1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/smp_lock.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/jiffies.h>
23 #include <linux/profile.h>
24 #include <linux/bootmem.h>
27 #include <asm/ptrace.h>
28 #include <asm/atomic.h>
29 #include <asm/tlbflush.h>
30 #include <asm/mmu_context.h>
31 #include <asm/cpudata.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/uaccess.h>
38 #include <asm/timer.h>
39 #include <asm/starfire.h>
42 extern int linux_num_cpus
;
43 extern void calibrate_delay(void);
45 /* Please don't make this stuff initdata!!! --DaveM */
46 static unsigned char boot_cpu_id
;
48 cpumask_t cpu_online_map
= CPU_MASK_NONE
;
49 cpumask_t phys_cpu_present_map
= CPU_MASK_NONE
;
50 static cpumask_t smp_commenced_mask
;
51 static cpumask_t cpu_callout_map
;
53 void smp_info(struct seq_file
*m
)
57 seq_printf(m
, "State:\n");
58 for (i
= 0; i
< NR_CPUS
; i
++) {
61 "CPU%d:\t\tonline\n", i
);
65 void smp_bogo(struct seq_file
*m
)
69 for (i
= 0; i
< NR_CPUS
; i
++)
72 "Cpu%dBogo\t: %lu.%02lu\n"
73 "Cpu%dClkTck\t: %016lx\n",
74 i
, cpu_data(i
).udelay_val
/ (500000/HZ
),
75 (cpu_data(i
).udelay_val
/ (5000/HZ
)) % 100,
76 i
, cpu_data(i
).clock_tick
);
79 void __init
smp_store_cpu_info(int id
)
83 /* multiplier and counter set by
84 smp_setup_percpu_timer() */
85 cpu_data(id
).udelay_val
= loops_per_jiffy
;
87 cpu_find_by_mid(id
, &cpu_node
);
88 cpu_data(id
).clock_tick
= prom_getintdefault(cpu_node
,
89 "clock-frequency", 0);
91 cpu_data(id
).pgcache_size
= 0;
92 cpu_data(id
).pte_cache
[0] = NULL
;
93 cpu_data(id
).pte_cache
[1] = NULL
;
94 cpu_data(id
).pgd_cache
= NULL
;
95 cpu_data(id
).idle_volume
= 1;
98 static void smp_setup_percpu_timer(void);
100 static volatile unsigned long callin_flag
= 0;
102 extern void inherit_locked_prom_mappings(int save_p
);
104 static inline void cpu_setup_percpu_base(unsigned long cpu_id
)
106 __asm__
__volatile__("mov %0, %%g5\n\t"
107 "stxa %0, [%1] %2\n\t"
110 : "r" (__per_cpu_offset(cpu_id
)),
111 "r" (TSB_REG
), "i" (ASI_IMMU
));
114 void __init
smp_callin(void)
116 int cpuid
= hard_smp_processor_id();
118 inherit_locked_prom_mappings(0);
122 cpu_setup_percpu_base(cpuid
);
124 smp_setup_percpu_timer();
126 if (cheetah_pcache_forced_on
)
127 cheetah_enable_pcache();
132 smp_store_cpu_info(cpuid
);
134 __asm__
__volatile__("membar #Sync\n\t"
135 "flush %%g6" : : : "memory");
137 /* Clear this or we will die instantly when we
138 * schedule back to this idler...
