4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
71 #include <asm/irq_regs.h>
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
78 unsigned long long __attribute__((weak
)) sched_clock(void)
80 return (unsigned long long)jiffies
* (NSEC_PER_SEC
/ HZ
);
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
124 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
131 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
133 sg
->__cpu_power
+= val
;
134 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
138 static inline int rt_policy(int policy
)
140 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
145 static inline int task_has_rt_policy(struct task_struct
*p
)
147 return rt_policy(p
->policy
);
151 * This is the priority-queue data structure of the RT scheduling class:
153 struct rt_prio_array
{
154 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
155 struct list_head queue
[MAX_RT_PRIO
];
158 #ifdef CONFIG_GROUP_SCHED
160 #include <linux/cgroup.h>
164 static LIST_HEAD(task_groups
);
166 /* task group related information */
168 #ifdef CONFIG_CGROUP_SCHED
169 struct cgroup_subsys_state css
;
172 #ifdef CONFIG_FAIR_GROUP_SCHED
173 /* schedulable entities of this group on each cpu */
174 struct sched_entity
**se
;
175 /* runqueue "owned" by this group on each cpu */
176 struct cfs_rq
**cfs_rq
;
179 * shares assigned to a task group governs how much of cpu bandwidth
180 * is allocated to the group. The more shares a group has, the more is
181 * the cpu bandwidth allocated to it.
183 * For ex, lets say that there are three task groups, A, B and C which
184 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
185 * cpu bandwidth allocated by the scheduler to task groups A, B and C
188 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
189 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
190 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
192 * The weight assigned to a task group's schedulable entities on every
193 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
194 * group's shares. For ex: lets say that task group A has been
195 * assigned shares of 1000 and there are two CPUs in a system. Then,
197 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
199 * Note: It's not necessary that each of a task's group schedulable
200 * entity have the same weight on all CPUs. If the group
201 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
202 * better distribution of weight could be:
204 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
205 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
207 * rebalance_shares() is responsible for distributing the shares of a
208 * task groups like this among the group's schedulable entities across
212 unsigned long shares
;
215 #ifdef CONFIG_RT_GROUP_SCHED
216 struct sched_rt_entity
**rt_se
;
217 struct rt_rq
**rt_rq
;
223 struct list_head list
;
226 #ifdef CONFIG_FAIR_GROUP_SCHED
227 /* Default task group's sched entity on each cpu */
228 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
229 /* Default task group's cfs_rq on each cpu */
230 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
232 static struct sched_entity
*init_sched_entity_p
[NR_CPUS
];
233 static struct cfs_rq
*init_cfs_rq_p
[NR_CPUS
];
236 #ifdef CONFIG_RT_GROUP_SCHED
237 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
238 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
240 static struct sched_rt_entity
*init_sched_rt_entity_p
[NR_CPUS
];
241 static struct rt_rq
*init_rt_rq_p
[NR_CPUS
];
244 /* task_group_lock serializes add/remove of task groups and also changes to
245 * a task group's cpu shares.
247 static DEFINE_SPINLOCK(task_group_lock
);
249 /* doms_cur_mutex serializes access to doms_cur[] array */
250 static DEFINE_MUTEX(doms_cur_mutex
);
252 #ifdef CONFIG_FAIR_GROUP_SCHED
254 /* kernel thread that runs rebalance_shares() periodically */
255 static struct task_struct
*lb_monitor_task
;
256 static int load_balance_monitor(void *unused
);
259 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
);
261 #ifdef CONFIG_USER_SCHED
262 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
264 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
267 #define MIN_GROUP_SHARES 2
269 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
272 /* Default task group.
273 * Every task in system belong to this group at bootup.
275 struct task_group init_task_group
= {
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 .se
= init_sched_entity_p
,
278 .cfs_rq
= init_cfs_rq_p
,
281 #ifdef CONFIG_RT_GROUP_SCHED
282 .rt_se
= init_sched_rt_entity_p
,
283 .rt_rq
= init_rt_rq_p
,
287 /* return group to which a task belongs */
288 static inline struct task_group
*task_group(struct task_struct
*p
)
290 struct task_group
*tg
;
292 #ifdef CONFIG_USER_SCHED
294 #elif defined(CONFIG_CGROUP_SCHED)
295 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
296 struct task_group
, css
);
298 tg
= &init_task_group
;
303 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
304 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
306 #ifdef CONFIG_FAIR_GROUP_SCHED
307 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
308 p
->se
.parent
= task_group(p
)->se
[cpu
];
311 #ifdef CONFIG_RT_GROUP_SCHED
312 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
313 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
317 static inline void lock_doms_cur(void)
319 mutex_lock(&doms_cur_mutex
);
322 static inline void unlock_doms_cur(void)
324 mutex_unlock(&doms_cur_mutex
);
329 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
330 static inline void lock_doms_cur(void) { }
331 static inline void unlock_doms_cur(void) { }
333 #endif /* CONFIG_GROUP_SCHED */
335 /* CFS-related fields in a runqueue */
337 struct load_weight load
;
338 unsigned long nr_running
;
343 struct rb_root tasks_timeline
;
344 struct rb_node
*rb_leftmost
;
345 struct rb_node
*rb_load_balance_curr
;
346 /* 'curr' points to currently running entity on this cfs_rq.
347 * It is set to NULL otherwise (i.e when none are currently running).
349 struct sched_entity
*curr
;
351 unsigned long nr_spread_over
;
353 #ifdef CONFIG_FAIR_GROUP_SCHED
354 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
357 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
358 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
359 * (like users, containers etc.)
361 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
362 * list is used during load balance.
364 struct list_head leaf_cfs_rq_list
;
365 struct task_group
*tg
; /* group that "owns" this runqueue */
369 /* Real-Time classes' related field in a runqueue: */
371 struct rt_prio_array active
;
372 unsigned long rt_nr_running
;
373 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
374 int highest_prio
; /* highest queued rt task prio */
377 unsigned long rt_nr_migratory
;
383 #ifdef CONFIG_RT_GROUP_SCHED
384 unsigned long rt_nr_boosted
;
387 struct list_head leaf_rt_rq_list
;
388 struct task_group
*tg
;
389 struct sched_rt_entity
*rt_se
;
396 * We add the notion of a root-domain which will be used to define per-domain
397 * variables. Each exclusive cpuset essentially defines an island domain by
398 * fully partitioning the member cpus from any other cpuset. Whenever a new
399 * exclusive cpuset is created, we also create and attach a new root-domain
409 * The "RT overload" flag: it gets set if a CPU has more than
410 * one runnable RT task.
417 * By default the system creates a single root-domain with all cpus as
418 * members (mimicking the global state we have today).
420 static struct root_domain def_root_domain
;
425 * This is the main, per-CPU runqueue data structure.
427 * Locking rule: those places that want to lock multiple runqueues
428 * (such as the load balancing or the thread migration code), lock
429 * acquire operations must be ordered by ascending &runqueue.
436 * nr_running and cpu_load should be in the same cacheline because
437 * remote CPUs use both these fields when doing load calculation.
439 unsigned long nr_running
;
440 #define CPU_LOAD_IDX_MAX 5
441 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
442 unsigned char idle_at_tick
;
444 unsigned char in_nohz_recently
;
446 /* capture load from *all* tasks on this cpu: */
447 struct load_weight load
;
448 unsigned long nr_load_updates
;
453 u64 rt_period_expire
;
456 #ifdef CONFIG_FAIR_GROUP_SCHED
457 /* list of leaf cfs_rq on this cpu: */
458 struct list_head leaf_cfs_rq_list
;
460 #ifdef CONFIG_RT_GROUP_SCHED
461 struct list_head leaf_rt_rq_list
;
465 * This is part of a global counter where only the total sum
466 * over all CPUs matters. A task can increase this counter on
467 * one CPU and if it got migrated afterwards it may decrease
468 * it on another CPU. Always updated under the runqueue lock:
470 unsigned long nr_uninterruptible
;
472 struct task_struct
*curr
, *idle
;
473 unsigned long next_balance
;
474 struct mm_struct
*prev_mm
;
476 u64 clock
, prev_clock_raw
;
479 unsigned int clock_warps
, clock_overflows
, clock_underflows
;
481 unsigned int clock_deep_idle_events
;
487 struct root_domain
*rd
;
488 struct sched_domain
*sd
;
490 /* For active balancing */
493 /* cpu of this runqueue: */
496 struct task_struct
*migration_thread
;
497 struct list_head migration_queue
;
500 #ifdef CONFIG_SCHED_HRTICK
501 unsigned long hrtick_flags
;
502 ktime_t hrtick_expire
;
503 struct hrtimer hrtick_timer
;
506 #ifdef CONFIG_SCHEDSTATS
508 struct sched_info rq_sched_info
;
510 /* sys_sched_yield() stats */
511 unsigned int yld_exp_empty
;
512 unsigned int yld_act_empty
;
513 unsigned int yld_both_empty
;
514 unsigned int yld_count
;
516 /* schedule() stats */
517 unsigned int sched_switch
;
518 unsigned int sched_count
;
519 unsigned int sched_goidle
;
521 /* try_to_wake_up() stats */
522 unsigned int ttwu_count
;
523 unsigned int ttwu_local
;
526 unsigned int bkl_count
;
528 struct lock_class_key rq_lock_key
;
531 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
533 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
535 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
538 static inline int cpu_of(struct rq
*rq
)
548 * Update the per-runqueue clock, as finegrained as the platform can give
549 * us, but without assuming monotonicity, etc.:
551 static void __update_rq_clock(struct rq
*rq
)
553 u64 prev_raw
= rq
->prev_clock_raw
;
554 u64 now
= sched_clock();
555 s64 delta
= now
- prev_raw
;
556 u64 clock
= rq
->clock
;
558 #ifdef CONFIG_SCHED_DEBUG
559 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
562 * Protect against sched_clock() occasionally going backwards:
564 if (unlikely(delta
< 0)) {
569 * Catch too large forward jumps too:
571 if (unlikely(clock
+ delta
> rq
->tick_timestamp
+ TICK_NSEC
)) {
572 if (clock
< rq
->tick_timestamp
+ TICK_NSEC
)
573 clock
= rq
->tick_timestamp
+ TICK_NSEC
;
576 rq
->clock_overflows
++;
578 if (unlikely(delta
> rq
->clock_max_delta
))
579 rq
->clock_max_delta
= delta
;
584 rq
->prev_clock_raw
= now
;
588 static void update_rq_clock(struct rq
*rq
)
590 if (likely(smp_processor_id() == cpu_of(rq
)))
591 __update_rq_clock(rq
);
595 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
596 * See detach_destroy_domains: synchronize_sched for details.
598 * The domain tree of any CPU may only be accessed from within
599 * preempt-disabled sections.
601 #define for_each_domain(cpu, __sd) \
602 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
604 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
605 #define this_rq() (&__get_cpu_var(runqueues))
606 #define task_rq(p) cpu_rq(task_cpu(p))
607 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
609 unsigned long rt_needs_cpu(int cpu
)
611 struct rq
*rq
= cpu_rq(cpu
);
614 if (!rq
->rt_throttled
)
617 if (rq
->clock
> rq
->rt_period_expire
)
620 delta
= rq
->rt_period_expire
- rq
->clock
;
621 do_div(delta
, NSEC_PER_SEC
/ HZ
);
623 return (unsigned long)delta
;
627 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
629 #ifdef CONFIG_SCHED_DEBUG
630 # define const_debug __read_mostly
632 # define const_debug static const
636 * Debugging: various feature bits
639 SCHED_FEAT_NEW_FAIR_SLEEPERS
= 1,
640 SCHED_FEAT_WAKEUP_PREEMPT
= 2,
641 SCHED_FEAT_START_DEBIT
= 4,
642 SCHED_FEAT_TREE_AVG
= 8,
643 SCHED_FEAT_APPROX_AVG
= 16,
644 SCHED_FEAT_HRTICK
= 32,
645 SCHED_FEAT_DOUBLE_TICK
= 64,
648 const_debug
unsigned int sysctl_sched_features
=
649 SCHED_FEAT_NEW_FAIR_SLEEPERS
* 1 |
650 SCHED_FEAT_WAKEUP_PREEMPT
* 1 |
651 SCHED_FEAT_START_DEBIT
* 1 |
652 SCHED_FEAT_TREE_AVG
* 0 |
653 SCHED_FEAT_APPROX_AVG
* 0 |
654 SCHED_FEAT_HRTICK
* 1 |
655 SCHED_FEAT_DOUBLE_TICK
* 0;
657 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
660 * Number of tasks to iterate in a single balance run.
661 * Limited because this is done with IRQs disabled.
663 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
666 * period over which we measure -rt task cpu usage in us.
669 unsigned int sysctl_sched_rt_period
= 1000000;
671 static __read_mostly
int scheduler_running
;
674 * part of the period that we allow rt tasks to run in us.
677 int sysctl_sched_rt_runtime
= 950000;
680 * single value that denotes runtime == period, ie unlimited time.
682 #define RUNTIME_INF ((u64)~0ULL)
685 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
686 * clock constructed from sched_clock():
688 unsigned long long cpu_clock(int cpu
)
690 unsigned long long now
;
695 * Only call sched_clock() if the scheduler has already been
696 * initialized (some code might call cpu_clock() very early):
698 if (unlikely(!scheduler_running
))
701 local_irq_save(flags
);
705 local_irq_restore(flags
);
709 EXPORT_SYMBOL_GPL(cpu_clock
);
711 #ifndef prepare_arch_switch
712 # define prepare_arch_switch(next) do { } while (0)
714 #ifndef finish_arch_switch
715 # define finish_arch_switch(prev) do { } while (0)
718 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
720 return rq
->curr
== p
;
723 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
724 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
726 return task_current(rq
, p
);
729 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
733 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
735 #ifdef CONFIG_DEBUG_SPINLOCK
736 /* this is a valid case when another task releases the spinlock */
737 rq
->lock
.owner
= current
;
740 * If we are tracking spinlock dependencies then we have to
741 * fix up the runqueue lock - which gets 'carried over' from
744 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
746 spin_unlock_irq(&rq
->lock
);
749 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
750 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
755 return task_current(rq
, p
);
759 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
763 * We can optimise this out completely for !SMP, because the
764 * SMP rebalancing from interrupt is the only thing that cares
769 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
770 spin_unlock_irq(&rq
->lock
);
772 spin_unlock(&rq
->lock
);
776 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
780 * After ->oncpu is cleared, the task can be moved to a different CPU.
781 * We must ensure this doesn't happen until the switch is completely
787 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
791 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
794 * __task_rq_lock - lock the runqueue a given task resides on.
795 * Must be called interrupts disabled.
797 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
801 struct rq
*rq
= task_rq(p
);
802 spin_lock(&rq
->lock
);
803 if (likely(rq
== task_rq(p
)))
805 spin_unlock(&rq
->lock
);
810 * task_rq_lock - lock the runqueue a given task resides on and disable
811 * interrupts. Note the ordering: we can safely lookup the task_rq without
812 * explicitly disabling preemption.
814 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
820 local_irq_save(*flags
);
822 spin_lock(&rq
->lock
);
823 if (likely(rq
== task_rq(p
)))
825 spin_unlock_irqrestore(&rq
->lock
, *flags
);
829 static void __task_rq_unlock(struct rq
*rq
)
832 spin_unlock(&rq
->lock
);
835 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
838 spin_unlock_irqrestore(&rq
->lock
, *flags
);
842 * this_rq_lock - lock this runqueue and disable interrupts.
844 static struct rq
*this_rq_lock(void)
851 spin_lock(&rq
->lock
);
857 * We are going deep-idle (irqs are disabled):
859 void sched_clock_idle_sleep_event(void)
861 struct rq
*rq
= cpu_rq(smp_processor_id());
863 spin_lock(&rq
->lock
);
864 __update_rq_clock(rq
);
865 spin_unlock(&rq
->lock
);
866 rq
->clock_deep_idle_events
++;
868 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
871 * We just idled delta nanoseconds (called with irqs disabled):
873 void sched_clock_idle_wakeup_event(u64 delta_ns
)
875 struct rq
*rq
= cpu_rq(smp_processor_id());
876 u64 now
= sched_clock();
878 rq
->idle_clock
+= delta_ns
;
880 * Override the previous timestamp and ignore all
881 * sched_clock() deltas that occured while we idled,
882 * and use the PM-provided delta_ns to advance the
885 spin_lock(&rq
->lock
);
886 rq
->prev_clock_raw
= now
;
887 rq
->clock
+= delta_ns
;
888 spin_unlock(&rq
->lock
);
889 touch_softlockup_watchdog();
891 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
893 static void __resched_task(struct task_struct
*p
, int tif_bit
);
895 static inline void resched_task(struct task_struct
*p
)
897 __resched_task(p
, TIF_NEED_RESCHED
);
900 #ifdef CONFIG_SCHED_HRTICK
902 * Use HR-timers to deliver accurate preemption points.
904 * Its all a bit involved since we cannot program an hrt while holding the
905 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
908 * When we get rescheduled we reprogram the hrtick_timer outside of the
911 static inline void resched_hrt(struct task_struct
*p
)
913 __resched_task(p
, TIF_HRTICK_RESCHED
);
916 static inline void resched_rq(struct rq
*rq
)
920 spin_lock_irqsave(&rq
->lock
, flags
);
921 resched_task(rq
->curr
);
922 spin_unlock_irqrestore(&rq
->lock
, flags
);
926 HRTICK_SET
, /* re-programm hrtick_timer */
927 HRTICK_RESET
, /* not a new slice */
932 * - enabled by features
933 * - hrtimer is actually high res
935 static inline int hrtick_enabled(struct rq
*rq
)
937 if (!sched_feat(HRTICK
))
939 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
943 * Called to set the hrtick timer state.
945 * called with rq->lock held and irqs disabled
947 static void hrtick_start(struct rq
*rq
, u64 delay
, int reset
)
949 assert_spin_locked(&rq
->lock
);
952 * preempt at: now + delay
955 ktime_add_ns(rq
->hrtick_timer
.base
->get_time(), delay
);
957 * indicate we need to program the timer
959 __set_bit(HRTICK_SET
, &rq
->hrtick_flags
);
961 __set_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
964 * New slices are called from the schedule path and don't need a
968 resched_hrt(rq
->curr
);
971 static void hrtick_clear(struct rq
*rq
)
973 if (hrtimer_active(&rq
->hrtick_timer
))
974 hrtimer_cancel(&rq
->hrtick_timer
);
978 * Update the timer from the possible pending state.
980 static void hrtick_set(struct rq
*rq
)
986 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
988 spin_lock_irqsave(&rq
->lock
, flags
);
989 set
= __test_and_clear_bit(HRTICK_SET
, &rq
->hrtick_flags
);
990 reset
= __test_and_clear_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
991 time
= rq
->hrtick_expire
;
992 clear_thread_flag(TIF_HRTICK_RESCHED
);
993 spin_unlock_irqrestore(&rq
->lock
, flags
);
996 hrtimer_start(&rq
->hrtick_timer
, time
, HRTIMER_MODE_ABS
);
997 if (reset
&& !hrtimer_active(&rq
->hrtick_timer
))
1004 * High-resolution timer tick.
1005 * Runs from hardirq context with interrupts disabled.
1007 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1009 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1011 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1013 spin_lock(&rq
->lock
);
1014 __update_rq_clock(rq
);
1015 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1016 spin_unlock(&rq
->lock
);
1018 return HRTIMER_NORESTART
;
1021 static inline void init_rq_hrtick(struct rq
*rq
)
1023 rq
->hrtick_flags
= 0;
1024 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1025 rq
->hrtick_timer
.function
= hrtick
;
1026 rq
->hrtick_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
1029 void hrtick_resched(void)
1032 unsigned long flags
;
1034 if (!test_thread_flag(TIF_HRTICK_RESCHED
))
1037 local_irq_save(flags
);
1038 rq
= cpu_rq(smp_processor_id());
1040 local_irq_restore(flags
);
1043 static inline void hrtick_clear(struct rq
*rq
)
1047 static inline void hrtick_set(struct rq
*rq
)
1051 static inline void init_rq_hrtick(struct rq
*rq
)
1055 void hrtick_resched(void)
1061 * resched_task - mark a task 'to be rescheduled now'.
1063 * On UP this means the setting of the need_resched flag, on SMP it
1064 * might also involve a cross-CPU call to trigger the scheduler on
1069 #ifndef tsk_is_polling
1070 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1073 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1077 assert_spin_locked(&task_rq(p
)->lock
);
1079 if (unlikely(test_tsk_thread_flag(p
, tif_bit
)))
1082 set_tsk_thread_flag(p
, tif_bit
);
1085 if (cpu
== smp_processor_id())
1088 /* NEED_RESCHED must be visible before we test polling */
1090 if (!tsk_is_polling(p
))
1091 smp_send_reschedule(cpu
);
1094 static void resched_cpu(int cpu
)
1096 struct rq
*rq
= cpu_rq(cpu
);
1097 unsigned long flags
;
1099 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1101 resched_task(cpu_curr(cpu
));
1102 spin_unlock_irqrestore(&rq
->lock
, flags
);
1105 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1107 assert_spin_locked(&task_rq(p
)->lock
);
1108 set_tsk_thread_flag(p
, tif_bit
);
1112 #if BITS_PER_LONG == 32
1113 # define WMULT_CONST (~0UL)
1115 # define WMULT_CONST (1UL << 32)
1118 #define WMULT_SHIFT 32
1121 * Shift right and round:
1123 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1125 static unsigned long
1126 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1127 struct load_weight
*lw
)
1131 if (unlikely(!lw
->inv_weight
))
1132 lw
->inv_weight
= (WMULT_CONST
- lw
->weight
/2) / lw
->weight
+ 1;
1134 tmp
= (u64
)delta_exec
* weight
;
1136 * Check whether we'd overflow the 64-bit multiplication:
1138 if (unlikely(tmp
> WMULT_CONST
))
1139 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1142 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1144 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1147 static inline unsigned long
1148 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
1150 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
1153 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1158 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1164 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1165 * of tasks with abnormal "nice" values across CPUs the contribution that
1166 * each task makes to its run queue's load is weighted according to its
1167 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1168 * scaled version of the new time slice allocation that they receive on time
1172 #define WEIGHT_IDLEPRIO 2
1173 #define WMULT_IDLEPRIO (1 << 31)
1176 * Nice levels are multiplicative, with a gentle 10% change for every
1177 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1178 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1179 * that remained on nice 0.
1181 * The "10% effect" is relative and cumulative: from _any_ nice level,
1182 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1183 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1184 * If a task goes up by ~10% and another task goes down by ~10% then
1185 * the relative distance between them is ~25%.)
