x86: cpa self-test, WARN_ON()
[wrt350n-kernel.git] / drivers / parisc / ccio-dma.c
blob7c60cbd85dc8505883e14ad9091f456badfdb427
1 /*
2 ** ccio-dma.c:
3 ** DMA management routines for first generation cache-coherent machines.
4 ** Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
5 **
6 ** (c) Copyright 2000 Grant Grundler
7 ** (c) Copyright 2000 Ryan Bradetich
8 ** (c) Copyright 2000 Hewlett-Packard Company
9 **
10 ** This program is free software; you can redistribute it and/or modify
11 ** it under the terms of the GNU General Public License as published by
12 ** the Free Software Foundation; either version 2 of the License, or
13 ** (at your option) any later version.
16 ** "Real Mode" operation refers to U2/Uturn chip operation.
17 ** U2/Uturn were designed to perform coherency checks w/o using
18 ** the I/O MMU - basically what x86 does.
20 ** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
21 ** CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
22 ** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
24 ** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
26 ** Drawbacks of using Real Mode are:
27 ** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
28 ** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
29 ** o Ability to do scatter/gather in HW is lost.
30 ** o Doesn't work under PCX-U/U+ machines since they didn't follow
31 ** the coherency design originally worked out. Only PCX-W does.
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/init.h>
37 #include <linux/mm.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/string.h>
41 #include <linux/pci.h>
42 #include <linux/reboot.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <linux/scatterlist.h>
47 #include <asm/byteorder.h>
48 #include <asm/cache.h> /* for L1_CACHE_BYTES */
49 #include <asm/uaccess.h>
50 #include <asm/page.h>
51 #include <asm/dma.h>
52 #include <asm/io.h>
53 #include <asm/hardware.h> /* for register_module() */
54 #include <asm/parisc-device.h>
56 /*
57 ** Choose "ccio" since that's what HP-UX calls it.
58 ** Make it easier for folks to migrate from one to the other :^)
60 #define MODULE_NAME "ccio"
62 #undef DEBUG_CCIO_RES
63 #undef DEBUG_CCIO_RUN
64 #undef DEBUG_CCIO_INIT
65 #undef DEBUG_CCIO_RUN_SG
67 #ifdef CONFIG_PROC_FS
69 * CCIO_SEARCH_TIME can help measure how fast the bitmap search is.
70 * impacts performance though - ditch it if you don't use it.
72 #define CCIO_SEARCH_TIME
73 #undef CCIO_MAP_STATS
74 #else
75 #undef CCIO_SEARCH_TIME
76 #undef CCIO_MAP_STATS
77 #endif
79 #include <linux/proc_fs.h>
80 #include <asm/runway.h> /* for proc_runway_root */
82 #ifdef DEBUG_CCIO_INIT
83 #define DBG_INIT(x...) printk(x)
84 #else
85 #define DBG_INIT(x...)
86 #endif
88 #ifdef DEBUG_CCIO_RUN
89 #define DBG_RUN(x...) printk(x)
90 #else
91 #define DBG_RUN(x...)
92 #endif
94 #ifdef DEBUG_CCIO_RES
95 #define DBG_RES(x...) printk(x)
96 #else
97 #define DBG_RES(x...)
98 #endif
100 #ifdef DEBUG_CCIO_RUN_SG
101 #define DBG_RUN_SG(x...) printk(x)
102 #else
103 #define DBG_RUN_SG(x...)
104 #endif
106 #define CCIO_INLINE inline
107 #define WRITE_U32(value, addr) __raw_writel(value, addr)
108 #define READ_U32(addr) __raw_readl(addr)
110 #define U2_IOA_RUNWAY 0x580
111 #define U2_BC_GSC 0x501
112 #define UTURN_IOA_RUNWAY 0x581
113 #define UTURN_BC_GSC 0x502
115 #define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */
116 #define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */
117 #define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */
119 struct ioa_registers {
120 /* Runway Supervisory Set */
121 int32_t unused1[12];
122 uint32_t io_command; /* Offset 12 */
123 uint32_t io_status; /* Offset 13 */
124 uint32_t io_control; /* Offset 14 */
125 int32_t unused2[1];
127 /* Runway Auxiliary Register Set */
128 uint32_t io_err_resp; /* Offset 0 */
129 uint32_t io_err_info; /* Offset 1 */
130 uint32_t io_err_req; /* Offset 2 */
131 uint32_t io_err_resp_hi; /* Offset 3 */
132 uint32_t io_tlb_entry_m; /* Offset 4 */
133 uint32_t io_tlb_entry_l; /* Offset 5 */
134 uint32_t unused3[1];
135 uint32_t io_pdir_base; /* Offset 7 */
136 uint32_t io_io_low_hv; /* Offset 8 */
137 uint32_t io_io_high_hv; /* Offset 9 */
138 uint32_t unused4[1];
139 uint32_t io_chain_id_mask; /* Offset 11 */
140 uint32_t unused5[2];
141 uint32_t io_io_low; /* Offset 14 */
142 uint32_t io_io_high; /* Offset 15 */
146 ** IOA Registers
147 ** -------------
149 ** Runway IO_CONTROL Register (+0x38)
151 ** The Runway IO_CONTROL register controls the forwarding of transactions.
153 ** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 |
154 ** | HV | TLB | reserved | HV | mode | reserved |
156 ** o mode field indicates the address translation of transactions
157 ** forwarded from Runway to GSC+:
158 ** Mode Name Value Definition
159 ** Off (default) 0 Opaque to matching addresses.
160 ** Include 1 Transparent for matching addresses.
161 ** Peek 3 Map matching addresses.
163 ** + "Off" mode: Runway transactions which match the I/O range
164 ** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
165 ** + "Include" mode: all addresses within the I/O range specified
166 ** by the IO_IO_LOW and IO_IO_HIGH registers are transparently
167 ** forwarded. This is the I/O Adapter's normal operating mode.
168 ** + "Peek" mode: used during system configuration to initialize the
169 ** GSC+ bus. Runway Write_Shorts in the address range specified by
170 ** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
171 ** *AND* the GSC+ address is remapped to the Broadcast Physical
172 ** Address space by setting the 14 high order address bits of the
173 ** 32 bit GSC+ address to ones.
