2 * linux/kernel/time/ntp.c
4 * NTP state machine interfaces and logic.
6 * This code was mainly moved from kernel/timer.c and kernel/time.c
7 * Please see those files for relevant copyright info and historical
12 #include <linux/time.h>
13 #include <linux/timer.h>
14 #include <linux/timex.h>
15 #include <linux/jiffies.h>
16 #include <linux/hrtimer.h>
17 #include <linux/capability.h>
18 #include <asm/div64.h>
19 #include <asm/timex.h>
22 * Timekeeping variables
24 unsigned long tick_usec
= TICK_USEC
; /* USER_HZ period (usec) */
25 unsigned long tick_nsec
; /* ACTHZ period (nsec) */
26 static u64 tick_length
, tick_length_base
;
28 #define MAX_TICKADJ 500 /* microsecs */
29 #define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \
30 TICK_LENGTH_SHIFT) / NTP_INTERVAL_FREQ)
33 * phase-lock loop variables
35 /* TIME_ERROR prevents overwriting the CMOS clock */
36 static int time_state
= TIME_OK
; /* clock synchronization status */
37 int time_status
= STA_UNSYNC
; /* clock status bits */
38 static s64 time_offset
; /* time adjustment (ns) */
39 static long time_constant
= 2; /* pll time constant */
40 long time_maxerror
= NTP_PHASE_LIMIT
; /* maximum error (us) */
41 long time_esterror
= NTP_PHASE_LIMIT
; /* estimated error (us) */
42 long time_freq
; /* frequency offset (scaled ppm)*/
43 static long time_reftime
; /* time at last adjustment (s) */
46 static void ntp_update_frequency(void)
48 u64 second_length
= (u64
)(tick_usec
* NSEC_PER_USEC
* USER_HZ
)
50 second_length
+= (s64
)CLOCK_TICK_ADJUST
<< TICK_LENGTH_SHIFT
;
51 second_length
+= (s64
)time_freq
<< (TICK_LENGTH_SHIFT
- SHIFT_NSEC
);
53 tick_length_base
= second_length
;
55 do_div(second_length
, HZ
);
56 tick_nsec
= second_length
>> TICK_LENGTH_SHIFT
;
58 do_div(tick_length_base
, NTP_INTERVAL_FREQ
);
62 * ntp_clear - Clears the NTP state variables
64 * Must be called while holding a write on the xtime_lock
68 time_adjust
= 0; /* stop active adjtime() */
69 time_status
|= STA_UNSYNC
;
70 time_maxerror
= NTP_PHASE_LIMIT
;
71 time_esterror
= NTP_PHASE_LIMIT
;
73 ntp_update_frequency();
75 tick_length
= tick_length_base
;
80 * this routine handles the overflow of the microsecond field
82 * The tricky bits of code to handle the accurate clock support
83 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
84 * They were originally developed for SUN and DEC kernels.
85 * All the kudos should go to Dave for this stuff.
87 void second_overflow(void)
91 /* Bump the maxerror field */
92 time_maxerror
+= MAXFREQ
>> SHIFT_USEC
;
93 if (time_maxerror
> NTP_PHASE_LIMIT
) {
94 time_maxerror
= NTP_PHASE_LIMIT
;
95 time_status
|= STA_UNSYNC
;
99 * Leap second processing. If in leap-insert state at the end of the
100 * day, the system clock is set back one second; if in leap-delete
101 * state, the system clock is set ahead one second. The microtime()
102 * routine or external clock driver will insure that reported time is
103 * always monotonic. The ugly divides should be replaced.
105 switch (time_state
) {
107 if (time_status
& STA_INS
)
108 time_state
= TIME_INS
;
109 else if (time_status
& STA_DEL
)
110 time_state
= TIME_DEL
;
113 if (xtime
.tv_sec
% 86400 == 0) {
115 wall_to_monotonic
.tv_sec
++;
116 time_state
= TIME_OOP
;
117 printk(KERN_NOTICE
"Clock: inserting leap second "
122 if ((xtime
.tv_sec
+ 1) % 86400 == 0) {
124 wall_to_monotonic
.tv_sec
--;
125 time_state
= TIME_WAIT
;
126 printk(KERN_NOTICE
"Clock: deleting leap second "
131 time_state
= TIME_WAIT
;
134 if (!(time_status
& (STA_INS
| STA_DEL
)))
135 time_state
= TIME_OK
;
139 * Compute the phase adjustment for the next second. The offset is
140 * reduced by a fixed factor times the time constant.
