4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
71 #include <asm/irq_regs.h>
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
78 unsigned long long __attribute__((weak
)) sched_clock(void)
80 return (unsigned long long)jiffies
* (NSEC_PER_SEC
/ HZ
);
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
124 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
131 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
133 sg
->__cpu_power
+= val
;
134 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
138 static inline int rt_policy(int policy
)
140 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
145 static inline int task_has_rt_policy(struct task_struct
*p
)
147 return rt_policy(p
->policy
);
151 * This is the priority-queue data structure of the RT scheduling class:
153 struct rt_prio_array
{
154 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
155 struct list_head queue
[MAX_RT_PRIO
];
158 #ifdef CONFIG_GROUP_SCHED
160 #include <linux/cgroup.h>
164 static LIST_HEAD(task_groups
);
166 /* task group related information */
168 #ifdef CONFIG_CGROUP_SCHED
169 struct cgroup_subsys_state css
;
172 #ifdef CONFIG_FAIR_GROUP_SCHED
173 /* schedulable entities of this group on each cpu */
174 struct sched_entity
**se
;
175 /* runqueue "owned" by this group on each cpu */
176 struct cfs_rq
**cfs_rq
;
177 unsigned long shares
;
180 #ifdef CONFIG_RT_GROUP_SCHED
181 struct sched_rt_entity
**rt_se
;
182 struct rt_rq
**rt_rq
;
188 struct list_head list
;
191 #ifdef CONFIG_FAIR_GROUP_SCHED
192 /* Default task group's sched entity on each cpu */
193 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
194 /* Default task group's cfs_rq on each cpu */
195 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
197 static struct sched_entity
*init_sched_entity_p
[NR_CPUS
];
198 static struct cfs_rq
*init_cfs_rq_p
[NR_CPUS
];
201 #ifdef CONFIG_RT_GROUP_SCHED
202 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
203 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
205 static struct sched_rt_entity
*init_sched_rt_entity_p
[NR_CPUS
];
206 static struct rt_rq
*init_rt_rq_p
[NR_CPUS
];
209 /* task_group_lock serializes add/remove of task groups and also changes to
210 * a task group's cpu shares.
212 static DEFINE_SPINLOCK(task_group_lock
);
214 /* doms_cur_mutex serializes access to doms_cur[] array */
215 static DEFINE_MUTEX(doms_cur_mutex
);
217 #ifdef CONFIG_FAIR_GROUP_SCHED
218 #ifdef CONFIG_USER_SCHED
219 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
221 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
224 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
227 /* Default task group.
228 * Every task in system belong to this group at bootup.
230 struct task_group init_task_group
= {
231 #ifdef CONFIG_FAIR_GROUP_SCHED
232 .se
= init_sched_entity_p
,
233 .cfs_rq
= init_cfs_rq_p
,
236 #ifdef CONFIG_RT_GROUP_SCHED
237 .rt_se
= init_sched_rt_entity_p
,
238 .rt_rq
= init_rt_rq_p
,
242 /* return group to which a task belongs */
243 static inline struct task_group
*task_group(struct task_struct
*p
)
245 struct task_group
*tg
;
247 #ifdef CONFIG_USER_SCHED
249 #elif defined(CONFIG_CGROUP_SCHED)
250 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
251 struct task_group
, css
);
253 tg
= &init_task_group
;
258 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
259 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
261 #ifdef CONFIG_FAIR_GROUP_SCHED
262 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
263 p
->se
.parent
= task_group(p
)->se
[cpu
];
266 #ifdef CONFIG_RT_GROUP_SCHED
267 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
268 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
272 static inline void lock_doms_cur(void)
274 mutex_lock(&doms_cur_mutex
);
277 static inline void unlock_doms_cur(void)
279 mutex_unlock(&doms_cur_mutex
);
284 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
285 static inline void lock_doms_cur(void) { }
286 static inline void unlock_doms_cur(void) { }
288 #endif /* CONFIG_GROUP_SCHED */
290 /* CFS-related fields in a runqueue */
292 struct load_weight load
;
293 unsigned long nr_running
;
298 struct rb_root tasks_timeline
;
299 struct rb_node
*rb_leftmost
;
300 struct rb_node
*rb_load_balance_curr
;
301 /* 'curr' points to currently running entity on this cfs_rq.
302 * It is set to NULL otherwise (i.e when none are currently running).
304 struct sched_entity
*curr
, *next
;
306 unsigned long nr_spread_over
;
308 #ifdef CONFIG_FAIR_GROUP_SCHED
309 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
312 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
313 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
314 * (like users, containers etc.)
316 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
317 * list is used during load balance.
319 struct list_head leaf_cfs_rq_list
;
320 struct task_group
*tg
; /* group that "owns" this runqueue */
324 /* Real-Time classes' related field in a runqueue: */
326 struct rt_prio_array active
;
327 unsigned long rt_nr_running
;
328 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
329 int highest_prio
; /* highest queued rt task prio */
332 unsigned long rt_nr_migratory
;
338 #ifdef CONFIG_RT_GROUP_SCHED
339 unsigned long rt_nr_boosted
;
342 struct list_head leaf_rt_rq_list
;
343 struct task_group
*tg
;
344 struct sched_rt_entity
*rt_se
;
351 * We add the notion of a root-domain which will be used to define per-domain
352 * variables. Each exclusive cpuset essentially defines an island domain by
353 * fully partitioning the member cpus from any other cpuset. Whenever a new
354 * exclusive cpuset is created, we also create and attach a new root-domain
364 * The "RT overload" flag: it gets set if a CPU has more than
365 * one runnable RT task.
