1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
26 #include <asm/ptrace.h>
27 #include <asm/atomic.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30 #include <asm/cpudata.h>
33 #include <asm/irq_regs.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/uaccess.h>
38 #include <asm/timer.h>
39 #include <asm/starfire.h>
41 #include <asm/sections.h>
43 #include <asm/mdesc.h>
45 extern void calibrate_delay(void);
47 int sparc64_multi_core __read_mostly
;
49 /* Please don't make this stuff initdata!!! --DaveM */
50 unsigned char boot_cpu_id
;
52 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_NONE
;
53 cpumask_t phys_cpu_present_map __read_mostly
= CPU_MASK_NONE
;
54 cpumask_t cpu_sibling_map
[NR_CPUS
] __read_mostly
=
55 { [0 ... NR_CPUS
-1] = CPU_MASK_NONE
};
56 cpumask_t cpu_core_map
[NR_CPUS
] __read_mostly
=
57 { [0 ... NR_CPUS
-1] = CPU_MASK_NONE
};
58 static cpumask_t smp_commenced_mask
;
59 static cpumask_t cpu_callout_map
;
61 void smp_info(struct seq_file
*m
)
65 seq_printf(m
, "State:\n");
66 for_each_online_cpu(i
)
67 seq_printf(m
, "CPU%d:\t\tonline\n", i
);
70 void smp_bogo(struct seq_file
*m
)
74 for_each_online_cpu(i
)
76 "Cpu%dBogo\t: %lu.%02lu\n"
77 "Cpu%dClkTck\t: %016lx\n",
78 i
, cpu_data(i
).udelay_val
/ (500000/HZ
),
79 (cpu_data(i
).udelay_val
/ (5000/HZ
)) % 100,
80 i
, cpu_data(i
).clock_tick
);
83 extern void setup_sparc64_timer(void);
85 static volatile unsigned long callin_flag
= 0;
87 void __init
smp_callin(void)
89 int cpuid
= hard_smp_processor_id();
91 __local_per_cpu_offset
= __per_cpu_offset(cpuid
);
93 if (tlb_type
== hypervisor
)
94 sun4v_ktsb_register();
98 setup_sparc64_timer();
100 if (cheetah_pcache_forced_on
)
101 cheetah_enable_pcache();
106 cpu_data(cpuid
).udelay_val
= loops_per_jiffy
;
108 __asm__
__volatile__("membar #Sync\n\t"
109 "flush %%g6" : : : "memory");
111 /* Clear this or we will die instantly when we
112 * schedule back to this idler...
114 current_thread_info()->new_child
= 0;
116 /* Attach to the address space of init_task. */
117 atomic_inc(&init_mm
.mm_count
);
118 current
->active_mm
= &init_mm
;
120 while (!cpu_isset(cpuid
, smp_commenced_mask
))
123 cpu_set(cpuid
, cpu_online_map
);
125 /* idle thread is expected to have preempt disabled */
131 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
132 panic("SMP bolixed\n");
135 /* This tick register synchronization scheme is taken entirely from
136 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
138 * The only change I've made is to rework it so that the master
139 * initiates the synchonization instead of the slave. -DaveM
143 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
145 #define NUM_ROUNDS 64 /* magic value */
146 #define NUM_ITERS 5 /* likewise */
148 static DEFINE_SPINLOCK(itc_sync_lock
);
149 static unsigned long go
[SLAVE
+ 1];
151 #define DEBUG_TICK_SYNC 0
153 static inline long get_delta (long *rt
, long *master
)
155 unsigned long best_t0
= 0, best_t1
= ~0UL, best_tm
= 0;
156 unsigned long tcenter
, t0
, t1
, tm
;
159 for (i
= 0; i
< NUM_ITERS
; i
++) {
160 t0
= tick_ops
->get_tick();
163 while (!(tm
= go
[SLAVE
]))
167 t1
= tick_ops
->get_tick();
169 if (t1
- t0
< best_t1
- best_t0
)
170 best_t0
= t0
, best_t1
= t1
, best_tm
= tm
;
173 *rt
= best_t1
- best_t0
;
174 *master