1187 static const int prio_to_weight
[40] = {
1188 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1189 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1190 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1191 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1192 /* 0 */ 1024, 820, 655, 526, 423,
1193 /* 5 */ 335, 272, 215, 172, 137,
1194 /* 10 */ 110, 87, 70, 56, 45,
1195 /* 15 */ 36, 29, 23, 18, 15,
1199 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1201 * In cases where the weight does not change often, we can use the
1202 * precalculated inverse to speed up arithmetics by turning divisions
1203 * into multiplications:
1205 static const u32 prio_to_wmult
[40] = {
1206 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1207 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1208 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1209 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1210 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1211 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1212 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1213 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1216 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1219 * runqueue iterator, to support SMP load-balancing between different
1220 * scheduling classes, without having to expose their internal data
1221 * structures to the load-balancing proper:
1223 struct rq_iterator
{
1225 struct task_struct
*(*start
)(void *);
1226 struct task_struct
*(*next
)(void *);
1230 static unsigned long
1231 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1232 unsigned long max_load_move
, struct sched_domain
*sd
,
1233 enum cpu_idle_type idle
, int *all_pinned
,
1234 int *this_best_prio
, struct rq_iterator
*iterator
);
1237 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1238 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1239 struct rq_iterator
*iterator
);
1242 #ifdef CONFIG_CGROUP_CPUACCT
1243 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1245 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1248 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1250 update_load_add(&rq
->load
, load
);
1253 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1255 update_load_sub(&rq
->load
, load
);
1259 static unsigned long source_load(int cpu
, int type
);
1260 static unsigned long target_load(int cpu
, int type
);
1261 static unsigned long cpu_avg_load_per_task(int cpu
);
1262 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1263 #endif /* CONFIG_SMP */
1265 #include "sched_stats.h"
1266 #include "sched_idletask.c"
1267 #include "sched_fair.c"
1268 #include "sched_rt.c"
1269 #ifdef CONFIG_SCHED_DEBUG
1270 # include "sched_debug.c"
1273 #define sched_class_highest (&rt_sched_class)
1275 static void inc_nr_running(struct rq
*rq
)
1280 static void dec_nr_running(struct rq
*rq
)
1285 static void set_load_weight(struct task_struct
*p
)
1287 if (task_has_rt_policy(p
)) {
1288 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1289 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1294 * SCHED_IDLE tasks get minimal weight:
1296 if (p
->policy
== SCHED_IDLE
) {
1297 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1298 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1302 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1303 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1306 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1308 sched_info_queued(p
);
1309 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1313 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1315 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1320 * __normal_prio - return the priority that is based on the static prio
1322 static inline int __normal_prio(struct task_struct
*p
)
1324 return p
->static_prio
;
1328 * Calculate the expected normal priority: i.e. priority
1329 * without taking RT-inheritance into account. Might be
1330 * boosted by interactivity modifiers. Changes upon fork,
1331 * setprio syscalls, and whenever the interactivity
1332 * estimator recalculates.
1334 static inline int normal_prio(struct task_struct
*p
)
1338 if (task_has_rt_policy(p
))
1339 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1341 prio
= __normal_prio(p
);
1346 * Calculate the current priority, i.e. the priority
1347 * taken into account by the scheduler. This value might
1348 * be boosted by RT tasks, or might be boosted by
1349 * interactivity modifiers. Will be RT if the task got
1350 * RT-boosted. If not then it returns p->normal_prio.
1352 static int effective_prio(struct task_struct
*p
)
1354 p
->normal_prio
= normal_prio(p
);
1356 * If we are RT tasks or we were boosted to RT priority,
1357 * keep the priority unchanged. Otherwise, update priority
1358 * to the normal priority:
1360 if (!rt_prio(p
->prio
))
1361 return p
->normal_prio
;
1366 * activate_task - move a task to the runqueue.
1368 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1370 if (task_contributes_to_load(p
))
1371 rq
->nr_uninterruptible
--;
1373 enqueue_task(rq
, p
, wakeup
);
1378 * deactivate_task - remove a task from the runqueue.
1380 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1382 if (task_contributes_to_load(p
))
1383 rq
->nr_uninterruptible
++;
1385 dequeue_task(rq
, p
, sleep
);
1390 * task_curr - is this task currently executing on a CPU?
1391 * @p: the task in question.
1393 inline int task_curr(const struct task_struct
*p
)
1395 return cpu_curr(task_cpu(p
)) == p
;
1398 /* Used instead of source_load when we know the type == 0 */
1399 unsigned long weighted_cpuload(const int cpu
)
1401 return cpu_rq(cpu
)->load
.weight
;
1404 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1406 set_task_rq(p
, cpu
);
1409 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1410 * successfuly executed on another CPU. We must ensure that updates of
1411 * per-task data have been completed by this moment.
1414 task_thread_info(p
)->cpu
= cpu
;
1418 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1419 const struct sched_class
*prev_class
,
1420 int oldprio
, int running
)
1422 if (prev_class
!= p
->sched_class
) {
1423 if (prev_class
->switched_from
)
1424 prev_class
->switched_from(rq
, p
, running
);
1425 p
->sched_class
->switched_to(rq
, p
, running
);
1427 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1433 * Is this task likely cache-hot:
1436 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1440 if (p
->sched_class
!= &fair_sched_class
)
1443 if (sysctl_sched_migration_cost
== -1)
1445 if (sysctl_sched_migration_cost
== 0)
1448 delta
= now
- p
->se
.exec_start
;
1450 return delta
< (s64
)sysctl_sched_migration_cost
;
1454 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1456 int old_cpu
= task_cpu(p
);
1457 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1458 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1459 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1462 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1464 #ifdef CONFIG_SCHEDSTATS
1465 if (p
->se
.wait_start
)
1466 p
->se
.wait_start
-= clock_offset
;
1467 if (p
->se
.sleep_start
)
1468 p
->se
.sleep_start
-= clock_offset
;
1469 if (p
->se
.block_start
)
1470 p
->se
.block_start
-= clock_offset
;
1471 if (old_cpu
!= new_cpu
) {
1472 schedstat_inc(p
, se
.nr_migrations
);
1473 if (task_hot(p
, old_rq
->clock
, NULL
))
1474 schedstat_inc(p
, se
.nr_forced2_migrations
);
1477 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1478 new_cfsrq
->min_vruntime
;
1480 __set_task_cpu(p
, new_cpu
);
1483 struct migration_req
{
1484 struct list_head list
;
1486 struct task_struct
*task
;
1489 struct completion done
;
1493 * The task's runqueue lock must be held.
1494 * Returns true if you have to wait for migration thread.
1497 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1499 struct rq
*rq
= task_rq(p
);
1502 * If the task is not on a runqueue (and not running), then
1503 * it is sufficient to simply update the task's cpu field.
1505 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1506 set_task_cpu(p
, dest_cpu
);
1510 init_completion(&req
->done
);
1512 req
->dest_cpu
= dest_cpu
;
1513 list_add(&req
->list
, &rq
->migration_queue
);
1519 * wait_task_inactive - wait for a thread to unschedule.
1521 * The caller must ensure that the task *will* unschedule sometime soon,
1522 * else this function might spin for a *long* time. This function can't
1523 * be called with interrupts off, or it may introduce deadlock with
1524 * smp_call_function() if an IPI is sent by the same process we are
1525 * waiting to become inactive.
1527 void wait_task_inactive(struct task_struct
*p
)
1529 unsigned long flags
;
1535 * We do the initial early heuristics without holding
1536 * any task-queue locks at all. We'll only try to get
1537 * the runqueue lock when things look like they will
1543 * If the task is actively running on another CPU
1544 * still, just relax and busy-wait without holding
1547 * NOTE! Since we don't hold any locks, it's not
1548 * even sure that "rq" stays as the right runqueue!
1549 * But we don't care, since "task_running()" will
1550 * return false if the runqueue has changed and p
1551 * is actually now running somewhere else!
1553 while (task_running(rq
, p
))
1557 * Ok, time to look more closely! We need the rq
1558 * lock now, to be *sure*. If we're wrong, we'll
1559 * just go back and repeat.
1561 rq
= task_rq_lock(p
, &flags
);
1562 running
= task_running(rq
, p
);
1563 on_rq
= p
->se
.on_rq
;
1564 task_rq_unlock(rq
, &flags
);
1567 * Was it really running after all now that we
1568 * checked with the proper locks actually held?
1570 * Oops. Go back and try again..
1572 if (unlikely(running
)) {
1578 * It's not enough that it's not actively running,
1579 * it must be off the runqueue _entirely_, and not
1582 * So if it wa still runnable (but just not actively
1583 * running right now), it's preempted, and we should
1584 * yield - it could be a while.
1586 if (unlikely(on_rq
)) {
1587 schedule_timeout_uninterruptible(1);
1592 * Ahh, all good. It wasn't running, and it wasn't
1593 * runnable, which means that it will never become
1594 * running in the future either. We're all done!
1601 * kick_process - kick a running thread to enter/exit the kernel
1602 * @p: the to-be-kicked thread
1604 * Cause a process which is running on another CPU to enter
1605 * kernel-mode, without any delay. (to get signals handled.)
1607 * NOTE: this function doesnt have to take the runqueue lock,
1608 * because all it wants to ensure is that the remote task enters
1609 * the kernel. If the IPI races and the task has been migrated
1610 * to another CPU then no harm is done and the purpose has been
1613 void kick_process(struct task_struct
*p
)
1619 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1620 smp_send_reschedule(cpu
);
1625 * Return a low guess at the load of a migration-source cpu weighted
1626 * according to the scheduling class and "nice" value.
1628 * We want to under-estimate the load of migration sources, to
1629 * balance conservatively.
1631 static unsigned long source_load(int cpu
, int type
)
1633 struct rq
*rq
= cpu_rq(cpu
);
1634 unsigned long total
= weighted_cpuload(cpu
);
1639 return min(rq
->cpu_load
[type
-1], total
);
1643 * Return a high guess at the load of a migration-target cpu weighted
1644 * according to the scheduling class and "nice" value.
1646 static unsigned long target_load(int cpu
, int type
)
1648 struct rq
*rq
= cpu_rq(cpu
);
1649 unsigned long total
= weighted_cpuload(cpu
);
1654 return max(rq
->cpu_load
[type
-1], total
);
1658 * Return the average load per task on the cpu's run queue
1660 static unsigned long cpu_avg_load_per_task(int cpu
)
1662 struct rq
*rq
= cpu_rq(cpu
);
1663 unsigned long total
= weighted_cpuload(cpu
);
1664 unsigned long n
= rq
->nr_running
;
1666 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1670 * find_idlest_group finds and returns the least busy CPU group within the
1673 static struct sched_group
*
1674 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1676 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1677 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1678 int load_idx
= sd
->forkexec_idx
;
1679 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1682 unsigned long load
, avg_load
;
1686 /* Skip over this group if it has no CPUs allowed */
1687 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1690 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1692 /* Tally up the load of all CPUs in the group */
1695 for_each_cpu_mask(i
, group
->cpumask
) {
1696 /* Bias balancing toward cpus of our domain */
1698 load
= source_load(i
, load_idx
);
1700 load
= target_load(i
, load_idx
);
1705 /* Adjust by relative CPU power of the group */
1706 avg_load
= sg_div_cpu_power(group
,
1707 avg_load
* SCHED_LOAD_SCALE
);
1710 this_load
= avg_load
;
1712 } else if (avg_load
< min_load
) {
1713 min_load
= avg_load
;
1716 } while (group
= group
->next
, group
!= sd
->groups
);
1718 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1724 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1727 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1730 unsigned long load
, min_load
= ULONG_MAX
;
1734 /* Traverse only the allowed CPUs */
1735 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1737 for_each_cpu_mask(i
, tmp
) {
1738 load
= weighted_cpuload(i
);
1740 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1750 * sched_balance_self: balance the current task (running on cpu) in domains
1751 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1754 * Balance, ie. select the least loaded group.
1756 * Returns the target CPU number, or the same CPU if no balancing is needed.
1758 * preempt must be disabled.
1760 static int sched_balance_self(int cpu
, int flag
)
1762 struct task_struct
*t
= current
;
1763 struct sched_domain
*tmp
, *sd
= NULL
;
1765 for_each_domain(cpu
, tmp
) {
1767 * If power savings logic is enabled for a domain, stop there.
1769 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1771 if (tmp
->flags
& flag
)
1777 struct sched_group
*group
;
1778 int new_cpu
, weight
;
1780 if (!(sd
->flags
& flag
)) {
1786 group
= find_idlest_group(sd
, t
, cpu
);
1792 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1793 if (new_cpu
== -1 || new_cpu
== cpu
) {
1794 /* Now try balancing at a lower domain level of cpu */
1799 /* Now try balancing at a lower domain level of new_cpu */
1802 weight
= cpus_weight(span
);
1803 for_each_domain(cpu
, tmp
) {
1804 if (weight
<= cpus_weight(tmp
->span
))
1806 if (tmp
->flags
& flag
)
1809 /* while loop will break here if sd == NULL */
1815 #endif /* CONFIG_SMP */
1818 * try_to_wake_up - wake up a thread
1819 * @p: the to-be-woken-up thread
1820 * @state: the mask of task states that can be woken
1821 * @sync: do a synchronous wakeup?
1823 * Put it on the run-queue if it's not already there. The "current"
1824 * thread is always on the run-queue (except when the actual
1825 * re-schedule is in progress), and as such you're allowed to do
1826 * the simpler "current->state = TASK_RUNNING" to mark yourself
1827 * runnable without the overhead of this.
1829 * returns failure only if the task is already active.
1831 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1833 int cpu
, orig_cpu
, this_cpu
, success
= 0;
1834 unsigned long flags
;
1839 rq
= task_rq_lock(p
, &flags
);
1840 old_state
= p
->state
;
1841 if (!(old_state
& state
))
1849 this_cpu
= smp_processor_id();
1852 if (unlikely(task_running(rq
, p
)))
1855 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
1856 if (cpu
!= orig_cpu
) {
1857 set_task_cpu(p
, cpu
);
1858 task_rq_unlock(rq
, &flags
);
1859 /* might preempt at this point */
1860 rq
= task_rq_lock(p
, &flags
);
1861 old_state
= p
->state
;
1862 if (!(old_state
& state
))
1867 this_cpu
= smp_processor_id();
1871 #ifdef CONFIG_SCHEDSTATS
1872 schedstat_inc(rq
, ttwu_count
);
1873 if (cpu
== this_cpu
)
1874 schedstat_inc(rq
, ttwu_local
);
1876 struct sched_domain
*sd
;
1877 for_each_domain(this_cpu
, sd
) {
1878 if (cpu_isset(cpu
, sd
->span
)) {
1879 schedstat_inc(sd
, ttwu_wake_remote
);
1887 #endif /* CONFIG_SMP */
1888 schedstat_inc(p
, se
.nr_wakeups
);
1890 schedstat_inc(p
, se
.nr_wakeups_sync
);
1891 if (orig_cpu
!= cpu
)
1892 schedstat_inc(p
, se
.nr_wakeups_migrate
);
1893 if (cpu
== this_cpu
)
1894 schedstat_inc(p
, se
.nr_wakeups_local
);
1896 schedstat_inc(p
, se
.nr_wakeups_remote
);
1897 update_rq_clock(rq
);
1898 activate_task(rq
, p
, 1);
1899 check_preempt_curr(rq
, p
);
1903 p
->state
= TASK_RUNNING
;
1905 if (p
->sched_class
->task_wake_up
)
1906 p
->sched_class
->task_wake_up(rq
, p
);
1909 task_rq_unlock(rq
, &flags
);
1914 int wake_up_process(struct task_struct
*p
)
1916 return try_to_wake_up(p
, TASK_ALL
, 0);
1918 EXPORT_SYMBOL(wake_up_process
);
1920 int wake_up_state(struct task_struct
*p
, unsigned int state
)
1922 return try_to_wake_up(p
, state
, 0);
1926 * Perform scheduler related setup for a newly forked process p.
1927 * p is forked by current.
1929 * __sched_fork() is basic setup used by init_idle() too:
1931 static void __sched_fork(struct task_struct
*p
)
1933 p
->se
.exec_start
= 0;
1934 p
->se
.sum_exec_runtime
= 0;
1935 p
->se
.prev_sum_exec_runtime
= 0;
1937 #ifdef CONFIG_SCHEDSTATS
1938 p
->se
.wait_start
= 0;
1939 p
->se
.sum_sleep_runtime
= 0;
1940 p
->se
.sleep_start
= 0;
1941 p
->se
.block_start
= 0;
1942 p
->se
.sleep_max
= 0;
1943 p
->se
.block_max
= 0;
1945 p
->se
.slice_max
= 0;
1949 INIT_LIST_HEAD(&p
->rt
.run_list
);
1952 #ifdef CONFIG_PREEMPT_NOTIFIERS
1953 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1957 * We mark the process as running here, but have not actually
1958 * inserted it onto the runqueue yet. This guarantees that
1959 * nobody will actually run it, and a signal or other external
1960 * event cannot wake it up and insert it on the runqueue either.
1962 p
->state
= TASK_RUNNING
;
1966 * fork()/clone()-time setup:
1968 void sched_fork(struct task_struct
*p
, int clone_flags
)
1970 int cpu
= get_cpu();
1975 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1977 set_task_cpu(p
, cpu
);
1980 * Make sure we do not leak PI boosting priority to the child:
1982 p
->prio
= current
->normal_prio
;
1983 if (!rt_prio(p
->prio
))
1984 p
->sched_class
= &fair_sched_class
;
1986 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1987 if (likely(sched_info_on()))
1988 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1990 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1993 #ifdef CONFIG_PREEMPT
1994 /* Want to start with kernel preemption disabled. */
1995 task_thread_info(p
)->preempt_count
= 1;
2001 * wake_up_new_task - wake up a newly created task for the first time.
2003 * This function will do some initial scheduler statistics housekeeping
2004 * that must be done for every newly created context, then puts the task
2005 * on the runqueue and wakes it.
2007 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2009 unsigned long flags
;
2012 rq
= task_rq_lock(p
, &flags
);
2013 BUG_ON(p
->state
!= TASK_RUNNING
);
2014 update_rq_clock(rq
);
2016 p
->prio
= effective_prio(p
);
2018 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2019 activate_task(rq
, p
, 0);
2022 * Let the scheduling class do new task startup
2023 * management (if any):
2025 p
->sched_class
->task_new(rq
, p
);
2028 check_preempt_curr(rq
, p
);
2030 if (p
->sched_class
->task_wake_up
)
2031 p
->sched_class
->task_wake_up(rq
, p
);
2033 task_rq_unlock(rq
, &flags
);
2036 #ifdef CONFIG_PREEMPT_NOTIFIERS
2039 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2040 * @notifier: notifier struct to register
2042 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2044 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2046 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2049 * preempt_notifier_unregister - no longer interested in preemption notifications
2050 * @notifier: notifier struct to unregister
2052 * This is safe to call from within a preemption notifier.
2054 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2056 hlist_del(¬ifier
->link
);
2058 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2060 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2062 struct preempt_notifier
*notifier
;
2063 struct hlist_node
*node
;
2065 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2066 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2070 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2071 struct task_struct
*next
)
2073 struct preempt_notifier
*notifier
;
2074 struct hlist_node
*node
;
2076 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2077 notifier
->ops
->sched_out(notifier
, next
);
2082 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2087 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2088 struct task_struct
*next
)
2095 * prepare_task_switch - prepare to switch tasks
2096 * @rq: the runqueue preparing to switch
2097 * @prev: the current task that is being switched out
2098 * @next: the task we are going to switch to.
2100 * This is called with the rq lock held and interrupts off. It must
2101 * be paired with a subsequent finish_task_switch after the context
2104 * prepare_task_switch sets up locking and calls architecture specific
2108 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2109 struct task_struct
*next
)
2111 fire_sched_out_preempt_notifiers(prev
, next
);
2112 prepare_lock_switch(rq
, next
);
2113 prepare_arch_switch(next
);
2117 * finish_task_switch - clean up after a task-switch
2118 * @rq: runqueue associated with task-switch
2119 * @prev: the thread we just switched away from.
2121 * finish_task_switch must be called after the context switch, paired
2122 * with a prepare_task_switch call before the context switch.
2123 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2124 * and do any other architecture-specific cleanup actions.
2126 * Note that we may have delayed dropping an mm in context_switch(). If
2127 * so, we finish that here outside of the runqueue lock. (Doing it
2128 * with the lock held can cause deadlocks; see schedule() for
2131 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2132 __releases(rq
->lock
)
2134 struct mm_struct
*mm
= rq
->prev_mm
;
2140 * A task struct has one reference for the use as "current".
2141 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2142 * schedule one last time. The schedule call will never return, and
2143 * the scheduled task must drop that reference.
2144 * The test for TASK_DEAD must occur while the runqueue locks are
2145 * still held, otherwise prev could be scheduled on another cpu, die
2146 * there before we look at prev->state, and then the reference would
2148 * Manfred Spraul <manfred@colorfullife.com>
2150 prev_state
= prev
->state
;
2151 finish_arch_switch(prev
);
2152 finish_lock_switch(rq
, prev
);
2154 if (current
->sched_class
->post_schedule
)
2155 current
->sched_class
->post_schedule(rq
);
2158 fire_sched_in_preempt_notifiers(current
);
2161 if (unlikely(prev_state
== TASK_DEAD
)) {
2163 * Remove function-return probe instances associated with this
2164 * task and put them back on the free list.
2166 kprobe_flush_task(prev
);
2167 put_task_struct(prev
);
2172 * schedule_tail - first thing a freshly forked thread must call.
2173 * @prev: the thread we just switched away from.
2175 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2176 __releases(rq
->lock
)
2178 struct rq
*rq
= this_rq();
2180 finish_task_switch(rq
, prev
);
2181 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2182 /* In this case, finish_task_switch does not reenable preemption */
2185 if (current
->set_child_tid
)
2186 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2190 * context_switch - switch to the new MM and the new
2191 * thread's register state.
2194 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2195 struct task_struct
*next
)
2197 struct mm_struct
*mm
, *oldmm
;
2199 prepare_task_switch(rq
, prev
, next
);
2201 oldmm
= prev
->active_mm
;
2203 * For paravirt, this is coupled with an exit in switch_to to
2204 * combine the page table reload and the switch backend into
2207 arch_enter_lazy_cpu_mode();
2209 if (unlikely(!mm
)) {
2210 next
->active_mm
= oldmm
;
2211 atomic_inc(&oldmm
->mm_count
);
2212 enter_lazy_tlb(oldmm
, next
);
2214 switch_mm(oldmm
, mm
, next
);
2216 if (unlikely(!prev
->mm
)) {
2217 prev
->active_mm
= NULL
;
2218 rq
->prev_mm
= oldmm
;
2221 * Since the runqueue lock will be released by the next
2222 * task (which is an invalid locking op but in the case
2223 * of the scheduler it's an obvious special-case), so we
2224 * do an early lockdep release here:
2226 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2227 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2230 /* Here we just switch the register state and the stack. */
2231 switch_to(prev
, next
, prev
);
2235 * this_rq must be evaluated again because prev may have moved
2236 * CPUs since it called schedule(), thus the 'rq' on its stack
2237 * frame will be invalid.