175 ** o TLB field affects transactions which are forwarded from GSC+ to Runway.
176 ** "Real" mode is the poweron default.
178 ** TLB Mode Value Description
179 ** Real 0 No TLB translation. Address is directly mapped and the
180 ** virtual address is composed of selected physical bits.
181 ** Error 1 Software fills the TLB manually.
182 ** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory).
185 ** IO_IO_LOW_HV +0x60 (HV dependent)
186 ** IO_IO_HIGH_HV +0x64 (HV dependent)
187 ** IO_IO_LOW +0x78 (Architected register)
188 ** IO_IO_HIGH +0x7c (Architected register)
190 ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
191 ** I/O Adapter address space, respectively.
193 ** 0 ... 7 | 8 ... 15 | 16 ... 31 |
194 ** 11111111 | 11111111 | address |
196 ** Each LOW/HIGH pair describes a disjoint address space region.
197 ** (2 per GSC+ port). Each incoming Runway transaction address is compared
198 ** with both sets of LOW/HIGH registers. If the address is in the range
199 ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
200 ** for forwarded to the respective GSC+ bus.
201 ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
202 ** an address space region.
204 ** In order for a Runway address to reside within GSC+ extended address space:
205 ** Runway Address [0:7] must identically compare to 8'b11111111
206 ** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19]
207 ** Runway Address [12:23] must be greater than or equal to
208 ** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
209 ** Runway Address [24:39] is not used in the comparison.
211 ** When the Runway transaction is forwarded to GSC+, the GSC+ address is
212 ** as follows:
213 ** GSC+ Address[0:3] 4'b1111
214 ** GSC+ Address[4:29] Runway Address[12:37]
215 ** GSC+ Address[30:31] 2'b00
217 ** All 4 Low/High registers must be initialized (by PDC) once the lower bus
218 ** is interrogated and address space is defined. The operating system will
219 ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
220 ** the PDC initialization. However, the hardware version dependent IO_IO_LOW
221 ** and IO_IO_HIGH registers should not be subsequently altered by the OS.
223 ** Writes to both sets of registers will take effect immediately, bypassing
224 ** the queues, which ensures that subsequent Runway transactions are checked
225 ** against the updated bounds values. However reads are queued, introducing
226 ** the possibility of a read being bypassed by a subsequent write to the same
227 ** register. This sequence can be avoided by having software wait for read
228 ** returns before issuing subsequent writes.
231 struct ioc {
232 struct ioa_registers __iomem *ioc_regs; /* I/O MMU base address */
233 u8 *res_map; /* resource map, bit == pdir entry */
234 u64 *pdir_base; /* physical base address */
235 u32 pdir_size; /* bytes, function of IOV Space size */
236 u32 res_hint; /* next available IOVP -
237 circular search */
238 u32 res_size; /* size of resource map in bytes */
239 spinlock_t res_lock;
241 #ifdef CCIO_SEARCH_TIME
242 #define CCIO_SEARCH_SAMPLE 0x100
243 unsigned long avg_search[CCIO_SEARCH_SAMPLE];
244 unsigned long avg_idx; /* current index into avg_search */
245 #endif
246 #ifdef CCIO_MAP_STATS
247 unsigned long used_pages;
248 unsigned long msingle_calls;
249 unsigned long msingle_pages;
250 unsigned long msg_calls;
251 unsigned long msg_pages;
252 unsigned long usingle_calls;
253 unsigned long usingle_pages;
254 unsigned long usg_calls;
255 unsigned long usg_pages;
256 #endif
257 unsigned short cujo20_bug;
259 /* STUFF We don't need in performance path */
260 u32 chainid_shift; /* specify bit location of chain_id */
261 struct ioc *next; /* Linked list of discovered iocs */
262 const char *name; /* device name from firmware */
263 unsigned int hw_path; /* the hardware path this ioc is associatd with */
264 struct pci_dev *fake_pci_dev; /* the fake pci_dev for non-pci devs */
265 struct resource mmio_region[2]; /* The "routed" MMIO regions */
268 static struct ioc *ioc_list;
269 static int ioc_count;
271 /**************************************************************
273 * I/O Pdir Resource Management
275 * Bits set in the resource map are in use.
276 * Each bit can represent a number of pages.
277 * LSbs represent lower addresses (IOVA's).
279 * This was was copied from sba_iommu.c. Don't try to unify
280 * the two resource managers unless a way to have different
281 * allocation policies is also adjusted. We'd like to avoid
282 * I/O TLB thrashing by having resource allocation policy
283 * match the I/O TLB replacement policy.
285 ***************************************************************/
286 #define IOVP_SIZE PAGE_SIZE
287 #define IOVP_SHIFT PAGE_SHIFT
288 #define IOVP_MASK PAGE_MASK
290 /* Convert from IOVP to IOVA and vice versa. */
291 #define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
292 #define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
294 #define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT)
295 #define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT)
296 #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
299 ** Don't worry about the 150% average search length on a miss.
300 ** If the search wraps around, and passes the res_hint, it will
301 ** cause the kernel to panic anyhow.
303 #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \
304 for(; res_ptr < res_end; ++res_ptr) { \
305 if(0 == (*res_ptr & mask)) { \
306 *res_ptr |= mask; \
307 res_idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
308 ioc->res_hint = res_idx + (size >> 3); \
309 goto resource_found; \
313 #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
314 u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
315 u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
316 CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
317 res_ptr = (u##size *)&(ioc)->res_map[0]; \
318 CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
321 ** Find available bit in this ioa's resource map.
322 ** Use a "circular" search:
323 ** o Most IOVA's are "temporary" - avg search time should be small.
324 ** o keep a history of what happened for debugging
325 ** o KISS.
327 ** Perf optimizations:
328 ** o search for log2(size) bits at a time.
329 ** o search for available resource bits using byte/word/whatever.
330 ** o use different search for "large" (eg > 4 pages) or "very large"
331 ** (eg > 16 pages) mappings.
335 * ccio_alloc_range - Allocate pages in the ioc's resource map.
336 * @ioc: The I/O Controller.
337 * @pages_needed: The requested number of pages to be mapped into the
338 * I/O Pdir...
340 * This function searches the resource map of the ioc to locate a range
341 * of available pages for the requested size.