= best_tm
- best_t0
;
176 /* average best_t0 and best_t1 without overflow: */
177 tcenter
= (best_t0
/2 + best_t1
/2);
178 if (best_t0
% 2 + best_t1
% 2 == 2)
180 return tcenter
- best_tm
;
183 void smp_synchronize_tick_client(void)
185 long i
, delta
, adj
, adjust_latency
= 0, done
= 0;
186 unsigned long flags
, rt
, master_time_stamp
, bound
;
189 long rt
; /* roundtrip time */
190 long master
; /* master's timestamp */
191 long diff
; /* difference between midpoint and master's timestamp */
192 long lat
; /* estimate of itc adjustment latency */
201 local_irq_save(flags
);
203 for (i
= 0; i
< NUM_ROUNDS
; i
++) {
204 delta
= get_delta(&rt
, &master_time_stamp
);
206 done
= 1; /* let's lock on to this... */
212 adjust_latency
+= -delta
;
213 adj
= -delta
+ adjust_latency
/4;
217 tick_ops
->add_tick(adj
);
221 t
[i
].master
= master_time_stamp
;
223 t
[i
].lat
= adjust_latency
/4;
227 local_irq_restore(flags
);
230 for (i
= 0; i
< NUM_ROUNDS
; i
++)
231 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
232 t
[i
].rt
, t
[i
].master
, t
[i
].diff
, t
[i
].lat
);
235 printk(KERN_INFO
"CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
236 "maxerr %lu cycles)\n", smp_processor_id(), delta
, rt
);
239 static void smp_start_sync_tick_client(int cpu
);
241 static void smp_synchronize_one_tick(int cpu
)
243 unsigned long flags
, i
;
247 smp_start_sync_tick_client(cpu
);
249 /* wait for client to be ready */
253 /* now let the client proceed into his loop */
257 spin_lock_irqsave(&itc_sync_lock
, flags
);
259 for (i
= 0; i
< NUM_ROUNDS
*NUM_ITERS
; i
++) {
264 go
[SLAVE
] = tick_ops
->get_tick();
268 spin_unlock_irqrestore(&itc_sync_lock
, flags
);
271 extern void sun4v_init_mondo_queues(int use_bootmem
, int cpu
, int alloc
, int load
);
273 extern unsigned long sparc64_cpu_startup
;
275 /* The OBP cpu startup callback truncates the 3rd arg cookie to
276 * 32-bits (I think) so to be safe we have it read the pointer
277 * contained here so we work on >4GB machines. -DaveM
279 static struct thread_info
*cpu_new_thread
= NULL
;
281 static int __devinit
smp_boot_one_cpu(unsigned int cpu
)
283 unsigned long entry
=
284 (unsigned long)(&sparc64_cpu_startup
);
285 unsigned long cookie
=
286 (unsigned long)(&cpu_new_thread
);
287 struct task_struct
*p
;
292 cpu_new_thread
= task_thread_info(p
);
293 cpu_set(cpu
, cpu_callout_map
);
295 if (tlb_type
== hypervisor
) {
296 /* Alloc the mondo queues, cpu will load them. */
297 sun4v_init_mondo_queues(0, cpu
, 1, 0);
299 prom_startcpu_cpuid(cpu
, entry
, cookie
);
301 struct device_node
*dp
= of_find_node_by_cpuid(cpu
);
303 prom_startcpu(dp
->node
, entry
, cookie
);
306 for (timeout
= 0; timeout
< 5000000; timeout
++) {
315 printk("Processor %d is stuck.\n", cpu
);
316 cpu_clear(cpu
, cpu_callout_map
);
319 cpu_new_thread
= NULL
;
324 static void spitfire_xcall_helper(u64 data0
, u64 data1
, u64 data2
, u64 pstate
, unsigned long cpu
)
329 if (this_is_starfire
) {
330 /* map to real upaid */
331 cpu
= (((cpu
& 0x3c) << 1) |
332 ((cpu
& 0x40) >> 4) |
336 target
= (cpu
<< 14) | 0x70;
338 /* Ok, this is the real Spitfire Errata #54.
339 * One must read back from a UDB internal register
340 * after writes to the UDB interrupt dispatch, but
341 * before the membar Sync for that write.
