2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
4 * Copyright © 2006 Red Hat, Inc.
5 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
10 #include <linux/device.h>
12 #include <linux/mtd/mtd.h>
13 #include <linux/mtd/nand.h>
14 #include <linux/rslib.h>
15 #include <linux/pci.h>
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 #include <linux/dma-mapping.h>
21 #define CAFE_NAND_CTRL1 0x00
22 #define CAFE_NAND_CTRL2 0x04
23 #define CAFE_NAND_CTRL3 0x08
24 #define CAFE_NAND_STATUS 0x0c
25 #define CAFE_NAND_IRQ 0x10
26 #define CAFE_NAND_IRQ_MASK 0x14
27 #define CAFE_NAND_DATA_LEN 0x18
28 #define CAFE_NAND_ADDR1 0x1c
29 #define CAFE_NAND_ADDR2 0x20
30 #define CAFE_NAND_TIMING1 0x24
31 #define CAFE_NAND_TIMING2 0x28
32 #define CAFE_NAND_TIMING3 0x2c
33 #define CAFE_NAND_NONMEM 0x30
34 #define CAFE_NAND_ECC_RESULT 0x3C
35 #define CAFE_NAND_DMA_CTRL 0x40
36 #define CAFE_NAND_DMA_ADDR0 0x44
37 #define CAFE_NAND_DMA_ADDR1 0x48
38 #define CAFE_NAND_ECC_SYN01 0x50
39 #define CAFE_NAND_ECC_SYN23 0x54
40 #define CAFE_NAND_ECC_SYN45 0x58
41 #define CAFE_NAND_ECC_SYN67 0x5c
42 #define CAFE_NAND_READ_DATA 0x1000
43 #define CAFE_NAND_WRITE_DATA 0x2000
45 #define CAFE_GLOBAL_CTRL 0x3004
46 #define CAFE_GLOBAL_IRQ 0x3008
47 #define CAFE_GLOBAL_IRQ_MASK 0x300c
48 #define CAFE_NAND_RESET 0x3034
50 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
51 #define CTRL1_CHIPSELECT (1<<19)
54 struct nand_chip nand
;
57 struct rs_control
*rs
;
65 unsigned char *dmabuf
;
68 static int usedma
= 1;
69 module_param(usedma
, int, 0644);
71 static int skipbbt
= 0;
72 module_param(skipbbt
, int, 0644);
75 module_param(debug
, int, 0644);
77 static int regdebug
= 0;
78 module_param(regdebug
, int, 0644);
80 static int checkecc
= 1;
81 module_param(checkecc
, int, 0644);
83 static unsigned int numtimings
;
85 module_param_array(timing
, int, &numtimings
, 0644);
87 /* Hrm. Why isn't this already conditional on something in the struct device? */
88 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
90 /* Make it easier to switch to PIO if we need to */
91 #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
92 #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
94 static int cafe_device_ready(struct mtd_info
*mtd
)
96 struct cafe_priv
*cafe
= mtd
->priv
;
97 int result
= !!(cafe_readl(cafe
, NAND_STATUS
) | 0x40000000);
98 uint32_t irqs
= cafe_readl(cafe
, NAND_IRQ
);
100 cafe_writel(cafe
, irqs
, NAND_IRQ
);
102 cafe_dev_dbg(&cafe
->pdev
->dev
, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
103 result
?"":" not", irqs
, cafe_readl(cafe
, NAND_IRQ
),
104 cafe_readl(cafe
, GLOBAL_IRQ
), cafe_readl(cafe
, GLOBAL_IRQ_MASK
));
110 static void cafe_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
112 struct cafe_priv
*cafe
= mtd
->priv
;
115 memcpy(cafe
->dmabuf
+ cafe
->datalen
, buf
, len
);
117 memcpy_toio(cafe
->mmio