2239 finish_task_switch(this_rq(), prev
);
2243 * nr_running, nr_uninterruptible and nr_context_switches:
2245 * externally visible scheduler statistics: current number of runnable
2246 * threads, current number of uninterruptible-sleeping threads, total
2247 * number of context switches performed since bootup.
2249 unsigned long nr_running(void)
2251 unsigned long i
, sum
= 0;
2253 for_each_online_cpu(i
)
2254 sum
+= cpu_rq(i
)->nr_running
;
2259 unsigned long nr_uninterruptible(void)
2261 unsigned long i
, sum
= 0;
2263 for_each_possible_cpu(i
)
2264 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2267 * Since we read the counters lockless, it might be slightly
2268 * inaccurate. Do not allow it to go below zero though:
2270 if (unlikely((long)sum
< 0))
2276 unsigned long long nr_context_switches(void)
2279 unsigned long long sum
= 0;
2281 for_each_possible_cpu(i
)
2282 sum
+= cpu_rq(i
)->nr_switches
;
2287 unsigned long nr_iowait(void)
2289 unsigned long i
, sum
= 0;
2291 for_each_possible_cpu(i
)
2292 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2297 unsigned long nr_active(void)
2299 unsigned long i
, running
= 0, uninterruptible
= 0;
2301 for_each_online_cpu(i
) {
2302 running
+= cpu_rq(i
)->nr_running
;
2303 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2306 if (unlikely((long)uninterruptible
< 0))
2307 uninterruptible
= 0;
2309 return running
+ uninterruptible
;
2313 * Update rq->cpu_load[] statistics. This function is usually called every
2314 * scheduler tick (TICK_NSEC).
2316 static void update_cpu_load(struct rq
*this_rq
)
2318 unsigned long this_load
= this_rq
->load
.weight
;
2321 this_rq
->nr_load_updates
++;
2323 /* Update our load: */
2324 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2325 unsigned long old_load
, new_load
;
2327 /* scale is effectively 1 << i now, and >> i divides by scale */
2329 old_load
= this_rq
->cpu_load
[i
];
2330 new_load
= this_load
;
2332 * Round up the averaging division if load is increasing. This
2333 * prevents us from getting stuck on 9 if the load is 10, for
2336 if (new_load
> old_load
)
2337 new_load
+= scale
-1;
2338 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2345 * double_rq_lock - safely lock two runqueues
2347 * Note this does not disable interrupts like task_rq_lock,
2348 * you need to do so manually before calling.
2350 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2351 __acquires(rq1
->lock
)
2352 __acquires(rq2
->lock
)
2354 BUG_ON(!irqs_disabled());
2356 spin_lock(&rq1
->lock
);
2357 __acquire(rq2
->lock
); /* Fake it out ;) */
2360 spin_lock(&rq1
->lock
);
2361 spin_lock(&rq2
->lock
);
2363 spin_lock(&rq2
->lock
);
2364 spin_lock(&rq1
->lock
);
2367 update_rq_clock(rq1
);
2368 update_rq_clock(rq2
);
2372 * double_rq_unlock - safely unlock two runqueues
2374 * Note this does not restore interrupts like task_rq_unlock,
2375 * you need to do so manually after calling.
2377 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2378 __releases(rq1
->lock
)
2379 __releases(rq2
->lock
)
2381 spin_unlock(&rq1
->lock
);
2383 spin_unlock(&rq2
->lock
);
2385 __release(rq2
->lock
);
2389 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2391 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2392 __releases(this_rq
->lock
)
2393 __acquires(busiest
->lock
)
2394 __acquires(this_rq
->lock
)
2398 if (unlikely(!irqs_disabled())) {
2399 /* printk() doesn't work good under rq->lock */
2400 spin_unlock(&this_rq
->lock
);
2403 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2404 if (busiest
< this_rq
) {
2405 spin_unlock(&this_rq
->lock
);
2406 spin_lock(&busiest
->lock
);
2407 spin_lock(&this_rq
->lock
);
2410 spin_lock(&busiest
->lock
);
2416 * If dest_cpu is allowed for this process, migrate the task to it.
2417 * This is accomplished by forcing the cpu_allowed mask to only
2418 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2419 * the cpu_allowed mask is restored.
2421 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2423 struct migration_req req
;
2424 unsigned long flags
;
2427 rq
= task_rq_lock(p
, &flags
);
2428 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2429 || unlikely(cpu_is_offline(dest_cpu
)))
2432 /* force the process onto the specified CPU */
2433 if (migrate_task(p
, dest_cpu
, &req
)) {
2434 /* Need to wait for migration thread (might exit: take ref). */
2435 struct task_struct
*mt
= rq
->migration_thread
;
2437 get_task_struct(mt
);
2438 task_rq_unlock(rq
, &flags
);
2439 wake_up_process(mt
);
2440 put_task_struct(mt
);
2441 wait_for_completion(&req
.done
);
2446 task_rq_unlock(rq
, &flags
);
2450 * sched_exec - execve() is a valuable balancing opportunity, because at
2451 * this point the task has the smallest effective memory and cache footprint.
2453 void sched_exec(void)
2455 int new_cpu
, this_cpu
= get_cpu();
2456 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2458 if (new_cpu
!= this_cpu
)
2459 sched_migrate_task(current
, new_cpu
);
2463 * pull_task - move a task from a remote runqueue to the local runqueue.
2464 * Both runqueues must be locked.
2466 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2467 struct rq
*this_rq
, int this_cpu
)
2469 deactivate_task(src_rq
, p
, 0);
2470 set_task_cpu(p
, this_cpu
);
2471 activate_task(this_rq
, p
, 0);
2473 * Note that idle threads have a prio of MAX_PRIO, for this test
2474 * to be always true for them.
2476 check_preempt_curr(this_rq
, p
);
2480 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2483 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2484 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2488 * We do not migrate tasks that are:
2489 * 1) running (obviously), or
2490 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2491 * 3) are cache-hot on their current CPU.
2493 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2494 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2499 if (task_running(rq
, p
)) {
2500 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2505 * Aggressive migration if:
2506 * 1) task is cache cold, or
2507 * 2) too many balance attempts have failed.
2510 if (!task_hot(p
, rq
->clock
, sd
) ||
2511 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2512 #ifdef CONFIG_SCHEDSTATS
2513 if (task_hot(p
, rq
->clock
, sd
)) {
2514 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2515 schedstat_inc(p
, se
.nr_forced_migrations
);
2521 if (task_hot(p
, rq
->clock
, sd
)) {
2522 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2528 static unsigned long
2529 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2530 unsigned long max_load_move
, struct sched_domain
*sd
,
2531 enum cpu_idle_type idle
, int *all_pinned
,
2532 int *this_best_prio
, struct rq_iterator
*iterator
)
2534 int loops
= 0, pulled
= 0, pinned
= 0, skip_for_load
;
2535 struct task_struct
*p
;
2536 long rem_load_move
= max_load_move
;
2538 if (max_load_move
== 0)
2544 * Start the load-balancing iterator:
2546 p
= iterator
->start(iterator
->arg
);
2548 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2551 * To help distribute high priority tasks across CPUs we don't
2552 * skip a task if it will be the highest priority task (i.e. smallest
2553 * prio value) on its new queue regardless of its load weight
2555 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2556 SCHED_LOAD_SCALE_FUZZ
;
2557 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2558 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2559 p
= iterator
->next(iterator
->arg
);
2563 pull_task(busiest
, p
, this_rq
, this_cpu
);
2565 rem_load_move
-= p
->se
.load
.weight
;
2568 * We only want to steal up to the prescribed amount of weighted load.
2570 if (rem_load_move
> 0) {
2571 if (p
->prio
< *this_best_prio
)
2572 *this_best_prio
= p
->prio
;
2573 p
= iterator
->next(iterator
->arg
);
2578 * Right now, this is one of only two places pull_task() is called,
2579 * so we can safely collect pull_task() stats here rather than
2580 * inside pull_task().
2582 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2585 *all_pinned
= pinned
;
2587 return max_load_move
- rem_load_move
;
2591 * move_tasks tries to move up to max_load_move weighted load from busiest to
2592 * this_rq, as part of a balancing operation within domain "sd".
2593 * Returns 1 if successful and 0 otherwise.
2595 * Called with both runqueues locked.
2597 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2598 unsigned long max_load_move
,
2599 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2602 const struct sched_class
*class = sched_class_highest
;
2603 unsigned long total_load_moved
= 0;
2604 int this_best_prio
= this_rq
->curr
->prio
;
2608 class->load_balance(this_rq
, this_cpu
, busiest
,
2609 max_load_move
- total_load_moved
,
2610 sd
, idle
, all_pinned
, &this_best_prio
);
2611 class = class->next
;
2612 } while (class && max_load_move
> total_load_moved
);
2614 return total_load_moved
> 0;
2618 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2619 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2620 struct rq_iterator
*iterator
)
2622 struct task_struct
*p
= iterator
->start(iterator
->arg
);
2626 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2627 pull_task(busiest
, p
, this_rq
, this_cpu
);
2629 * Right now, this is only the second place pull_task()
2630 * is called, so we can safely collect pull_task()
2631 * stats here rather than inside pull_task().
2633 schedstat_inc(sd
, lb_gained
[idle
]);
2637 p
= iterator
->next(iterator
->arg
);
2644 * move_one_task tries to move exactly one task from busiest to this_rq, as
2645 * part of active balancing operations within "domain".
2646 * Returns 1 if successful and 0 otherwise.
2648 * Called with both runqueues locked.
2650 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2651 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2653 const struct sched_class
*class;
2655 for (class = sched_class_highest
; class; class = class->next
)
2656 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
2663 * find_busiest_group finds and returns the busiest CPU group within the
2664 * domain. It calculates and returns the amount of weighted load which
2665 * should be moved to restore balance via the imbalance parameter.
2667 static struct sched_group
*
2668 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2669 unsigned long *imbalance
, enum cpu_idle_type idle
,
2670 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2672 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2673 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2674 unsigned long max_pull
;
2675 unsigned long busiest_load_per_task
, busiest_nr_running
;
2676 unsigned long this_load_per_task
, this_nr_running
;
2677 int load_idx
, group_imb
= 0;
2678 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2679 int power_savings_balance
= 1;
2680 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2681 unsigned long min_nr_running
= ULONG_MAX
;
2682 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2685 max_load
= this_load
= total_load
= total_pwr
= 0;
2686 busiest_load_per_task
= busiest_nr_running
= 0;
2687 this_load_per_task
= this_nr_running
= 0;
2688 if (idle
== CPU_NOT_IDLE
)
2689 load_idx
= sd
->busy_idx
;
2690 else if (idle
== CPU_NEWLY_IDLE
)
2691 load_idx
= sd
->newidle_idx
;
2693 load_idx
= sd
->idle_idx
;
2696 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
2699 int __group_imb
= 0;
2700 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2701 unsigned long sum_nr_running
, sum_weighted_load
;
2703 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2706 balance_cpu
= first_cpu(group
->cpumask
);
2708 /* Tally up the load of all CPUs in the group */
2709 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2711 min_cpu_load
= ~0UL;
2713 for_each_cpu_mask(i
, group
->cpumask
) {
2716 if (!cpu_isset(i
, *cpus
))
2721 if (*sd_idle
&& rq
->nr_running
)
2724 /* Bias balancing toward cpus of our domain */
2726 if (idle_cpu(i
) && !first_idle_cpu
) {
2731 load
= target_load(i
, load_idx
);
2733 load
= source_load(i
, load_idx
);
2734 if (load
> max_cpu_load
)
2735 max_cpu_load
= load
;
2736 if (min_cpu_load
> load
)
2737 min_cpu_load
= load
;
2741 sum_nr_running
+= rq
->nr_running
;
2742 sum_weighted_load
+= weighted_cpuload(i
);
2746 * First idle cpu or the first cpu(busiest) in this sched group
2747 * is eligible for doing load balancing at this and above
2748 * domains. In the newly idle case, we will allow all the cpu's
2749 * to do the newly idle load balance.
2751 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2752 balance_cpu
!= this_cpu
&& balance
) {
2757 total_load
+= avg_load
;
2758 total_pwr
+= group
->__cpu_power
;
2760 /* Adjust by relative CPU power of the group */
2761 avg_load
= sg_div_cpu_power(group
,
2762 avg_load
* SCHED_LOAD_SCALE
);
2764 if ((max_cpu_load
- min_cpu_load
) > SCHED_LOAD_SCALE
)
2767 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2770 this_load
= avg_load
;
2772 this_nr_running
= sum_nr_running
;
2773 this_load_per_task
= sum_weighted_load
;
2774 } else if (avg_load
> max_load
&&
2775 (sum_nr_running
> group_capacity
|| __group_imb
)) {
2776 max_load
= avg_load
;
2778 busiest_nr_running
= sum_nr_running
;
2779 busiest_load_per_task
= sum_weighted_load
;
2780 group_imb
= __group_imb
;
2783 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2785 * Busy processors will not participate in power savings
2788 if (idle
== CPU_NOT_IDLE
||
2789 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2793 * If the local group is idle or completely loaded
2794 * no need to do power savings balance at this domain
2796 if (local_group
&& (this_nr_running
>= group_capacity
||
2798 power_savings_balance
= 0;
2801 * If a group is already running at full capacity or idle,
2802 * don't include that group in power savings calculations
2804 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2809 * Calculate the group which has the least non-idle load.
2810 * This is the group from where we need to pick up the load
2813 if ((sum_nr_running
< min_nr_running
) ||
2814 (sum_nr_running
== min_nr_running
&&
2815 first_cpu(group
->cpumask
) <
2816 first_cpu(group_min
->cpumask
))) {
2818 min_nr_running
= sum_nr_running
;
2819 min_load_per_task
= sum_weighted_load
/
2824 * Calculate the group which is almost near its
2825 * capacity but still has some space to pick up some load
2826 * from other group and save more power
2828 if (sum_nr_running
<= group_capacity
- 1) {
2829 if (sum_nr_running
> leader_nr_running
||
2830 (sum_nr_running
== leader_nr_running
&&
2831 first_cpu(group
->cpumask
) >
2832 first_cpu(group_leader
->cpumask
))) {
2833 group_leader
= group
;
2834 leader_nr_running
= sum_nr_running
;
2839 group
= group
->next
;
2840 } while (group
!= sd
->groups
);
2842 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2845 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2847 if (this_load
>= avg_load
||
2848 100*max_load
<= sd
->imbalance_pct
*this_load
)
2851 busiest_load_per_task
/= busiest_nr_running
;
2853 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
2856 * We're trying to get all the cpus to the average_load, so we don't
2857 * want to push ourselves above the average load, nor do we wish to
2858 * reduce the max loaded cpu below the average load, as either of these
2859 * actions would just result in more rebalancing later, and ping-pong
2860 * tasks around. Thus we look for the minimum possible imbalance.
2861 * Negative imbalances (*we* are more loaded than anyone else) will
2862 * be counted as no imbalance for these purposes -- we can't fix that
2863 * by pulling tasks to us. Be careful of negative numbers as they'll
2864 * appear as very large values with unsigned longs.
2866 if (max_load
<= busiest_load_per_task
)
2870 * In the presence of smp nice balancing, certain scenarios can have
2871 * max load less than avg load(as we skip the groups at or below
2872 * its cpu_power, while calculating max_load..)
2874 if (max_load
< avg_load
) {
2876 goto small_imbalance
;
2879 /* Don't want to pull so many tasks that a group would go idle */
2880 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2882 /* How much load to actually move to equalise the imbalance */
2883 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2884 (avg_load
- this_load
) * this->__cpu_power
)
2888 * if *imbalance is less than the average load per runnable task
2889 * there is no gaurantee that any tasks will be moved so we'll have
2890 * a think about bumping its value to force at least one task to be
2893 if (*imbalance
< busiest_load_per_task
) {
2894 unsigned long tmp
, pwr_now
, pwr_move
;
2898 pwr_move
= pwr_now
= 0;
2900 if (this_nr_running
) {
2901 this_load_per_task
/= this_nr_running
;
2902 if (busiest_load_per_task
> this_load_per_task
)
2905 this_load_per_task
= SCHED_LOAD_SCALE
;
2907 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2908 busiest_load_per_task
* imbn
) {
2909 *imbalance
= busiest_load_per_task
;
2914 * OK, we don't have enough imbalance to justify moving tasks,
2915 * however we may be able to increase total CPU power used by
2919 pwr_now
+= busiest
->__cpu_power
*
2920 min(busiest_load_per_task
, max_load
);
2921 pwr_now
+= this->__cpu_power
*
2922 min(this_load_per_task
, this_load
);
2923 pwr_now
/= SCHED_LOAD_SCALE
;
2925 /* Amount of load we'd subtract */
2926 tmp
= sg_div_cpu_power(busiest
,
2927 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2929 pwr_move
+= busiest
->__cpu_power
*
2930 min(busiest_load_per_task
, max_load
- tmp
);
2932 /* Amount of load we'd add */
2933 if (max_load
* busiest
->__cpu_power
<
2934 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2935 tmp
= sg_div_cpu_power(this,
2936 max_load
* busiest
->__cpu_power
);
2938 tmp
= sg_div_cpu_power(this,
2939 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2940 pwr_move
+= this->__cpu_power
*
2941 min(this_load_per_task
, this_load
+ tmp
);
2942 pwr_move
/= SCHED_LOAD_SCALE
;
2944 /* Move if we gain throughput */
2945 if (pwr_move
> pwr_now
)
2946 *imbalance
= busiest_load_per_task
;
2952 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2953 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2956 if (this == group_leader
&& group_leader
!= group_min
) {
2957 *imbalance
= min_load_per_task
;
2967 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2970 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2971 unsigned long imbalance
, cpumask_t
*cpus
)
2973 struct rq
*busiest
= NULL
, *rq
;
2974 unsigned long max_load
= 0;
2977 for_each_cpu_mask(i
, group
->cpumask
) {
2980 if (!cpu_isset(i
, *cpus
))
2984 wl
= weighted_cpuload(i
);
2986 if (rq
->nr_running
== 1 && wl
> imbalance
)
2989 if (wl
> max_load
) {
2999 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3000 * so long as it is large enough.
3002 #define MAX_PINNED_INTERVAL 512
3005 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3006 * tasks if there is an imbalance.
3008 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3009 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3012 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3013 struct sched_group
*group
;
3014 unsigned long imbalance
;
3016 cpumask_t cpus
= CPU_MASK_ALL
;
3017 unsigned long flags
;
3020 * When power savings policy is enabled for the parent domain, idle
3021 * sibling can pick up load irrespective of busy siblings. In this case,
3022 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3023 * portraying it as CPU_NOT_IDLE.
3025 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3026 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3029 schedstat_inc(sd
, lb_count
[idle
]);
3032 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3039 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3043 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
3045 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3049 BUG_ON(busiest
== this_rq
);
3051 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3054 if (busiest
->nr_running
> 1) {
3056 * Attempt to move tasks. If find_busiest_group has found
3057 * an imbalance but busiest->nr_running <= 1, the group is
3058 * still unbalanced. ld_moved simply stays zero, so it is
3059 * correctly treated as an imbalance.
3061 local_irq_save(flags
);
3062 double_rq_lock(this_rq
, busiest
);
3063 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3064 imbalance
, sd
, idle
, &all_pinned
);
3065 double_rq_unlock(this_rq
, busiest
);
3066 local_irq_restore(flags
);
3069 * some other cpu did the load balance for us.
3071 if (ld_moved
&& this_cpu
!= smp_processor_id())
3072 resched_cpu(this_cpu
);
3074 /* All tasks on this runqueue were pinned by CPU affinity */
3075 if (unlikely(all_pinned
)) {
3076 cpu_clear(cpu_of(busiest
), cpus
);
3077 if (!cpus_empty(cpus
))
3084 schedstat_inc(sd
, lb_failed
[idle
]);
3085 sd
->nr_balance_failed
++;
3087 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3089 spin_lock_irqsave(&busiest
->lock
, flags
);
3091 /* don't kick the migration_thread, if the curr
3092 * task on busiest cpu can't be moved to this_cpu
3094 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
3095 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3097 goto out_one_pinned
;
3100 if (!busiest
->active_balance
) {
3101 busiest
->active_balance
= 1;
3102 busiest
->push_cpu
= this_cpu
;
3105 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3107 wake_up_process(busiest
->migration_thread
);
3110 * We've kicked active balancing, reset the failure
3113 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3116 sd
->nr_balance_failed
= 0;
3118 if (likely(!active_balance
)) {
3119 /* We were unbalanced, so reset the balancing interval */
3120 sd
->balance_interval
= sd
->min_interval
;
3123 * If we've begun active balancing, start to back off. This
3124 * case may not be covered by the all_pinned logic if there
3125 * is only 1 task on the busy runqueue (because we don't call
3128 if (sd
->balance_interval
< sd
->max_interval
)
3129 sd
->balance_interval
*= 2;
3132 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3133 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3138 schedstat_inc(sd
, lb_balanced
[idle
]);
3140 sd
->nr_balance_failed
= 0;
3143 /* tune up the balancing interval */
3144 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3145 (sd
->balance_interval
< sd
->max_interval
))
3146 sd
->balance_interval
*= 2;
3148 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3149 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3155 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3156 * tasks if there is an imbalance.
3158 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3159 * this_rq is locked.
3162 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
3164 struct sched_group
*group
;
3165 struct rq
*busiest
= NULL
;
3166 unsigned long imbalance
;
3170 cpumask_t cpus
= CPU_MASK_ALL
;
3173 * When power savings policy is enabled for the parent domain, idle
3174 * sibling can pick up load irrespective of busy siblings. In this case,
3175 * let the state of idle sibling percolate up as IDLE, instead of
3176 * portraying it as CPU_NOT_IDLE.
3178 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3179 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3182 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3184 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3185 &sd_idle
, &cpus
, NULL
);
3187 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3191 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
3194 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3198 BUG_ON(busiest
== this_rq
);
3200 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3203 if (busiest
->nr_running
> 1) {
3204 /* Attempt to move tasks */
3205 double_lock_balance(this_rq
, busiest
);
3206 /* this_rq->clock is already updated */
3207 update_rq_clock(busiest
);
3208 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3209 imbalance
, sd
, CPU_NEWLY_IDLE
,
3211 spin_unlock(&busiest
->lock
);
3213 if (unlikely(all_pinned
)) {
3214 cpu_clear(cpu_of(busiest
), cpus
);
3215 if (!cpus_empty(cpus
))
3221 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3222 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3223 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3226 sd
->nr_balance_failed
= 0;
3231 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3232 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3233 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3235 sd
->nr_balance_failed
= 0;
3241 * idle_balance is called by schedule() if this_cpu is about to become
3242 * idle. Attempts to pull tasks from other CPUs.