342 * So we use the high UDB control register (ASI 0x7f,
343 * ADDR 0x20) for the dummy read. -DaveM
346 __asm__
__volatile__(
347 "wrpr %1, %2, %%pstate\n\t"
348 "stxa %4, [%0] %3\n\t"
349 "stxa %5, [%0+%8] %3\n\t"
351 "stxa %6, [%0+%8] %3\n\t"
353 "stxa %%g0, [%7] %3\n\t"
356 "ldxa [%%g1] 0x7f, %%g0\n\t"
359 : "r" (pstate
), "i" (PSTATE_IE
), "i" (ASI_INTR_W
),
360 "r" (data0
), "r" (data1
), "r" (data2
), "r" (target
),
361 "r" (0x10), "0" (tmp
)
364 /* NOTE: PSTATE_IE is still clear. */
367 __asm__
__volatile__("ldxa [%%g0] %1, %0"
369 : "i" (ASI_INTR_DISPATCH_STAT
));
371 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
378 } while (result
& 0x1);
379 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
382 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
383 smp_processor_id(), result
);
390 static __inline__
void spitfire_xcall_deliver(u64 data0
, u64 data1
, u64 data2
, cpumask_t mask
)
395 __asm__
__volatile__("rdpr %%pstate, %0" : "=r" (pstate
));
396 for_each_cpu_mask(i
, mask
)
397 spitfire_xcall_helper(data0
, data1
, data2
, pstate
, i
);
400 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
401 * packet, but we have no use for that. However we do take advantage of
402 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
404 static void cheetah_xcall_deliver(u64 data0
, u64 data1
, u64 data2
, cpumask_t mask
)
407 int nack_busy_id
, is_jbus
, need_more
;
409 if (cpus_empty(mask
))
412 /* Unfortunately, someone at Sun had the brilliant idea to make the
413 * busy/nack fields hard-coded by ITID number for this Ultra-III
414 * derivative processor.
416 __asm__ ("rdpr %%ver, %0" : "=r" (ver
));
417 is_jbus
= ((ver
>> 32) == __JALAPENO_ID
||
418 (ver
>> 32) == __SERRANO_ID
);
420 __asm__
__volatile__("rdpr %%pstate, %0" : "=r" (pstate
));
424 __asm__
__volatile__("wrpr %0, %1, %%pstate\n\t"
425 : : "r" (pstate
), "i" (PSTATE_IE
));
427 /* Setup the dispatch data registers. */
428 __asm__
__volatile__("stxa %0, [%3] %6\n\t"
429 "stxa %1, [%4] %6\n\t"
430 "stxa %2, [%5] %6\n\t"
433 : "r" (data0
), "r" (data1
), "r" (data2
),
434 "r" (0x40), "r" (0x50), "r" (0x60),
441 for_each_cpu_mask(i
, mask
) {
442 u64 target
= (i
<< 14) | 0x70;
445 target
|= (nack_busy_id
<< 24);
446 __asm__
__volatile__(
447 "stxa %%g0, [%0] %1\n\t"
450 : "r" (target
), "i" (ASI_INTR_W
));
452 if (nack_busy_id
== 32) {
459 /* Now, poll for completion. */
464 stuck
= 100000 * nack_busy_id
;
466 __asm__
__volatile__("ldxa [%%g0] %1, %0"
467 : "=r" (dispatch_stat
)
468 : "i" (ASI_INTR_DISPATCH_STAT
));
469 if (dispatch_stat
== 0UL) {
470 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
472 if (unlikely(need_more
)) {
474 for_each_cpu_mask(i
, mask
) {
486 } while (dispatch_stat
& 0x5555555555555555UL
);
488 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
491 if ((dispatch_stat
& ~(0x5555555555555555UL
)) == 0) {
492 /* Busy bits will not clear, continue instead
493 * of freezing up on this cpu.
495 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
496 smp_processor_id(), dispatch_stat
);
498 int i
, this_busy_nack
= 0;
500 /* Delay some random time with interrupts enabled
501 * to prevent deadlock.
503 udelay(2 * nack_busy_id
);
505 /* Clear out the mask bits for cpus which did not
508 for_each_cpu_mask(i
, mask
) {
512 check_mask
= (0x2UL
<< (2*i
));
514 check_mask
= (0x2UL
<<
516 if ((dispatch_stat
& check_mask
) == 0)
519 if (this_busy_nack
== 64)
528 /* Multi-cpu list version. */
529 static void hypervisor_xcall_deliver(u64 data0
, u64 data1
, u64 data2
, cpumask_t mask
)
531 struct trap_per_cpu
*tb
;
534 cpumask_t error_mask
;
535 unsigned long flags
, status
;
536 int cnt
, retries
, this_cpu
, prev_sent
, i
;
538 if (cpus_empty(mask
))
541 /* We have to do this whole thing with interrupts fully disabled.