140 clear_thread_flag(TIF_NEWCHILD
);
142 /* Attach to the address space of init_task. */
143 atomic_inc(&init_mm
.mm_count
);
144 current
->active_mm
= &init_mm
;
146 while (!cpu_isset(cpuid
, smp_commenced_mask
))
149 cpu_set(cpuid
, cpu_online_map
);
154 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
155 panic("SMP bolixed\n");
158 static unsigned long current_tick_offset
;
160 /* This tick register synchronization scheme is taken entirely from
161 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
163 * The only change I've made is to rework it so that the master
164 * initiates the synchonization instead of the slave. -DaveM
168 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
170 #define NUM_ROUNDS 64 /* magic value */
171 #define NUM_ITERS 5 /* likewise */
173 static DEFINE_SPINLOCK(itc_sync_lock
);
174 static unsigned long go
[SLAVE
+ 1];
176 #define DEBUG_TICK_SYNC 0
178 static inline long get_delta (long *rt
, long *master
)
180 unsigned long best_t0
= 0, best_t1
= ~0UL, best_tm
= 0;
181 unsigned long tcenter
, t0
, t1
, tm
;
184 for (i
= 0; i
< NUM_ITERS
; i
++) {
185 t0
= tick_ops
->get_tick();
187 membar("#StoreLoad");
188 while (!(tm
= go
[SLAVE
]))
191 membar("#StoreStore");
192 t1
= tick_ops
->get_tick();
194 if (t1
- t0
< best_t1
- best_t0
)
195 best_t0
= t0
, best_t1
= t1
, best_tm
= tm
;
198 *rt
= best_t1
- best_t0
;
199 *master
= best_tm
- best_t0
;
201 /* average best_t0 and best_t1 without overflow: */
202 tcenter
= (best_t0
/2 + best_t1
/2);
203 if (best_t0
% 2 + best_t1
% 2 == 2)
205 return tcenter
- best_tm
;
208 void smp_synchronize_tick_client(void)
210 long i
, delta
, adj
, adjust_latency
= 0, done
= 0;
211 unsigned long flags
, rt
, master_time_stamp
, bound
;
214 long rt
; /* roundtrip time */
215 long master
; /* master's timestamp */
216 long diff
; /* difference between midpoint and master's timestamp */
217 long lat
; /* estimate of itc adjustment latency */
226 local_irq_save(flags
);
228 for (i
= 0; i
< NUM_ROUNDS
; i
++) {
229 delta
= get_delta(&rt
, &master_time_stamp
);
231 done
= 1; /* let's lock on to this... */
237 adjust_latency
+= -delta
;
238 adj
= -delta
+ adjust_latency
/4;
242 tick_ops
->add_tick(adj
, current_tick_offset
);
246 t
[i
].master
= master_time_stamp
;
248 t
[i
].lat
= adjust_latency
/4;
252 local_irq_restore(flags
);
255 for (i
= 0; i
< NUM_ROUNDS
; i
++)
256 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
257 t
[i
].rt
, t
[i
].master
, t
[i
].diff
, t
[i
].lat
);
260 printk(KERN_INFO
"CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
261 "maxerr %lu cycles)\n", smp_processor_id(), delta
, rt
);
264 static void smp_start_sync_tick_client(int cpu
);
266 static void smp_synchronize_one_tick(int cpu
)
268 unsigned long flags
, i
;
272 smp_start_sync_tick_client(cpu
);
274 /* wait for client to be ready */
278 /* now let the client proceed into his loop */
280 membar("#StoreLoad");
282 spin_lock_irqsave(&itc_sync_lock
, flags
);
284 for (i
= 0; i
< NUM_ROUNDS
*NUM_ITERS
; i
++) {
288 membar("#StoreStore");
289 go
[SLAVE
] = tick_ops
->get_tick();
290 membar("#StoreLoad");
293 spin_unlock_irqrestore(&itc_sync_lock
, flags
);
296 extern unsigned long sparc64_cpu_startup
;
298 /* The OBP cpu startup callback truncates the 3rd arg cookie to
299 * 32-bits (I think) so to be safe we have it read the pointer
300 * contained here so we work on >4GB machines. -DaveM
302 static struct thread_info
*cpu_new_thread
= NULL
;
304 static int __devinit
smp_boot_one_cpu(unsigned int cpu
)
306 unsigned long entry
=
307 (unsigned long)(&sparc64_cpu_startup
);
308 unsigned long cookie
=
309 (unsigned long)(&cpu_new_thread
);
310 struct task_struct
*p
;
311 int timeout
, ret
, cpu_node
;
315 cpu_new_thread
= p
->thread_info
;
316 cpu_set(cpu
, cpu_callout_map
);
318 cpu_find_by_mid(cpu
, &cpu_node
);
319 prom_startcpu(cpu_node
, entry
, cookie
);
321 for (timeout
= 0; timeout
< 5000000; timeout
++) {
329 printk("Processor %d is stuck.\n", cpu
);
330 cpu_clear(cpu
, cpu_callout_map
);
333 cpu_new_thread
= NULL
;
338 static void spitfire_xcall_helper(u64 data0
, u64 data1
, u64 data2
, u64 pstate
, unsigned long cpu
)
343 if (this_is_starfire
) {
344 /* map to real upaid */
345 cpu
= (((cpu
& 0x3c) << 1) |
346 ((cpu
& 0x40) >> 4) |
350 target
= (cpu
<< 14) | 0x70;
352 /* Ok, this is the real Spitfire Errata #54.