3244 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3246 struct sched_domain
*sd
;
3247 int pulled_task
= -1;
3248 unsigned long next_balance
= jiffies
+ HZ
;
3250 for_each_domain(this_cpu
, sd
) {
3251 unsigned long interval
;
3253 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3256 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3257 /* If we've pulled tasks over stop searching: */
3258 pulled_task
= load_balance_newidle(this_cpu
,
3261 interval
= msecs_to_jiffies(sd
->balance_interval
);
3262 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3263 next_balance
= sd
->last_balance
+ interval
;
3267 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3269 * We are going idle. next_balance may be set based on
3270 * a busy processor. So reset next_balance.
3272 this_rq
->next_balance
= next_balance
;
3277 * active_load_balance is run by migration threads. It pushes running tasks
3278 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3279 * running on each physical CPU where possible, and avoids physical /
3280 * logical imbalances.
3282 * Called with busiest_rq locked.
3284 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3286 int target_cpu
= busiest_rq
->push_cpu
;
3287 struct sched_domain
*sd
;
3288 struct rq
*target_rq
;
3290 /* Is there any task to move? */
3291 if (busiest_rq
->nr_running
<= 1)
3294 target_rq
= cpu_rq(target_cpu
);
3297 * This condition is "impossible", if it occurs
3298 * we need to fix it. Originally reported by
3299 * Bjorn Helgaas on a 128-cpu setup.
3301 BUG_ON(busiest_rq
== target_rq
);
3303 /* move a task from busiest_rq to target_rq */
3304 double_lock_balance(busiest_rq
, target_rq
);
3305 update_rq_clock(busiest_rq
);
3306 update_rq_clock(target_rq
);
3308 /* Search for an sd spanning us and the target CPU. */
3309 for_each_domain(target_cpu
, sd
) {
3310 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3311 cpu_isset(busiest_cpu
, sd
->span
))
3316 schedstat_inc(sd
, alb_count
);
3318 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3320 schedstat_inc(sd
, alb_pushed
);
3322 schedstat_inc(sd
, alb_failed
);
3324 spin_unlock(&target_rq
->lock
);
3329 atomic_t load_balancer
;
3331 } nohz ____cacheline_aligned
= {
3332 .load_balancer
= ATOMIC_INIT(-1),
3333 .cpu_mask
= CPU_MASK_NONE
,
3337 * This routine will try to nominate the ilb (idle load balancing)
3338 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3339 * load balancing on behalf of all those cpus. If all the cpus in the system
3340 * go into this tickless mode, then there will be no ilb owner (as there is
3341 * no need for one) and all the cpus will sleep till the next wakeup event
3344 * For the ilb owner, tick is not stopped. And this tick will be used
3345 * for idle load balancing. ilb owner will still be part of
3348 * While stopping the tick, this cpu will become the ilb owner if there
3349 * is no other owner. And will be the owner till that cpu becomes busy
3350 * or if all cpus in the system stop their ticks at which point
3351 * there is no need for ilb owner.
3353 * When the ilb owner becomes busy, it nominates another owner, during the
3354 * next busy scheduler_tick()
3356 int select_nohz_load_balancer(int stop_tick
)
3358 int cpu
= smp_processor_id();
3361 cpu_set(cpu
, nohz
.cpu_mask
);
3362 cpu_rq(cpu
)->in_nohz_recently
= 1;
3365 * If we are going offline and still the leader, give up!
3367 if (cpu_is_offline(cpu
) &&
3368 atomic_read(&nohz
.load_balancer
) == cpu
) {
3369 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3374 /* time for ilb owner also to sleep */
3375 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3376 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3377 atomic_set(&nohz
.load_balancer
, -1);
3381 if (atomic_read(&nohz
.load_balancer
) == -1) {
3382 /* make me the ilb owner */
3383 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3385 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3388 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3391 cpu_clear(cpu
, nohz
.cpu_mask
);
3393 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3394 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3401 static DEFINE_SPINLOCK(balancing
);
3404 * It checks each scheduling domain to see if it is due to be balanced,
3405 * and initiates a balancing operation if so.
3407 * Balancing parameters are set up in arch_init_sched_domains.
3409 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3412 struct rq
*rq
= cpu_rq(cpu
);
3413 unsigned long interval
;
3414 struct sched_domain
*sd
;
3415 /* Earliest time when we have to do rebalance again */
3416 unsigned long next_balance
= jiffies
+ 60*HZ
;
3417 int update_next_balance
= 0;
3419 for_each_domain(cpu
, sd
) {
3420 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3423 interval
= sd
->balance_interval
;
3424 if (idle
!= CPU_IDLE
)
3425 interval
*= sd
->busy_factor
;
3427 /* scale ms to jiffies */
3428 interval
= msecs_to_jiffies(interval
);
3429 if (unlikely(!interval
))
3431 if (interval
> HZ
*NR_CPUS
/10)
3432 interval
= HZ
*NR_CPUS
/10;
3435 if (sd
->flags
& SD_SERIALIZE
) {
3436 if (!spin_trylock(&balancing
))
3440 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3441 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3443 * We've pulled tasks over so either we're no
3444 * longer idle, or one of our SMT siblings is
3447 idle
= CPU_NOT_IDLE
;
3449 sd
->last_balance
= jiffies
;
3451 if (sd
->flags
& SD_SERIALIZE
)
3452 spin_unlock(&balancing
);
3454 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3455 next_balance
= sd
->last_balance
+ interval
;
3456 update_next_balance
= 1;
3460 * Stop the load balance at this level. There is another
3461 * CPU in our sched group which is doing load balancing more
3469 * next_balance will be updated only when there is a need.
3470 * When the cpu is attached to null domain for ex, it will not be
3473 if (likely(update_next_balance
))
3474 rq
->next_balance
= next_balance
;
3478 * run_rebalance_domains is triggered when needed from the scheduler tick.
3479 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3480 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3482 static void run_rebalance_domains(struct softirq_action
*h
)
3484 int this_cpu
= smp_processor_id();
3485 struct rq
*this_rq
= cpu_rq(this_cpu
);
3486 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3487 CPU_IDLE
: CPU_NOT_IDLE
;
3489 rebalance_domains(this_cpu
, idle
);
3493 * If this cpu is the owner for idle load balancing, then do the
3494 * balancing on behalf of the other idle cpus whose ticks are
3497 if (this_rq
->idle_at_tick
&&
3498 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3499 cpumask_t cpus
= nohz
.cpu_mask
;
3503 cpu_clear(this_cpu
, cpus
);
3504 for_each_cpu_mask(balance_cpu
, cpus
) {
3506 * If this cpu gets work to do, stop the load balancing
3507 * work being done for other cpus. Next load
3508 * balancing owner will pick it up.
3513 rebalance_domains(balance_cpu
, CPU_IDLE
);
3515 rq
= cpu_rq(balance_cpu
);
3516 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3517 this_rq
->next_balance
= rq
->next_balance
;
3524 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3526 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3527 * idle load balancing owner or decide to stop the periodic load balancing,
3528 * if the whole system is idle.
3530 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3534 * If we were in the nohz mode recently and busy at the current
3535 * scheduler tick, then check if we need to nominate new idle
3538 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3539 rq
->in_nohz_recently
= 0;
3541 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3542 cpu_clear(cpu
, nohz
.cpu_mask
);
3543 atomic_set(&nohz
.load_balancer
, -1);
3546 if (atomic_read(&nohz
.load_balancer
) == -1) {
3548 * simple selection for now: Nominate the
3549 * first cpu in the nohz list to be the next
3552 * TBD: Traverse the sched domains and nominate
3553 * the nearest cpu in the nohz.cpu_mask.
3555 int ilb
= first_cpu(nohz
.cpu_mask
);
3563 * If this cpu is idle and doing idle load balancing for all the
3564 * cpus with ticks stopped, is it time for that to stop?
3566 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3567 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3573 * If this cpu is idle and the idle load balancing is done by
3574 * someone else, then no need raise the SCHED_SOFTIRQ
3576 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3577 cpu_isset(cpu
, nohz
.cpu_mask
))
3580 if (time_after_eq(jiffies
, rq
->next_balance
))
3581 raise_softirq(SCHED_SOFTIRQ
);
3584 #else /* CONFIG_SMP */
3587 * on UP we do not need to balance between CPUs:
3589 static inline void idle_balance(int cpu
, struct rq
*rq
)
3595 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3597 EXPORT_PER_CPU_SYMBOL(kstat
);
3600 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3601 * that have not yet been banked in case the task is currently running.
3603 unsigned long long task_sched_runtime(struct task_struct
*p
)
3605 unsigned long flags
;
3609 rq
= task_rq_lock(p
, &flags
);
3610 ns
= p
->se
.sum_exec_runtime
;
3611 if (task_current(rq
, p
)) {
3612 update_rq_clock(rq
);
3613 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3614 if ((s64
)delta_exec
> 0)
3617 task_rq_unlock(rq
, &flags
);
3623 * Account user cpu time to a process.
3624 * @p: the process that the cpu time gets accounted to
3625 * @cputime: the cpu time spent in user space since the last update
3627 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3629 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3632 p
->utime
= cputime_add(p
->utime
, cputime
);
3634 /* Add user time to cpustat. */
3635 tmp
= cputime_to_cputime64(cputime
);
3636 if (TASK_NICE(p
) > 0)
3637 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3639 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3643 * Account guest cpu time to a process.
3644 * @p: the process that the cpu time gets accounted to
3645 * @cputime: the cpu time spent in virtual machine since the last update
3647 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
3650 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3652 tmp
= cputime_to_cputime64(cputime
);
3654 p
->utime
= cputime_add(p
->utime
, cputime
);
3655 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3657 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3658 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3662 * Account scaled user cpu time to a process.
3663 * @p: the process that the cpu time gets accounted to
3664 * @cputime: the cpu time spent in user space since the last update
3666 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3668 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
3672 * Account system cpu time to a process.
3673 * @p: the process that the cpu time gets accounted to
3674 * @hardirq_offset: the offset to subtract from hardirq_count()
3675 * @cputime: the cpu time spent in kernel space since the last update
3677 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3680 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3681 struct rq
*rq
= this_rq();
3684 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0))
3685 return account_guest_time(p
, cputime
);
3687 p
->stime
= cputime_add(p
->stime
, cputime
);
3689 /* Add system time to cpustat. */
3690 tmp
= cputime_to_cputime64(cputime
);
3691 if (hardirq_count() - hardirq_offset
)
3692 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3693 else if (softirq_count())
3694 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3695 else if (p
!= rq
->idle
)
3696 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3697 else if (atomic_read(&rq
->nr_iowait
) > 0)
3698 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3700 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3701 /* Account for system time used */
3702 acct_update_integrals(p
);
3706 * Account scaled system cpu time to a process.
3707 * @p: the process that the cpu time gets accounted to
3708 * @hardirq_offset: the offset to subtract from hardirq_count()
3709 * @cputime: the cpu time spent in kernel space since the last update
3711 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3713 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
3717 * Account for involuntary wait time.
3718 * @p: the process from which the cpu time has been stolen
3719 * @steal: the cpu time spent in involuntary wait
3721 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3723 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3724 cputime64_t tmp
= cputime_to_cputime64(steal
);
3725 struct rq
*rq
= this_rq();
3727 if (p
== rq
->idle
) {
3728 p
->stime
= cputime_add(p
->stime
, steal
);
3729 if (atomic_read(&rq
->nr_iowait
) > 0)
3730 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3732 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3734 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3738 * This function gets called by the timer code, with HZ frequency.
3739 * We call it with interrupts disabled.
3741 * It also gets called by the fork code, when changing the parent's
3744 void scheduler_tick(void)
3746 int cpu
= smp_processor_id();
3747 struct rq
*rq
= cpu_rq(cpu
);
3748 struct task_struct
*curr
= rq
->curr
;
3749 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
3751 spin_lock(&rq
->lock
);
3752 __update_rq_clock(rq
);
3754 * Let rq->clock advance by at least TICK_NSEC:
3756 if (unlikely(rq
->clock
< next_tick
)) {
3757 rq
->clock
= next_tick
;
3758 rq
->clock_underflows
++;
3760 rq
->tick_timestamp
= rq
->clock
;
3761 update_cpu_load(rq
);
3762 curr
->sched_class
->task_tick(rq
, curr
, 0);
3763 update_sched_rt_period(rq
);
3764 spin_unlock(&rq
->lock
);
3767 rq
->idle_at_tick
= idle_cpu(cpu
);
3768 trigger_load_balance(rq
, cpu
);
3772 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3774 void __kprobes
add_preempt_count(int val
)
3779 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3781 preempt_count() += val
;
3783 * Spinlock count overflowing soon?
3785 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3788 EXPORT_SYMBOL(add_preempt_count
);
3790 void __kprobes
sub_preempt_count(int val
)
3795 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3798 * Is the spinlock portion underflowing?
3800 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3801 !(preempt_count() & PREEMPT_MASK
)))
3804 preempt_count() -= val
;
3806 EXPORT_SYMBOL(sub_preempt_count
);
3811 * Print scheduling while atomic bug:
3813 static noinline
void __schedule_bug(struct task_struct
*prev
)
3815 struct pt_regs
*regs
= get_irq_regs();
3817 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3818 prev
->comm
, prev
->pid
, preempt_count());
3820 debug_show_held_locks(prev
);
3821 if (irqs_disabled())
3822 print_irqtrace_events(prev
);
3831 * Various schedule()-time debugging checks and statistics:
3833 static inline void schedule_debug(struct task_struct
*prev
)
3836 * Test if we are atomic. Since do_exit() needs to call into
3837 * schedule() atomically, we ignore that path for now.
3838 * Otherwise, whine if we are scheduling when we should not be.
3840 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3841 __schedule_bug(prev
);
3843 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3845 schedstat_inc(this_rq(), sched_count
);
3846 #ifdef CONFIG_SCHEDSTATS
3847 if (unlikely(prev
->lock_depth
>= 0)) {
3848 schedstat_inc(this_rq(), bkl_count
);
3849 schedstat_inc(prev
, sched_info
.bkl_count
);
3855 * Pick up the highest-prio task:
3857 static inline struct task_struct
*
3858 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
3860 const struct sched_class
*class;
3861 struct task_struct
*p
;
3864 * Optimization: we know that if all tasks are in
3865 * the fair class we can call that function directly:
3867 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3868 p
= fair_sched_class
.pick_next_task(rq
);
3873 class = sched_class_highest
;
3875 p
= class->pick_next_task(rq
);
3879 * Will never be NULL as the idle class always
3880 * returns a non-NULL p:
3882 class = class->next
;
3887 * schedule() is the main scheduler function.
3889 asmlinkage
void __sched
schedule(void)
3891 struct task_struct
*prev
, *next
;
3898 cpu
= smp_processor_id();
3902 switch_count
= &prev
->nivcsw
;
3904 release_kernel_lock(prev
);
3905 need_resched_nonpreemptible
:
3907 schedule_debug(prev
);
3912 * Do the rq-clock update outside the rq lock:
3914 local_irq_disable();
3915 __update_rq_clock(rq
);
3916 spin_lock(&rq
->lock
);
3917 clear_tsk_need_resched(prev
);
3919 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3920 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3921 unlikely(signal_pending(prev
)))) {
3922 prev
->state
= TASK_RUNNING
;
3924 deactivate_task(rq
, prev
, 1);
3926 switch_count
= &prev
->nvcsw
;
3930 if (prev
->sched_class
->pre_schedule
)
3931 prev
->sched_class
->pre_schedule(rq
, prev
);
3934 if (unlikely(!rq
->nr_running
))
3935 idle_balance(cpu
, rq
);
3937 prev
->sched_class
->put_prev_task(rq
, prev
);
3938 next
= pick_next_task(rq
, prev
);
3940 sched_info_switch(prev
, next
);
3942 if (likely(prev
!= next
)) {
3947 context_switch(rq
, prev
, next
); /* unlocks the rq */
3949 * the context switch might have flipped the stack from under
3950 * us, hence refresh the local variables.
3952 cpu
= smp_processor_id();
3955 spin_unlock_irq(&rq
->lock
);
3959 if (unlikely(reacquire_kernel_lock(current
) < 0))
3960 goto need_resched_nonpreemptible
;
3962 preempt_enable_no_resched();
3963 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3966 EXPORT_SYMBOL(schedule
);
3968 #ifdef CONFIG_PREEMPT
3970 * this is the entry point to schedule() from in-kernel preemption
3971 * off of preempt_enable. Kernel preemptions off return from interrupt
3972 * occur there and call schedule directly.
3974 asmlinkage
void __sched
preempt_schedule(void)
3976 struct thread_info
*ti
= current_thread_info();
3977 struct task_struct
*task
= current
;
3978 int saved_lock_depth
;
3981 * If there is a non-zero preempt_count or interrupts are disabled,
3982 * we do not want to preempt the current task. Just return..
3984 if (likely(ti
->preempt_count
|| irqs_disabled()))
3988 add_preempt_count(PREEMPT_ACTIVE
);
3991 * We keep the big kernel semaphore locked, but we
3992 * clear ->lock_depth so that schedule() doesnt
3993 * auto-release the semaphore:
3995 saved_lock_depth
= task
->lock_depth
;
3996 task
->lock_depth
= -1;
3998 task
->lock_depth
= saved_lock_depth
;
3999 sub_preempt_count(PREEMPT_ACTIVE
);
4002 * Check again in case we missed a preemption opportunity
4003 * between schedule and now.
4006 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4008 EXPORT_SYMBOL(preempt_schedule
);
4011 * this is the entry point to schedule() from kernel preemption
4012 * off of irq context.
4013 * Note, that this is called and return with irqs disabled. This will
4014 * protect us against recursive calling from irq.
4016 asmlinkage
void __sched
preempt_schedule_irq(void)
4018 struct thread_info
*ti
= current_thread_info();
4019 struct task_struct
*task
= current
;
4020 int saved_lock_depth
;
4022 /* Catch callers which need to be fixed */
4023 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4026 add_preempt_count(PREEMPT_ACTIVE
);
4029 * We keep the big kernel semaphore locked, but we
4030 * clear ->lock_depth so that schedule() doesnt
4031 * auto-release the semaphore:
4033 saved_lock_depth
= task
->lock_depth
;
4034 task
->lock_depth
= -1;
4037 local_irq_disable();
4038 task
->lock_depth
= saved_lock_depth
;
4039 sub_preempt_count(PREEMPT_ACTIVE
);
4042 * Check again in case we missed a preemption opportunity
4043 * between schedule and now.
4046 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4049 #endif /* CONFIG_PREEMPT */
4051 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4054 return try_to_wake_up(curr
->private, mode
, sync
);
4056 EXPORT_SYMBOL(default_wake_function
);
4059 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4060 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4061 * number) then we wake all the non-exclusive tasks and one exclusive task.
4063 * There are circumstances in which we can try to wake a task which has already
4064 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4065 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4067 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4068 int nr_exclusive
, int sync
, void *key
)
4070 wait_queue_t
*curr
, *next
;
4072 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4073 unsigned flags
= curr
->flags
;
4075 if (curr
->func(curr
, mode
, sync
, key
) &&
4076 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4082 * __wake_up - wake up threads blocked on a waitqueue.
4084 * @mode: which threads
4085 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4086 * @key: is directly passed to the wakeup function
4088 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4089 int nr_exclusive
, void *key
)
4091 unsigned long flags
;
4093 spin_lock_irqsave(&q
->lock
, flags
);
4094 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4095 spin_unlock_irqrestore(&q
->lock
, flags
);
4097 EXPORT_SYMBOL(__wake_up
);
4100 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4102 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4104 __wake_up_common(q
, mode
, 1, 0, NULL
);
4108 * __wake_up_sync - wake up threads blocked on a waitqueue.
4110 * @mode: which threads
4111 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4113 * The sync wakeup differs that the waker knows that it will schedule
4114 * away soon, so while the target thread will be woken up, it will not
4115 * be migrated to another CPU - ie. the two threads are 'synchronized'
4116 * with each other. This can prevent needless bouncing between CPUs.
4118 * On UP it can prevent extra preemption.
4121 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4123 unsigned long flags
;
4129 if (unlikely(!nr_exclusive
))
4132 spin_lock_irqsave(&q
->lock
, flags
);
4133 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4134 spin_unlock_irqrestore(&q
->lock
, flags
);
4136 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4138 void complete(struct completion
*x
)
4140 unsigned long flags
;
4142 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4144 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4145 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4147 EXPORT_SYMBOL(complete
);
4149 void complete_all(struct completion
*x
)
4151 unsigned long flags
;
4153 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4154 x
->done
+= UINT_MAX
/2;
4155 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4156 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4158 EXPORT_SYMBOL(complete_all
);
4160 static inline long __sched
4161 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4164 DECLARE_WAITQUEUE(wait
, current
);
4166 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4167 __add_wait_queue_tail(&x
->wait
, &wait
);
4169 if ((state
== TASK_INTERRUPTIBLE
&&
4170 signal_pending(current
)) ||
4171 (state
== TASK_KILLABLE
&&
4172 fatal_signal_pending(current
))) {
4173 __remove_wait_queue(&x
->wait
, &wait
);
4174 return -ERESTARTSYS
;
4176 __set_current_state(state
);
4177 spin_unlock_irq(&x
->wait
.lock
);
4178 timeout
= schedule_timeout(timeout
);
4179 spin_lock_irq(&x
->wait
.lock
);
4181 __remove_wait_queue(&x
->wait
, &wait
);
4185 __remove_wait_queue(&x
->wait
, &wait
);
4192 wait_for_common(struct completion
*x
, long timeout
, int state
)
4196 spin_lock_irq(&x
->wait
.lock
);
4197 timeout
= do_wait_for_common(x
, timeout
, state
);
4198 spin_unlock_irq(&x
->wait
.lock
);
4202 void __sched
wait_for_completion(struct completion
*x
)
4204 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4206 EXPORT_SYMBOL(wait_for_completion
);
4208 unsigned long __sched
4209 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4211 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4213 EXPORT_SYMBOL(wait_for_completion_timeout
);
4215 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4217 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4218 if (t
== -ERESTARTSYS
)
4222 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4224 unsigned long __sched
4225 wait_for_completion_interruptible_timeout(struct completion
*x
,
4226 unsigned long timeout
)
4228 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4230 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4232 int __sched
wait_for_completion_killable(struct completion
*x
)
4234 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4235 if (t
== -ERESTARTSYS
)
4239 EXPORT_SYMBOL(wait_for_completion_killable
);
4242 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4244 unsigned long flags
;
4247 init_waitqueue_entry(&wait
, current
);
4249 __set_current_state(state
);
4251 spin_lock_irqsave(&q
->lock
, flags
);
4252 __add_wait_queue(q
, &wait
);
4253 spin_unlock(&q
->lock
);
4254 timeout
= schedule_timeout(timeout
);
4255 spin_lock_irq(&q
->lock
);
4256 __remove_wait_queue(q
, &wait
);
4257 spin_unlock_irqrestore(&q
->lock
, flags
);
4262 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4264 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4266 EXPORT_SYMBOL(interruptible_sleep_on
);
4269 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4271 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4273 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4275 void __sched
sleep_on(wait_queue_head_t
*q
)
4277 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4279 EXPORT_SYMBOL(sleep_on
);
4281 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4283 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4285 EXPORT_SYMBOL(sleep_on_timeout
);
4287 #ifdef CONFIG_RT_MUTEXES
4290 * rt_mutex_setprio - set the current priority of a task
4292 * @prio: prio value (kernel-internal form)
4294 * This function changes the 'effective' priority of a task. It does
4295 * not touch ->normal_prio like __setscheduler().