372 * By default the system creates a single root-domain with all cpus as
373 * members (mimicking the global state we have today).
375 static struct root_domain def_root_domain
;
380 * This is the main, per-CPU runqueue data structure.
382 * Locking rule: those places that want to lock multiple runqueues
383 * (such as the load balancing or the thread migration code), lock
384 * acquire operations must be ordered by ascending &runqueue.
391 * nr_running and cpu_load should be in the same cacheline because
392 * remote CPUs use both these fields when doing load calculation.
394 unsigned long nr_running
;
395 #define CPU_LOAD_IDX_MAX 5
396 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
397 unsigned char idle_at_tick
;
399 unsigned char in_nohz_recently
;
401 /* capture load from *all* tasks on this cpu: */
402 struct load_weight load
;
403 unsigned long nr_load_updates
;
408 u64 rt_period_expire
;
411 #ifdef CONFIG_FAIR_GROUP_SCHED
412 /* list of leaf cfs_rq on this cpu: */
413 struct list_head leaf_cfs_rq_list
;
415 #ifdef CONFIG_RT_GROUP_SCHED
416 struct list_head leaf_rt_rq_list
;
420 * This is part of a global counter where only the total sum
421 * over all CPUs matters. A task can increase this counter on
422 * one CPU and if it got migrated afterwards it may decrease
423 * it on another CPU. Always updated under the runqueue lock:
425 unsigned long nr_uninterruptible
;
427 struct task_struct
*curr
, *idle
;
428 unsigned long next_balance
;
429 struct mm_struct
*prev_mm
;
431 u64 clock
, prev_clock_raw
;
434 unsigned int clock_warps
, clock_overflows
, clock_underflows
;
436 unsigned int clock_deep_idle_events
;
442 struct root_domain
*rd
;
443 struct sched_domain
*sd
;
445 /* For active balancing */
448 /* cpu of this runqueue: */
451 struct task_struct
*migration_thread
;
452 struct list_head migration_queue
;
455 #ifdef CONFIG_SCHED_HRTICK
456 unsigned long hrtick_flags
;
457 ktime_t hrtick_expire
;
458 struct hrtimer hrtick_timer
;
461 #ifdef CONFIG_SCHEDSTATS
463 struct sched_info rq_sched_info
;
465 /* sys_sched_yield() stats */
466 unsigned int yld_exp_empty
;
467 unsigned int yld_act_empty
;
468 unsigned int yld_both_empty
;
469 unsigned int yld_count
;
471 /* schedule() stats */
472 unsigned int sched_switch
;
473 unsigned int sched_count
;
474 unsigned int sched_goidle
;
476 /* try_to_wake_up() stats */
477 unsigned int ttwu_count
;
478 unsigned int ttwu_local
;
481 unsigned int bkl_count
;
483 struct lock_class_key rq_lock_key
;
486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
488 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
490 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
493 static inline int cpu_of(struct rq
*rq
)
503 * Update the per-runqueue clock, as finegrained as the platform can give
504 * us, but without assuming monotonicity, etc.:
506 static void __update_rq_clock(struct rq
*rq
)
508 u64 prev_raw
= rq
->prev_clock_raw
;
509 u64 now
= sched_clock();
510 s64 delta
= now
- prev_raw
;
511 u64 clock
= rq
->clock
;
513 #ifdef CONFIG_SCHED_DEBUG
514 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
517 * Protect against sched_clock() occasionally going backwards:
519 if (unlikely(delta
< 0)) {
524 * Catch too large forward jumps too:
526 if (unlikely(clock
+ delta
> rq
->tick_timestamp
+ TICK_NSEC
)) {
527 if (clock
< rq
->tick_timestamp
+ TICK_NSEC
)
528 clock
= rq
->tick_timestamp
+ TICK_NSEC
;
531 rq
->clock_overflows
++;
533 if (unlikely(delta
> rq
->clock_max_delta
))
534 rq
->clock_max_delta
= delta
;
539 rq
->prev_clock_raw
= now
;
543 static void update_rq_clock(struct rq
*rq
)
545 if (likely(smp_processor_id() == cpu_of(rq
)))
546 __update_rq_clock(rq
);
550 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
551 * See detach_destroy_domains: synchronize_sched for details.
553 * The domain tree of any CPU may only be accessed from within
554 * preempt-disabled sections.