542 * Otherwise if we send an xcall from interrupt context it will
543 * corrupt both our mondo block and cpu list state.
545 * One consequence of this is that we cannot use timeout mechanisms
546 * that depend upon interrupts being delivered locally. So, for
547 * example, we cannot sample jiffies and expect it to advance.
549 * Fortunately, udelay() uses %stick/%tick so we can use that.
551 local_irq_save(flags
);
553 this_cpu
= smp_processor_id();
554 tb
= &trap_block
[this_cpu
];
556 mondo
= __va(tb
->cpu_mondo_block_pa
);
562 cpu_list
= __va(tb
->cpu_list_pa
);
564 /* Setup the initial cpu list. */
566 for_each_cpu_mask(i
, mask
)
569 cpus_clear(error_mask
);
573 int forward_progress
, n_sent
;
575 status
= sun4v_cpu_mondo_send(cnt
,
577 tb
->cpu_mondo_block_pa
);
579 /* HV_EOK means all cpus received the xcall, we're done. */
580 if (likely(status
== HV_EOK
))
583 /* First, see if we made any forward progress.
585 * The hypervisor indicates successful sends by setting
586 * cpu list entries to the value 0xffff.
589 for (i
= 0; i
< cnt
; i
++) {
590 if (likely(cpu_list
[i
] == 0xffff))
594 forward_progress
= 0;
595 if (n_sent
> prev_sent
)
596 forward_progress
= 1;
600 /* If we get a HV_ECPUERROR, then one or more of the cpus
601 * in the list are in error state. Use the cpu_state()
602 * hypervisor call to find out which cpus are in error state.
604 if (unlikely(status
== HV_ECPUERROR
)) {
605 for (i
= 0; i
< cnt
; i
++) {
613 err
= sun4v_cpu_state(cpu
);
615 err
== HV_CPU_STATE_ERROR
) {
616 cpu_list
[i
] = 0xffff;
617 cpu_set(cpu
, error_mask
);
620 } else if (unlikely(status
!= HV_EWOULDBLOCK
))
621 goto fatal_mondo_error
;
623 /* Don't bother rewriting the CPU list, just leave the
624 * 0xffff and non-0xffff entries in there and the
625 * hypervisor will do the right thing.
627 * Only advance timeout state if we didn't make any
630 if (unlikely(!forward_progress
)) {
631 if (unlikely(++retries
> 10000))
632 goto fatal_mondo_timeout
;
634 /* Delay a little bit to let other cpus catch up
635 * on their cpu mondo queue work.
641 local_irq_restore(flags
);
643 if (unlikely(!cpus_empty(error_mask
)))
644 goto fatal_mondo_cpu_error
;
648 fatal_mondo_cpu_error
:
649 printk(KERN_CRIT
"CPU[%d]: SUN4V mondo cpu error, some target cpus "
650 "were in error state\n",
652 printk(KERN_CRIT
"CPU[%d]: Error mask [ ", this_cpu
);
653 for_each_cpu_mask(i
, error_mask
)
659 local_irq_restore(flags
);
660 printk(KERN_CRIT
"CPU[%d]: SUN4V mondo timeout, no forward "
661 " progress after %d retries.\n",
663 goto dump_cpu_list_and_out
;
666 local_irq_restore(flags
);
667 printk(KERN_CRIT
"CPU[%d]: Unexpected SUN4V mondo error %lu\n",
669 printk(KERN_CRIT
"CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
670 "mondo_block_pa(%lx)\n",
671 this_cpu
, cnt
, tb
->cpu_list_pa
, tb
->cpu_mondo_block_pa
);
673 dump_cpu_list_and_out
:
674 printk(KERN_CRIT
"CPU[%d]: CPU list [ ", this_cpu
);
675 for (i
= 0; i
< cnt
; i
++)
676 printk("%u ", cpu_list
[i
]);
680 /* Send cross call to all processors mentioned in MASK
683 static void smp_cross_call_masked(unsigned long *func
, u32 ctx
, u64 data1
, u64 data2
, cpumask_t mask
)
685 u64 data0
= (((u64
)ctx
)<<32 | (((u64
)func
) & 0xffffffff));
686 int this_cpu
= get_cpu();
688 cpus_and(mask
, mask
, cpu_online_map
);
689 cpu_clear(this_cpu
, mask
);
691 if (tlb_type
== spitfire
)
692 spitfire_xcall_deliver(data0
, data1
, data2
, mask
);
693 else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
)
694 cheetah_xcall_deliver(data0
, data1
, data2
, mask
);
696 hypervisor_xcall_deliver(data0
, data1
, data2
, mask
);
697 /* NOTE: Caller runs local copy on master. */
702 extern unsigned long xcall_sync_tick
;
704 static void smp_start_sync_tick_client(int cpu
)
706 cpumask_t mask
= cpumask_of_cpu(cpu
);
708 smp_cross_call_masked(&xcall_sync_tick
,
712 /* Send cross call to all processors except self. */
713 #define smp_cross_call(func, ctx, data1, data2) \
714 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
716 struct call_data_struct
{
717 void (*func
) (void *info
);
723 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(call_lock
);
724 static struct call_data_struct
*call_data
;
726 extern unsigned long xcall_call_function
;
729 * smp_call_function(): Run a function on all other CPUs.