+ CAFE_NAND_WRITE_DATA
+ cafe
->datalen
, buf
, len
);
119 cafe
->datalen
+= len
;
121 cafe_dev_dbg(&cafe
->pdev
->dev
, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
125 static void cafe_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
127 struct cafe_priv
*cafe
= mtd
->priv
;
130 memcpy(buf
, cafe
->dmabuf
+ cafe
->datalen
, len
);
132 memcpy_fromio(buf
, cafe
->mmio
+ CAFE_NAND_READ_DATA
+ cafe
->datalen
, len
);
134 cafe_dev_dbg(&cafe
->pdev
->dev
, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
136 cafe
->datalen
+= len
;
139 static uint8_t cafe_read_byte(struct mtd_info
*mtd
)
141 struct cafe_priv
*cafe
= mtd
->priv
;
144 cafe_read_buf(mtd
, &d
, 1);
145 cafe_dev_dbg(&cafe
->pdev
->dev
, "Read %02x\n", d
);
150 static void cafe_nand_cmdfunc(struct mtd_info
*mtd
, unsigned command
,
151 int column
, int page_addr
)
153 struct cafe_priv
*cafe
= mtd
->priv
;
156 uint32_t doneint
= 0x80000000;
158 cafe_dev_dbg(&cafe
->pdev
->dev
, "cmdfunc %02x, 0x%x, 0x%x\n",
159 command
, column
, page_addr
);
161 if (command
== NAND_CMD_ERASE2
|| command
== NAND_CMD_PAGEPROG
) {
162 /* Second half of a command we already calculated */
163 cafe_writel(cafe
, cafe
->ctl2
| 0x100 | command
, NAND_CTRL2
);
165 cafe
->ctl2
&= ~(1<<30);
166 cafe_dev_dbg(&cafe
->pdev
->dev
, "Continue command, ctl1 %08x, #data %d\n",
167 cafe
->ctl1
, cafe
->nr_data
);
170 /* Reset ECC engine */
171 cafe_writel(cafe
, 0, NAND_CTRL2
);
173 /* Emulate NAND_CMD_READOOB on large-page chips */
174 if (mtd
->writesize
> 512 &&
175 command
== NAND_CMD_READOOB
) {
176 column
+= mtd
->writesize
;
177 command
= NAND_CMD_READ0
;
180 /* FIXME: Do we need to send read command before sending data
181 for small-page chips, to position the buffer correctly? */
184 cafe_writel(cafe
, column
, NAND_ADDR1
);
188 } else if (page_addr
!= -1) {
189 cafe_writel(cafe
, page_addr
& 0xffff, NAND_ADDR1
);
192 cafe_writel(cafe
, page_addr
, NAND_ADDR2
);
194 if (mtd
->size
> mtd
->writesize
<< 16)
198 cafe
->data_pos
= cafe
->datalen
= 0;
200 /* Set command valid bit, mask in the chip select bit */
201 ctl1
= 0x80000000 | command
| (cafe
->ctl1
& CTRL1_CHIPSELECT
);
203 /* Set RD or WR bits as appropriate */
204 if (command
== NAND_CMD_READID
|| command
== NAND_CMD_STATUS
) {
205 ctl1
|= (1<<26); /* rd */
206 /* Always 5 bytes, for now */
208 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
210 } else if (command
== NAND_CMD_READ0
|| command
== NAND_CMD_READ1
||
211 command
== NAND_CMD_READOOB
|| command
== NAND_CMD_RNDOUT
) {
212 ctl1
|= 1<<26; /* rd */
213 /* For now, assume just read to end of page */
214 cafe
->datalen
= mtd
->writesize
+ mtd
->oobsize
- column
;
215 } else if (command
== NAND_CMD_SEQIN
)
216 ctl1
|= 1<<25; /* wr */
218 /* Set number of address bytes */
220 ctl1
|= ((adrbytes
-1)|8) << 27;
222 if (command
== NAND_CMD_SEQIN
|| command
== NAND_CMD_ERASE1