556 #define for_each_domain(cpu, __sd) \
557 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
559 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
560 #define this_rq() (&__get_cpu_var(runqueues))
561 #define task_rq(p) cpu_rq(task_cpu(p))
562 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
564 unsigned long rt_needs_cpu(int cpu
)
566 struct rq
*rq
= cpu_rq(cpu
);
569 if (!rq
->rt_throttled
)
572 if (rq
->clock
> rq
->rt_period_expire
)
575 delta
= rq
->rt_period_expire
- rq
->clock
;
576 do_div(delta
, NSEC_PER_SEC
/ HZ
);
578 return (unsigned long)delta
;
582 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
584 #ifdef CONFIG_SCHED_DEBUG
585 # define const_debug __read_mostly
587 # define const_debug static const
591 * Debugging: various feature bits
594 SCHED_FEAT_NEW_FAIR_SLEEPERS
= 1,
595 SCHED_FEAT_WAKEUP_PREEMPT
= 2,
596 SCHED_FEAT_START_DEBIT
= 4,
597 SCHED_FEAT_TREE_AVG
= 8,
598 SCHED_FEAT_APPROX_AVG
= 16,
599 SCHED_FEAT_HRTICK
= 32,
600 SCHED_FEAT_DOUBLE_TICK
= 64,
603 const_debug
unsigned int sysctl_sched_features
=
604 SCHED_FEAT_NEW_FAIR_SLEEPERS
* 1 |
605 SCHED_FEAT_WAKEUP_PREEMPT
* 1 |
606 SCHED_FEAT_START_DEBIT
* 1 |
607 SCHED_FEAT_TREE_AVG
* 0 |
608 SCHED_FEAT_APPROX_AVG
* 0 |
609 SCHED_FEAT_HRTICK
* 1 |
610 SCHED_FEAT_DOUBLE_TICK
* 0;
612 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
615 * Number of tasks to iterate in a single balance run.
616 * Limited because this is done with IRQs disabled.
618 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
621 * period over which we measure -rt task cpu usage in us.
624 unsigned int sysctl_sched_rt_period
= 1000000;
626 static __read_mostly
int scheduler_running
;
629 * part of the period that we allow rt tasks to run in us.
632 int sysctl_sched_rt_runtime
= 950000;
635 * single value that denotes runtime == period, ie unlimited time.
637 #define RUNTIME_INF ((u64)~0ULL)
640 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
641 * clock constructed from sched_clock():
643 unsigned long long cpu_clock(int cpu
)
645 unsigned long long now
;
650 * Only call sched_clock() if the scheduler has already been
651 * initialized (some code might call cpu_clock() very early):
653 if (unlikely(!scheduler_running
))
656 local_irq_save(flags
);
660 local_irq_restore(flags
);
664 EXPORT_SYMBOL_GPL(cpu_clock
);
666 #ifndef prepare_arch_switch
667 # define prepare_arch_switch(next) do { } while (0)
669 #ifndef finish_arch_switch
670 # define finish_arch_switch(prev) do { } while (0)
673 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
675 return rq
->curr
== p
;
678 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
679 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
681 return task_current(rq
, p
);
684 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
688 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
690 #ifdef CONFIG_DEBUG_SPINLOCK
691 /* this is a valid case when another task releases the spinlock */
692 rq
->lock
.owner
= current
;
695 * If we are tracking spinlock dependencies then we have to
696 * fix up the runqueue lock - which gets 'carried over' from
699 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
701 spin_unlock_irq(&rq
->lock
);
704 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
705 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
710 return task_current(rq
, p
);
714 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
718 * We can optimise this out completely for !SMP, because the
719 * SMP rebalancing from interrupt is the only thing that cares
724 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
725 spin_unlock_irq(&rq
->lock
);
727 spin_unlock(&rq
->lock
);
731 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
735 * After ->oncpu is cleared, the task can be moved to a different CPU.
736 * We must ensure this doesn't happen until the switch is completely
742 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
746 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
749 * __task_rq_lock - lock the runqueue a given task resides on.
750 * Must be called interrupts disabled.
752 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
756 struct rq
*rq
= task_rq(p
);
757 spin_lock(&rq
->lock
);
758 if (likely(rq
== task_rq(p
)))
760 spin_unlock(&rq
->lock
);
765 * task_rq_lock - lock the runqueue a given task resides on and disable
766 * interrupts. Note the ordering: we can safely lookup the task_rq without
767 * explicitly disabling preemption.
769 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
775 local_irq_save(*flags
);
777 spin_lock(&rq
->lock
);
778 if (likely(rq
== task_rq(p
)))
780 spin_unlock_irqrestore(&rq
->lock
, *flags
);
784 static void __task_rq_unlock(struct rq
*rq
)
787 spin_unlock(&rq
->lock
);
790 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
793 spin_unlock_irqrestore(&rq
->lock
, *flags
);
797 * this_rq_lock - lock this runqueue and disable interrupts.
799 static struct rq
*this_rq_lock(void)
806 spin_lock(&rq
->lock
);
812 * We are going deep-idle (irqs are disabled):
814 void sched_clock_idle_sleep_event(void)
816 struct rq
*rq
= cpu_rq(smp_processor_id());
818 spin_lock(&rq
->lock
);
819 __update_rq_clock(rq
);
820 spin_unlock(&rq
->lock
);
821 rq
->clock_deep_idle_events
++;
823 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
826 * We just idled delta nanoseconds (called with irqs disabled):
828 void sched_clock_idle_wakeup_event(u64 delta_ns
)
830 struct rq
*rq
= cpu_rq(smp_processor_id());
831 u64 now
= sched_clock();
833 rq
->idle_clock
+= delta_ns
;
835 * Override the previous timestamp and ignore all
836 * sched_clock() deltas that occured while we idled,
837 * and use the PM-provided delta_ns to advance the
840 spin_lock(&rq
->lock
);
841 rq
->prev_clock_raw
= now
;
842 rq
->clock
+= delta_ns
;
843 spin_unlock(&rq
->lock
);
844 touch_softlockup_watchdog();
846 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
848 static void __resched_task(struct task_struct
*p
, int tif_bit
);
850 static inline void resched_task(struct task_struct
*p
)
852 __resched_task(p
, TIF_NEED_RESCHED
);
855 #ifdef CONFIG_SCHED_HRTICK
857 * Use HR-timers to deliver accurate preemption points.