343 static int
344 ccio_alloc_range(struct ioc *ioc, size_t size)
346 unsigned int pages_needed = size >> IOVP_SHIFT;
347 unsigned int res_idx;
348 #ifdef CCIO_SEARCH_TIME
349 unsigned long cr_start = mfctl(16);
350 #endif
352 BUG_ON(pages_needed == 0);
353 BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
355 DBG_RES("%s() size: %d pages_needed %d\n",
356 __FUNCTION__, size, pages_needed);
359 ** "seek and ye shall find"...praying never hurts either...
360 ** ggg sacrifices another 710 to the computer gods.
363 if (pages_needed <= 8) {
365 * LAN traffic will not thrash the TLB IFF the same NIC
366 * uses 8 adjacent pages to map seperate payload data.
367 * ie the same byte in the resource bit map.
369 #if 0
370 /* FIXME: bit search should shift it's way through
371 * an unsigned long - not byte at a time. As it is now,
372 * we effectively allocate this byte to this mapping.
374 unsigned long mask = ~(~0UL >> pages_needed);
375 CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
376 #else
377 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
378 #endif
379 } else if (pages_needed <= 16) {
380 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
381 } else if (pages_needed <= 32) {
382 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
383 #ifdef __LP64__
384 } else if (pages_needed <= 64) {
385 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
386 #endif
387 } else {
388 panic("%s: %s() Too many pages to map. pages_needed: %u\n",
389 __FILE__, __FUNCTION__, pages_needed);
392 panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
393 __FUNCTION__);
395 resource_found:
397 DBG_RES("%s() res_idx %d res_hint: %d\n",
398 __FUNCTION__, res_idx, ioc->res_hint);
400 #ifdef CCIO_SEARCH_TIME
402 unsigned long cr_end = mfctl(16);
403 unsigned long tmp = cr_end - cr_start;
404 /* check for roll over */
405 cr_start = (cr_end < cr_start) ? -(tmp) : (tmp);
407 ioc->avg_search[ioc->avg_idx++] = cr_start;
408 ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
409 #endif
410 #ifdef CCIO_MAP_STATS
411 ioc->used_pages += pages_needed;
412 #endif
414 ** return the bit address.
416 return res_idx << 3;
419 #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
420 u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
421 BUG_ON((*res_ptr & mask) != mask); \
422 *res_ptr &= ~(mask);
425 * ccio_free_range - Free pages from the ioc's resource map.
426 * @ioc: The I/O Controller.
427 * @iova: The I/O Virtual Address.
428 * @pages_mapped: The requested number of pages to be freed from the
429 * I/O Pdir.
431 * This function frees the resouces allocated for the iova.
433 static void
434 ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
436 unsigned long iovp = CCIO_IOVP(iova);
437 unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
439 BUG_ON(pages_mapped == 0);
440 BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
441 BUG_ON(pages_mapped > BITS_PER_LONG);
443 DBG_RES("%s(): res_idx: %d pages_mapped %d\n",
444 __FUNCTION__, res_idx, pages_mapped);
446 #ifdef CCIO_MAP_STATS
447 ioc->used_pages -= pages_mapped;
448 #endif
450 if(pages_mapped <= 8) {
451 #if 0
452 /* see matching comments in alloc_range */
453 unsigned long mask = ~(~0UL >> pages_mapped);
454 CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
455 #else
456 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xff, 8);
457 #endif
458 } else if(pages_mapped <= 16) {
459 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffff, 16);
460 } else if(pages_mapped <= 32) {
461 CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
462 #ifdef __LP64__
463 } else if(pages_mapped <= 64) {
464 CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
465 #endif
466 } else {
467 panic("%s:%s() Too many pages to unmap.\n", __FILE__,
468 __FUNCTION__);
472 /****************************************************************
474 ** CCIO dma_ops support routines
476 *****************************************************************/
478 typedef unsigned long space_t;
479 #define KERNEL_SPACE 0
482 ** DMA "Page Type" and Hints
483 ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
484 ** set for subcacheline DMA transfers since we don't want to damage the
485 ** other part of a cacheline.
486 ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
487 ** This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
488 ** data can avoid this if the mapping covers full cache lines.
489 ** o STOP_MOST is needed for atomicity across cachelines.
490 ** Apparently only "some EISA devices" need this.
491 ** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
492 ** to use this hint iff the EISA devices needs this feature.
493 ** According to the U2 ERS, STOP_MOST enabled pages hurt performance.
494 ** o PREFETCH should *not* be set for cases like Multiple PCI devices
495 ** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
496 ** device can be fetched and multiply DMA streams will thrash the
497 ** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
498 ** and Invalidation of Prefetch Entries".
500 ** FIXME: the default hints need to be per GSC device - not global.
502 ** HP-UX dorks: linux device driver programming model is totally different
503 ** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
504 ** do special things to work on non-coherent platforms...linux has to
505 ** be much more careful with this.
507 #define IOPDIR_VALID 0x01UL
508 #define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */
509 #ifdef CONFIG_EISA
510 #define HINT_STOP_MOST 0x04UL /* LSL support */
511 #else
512 #define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */
513 #endif
514 #define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */
515 #define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */
519 ** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
520 ** ccio_alloc_consistent() depends on this to get SAFE_DMA
521 ** when it passes in BIDIRECTIONAL flag.
523 static u32 hint_lookup[] = {
524 [PCI_DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
525 [PCI_DMA_TODEVICE] = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
526 [PCI_DMA_FROMDEVICE] = HINT_STOP_MOST | IOPDIR_VALID,
530 * ccio_io_pdir_entry - Initialize an I/O Pdir.
531 * @pdir_ptr: A pointer into I/O Pdir.
532 * @sid: The Space Identifier.
533 * @vba: The virtual address.
534 * @hints: The DMA Hint.
536 * Given a virtual address (vba, arg2) and space id, (sid, arg1),
537 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
538 * entry consists of 8 bytes as shown below (MSB == bit 0):
541 * WORD 0:
542 * +------+----------------+-----------------------------------------------+
543 * | Phys | Virtual Index | Phys |
544 * | 0:3 | 0:11 | 4:19 |
545 * |4 bits| 12 bits | 16 bits |
546 * +------+----------------+-----------------------------------------------+
547 * WORD 1:
548 * +-----------------------+-----------------------------------------------+
549 * | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid |
550 * | 20:39 | | Enable |Enable | |Enable|DMA | |
551 * | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit |
552 * +-----------------------+-----------------------------------------------+
554 * The virtual index field is filled with the results of the LCI
555 * (Load Coherence Index) instruction. The 8 bits used for the virtual
556 * index are bits 12:19 of the value returned by LCI.