) {
223 /* Ignore the first command of a pair; the hardware
224 deals with them both at once, later */
226 cafe_dev_dbg(&cafe
->pdev
->dev
, "Setup for delayed command, ctl1 %08x, dlen %x\n",
227 cafe
->ctl1
, cafe
->datalen
);
230 /* RNDOUT and READ0 commands need a following byte */
231 if (command
== NAND_CMD_RNDOUT
)
232 cafe_writel(cafe
, cafe
->ctl2
| 0x100 | NAND_CMD_RNDOUTSTART
, NAND_CTRL2
);
233 else if (command
== NAND_CMD_READ0
&& mtd
->writesize
> 512)
234 cafe_writel(cafe
, cafe
->ctl2
| 0x100 | NAND_CMD_READSTART
, NAND_CTRL2
);
237 cafe_dev_dbg(&cafe
->pdev
->dev
, "dlen %x, ctl1 %x, ctl2 %x\n",
238 cafe
->datalen
, ctl1
, cafe_readl(cafe
, NAND_CTRL2
));
240 /* NB: The datasheet lies -- we really should be subtracting 1 here */
241 cafe_writel(cafe
, cafe
->datalen
, NAND_DATA_LEN
);
242 cafe_writel(cafe
, 0x90000000, NAND_IRQ
);
243 if (usedma
&& (ctl1
& (3<<25))) {
244 uint32_t dmactl
= 0xc0000000 + cafe
->datalen
;
245 /* If WR or RD bits set, set up DMA */
246 if (ctl1
& (1<<26)) {
249 /* ... so it's done when the DMA is done, not just
251 doneint
= 0x10000000;
253 cafe_writel(cafe
, dmactl
, NAND_DMA_CTRL
);
257 if (unlikely(regdebug
)) {
259 printk("About to write command %08x to register 0\n", ctl1
);
260 for (i
=4; i
< 0x5c; i
+=4)
261 printk("Register %x: %08x\n", i
, readl(cafe
->mmio
+ i
));
264 cafe_writel(cafe
, ctl1
, NAND_CTRL1
);
265 /* Apply this short delay always to ensure that we do wait tWB in
266 * any case on any machine. */
273 for (c
= 500000; c
!= 0; c
--) {
274 irqs
= cafe_readl(cafe
, NAND_IRQ
);
279 cafe_dev_dbg(&cafe
->pdev
->dev
, "Wait for ready, IRQ %x\n", irqs
);
282 cafe_writel(cafe
, doneint
, NAND_IRQ
);
283 cafe_dev_dbg(&cafe
->pdev
->dev
, "Command %x completed after %d usec, irqs %x (%x)\n",
284 command
, 500000-c
, irqs
, cafe_readl(cafe
, NAND_IRQ
));
287 WARN_ON(cafe
->ctl2
& (1<<30));
291 case NAND_CMD_CACHEDPROG
:
292 case NAND_CMD_PAGEPROG
:
293 case NAND_CMD_ERASE1
:
294 case NAND_CMD_ERASE2
:
297 case NAND_CMD_STATUS
:
298 case NAND_CMD_DEPLETE1
:
299 case NAND_CMD_RNDOUT
:
300 case NAND_CMD_STATUS_ERROR
:
301 case NAND_CMD_STATUS_ERROR0
:
302 case NAND_CMD_STATUS_ERROR1
:
303 case NAND_CMD_STATUS_ERROR2
:
304 case NAND_CMD_STATUS_ERROR3
:
305 cafe_writel(cafe
, cafe
->ctl2
, NAND_CTRL2
);
308 nand_wait_ready(mtd
);
309 cafe_writel(cafe
, cafe
->ctl2
, NAND_CTRL2
);
312 static void cafe_select_chip(struct mtd_info
*mtd
, int chipnr
)
314 struct cafe_priv
*cafe
= mtd
->priv
;
316 cafe_dev_dbg(&cafe
->pdev
->dev
, "select_chip %d\n", chipnr
);
318 /* Mask the appropriate bit into the stored value of ctl1
319 which will be used by cafe_nand_cmdfunc() */
321 cafe
->ctl1
|= CTRL1_CHIPSELECT
;
323 cafe
->ctl1
&= ~CTRL1_CHIPSELECT
;
326 static int cafe_nand_interrupt(int irq
, void *id
)
328 struct mtd_info
*mtd
= id
;
329 struct cafe_priv
*cafe
= mtd
->priv
;