859 * Its all a bit involved since we cannot program an hrt while holding the
860 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
863 * When we get rescheduled we reprogram the hrtick_timer outside of the
866 static inline void resched_hrt(struct task_struct
*p
)
868 __resched_task(p
, TIF_HRTICK_RESCHED
);
871 static inline void resched_rq(struct rq
*rq
)
875 spin_lock_irqsave(&rq
->lock
, flags
);
876 resched_task(rq
->curr
);
877 spin_unlock_irqrestore(&rq
->lock
, flags
);
881 HRTICK_SET
, /* re-programm hrtick_timer */
882 HRTICK_RESET
, /* not a new slice */
887 * - enabled by features
888 * - hrtimer is actually high res
890 static inline int hrtick_enabled(struct rq
*rq
)
892 if (!sched_feat(HRTICK
))
894 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
898 * Called to set the hrtick timer state.
900 * called with rq->lock held and irqs disabled
902 static void hrtick_start(struct rq
*rq
, u64 delay
, int reset
)
904 assert_spin_locked(&rq
->lock
);
907 * preempt at: now + delay
910 ktime_add_ns(rq
->hrtick_timer
.base
->get_time(), delay
);
912 * indicate we need to program the timer
914 __set_bit(HRTICK_SET
, &rq
->hrtick_flags
);
916 __set_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
919 * New slices are called from the schedule path and don't need a
923 resched_hrt(rq
->curr
);
926 static void hrtick_clear(struct rq
*rq
)
928 if (hrtimer_active(&rq
->hrtick_timer
))
929 hrtimer_cancel(&rq
->hrtick_timer
);
933 * Update the timer from the possible pending state.
935 static void hrtick_set(struct rq
*rq
)
941 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
943 spin_lock_irqsave(&rq
->lock
, flags
);
944 set
= __test_and_clear_bit(HRTICK_SET
, &rq
->hrtick_flags
);
945 reset
= __test_and_clear_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
946 time
= rq
->hrtick_expire
;
947 clear_thread_flag(TIF_HRTICK_RESCHED
);
948 spin_unlock_irqrestore(&rq
->lock
, flags
);
951 hrtimer_start(&rq
->hrtick_timer
, time
, HRTIMER_MODE_ABS
);
952 if (reset
&& !hrtimer_active(&rq
->hrtick_timer
))
959 * High-resolution timer tick.
960 * Runs from hardirq context with interrupts disabled.
962 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
964 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
966 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
968 spin_lock(&rq
->lock
);
969 __update_rq_clock(rq
);
970 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
971 spin_unlock(&rq
->lock
);
973 return HRTIMER_NORESTART
;
976 static inline void init_rq_hrtick(struct rq
*rq
)
978 rq
->hrtick_flags
= 0;
979 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
980 rq
->hrtick_timer
.function
= hrtick
;
981 rq
->hrtick_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
984 void hrtick_resched(void)
989 if (!test_thread_flag(TIF_HRTICK_RESCHED
))
992 local_irq_save(flags
);
993 rq
= cpu_rq(smp_processor_id());
995 local_irq_restore(flags
);
998 static inline void hrtick_clear(struct rq
*rq
)
1002 static inline void hrtick_set(struct rq
*rq
)
1006 static inline void init_rq_hrtick(struct rq
*rq
)
1010 void hrtick_resched(void)
1016 * resched_task - mark a task 'to be rescheduled now'.
1018 * On UP this means the setting of the need_resched flag, on SMP it
1019 * might also involve a cross-CPU call to trigger the scheduler on
1024 #ifndef tsk_is_polling
1025 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1028 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1032 assert_spin_locked(&task_rq(p
)->lock
);
1034 if (unlikely(test_tsk_thread_flag(p
, tif_bit
)))
1037 set_tsk_thread_flag(p
, tif_bit
);
1040 if (cpu
== smp_processor_id())
1043 /* NEED_RESCHED must be visible before we test polling */
1045 if (!tsk_is_polling(p
))
1046 smp_send_reschedule(cpu
);
1049 static void resched_cpu(int cpu
)
1051 struct rq
*rq
= cpu_rq(cpu
);
1052 unsigned long flags
;
1054 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1056 resched_task(cpu_curr(cpu
));
1057 spin_unlock_irqrestore(&rq
->lock
, flags
);
1060 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1062 assert_spin_locked(&task_rq(p
)->lock
);
1063 set_tsk_thread_flag(p
, tif_bit
);
1067 #if BITS_PER_LONG == 32
1068 # define WMULT_CONST (~0UL)
1070 # define WMULT_CONST (1UL << 32)
1073 #define WMULT_SHIFT 32
1076 * Shift right and round:
1078 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1080 static unsigned long
1081 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1082 struct load_weight
*lw
)
1086 if (unlikely(!lw
->inv_weight
))
1087 lw
->inv_weight
= (WMULT_CONST
-lw
->weight
/2) / (lw
->weight
+1);
1089 tmp
= (u64
)delta_exec
* weight
;
1091 * Check whether we'd overflow the 64-bit multiplication:
1093 if (unlikely(tmp
> WMULT_CONST
))
1094 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1097 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1099 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1102 static inline unsigned long
1103 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
1105 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
1108 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1114 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1121 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1122 * of tasks with abnormal "nice" values across CPUs the contribution that
1123 * each task makes to its run queue's load is weighted according to its
1124 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1125 * scaled version of the new time slice allocation that they receive on time
1129 #define WEIGHT_IDLEPRIO 2
1130 #define WMULT_IDLEPRIO (1 << 31)
1133 * Nice levels are multiplicative, with a gentle 10% change for every
1134 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1135 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1136 * that remained on nice 0.