142 tick_length
= tick_length_base
;
143 time_adj
= shift_right(time_offset
, SHIFT_PLL
+ time_constant
);
144 time_offset
-= time_adj
;
145 tick_length
+= (s64
)time_adj
<< (TICK_LENGTH_SHIFT
- SHIFT_UPDATE
);
147 if (unlikely(time_adjust
)) {
148 if (time_adjust
> MAX_TICKADJ
) {
149 time_adjust
-= MAX_TICKADJ
;
150 tick_length
+= MAX_TICKADJ_SCALED
;
151 } else if (time_adjust
< -MAX_TICKADJ
) {
152 time_adjust
+= MAX_TICKADJ
;
153 tick_length
-= MAX_TICKADJ_SCALED
;
155 tick_length
+= (s64
)(time_adjust
* NSEC_PER_USEC
/
156 NTP_INTERVAL_FREQ
) << TICK_LENGTH_SHIFT
;
163 * Return how long ticks are at the moment, that is, how much time
164 * update_wall_time_one_tick will add to xtime next time we call it
165 * (assuming no calls to do_adjtimex in the meantime).
166 * The return value is in fixed-point nanoseconds shifted by the
167 * specified number of bits to the right of the binary point.
168 * This function has no side-effects.
170 u64
current_tick_length(void)
175 #ifdef CONFIG_GENERIC_CMOS_UPDATE
177 /* Disable the cmos update - used by virtualization and embedded */
178 int no_sync_cmos_clock __read_mostly
;
180 static void sync_cmos_clock(unsigned long dummy
);
182 static DEFINE_TIMER(sync_cmos_timer
, sync_cmos_clock
, 0, 0);
184 static void sync_cmos_clock(unsigned long dummy
)
186 struct timespec now
, next
;
190 * If we have an externally synchronized Linux clock, then update
191 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
192 * called as close as possible to 500 ms before the new second starts.
193 * This code is run on a timer. If the clock is set, that timer
194 * may not expire at the correct time. Thus, we adjust...
198 * Not synced, exit, do not restart a timer (if one is
199 * running, let it run out).
203 getnstimeofday(&now
);
204 if (abs(now
.tv_nsec
- (NSEC_PER_SEC
/ 2)) <= tick_nsec
/ 2)
205 fail
= update_persistent_clock(now
);
207 next
.tv_nsec
= (NSEC_PER_SEC
/ 2) - now
.tv_nsec
;
208 if (next
.tv_nsec
<= 0)
209 next
.tv_nsec
+= NSEC_PER_SEC
;
216 if (next
.tv_nsec
>= NSEC_PER_SEC
) {
218 next
.tv_nsec
-= NSEC_PER_SEC
;
220 mod_timer(&sync_cmos_timer
, jiffies
+ timespec_to_jiffies(&next
));
223 static void notify_cmos_timer(void)
225 if (!no_sync_cmos_clock
)
226 mod_timer(&sync_cmos_timer
, jiffies
+ 1);
230 static inline void notify_cmos_timer(void) { }
233 /* adjtimex mainly allows reading (and writing, if superuser) of
234 * kernel time-keeping variables. used by xntpd.
236 int do_adjtimex(struct timex
*txc
)
238 long mtemp
, save_adjust
, rem
;
239 s64 freq_adj
, temp64
;
242 /* In order to modify anything, you gotta be super-user! */
243 if (txc
->modes
&& !capable(CAP_SYS_TIME
))
246 /* Now we validate the data before disabling interrupts */
248 if ((txc
->modes
& ADJ_OFFSET_SINGLESHOT
) == ADJ_OFFSET_SINGLESHOT
) {
249 /* singleshot must not be used with any other mode bits */
250 if (txc
->modes
!= ADJ_OFFSET_SINGLESHOT
&&
251 txc
->modes
!= ADJ_OFFSET_SS_READ
)
255 if (txc
->modes
!= ADJ_OFFSET_SINGLESHOT
&& (txc
->modes
& ADJ_OFFSET
))
256 /* adjustment Offset limited to +- .512 seconds */
257 if (txc
->offset
<= - MAXPHASE
|| txc
->offset
>= MAXPHASE
)
260 /* if the quartz is off by more than 10% something is VERY wrong ! */
261 if (txc
->modes
& ADJ_TICK
)
262 if (txc
->tick
< 900000/USER_HZ
||
263 txc
->tick
> 1100000/USER_HZ
)
266 write_seqlock_irq(&xtime_lock
);
267 result
= time_state