330 uint32_t irqs
= cafe_readl(cafe
, NAND_IRQ
);
331 cafe_writel(cafe
, irqs
& ~0x90000000, NAND_IRQ
);
335 cafe_dev_dbg(&cafe
->pdev
->dev
, "irq, bits %x (%x)\n", irqs
, cafe_readl(cafe
, NAND_IRQ
));
339 static void cafe_nand_bug(struct mtd_info
*mtd
)
344 static int cafe_nand_write_oob(struct mtd_info
*mtd
,
345 struct nand_chip
*chip
, int page
)
349 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
350 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
351 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
352 status
= chip
->waitfunc(mtd
, chip
);
354 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
357 /* Don't use -- use nand_read_oob_std for now */
358 static int cafe_nand_read_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
359 int page
, int sndcmd
)
361 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
362 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
366 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
367 * @mtd: mtd info structure
368 * @chip: nand chip info structure
369 * @buf: buffer to store read data
371 * The hw generator calculates the error syndrome automatically. Therefor
372 * we need a special oob layout and handling.
374 static int cafe_nand_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
377 struct cafe_priv
*cafe
= mtd
->priv
;
379 cafe_dev_dbg(&cafe
->pdev
->dev
, "ECC result %08x SYN1,2 %08x\n",
380 cafe_readl(cafe
, NAND_ECC_RESULT
),
381 cafe_readl(cafe
, NAND_ECC_SYN01
));
383 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
384 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
386 if (checkecc
&& cafe_readl(cafe
, NAND_ECC_RESULT
) & (1<<18)) {
387 unsigned short syn
[8], pat
[4];
389 u8
*oob
= chip
->oob_poi
;
392 for (i
=0; i
<8; i
+=2) {
393 uint32_t tmp
= cafe_readl(cafe
, NAND_ECC_SYN01
+ (i
*2));
394 syn
[i
] = cafe
->rs
->index_of
[tmp
& 0xfff];
395 syn
[i
+1] = cafe
->rs
->index_of
[(tmp
>> 16) & 0xfff];
398 n
= decode_rs16(cafe
->rs
, NULL
, NULL
, 1367, syn
, 0, pos
, 0,
401 for (i
= 0; i
< n
; i
++) {
404 /* The 12-bit symbols are mapped to bytes here */
410 /* high four bits do not correspond to data */
415 } else if (p
== 1365) {
416 buf
[2047] ^= pat
[i
] >> 4;
417 oob
[0] ^= pat
[i
] << 4;
418 } else if (p
> 1365) {
420 oob
[3*p
/2 - 2048] ^= pat
[i
] >> 4;
421 oob
[3*p
/2 - 2047] ^= pat
[i
] << 4;
423 oob
[3*p
/2 - 2049] ^= pat
[i
] >> 8;
424 oob
[3*p
/2 - 2048] ^= pat
[i
];
426 } else if ((p
& 1) == 1) {
427 buf
[3*p
/2] ^= pat
[i
] >> 4;
428 buf
[3*p
/2 + 1] ^= pat
[i
] << 4;
430 buf
[3*p
/2 - 1] ^= pat
[i
] >> 8;
431 buf
[3*p
/2] ^= pat
[i
];
436 dev_dbg(&cafe
->pdev
->dev
, "Failed to correct ECC at %08x\n",
437 cafe_readl(cafe
, NAND_ADDR2
) * 2048);
438 for (i
= 0; i
< 0x5c; i
+= 4)
439 printk("Register %x: %08x\n", i
, readl(cafe
->mmio
+ i
));
440 mtd
->ecc_stats
.failed
++;
442 dev_dbg(&cafe
->pdev
->dev