1138 * The "10% effect" is relative and cumulative: from _any_ nice level,
1139 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1140 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1141 * If a task goes up by ~10% and another task goes down by ~10% then
1142 * the relative distance between them is ~25%.)
1144 static const int prio_to_weight
[40] = {
1145 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1146 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1147 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1148 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1149 /* 0 */ 1024, 820, 655, 526, 423,
1150 /* 5 */ 335, 272, 215, 172, 137,
1151 /* 10 */ 110, 87, 70, 56, 45,
1152 /* 15 */ 36, 29, 23, 18, 15,
1156 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1158 * In cases where the weight does not change often, we can use the
1159 * precalculated inverse to speed up arithmetics by turning divisions
1160 * into multiplications:
1162 static const u32 prio_to_wmult
[40] = {
1163 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1164 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1165 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1166 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1167 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1168 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1169 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1170 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1173 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1176 * runqueue iterator, to support SMP load-balancing between different
1177 * scheduling classes, without having to expose their internal data
1178 * structures to the load-balancing proper:
1180 struct rq_iterator
{
1182 struct task_struct
*(*start
)(void *);
1183 struct task_struct
*(*next
)(void *);
1187 static unsigned long
1188 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1189 unsigned long max_load_move
, struct sched_domain
*sd
,
1190 enum cpu_idle_type idle
, int *all_pinned
,
1191 int *this_best_prio
, struct rq_iterator
*iterator
);
1194 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1195 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1196 struct rq_iterator
*iterator
);
1199 #ifdef CONFIG_CGROUP_CPUACCT
1200 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1202 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1206 static unsigned long source_load(int cpu
, int type
);
1207 static unsigned long target_load(int cpu
, int type
);
1208 static unsigned long cpu_avg_load_per_task(int cpu
);
1209 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1210 #endif /* CONFIG_SMP */
1212 #include "sched_stats.h"
1213 #include "sched_idletask.c"
1214 #include "sched_fair.c"
1215 #include "sched_rt.c"
1216 #ifdef CONFIG_SCHED_DEBUG
1217 # include "sched_debug.c"
1220 #define sched_class_highest (&rt_sched_class)
1222 static inline void inc_load(struct rq
*rq
, const struct task_struct
*p
)
1224 update_load_add(&rq
->load
, p
->se
.load
.weight
);
1227 static inline void dec_load(struct rq
*rq
, const struct task_struct
*p
)
1229 update_load_sub(&rq
->load
, p
->se
.load
.weight
);
1232 static void inc_nr_running(struct task_struct
*p
, struct rq
*rq
)
1238 static void dec_nr_running(struct task_struct
*p
, struct rq
*rq
)
1244 static void set_load_weight(struct task_struct
*p
)
1246 if (task_has_rt_policy(p
)) {
1247 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1248 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1253 * SCHED_IDLE tasks get minimal weight:
1255 if (p
->policy
== SCHED_IDLE
) {
1256 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1257 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1261 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1262 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1265 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1267 sched_info_queued(p
);
1268 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1272 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1274 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1279 * __normal_prio - return the priority that is based on the static prio
1281 static inline int __normal_prio(struct task_struct
*p
)
1283 return p
->static_prio
;
1287 * Calculate the expected normal priority: i.e. priority
1288 * without taking RT-inheritance into account. Might be
1289 * boosted by interactivity modifiers. Changes upon fork,
1290 * setprio syscalls, and whenever the interactivity
1291 * estimator recalculates.
1293 static inline int normal_prio(struct task_struct
*p
)
1297 if (task_has_rt_policy(p
))
1298 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1300 prio
= __normal_prio(p
);
1305 * Calculate the current priority, i.e. the priority
1306 * taken into account by the scheduler. This value might
1307 * be boosted by RT tasks, or might be boosted by
1308 * interactivity modifiers. Will be RT if the task got
1309 * RT-boosted. If not then it returns p->normal_prio.
1311 static int effective_prio(struct task_struct
*p
)
1313 p
->normal_prio
= normal_prio(p
);
1315 * If we are RT tasks or we were boosted to RT priority,
1316 * keep the priority unchanged. Otherwise, update priority
1317 * to the normal priority:
1319 if (!rt_prio(p
->prio
))
1320 return p
->normal_prio
;
1325 * activate_task - move a task to the runqueue.