353 * One must read back from a UDB internal register
354 * after writes to the UDB interrupt dispatch, but
355 * before the membar Sync for that write.
356 * So we use the high UDB control register (ASI 0x7f,
357 * ADDR 0x20) for the dummy read. -DaveM
360 __asm__
__volatile__(
361 "wrpr %1, %2, %%pstate\n\t"
362 "stxa %4, [%0] %3\n\t"
363 "stxa %5, [%0+%8] %3\n\t"
365 "stxa %6, [%0+%8] %3\n\t"
367 "stxa %%g0, [%7] %3\n\t"
370 "ldxa [%%g1] 0x7f, %%g0\n\t"
373 : "r" (pstate
), "i" (PSTATE_IE
), "i" (ASI_INTR_W
),
374 "r" (data0
), "r" (data1
), "r" (data2
), "r" (target
),
375 "r" (0x10), "0" (tmp
)
378 /* NOTE: PSTATE_IE is still clear. */
381 __asm__
__volatile__("ldxa [%%g0] %1, %0"
383 : "i" (ASI_INTR_DISPATCH_STAT
));
385 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
392 } while (result
& 0x1);
393 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
396 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
397 smp_processor_id(), result
);
404 static __inline__
void spitfire_xcall_deliver(u64 data0
, u64 data1
, u64 data2
, cpumask_t mask
)
409 __asm__
__volatile__("rdpr %%pstate, %0" : "=r" (pstate
));
410 for_each_cpu_mask(i
, mask
)
411 spitfire_xcall_helper(data0
, data1
, data2
, pstate
, i
);
414 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
415 * packet, but we have no use for that. However we do take advantage of
416 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
418 static void cheetah_xcall_deliver(u64 data0
, u64 data1
, u64 data2
, cpumask_t mask
)
421 int nack_busy_id
, is_jalapeno
;
423 if (cpus_empty(mask
))
426 /* Unfortunately, someone at Sun had the brilliant idea to make the
427 * busy/nack fields hard-coded by ITID number for this Ultra-III
428 * derivative processor.
430 __asm__ ("rdpr %%ver, %0" : "=r" (ver
));
431 is_jalapeno
= ((ver
>> 32) == 0x003e0016);
433 __asm__
__volatile__("rdpr %%pstate, %0" : "=r" (pstate
));
436 __asm__
__volatile__("wrpr %0, %1, %%pstate\n\t"
437 : : "r" (pstate
), "i" (PSTATE_IE
));
439 /* Setup the dispatch data registers. */
440 __asm__
__volatile__("stxa %0, [%3] %6\n\t"
441 "stxa %1, [%4] %6\n\t"
442 "stxa %2, [%5] %6\n\t"
445 : "r" (data0
), "r" (data1
), "r" (data2
),
446 "r" (0x40), "r" (0x50), "r" (0x60),
453 for_each_cpu_mask(i
, mask
) {
454 u64 target
= (i
<< 14) | 0x70;
457 target
|= (nack_busy_id
<< 24);
458 __asm__
__volatile__(
459 "stxa %%g0, [%0] %1\n\t"
462 : "r" (target
), "i" (ASI_INTR_W
));
467 /* Now, poll for completion. */
472 stuck
= 100000 * nack_busy_id
;
474 __asm__
__volatile__("ldxa [%%g0] %1, %0"
475 : "=r" (dispatch_stat
)
476 : "i" (ASI_INTR_DISPATCH_STAT
));
477 if (dispatch_stat
== 0UL) {
478 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
484 } while (dispatch_stat
& 0x5555555555555555UL
);
486 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
489 if ((dispatch_stat
& ~(0x5555555555555555UL
)) == 0) {
490 /* Busy bits will not clear, continue instead
491 * of freezing up on this cpu.
493 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
494 smp_processor_id(), dispatch_stat
);
496 int i
, this_busy_nack
= 0;
498 /* Delay some random time with interrupts enabled
499 * to prevent deadlock.