, "Corrected %d symbol errors\n", n
);
443 mtd
->ecc_stats
.corrected
+= n
;
450 static struct nand_ecclayout cafe_oobinfo_2048
= {
452 .eccpos
= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
453 .oobfree
= {{14, 50}}
456 /* Ick. The BBT code really ought to be able to work this bit out
457 for itself from the above, at least for the 2KiB case */
458 static uint8_t cafe_bbt_pattern_2048
[] = { 'B', 'b', 't', '0' };
459 static uint8_t cafe_mirror_pattern_2048
[] = { '1', 't', 'b', 'B' };
461 static uint8_t cafe_bbt_pattern_512
[] = { 0xBB };
462 static uint8_t cafe_mirror_pattern_512
[] = { 0xBC };
465 static struct nand_bbt_descr cafe_bbt_main_descr_2048
= {
466 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
467 | NAND_BBT_2BIT
| NAND_BBT_VERSION
,
472 .pattern
= cafe_bbt_pattern_2048
475 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048
= {
476 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
477 | NAND_BBT_2BIT
| NAND_BBT_VERSION
,
482 .pattern
= cafe_mirror_pattern_2048
485 static struct nand_ecclayout cafe_oobinfo_512
= {
487 .eccpos
= { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
491 static struct nand_bbt_descr cafe_bbt_main_descr_512
= {
492 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
493 | NAND_BBT_2BIT
| NAND_BBT_VERSION
,
498 .pattern
= cafe_bbt_pattern_512
501 static struct nand_bbt_descr cafe_bbt_mirror_descr_512
= {
502 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
503 | NAND_BBT_2BIT
| NAND_BBT_VERSION
,
508 .pattern
= cafe_mirror_pattern_512
512 static void cafe_nand_write_page_lowlevel(struct mtd_info
*mtd
,
513 struct nand_chip
*chip
, const uint8_t *buf
)
515 struct cafe_priv
*cafe
= mtd
->priv
;
517 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
518 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
520 /* Set up ECC autogeneration */
521 cafe
->ctl2
|= (1<<30);
524 static int cafe_nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
525 const uint8_t *buf
, int page
, int cached
, int raw
)
529 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
532 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
534 chip
->ecc
.write_page(mtd
, chip
, buf
);
537 * Cached progamming disabled for now, Not sure if its worth the
538 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
542 if (!cached
|| !(chip
->options
& NAND_CACHEPRG
)) {
544 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
545 status
= chip
->waitfunc(mtd
, chip
);
547 * See if operation failed and additional status checks are
550 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
551 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
,
554 if (status
& NAND_STATUS_FAIL
)
557 chip
->cmdfunc(mtd
, NAND_CMD_CACHEDPROG
, -1, -1);
558 status
= chip
->waitfunc(mtd
, chip
);
561 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
562 /* Send command to read back the data */