1327 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1329 if (task_contributes_to_load(p
))
1330 rq
->nr_uninterruptible
--;
1332 enqueue_task(rq
, p
, wakeup
);
1333 inc_nr_running(p
, rq
);
1337 * deactivate_task - remove a task from the runqueue.
1339 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1341 if (task_contributes_to_load(p
))
1342 rq
->nr_uninterruptible
++;
1344 dequeue_task(rq
, p
, sleep
);
1345 dec_nr_running(p
, rq
);
1349 * task_curr - is this task currently executing on a CPU?
1350 * @p: the task in question.
1352 inline int task_curr(const struct task_struct
*p
)
1354 return cpu_curr(task_cpu(p
)) == p
;
1357 /* Used instead of source_load when we know the type == 0 */
1358 unsigned long weighted_cpuload(const int cpu
)
1360 return cpu_rq(cpu
)->load
.weight
;
1363 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1365 set_task_rq(p
, cpu
);
1368 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1369 * successfuly executed on another CPU. We must ensure that updates of
1370 * per-task data have been completed by this moment.
1373 task_thread_info(p
)->cpu
= cpu
;
1377 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1378 const struct sched_class
*prev_class
,
1379 int oldprio
, int running
)
1381 if (prev_class
!= p
->sched_class
) {
1382 if (prev_class
->switched_from
)
1383 prev_class
->switched_from(rq
, p
, running
);
1384 p
->sched_class
->switched_to(rq
, p
, running
);
1386 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1392 * Is this task likely cache-hot:
1395 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1400 * Buddy candidates are cache hot:
1402 if (&p
->se
== cfs_rq_of(&p
->se
)->next
)
1405 if (p
->sched_class
!= &fair_sched_class
)
1408 if (sysctl_sched_migration_cost
== -1)
1410 if (sysctl_sched_migration_cost
== 0)
1413 delta
= now
- p
->se
.exec_start
;
1415 return delta
< (s64
)sysctl_sched_migration_cost
;
1419 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1421 int old_cpu
= task_cpu(p
);
1422 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1423 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1424 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1427 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1429 #ifdef CONFIG_SCHEDSTATS
1430 if (p
->se
.wait_start
)
1431 p
->se
.wait_start
-= clock_offset
;
1432 if (p
->se
.sleep_start
)
1433 p
->se
.sleep_start
-= clock_offset
;
1434 if (p
->se
.block_start
)
1435 p
->se
.block_start
-= clock_offset
;
1436 if (old_cpu
!= new_cpu
) {
1437 schedstat_inc(p
, se
.nr_migrations
);
1438 if (task_hot(p
, old_rq
->clock
, NULL
))
1439 schedstat_inc(p
, se
.nr_forced2_migrations
);
1442 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1443 new_cfsrq
->min_vruntime
;
1445 __set_task_cpu(p
, new_cpu
);
1448 struct migration_req
{
1449 struct list_head list
;
1451 struct task_struct
*task
;
1454 struct completion done
;
1458 * The task's runqueue lock must be held.
1459 * Returns true if you have to wait for migration thread.
1462 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1464 struct rq
*rq
= task_rq(p
);
1467 * If the task is not on a runqueue (and not running), then
1468 * it is sufficient to simply update the task's cpu field.
1470 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1471 set_task_cpu(p
, dest_cpu
);
1475 init_completion(&req
->done
);
1477 req
->dest_cpu
= dest_cpu
;
1478 list_add(&req
->list
, &rq
->migration_queue
);
1484 * wait_task_inactive - wait for a thread to unschedule.
1486 * The caller must ensure that the task *will* unschedule sometime soon,
1487 * else this function might spin for a *long* time. This function can't
1488 * be called with interrupts off, or it may introduce deadlock with
1489 * smp_call_function() if an IPI is sent by the same process we are
1490 * waiting to become inactive.
1492 void wait_task_inactive(struct task_struct
*p
)
1494 unsigned long flags
;
1500 * We do the initial early heuristics without holding
1501 * any task-queue locks at all. We'll only try to get
1502 * the runqueue lock when things look like they will
1508 * If the task is actively running on another CPU
1509 * still, just relax and busy-wait without holding
1512 * NOTE! Since we don't hold any locks, it's not
1513 * even sure that "rq" stays as the right runqueue!
1514 * But we don't care, since "task_running()" will
1515 * return false if the runqueue has changed and p
1516 * is actually now running somewhere else!
1518 while (task_running(rq
, p
))
1522 * Ok, time to look more closely! We need the rq
1523 * lock now, to be *sure*. If we're wrong, we'll
1524 * just go back and repeat.
1526 rq
= task_rq_lock(p
, &flags
);
1527 running
= task_running(rq
, p
);
1528 on_rq
= p
->se
.on_rq
;
1529 task_rq_unlock(rq
, &flags
);
1532 * Was it really running after all now that we
1533 * checked with the proper locks actually held?
1535 * Oops. Go back and try again..
1537 if (unlikely(running
)) {
1543 * It's not enough that it's not actively running,
1544 * it must be off the runqueue _entirely_, and not
1547 * So if it wa still runnable (but just not actively
1548 * running right now), it's preempted, and we should
1549 * yield - it could be a while.