730 * @func: The function to run. This must be fast and non-blocking.
731 * @info: An arbitrary pointer to pass to the function.
732 * @nonatomic: currently unused.
733 * @wait: If true, wait (atomically) until function has completed on other CPUs.
735 * Returns 0 on success, else a negative status code. Does not return until
736 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
738 * You must not call this function with disabled interrupts or from a
739 * hardware interrupt handler or from a bottom half handler.
741 static int smp_call_function_mask(void (*func
)(void *info
), void *info
,
742 int nonatomic
, int wait
, cpumask_t mask
)
744 struct call_data_struct data
;
747 /* Can deadlock when called with interrupts disabled */
748 WARN_ON(irqs_disabled());
752 atomic_set(&data
.finished
, 0);
755 spin_lock(&call_lock
);
757 cpu_clear(smp_processor_id(), mask
);
758 cpus
= cpus_weight(mask
);
765 smp_cross_call_masked(&xcall_call_function
, 0, 0, 0, mask
);
767 /* Wait for response */
768 while (atomic_read(&data
.finished
) != cpus
)
772 spin_unlock(&call_lock
);
777 int smp_call_function(void (*func
)(void *info
), void *info
,
778 int nonatomic
, int wait
)
780 return smp_call_function_mask(func
, info
, nonatomic
, wait
,
784 void smp_call_function_client(int irq
, struct pt_regs
*regs
)
786 void (*func
) (void *info
) = call_data
->func
;
787 void *info
= call_data
->info
;
789 clear_softint(1 << irq
);
790 if (call_data
->wait
) {
791 /* let initiator proceed only after completion */
793 atomic_inc(&call_data
->finished
);
795 /* let initiator proceed after getting data */
796 atomic_inc(&call_data
->finished
);
801 static void tsb_sync(void *info
)
803 struct trap_per_cpu
*tp
= &trap_block
[raw_smp_processor_id()];
804 struct mm_struct
*mm
= info
;
806 /* It is not valid to test "currrent->active_mm == mm" here.
808 * The value of "current" is not changed atomically with
809 * switch_mm(). But that's OK, we just need to check the
810 * current cpu's trap block PGD physical address.