563 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
565 if (chip
->verify_buf(mtd
, buf
, mtd
->writesize
))
571 static int cafe_nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
576 /* F_2[X]/(X**6+X+1) */
577 static unsigned short __devinit
gf64_mul(u8 a
, u8 b
)
583 for (i
= 0; i
< 6; i
++) {
595 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
596 static u16 __devinit
gf4096_mul(u16 a
, u16 b
)
598 u8 ah
, al
, bh
, bl
, ch
, cl
;
605 ch
= gf64_mul(ah
^ al
, bh
^ bl
) ^ gf64_mul(al
, bl
);
606 cl
= gf64_mul(gf64_mul(ah
, bh
), 0x21) ^ gf64_mul(al
, bl
);
608 return (ch
<< 6) ^ cl
;
611 static int __devinit
cafe_mul(int x
)
615 return gf4096_mul(x
, 0xe01);
618 static int __devinit
cafe_nand_probe(struct pci_dev
*pdev
,
619 const struct pci_device_id
*ent
)
621 struct mtd_info
*mtd
;
622 struct cafe_priv
*cafe
;
626 /* Very old versions shared the same PCI ident for all three
627 functions on the chip. Verify the class too... */
628 if ((pdev
->class >> 8) != PCI_CLASS_MEMORY_FLASH
)
631 err
= pci_enable_device(pdev
);
635 pci_set_master(pdev
);
637 mtd
= kzalloc(sizeof(*mtd
) + sizeof(struct cafe_priv
), GFP_KERNEL
);
639 dev_warn(&pdev
->dev
, "failed to alloc mtd_info\n");
642 cafe
= (void *)(&mtd
[1]);
645 mtd
->owner
= THIS_MODULE
;
648 cafe
->mmio
= pci_iomap(pdev
, 0, 0);
650 dev_warn(&pdev
->dev
, "failed to iomap\n");
654 cafe
->dmabuf
= dma_alloc_coherent(&cafe
->pdev
->dev
, 2112 + sizeof(struct nand_buffers
),
655 &cafe
->dmaaddr
, GFP_KERNEL
);
660 cafe
->nand
.buffers
= (void *)cafe
->dmabuf
+ 2112;
662 cafe
->rs
= init_rs_non_canonical(12, &cafe_mul
, 0, 1, 8);
668 cafe
->nand
.cmdfunc
= cafe_nand_cmdfunc
;
669 cafe
->nand
.dev_ready
= cafe_device_ready
;
670 cafe
->nand
.read_byte
= cafe_read_byte
;
671 cafe
->nand
.read_buf
= cafe_read_buf
;
672 cafe
->nand
.write_buf
= cafe_write_buf
;
673 cafe
->nand
.select_chip
= cafe_select_chip
;
675 cafe
->nand
.chip_delay
= 0;
677 /* Enable the following for a flash based bad block table */
678 cafe
->nand
.options
= NAND_USE_FLASH_BBT
| NAND_NO_AUTOINCR
| NAND_OWN_BUFFERS
;
681 cafe
->nand
.options
|= NAND_SKIP_BBTSCAN
;
682 cafe
->nand
.block_bad
= cafe_nand_block_bad
;
685 if (numtimings
&& numtimings
!= 3) {
686 dev_warn(&cafe
->pdev
->dev
, "%d timing register values ignored; precisely three are required\n", numtimings
);
689 if (numtimings
== 3) {
690 cafe_dev_dbg(&cafe
->pdev
->dev
, "Using provided timings (%08x %08x %08x)\n",
691 timing
[0], timing
[1], timing
[2]);
693 timing
[0] = cafe_readl(cafe
, NAND_TIMING1
);
694 timing
[1] = cafe_readl(cafe
, NAND_TIMING2
);
695 timing
[2] = cafe_readl(cafe
, NAND_TIMING3
);
697 if (timing
[0] | timing
[1] | timing
[2]) {
698 cafe_dev_dbg(&cafe
->pdev
->dev
, "Timing registers already set (%08x %08x %08x)\n",
699 timing
[0], timing
[1], timing
[2]);
701 dev_warn(&cafe
->pdev
->dev
, "Timing registers unset; using most conservative defaults\n");