558 void CCIO_INLINE
559 ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
560 unsigned long hints)
562 register unsigned long pa;
563 register unsigned long ci; /* coherent index */
565 /* We currently only support kernel addresses */
566 BUG_ON(sid != KERNEL_SPACE);
568 mtsp(sid,1);
571 ** WORD 1 - low order word
572 ** "hints" parm includes the VALID bit!
573 ** "dep" clobbers the physical address offset bits as well.
575 pa = virt_to_phys(vba);
576 asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints));
577 ((u32 *)pdir_ptr)[1] = (u32) pa;
580 ** WORD 0 - high order word
583 #ifdef __LP64__
585 ** get bits 12:15 of physical address
586 ** shift bits 16:31 of physical address
587 ** and deposit them
589 asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
590 asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
591 asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci));
592 #else
593 pa = 0;
594 #endif
596 ** get CPU coherency index bits
597 ** Grab virtual index [0:11]
598 ** Deposit virt_idx bits into I/O PDIR word
600 asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
601 asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
602 asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci));
604 ((u32 *)pdir_ptr)[0] = (u32) pa;
607 /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
608 ** PCX-U/U+ do. (eg C200/C240)
609 ** PCX-T'? Don't know. (eg C110 or similar K-class)
611 ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
612 ** Hopefully we can patch (NOP) these out at boot time somehow.
614 ** "Since PCX-U employs an offset hash that is incompatible with
615 ** the real mode coherence index generation of U2, the PDIR entry
616 ** must be flushed to memory to retain coherence."
618 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
619 asm volatile("sync");
623 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
624 * @ioc: The I/O Controller.
625 * @iovp: The I/O Virtual Page.
626 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
628 * Purge invalid I/O PDIR entries from the I/O TLB.
630 * FIXME: Can we change the byte_cnt to pages_mapped?
632 static CCIO_INLINE void
633 ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
635 u32 chain_size = 1 << ioc->chainid_shift;
637 iovp &= IOVP_MASK; /* clear offset bits, just want pagenum */
638 byte_cnt += chain_size;
640 while(byte_cnt > chain_size) {
641 WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
642 iovp += chain_size;
643 byte_cnt -= chain_size;
648 * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
649 * @ioc: The I/O Controller.
650 * @iova: The I/O Virtual Address.
651 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
653 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
654 * TLB entries.
656 * FIXME: at some threshhold it might be "cheaper" to just blow
657 * away the entire I/O TLB instead of individual entries.
659 * FIXME: Uturn has 256 TLB entries. We don't need to purge every
660 * PDIR entry - just once for each possible TLB entry.
661 * (We do need to maker I/O PDIR entries invalid regardless).
663 * FIXME: Can we change byte_cnt to pages_mapped?
665 static CCIO_INLINE void
666 ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
668 u32 iovp = (u32)CCIO_IOVP(iova);
669 size_t saved_byte_cnt;
671 /* round up to nearest page size */
672 saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
674 while(byte_cnt > 0) {
675 /* invalidate one page at a time */
676 unsigned int idx = PDIR_INDEX(iovp);
677 char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
679 BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
680 pdir_ptr[7] = 0; /* clear only VALID bit */
682 ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
683 ** PCX-U/U+ do. (eg C200/C240)
684 ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
686 ** Hopefully someone figures out how to patch (NOP) the
687 ** FDC/SYNC out at boot time.
689 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7]));
691 iovp += IOVP_SIZE;
692 byte_cnt -= IOVP_SIZE;
695 asm volatile("sync");
696 ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
699 /****************************************************************
701 ** CCIO dma_ops
703 *****************************************************************/
706 * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
707 * @dev: The PCI device.
708 * @mask: A bit mask describing the DMA address range of the device.
710 * This function implements the pci_dma_supported function.
712 static int
713 ccio_dma_supported(struct device *dev, u64 mask)
715 if(dev == NULL) {
716 printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
717 BUG();
718 return 0;
721 /* only support 32-bit devices (ie PCI/GSC) */
722 return (int)(mask == 0xffffffffUL);
726 * ccio_map_single - Map an address range into the IOMMU.
727 * @dev: The PCI device.
728 * @addr: The start address of the DMA region.
729 * @size: The length of the DMA region.
730 * @direction: The direction of the DMA transaction (to/from device).
732 * This function implements the pci_map_single function.
734 static dma_addr_t
735 ccio_map_single(struct device *dev, void *addr, size_t size,
736 enum dma_data_direction direction)
738 int idx;
739 struct ioc *ioc;
740 unsigned long flags;
741 dma_addr_t iovp;
742 dma_addr_t offset;
743 u64 *pdir_start;
744 unsigned long hint = hint_lookup[(int)direction];
746 BUG_ON(!dev);
747 ioc = GET_IOC(dev);
749 BUG_ON(size <= 0);
751 /* save offset bits */
752 offset = ((unsigned long) addr) & ~IOVP_MASK;
754 /* round up to nearest IOVP_SIZE */
755 size = ALIGN(size + offset, IOVP_SIZE);
756 spin_lock_irqsave(&ioc->res_lock, flags);
758 #ifdef CCIO_MAP_STATS
759 ioc->msingle_calls++;
760 ioc->msingle_pages += size >> IOVP_SHIFT;
761 #endif
763 idx = ccio_alloc_range(ioc, size);
764 iovp = (dma_addr_t)MKIOVP(idx);
766 pdir_start = &(ioc->pdir_base[idx]);
768 DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
769 __FUNCTION__, addr, (long)iovp | offset, size);
771 /* If not cacheline aligned, force SAFE_DMA on the whole mess */
772 if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
773 hint |= HINT_SAFE_DMA;
775 while(size > 0) {
776 ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
778 DBG_RUN(" pdir %p %08x%08x\n",
779 pdir_start,
780 (u32) (((u32 *) pdir_start)[0]),
781 (u32) (((u32 *) pdir_start)[1]));
782 ++pdir_start;
783 addr += IOVP_SIZE;
784 size -= IOVP_SIZE;
787 spin_unlock_irqrestore(&ioc->res_lock, flags);
789 /* form complete address */
790 return CCIO_IOVA(iovp, offset);
794 * ccio_unmap_single - Unmap an address range from the IOMMU.