; /* mostly `TIME_OK' */
269 /* Save for later - semantics of adjtime is to return old value */
270 save_adjust
= time_adjust
;
272 #if 0 /* STA_CLOCKERR is never set yet */
273 time_status
&= ~STA_CLOCKERR
; /* reset STA_CLOCKERR */
275 /* If there are input parameters, then process them */
278 if (txc
->modes
& ADJ_STATUS
) /* only set allowed bits */
279 time_status
= (txc
->status
& ~STA_RONLY
) |
280 (time_status
& STA_RONLY
);
282 if (txc
->modes
& ADJ_FREQUENCY
) { /* p. 22 */
283 if (txc
->freq
> MAXFREQ
|| txc
->freq
< -MAXFREQ
) {
287 time_freq
= ((s64
)txc
->freq
* NSEC_PER_USEC
)
288 >> (SHIFT_USEC
- SHIFT_NSEC
);
291 if (txc
->modes
& ADJ_MAXERROR
) {
292 if (txc
->maxerror
< 0 || txc
->maxerror
>= NTP_PHASE_LIMIT
) {
296 time_maxerror
= txc
->maxerror
;
299 if (txc
->modes
& ADJ_ESTERROR
) {
300 if (txc
->esterror
< 0 || txc
->esterror
>= NTP_PHASE_LIMIT
) {
304 time_esterror
= txc
->esterror
;
307 if (txc
->modes
& ADJ_TIMECONST
) { /* p. 24 */
308 if (txc
->constant
< 0) { /* NTP v4 uses values > 6 */
312 time_constant
= min(txc
->constant
+ 4, (long)MAXTC
);
315 if (txc
->modes
& ADJ_OFFSET
) { /* values checked earlier */
316 if (txc
->modes
== ADJ_OFFSET_SINGLESHOT
) {
317 /* adjtime() is independent from ntp_adjtime() */
318 time_adjust
= txc
->offset
;
320 else if (time_status
& STA_PLL
) {
321 time_offset
= txc
->offset
* NSEC_PER_USEC
;
324 * Scale the phase adjustment and
325 * clamp to the operating range.
327 time_offset
= min(time_offset
, (s64
)MAXPHASE
* NSEC_PER_USEC
);
328 time_offset
= max(time_offset
, (s64
)-MAXPHASE
* NSEC_PER_USEC
);
331 * Select whether the frequency is to be controlled
332 * and in which mode (PLL or FLL). Clamp to the operating
333 * range. Ugly multiply/divide should be replaced someday.
336 if (time_status
& STA_FREQHOLD
|| time_reftime
== 0)
337 time_reftime
= xtime
.tv_sec
;
338 mtemp
= xtime
.tv_sec
- time_reftime
;
339 time_reftime
= xtime
.tv_sec
;
341 freq_adj
= time_offset
* mtemp
;
342 freq_adj
= shift_right(freq_adj
, time_constant
* 2 +
343 (SHIFT_PLL
+ 2) * 2 - SHIFT_NSEC
);
344 if (mtemp
>= MINSEC
&& (time_status
& STA_FLL
|| mtemp
> MAXSEC
)) {
345 temp64
= time_offset
<< (SHIFT_NSEC
- SHIFT_FLL
);
346 if (time_offset
< 0) {
348 do_div(temp64
, mtemp
);
351 do_div(temp64
, mtemp
);
355 freq_adj
+= time_freq
;
356 freq_adj
= min(freq_adj
, (s64
)MAXFREQ_NSEC
);
357 time_freq
= max(freq_adj
, (s64
)-MAXFREQ_NSEC
);
358 time_offset
= div_long_long_rem_signed(time_offset
,
361 time_offset
<<= SHIFT_UPDATE
;
363 } /* txc->modes & ADJ_OFFSET */
364 if (txc
->modes
& ADJ_TICK
)
365 tick_usec
= txc
->tick
;
367 if (txc
->modes
& (ADJ_TICK
|ADJ_FREQUENCY
|ADJ_OFFSET
))
368 ntp_update_frequency();
370 leave
: if ((time_status
& (STA_UNSYNC
|STA_CLOCKERR
)) != 0)
373 if ((txc
->modes
== ADJ_OFFSET_SINGLESHOT
) ||
374 (txc
->modes
== ADJ_OFFSET_SS_READ
))
375 txc
->offset
= save_adjust
;
377 txc
->offset
= ((long)shift_right(time_offset
, SHIFT_UPDATE
)) *
378 NTP_INTERVAL_FREQ
/ 1000;
379 txc
->freq
= (time_freq
/ NSEC_PER_USEC
) <<
380 (SHIFT_USEC
- SHIFT_NSEC
);
381 txc
->maxerror
= time_maxerror
;
382 txc
->esterror
= time_esterror
;
383 txc
->status
= time_status
;
384 txc
->constant
= time_constant
;
386 txc
->tolerance
= MAXFREQ
;
387 txc
->tick
= tick_usec
;
389 /* PPS is not implemented, so these are zero */
398 write_sequnlock_irq(&xtime_lock
);
399 do_gettimeofday(&txc
->time
);