of order. expected "
8222 "0x%x, actual 0x%x\n", __FUNCTION__
,
8223 (*lro
)->tcp_next_seq
,
8226 sp
->mac_control
.stats_info
->
8227 sw_stat
.outof_sequence_pkts
++;
8232 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,*tcp_len
))
8233 ret
= 1; /* Aggregate */
8235 ret
= 2; /* Flush both */
8241 /* Before searching for available LRO objects,
8242 * check if the pkt is L3/L4 aggregatable. If not
8243 * don't create new LRO session. Just send this
8246 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
)) {
8250 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
8251 struct lro
*l_lro
= &sp
->lro0_n
[i
];
8252 if (!(l_lro
->in_use
)) {
8254 ret
= 3; /* Begin anew */
8260 if (ret
== 0) { /* sessions exceeded */
8261 DBG_PRINT(INFO_DBG
,"%s:All LRO sessions already in use\n",
8269 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
);
8272 update_L3L4_header(sp
, *lro
);
8275 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
8276 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
8277 update_L3L4_header(sp
, *lro
);
8278 ret
= 4; /* Flush the LRO */
8282 DBG_PRINT(ERR_DBG
,"%s:Dont know, can't say!!\n",
8290 static void clear_lro_session(struct lro
*lro
)
8292 static u16 lro_struct_size
= sizeof(struct lro
);
8294 memset(lro
, 0, lro_struct_size
);
8297 static void queue_rx_frame(struct sk_buff
*skb
)
8299 struct net_device
*dev
= skb
->dev
;
8301 skb
->protocol
= eth_type_trans(skb
, dev
);
8303 netif_receive_skb(skb
);
8308 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8309 struct sk_buff
*skb
,
8312 struct sk_buff
*first
= lro
->parent
;
8314 first
->len
+= tcp_len
;
8315 first
->data_len
= lro
->frags_len
;
8316 skb_pull(skb
, (skb
->len
- tcp_len
));
8317 if (skb_shinfo(first
)->frag_list
)
8318 lro
->last_frag
->next
= skb
;
8320 skb_shinfo(first
)->frag_list
= skb
;
8321 first
->truesize
+= skb
->truesize
;
8322 lro
->last_frag
= skb
;
8323 sp
->mac_control
.stats_info
->sw_stat
.clubbed_frms_cnt
++;
8328 * s2io_io_error_detected - called when PCI error is detected
8329 * @pdev: Pointer to PCI device
8330 * @state: The current pci connection state
8332 * This function is called after a PCI bus error affecting
8333 * this device has been detected.
8335 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
8336 pci_channel_state_t state
)
8338 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8339 struct s2io_nic
*sp
= netdev
->priv
;
8341 netif_device_detach(netdev
);
8343 if (netif_running(netdev
)) {
8344 /* Bring down the card, while avoiding PCI I/O */
8345 do_s2io_card_down(sp
, 0);
8347 pci_disable_device(pdev
);
8349 return PCI_ERS_RESULT_NEED_RESET
;
8353 * s2io_io_slot_reset - called after the pci bus has been reset.
8354 * @pdev: Pointer to PCI device
8356 * Restart the card from scratch, as if from a cold-boot.
8357 * At this point, the card has exprienced a hard reset,
8358 * followed by fixups by BIOS, and has its config space
8359 * set up identically to what it was at cold boot.
8361 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
8363 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8364 struct s2io_nic
*sp
= netdev
->priv
;
8366 if (pci_enable_device(pdev
)) {
8367 printk(KERN_ERR
"s2io: "
8368 "Cannot re-enable PCI device after reset.\n");
8369 return PCI_ERS_RESULT_DISCONNECT
;
8372 pci_set_master(pdev
);
8375 return PCI_ERS_RESULT_RECOVERED
;
8379 * s2io_io_resume - called when traffic can start flowing again.
8380 * @pdev: Pointer to PCI device
8382 * This callback is called when the error recovery driver tells
8383 * us that its OK to resume normal operation.
8385 static void s2io_io_resume(struct pci_dev
*pdev
)
8387 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8388 struct s2io_nic
*sp
= netdev
->priv
;
8390 if (netif_running(netdev
)) {
8391 if (s2io_card_up(sp
)) {
8392 printk(KERN_ERR
"s2io: "
8393 "Can't bring device back up after reset.\n");
8397 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
8399 printk(KERN_ERR
"s2io: "
8400 "Can't resetore mac addr after reset.\n");
8405 netif_device_attach(netdev
);
8406 netif_wake_queue(netdev
);