795 * @dev: The PCI device.
796 * @addr: The start address of the DMA region.
797 * @size: The length of the DMA region.
798 * @direction: The direction of the DMA transaction (to/from device).
800 * This function implements the pci_unmap_single function.
802 static void
803 ccio_unmap_single(struct device *dev, dma_addr_t iova, size_t size,
804 enum dma_data_direction direction)
806 struct ioc *ioc;
807 unsigned long flags;
808 dma_addr_t offset = iova & ~IOVP_MASK;
810 BUG_ON(!dev);
811 ioc = GET_IOC(dev);
813 DBG_RUN("%s() iovp 0x%lx/%x\n",
814 __FUNCTION__, (long)iova, size);
816 iova ^= offset; /* clear offset bits */
817 size += offset;
818 size = ALIGN(size, IOVP_SIZE);
820 spin_lock_irqsave(&ioc->res_lock, flags);
822 #ifdef CCIO_MAP_STATS
823 ioc->usingle_calls++;
824 ioc->usingle_pages += size >> IOVP_SHIFT;
825 #endif
827 ccio_mark_invalid(ioc, iova, size);
828 ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
829 spin_unlock_irqrestore(&ioc->res_lock, flags);
833 * ccio_alloc_consistent - Allocate a consistent DMA mapping.
834 * @dev: The PCI device.
835 * @size: The length of the DMA region.
836 * @dma_handle: The DMA address handed back to the device (not the cpu).
838 * This function implements the pci_alloc_consistent function.
840 static void *
841 ccio_alloc_consistent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag)
843 void *ret;
844 #if 0
845 /* GRANT Need to establish hierarchy for non-PCI devs as well
846 ** and then provide matching gsc_map_xxx() functions for them as well.
848 if(!hwdev) {
849 /* only support PCI */
850 *dma_handle = 0;
851 return 0;
853 #endif
854 ret = (void *) __get_free_pages(flag, get_order(size));
856 if (ret) {
857 memset(ret, 0, size);
858 *dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
861 return ret;
865 * ccio_free_consistent - Free a consistent DMA mapping.
866 * @dev: The PCI device.
867 * @size: The length of the DMA region.
868 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
869 * @dma_handle: The device address returned from the ccio_alloc_consistent.
871 * This function implements the pci_free_consistent function.
873 static void
874 ccio_free_consistent(struct device *dev, size_t size, void *cpu_addr,
875 dma_addr_t dma_handle)
877 ccio_unmap_single(dev, dma_handle, size, 0);
878 free_pages((unsigned long)cpu_addr, get_order(size));
882 ** Since 0 is a valid pdir_base index value, can't use that
883 ** to determine if a value is valid or not. Use a flag to indicate
884 ** the SG list entry contains a valid pdir index.
886 #define PIDE_FLAG 0x80000000UL
888 #ifdef CCIO_MAP_STATS
889 #define IOMMU_MAP_STATS
890 #endif
891 #include "iommu-helpers.h"
894 * ccio_map_sg - Map the scatter/gather list into the IOMMU.
895 * @dev: The PCI device.
896 * @sglist: The scatter/gather list to be mapped in the IOMMU.
897 * @nents: The number of entries in the scatter/gather list.
898 * @direction: The direction of the DMA transaction (to/from device).
900 * This function implements the pci_map_sg function.
902 static int
903 ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
904 enum dma_data_direction direction)
906 struct ioc *ioc;
907 int coalesced, filled = 0;
908 unsigned long flags;
909 unsigned long hint = hint_lookup[(int)direction];
910 unsigned long prev_len = 0, current_len = 0;
911 int i;
913 BUG_ON(!dev);
914 ioc = GET_IOC(dev);
916 DBG_RUN_SG("%s() START %d entries\n", __FUNCTION__, nents);
918 /* Fast path single entry scatterlists. */
919 if (nents == 1) {
920 sg_dma_address(sglist) = ccio_map_single(dev,
921 (void *)sg_virt_addr(sglist), sglist->length,
922 direction);
923 sg_dma_len(sglist) = sglist->length;
924 return 1;
927 for(i = 0; i < nents; i++)
928 prev_len += sglist[i].length;
930 spin_lock_irqsave(&ioc->res_lock, flags);
932 #ifdef CCIO_MAP_STATS
933 ioc->msg_calls++;
934 #endif
937 ** First coalesce the chunks and allocate I/O pdir space
939 ** If this is one DMA stream, we can properly map using the
940 ** correct virtual address associated with each DMA page.
941 ** w/o this association, we wouldn't have coherent DMA!
942 ** Access to the virtual address is what forces a two pass algorithm.
944 coalesced = iommu_coalesce_chunks(ioc, sglist, nents, ccio_alloc_range);
947 ** Program the I/O Pdir
949 ** map the virtual addresses to the I/O Pdir
950 ** o dma_address will contain the pdir index
951 ** o dma_len will contain the number of bytes to map
952 ** o page/offset contain the virtual address.
954 filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
956 spin_unlock_irqrestore(&ioc->res_lock, flags);
958 BUG_ON(coalesced != filled);
960 DBG_RUN_SG("%s() DONE %d mappings\n", __FUNCTION__, filled);
962 for (i = 0; i < filled; i++)
963 current_len += sg_dma_len(sglist + i);
965 BUG_ON(current_len != prev_len);
967 return filled;
971 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
972 * @dev: The PCI device.
973 * @sglist: The scatter/gather list to be unmapped from the IOMMU.
974 * @nents: The number of entries in the scatter/gather list.
975 * @direction: The direction of the DMA transaction (to/from device).
977 * This function implements the pci_unmap_sg function.