4297 * Used by the rt_mutex code to implement priority inheritance logic.
4299 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4301 unsigned long flags
;
4302 int oldprio
, on_rq
, running
;
4304 const struct sched_class
*prev_class
= p
->sched_class
;
4306 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4308 rq
= task_rq_lock(p
, &flags
);
4309 update_rq_clock(rq
);
4312 on_rq
= p
->se
.on_rq
;
4313 running
= task_current(rq
, p
);
4315 dequeue_task(rq
, p
, 0);
4317 p
->sched_class
->put_prev_task(rq
, p
);
4321 p
->sched_class
= &rt_sched_class
;
4323 p
->sched_class
= &fair_sched_class
;
4329 p
->sched_class
->set_curr_task(rq
);
4331 enqueue_task(rq
, p
, 0);
4333 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4335 task_rq_unlock(rq
, &flags
);
4340 void set_user_nice(struct task_struct
*p
, long nice
)
4342 int old_prio
, delta
, on_rq
;
4343 unsigned long flags
;
4346 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4349 * We have to be careful, if called from sys_setpriority(),
4350 * the task might be in the middle of scheduling on another CPU.
4352 rq
= task_rq_lock(p
, &flags
);
4353 update_rq_clock(rq
);
4355 * The RT priorities are set via sched_setscheduler(), but we still
4356 * allow the 'normal' nice value to be set - but as expected
4357 * it wont have any effect on scheduling until the task is
4358 * SCHED_FIFO/SCHED_RR:
4360 if (task_has_rt_policy(p
)) {
4361 p
->static_prio
= NICE_TO_PRIO(nice
);
4364 on_rq
= p
->se
.on_rq
;
4366 dequeue_task(rq
, p
, 0);
4368 p
->static_prio
= NICE_TO_PRIO(nice
);
4371 p
->prio
= effective_prio(p
);
4372 delta
= p
->prio
- old_prio
;
4375 enqueue_task(rq
, p
, 0);
4377 * If the task increased its priority or is running and
4378 * lowered its priority, then reschedule its CPU:
4380 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4381 resched_task(rq
->curr
);
4384 task_rq_unlock(rq
, &flags
);
4386 EXPORT_SYMBOL(set_user_nice
);
4389 * can_nice - check if a task can reduce its nice value
4393 int can_nice(const struct task_struct
*p
, const int nice
)
4395 /* convert nice value [19,-20] to rlimit style value [1,40] */
4396 int nice_rlim
= 20 - nice
;
4398 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4399 capable(CAP_SYS_NICE
));
4402 #ifdef __ARCH_WANT_SYS_NICE
4405 * sys_nice - change the priority of the current process.
4406 * @increment: priority increment
4408 * sys_setpriority is a more generic, but much slower function that
4409 * does similar things.
4411 asmlinkage
long sys_nice(int increment
)
4416 * Setpriority might change our priority at the same moment.
4417 * We don't have to worry. Conceptually one call occurs first
4418 * and we have a single winner.
4420 if (increment
< -40)
4425 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4431 if (increment
< 0 && !can_nice(current
, nice
))
4434 retval
= security_task_setnice(current
, nice
);
4438 set_user_nice(current
, nice
);
4445 * task_prio - return the priority value of a given task.
4446 * @p: the task in question.
4448 * This is the priority value as seen by users in /proc.
4449 * RT tasks are offset by -200. Normal tasks are centered
4450 * around 0, value goes from -16 to +15.
4452 int task_prio(const struct task_struct
*p
)
4454 return p
->prio
- MAX_RT_PRIO
;
4458 * task_nice - return the nice value of a given task.
4459 * @p: the task in question.
4461 int task_nice(const struct task_struct
*p
)
4463 return TASK_NICE(p
);
4465 EXPORT_SYMBOL_GPL(task_nice
);
4468 * idle_cpu - is a given cpu idle currently?
4469 * @cpu: the processor in question.
4471 int idle_cpu(int cpu
)
4473 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4477 * idle_task - return the idle task for a given cpu.
4478 * @cpu: the processor in question.
4480 struct task_struct
*idle_task(int cpu
)
4482 return cpu_rq(cpu
)->idle
;
4486 * find_process_by_pid - find a process with a matching PID value.
4487 * @pid: the pid in question.
4489 static struct task_struct
*find_process_by_pid(pid_t pid
)
4491 return pid
? find_task_by_vpid(pid
) : current
;
4494 /* Actually do priority change: must hold rq lock. */
4496 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4498 BUG_ON(p
->se
.on_rq
);
4501 switch (p
->policy
) {
4505 p
->sched_class
= &fair_sched_class
;
4509 p
->sched_class
= &rt_sched_class
;
4513 p
->rt_priority
= prio
;
4514 p
->normal_prio
= normal_prio(p
);
4515 /* we are holding p->pi_lock already */
4516 p
->prio
= rt_mutex_getprio(p
);
4521 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4522 * @p: the task in question.
4523 * @policy: new policy.
4524 * @param: structure containing the new RT priority.
4526 * NOTE that the task may be already dead.
4528 int sched_setscheduler(struct task_struct
*p
, int policy
,
4529 struct sched_param
*param
)
4531 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4532 unsigned long flags
;
4533 const struct sched_class
*prev_class
= p
->sched_class
;
4536 /* may grab non-irq protected spin_locks */
4537 BUG_ON(in_interrupt());
4539 /* double check policy once rq lock held */
4541 policy
= oldpolicy
= p
->policy
;
4542 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4543 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4544 policy
!= SCHED_IDLE
)
4547 * Valid priorities for SCHED_FIFO and SCHED_RR are
4548 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4549 * SCHED_BATCH and SCHED_IDLE is 0.
4551 if (param
->sched_priority
< 0 ||
4552 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4553 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4555 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4559 * Allow unprivileged RT tasks to decrease priority:
4561 if (!capable(CAP_SYS_NICE
)) {
4562 if (rt_policy(policy
)) {
4563 unsigned long rlim_rtprio
;
4565 if (!lock_task_sighand(p
, &flags
))
4567 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4568 unlock_task_sighand(p
, &flags
);
4570 /* can't set/change the rt policy */
4571 if (policy
!= p
->policy
&& !rlim_rtprio
)
4574 /* can't increase priority */
4575 if (param
->sched_priority
> p
->rt_priority
&&
4576 param
->sched_priority
> rlim_rtprio
)
4580 * Like positive nice levels, dont allow tasks to
4581 * move out of SCHED_IDLE either:
4583 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4586 /* can't change other user's priorities */
4587 if ((current
->euid
!= p
->euid
) &&
4588 (current
->euid
!= p
->uid
))
4592 #ifdef CONFIG_RT_GROUP_SCHED
4594 * Do not allow realtime tasks into groups that have no runtime
4597 if (rt_policy(policy
) && task_group(p
)->rt_runtime
== 0)
4601 retval
= security_task_setscheduler(p
, policy
, param
);
4605 * make sure no PI-waiters arrive (or leave) while we are
4606 * changing the priority of the task:
4608 spin_lock_irqsave(&p
->pi_lock
, flags
);
4610 * To be able to change p->policy safely, the apropriate
4611 * runqueue lock must be held.
4613 rq
= __task_rq_lock(p
);
4614 /* recheck policy now with rq lock held */
4615 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4616 policy
= oldpolicy
= -1;
4617 __task_rq_unlock(rq
);
4618 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4621 update_rq_clock(rq
);
4622 on_rq
= p
->se
.on_rq
;
4623 running
= task_current(rq
, p
);
4625 deactivate_task(rq
, p
, 0);
4627 p
->sched_class
->put_prev_task(rq
, p
);
4631 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4635 p
->sched_class
->set_curr_task(rq
);
4637 activate_task(rq
, p
, 0);
4639 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4641 __task_rq_unlock(rq
);
4642 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4644 rt_mutex_adjust_pi(p
);
4648 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4651 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4653 struct sched_param lparam
;
4654 struct task_struct
*p
;
4657 if (!param
|| pid
< 0)
4659 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4664 p
= find_process_by_pid(pid
);
4666 retval
= sched_setscheduler(p
, policy
, &lparam
);
4673 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4674 * @pid: the pid in question.
4675 * @policy: new policy.
4676 * @param: structure containing the new RT priority.
4679 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4681 /* negative values for policy are not valid */
4685 return do_sched_setscheduler(pid
, policy
, param
);
4689 * sys_sched_setparam - set/change the RT priority of a thread
4690 * @pid: the pid in question.
4691 * @param: structure containing the new RT priority.
4693 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4695 return do_sched_setscheduler(pid
, -1, param
);
4699 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4700 * @pid: the pid in question.
4702 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4704 struct task_struct
*p
;
4711 read_lock(&tasklist_lock
);
4712 p
= find_process_by_pid(pid
);
4714 retval
= security_task_getscheduler(p
);
4718 read_unlock(&tasklist_lock
);
4723 * sys_sched_getscheduler - get the RT priority of a thread
4724 * @pid: the pid in question.
4725 * @param: structure containing the RT priority.
4727 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4729 struct sched_param lp
;
4730 struct task_struct
*p
;
4733 if (!param
|| pid
< 0)
4736 read_lock(&tasklist_lock
);
4737 p
= find_process_by_pid(pid
);
4742 retval
= security_task_getscheduler(p
);
4746 lp
.sched_priority
= p
->rt_priority
;
4747 read_unlock(&tasklist_lock
);
4750 * This one might sleep, we cannot do it with a spinlock held ...
4752 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4757 read_unlock(&tasklist_lock
);
4761 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4763 cpumask_t cpus_allowed
;
4764 struct task_struct
*p
;
4768 read_lock(&tasklist_lock
);
4770 p
= find_process_by_pid(pid
);
4772 read_unlock(&tasklist_lock
);
4778 * It is not safe to call set_cpus_allowed with the
4779 * tasklist_lock held. We will bump the task_struct's
4780 * usage count and then drop tasklist_lock.
4783 read_unlock(&tasklist_lock
);
4786 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4787 !capable(CAP_SYS_NICE
))
4790 retval
= security_task_setscheduler(p
, 0, NULL
);
4794 cpus_allowed
= cpuset_cpus_allowed(p
);
4795 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4797 retval
= set_cpus_allowed(p
, new_mask
);
4800 cpus_allowed
= cpuset_cpus_allowed(p
);
4801 if (!cpus_subset(new_mask
, cpus_allowed
)) {
4803 * We must have raced with a concurrent cpuset
4804 * update. Just reset the cpus_allowed to the
4805 * cpuset's cpus_allowed
4807 new_mask
= cpus_allowed
;
4817 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4818 cpumask_t
*new_mask
)
4820 if (len
< sizeof(cpumask_t
)) {
4821 memset(new_mask
, 0, sizeof(cpumask_t
));
4822 } else if (len
> sizeof(cpumask_t
)) {
4823 len
= sizeof(cpumask_t
);
4825 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4829 * sys_sched_setaffinity - set the cpu affinity of a process
4830 * @pid: pid of the process
4831 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4832 * @user_mask_ptr: user-space pointer to the new cpu mask
4834 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4835 unsigned long __user
*user_mask_ptr
)
4840 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4844 return sched_setaffinity(pid
, new_mask
);
4848 * Represents all cpu's present in the system
4849 * In systems capable of hotplug, this map could dynamically grow
4850 * as new cpu's are detected in the system via any platform specific
4851 * method, such as ACPI for e.g.
4854 cpumask_t cpu_present_map __read_mostly
;
4855 EXPORT_SYMBOL(cpu_present_map
);
4858 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4859 EXPORT_SYMBOL(cpu_online_map
);
4861 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4862 EXPORT_SYMBOL(cpu_possible_map
);
4865 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4867 struct task_struct
*p
;
4871 read_lock(&tasklist_lock
);
4874 p
= find_process_by_pid(pid
);
4878 retval
= security_task_getscheduler(p
);
4882 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4885 read_unlock(&tasklist_lock
);
4892 * sys_sched_getaffinity - get the cpu affinity of a process
4893 * @pid: pid of the process
4894 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4895 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4897 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4898 unsigned long __user
*user_mask_ptr
)
4903 if (len
< sizeof(cpumask_t
))
4906 ret
= sched_getaffinity(pid
, &mask
);
4910 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4913 return sizeof(cpumask_t
);
4917 * sys_sched_yield - yield the current processor to other threads.
4919 * This function yields the current CPU to other tasks. If there are no
4920 * other threads running on this CPU then this function will return.
4922 asmlinkage
long sys_sched_yield(void)
4924 struct rq
*rq
= this_rq_lock();
4926 schedstat_inc(rq
, yld_count
);
4927 current
->sched_class
->yield_task(rq
);
4930 * Since we are going to call schedule() anyway, there's
4931 * no need to preempt or enable interrupts:
4933 __release(rq
->lock
);
4934 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4935 _raw_spin_unlock(&rq
->lock
);
4936 preempt_enable_no_resched();
4943 static void __cond_resched(void)
4945 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4946 __might_sleep(__FILE__
, __LINE__
);
4949 * The BKS might be reacquired before we have dropped
4950 * PREEMPT_ACTIVE, which could trigger a second
4951 * cond_resched() call.
4954 add_preempt_count(PREEMPT_ACTIVE
);
4956 sub_preempt_count(PREEMPT_ACTIVE
);
4957 } while (need_resched());
4960 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
4961 int __sched
_cond_resched(void)
4963 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4964 system_state
== SYSTEM_RUNNING
) {
4970 EXPORT_SYMBOL(_cond_resched
);
4974 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4975 * call schedule, and on return reacquire the lock.
4977 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4978 * operations here to prevent schedule() from being called twice (once via
4979 * spin_unlock(), once by hand).
4981 int cond_resched_lock(spinlock_t
*lock
)
4983 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
4986 if (spin_needbreak(lock
) || resched
) {
4988 if (resched
&& need_resched())
4997 EXPORT_SYMBOL(cond_resched_lock
);
4999 int __sched
cond_resched_softirq(void)
5001 BUG_ON(!in_softirq());
5003 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
5011 EXPORT_SYMBOL(cond_resched_softirq
);
5014 * yield - yield the current processor to other threads.
5016 * This is a shortcut for kernel-space yielding - it marks the
5017 * thread runnable and calls sys_sched_yield().
5019 void __sched
yield(void)
5021 set_current_state(TASK_RUNNING
);
5024 EXPORT_SYMBOL(yield
);
5027 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5028 * that process accounting knows that this is a task in IO wait state.
5030 * But don't do that if it is a deliberate, throttling IO wait (this task
5031 * has set its backing_dev_info: the queue against which it should throttle)
5033 void __sched
io_schedule(void)
5035 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5037 delayacct_blkio_start();
5038 atomic_inc(&rq
->nr_iowait
);
5040 atomic_dec(&rq
->nr_iowait
);
5041 delayacct_blkio_end();
5043 EXPORT_SYMBOL(io_schedule
);
5045 long __sched
io_schedule_timeout(long timeout
)
5047 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5050 delayacct_blkio_start();
5051 atomic_inc(&rq
->nr_iowait
);
5052 ret
= schedule_timeout(timeout
);
5053 atomic_dec(&rq
->nr_iowait
);
5054 delayacct_blkio_end();
5059 * sys_sched_get_priority_max - return maximum RT priority.
5060 * @policy: scheduling class.
5062 * this syscall returns the maximum rt_priority that can be used
5063 * by a given scheduling class.
5065 asmlinkage
long sys_sched_get_priority_max(int policy
)
5072 ret
= MAX_USER_RT_PRIO
-1;
5084 * sys_sched_get_priority_min - return minimum RT priority.
5085 * @policy: scheduling class.
5087 * this syscall returns the minimum rt_priority that can be used
5088 * by a given scheduling class.
5090 asmlinkage
long sys_sched_get_priority_min(int policy
)
5108 * sys_sched_rr_get_interval - return the default timeslice of a process.
5109 * @pid: pid of the process.
5110 * @interval: userspace pointer to the timeslice value.
5112 * this syscall writes the default timeslice value of a given process
5113 * into the user-space timespec buffer. A value of '0' means infinity.
5116 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
5118 struct task_struct
*p
;
5119 unsigned int time_slice
;
5127 read_lock(&tasklist_lock
);
5128 p
= find_process_by_pid(pid
);
5132 retval
= security_task_getscheduler(p
);
5137 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5138 * tasks that are on an otherwise idle runqueue:
5141 if (p
->policy
== SCHED_RR
) {
5142 time_slice
= DEF_TIMESLICE
;
5144 struct sched_entity
*se
= &p
->se
;
5145 unsigned long flags
;
5148 rq
= task_rq_lock(p
, &flags
);
5149 if (rq
->cfs
.load
.weight
)
5150 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5151 task_rq_unlock(rq
, &flags
);
5153 read_unlock(&tasklist_lock
);
5154 jiffies_to_timespec(time_slice
, &t
);
5155 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5159 read_unlock(&tasklist_lock
);
5163 static const char stat_nam
[] = "RSDTtZX";
5165 void sched_show_task(struct task_struct
*p
)
5167 unsigned long free
= 0;
5170 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5171 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5172 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5173 #if BITS_PER_LONG == 32
5174 if (state
== TASK_RUNNING
)
5175 printk(KERN_CONT
" running ");
5177 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5179 if (state
== TASK_RUNNING
)
5180 printk(KERN_CONT
" running task ");
5182 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5184 #ifdef CONFIG_DEBUG_STACK_USAGE
5186 unsigned long *n
= end_of_stack(p
);
5189 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
5192 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
5193 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
5195 show_stack(p
, NULL
);
5198 void show_state_filter(unsigned long state_filter
)
5200 struct task_struct
*g
, *p
;
5202 #if BITS_PER_LONG == 32
5204 " task PC stack pid father\n");
5207 " task PC stack pid father\n");
5209 read_lock(&tasklist_lock
);
5210 do_each_thread(g
, p
) {
5212 * reset the NMI-timeout, listing all files on a slow
5213 * console might take alot of time:
5215 touch_nmi_watchdog();
5216 if (!state_filter
|| (p
->state
& state_filter
))
5218 } while_each_thread(g
, p
);
5220 touch_all_softlockup_watchdogs();
5222 #ifdef CONFIG_SCHED_DEBUG
5223 sysrq_sched_debug_show();
5225 read_unlock(&tasklist_lock
);
5227 * Only show locks if all tasks are dumped:
5229 if (state_filter
== -1)
5230 debug_show_all_locks();
5233 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5235 idle
->sched_class
= &idle_sched_class
;
5239 * init_idle - set up an idle thread for a given CPU
5240 * @idle: task in question
5241 * @cpu: cpu the idle task belongs to
5243 * NOTE: this function does not set the idle thread's NEED_RESCHED
5244 * flag, to make booting more robust.
5246 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5248 struct rq
*rq
= cpu_rq(cpu
);
5249 unsigned long flags
;
5252 idle
->se
.exec_start
= sched_clock();
5254 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
5255 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
5256 __set_task_cpu(idle
, cpu
);
5258 spin_lock_irqsave(&rq
->lock
, flags
);
5259 rq
->curr
= rq
->idle
= idle
;
5260 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5263 spin_unlock_irqrestore(&rq
->lock
, flags
);
5265 /* Set the preempt count _outside_ the spinlocks! */
5266 task_thread_info(idle
)->preempt_count
= 0;
5269 * The idle tasks have their own, simple scheduling class:
5271 idle
->sched_class
= &idle_sched_class
;
5275 * In a system that switches off the HZ timer nohz_cpu_mask
5276 * indicates which cpus entered this state. This is used
5277 * in the rcu update to wait only for active cpus. For system
5278 * which do not switch off the HZ timer nohz_cpu_mask should
5279 * always be CPU_MASK_NONE.
5281 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
5284 * Increase the granularity value when there are more CPUs,
5285 * because with more CPUs the 'effective latency' as visible
5286 * to users decreases. But the relationship is not linear,
5287 * so pick a second-best guess by going with the log2 of the
5290 * This idea comes from the SD scheduler of Con Kolivas:
5292 static inline void sched_init_granularity(void)
5294 unsigned int factor
= 1 + ilog2(num_online_cpus());
5295 const unsigned long limit
= 200000000;
5297 sysctl_sched_min_granularity
*= factor
;
5298 if (sysctl_sched_min_granularity
> limit
)
5299 sysctl_sched_min_granularity
= limit
;
5301 sysctl_sched_latency
*= factor
;
5302 if (sysctl_sched_latency
> limit
)
5303 sysctl_sched_latency
= limit
;
5305 sysctl_sched_wakeup_granularity
*= factor
;
5306 sysctl_sched_batch_wakeup_granularity
*= factor
;
5311 * This is how migration works:
5313 * 1) we queue a struct migration_req structure in the source CPU's
5314 * runqueue and wake up that CPU's migration thread.
5315 * 2) we down() the locked semaphore => thread blocks.
5316 * 3) migration thread wakes up (implicitly it forces the migrated
5317 * thread off the CPU)
5318 * 4) it gets the migration request and checks whether the migrated
5319 * task is still in the wrong runqueue.
5320 * 5) if it's in the wrong runqueue then the migration thread removes
5321 * it and puts it into the right queue.
5322 * 6) migration thread up()s the semaphore.
5323 * 7) we wake up and the migration is done.
5327 * Change a given task's CPU affinity. Migrate the thread to a
5328 * proper CPU and schedule it away if the CPU it's executing on
5329 * is removed from the allowed bitmask.
5331 * NOTE: the caller must have a valid reference to the task, the
5332 * task must not exit() & deallocate itself prematurely. The
5333 * call is not atomic; no spinlocks may be held.