702 timing
[0] = timing
[1] = timing
[2] = 0xffffffff;
706 /* Start off by resetting the NAND controller completely */
707 cafe_writel(cafe
, 1, NAND_RESET
);
708 cafe_writel(cafe
, 0, NAND_RESET
);
710 cafe_writel(cafe
, timing
[0], NAND_TIMING1
);
711 cafe_writel(cafe
, timing
[1], NAND_TIMING2
);
712 cafe_writel(cafe
, timing
[2], NAND_TIMING3
);
714 cafe_writel(cafe
, 0xffffffff, NAND_IRQ_MASK
);
715 err
= request_irq(pdev
->irq
, &cafe_nand_interrupt
, IRQF_SHARED
,
718 dev_warn(&pdev
->dev
, "Could not register IRQ %d\n", pdev
->irq
);
722 /* Disable master reset, enable NAND clock */
723 ctrl
= cafe_readl(cafe
, GLOBAL_CTRL
);
726 cafe_writel(cafe
, ctrl
| 0x05, GLOBAL_CTRL
);
727 cafe_writel(cafe
, ctrl
| 0x0a, GLOBAL_CTRL
);
728 cafe_writel(cafe
, 0, NAND_DMA_CTRL
);
730 cafe_writel(cafe
, 0x7006, GLOBAL_CTRL
);
731 cafe_writel(cafe
, 0x700a, GLOBAL_CTRL
);
733 /* Set up DMA address */
734 cafe_writel(cafe
, cafe
->dmaaddr
& 0xffffffff, NAND_DMA_ADDR0
);
735 if (sizeof(cafe
->dmaaddr
) > 4)
736 /* Shift in two parts to shut the compiler up */
737 cafe_writel(cafe
, (cafe
->dmaaddr
>> 16) >> 16, NAND_DMA_ADDR1
);
739 cafe_writel(cafe
, 0, NAND_DMA_ADDR1
);
741 cafe_dev_dbg(&cafe
->pdev
->dev
, "Set DMA address to %x (virt %p)\n",
742 cafe_readl(cafe
, NAND_DMA_ADDR0
), cafe
->dmabuf
);
744 /* Enable NAND IRQ in global IRQ mask register */
745 cafe_writel(cafe
, 0x80000007, GLOBAL_IRQ_MASK
);
746 cafe_dev_dbg(&cafe
->pdev
->dev
, "Control %x, IRQ mask %x\n",
747 cafe_readl(cafe
, GLOBAL_CTRL
), cafe_readl(cafe
, GLOBAL_IRQ_MASK
));
749 /* Scan to find existence of the device */
750 if (nand_scan_ident(mtd
, 2)) {
755 cafe
->ctl2
= 1<<27; /* Reed-Solomon ECC */
756 if (mtd
->writesize
== 2048)
757 cafe
->ctl2
|= 1<<29; /* 2KiB page size */
759 /* Set up ECC according to the type of chip we found */
760 if (mtd
->writesize
== 2048) {
761 cafe
->nand
.ecc
.layout
= &cafe_oobinfo_2048
;
762 cafe
->nand
.bbt_td
= &cafe_bbt_main_descr_2048
;
763 cafe
->nand
.bbt_md
= &cafe_bbt_mirror_descr_2048
;
764 } else if (mtd
->writesize
== 512) {
765 cafe
->nand
.ecc
.layout
= &cafe_oobinfo_512
;
766 cafe
->nand
.bbt_td
= &cafe_bbt_main_descr_512
;
767 cafe
->nand
.bbt_md
= &cafe_bbt_mirror_descr_512
;
769 printk(KERN_WARNING
"Unexpected NAND flash writesize %d. Aborting\n",
773 cafe
->nand
.ecc
.mode
= NAND_ECC_HW_SYNDROME
;
774 cafe
->nand
.ecc
.size
= mtd
->writesize
;
775 cafe
->nand
.ecc
.bytes
= 14;
776 cafe
->nand
.ecc
.hwctl
= (void *)cafe_nand_bug
;
777 cafe
->nand
.ecc
.calculate
= (void *)cafe_nand_bug
;
778 cafe
->nand
.ecc
.correct
= (void *)cafe_nand_bug
;
779 cafe
->nand
.write_page
= cafe_nand_write_page
;
780 cafe
->nand
.ecc
.write_page
= cafe_nand_write_page_lowlevel
;
781 cafe
->nand
.ecc
.write_oob
= cafe_nand_write_oob
;
782 cafe
->nand
.ecc
.read_page
= cafe_nand_read_page
;
783 cafe