979 static void
980 ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
981 enum dma_data_direction direction)
983 struct ioc *ioc;
985 BUG_ON(!dev);
986 ioc = GET_IOC(dev);
988 DBG_RUN_SG("%s() START %d entries, %08lx,%x\n",
989 __FUNCTION__, nents, sg_virt_addr(sglist), sglist->length);
991 #ifdef CCIO_MAP_STATS
992 ioc->usg_calls++;
993 #endif
995 while(sg_dma_len(sglist) && nents--) {
997 #ifdef CCIO_MAP_STATS
998 ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
999 #endif
1000 ccio_unmap_single(dev, sg_dma_address(sglist),
1001 sg_dma_len(sglist), direction);
1002 ++sglist;
1005 DBG_RUN_SG("%s() DONE (nents %d)\n", __FUNCTION__, nents);
1008 static struct hppa_dma_ops ccio_ops = {
1009 .dma_supported = ccio_dma_supported,
1010 .alloc_consistent = ccio_alloc_consistent,
1011 .alloc_noncoherent = ccio_alloc_consistent,
1012 .free_consistent = ccio_free_consistent,
1013 .map_single = ccio_map_single,
1014 .unmap_single = ccio_unmap_single,
1015 .map_sg = ccio_map_sg,
1016 .unmap_sg = ccio_unmap_sg,
1017 .dma_sync_single_for_cpu = NULL, /* NOP for U2/Uturn */
1018 .dma_sync_single_for_device = NULL, /* NOP for U2/Uturn */
1019 .dma_sync_sg_for_cpu = NULL, /* ditto */
1020 .dma_sync_sg_for_device = NULL, /* ditto */
1023 #ifdef CONFIG_PROC_FS
1024 static int ccio_proc_info(struct seq_file *m, void *p)
1026 int len = 0;
1027 struct ioc *ioc = ioc_list;
1029 while (ioc != NULL) {
1030 unsigned int total_pages = ioc->res_size << 3;
1031 unsigned long avg = 0, min, max;
1032 int j;
1034 len += seq_printf(m, "%s\n", ioc->name);
1036 len += seq_printf(m, "Cujo 2.0 bug : %s\n",
1037 (ioc->cujo20_bug ? "yes" : "no"));
1039 len += seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n",
1040 total_pages * 8, total_pages);
1042 #ifdef CCIO_MAP_STATS
1043 len += seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n",
1044 total_pages - ioc->used_pages, ioc->used_pages,
1045 (int)(ioc->used_pages * 100 / total_pages));
1046 #endif
1048 len += seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1049 ioc->res_size, total_pages);
1051 #ifdef CCIO_SEARCH_TIME
1052 min = max = ioc->avg_search[0];
1053 for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1054 avg += ioc->avg_search[j];
1055 if(ioc->avg_search[j] > max)
1056 max = ioc->avg_search[j];
1057 if(ioc->avg_search[j] < min)
1058 min = ioc->avg_search[j];
1060 avg /= CCIO_SEARCH_SAMPLE;
1061 len += seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1062 min, avg, max);
1063 #endif
1064 #ifdef CCIO_MAP_STATS
1065 len += seq_printf(m, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n",
1066 ioc->msingle_calls, ioc->msingle_pages,
1067 (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1069 /* KLUGE - unmap_sg calls unmap_single for each mapped page */
1070 min = ioc->usingle_calls - ioc->usg_calls;
1071 max = ioc->usingle_pages - ioc->usg_pages;
1072 len += seq_printf(m, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n",
1073 min, max, (int)((max * 1000)/min));
1075 len += seq_printf(m, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n",
1076 ioc->msg_calls, ioc->msg_pages,
1077 (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1079 len += seq_printf(m, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n",
1080 ioc->usg_calls, ioc->usg_pages,
1081 (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1082 #endif /* CCIO_MAP_STATS */
1084 ioc = ioc->next;
1087 return 0;
1090 static int ccio_proc_info_open(struct inode *inode, struct file *file)
1092 return single_open(file, &ccio_proc_info, NULL);
1095 static const struct file_operations ccio_proc_info_fops = {
1096 .owner = THIS_MODULE,
1097 .open = ccio_proc_info_open,
1098 .read = seq_read,
1099 .llseek = seq_lseek,
1100 .release = single_release,
1103 static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1105 int len = 0;
1106 struct ioc *ioc = ioc_list;
1108 while (ioc != NULL) {
1109 u32 *res_ptr = (u32 *)ioc->res_map;
1110 int j;
1112 for (j = 0; j < (ioc->res_size / sizeof(u32)); j++) {
1113 if ((j & 7) == 0)
1114 len += seq_puts(m, "\n ");
1115 len += seq_printf(m, "%08x", *res_ptr);
1116 res_ptr++;
1118 len += seq_puts(m, "\n\n");
1119 ioc = ioc->next;
1120 break; /* XXX - remove me */
1123 return 0;
1126 static int ccio_proc_bitmap_open(struct inode *inode, struct file *file)
1128 return single_open(file, &ccio_proc_bitmap_info, NULL);
1131 static const struct file_operations ccio_proc_bitmap_fops = {
1132 .owner = THIS_MODULE,
1133 .open = ccio_proc_bitmap_open,
1134 .read = seq_read,
1135 .llseek = seq_lseek,
1136 .release = single_release,
1138 #endif
1141 * ccio_find_ioc - Find the ioc in the ioc_list
1142 * @hw_path: The hardware path of the ioc.
1144 * This function searches the ioc_list for an ioc that matches
1145 * the provide hardware path.
1147 static struct ioc * ccio_find_ioc(int hw_path)
1149 int i;
1150 struct ioc *ioc;
1152 ioc = ioc_list;
1153 for (i = 0; i < ioc_count; i++) {
1154 if (ioc->hw_path == hw_path)
1155 return ioc;
1157 ioc = ioc->next;
1160 return NULL;
1164 * ccio_get_iommu - Find the iommu which controls this device
1165 * @dev: The parisc device.
1167 * This function searches through the registered IOMMU's and returns
1168 * the appropriate IOMMU for the device based on its hardware path.
1170 void * ccio_get_iommu(const struct parisc_device *dev)
1172 dev = find_pa_parent_type(dev, HPHW_IOA);
1173 if (!dev)
1174 return NULL;
1176 return ccio_find_ioc(dev->hw_path);
1179 #define CUJO_20_STEP 0x10000000 /* inc upper nibble */
1181 /* Cujo 2.0 has a bug which will silently corrupt data being transferred
1182 * to/from certain pages. To avoid this happening, we mark these pages
1183 * as `used', and ensure that nothing will try to allocate from them.