812 if (tp
->pgd_paddr
== __pa(mm
->pgd
))
813 tsb_context_switch(mm
);
816 void smp_tsb_sync(struct mm_struct
*mm
)
818 smp_call_function_mask(tsb_sync
, mm
, 0, 1, mm
->cpu_vm_mask
);
821 extern unsigned long xcall_flush_tlb_mm
;
822 extern unsigned long xcall_flush_tlb_pending
;
823 extern unsigned long xcall_flush_tlb_kernel_range
;
824 extern unsigned long xcall_report_regs
;
825 extern unsigned long xcall_receive_signal
;
826 extern unsigned long xcall_new_mmu_context_version
;
828 #ifdef DCACHE_ALIASING_POSSIBLE
829 extern unsigned long xcall_flush_dcache_page_cheetah
;
831 extern unsigned long xcall_flush_dcache_page_spitfire
;
833 #ifdef CONFIG_DEBUG_DCFLUSH
834 extern atomic_t dcpage_flushes
;
835 extern atomic_t dcpage_flushes_xcall
;
838 static __inline__
void __local_flush_dcache_page(struct page
*page
)
840 #ifdef DCACHE_ALIASING_POSSIBLE
841 __flush_dcache_page(page_address(page
),
842 ((tlb_type
== spitfire
) &&
843 page_mapping(page
) != NULL
));
845 if (page_mapping(page
) != NULL
&&
846 tlb_type
== spitfire
)
847 __flush_icache_page(__pa(page_address(page
)));
851 void smp_flush_dcache_page_impl(struct page
*page
, int cpu
)
853 cpumask_t mask
= cpumask_of_cpu(cpu
);
856 if (tlb_type
== hypervisor
)
859 #ifdef CONFIG_DEBUG_DCFLUSH
860 atomic_inc(&dcpage_flushes
);
863 this_cpu
= get_cpu();
865 if (cpu
== this_cpu
) {
866 __local_flush_dcache_page(page
);
867 } else if (cpu_online(cpu
)) {
868 void *pg_addr
= page_address(page
);
871 if (tlb_type
== spitfire
) {
873 ((u64
)&xcall_flush_dcache_page_spitfire
);
874 if (page_mapping(page
) != NULL
)
875 data0
|= ((u64
)1 << 32);
876 spitfire_xcall_deliver(data0
,
880 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
881 #ifdef DCACHE_ALIASING_POSSIBLE
883 ((u64
)&xcall_flush_dcache_page_cheetah
);
884 cheetah_xcall_deliver(data0
,
889 #ifdef CONFIG_DEBUG_DCFLUSH
890 atomic_inc(&dcpage_flushes_xcall
);
897 void flush_dcache_page_all(struct mm_struct
*mm
, struct page
*page
)
899 void *pg_addr
= page_address(page
);
900 cpumask_t mask
= cpu_online_map
;
904 if (tlb_type
== hypervisor
)
907 this_cpu
= get_cpu();
909 cpu_clear(this_cpu
, mask
);
911 #ifdef CONFIG_DEBUG_DCFLUSH
912 atomic_inc(&dcpage_flushes
);
914 if (cpus_empty(mask
))
916 if (tlb_type
== spitfire
) {
917 data0
= ((u64
)&xcall_flush_dcache_page_spitfire
);
918 if (page_mapping(page
) != NULL
)
919 data0
|= ((u64
)1 << 32);
920 spitfire_xcall_deliver(data0
,
924 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
925 #ifdef DCACHE_ALIASING_POSSIBLE
926 data0
= ((u64
)&xcall_flush_dcache_page_cheetah
);
927 cheetah_xcall_deliver(data0
,
932 #ifdef CONFIG_DEBUG_DCFLUSH
933 atomic_inc(&dcpage_flushes_xcall
);
936 __local_flush_dcache_page(page
);
941 static void __smp_receive_signal_mask(cpumask_t mask
)
943 smp_cross_call_masked(&xcall_receive_signal
, 0, 0, 0, mask
);
946 void smp_receive_signal(int cpu
)
948 cpumask_t mask
= cpumask_of_cpu(cpu
);
951 __smp_receive_signal_mask(mask
);
954 void smp_receive_signal_client(int irq
, struct pt_regs
*regs
)
956 clear_softint(1 << irq
);
959 void smp_new_mmu_context_version_client(int irq
, struct pt_regs
*regs
)
961 struct mm_struct
*mm
;
964 clear_softint(1 << irq
);
966 /* See if we need to allocate a new TLB context because
967 * the version of the one we are using is now out of date.
969 mm
= current
->active_mm
;
970 if (unlikely(!mm
|| (mm
== &init_mm
)))
973 spin_lock_irqsave(&mm
->context
.lock
, flags
);
975 if (unlikely(!CTX_VALID(mm
->context
)))
976 get_new_mmu_context(mm
);
978 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
980 load_secondary_context(mm
);
981 __flush_tlb_mm(CTX_HWBITS(mm
->context
),
985 void smp_new_mmu_context_version(void)
987 smp_cross_call(&xcall_new_mmu_context_version
, 0, 0, 0);
990 void smp_report_regs(void)
992 smp_cross_call(&xcall_report_regs
, 0, 0, 0);
995 /* We know that the window frames of the user have been flushed
996 * to the stack before we get here because all callers of us
997 * are flush_tlb_*() routines, and these run after flush_cache_*()
998 * which performs the flushw.
1000 * The SMP TLB coherency scheme we use works as follows:
1002 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1003 * space has (potentially) executed on, this is the heuristic
1004 * we use to avoid doing cross calls.
1006 * Also, for flushing from kswapd and also for clones, we
1007 * use cpu_vm_mask as the list of cpus to make run the TLB.