->nand
.ecc
.read_oob
= cafe_nand_read_oob
;
785 err
= nand_scan_tail(mtd
);
789 pci_set_drvdata(pdev
, mtd
);
794 /* Disable NAND IRQ in global IRQ mask register */
795 cafe_writel(cafe
, ~1 & cafe_readl(cafe
, GLOBAL_IRQ_MASK
), GLOBAL_IRQ_MASK
);
796 free_irq(pdev
->irq
, mtd
);
798 dma_free_coherent(&cafe
->pdev
->dev
, 2112, cafe
->dmabuf
, cafe
->dmaaddr
);
800 pci_iounmap(pdev
, cafe
->mmio
);
807 static void __devexit
cafe_nand_remove(struct pci_dev
*pdev
)
809 struct mtd_info
*mtd
= pci_get_drvdata(pdev
);
810 struct cafe_priv
*cafe
= mtd
->priv
;
813 /* Disable NAND IRQ in global IRQ mask register */
814 cafe_writel(cafe
, ~1 & cafe_readl(cafe
, GLOBAL_IRQ_MASK
), GLOBAL_IRQ_MASK
);
815 free_irq(pdev
->irq
, mtd
);
818 pci_iounmap(pdev
, cafe
->mmio
);
819 dma_free_coherent(&cafe
->pdev
->dev
, 2112, cafe
->dmabuf
, cafe
->dmaaddr
);
823 static struct pci_device_id cafe_nand_tbl
[] = {
824 { 0x11ab, 0x4100, PCI_ANY_ID
, PCI_ANY_ID
},
828 MODULE_DEVICE_TABLE(pci
, cafe_nand_tbl
);
830 static int cafe_nand_resume(struct pci_dev
*pdev
)
833 struct mtd_info
*mtd
= pci_get_drvdata(pdev
);
834 struct cafe_priv
*cafe
= mtd
->priv
;
836 /* Start off by resetting the NAND controller completely */
837 cafe_writel(cafe
, 1, NAND_RESET
);
838 cafe_writel(cafe
, 0, NAND_RESET
);
839 cafe_writel(cafe
, 0xffffffff, NAND_IRQ_MASK
);
841 /* Restore timing configuration */
842 cafe_writel(cafe
, timing
[0], NAND_TIMING1
);
843 cafe_writel(cafe
, timing
[1], NAND_TIMING2
);
844 cafe_writel(cafe
, timing
[2], NAND_TIMING3
);
846 /* Disable master reset, enable NAND clock */
847 ctrl
= cafe_readl(cafe
, GLOBAL_CTRL
);
850 cafe_writel(cafe
, ctrl
| 0x05, GLOBAL_CTRL
);
851 cafe_writel(cafe
, ctrl
| 0x0a, GLOBAL_CTRL
);
852 cafe_writel(cafe
, 0, NAND_DMA_CTRL
);
853 cafe_writel(cafe
, 0x7006, GLOBAL_CTRL
);
854 cafe_writel(cafe
, 0x700a, GLOBAL_CTRL
);
856 /* Set up DMA address */
857 cafe_writel(cafe
, cafe
->dmaaddr
& 0xffffffff, NAND_DMA_ADDR0
);
858 if (sizeof(cafe
->dmaaddr
) > 4)
859 /* Shift in two parts to shut the compiler up */
860 cafe_writel(cafe
, (cafe
->dmaaddr
>> 16) >> 16, NAND_DMA_ADDR1
);
862 cafe_writel(cafe
, 0, NAND_DMA_ADDR1
);
864 /* Enable NAND IRQ in global IRQ mask register */
865 cafe_writel(cafe
, 0x80000007, GLOBAL_IRQ_MASK
);
869 static struct pci_driver cafe_nand_pci_driver
= {
871 .id_table
= cafe_nand_tbl
,
872 .probe
= cafe_nand_probe
,
873 .remove
= __devexit_p(cafe_nand_remove
),
874 .resume
= cafe_nand_resume
,
877 static int cafe_nand_init(void)
879 return pci_register_driver(&cafe_nand_pci_driver
);
882 static void cafe_nand_exit(void)
884 pci_unregister_driver(&cafe_nand_pci_driver
);
886 module_init(cafe_nand_init
);
887 module_exit(cafe_nand_exit
);
889 MODULE_LICENSE("GPL");
890 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
891 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");