501 udelay(2 * nack_busy_id
);
503 /* Clear out the mask bits for cpus which did not
506 for_each_cpu_mask(i
, mask
) {
510 check_mask
= (0x2UL
<< (2*i
));
512 check_mask
= (0x2UL
<<
514 if ((dispatch_stat
& check_mask
) == 0)
524 /* Send cross call to all processors mentioned in MASK
527 static void smp_cross_call_masked(unsigned long *func
, u32 ctx
, u64 data1
, u64 data2
, cpumask_t mask
)
529 u64 data0
= (((u64
)ctx
)<<32 | (((u64
)func
) & 0xffffffff));
530 int this_cpu
= get_cpu();
532 cpus_and(mask
, mask
, cpu_online_map
);
533 cpu_clear(this_cpu
, mask
);
535 if (tlb_type
== spitfire
)
536 spitfire_xcall_deliver(data0
, data1
, data2
, mask
);
538 cheetah_xcall_deliver(data0
, data1
, data2
, mask
);
539 /* NOTE: Caller runs local copy on master. */
544 extern unsigned long xcall_sync_tick
;
546 static void smp_start_sync_tick_client(int cpu
)
548 cpumask_t mask
= cpumask_of_cpu(cpu
);
550 smp_cross_call_masked(&xcall_sync_tick
,
554 /* Send cross call to all processors except self. */
555 #define smp_cross_call(func, ctx, data1, data2) \
556 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
558 struct call_data_struct
{
559 void (*func
) (void *info
);
565 static DEFINE_SPINLOCK(call_lock
);
566 static struct call_data_struct
*call_data
;
568 extern unsigned long xcall_call_function
;
571 * You must not call this function with disabled interrupts or from a
572 * hardware interrupt handler or from a bottom half handler.
574 int smp_call_function(void (*func
)(void *info
), void *info
,
575 int nonatomic
, int wait
)
577 struct call_data_struct data
;
578 int cpus
= num_online_cpus() - 1;
584 /* Can deadlock when called with interrupts disabled */
585 WARN_ON(irqs_disabled());
589 atomic_set(&data
.finished
, 0);
592 spin_lock(&call_lock
);
596 smp_cross_call(&xcall_call_function
, 0, 0, 0);
599 * Wait for other cpus to complete function or at
600 * least snap the call data.
603 while (atomic_read(&data
.finished
) != cpus
) {
610 spin_unlock(&call_lock
);
615 spin_unlock(&call_lock
);
616 printk("XCALL: Remote cpus not responding, ncpus=%ld finished=%ld\n",
617 (long) num_online_cpus() - 1L,
618 (long) atomic_read(&data
.finished
));
622 void smp_call_function_client(int irq
, struct pt_regs
*regs
)
624 void (*func
) (void *info
) = call_data
->func
;
625 void *info
= call_data
->info
;
627 clear_softint(1 << irq
);
628 if (call_data
->wait
) {
629 /* let initiator proceed only after completion */
631 atomic_inc(&call_data
->finished
);
633 /* let initiator proceed after getting data */
634 atomic_inc(&call_data
->finished
);
639 extern unsigned long xcall_flush_tlb_mm
;
640 extern unsigned long xcall_flush_tlb_pending
;
641 extern unsigned long xcall_flush_tlb_kernel_range
;
642 extern unsigned long xcall_flush_tlb_all_spitfire
;
643 extern unsigned long xcall_flush_tlb_all_cheetah
;
644 extern unsigned long xcall_report_regs
;
645 extern unsigned long xcall_receive_signal
;
647 #ifdef DCACHE_ALIASING_POSSIBLE
648 extern unsigned long xcall_flush_dcache_page_cheetah
;
650 extern unsigned long xcall_flush_dcache_page_spitfire
;
652 #ifdef CONFIG_DEBUG_DCFLUSH
653 extern atomic_t dcpage_flushes
;
654 extern atomic_t dcpage_flushes_xcall
;
657 static __inline__
void __local_flush_dcache_page(struct page
*page
)
659 #ifdef DCACHE_ALIASING_POSSIBLE
660 __flush_dcache_page(page_address(page
),
661 ((tlb_type
== spitfire
) &&
662 page_mapping(page
) != NULL
));
664 if (page_mapping(page
) != NULL
&&
665 tlb_type
== spitfire
)
666 __flush_icache_page(__pa(page_address(page
)));