1185 void ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1187 unsigned int idx;
1188 struct parisc_device *dev = parisc_parent(cujo);
1189 struct ioc *ioc = ccio_get_iommu(dev);
1190 u8 *res_ptr;
1192 ioc->cujo20_bug = 1;
1193 res_ptr = ioc->res_map;
1194 idx = PDIR_INDEX(iovp) >> 3;
1196 while (idx < ioc->res_size) {
1197 res_ptr[idx] |= 0xff;
1198 idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1202 #if 0
1203 /* GRANT - is this needed for U2 or not? */
1206 ** Get the size of the I/O TLB for this I/O MMU.
1208 ** If spa_shift is non-zero (ie probably U2),
1209 ** then calculate the I/O TLB size using spa_shift.
1211 ** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1212 ** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1213 ** I think only Java (K/D/R-class too?) systems don't do this.
1215 static int
1216 ccio_get_iotlb_size(struct parisc_device *dev)
1218 if (dev->spa_shift == 0) {
1219 panic("%s() : Can't determine I/O TLB size.\n", __FUNCTION__);
1221 return (1 << dev->spa_shift);
1223 #else
1225 /* Uturn supports 256 TLB entries */
1226 #define CCIO_CHAINID_SHIFT 8
1227 #define CCIO_CHAINID_MASK 0xff
1228 #endif /* 0 */
1230 /* We *can't* support JAVA (T600). Venture there at your own risk. */
1231 static const struct parisc_device_id ccio_tbl[] = {
1232 { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1233 { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1234 { 0, }
1237 static int ccio_probe(struct parisc_device *dev);
1239 static struct parisc_driver ccio_driver = {
1240 .name = "ccio",
1241 .id_table = ccio_tbl,
1242 .probe = ccio_probe,
1246 * ccio_ioc_init - Initalize the I/O Controller
1247 * @ioc: The I/O Controller.
1249 * Initalize the I/O Controller which includes setting up the
1250 * I/O Page Directory, the resource map, and initalizing the
1251 * U2/Uturn chip into virtual mode.
1253 static void
1254 ccio_ioc_init(struct ioc *ioc)
1256 int i;
1257 unsigned int iov_order;
1258 u32 iova_space_size;
1261 ** Determine IOVA Space size from memory size.
1263 ** Ideally, PCI drivers would register the maximum number
1264 ** of DMA they can have outstanding for each device they
1265 ** own. Next best thing would be to guess how much DMA
1266 ** can be outstanding based on PCI Class/sub-class. Both
1267 ** methods still require some "extra" to support PCI
1268 ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1271 iova_space_size = (u32) (num_physpages / count_parisc_driver(&ccio_driver));
1273 /* limit IOVA space size to 1MB-1GB */
1275 if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1276 iova_space_size = 1 << (20 - PAGE_SHIFT);
1277 #ifdef __LP64__
1278 } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1279 iova_space_size = 1 << (30 - PAGE_SHIFT);
1280 #endif
1284 ** iova space must be log2() in size.
1285 ** thus, pdir/res_map will also be log2().
1288 /* We could use larger page sizes in order to *decrease* the number
1289 ** of mappings needed. (ie 8k pages means 1/2 the mappings).
1291 ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1292 ** since the pages must also be physically contiguous - typically
1293 ** this is the case under linux."
1296 iov_order = get_order(iova_space_size << PAGE_SHIFT);
1298 /* iova_space_size is now bytes, not pages */
1299 iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1301 ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1303 BUG_ON(ioc->pdir_size > 8 * 1024 * 1024); /* max pdir size <= 8MB */
1305 /* Verify it's a power of two */
1306 BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1308 DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1309 __FUNCTION__, ioc->ioc_regs,
1310 (unsigned long) num_physpages >> (20 - PAGE_SHIFT),
1311 iova_space_size>>20,
1312 iov_order + PAGE_SHIFT);
1314 ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL,
1315 get_order(ioc->pdir_size));
1316 if(NULL == ioc->pdir_base) {
1317 panic("%s() could not allocate I/O Page Table\n", __FUNCTION__);
1319 memset(ioc->pdir_base, 0, ioc->pdir_size);
1321 BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1322 DBG_INIT(" base %p\n", ioc->pdir_base);
1324 /* resource map size dictated by pdir_size */
1325 ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1326 DBG_INIT("%s() res_size 0x%x\n", __FUNCTION__, ioc->res_size);
1328 ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL,
1329 get_order(ioc->res_size));
1330 if(NULL == ioc->res_map) {
1331 panic("%s() could not allocate resource map\n", __FUNCTION__);
1333 memset(ioc->res_map, 0, ioc->res_size);
1335 /* Initialize the res_hint to 16 */
1336 ioc->res_hint = 16;
1338 /* Initialize the spinlock */
1339 spin_lock_init(&ioc->res_lock);
1342 ** Chainid is the upper most bits of an IOVP used to determine
1343 ** which TLB entry an IOVP will use.
1345 ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1346 DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1349 ** Initialize IOA hardware
1351 WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift,
1352 &ioc->ioc_regs->io_chain_id_mask);
1354 WRITE_U32(virt_to_phys(ioc->pdir_base),
1355 &ioc->ioc_regs->io_pdir_base);
1358 ** Go to "Virtual Mode"
1360 WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1363 ** Initialize all I/O TLB entries to 0 (Valid bit off).
1365 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1366 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1368 for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1369 WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1370 &ioc->ioc_regs->io_command);
1374 static void __init
1375 ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1377 int result;
1379 res->parent = NULL;
1380 res->flags = IORESOURCE_MEM;
1382 * bracing ((signed) ...) are required for 64bit kernel because
1383 * we only want to sign extend the lower 16 bits of the register.
1384 * The upper 16-bits of range registers are hardcoded to 0xffff.
1386 res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1387 res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1388 res->name = name;
1390 * Check if this MMIO range is disable
1392 if (res->end + 1 == res->start)
1393 return;
1395 /* On some platforms (e.g. K-Class), we have already registered
1396 * resources for devices reported by firmware. Some are children
1397 * of ccio.