1551 if (unlikely(on_rq
)) {
1552 schedule_timeout_uninterruptible(1);
1557 * Ahh, all good. It wasn't running, and it wasn't
1558 * runnable, which means that it will never become
1559 * running in the future either. We're all done!
1566 * kick_process - kick a running thread to enter/exit the kernel
1567 * @p: the to-be-kicked thread
1569 * Cause a process which is running on another CPU to enter
1570 * kernel-mode, without any delay. (to get signals handled.)
1572 * NOTE: this function doesnt have to take the runqueue lock,
1573 * because all it wants to ensure is that the remote task enters
1574 * the kernel. If the IPI races and the task has been migrated
1575 * to another CPU then no harm is done and the purpose has been
1578 void kick_process(struct task_struct
*p
)
1584 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1585 smp_send_reschedule(cpu
);
1590 * Return a low guess at the load of a migration-source cpu weighted
1591 * according to the scheduling class and "nice" value.
1593 * We want to under-estimate the load of migration sources, to
1594 * balance conservatively.
1596 static unsigned long source_load(int cpu
, int type
)
1598 struct rq
*rq
= cpu_rq(cpu
);
1599 unsigned long total
= weighted_cpuload(cpu
);
1604 return min(rq
->cpu_load
[type
-1], total
);
1608 * Return a high guess at the load of a migration-target cpu weighted
1609 * according to the scheduling class and "nice" value.
1611 static unsigned long target_load(int cpu
, int type
)
1613 struct rq
*rq
= cpu_rq(cpu
);
1614 unsigned long total
= weighted_cpuload(cpu
);
1619 return max(rq
->cpu_load
[type
-1], total
);
1623 * Return the average load per task on the cpu's run queue
1625 static unsigned long cpu_avg_load_per_task(int cpu
)
1627 struct rq
*rq
= cpu_rq(cpu
);
1628 unsigned long total
= weighted_cpuload(cpu
);
1629 unsigned long n
= rq
->nr_running
;
1631 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1635 * find_idlest_group finds and returns the least busy CPU group within the
1638 static struct sched_group
*
1639 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1641 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1642 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1643 int load_idx
= sd
->forkexec_idx
;
1644 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1647 unsigned long load
, avg_load
;
1651 /* Skip over this group if it has no CPUs allowed */
1652 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1655 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1657 /* Tally up the load of all CPUs in the group */
1660 for_each_cpu_mask(i
, group
->cpumask
) {
1661 /* Bias balancing toward cpus of our domain */
1663 load
= source_load(i
, load_idx
);
1665 load
= target_load(i
, load_idx
);
1670 /* Adjust by relative CPU power of the group */
1671 avg_load
= sg_div_cpu_power(group
,
1672 avg_load
* SCHED_LOAD_SCALE
);
1675 this_load
= avg_load
;
1677 } else if (avg_load
< min_load
) {
1678 min_load
= avg_load
;
1681 } while (group
= group
->next
, group
!= sd
->groups
);
1683 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1689 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1692 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1695 unsigned long load
, min_load
= ULONG_MAX
;
1699 /* Traverse only the allowed CPUs */
1700 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1702 for_each_cpu_mask(i
, tmp
) {
1703 load
= weighted_cpuload(i
);
1705 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1715 * sched_balance_self: balance the current task (running on cpu) in domains
1716 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1719 * Balance, ie. select the least loaded group.
1721 * Returns the target CPU number, or the same CPU if no balancing is needed.
1723 * preempt must be disabled.
1725 static int sched_balance_self(int cpu
, int flag
)
1727 struct task_struct
*t
= current
;
1728 struct sched_domain
*tmp
, *sd
= NULL
;
1730 for_each_domain(cpu
, tmp
) {
1732 * If power savings logic is enabled for a domain, stop there.
1734 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1736 if (tmp
->flags
& flag
)
1742 struct sched_group
*group
;
1743 int new_cpu
, weight
;
1745 if (!(sd
->flags
& flag
)) {
1751 group
= find_idlest_group(sd
, t
, cpu
);
1757 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1758 if (new_cpu
== -1 || new_cpu
== cpu
) {
1759 /* Now try balancing at a lower domain level of cpu */
1764 /* Now try balancing at a lower domain level of new_cpu */
1767 weight
= cpus_weight(span
);
1768 for_each_domain(cpu
, tmp
) {
1769 if (weight
<= cpus_weight(tmp
->span
))
1771 if (tmp
->flags
& flag
)
1774 /* while loop will break here if sd == NULL */
1780 #endif /* CONFIG_SMP */
1783 * try_to_wake_up - wake up a thread
1784 * @p: the to-be-woken-up thread
1785 * @state: the mask of task states that can be woken
1786 * @sync: do a synchronous wakeup?
1788 * Put it on the run-queue if it's not already there. The "current"
1789 * thread is always on the run-queue (except when the actual
1790 * re-schedule is in progress), and as such you're allowed to do
1791 * the simpler "current->state = TASK_RUNNING" to mark yourself
1792 * runnable without the overhead of this.
1794 * returns failure only if the task is already active.