670 void smp_flush_dcache_page_impl(struct page
*page
, int cpu
)
672 cpumask_t mask
= cpumask_of_cpu(cpu
);
673 int this_cpu
= get_cpu();
675 #ifdef CONFIG_DEBUG_DCFLUSH
676 atomic_inc(&dcpage_flushes
);
678 if (cpu
== this_cpu
) {
679 __local_flush_dcache_page(page
);
680 } else if (cpu_online(cpu
)) {
681 void *pg_addr
= page_address(page
);
684 if (tlb_type
== spitfire
) {
686 ((u64
)&xcall_flush_dcache_page_spitfire
);
687 if (page_mapping(page
) != NULL
)
688 data0
|= ((u64
)1 << 32);
689 spitfire_xcall_deliver(data0
,
694 #ifdef DCACHE_ALIASING_POSSIBLE
696 ((u64
)&xcall_flush_dcache_page_cheetah
);
697 cheetah_xcall_deliver(data0
,
702 #ifdef CONFIG_DEBUG_DCFLUSH
703 atomic_inc(&dcpage_flushes_xcall
);
710 void flush_dcache_page_all(struct mm_struct
*mm
, struct page
*page
)
712 void *pg_addr
= page_address(page
);
713 cpumask_t mask
= cpu_online_map
;
715 int this_cpu
= get_cpu();
717 cpu_clear(this_cpu
, mask
);
719 #ifdef CONFIG_DEBUG_DCFLUSH
720 atomic_inc(&dcpage_flushes
);
722 if (cpus_empty(mask
))
724 if (tlb_type
== spitfire
) {
725 data0
= ((u64
)&xcall_flush_dcache_page_spitfire
);
726 if (page_mapping(page
) != NULL
)
727 data0
|= ((u64
)1 << 32);
728 spitfire_xcall_deliver(data0
,
733 #ifdef DCACHE_ALIASING_POSSIBLE
734 data0
= ((u64
)&xcall_flush_dcache_page_cheetah
);
735 cheetah_xcall_deliver(data0
,
740 #ifdef CONFIG_DEBUG_DCFLUSH
741 atomic_inc(&dcpage_flushes_xcall
);
744 __local_flush_dcache_page(page
);
749 void smp_receive_signal(int cpu
)
751 cpumask_t mask
= cpumask_of_cpu(cpu
);
753 if (cpu_online(cpu
)) {
754 u64 data0
= (((u64
)&xcall_receive_signal
) & 0xffffffff);
756 if (tlb_type
== spitfire
)
757 spitfire_xcall_deliver(data0
, 0, 0, mask
);
759 cheetah_xcall_deliver(data0
, 0, 0, mask
);
763 void smp_receive_signal_client(int irq
, struct pt_regs
*regs
)
765 /* Just return, rtrap takes care of the rest. */
766 clear_softint(1 << irq
);
769 void smp_report_regs(void)
771 smp_cross_call(&xcall_report_regs
, 0, 0, 0);
774 void smp_flush_tlb_all(void)
776 if (tlb_type
== spitfire
)
777 smp_cross_call(&xcall_flush_tlb_all_spitfire
, 0, 0, 0);
779 smp_cross_call(&xcall_flush_tlb_all_cheetah
, 0, 0, 0);
783 /* We know that the window frames of the user have been flushed
784 * to the stack before we get here because all callers of us
785 * are flush_tlb_*() routines, and these run after flush_cache_*()
786 * which performs the flushw.
788 * The SMP TLB coherency scheme we use works as follows:
790 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
791 * space has (potentially) executed on, this is the heuristic
792 * we use to avoid doing cross calls.
794 * Also, for flushing from kswapd and also for clones, we
795 * use cpu_vm_mask as the list of cpus to make run the TLB.
797 * 2) TLB context numbers are shared globally across all processors
798 * in the system, this allows us to play several games to avoid
801 * One invariant is that when a cpu switches to a process, and
802 * that processes tsk->active_mm->cpu_vm_mask does not have the
803 * current cpu's bit set, that tlb context is flushed locally.
805 * If the address space is non-shared (ie. mm->count == 1) we avoid
806 * cross calls when we want to flush the currently running process's
807 * tlb state. This is done by clearing all cpu bits except the current
808 * processor's in current->active_mm->cpu_vm_mask and performing the
809 * flush locally only. This will force any subsequent cpus which run
810 * this task to flush the context from the local tlb if the process
811 * migrates to another cpu (again).