5335 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
5337 struct migration_req req
;
5338 unsigned long flags
;
5342 rq
= task_rq_lock(p
, &flags
);
5343 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
5348 if (p
->sched_class
->set_cpus_allowed
)
5349 p
->sched_class
->set_cpus_allowed(p
, &new_mask
);
5351 p
->cpus_allowed
= new_mask
;
5352 p
->rt
.nr_cpus_allowed
= cpus_weight(new_mask
);
5355 /* Can the task run on the task's current CPU? If so, we're done */
5356 if (cpu_isset(task_cpu(p
), new_mask
))
5359 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
5360 /* Need help from migration thread: drop lock and wait. */
5361 task_rq_unlock(rq
, &flags
);
5362 wake_up_process(rq
->migration_thread
);
5363 wait_for_completion(&req
.done
);
5364 tlb_migrate_finish(p
->mm
);
5368 task_rq_unlock(rq
, &flags
);
5372 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
5375 * Move (not current) task off this cpu, onto dest cpu. We're doing
5376 * this because either it can't run here any more (set_cpus_allowed()
5377 * away from this CPU, or CPU going down), or because we're
5378 * attempting to rebalance this task on exec (sched_exec).
5380 * So we race with normal scheduler movements, but that's OK, as long
5381 * as the task is no longer on this CPU.
5383 * Returns non-zero if task was successfully migrated.
5385 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5387 struct rq
*rq_dest
, *rq_src
;
5390 if (unlikely(cpu_is_offline(dest_cpu
)))
5393 rq_src
= cpu_rq(src_cpu
);
5394 rq_dest
= cpu_rq(dest_cpu
);
5396 double_rq_lock(rq_src
, rq_dest
);
5397 /* Already moved. */
5398 if (task_cpu(p
) != src_cpu
)
5400 /* Affinity changed (again). */
5401 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5404 on_rq
= p
->se
.on_rq
;
5406 deactivate_task(rq_src
, p
, 0);
5408 set_task_cpu(p
, dest_cpu
);
5410 activate_task(rq_dest
, p
, 0);
5411 check_preempt_curr(rq_dest
, p
);
5415 double_rq_unlock(rq_src
, rq_dest
);
5420 * migration_thread - this is a highprio system thread that performs
5421 * thread migration by bumping thread off CPU then 'pushing' onto
5424 static int migration_thread(void *data
)
5426 int cpu
= (long)data
;
5430 BUG_ON(rq
->migration_thread
!= current
);
5432 set_current_state(TASK_INTERRUPTIBLE
);
5433 while (!kthread_should_stop()) {
5434 struct migration_req
*req
;
5435 struct list_head
*head
;
5437 spin_lock_irq(&rq
->lock
);
5439 if (cpu_is_offline(cpu
)) {
5440 spin_unlock_irq(&rq
->lock
);
5444 if (rq
->active_balance
) {
5445 active_load_balance(rq
, cpu
);
5446 rq
->active_balance
= 0;
5449 head
= &rq
->migration_queue
;
5451 if (list_empty(head
)) {
5452 spin_unlock_irq(&rq
->lock
);
5454 set_current_state(TASK_INTERRUPTIBLE
);
5457 req
= list_entry(head
->next
, struct migration_req
, list
);
5458 list_del_init(head
->next
);
5460 spin_unlock(&rq
->lock
);
5461 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5464 complete(&req
->done
);
5466 __set_current_state(TASK_RUNNING
);
5470 /* Wait for kthread_stop */
5471 set_current_state(TASK_INTERRUPTIBLE
);
5472 while (!kthread_should_stop()) {
5474 set_current_state(TASK_INTERRUPTIBLE
);
5476 __set_current_state(TASK_RUNNING
);
5480 #ifdef CONFIG_HOTPLUG_CPU
5482 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5486 local_irq_disable();
5487 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
5493 * Figure out where task on dead CPU should go, use force if necessary.
5494 * NOTE: interrupts should be disabled by the caller
5496 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5498 unsigned long flags
;
5505 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5506 cpus_and(mask
, mask
, p
->cpus_allowed
);
5507 dest_cpu
= any_online_cpu(mask
);
5509 /* On any allowed CPU? */
5510 if (dest_cpu
== NR_CPUS
)
5511 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5513 /* No more Mr. Nice Guy. */
5514 if (dest_cpu
== NR_CPUS
) {
5515 cpumask_t cpus_allowed
= cpuset_cpus_allowed_locked(p
);
5517 * Try to stay on the same cpuset, where the
5518 * current cpuset may be a subset of all cpus.
5519 * The cpuset_cpus_allowed_locked() variant of
5520 * cpuset_cpus_allowed() will not block. It must be
5521 * called within calls to cpuset_lock/cpuset_unlock.
5523 rq
= task_rq_lock(p
, &flags
);
5524 p
->cpus_allowed
= cpus_allowed
;
5525 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5526 task_rq_unlock(rq
, &flags
);
5529 * Don't tell them about moving exiting tasks or
5530 * kernel threads (both mm NULL), since they never
5533 if (p
->mm
&& printk_ratelimit()) {
5534 printk(KERN_INFO
"process %d (%s) no "
5535 "longer affine to cpu%d\n",
5536 task_pid_nr(p
), p
->comm
, dead_cpu
);
5539 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
5543 * While a dead CPU has no uninterruptible tasks queued at this point,
5544 * it might still have a nonzero ->nr_uninterruptible counter, because
5545 * for performance reasons the counter is not stricly tracking tasks to
5546 * their home CPUs. So we just add the counter to another CPU's counter,
5547 * to keep the global sum constant after CPU-down:
5549 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5551 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5552 unsigned long flags
;
5554 local_irq_save(flags
);
5555 double_rq_lock(rq_src
, rq_dest
);
5556 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5557 rq_src
->nr_uninterruptible
= 0;
5558 double_rq_unlock(rq_src
, rq_dest
);
5559 local_irq_restore(flags
);
5562 /* Run through task list and migrate tasks from the dead cpu. */
5563 static void migrate_live_tasks(int src_cpu
)
5565 struct task_struct
*p
, *t
;
5567 read_lock(&tasklist_lock
);
5569 do_each_thread(t
, p
) {
5573 if (task_cpu(p
) == src_cpu
)
5574 move_task_off_dead_cpu(src_cpu
, p
);
5575 } while_each_thread(t
, p
);
5577 read_unlock(&tasklist_lock
);
5581 * Schedules idle task to be the next runnable task on current CPU.
5582 * It does so by boosting its priority to highest possible.
5583 * Used by CPU offline code.
5585 void sched_idle_next(void)
5587 int this_cpu
= smp_processor_id();
5588 struct rq
*rq
= cpu_rq(this_cpu
);
5589 struct task_struct
*p
= rq
->idle
;
5590 unsigned long flags
;
5592 /* cpu has to be offline */
5593 BUG_ON(cpu_online(this_cpu
));
5596 * Strictly not necessary since rest of the CPUs are stopped by now
5597 * and interrupts disabled on the current cpu.
5599 spin_lock_irqsave(&rq
->lock
, flags
);
5601 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5603 update_rq_clock(rq
);
5604 activate_task(rq
, p
, 0);
5606 spin_unlock_irqrestore(&rq
->lock
, flags
);
5610 * Ensures that the idle task is using init_mm right before its cpu goes
5613 void idle_task_exit(void)
5615 struct mm_struct
*mm
= current
->active_mm
;
5617 BUG_ON(cpu_online(smp_processor_id()));
5620 switch_mm(mm
, &init_mm
, current
);
5624 /* called under rq->lock with disabled interrupts */
5625 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5627 struct rq
*rq
= cpu_rq(dead_cpu
);
5629 /* Must be exiting, otherwise would be on tasklist. */
5630 BUG_ON(!p
->exit_state
);
5632 /* Cannot have done final schedule yet: would have vanished. */
5633 BUG_ON(p
->state
== TASK_DEAD
);
5638 * Drop lock around migration; if someone else moves it,
5639 * that's OK. No task can be added to this CPU, so iteration is
5642 spin_unlock_irq(&rq
->lock
);
5643 move_task_off_dead_cpu(dead_cpu
, p
);
5644 spin_lock_irq(&rq
->lock
);
5649 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5650 static void migrate_dead_tasks(unsigned int dead_cpu
)
5652 struct rq
*rq
= cpu_rq(dead_cpu
);
5653 struct task_struct
*next
;
5656 if (!rq
->nr_running
)
5658 update_rq_clock(rq
);
5659 next
= pick_next_task(rq
, rq
->curr
);
5662 migrate_dead(dead_cpu
, next
);
5666 #endif /* CONFIG_HOTPLUG_CPU */
5668 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5670 static struct ctl_table sd_ctl_dir
[] = {
5672 .procname
= "sched_domain",
5678 static struct ctl_table sd_ctl_root
[] = {
5680 .ctl_name
= CTL_KERN
,
5681 .procname
= "kernel",
5683 .child
= sd_ctl_dir
,
5688 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5690 struct ctl_table
*entry
=
5691 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5696 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5698 struct ctl_table
*entry
;
5701 * In the intermediate directories, both the child directory and
5702 * procname are dynamically allocated and could fail but the mode
5703 * will always be set. In the lowest directory the names are
5704 * static strings and all have proc handlers.
5706 for (entry
= *tablep
; entry
->mode
; entry
++) {
5708 sd_free_ctl_entry(&entry
->child
);
5709 if (entry
->proc_handler
== NULL
)
5710 kfree(entry
->procname
);
5718 set_table_entry(struct ctl_table
*entry
,
5719 const char *procname
, void *data
, int maxlen
,
5720 mode_t mode
, proc_handler
*proc_handler
)
5722 entry
->procname
= procname
;
5724 entry
->maxlen
= maxlen
;
5726 entry
->proc_handler
= proc_handler
;
5729 static struct ctl_table
*
5730 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5732 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
5737 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5738 sizeof(long), 0644, proc_doulongvec_minmax
);
5739 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5740 sizeof(long), 0644, proc_doulongvec_minmax
);
5741 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5742 sizeof(int), 0644, proc_dointvec_minmax
);
5743 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5744 sizeof(int), 0644, proc_dointvec_minmax
);
5745 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5746 sizeof(int), 0644, proc_dointvec_minmax
);
5747 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5748 sizeof(int), 0644, proc_dointvec_minmax
);
5749 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5750 sizeof(int), 0644, proc_dointvec_minmax
);
5751 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5752 sizeof(int), 0644, proc_dointvec_minmax
);
5753 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5754 sizeof(int), 0644, proc_dointvec_minmax
);
5755 set_table_entry(&table
[9], "cache_nice_tries",
5756 &sd
->cache_nice_tries
,
5757 sizeof(int), 0644, proc_dointvec_minmax
);
5758 set_table_entry(&table
[10], "flags", &sd
->flags
,
5759 sizeof(int), 0644, proc_dointvec_minmax
);
5760 /* &table[11] is terminator */
5765 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5767 struct ctl_table
*entry
, *table
;
5768 struct sched_domain
*sd
;
5769 int domain_num
= 0, i
;
5772 for_each_domain(cpu
, sd
)
5774 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5779 for_each_domain(cpu
, sd
) {
5780 snprintf(buf
, 32, "domain%d", i
);
5781 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5783 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5790 static struct ctl_table_header
*sd_sysctl_header
;
5791 static void register_sched_domain_sysctl(void)
5793 int i
, cpu_num
= num_online_cpus();
5794 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5797 WARN_ON(sd_ctl_dir
[0].child
);
5798 sd_ctl_dir
[0].child
= entry
;
5803 for_each_online_cpu(i
) {
5804 snprintf(buf
, 32, "cpu%d", i
);
5805 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5807 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5811 WARN_ON(sd_sysctl_header
);
5812 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5815 /* may be called multiple times per register */
5816 static void unregister_sched_domain_sysctl(void)
5818 if (sd_sysctl_header
)
5819 unregister_sysctl_table(sd_sysctl_header
);
5820 sd_sysctl_header
= NULL
;
5821 if (sd_ctl_dir
[0].child
)
5822 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5825 static void register_sched_domain_sysctl(void)
5828 static void unregister_sched_domain_sysctl(void)
5834 * migration_call - callback that gets triggered when a CPU is added.
5835 * Here we can start up the necessary migration thread for the new CPU.
5837 static int __cpuinit
5838 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5840 struct task_struct
*p
;
5841 int cpu
= (long)hcpu
;
5842 unsigned long flags
;
5847 case CPU_UP_PREPARE
:
5848 case CPU_UP_PREPARE_FROZEN
:
5849 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5852 kthread_bind(p
, cpu
);
5853 /* Must be high prio: stop_machine expects to yield to it. */
5854 rq
= task_rq_lock(p
, &flags
);
5855 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5856 task_rq_unlock(rq
, &flags
);
5857 cpu_rq(cpu
)->migration_thread
= p
;
5861 case CPU_ONLINE_FROZEN
:
5862 /* Strictly unnecessary, as first user will wake it. */
5863 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5865 /* Update our root-domain */
5867 spin_lock_irqsave(&rq
->lock
, flags
);
5869 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
5870 cpu_set(cpu
, rq
->rd
->online
);
5872 spin_unlock_irqrestore(&rq
->lock
, flags
);
5875 #ifdef CONFIG_HOTPLUG_CPU
5876 case CPU_UP_CANCELED
:
5877 case CPU_UP_CANCELED_FROZEN
:
5878 if (!cpu_rq(cpu
)->migration_thread
)
5880 /* Unbind it from offline cpu so it can run. Fall thru. */
5881 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5882 any_online_cpu(cpu_online_map
));
5883 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5884 cpu_rq(cpu
)->migration_thread
= NULL
;
5888 case CPU_DEAD_FROZEN
:
5889 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5890 migrate_live_tasks(cpu
);
5892 kthread_stop(rq
->migration_thread
);
5893 rq
->migration_thread
= NULL
;
5894 /* Idle task back to normal (off runqueue, low prio) */
5895 spin_lock_irq(&rq
->lock
);
5896 update_rq_clock(rq
);
5897 deactivate_task(rq
, rq
->idle
, 0);
5898 rq
->idle
->static_prio
= MAX_PRIO
;
5899 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5900 rq
->idle
->sched_class
= &idle_sched_class
;
5901 migrate_dead_tasks(cpu
);
5902 spin_unlock_irq(&rq
->lock
);
5904 migrate_nr_uninterruptible(rq
);
5905 BUG_ON(rq
->nr_running
!= 0);
5908 * No need to migrate the tasks: it was best-effort if
5909 * they didn't take sched_hotcpu_mutex. Just wake up
5912 spin_lock_irq(&rq
->lock
);
5913 while (!list_empty(&rq
->migration_queue
)) {
5914 struct migration_req
*req
;
5916 req
= list_entry(rq
->migration_queue
.next
,
5917 struct migration_req
, list
);
5918 list_del_init(&req
->list
);
5919 complete(&req
->done
);
5921 spin_unlock_irq(&rq
->lock
);
5924 case CPU_DOWN_PREPARE
:
5925 /* Update our root-domain */
5927 spin_lock_irqsave(&rq
->lock
, flags
);
5929 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
5930 cpu_clear(cpu
, rq
->rd
->online
);
5932 spin_unlock_irqrestore(&rq
->lock
, flags
);
5939 /* Register at highest priority so that task migration (migrate_all_tasks)
5940 * happens before everything else.
5942 static struct notifier_block __cpuinitdata migration_notifier
= {
5943 .notifier_call
= migration_call
,
5947 void __init
migration_init(void)
5949 void *cpu
= (void *)(long)smp_processor_id();
5952 /* Start one for the boot CPU: */
5953 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5954 BUG_ON(err
== NOTIFY_BAD
);
5955 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5956 register_cpu_notifier(&migration_notifier
);
5962 /* Number of possible processor ids */
5963 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5964 EXPORT_SYMBOL(nr_cpu_ids
);
5966 #ifdef CONFIG_SCHED_DEBUG
5968 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
)
5970 struct sched_group
*group
= sd
->groups
;
5971 cpumask_t groupmask
;
5974 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5975 cpus_clear(groupmask
);
5977 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5979 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5980 printk("does not load-balance\n");
5982 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5987 printk(KERN_CONT
"span %s\n", str
);
5989 if (!cpu_isset(cpu
, sd
->span
)) {
5990 printk(KERN_ERR
"ERROR: domain->span does not contain "
5993 if (!cpu_isset(cpu
, group
->cpumask
)) {
5994 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5998 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6002 printk(KERN_ERR
"ERROR: group is NULL\n");
6006 if (!group
->__cpu_power
) {
6007 printk(KERN_CONT
"\n");
6008 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6013 if (!cpus_weight(group
->cpumask
)) {
6014 printk(KERN_CONT
"\n");
6015 printk(KERN_ERR
"ERROR: empty group\n");
6019 if (cpus_intersects(groupmask
, group
->cpumask
)) {
6020 printk(KERN_CONT
"\n");
6021 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6025 cpus_or(groupmask
, groupmask
, group
->cpumask
);
6027 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
6028 printk(KERN_CONT
" %s", str
);
6030 group
= group
->next
;
6031 } while (group
!= sd
->groups
);
6032 printk(KERN_CONT
"\n");
6034 if (!cpus_equal(sd
->span
, groupmask
))
6035 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6037 if (sd
->parent
&& !cpus_subset(groupmask
, sd
->parent
->span
))
6038 printk(KERN_ERR
"ERROR: parent span is not a superset "
6039 "of domain->span\n");
6043 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6048 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6052 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6055 if (sched_domain_debug_one(sd
, cpu
, level
))
6064 # define sched_domain_debug(sd, cpu) do { } while (0)
6067 static int sd_degenerate(struct sched_domain
*sd
)
6069 if (cpus_weight(sd
->span
) == 1)
6072 /* Following flags need at least 2 groups */
6073 if (sd
->flags
& (SD_LOAD_BALANCE
|
6074 SD_BALANCE_NEWIDLE
|
6078 SD_SHARE_PKG_RESOURCES
)) {
6079 if (sd
->groups
!= sd
->groups
->next
)
6083 /* Following flags don't use groups */
6084 if (sd
->flags
& (SD_WAKE_IDLE
|
6093 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6095 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6097 if (sd_degenerate(parent
))
6100 if (!cpus_equal(sd
->span
, parent
->span
))
6103 /* Does parent contain flags not in child? */
6104 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6105 if (cflags
& SD_WAKE_AFFINE
)
6106 pflags
&= ~SD_WAKE_BALANCE
;
6107 /* Flags needing groups don't count if only 1 group in parent */
6108 if (parent
->groups
== parent
->groups
->next
) {
6109 pflags
&= ~(SD_LOAD_BALANCE
|
6110 SD_BALANCE_NEWIDLE
|
6114 SD_SHARE_PKG_RESOURCES
);
6116 if (~cflags
& pflags
)
6122 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6124 unsigned long flags
;
6125 const struct sched_class
*class;
6127 spin_lock_irqsave(&rq
->lock
, flags
);
6130 struct root_domain
*old_rd
= rq
->rd
;
6132 for (class = sched_class_highest
; class; class = class->next
) {
6133 if (class->leave_domain
)
6134 class->leave_domain(rq
);
6137 cpu_clear(rq
->cpu
, old_rd
->span
);
6138 cpu_clear(rq
->cpu
, old_rd
->online
);
6140 if (atomic_dec_and_test(&old_rd
->refcount
))
6144 atomic_inc(&rd
->refcount
);
6147 cpu_set(rq
->cpu
, rd
->span
);
6148 if (cpu_isset(rq
->cpu
, cpu_online_map
))
6149 cpu_set(rq
->cpu
, rd
->online
);
6151 for (class = sched_class_highest
; class; class = class->next
) {
6152 if (class->join_domain
)
6153 class->join_domain(rq
);
6156 spin_unlock_irqrestore(&rq
->lock
, flags
);
6159 static void init_rootdomain(struct root_domain
*rd
)
6161 memset(rd
, 0, sizeof(*rd
));
6163 cpus_clear(rd
->span
);
6164 cpus_clear(rd
->online
);
6167 static void init_defrootdomain(void)
6169 init_rootdomain(&def_root_domain
);
6170 atomic_set(&def_root_domain
.refcount
, 1);
6173 static struct root_domain
*alloc_rootdomain(void)
6175 struct root_domain
*rd
;
6177 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6181 init_rootdomain(rd
);
6187 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6188 * hold the hotplug lock.
6191 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6193 struct rq
*rq
= cpu_rq(cpu
);
6194 struct sched_domain
*tmp
;
6196 /* Remove the sched domains which do not contribute to scheduling. */
6197 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
6198 struct sched_domain
*parent
= tmp
->parent
;
6201 if (sd_parent_degenerate(tmp
, parent
)) {
6202 tmp
->parent
= parent
->parent
;
6204 parent
->parent
->child
= tmp
;
6208 if (sd
&& sd_degenerate(sd
)) {
6214 sched_domain_debug(sd
, cpu
);
6216 rq_attach_root(rq
, rd
);
6217 rcu_assign_pointer(rq
->sd
, sd
);
6220 /* cpus with isolated domains */
6221 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
6223 /* Setup the mask of cpus configured for isolated domains */
6224 static int __init
isolated_cpu_setup(char *str
)
6226 int ints
[NR_CPUS
], i
;
6228 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
6229 cpus_clear(cpu_isolated_map
);
6230 for (i
= 1; i
<= ints
[0]; i
++)
6231 if (ints
[i
] < NR_CPUS
)
6232 cpu_set(ints
[i
], cpu_isolated_map
);
6236 __setup("isolcpus=", isolated_cpu_setup
);
6239 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6240 * to a function which identifies what group(along with sched group) a CPU
6241 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6242 * (due to the fact that we keep track of groups covered with a cpumask_t).
6244 * init_sched_build_groups will build a circular linked list of the groups
6245 * covered by the given span, and will set each group's ->cpumask correctly,
6246 * and ->cpu_power to 0.
6249 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
6250 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
6251 struct sched_group
**sg
))
6253 struct sched_group
*first
= NULL
, *last
= NULL
;
6254 cpumask_t covered
= CPU_MASK_NONE
;
6257 for_each_cpu_mask(i
, span
) {
6258 struct sched_group
*sg
;
6259 int group
= group_fn(i
, cpu_map
, &sg
);
6262 if (cpu_isset(i
, covered
))
6265 sg
->cpumask
= CPU_MASK_NONE
;
6266 sg
->__cpu_power
= 0;
6268 for_each_cpu_mask(j
, span
) {
6269 if (group_fn(j
, cpu_map
, NULL
) != group
)
6272 cpu_set(j
, covered
);
6273 cpu_set(j
, sg
->cpumask
);
6284 #define SD_NODES_PER_DOMAIN 16
6289 * find_next_best_node - find the next node to include in a sched_domain
6290 * @node: node whose sched_domain we're building
6291 * @used_nodes: nodes already in the sched_domain
6293 * Find the next node to include in a given scheduling domain. Simply
6294 * finds the closest node not already in the @used_nodes map.
6296 * Should use nodemask_t.