1398 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1400 result = insert_resource(&iomem_resource, res);
1401 if (result < 0) {
1402 printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
1403 __FUNCTION__, res->start, res->end);
1407 static void __init ccio_init_resources(struct ioc *ioc)
1409 struct resource *res = ioc->mmio_region;
1410 char *name = kmalloc(14, GFP_KERNEL);
1412 snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1414 ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1415 ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1418 static int new_ioc_area(struct resource *res, unsigned long size,
1419 unsigned long min, unsigned long max, unsigned long align)
1421 if (max <= min)
1422 return -EBUSY;
1424 res->start = (max - size + 1) &~ (align - 1);
1425 res->end = res->start + size;
1427 /* We might be trying to expand the MMIO range to include
1428 * a child device that has already registered it's MMIO space.
1429 * Use "insert" instead of request_resource().
1431 if (!insert_resource(&iomem_resource, res))
1432 return 0;
1434 return new_ioc_area(res, size, min, max - size, align);
1437 static int expand_ioc_area(struct resource *res, unsigned long size,
1438 unsigned long min, unsigned long max, unsigned long align)
1440 unsigned long start, len;
1442 if (!res->parent)
1443 return new_ioc_area(res, size, min, max, align);
1445 start = (res->start - size) &~ (align - 1);
1446 len = res->end - start + 1;
1447 if (start >= min) {
1448 if (!adjust_resource(res, start, len))
1449 return 0;
1452 start = res->start;
1453 len = ((size + res->end + align) &~ (align - 1)) - start;
1454 if (start + len <= max) {
1455 if (!adjust_resource(res, start, len))
1456 return 0;
1459 return -EBUSY;
1463 * Dino calls this function. Beware that we may get called on systems
1464 * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1465 * So it's legal to find no parent IOC.
1467 * Some other issues: one of the resources in the ioc may be unassigned.
1469 int ccio_allocate_resource(const struct parisc_device *dev,
1470 struct resource *res, unsigned long size,
1471 unsigned long min, unsigned long max, unsigned long align)
1473 struct resource *parent = &iomem_resource;
1474 struct ioc *ioc = ccio_get_iommu(dev);
1475 if (!ioc)
1476 goto out;
1478 parent = ioc->mmio_region;
1479 if (parent->parent &&
1480 !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1481 return 0;
1483 if ((parent + 1)->parent &&
1484 !allocate_resource(parent + 1, res, size, min, max, align,
1485 NULL, NULL))
1486 return 0;
1488 if (!expand_ioc_area(parent, size, min, max, align)) {
1489 __raw_writel(((parent->start)>>16) | 0xffff0000,
1490 &ioc->ioc_regs->io_io_low);
1491 __raw_writel(((parent->end)>>16) | 0xffff0000,
1492 &ioc->ioc_regs->io_io_high);
1493 } else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1494 parent++;
1495 __raw_writel(((parent->start)>>16) | 0xffff0000,
1496 &ioc->ioc_regs->io_io_low_hv);
1497 __raw_writel(((parent->end)>>16) | 0xffff0000,
1498 &ioc->ioc_regs->io_io_high_hv);
1499 } else {
1500 return -EBUSY;
1503 out:
1504 return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1507 int ccio_request_resource(const struct parisc_device *dev,
1508 struct resource *res)
1510 struct resource *parent;
1511 struct ioc *ioc = ccio_get_iommu(dev);
1513 if (!ioc) {
1514 parent = &iomem_resource;
1515 } else if ((ioc->mmio_region->start <= res->start) &&
1516 (res->end <= ioc->mmio_region->end)) {
1517 parent = ioc->mmio_region;
1518 } else if (((ioc->mmio_region + 1)->start <= res->start) &&
1519 (res->end <= (ioc->mmio_region + 1)->end)) {
1520 parent = ioc->mmio_region + 1;
1521 } else {
1522 return -EBUSY;
1525 /* "transparent" bus bridges need to register MMIO resources
1526 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1527 * registered their resources in the PDC "bus walk" (See
1528 * arch/parisc/kernel/inventory.c).
1530 return insert_resource(parent, res);
1534 * ccio_probe - Determine if ccio should claim this device.
1535 * @dev: The device which has been found
1537 * Determine if ccio should claim this chip (return 0) or not (return 1).
1538 * If so, initialize the chip and tell other partners in crime they
1539 * have work to do.
1541 static int __init ccio_probe(struct parisc_device *dev)
1543 int i;
1544 struct ioc *ioc, **ioc_p = &ioc_list;
1545 struct proc_dir_entry *info_entry, *bitmap_entry;
1547 ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1548 if (ioc == NULL) {
1549 printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1550 return 1;
1553 ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1555 printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name, dev->hpa.start);
1557 for (i = 0; i < ioc_count; i++) {
1558 ioc_p = &(*ioc_p)->next;
1560 *ioc_p = ioc;
1562 ioc->hw_path = dev->hw_path;
1563 ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096);
1564 ccio_ioc_init(ioc);
1565 ccio_init_resources(ioc);
1566 hppa_dma_ops = &ccio_ops;
1567 dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL);
1569 /* if this fails, no I/O cards will work, so may as well bug */
1570 BUG_ON(dev->dev.platform_data == NULL);
1571 HBA_DATA(dev->dev.platform_data)->iommu = ioc;
1573 if (ioc_count == 0) {
1574 info_entry = create_proc_entry(MODULE_NAME, 0, proc_runway_root);
1575 if (info_entry)
1576 info_entry->proc_fops = &ccio_proc_info_fops;
1578 bitmap_entry = create_proc_entry(MODULE_NAME"-bitmap", 0, proc_runway_root);
1579 if (bitmap_entry)
1580 bitmap_entry->proc_fops = &ccio_proc_bitmap_fops;
1583 ioc_count++;
1585 parisc_vmerge_boundary = IOVP_SIZE;
1586 parisc_vmerge_max_size = BITS_PER_LONG * IOVP_SIZE;
1587 parisc_has_iommu();
1588 return 0;
1592 * ccio_init - ccio initalization procedure.
1594 * Register this driver.
1596 void __init ccio_init(void)
1598 register_parisc_driver(&ccio_driver);