813 * 3) For shared address spaces (threads) and swapping we bite the
814 * bullet for most cases and perform the cross call (but only to
815 * the cpus listed in cpu_vm_mask).
817 * The performance gain from "optimizing" away the cross call for threads is
818 * questionable (in theory the big win for threads is the massive sharing of
819 * address space state across processors).
821 void smp_flush_tlb_mm(struct mm_struct
*mm
)
824 * This code is called from two places, dup_mmap and exit_mmap. In the
825 * former case, we really need a flush. In the later case, the callers
826 * are single threaded exec_mmap (really need a flush), multithreaded
827 * exec_mmap case (do not need to flush, since the caller gets a new
828 * context via activate_mm), and all other callers of mmput() whence
829 * the flush can be optimized since the associated threads are dead and
830 * the mm is being torn down (__exit_mm and other mmput callers) or the
831 * owning thread is dissociating itself from the mm. The
832 * (atomic_read(&mm->mm_users) == 0) check ensures real work is done
833 * for single thread exec and dup_mmap cases. An alternate check might
834 * have been (current->mm != mm).
837 if (atomic_read(&mm
->mm_users
) == 0)
841 u32 ctx
= CTX_HWBITS(mm
->context
);
844 if (atomic_read(&mm
->mm_users
) == 1) {
845 mm
->cpu_vm_mask
= cpumask_of_cpu(cpu
);
846 goto local_flush_and_out
;
849 smp_cross_call_masked(&xcall_flush_tlb_mm
,
854 __flush_tlb_mm(ctx
, SECONDARY_CONTEXT
);
860 void smp_flush_tlb_pending(struct mm_struct
*mm
, unsigned long nr
, unsigned long *vaddrs
)
862 u32 ctx
= CTX_HWBITS(mm
->context
);
865 if (mm
== current
->active_mm
&& atomic_read(&mm
->mm_users
) == 1) {
866 mm
->cpu_vm_mask
= cpumask_of_cpu(cpu
);
867 goto local_flush_and_out
;
869 /* This optimization is not valid. Normally
870 * we will be holding the page_table_lock, but
871 * there is an exception which is copy_page_range()
872 * when forking. The lock is held during the individual
873 * page table updates in the parent, but not at the
874 * top level, which is where we are invoked.
877 cpumask_t this_cpu_mask
= cpumask_of_cpu(cpu
);
879 /* By virtue of running under the mm->page_table_lock,
880 * and mmu_context.h:switch_mm doing the same, the
881 * following operation is safe.
883 if (cpus_equal(mm
->cpu_vm_mask
, this_cpu_mask
))
884 goto local_flush_and_out
;
888 smp_cross_call_masked(&xcall_flush_tlb_pending
,
889 ctx
, nr
, (unsigned long) vaddrs
,
893 __flush_tlb_pending(ctx
, nr
, vaddrs
);
898 void smp_flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
901 end
= PAGE_ALIGN(end
);
903 smp_cross_call(&xcall_flush_tlb_kernel_range
,
906 __flush_tlb_kernel_range(start
, end
);
911 /* #define CAPTURE_DEBUG */
912 extern unsigned long xcall_capture
;
914 static atomic_t smp_capture_depth
= ATOMIC_INIT(0);
915 static atomic_t smp_capture_registry
= ATOMIC_INIT(0);
916 static unsigned long penguins_are_doing_time
;
918 void smp_capture(void)
920 int result
= atomic_add_ret(1, &smp_capture_depth
);
923 int ncpus
= num_online_cpus();
926 printk("CPU[%d]: Sending penguins to jail...",
929 penguins_are_doing_time
= 1;
930 membar("#StoreStore | #LoadStore");
931 atomic_inc(&smp_capture_registry
);
932 smp_cross_call(&xcall_capture
, 0, 0, 0);
933 while (atomic_read(&smp_capture_registry
) != ncpus
)
941 void smp_release(void)
943 if (atomic_dec_and_test(&smp_capture_depth
)) {
945 printk("CPU[%d]: Giving pardon to "
946 "imprisoned penguins\n",
949 penguins_are_doing_time
= 0;
950 membar("#StoreStore | #StoreLoad");
951 atomic_dec(&smp_capture_registry
);
955 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
956 * can service tlb flush xcalls...