6298 static int find_next_best_node(int node
, unsigned long *used_nodes
)
6300 int i
, n
, val
, min_val
, best_node
= 0;
6304 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6305 /* Start at @node */
6306 n
= (node
+ i
) % MAX_NUMNODES
;
6308 if (!nr_cpus_node(n
))
6311 /* Skip already used nodes */
6312 if (test_bit(n
, used_nodes
))
6315 /* Simple min distance search */
6316 val
= node_distance(node
, n
);
6318 if (val
< min_val
) {
6324 set_bit(best_node
, used_nodes
);
6329 * sched_domain_node_span - get a cpumask for a node's sched_domain
6330 * @node: node whose cpumask we're constructing
6331 * @size: number of nodes to include in this span
6333 * Given a node, construct a good cpumask for its sched_domain to span. It
6334 * should be one that prevents unnecessary balancing, but also spreads tasks
6337 static cpumask_t
sched_domain_node_span(int node
)
6339 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
6340 cpumask_t span
, nodemask
;
6344 bitmap_zero(used_nodes
, MAX_NUMNODES
);
6346 nodemask
= node_to_cpumask(node
);
6347 cpus_or(span
, span
, nodemask
);
6348 set_bit(node
, used_nodes
);
6350 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6351 int next_node
= find_next_best_node(node
, used_nodes
);
6353 nodemask
= node_to_cpumask(next_node
);
6354 cpus_or(span
, span
, nodemask
);
6361 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6364 * SMT sched-domains:
6366 #ifdef CONFIG_SCHED_SMT
6367 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
6368 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
6371 cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6374 *sg
= &per_cpu(sched_group_cpus
, cpu
);
6380 * multi-core sched-domains:
6382 #ifdef CONFIG_SCHED_MC
6383 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
6384 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
6387 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6389 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6392 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6393 cpus_and(mask
, mask
, *cpu_map
);
6394 group
= first_cpu(mask
);
6396 *sg
= &per_cpu(sched_group_core
, group
);
6399 #elif defined(CONFIG_SCHED_MC)
6401 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6404 *sg
= &per_cpu(sched_group_core
, cpu
);
6409 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
6410 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
6413 cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6416 #ifdef CONFIG_SCHED_MC
6417 cpumask_t mask
= cpu_coregroup_map(cpu
);
6418 cpus_and(mask
, mask
, *cpu_map
);
6419 group
= first_cpu(mask
);
6420 #elif defined(CONFIG_SCHED_SMT)
6421 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6422 cpus_and(mask
, mask
, *cpu_map
);
6423 group
= first_cpu(mask
);
6428 *sg
= &per_cpu(sched_group_phys
, group
);
6434 * The init_sched_build_groups can't handle what we want to do with node
6435 * groups, so roll our own. Now each node has its own list of groups which
6436 * gets dynamically allocated.
6438 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
6439 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
6441 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
6442 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
6444 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
6445 struct sched_group
**sg
)
6447 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
6450 cpus_and(nodemask
, nodemask
, *cpu_map
);
6451 group
= first_cpu(nodemask
);
6454 *sg
= &per_cpu(sched_group_allnodes
, group
);
6458 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6460 struct sched_group
*sg
= group_head
;
6466 for_each_cpu_mask(j
, sg
->cpumask
) {
6467 struct sched_domain
*sd
;
6469 sd
= &per_cpu(phys_domains
, j
);
6470 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
6472 * Only add "power" once for each
6478 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
6481 } while (sg
!= group_head
);
6486 /* Free memory allocated for various sched_group structures */
6487 static void free_sched_groups(const cpumask_t
*cpu_map
)
6491 for_each_cpu_mask(cpu
, *cpu_map
) {
6492 struct sched_group
**sched_group_nodes
6493 = sched_group_nodes_bycpu
[cpu
];
6495 if (!sched_group_nodes
)
6498 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6499 cpumask_t nodemask
= node_to_cpumask(i
);
6500 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6502 cpus_and(nodemask
, nodemask
, *cpu_map
);
6503 if (cpus_empty(nodemask
))
6513 if (oldsg
!= sched_group_nodes
[i
])
6516 kfree(sched_group_nodes
);
6517 sched_group_nodes_bycpu
[cpu
] = NULL
;
6521 static void free_sched_groups(const cpumask_t
*cpu_map
)
6527 * Initialize sched groups cpu_power.
6529 * cpu_power indicates the capacity of sched group, which is used while
6530 * distributing the load between different sched groups in a sched domain.
6531 * Typically cpu_power for all the groups in a sched domain will be same unless
6532 * there are asymmetries in the topology. If there are asymmetries, group
6533 * having more cpu_power will pickup more load compared to the group having
6536 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6537 * the maximum number of tasks a group can handle in the presence of other idle
6538 * or lightly loaded groups in the same sched domain.
6540 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6542 struct sched_domain
*child
;
6543 struct sched_group
*group
;
6545 WARN_ON(!sd
|| !sd
->groups
);
6547 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
6552 sd
->groups
->__cpu_power
= 0;
6555 * For perf policy, if the groups in child domain share resources
6556 * (for example cores sharing some portions of the cache hierarchy
6557 * or SMT), then set this domain groups cpu_power such that each group
6558 * can handle only one task, when there are other idle groups in the
6559 * same sched domain.
6561 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
6563 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6564 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6569 * add cpu_power of each child group to this groups cpu_power
6571 group
= child
->groups
;
6573 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6574 group
= group
->next
;
6575 } while (group
!= child
->groups
);
6579 * Build sched domains for a given set of cpus and attach the sched domains
6580 * to the individual cpus
6582 static int build_sched_domains(const cpumask_t
*cpu_map
)
6585 struct root_domain
*rd
;
6587 struct sched_group
**sched_group_nodes
= NULL
;
6588 int sd_allnodes
= 0;
6591 * Allocate the per-node list of sched groups
6593 sched_group_nodes
= kcalloc(MAX_NUMNODES
, sizeof(struct sched_group
*),
6595 if (!sched_group_nodes
) {
6596 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6599 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6602 rd
= alloc_rootdomain();
6604 printk(KERN_WARNING
"Cannot alloc root domain\n");
6609 * Set up domains for cpus specified by the cpu_map.
6611 for_each_cpu_mask(i
, *cpu_map
) {
6612 struct sched_domain
*sd
= NULL
, *p
;
6613 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6615 cpus_and(nodemask
, nodemask
, *cpu_map
);
6618 if (cpus_weight(*cpu_map
) >
6619 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6620 sd
= &per_cpu(allnodes_domains
, i
);
6621 *sd
= SD_ALLNODES_INIT
;
6622 sd
->span
= *cpu_map
;
6623 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6629 sd
= &per_cpu(node_domains
, i
);
6631 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6635 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6639 sd
= &per_cpu(phys_domains
, i
);
6641 sd
->span
= nodemask
;
6645 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6647 #ifdef CONFIG_SCHED_MC
6649 sd
= &per_cpu(core_domains
, i
);
6651 sd
->span
= cpu_coregroup_map(i
);
6652 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6655 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6658 #ifdef CONFIG_SCHED_SMT
6660 sd
= &per_cpu(cpu_domains
, i
);
6661 *sd
= SD_SIBLING_INIT
;
6662 sd
->span
= per_cpu(cpu_sibling_map
, i
);
6663 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6666 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6670 #ifdef CONFIG_SCHED_SMT
6671 /* Set up CPU (sibling) groups */
6672 for_each_cpu_mask(i
, *cpu_map
) {
6673 cpumask_t this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
6674 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6675 if (i
!= first_cpu(this_sibling_map
))
6678 init_sched_build_groups(this_sibling_map
, cpu_map
,
6683 #ifdef CONFIG_SCHED_MC
6684 /* Set up multi-core groups */
6685 for_each_cpu_mask(i
, *cpu_map
) {
6686 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6687 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6688 if (i
!= first_cpu(this_core_map
))
6690 init_sched_build_groups(this_core_map
, cpu_map
,
6691 &cpu_to_core_group
);
6695 /* Set up physical groups */
6696 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6697 cpumask_t nodemask
= node_to_cpumask(i
);
6699 cpus_and(nodemask
, nodemask
, *cpu_map
);
6700 if (cpus_empty(nodemask
))
6703 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6707 /* Set up node groups */
6709 init_sched_build_groups(*cpu_map
, cpu_map
,
6710 &cpu_to_allnodes_group
);
6712 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6713 /* Set up node groups */
6714 struct sched_group
*sg
, *prev
;
6715 cpumask_t nodemask
= node_to_cpumask(i
);
6716 cpumask_t domainspan
;
6717 cpumask_t covered
= CPU_MASK_NONE
;
6720 cpus_and(nodemask
, nodemask
, *cpu_map
);
6721 if (cpus_empty(nodemask
)) {
6722 sched_group_nodes
[i
] = NULL
;
6726 domainspan
= sched_domain_node_span(i
);
6727 cpus_and(domainspan
, domainspan
, *cpu_map
);
6729 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6731 printk(KERN_WARNING
"Can not alloc domain group for "
6735 sched_group_nodes
[i
] = sg
;
6736 for_each_cpu_mask(j
, nodemask
) {
6737 struct sched_domain
*sd
;
6739 sd
= &per_cpu(node_domains
, j
);
6742 sg
->__cpu_power
= 0;
6743 sg
->cpumask
= nodemask
;
6745 cpus_or(covered
, covered
, nodemask
);
6748 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6749 cpumask_t tmp
, notcovered
;
6750 int n
= (i
+ j
) % MAX_NUMNODES
;
6752 cpus_complement(notcovered
, covered
);
6753 cpus_and(tmp
, notcovered
, *cpu_map
);
6754 cpus_and(tmp
, tmp
, domainspan
);
6755 if (cpus_empty(tmp
))
6758 nodemask
= node_to_cpumask(n
);
6759 cpus_and(tmp
, tmp
, nodemask
);
6760 if (cpus_empty(tmp
))
6763 sg
= kmalloc_node(sizeof(struct sched_group
),
6767 "Can not alloc domain group for node %d\n", j
);
6770 sg
->__cpu_power
= 0;
6772 sg
->next
= prev
->next
;
6773 cpus_or(covered
, covered
, tmp
);
6780 /* Calculate CPU power for physical packages and nodes */
6781 #ifdef CONFIG_SCHED_SMT
6782 for_each_cpu_mask(i
, *cpu_map
) {
6783 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6785 init_sched_groups_power(i
, sd
);
6788 #ifdef CONFIG_SCHED_MC
6789 for_each_cpu_mask(i
, *cpu_map
) {
6790 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6792 init_sched_groups_power(i
, sd
);
6796 for_each_cpu_mask(i
, *cpu_map
) {
6797 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6799 init_sched_groups_power(i
, sd
);
6803 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6804 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6807 struct sched_group
*sg
;
6809 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6810 init_numa_sched_groups_power(sg
);
6814 /* Attach the domains */
6815 for_each_cpu_mask(i
, *cpu_map
) {
6816 struct sched_domain
*sd
;
6817 #ifdef CONFIG_SCHED_SMT
6818 sd
= &per_cpu(cpu_domains
, i
);
6819 #elif defined(CONFIG_SCHED_MC)
6820 sd
= &per_cpu(core_domains
, i
);
6822 sd
= &per_cpu(phys_domains
, i
);
6824 cpu_attach_domain(sd
, rd
, i
);
6831 free_sched_groups(cpu_map
);
6836 static cpumask_t
*doms_cur
; /* current sched domains */
6837 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6840 * Special case: If a kmalloc of a doms_cur partition (array of
6841 * cpumask_t) fails, then fallback to a single sched domain,
6842 * as determined by the single cpumask_t fallback_doms.
6844 static cpumask_t fallback_doms
;
6847 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6848 * For now this just excludes isolated cpus, but could be used to
6849 * exclude other special cases in the future.
6851 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6856 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6858 doms_cur
= &fallback_doms
;
6859 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
6860 err
= build_sched_domains(doms_cur
);
6861 register_sched_domain_sysctl();
6866 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6868 free_sched_groups(cpu_map
);
6872 * Detach sched domains from a group of cpus specified in cpu_map
6873 * These cpus will now be attached to the NULL domain
6875 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6879 unregister_sched_domain_sysctl();
6881 for_each_cpu_mask(i
, *cpu_map
)
6882 cpu_attach_domain(NULL
, &def_root_domain
, i
);
6883 synchronize_sched();
6884 arch_destroy_sched_domains(cpu_map
);
6888 * Partition sched domains as specified by the 'ndoms_new'
6889 * cpumasks in the array doms_new[] of cpumasks. This compares
6890 * doms_new[] to the current sched domain partitioning, doms_cur[].
6891 * It destroys each deleted domain and builds each new domain.
6893 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6894 * The masks don't intersect (don't overlap.) We should setup one
6895 * sched domain for each mask. CPUs not in any of the cpumasks will
6896 * not be load balanced. If the same cpumask appears both in the
6897 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6900 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6901 * ownership of it and will kfree it when done with it. If the caller
6902 * failed the kmalloc call, then it can pass in doms_new == NULL,
6903 * and partition_sched_domains() will fallback to the single partition
6906 * Call with hotplug lock held
6908 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
)
6914 /* always unregister in case we don't destroy any domains */
6915 unregister_sched_domain_sysctl();
6917 if (doms_new
== NULL
) {
6919 doms_new
= &fallback_doms
;
6920 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
6923 /* Destroy deleted domains */
6924 for (i
= 0; i
< ndoms_cur
; i
++) {
6925 for (j
= 0; j
< ndoms_new
; j
++) {
6926 if (cpus_equal(doms_cur
[i
], doms_new
[j
]))
6929 /* no match - a current sched domain not in new doms_new[] */
6930 detach_destroy_domains(doms_cur
+ i
);
6935 /* Build new domains */
6936 for (i
= 0; i
< ndoms_new
; i
++) {
6937 for (j
= 0; j
< ndoms_cur
; j
++) {
6938 if (cpus_equal(doms_new
[i
], doms_cur
[j
]))
6941 /* no match - add a new doms_new */
6942 build_sched_domains(doms_new
+ i
);
6947 /* Remember the new sched domains */
6948 if (doms_cur
!= &fallback_doms
)
6950 doms_cur
= doms_new
;
6951 ndoms_cur
= ndoms_new
;
6953 register_sched_domain_sysctl();
6958 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6959 static int arch_reinit_sched_domains(void)
6964 detach_destroy_domains(&cpu_online_map
);
6965 err
= arch_init_sched_domains(&cpu_online_map
);
6971 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6975 if (buf
[0] != '0' && buf
[0] != '1')
6979 sched_smt_power_savings
= (buf
[0] == '1');
6981 sched_mc_power_savings
= (buf
[0] == '1');
6983 ret
= arch_reinit_sched_domains();
6985 return ret
? ret
: count
;
6988 #ifdef CONFIG_SCHED_MC
6989 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6991 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6993 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6994 const char *buf
, size_t count
)
6996 return sched_power_savings_store(buf
, count
, 0);
6998 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6999 sched_mc_power_savings_store
);
7002 #ifdef CONFIG_SCHED_SMT
7003 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
7005 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7007 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
7008 const char *buf
, size_t count
)
7010 return sched_power_savings_store(buf
, count
, 1);
7012 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
7013 sched_smt_power_savings_store
);
7016 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7020 #ifdef CONFIG_SCHED_SMT
7022 err
= sysfs_create_file(&cls
->kset
.kobj
,
7023 &attr_sched_smt_power_savings
.attr
);
7025 #ifdef CONFIG_SCHED_MC
7026 if (!err
&& mc_capable())
7027 err
= sysfs_create_file(&cls
->kset
.kobj
,
7028 &attr_sched_mc_power_savings
.attr
);
7035 * Force a reinitialization of the sched domains hierarchy. The domains
7036 * and groups cannot be updated in place without racing with the balancing
7037 * code, so we temporarily attach all running cpus to the NULL domain
7038 * which will prevent rebalancing while the sched domains are recalculated.
7040 static int update_sched_domains(struct notifier_block
*nfb
,
7041 unsigned long action
, void *hcpu
)
7044 case CPU_UP_PREPARE
:
7045 case CPU_UP_PREPARE_FROZEN
:
7046 case CPU_DOWN_PREPARE
:
7047 case CPU_DOWN_PREPARE_FROZEN
:
7048 detach_destroy_domains(&cpu_online_map
);
7051 case CPU_UP_CANCELED
:
7052 case CPU_UP_CANCELED_FROZEN
:
7053 case CPU_DOWN_FAILED
:
7054 case CPU_DOWN_FAILED_FROZEN
:
7056 case CPU_ONLINE_FROZEN
:
7058 case CPU_DEAD_FROZEN
:
7060 * Fall through and re-initialise the domains.
7067 /* The hotplug lock is already held by cpu_up/cpu_down */
7068 arch_init_sched_domains(&cpu_online_map
);
7073 void __init
sched_init_smp(void)
7075 cpumask_t non_isolated_cpus
;
7078 arch_init_sched_domains(&cpu_online_map
);
7079 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
7080 if (cpus_empty(non_isolated_cpus
))
7081 cpu_set(smp_processor_id(), non_isolated_cpus
);
7083 /* XXX: Theoretical race here - CPU may be hotplugged now */
7084 hotcpu_notifier(update_sched_domains
, 0);
7086 /* Move init over to a non-isolated CPU */
7087 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
7089 sched_init_granularity();
7091 #ifdef CONFIG_FAIR_GROUP_SCHED
7092 if (nr_cpu_ids
== 1)
7095 lb_monitor_task
= kthread_create(load_balance_monitor
, NULL
,
7097 if (!IS_ERR(lb_monitor_task
)) {
7098 lb_monitor_task
->flags
|= PF_NOFREEZE
;
7099 wake_up_process(lb_monitor_task
);
7101 printk(KERN_ERR
"Could not create load balance monitor thread"
7102 "(error = %ld) \n", PTR_ERR(lb_monitor_task
));
7107 void __init
sched_init_smp(void)
7109 sched_init_granularity();
7111 #endif /* CONFIG_SMP */
7113 int in_sched_functions(unsigned long addr
)
7115 return in_lock_functions(addr
) ||
7116 (addr
>= (unsigned long)__sched_text_start
7117 && addr
< (unsigned long)__sched_text_end
);
7120 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7122 cfs_rq
->tasks_timeline
= RB_ROOT
;
7123 #ifdef CONFIG_FAIR_GROUP_SCHED
7126 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7129 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7131 struct rt_prio_array
*array
;
7134 array
= &rt_rq
->active
;
7135 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7136 INIT_LIST_HEAD(array
->queue
+ i
);
7137 __clear_bit(i
, array
->bitmap
);
7139 /* delimiter for bitsearch: */
7140 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7142 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7143 rt_rq
->highest_prio
= MAX_RT_PRIO
;
7146 rt_rq
->rt_nr_migratory
= 0;
7147 rt_rq
->overloaded
= 0;
7151 rt_rq
->rt_throttled
= 0;
7153 #ifdef CONFIG_RT_GROUP_SCHED
7154 rt_rq
->rt_nr_boosted
= 0;
7159 #ifdef CONFIG_FAIR_GROUP_SCHED
7160 static void init_tg_cfs_entry(struct rq
*rq
, struct task_group
*tg
,
7161 struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
7164 tg
->cfs_rq
[cpu
] = cfs_rq
;
7165 init_cfs_rq(cfs_rq
, rq
);
7168 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7171 se
->cfs_rq
= &rq
->cfs
;
7173 se
->load
.weight
= tg
->shares
;
7174 se
->load
.inv_weight
= div64_64(1ULL<<32, se
->load
.weight
);
7179 #ifdef CONFIG_RT_GROUP_SCHED
7180 static void init_tg_rt_entry(struct rq
*rq
, struct task_group
*tg
,
7181 struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
,
7184 tg
->rt_rq
[cpu
] = rt_rq
;
7185 init_rt_rq(rt_rq
, rq
);
7187 rt_rq
->rt_se
= rt_se
;
7189 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7191 tg
->rt_se
[cpu
] = rt_se
;
7192 rt_se
->rt_rq
= &rq
->rt
;
7193 rt_se
->my_q
= rt_rq
;
7194 rt_se
->parent
= NULL
;
7195 INIT_LIST_HEAD(&rt_se
->run_list
);
7199 void __init
sched_init(void)
7201 int highest_cpu
= 0;
7205 init_defrootdomain();
7208 #ifdef CONFIG_GROUP_SCHED
7209 list_add(&init_task_group
.list
, &task_groups
);
7212 for_each_possible_cpu(i
) {
7216 spin_lock_init(&rq
->lock
);
7217 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
7220 init_cfs_rq(&rq
->cfs
, rq
);
7221 init_rt_rq(&rq
->rt
, rq
);
7222 #ifdef CONFIG_FAIR_GROUP_SCHED
7223 init_task_group
.shares
= init_task_group_load
;
7224 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7225 init_tg_cfs_entry(rq
, &init_task_group
,
7226 &per_cpu(init_cfs_rq
, i
),
7227 &per_cpu(init_sched_entity
, i
), i
, 1);
7230 #ifdef CONFIG_RT_GROUP_SCHED
7231 init_task_group
.rt_runtime
=
7232 sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
7233 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
7234 init_tg_rt_entry(rq
, &init_task_group
,
7235 &per_cpu(init_rt_rq
, i
),
7236 &per_cpu(init_sched_rt_entity
, i
), i
, 1);
7238 rq
->rt_period_expire
= 0;
7239 rq
->rt_throttled
= 0;
7241 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7242 rq
->cpu_load
[j
] = 0;
7246 rq
->active_balance
= 0;
7247 rq
->next_balance
= jiffies
;
7250 rq
->migration_thread
= NULL
;
7251 INIT_LIST_HEAD(&rq
->migration_queue
);
7252 rq_attach_root(rq
, &def_root_domain
);
7255 atomic_set(&rq
->nr_iowait
, 0);
7259 set_load_weight(&init_task
);
7261 #ifdef CONFIG_PREEMPT_NOTIFIERS
7262 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7266 nr_cpu_ids
= highest_cpu
+ 1;
7267 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
7270 #ifdef CONFIG_RT_MUTEXES
7271 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
7275 * The boot idle thread does lazy MMU switching as well:
7277 atomic_inc(&init_mm
.mm_count
);
7278 enter_lazy_tlb(&init_mm
, current
);
7281 * Make us the idle thread. Technically, schedule() should not be
7282 * called from this thread, however somewhere below it might be,
7283 * but because we are the idle thread, we just pick up running again
7284 * when this runqueue becomes "idle".