1009 * 2) TLB context numbers are shared globally across all processors
1010 * in the system, this allows us to play several games to avoid
1013 * One invariant is that when a cpu switches to a process, and
1014 * that processes tsk->active_mm->cpu_vm_mask does not have the
1015 * current cpu's bit set, that tlb context is flushed locally.
1017 * If the address space is non-shared (ie. mm->count == 1) we avoid
1018 * cross calls when we want to flush the currently running process's
1019 * tlb state. This is done by clearing all cpu bits except the current
1020 * processor's in current->active_mm->cpu_vm_mask and performing the
1021 * flush locally only. This will force any subsequent cpus which run
1022 * this task to flush the context from the local tlb if the process
1023 * migrates to another cpu (again).
1025 * 3) For shared address spaces (threads) and swapping we bite the
1026 * bullet for most cases and perform the cross call (but only to
1027 * the cpus listed in cpu_vm_mask).
1029 * The performance gain from "optimizing" away the cross call for threads is
1030 * questionable (in theory the big win for threads is the massive sharing of
1031 * address space state across processors).
1034 /* This currently is only used by the hugetlb arch pre-fault
1035 * hook on UltraSPARC-III+ and later when changing the pagesize
1036 * bits of the context register for an address space.
1038 void smp_flush_tlb_mm(struct mm_struct
*mm
)
1040 u32 ctx
= CTX_HWBITS(mm
->context
);
1041 int cpu
= get_cpu();
1043 if (atomic_read(&mm
->mm_users
) == 1) {
1044 mm
->cpu_vm_mask
= cpumask_of_cpu(cpu
);
1045 goto local_flush_and_out
;
1048 smp_cross_call_masked(&xcall_flush_tlb_mm
,
1052 local_flush_and_out
:
1053 __flush_tlb_mm(ctx
, SECONDARY_CONTEXT
);
1058 void smp_flush_tlb_pending(struct mm_struct
*mm
, unsigned long nr
, unsigned long *vaddrs
)
1060 u32 ctx
= CTX_HWBITS(mm
->context
);
1061 int cpu
= get_cpu();
1063 if (mm
== current
->active_mm
&& atomic_read(&mm
->mm_users
) == 1)
1064 mm
->cpu_vm_mask
= cpumask_of_cpu(cpu
);
1066 smp_cross_call_masked(&xcall_flush_tlb_pending
,
1067 ctx
, nr
, (unsigned long) vaddrs
,
1070 __flush_tlb_pending(ctx
, nr
, vaddrs
);
1075 void smp_flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
1078 end
= PAGE_ALIGN(end
);
1080 smp_cross_call(&xcall_flush_tlb_kernel_range
,
1083 __flush_tlb_kernel_range(start
, end
);
1088 /* #define CAPTURE_DEBUG */
1089 extern unsigned long xcall_capture
;
1091 static atomic_t smp_capture_depth
= ATOMIC_INIT(0);
1092 static atomic_t smp_capture_registry
= ATOMIC_INIT(0);
1093 static unsigned long penguins_are_doing_time
;
1095 void smp_capture(void)
1097 int result
= atomic_add_ret(1, &smp_capture_depth
);
1100 int ncpus
= num_online_cpus();
1102 #ifdef CAPTURE_DEBUG
1103 printk("CPU[%d]: Sending penguins to jail...",
1104 smp_processor_id());
1106 penguins_are_doing_time
= 1;
1107 membar_storestore_loadstore();
1108 atomic_inc(&smp_capture_registry
);
1109 smp_cross_call(&xcall_capture
, 0, 0, 0);
1110 while (atomic_read(&smp_capture_registry
) != ncpus
)
1112 #ifdef CAPTURE_DEBUG
1118 void smp_release(void)
1120 if (atomic_dec_and_test(&smp_capture_depth
)) {
1121 #ifdef CAPTURE_DEBUG
1122 printk("CPU[%d]: Giving pardon to "
1123 "imprisoned penguins\n",
1124 smp_processor_id());
1126 penguins_are_doing_time
= 0;
1127 membar_storeload_storestore();
1128 atomic_dec(&smp_capture_registry
);
1132 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1133 * can service tlb flush xcalls...