958 extern void prom_world(int);
959 extern void save_alternate_globals(unsigned long *);
960 extern void restore_alternate_globals(unsigned long *);
961 void smp_penguin_jailcell(int irq
, struct pt_regs
*regs
)
963 unsigned long global_save
[24];
965 clear_softint(1 << irq
);
969 __asm__
__volatile__("flushw");
970 save_alternate_globals(global_save
);
972 atomic_inc(&smp_capture_registry
);
973 membar("#StoreLoad | #StoreStore");
974 while (penguins_are_doing_time
)
976 restore_alternate_globals(global_save
);
977 atomic_dec(&smp_capture_registry
);
983 extern unsigned long xcall_promstop
;
985 void smp_promstop_others(void)
987 smp_cross_call(&xcall_promstop
, 0, 0, 0);
990 #define prof_multiplier(__cpu) cpu_data(__cpu).multiplier
991 #define prof_counter(__cpu) cpu_data(__cpu).counter
993 void smp_percpu_timer_interrupt(struct pt_regs
*regs
)
995 unsigned long compare
, tick
, pstate
;
996 int cpu
= smp_processor_id();
997 int user
= user_mode(regs
);
1000 * Check for level 14 softint.
1003 unsigned long tick_mask
= tick_ops
->softint_mask
;
1005 if (!(get_softint() & tick_mask
)) {
1006 extern void handler_irq(int, struct pt_regs
*);
1008 handler_irq(14, regs
);
1011 clear_softint(tick_mask
);
1015 profile_tick(CPU_PROFILING
, regs
);
1016 if (!--prof_counter(cpu
)) {
1019 if (cpu
== boot_cpu_id
) {
1020 kstat_this_cpu
.irqs
[0]++;
1021 timer_tick_interrupt(regs
);
1024 update_process_times(user
);
1028 prof_counter(cpu
) = prof_multiplier(cpu
);
1031 /* Guarantee that the following sequences execute
1034 __asm__
__volatile__("rdpr %%pstate, %0\n\t"
1035 "wrpr %0, %1, %%pstate"
1039 compare
= tick_ops
->add_compare(current_tick_offset
);
1040 tick
= tick_ops
->get_tick();
1042 /* Restore PSTATE_IE. */
1043 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
1046 } while (time_after_eq(tick
, compare
));
1049 static void __init
smp_setup_percpu_timer(void)
1051 int cpu
= smp_processor_id();
1052 unsigned long pstate
;
1054 prof_counter(cpu
) = prof_multiplier(cpu
) = 1;
1056 /* Guarantee that the following sequences execute
1059 __asm__
__volatile__("rdpr %%pstate, %0\n\t"
1060 "wrpr %0, %1, %%pstate"
1064 tick_ops
->init_tick(current_tick_offset
);
1066 /* Restore PSTATE_IE. */
1067 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
1072 void __init
smp_tick_init(void)
1074 boot_cpu_id
= hard_smp_processor_id();
1075 current_tick_offset
= timer_tick_offset
;
1077 cpu_set(boot_cpu_id
, cpu_online_map
);
1078 prof_counter(boot_cpu_id
) = prof_multiplier(boot_cpu_id
) = 1;
1081 /* /proc/profile writes can call this, don't __init it please. */
1082 static DEFINE_SPINLOCK(prof_setup_lock
);
1084 int setup_profiling_timer(unsigned int multiplier
)
1086 unsigned long flags
;
1089 if ((!multiplier
) || (timer_tick_offset
/ multiplier
) < 1000)
1092 spin_lock_irqsave(&prof_setup_lock
, flags
);
1093 for (i
= 0; i
< NR_CPUS
; i
++)
1094 prof_multiplier(i
) = multiplier
;
1095 current_tick_offset
= (timer_tick_offset
/ multiplier
);
1096 spin_unlock_irqrestore(&prof_setup_lock
, flags
);
1101 void __init
smp_prepare_cpus(unsigned int max_cpus
)
1106 while (!cpu_find_by_instance(instance
, NULL
, &mid
)) {
1108 cpu_set(mid
, phys_cpu_present_map
);
1112 if (num_possible_cpus() > max_cpus
) {