7286 init_idle(current
, smp_processor_id());
7288 * During early bootup we pretend to be a normal task:
7290 current
->sched_class
= &fair_sched_class
;
7292 scheduler_running
= 1;
7295 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7296 void __might_sleep(char *file
, int line
)
7299 static unsigned long prev_jiffy
; /* ratelimiting */
7301 if ((in_atomic() || irqs_disabled()) &&
7302 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
7303 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7305 prev_jiffy
= jiffies
;
7306 printk(KERN_ERR
"BUG: sleeping function called from invalid"
7307 " context at %s:%d\n", file
, line
);
7308 printk("in_atomic():%d, irqs_disabled():%d\n",
7309 in_atomic(), irqs_disabled());
7310 debug_show_held_locks(current
);
7311 if (irqs_disabled())
7312 print_irqtrace_events(current
);
7317 EXPORT_SYMBOL(__might_sleep
);
7320 #ifdef CONFIG_MAGIC_SYSRQ
7321 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
7324 update_rq_clock(rq
);
7325 on_rq
= p
->se
.on_rq
;
7327 deactivate_task(rq
, p
, 0);
7328 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
7330 activate_task(rq
, p
, 0);
7331 resched_task(rq
->curr
);
7335 void normalize_rt_tasks(void)
7337 struct task_struct
*g
, *p
;
7338 unsigned long flags
;
7341 read_lock_irqsave(&tasklist_lock
, flags
);
7342 do_each_thread(g
, p
) {
7344 * Only normalize user tasks:
7349 p
->se
.exec_start
= 0;
7350 #ifdef CONFIG_SCHEDSTATS
7351 p
->se
.wait_start
= 0;
7352 p
->se
.sleep_start
= 0;
7353 p
->se
.block_start
= 0;
7355 task_rq(p
)->clock
= 0;
7359 * Renice negative nice level userspace
7362 if (TASK_NICE(p
) < 0 && p
->mm
)
7363 set_user_nice(p
, 0);
7367 spin_lock(&p
->pi_lock
);
7368 rq
= __task_rq_lock(p
);
7370 normalize_task(rq
, p
);
7372 __task_rq_unlock(rq
);
7373 spin_unlock(&p
->pi_lock
);
7374 } while_each_thread(g
, p
);
7376 read_unlock_irqrestore(&tasklist_lock
, flags
);
7379 #endif /* CONFIG_MAGIC_SYSRQ */
7383 * These functions are only useful for the IA64 MCA handling.
7385 * They can only be called when the whole system has been
7386 * stopped - every CPU needs to be quiescent, and no scheduling
7387 * activity can take place. Using them for anything else would
7388 * be a serious bug, and as a result, they aren't even visible
7389 * under any other configuration.
7393 * curr_task - return the current task for a given cpu.
7394 * @cpu: the processor in question.
7396 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7398 struct task_struct
*curr_task(int cpu
)
7400 return cpu_curr(cpu
);
7404 * set_curr_task - set the current task for a given cpu.
7405 * @cpu: the processor in question.
7406 * @p: the task pointer to set.
7408 * Description: This function must only be used when non-maskable interrupts
7409 * are serviced on a separate stack. It allows the architecture to switch the
7410 * notion of the current task on a cpu in a non-blocking manner. This function
7411 * must be called with all CPU's synchronized, and interrupts disabled, the
7412 * and caller must save the original value of the current task (see
7413 * curr_task() above) and restore that value before reenabling interrupts and
7414 * re-starting the system.
7416 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7418 void set_curr_task(int cpu
, struct task_struct
*p
)
7425 #ifdef CONFIG_GROUP_SCHED
7427 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7429 * distribute shares of all task groups among their schedulable entities,
7430 * to reflect load distribution across cpus.
7432 static int rebalance_shares(struct sched_domain
*sd
, int this_cpu
)
7434 struct cfs_rq
*cfs_rq
;
7435 struct rq
*rq
= cpu_rq(this_cpu
);
7436 cpumask_t sdspan
= sd
->span
;
7439 /* Walk thr' all the task groups that we have */
7440 for_each_leaf_cfs_rq(rq
, cfs_rq
) {
7442 unsigned long total_load
= 0, total_shares
;
7443 struct task_group
*tg
= cfs_rq
->tg
;
7445 /* Gather total task load of this group across cpus */
7446 for_each_cpu_mask(i
, sdspan
)
7447 total_load
+= tg
->cfs_rq
[i
]->load
.weight
;
7449 /* Nothing to do if this group has no load */
7454 * tg->shares represents the number of cpu shares the task group
7455 * is eligible to hold on a single cpu. On N cpus, it is
7456 * eligible to hold (N * tg->shares) number of cpu shares.
7458 total_shares
= tg
->shares
* cpus_weight(sdspan
);
7461 * redistribute total_shares across cpus as per the task load
7464 for_each_cpu_mask(i
, sdspan
) {
7465 unsigned long local_load
, local_shares
;
7467 local_load
= tg
->cfs_rq
[i
]->load
.weight
;
7468 local_shares
= (local_load
* total_shares
) / total_load
;
7470 local_shares
= MIN_GROUP_SHARES
;
7471 if (local_shares
== tg
->se
[i
]->load
.weight
)
7474 spin_lock_irq(&cpu_rq(i
)->lock
);
7475 set_se_shares(tg
->se
[i
], local_shares
);
7476 spin_unlock_irq(&cpu_rq(i
)->lock
);
7485 * How frequently should we rebalance_shares() across cpus?
7487 * The more frequently we rebalance shares, the more accurate is the fairness
7488 * of cpu bandwidth distribution between task groups. However higher frequency
7489 * also implies increased scheduling overhead.
7491 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7492 * consecutive calls to rebalance_shares() in the same sched domain.
7494 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7495 * consecutive calls to rebalance_shares() in the same sched domain.
7497 * These settings allows for the appropriate trade-off between accuracy of
7498 * fairness and the associated overhead.
7502 /* default: 8ms, units: milliseconds */
7503 const_debug
unsigned int sysctl_sched_min_bal_int_shares
= 8;
7505 /* default: 128ms, units: milliseconds */
7506 const_debug
unsigned int sysctl_sched_max_bal_int_shares
= 128;
7508 /* kernel thread that runs rebalance_shares() periodically */
7509 static int load_balance_monitor(void *unused
)
7511 unsigned int timeout
= sysctl_sched_min_bal_int_shares
;
7512 struct sched_param schedparm
;
7516 * We don't want this thread's execution to be limited by the shares
7517 * assigned to default group (init_task_group). Hence make it run
7518 * as a SCHED_RR RT task at the lowest priority.
7520 schedparm
.sched_priority
= 1;
7521 ret
= sched_setscheduler(current
, SCHED_RR
, &schedparm
);
7523 printk(KERN_ERR
"Couldn't set SCHED_RR policy for load balance"
7524 " monitor thread (error = %d) \n", ret
);
7526 while (!kthread_should_stop()) {
7527 int i
, cpu
, balanced
= 1;
7529 /* Prevent cpus going down or coming up */
7531 /* lockout changes to doms_cur[] array */
7534 * Enter a rcu read-side critical section to safely walk rq->sd
7535 * chain on various cpus and to walk task group list
7536 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7540 for (i
= 0; i
< ndoms_cur
; i
++) {
7541 cpumask_t cpumap
= doms_cur
[i
];
7542 struct sched_domain
*sd
= NULL
, *sd_prev
= NULL
;
7544 cpu
= first_cpu(cpumap
);
7546 /* Find the highest domain at which to balance shares */
7547 for_each_domain(cpu
, sd
) {
7548 if (!(sd
->flags
& SD_LOAD_BALANCE
))
7554 /* sd == NULL? No load balance reqd in this domain */
7558 balanced
&= rebalance_shares(sd
, cpu
);
7567 timeout
= sysctl_sched_min_bal_int_shares
;
7568 else if (timeout
< sysctl_sched_max_bal_int_shares
)
7571 msleep_interruptible(timeout
);
7576 #endif /* CONFIG_SMP */
7578 #ifdef CONFIG_FAIR_GROUP_SCHED
7579 static void free_fair_sched_group(struct task_group
*tg
)
7583 for_each_possible_cpu(i
) {
7585 kfree(tg
->cfs_rq
[i
]);
7594 static int alloc_fair_sched_group(struct task_group
*tg
)
7596 struct cfs_rq
*cfs_rq
;
7597 struct sched_entity
*se
;
7601 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * NR_CPUS
, GFP_KERNEL
);
7604 tg
->se
= kzalloc(sizeof(se
) * NR_CPUS
, GFP_KERNEL
);
7608 tg
->shares
= NICE_0_LOAD
;
7610 for_each_possible_cpu(i
) {
7613 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
),
7614 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7618 se
= kmalloc_node(sizeof(struct sched_entity
),
7619 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7623 init_tg_cfs_entry(rq
, tg
, cfs_rq
, se
, i
, 0);
7632 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
7634 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
7635 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
7638 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
7640 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
7643 static inline void free_fair_sched_group(struct task_group
*tg
)
7647 static inline int alloc_fair_sched_group(struct task_group
*tg
)
7652 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
7656 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
7661 #ifdef CONFIG_RT_GROUP_SCHED
7662 static void free_rt_sched_group(struct task_group
*tg
)
7666 for_each_possible_cpu(i
) {
7668 kfree(tg
->rt_rq
[i
]);
7670 kfree(tg
->rt_se
[i
]);
7677 static int alloc_rt_sched_group(struct task_group
*tg
)
7679 struct rt_rq
*rt_rq
;
7680 struct sched_rt_entity
*rt_se
;
7684 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * NR_CPUS
, GFP_KERNEL
);
7687 tg
->rt_se
= kzalloc(sizeof(rt_se
) * NR_CPUS
, GFP_KERNEL
);
7693 for_each_possible_cpu(i
) {
7696 rt_rq
= kmalloc_node(sizeof(struct rt_rq
),
7697 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7701 rt_se
= kmalloc_node(sizeof(struct sched_rt_entity
),
7702 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7706 init_tg_rt_entry(rq
, tg
, rt_rq
, rt_se
, i
, 0);
7715 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
7717 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
7718 &cpu_rq(cpu
)->leaf_rt_rq_list
);
7721 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
7723 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
7726 static inline void free_rt_sched_group(struct task_group
*tg
)
7730 static inline int alloc_rt_sched_group(struct task_group
*tg
)
7735 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
7739 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
7744 static void free_sched_group(struct task_group
*tg
)
7746 free_fair_sched_group(tg
);
7747 free_rt_sched_group(tg
);
7751 /* allocate runqueue etc for a new task group */
7752 struct task_group
*sched_create_group(void)
7754 struct task_group
*tg
;
7755 unsigned long flags
;
7758 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
7760 return ERR_PTR(-ENOMEM
);
7762 if (!alloc_fair_sched_group(tg
))
7765 if (!alloc_rt_sched_group(tg
))
7768 spin_lock_irqsave(&task_group_lock
, flags
);
7769 for_each_possible_cpu(i
) {
7770 register_fair_sched_group(tg
, i
);
7771 register_rt_sched_group(tg
, i
);
7773 list_add_rcu(&tg
->list
, &task_groups
);
7774 spin_unlock_irqrestore(&task_group_lock
, flags
);
7779 free_sched_group(tg
);
7780 return ERR_PTR(-ENOMEM
);
7783 /* rcu callback to free various structures associated with a task group */
7784 static void free_sched_group_rcu(struct rcu_head
*rhp
)
7786 /* now it should be safe to free those cfs_rqs */
7787 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
7790 /* Destroy runqueue etc associated with a task group */
7791 void sched_destroy_group(struct task_group
*tg
)
7793 unsigned long flags
;
7796 spin_lock_irqsave(&task_group_lock
, flags
);
7797 for_each_possible_cpu(i
) {
7798 unregister_fair_sched_group(tg
, i
);
7799 unregister_rt_sched_group(tg
, i
);
7801 list_del_rcu(&tg
->list
);
7802 spin_unlock_irqrestore(&task_group_lock
, flags
);
7804 /* wait for possible concurrent references to cfs_rqs complete */
7805 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
7808 /* change task's runqueue when it moves between groups.
7809 * The caller of this function should have put the task in its new group
7810 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7811 * reflect its new group.
7813 void sched_move_task(struct task_struct
*tsk
)
7816 unsigned long flags
;
7819 rq
= task_rq_lock(tsk
, &flags
);
7821 update_rq_clock(rq
);
7823 running
= task_current(rq
, tsk
);
7824 on_rq
= tsk
->se
.on_rq
;
7827 dequeue_task(rq
, tsk
, 0);
7828 if (unlikely(running
))
7829 tsk
->sched_class
->put_prev_task(rq
, tsk
);
7832 set_task_rq(tsk
, task_cpu(tsk
));
7835 if (unlikely(running
))
7836 tsk
->sched_class
->set_curr_task(rq
);
7837 enqueue_task(rq
, tsk
, 0);
7840 task_rq_unlock(rq
, &flags
);
7843 #ifdef CONFIG_FAIR_GROUP_SCHED
7844 /* rq->lock to be locked by caller */
7845 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
7847 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
7848 struct rq
*rq
= cfs_rq
->rq
;
7852 shares
= MIN_GROUP_SHARES
;
7856 dequeue_entity(cfs_rq
, se
, 0);
7857 dec_cpu_load(rq
, se
->load
.weight
);
7860 se
->load
.weight
= shares
;
7861 se
->load
.inv_weight
= div64_64((1ULL<<32), shares
);
7864 enqueue_entity(cfs_rq
, se
, 0);
7865 inc_cpu_load(rq
, se
->load
.weight
);
7869 static DEFINE_MUTEX(shares_mutex
);
7871 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
7874 unsigned long flags
;
7876 mutex_lock(&shares_mutex
);
7877 if (tg
->shares
== shares
)
7880 if (shares
< MIN_GROUP_SHARES
)
7881 shares
= MIN_GROUP_SHARES
;
7884 * Prevent any load balance activity (rebalance_shares,
7885 * load_balance_fair) from referring to this group first,
7886 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7888 spin_lock_irqsave(&task_group_lock
, flags
);
7889 for_each_possible_cpu(i
)
7890 unregister_fair_sched_group(tg
, i
);
7891 spin_unlock_irqrestore(&task_group_lock
, flags
);
7893 /* wait for any ongoing reference to this group to finish */
7894 synchronize_sched();
7897 * Now we are free to modify the group's share on each cpu
7898 * w/o tripping rebalance_share or load_balance_fair.
7900 tg
->shares
= shares
;
7901 for_each_possible_cpu(i
) {
7902 spin_lock_irq(&cpu_rq(i
)->lock
);
7903 set_se_shares(tg
->se
[i
], shares
);
7904 spin_unlock_irq(&cpu_rq(i
)->lock
);
7908 * Enable load balance activity on this group, by inserting it back on
7909 * each cpu's rq->leaf_cfs_rq_list.
7911 spin_lock_irqsave(&task_group_lock
, flags
);
7912 for_each_possible_cpu(i
)
7913 register_fair_sched_group(tg
, i
);
7914 spin_unlock_irqrestore(&task_group_lock
, flags
);
7916 mutex_unlock(&shares_mutex
);
7920 unsigned long sched_group_shares(struct task_group
*tg
)
7926 #ifdef CONFIG_RT_GROUP_SCHED
7928 * Ensure that the real time constraints are schedulable.
7930 static DEFINE_MUTEX(rt_constraints_mutex
);
7932 static unsigned long to_ratio(u64 period
, u64 runtime
)
7934 if (runtime
== RUNTIME_INF
)
7937 runtime
*= (1ULL << 16);
7938 div64_64(runtime
, period
);
7942 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
7944 struct task_group
*tgi
;
7945 unsigned long total
= 0;
7946 unsigned long global_ratio
=
7947 to_ratio(sysctl_sched_rt_period
,
7948 sysctl_sched_rt_runtime
< 0 ?
7949 RUNTIME_INF
: sysctl_sched_rt_runtime
);
7952 list_for_each_entry_rcu(tgi
, &task_groups
, list
) {
7956 total
+= to_ratio(period
, tgi
->rt_runtime
);
7960 return total
+ to_ratio(period
, runtime
) < global_ratio
;
7963 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
7965 u64 rt_runtime
, rt_period
;
7968 rt_period
= sysctl_sched_rt_period
* NSEC_PER_USEC
;
7969 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
7970 if (rt_runtime_us
== -1)
7971 rt_runtime
= rt_period
;
7973 mutex_lock(&rt_constraints_mutex
);
7974 if (!__rt_schedulable(tg
, rt_period
, rt_runtime
)) {
7978 if (rt_runtime_us
== -1)
7979 rt_runtime
= RUNTIME_INF
;
7980 tg
->rt_runtime
= rt_runtime
;
7982 mutex_unlock(&rt_constraints_mutex
);
7987 long sched_group_rt_runtime(struct task_group
*tg
)
7991 if (tg
->rt_runtime
== RUNTIME_INF
)
7994 rt_runtime_us
= tg
->rt_runtime
;
7995 do_div(rt_runtime_us
, NSEC_PER_USEC
);
7996 return rt_runtime_us
;
7999 #endif /* CONFIG_GROUP_SCHED */
8001 #ifdef CONFIG_CGROUP_SCHED
8003 /* return corresponding task_group object of a cgroup */
8004 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8006 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8007 struct task_group
, css
);
8010 static struct cgroup_subsys_state
*
8011 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8013 struct task_group
*tg
;
8015 if (!cgrp
->parent
) {
8016 /* This is early initialization for the top cgroup */
8017 init_task_group
.css
.cgroup
= cgrp
;
8018 return &init_task_group
.css
;
8021 /* we support only 1-level deep hierarchical scheduler atm */
8022 if (cgrp
->parent
->parent
)
8023 return ERR_PTR(-EINVAL
);
8025 tg
= sched_create_group();
8027 return ERR_PTR(-ENOMEM
);
8029 /* Bind the cgroup to task_group object we just created */
8030 tg
->css
.cgroup
= cgrp
;
8036 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8038 struct task_group
*tg
= cgroup_tg(cgrp
);
8040 sched_destroy_group(tg
);
8044 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8045 struct task_struct
*tsk
)
8047 #ifdef CONFIG_RT_GROUP_SCHED
8048 /* Don't accept realtime tasks when there is no way for them to run */
8049 if (rt_task(tsk
) && cgroup_tg(cgrp
)->rt_runtime
== 0)
8052 /* We don't support RT-tasks being in separate groups */
8053 if (tsk
->sched_class
!= &fair_sched_class
)
8061 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8062 struct cgroup
*old_cont
, struct task_struct
*tsk
)
8064 sched_move_task(tsk
);
8067 #ifdef CONFIG_FAIR_GROUP_SCHED
8068 static int cpu_shares_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
8071 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
8074 static u64
cpu_shares_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
8076 struct task_group
*tg
= cgroup_tg(cgrp
);
8078 return (u64
) tg
->shares
;
8082 #ifdef CONFIG_RT_GROUP_SCHED
8083 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8085 const char __user
*userbuf
,
8086 size_t nbytes
, loff_t
*unused_ppos
)
8095 if (nbytes
>= sizeof(buffer
))
8097 if (copy_from_user(buffer
, userbuf
, nbytes
))
8100 buffer
[nbytes
] = 0; /* nul-terminate */
8102 /* strip newline if necessary */
8103 if (nbytes
&& (buffer
[nbytes
-1] == '\n'))
8104 buffer
[nbytes
-1] = 0;
8105 val
= simple_strtoll(buffer
, &end
, 0);
8109 /* Pass to subsystem */
8110 retval
= sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
8116 static ssize_t
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
,
8118 char __user
*buf
, size_t nbytes
,
8122 long val
= sched_group_rt_runtime(cgroup_tg(cgrp
));
8123 int len
= sprintf(tmp
, "%ld\n", val
);
8125 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
8129 static struct cftype cpu_files
[] = {
8130 #ifdef CONFIG_FAIR_GROUP_SCHED
8133 .read_uint
= cpu_shares_read_uint
,
8134 .write_uint
= cpu_shares_write_uint
,
8137 #ifdef CONFIG_RT_GROUP_SCHED
8139 .name
= "rt_runtime_us",
8140 .read
= cpu_rt_runtime_read
,
8141 .write
= cpu_rt_runtime_write
,
8146 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8148 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
8151 struct cgroup_subsys cpu_cgroup_subsys
= {
8153 .create
= cpu_cgroup_create
,
8154 .destroy
= cpu_cgroup_destroy
,
8155 .can_attach
= cpu_cgroup_can_attach
,
8156 .attach
= cpu_cgroup_attach
,
8157 .populate
= cpu_cgroup_populate
,
8158 .subsys_id
= cpu_cgroup_subsys_id
,
8162 #endif /* CONFIG_CGROUP_SCHED */
8164 #ifdef CONFIG_CGROUP_CPUACCT
8167 * CPU accounting code for task groups.
8169 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8170 * (balbir@in.ibm.com).
8173 /* track cpu usage of a group of tasks */
8175 struct cgroup_subsys_state css
;
8176 /* cpuusage holds pointer to a u64-type object on every cpu */
8180 struct cgroup_subsys cpuacct_subsys
;
8182 /* return cpu accounting group corresponding to this container */
8183 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cont
)
8185 return container_of(cgroup_subsys_state(cont
, cpuacct_subsys_id
),
8186 struct cpuacct
, css
);
8189 /* return cpu accounting group to which this task belongs */
8190 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
8192 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
8193 struct cpuacct
, css
);
8196 /* create a new cpu accounting group */
8197 static struct cgroup_subsys_state
*cpuacct_create(
8198 struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8200 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
8203 return ERR_PTR(-ENOMEM
);
8205 ca
->cpuusage
= alloc_percpu(u64
);
8206 if (!ca
->cpuusage
) {
8208 return ERR_PTR(-ENOMEM
);
8214 /* destroy an existing cpu accounting group */
8216 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8218 struct cpuacct
*ca
= cgroup_ca(cont
);
8220 free_percpu(ca
->cpuusage
);
8224 /* return total cpu usage (in nanoseconds) of a group */
8225 static u64
cpuusage_read(struct cgroup
*cont
, struct cftype
*cft
)
8227 struct cpuacct
*ca
= cgroup_ca(cont
);
8228 u64 totalcpuusage
= 0;
8231 for_each_possible_cpu(i
) {
8232 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
8235 * Take rq->lock to make 64-bit addition safe on 32-bit
8238 spin_lock_irq(&cpu_rq(i
)->lock
);
8239 totalcpuusage
+= *cpuusage
;
8240 spin_unlock_irq(&cpu_rq(i
)->lock
);
8243 return totalcpuusage
;
8246 static struct cftype files
[] = {
8249 .read_uint
= cpuusage_read
,
8253 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8255 return cgroup_add_files(cont
, ss
, files
, ARRAY_SIZE(files
));
8259 * charge this task's execution time to its accounting group.
8261 * called with rq->lock held.
8263 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
8267 if (!cpuacct_subsys
.active
)
8272 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, task_cpu(tsk
));
8274 *cpuusage
+= cputime
;
8278 struct cgroup_subsys cpuacct_subsys
= {
8280 .create
= cpuacct_create
,
8281 .destroy
= cpuacct_destroy
,
8282 .populate
= cpuacct_populate
,
8283 .subsys_id
= cpuacct_subsys_id
,
8285 #endif /* CONFIG_CGROUP_CPUACCT */