1135 extern void prom_world(int);
1137 void smp_penguin_jailcell(int irq
, struct pt_regs
*regs
)
1139 clear_softint(1 << irq
);
1143 __asm__
__volatile__("flushw");
1145 atomic_inc(&smp_capture_registry
);
1146 membar_storeload_storestore();
1147 while (penguins_are_doing_time
)
1149 atomic_dec(&smp_capture_registry
);
1155 void __init
smp_tick_init(void)
1157 boot_cpu_id
= hard_smp_processor_id();
1160 /* /proc/profile writes can call this, don't __init it please. */
1161 int setup_profiling_timer(unsigned int multiplier
)
1166 /* Constrain the number of cpus to max_cpus. */
1167 void __init
smp_prepare_cpus(unsigned int max_cpus
)
1171 if (num_possible_cpus() > max_cpus
) {
1172 for_each_possible_cpu(i
) {
1173 if (i
!= boot_cpu_id
) {
1174 cpu_clear(i
, phys_cpu_present_map
);
1175 cpu_clear(i
, cpu_present_map
);
1176 if (num_possible_cpus() <= max_cpus
)
1182 cpu_data(boot_cpu_id
).udelay_val
= loops_per_jiffy
;
1185 void __devinit
smp_prepare_boot_cpu(void)
1189 void __devinit
smp_fill_in_sib_core_maps(void)
1193 for_each_possible_cpu(i
) {
1196 if (cpu_data(i
).core_id
== 0) {
1197 cpu_set(i
, cpu_core_map
[i
]);
1201 for_each_possible_cpu(j
) {
1202 if (cpu_data(i
).core_id
==
1203 cpu_data(j
).core_id
)
1204 cpu_set(j
, cpu_core_map
[i
]);
1208 for_each_possible_cpu(i
) {
1211 if (cpu_data(i
).proc_id
== -1) {
1212 cpu_set(i
, cpu_sibling_map
[i
]);
1216 for_each_possible_cpu(j
) {
1217 if (cpu_data(i
).proc_id
==
1218 cpu_data(j
).proc_id
)
1219 cpu_set(j
, cpu_sibling_map
[i
]);
1224 int __cpuinit
__cpu_up(unsigned int cpu
)
1226 int ret
= smp_boot_one_cpu(cpu
);
1229 cpu_set(cpu
, smp_commenced_mask
);
1230 while (!cpu_isset(cpu
, cpu_online_map
))
1232 if (!cpu_isset(cpu
, cpu_online_map
)) {
1235 /* On SUN4V, writes to %tick and %stick are
1238 if (tlb_type
!= hypervisor
)
1239 smp_synchronize_one_tick(cpu
);
1245 void __init
smp_cpus_done(unsigned int max_cpus
)
1247 unsigned long bogosum
= 0;
1250 for_each_online_cpu(i
)
1251 bogosum
+= cpu_data(i
).udelay_val
;
1252 printk("Total of %ld processors activated "
1253 "(%lu.%02lu BogoMIPS).\n",
1254 (long) num_online_cpus(),
1255 bogosum
/(500000/HZ
),
1256 (bogosum
/(5000/HZ
))%100);
1259 void smp_send_reschedule(int cpu
)
1261 smp_receive_signal(cpu
);
1264 /* This is a nop because we capture all other cpus
1265 * anyways when making the PROM active.
1267 void smp_send_stop(void)
1271 unsigned long __per_cpu_base __read_mostly
;
1272 unsigned long __per_cpu_shift __read_mostly
;
1274 EXPORT_SYMBOL(__per_cpu_base
);
1275 EXPORT_SYMBOL(__per_cpu_shift
);
1277 void __init
real_setup_per_cpu_areas(void)
1279 unsigned long goal
, size
, i
;
1282 /* Copy section for each CPU (we discard the original) */
1283 goal
= PERCPU_ENOUGH_ROOM
;
1285 __per_cpu_shift
= PAGE_SHIFT
;
1286 for (size
= PAGE_SIZE
; size
< goal
; size
<<= 1UL)
1289 ptr
= alloc_bootmem_pages(size
* NR_CPUS
);
1291 __per_cpu_base
= ptr
- __per_cpu_start
;
1293 for (i
= 0; i
< NR_CPUS
; i
++, ptr
+= size
)
1294 memcpy(ptr
, __per_cpu_start
, __per_cpu_end
- __per_cpu_start
);
1296 /* Setup %g5 for the boot cpu. */
1297 __local_per_cpu_offset
= __per_cpu_offset(smp_processor_id());