1114 while (!cpu_find_by_instance(instance
, NULL
, &mid
)) {
1115 if (mid
!= boot_cpu_id
) {
1116 cpu_clear(mid
, phys_cpu_present_map
);
1117 if (num_possible_cpus() <= max_cpus
)
1124 smp_store_cpu_info(boot_cpu_id
);
1127 void __devinit
smp_prepare_boot_cpu(void)
1129 if (hard_smp_processor_id() >= NR_CPUS
) {
1130 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
1134 current_thread_info()->cpu
= hard_smp_processor_id();
1136 cpu_set(smp_processor_id(), cpu_online_map
);
1137 cpu_set(smp_processor_id(), phys_cpu_present_map
);
1140 int __devinit
__cpu_up(unsigned int cpu
)
1142 int ret
= smp_boot_one_cpu(cpu
);
1145 cpu_set(cpu
, smp_commenced_mask
);
1146 while (!cpu_isset(cpu
, cpu_online_map
))
1148 if (!cpu_isset(cpu
, cpu_online_map
)) {
1151 smp_synchronize_one_tick(cpu
);
1157 void __init
smp_cpus_done(unsigned int max_cpus
)
1159 unsigned long bogosum
= 0;
1162 for (i
= 0; i
< NR_CPUS
; i
++) {
1164 bogosum
+= cpu_data(i
).udelay_val
;
1166 printk("Total of %ld processors activated "
1167 "(%lu.%02lu BogoMIPS).\n",
1168 (long) num_online_cpus(),
1169 bogosum
/(500000/HZ
),
1170 (bogosum
/(5000/HZ
))%100);
1173 /* This needn't do anything as we do not sleep the cpu
1174 * inside of the idler task, so an interrupt is not needed
1175 * to get a clean fast response.
1177 * XXX Reverify this assumption... -DaveM
1179 * Addendum: We do want it to do something for the signal
1180 * delivery case, we detect that by just seeing
1181 * if we are trying to send this to an idler or not.
1183 void smp_send_reschedule(int cpu
)
1185 if (cpu_data(cpu
).idle_volume
== 0)
1186 smp_receive_signal(cpu
);
1189 /* This is a nop because we capture all other cpus
1190 * anyways when making the PROM active.
1192 void smp_send_stop(void)
1196 unsigned long __per_cpu_base
;
1197 unsigned long __per_cpu_shift
;
1199 EXPORT_SYMBOL(__per_cpu_base
);
1200 EXPORT_SYMBOL(__per_cpu_shift
);
1202 void __init
setup_per_cpu_areas(void)
1204 unsigned long goal
, size
, i
;
1206 /* Created by linker magic */
1207 extern char __per_cpu_start
[], __per_cpu_end
[];
1209 /* Copy section for each CPU (we discard the original) */
1210 goal
= ALIGN(__per_cpu_end
- __per_cpu_start
, PAGE_SIZE
);
1212 #ifdef CONFIG_MODULES
1213 if (goal
< PERCPU_ENOUGH_ROOM
)
1214 goal
= PERCPU_ENOUGH_ROOM
;
1216 __per_cpu_shift
= 0;
1217 for (size
= 1UL; size
< goal
; size
<<= 1UL)
1220 /* Make sure the resulting __per_cpu_base value
1221 * will fit in the 43-bit sign extended IMMU
1224 ptr
= __alloc_bootmem(size
* NR_CPUS
, PAGE_SIZE
,
1225 (unsigned long) __per_cpu_start
);
1227 __per_cpu_base
= ptr
- __per_cpu_start
;
1229 if ((__per_cpu_shift
< PAGE_SHIFT
) ||
1230 (__per_cpu_base
& ~PAGE_MASK
) ||
1231 (__per_cpu_base
!= (((long) __per_cpu_base
<< 20) >> 20))) {
1232 prom_printf("PER_CPU: Invalid layout, "
1233 "ptr[%p] shift[%lx] base[%lx]\n",
1234 ptr
, __per_cpu_shift
, __per_cpu_base
);
1238 for (i
= 0; i
< NR_CPUS
; i
++, ptr
+= size
)
1239 memcpy(ptr
, __per_cpu_start
, __per_cpu_end
- __per_cpu_start
);
1241 /* Finally, load in the boot cpu's base value.
1242 * We abuse the IMMU TSB register for trap handler
1243 * entry and exit loading of %g5. That is why it
1244 * has to be page aligned.
1246 cpu_setup_percpu_base(hard_smp_processor_id());