1796 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1798 int cpu
, orig_cpu
, this_cpu
, success
= 0;
1799 unsigned long flags
;
1804 rq
= task_rq_lock(p
, &flags
);
1805 old_state
= p
->state
;
1806 if (!(old_state
& state
))
1814 this_cpu
= smp_processor_id();
1817 if (unlikely(task_running(rq
, p
)))
1820 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
1821 if (cpu
!= orig_cpu
) {
1822 set_task_cpu(p
, cpu
);
1823 task_rq_unlock(rq
, &flags
);
1824 /* might preempt at this point */
1825 rq
= task_rq_lock(p
, &flags
);
1826 old_state
= p
->state
;
1827 if (!(old_state
& state
))
1832 this_cpu
= smp_processor_id();
1836 #ifdef CONFIG_SCHEDSTATS
1837 schedstat_inc(rq
, ttwu_count
);
1838 if (cpu
== this_cpu
)
1839 schedstat_inc(rq
, ttwu_local
);
1841 struct sched_domain
*sd
;
1842 for_each_domain(this_cpu
, sd
) {
1843 if (cpu_isset(cpu
, sd
->span
)) {
1844 schedstat_inc(sd
, ttwu_wake_remote
);
1852 #endif /* CONFIG_SMP */
1853 schedstat_inc(p
, se
.nr_wakeups
);
1855 schedstat_inc(p
, se
.nr_wakeups_sync
);
1856 if (orig_cpu
!= cpu
)
1857 schedstat_inc(p
, se
.nr_wakeups_migrate
);
1858 if (cpu
== this_cpu
)
1859 schedstat_inc(p
, se
.nr_wakeups_local
);
1861 schedstat_inc(p
, se
.nr_wakeups_remote
);
1862 update_rq_clock(rq
);
1863 activate_task(rq
, p
, 1);
1867 check_preempt_curr(rq
, p
);
1869 p
->state
= TASK_RUNNING
;
1871 if (p
->sched_class
->task_wake_up
)
1872 p
->sched_class
->task_wake_up(rq
, p
);
1875 task_rq_unlock(rq
, &flags
);
1880 int wake_up_process(struct task_struct
*p
)
1882 return try_to_wake_up(p
, TASK_ALL
, 0);
1884 EXPORT_SYMBOL(wake_up_process
);
1886 int wake_up_state(struct task_struct
*p
, unsigned int state
)
1888 return try_to_wake_up(p
, state
, 0);
1892 * Perform scheduler related setup for a newly forked process p.
1893 * p is forked by current.
1895 * __sched_fork() is basic setup used by init_idle() too:
1897 static void __sched_fork(struct task_struct
*p
)
1899 p
->se
.exec_start
= 0;
1900 p
->se
.sum_exec_runtime
= 0;
1901 p
->se
.prev_sum_exec_runtime
= 0;
1902 p
->se
.last_wakeup
= 0;
1903 p
->se
.avg_overlap
= 0;
1905 #ifdef CONFIG_SCHEDSTATS
1906 p
->se
.wait_start
= 0;
1907 p
->se
.sum_sleep_runtime
= 0;
1908 p
->se
.sleep_start
= 0;
1909 p
->se
.block_start
= 0;
1910 p
->se
.sleep_max
= 0;
1911 p
->se
.block_max
= 0;
1913 p
->se
.slice_max
= 0;
1917 INIT_LIST_HEAD(&p
->rt
.run_list
);
1920 #ifdef CONFIG_PREEMPT_NOTIFIERS
1921 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1925 * We mark the process as running here, but have not actually
1926 * inserted it onto the runqueue yet. This guarantees that
1927 * nobody will actually run it, and a signal or other external
1928 * event cannot wake it up and insert it on the runqueue either.
1930 p
->state
= TASK_RUNNING
;
1934 * fork()/clone()-time setup:
1936 void sched_fork(struct task_struct
*p
, int clone_flags
)
1938 int cpu
= get_cpu();
1943 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1945 set_task_cpu(p
, cpu
);
1948 * Make sure we do not leak PI boosting priority to the child:
1950 p
->prio
= current
->normal_prio
;
1951 if (!rt_prio(p
->prio
))
1952 p
->sched_class
= &fair_sched_class
;
1954 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1955 if (likely(sched_info_on()))
1956 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1958 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1961 #ifdef CONFIG_PREEMPT
1962 /* Want to start with kernel preemption disabled. */
1963 task_thread_info(p
)->preempt_count
= 1;
1969 * wake_up_new_task - wake up a newly created task for the first time.
1971 * This function will do some initial scheduler statistics housekeeping
1972 * that must be done for every newly created context, then puts the task
1973 * on the runqueue and wakes it.
1975 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
1977 unsigned long flags
;
1980 rq
= task_rq_lock(p
, &flags
);
1981 BUG_ON(p
->state
!= TASK_RUNNING
);
1982 update_rq_clock(rq
);
1984 p
->prio
= effective_prio(p
);
1986 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
1987 activate_task(rq
, p
, 0);
1990 * Let the scheduling class do new task startup
1991 * management (if any):
1993 p
->sched_class
->task_new(rq
, p
);
1994 inc_nr_running(p
, rq
);
1996 check_preempt_curr(rq
, p
);
1998 if (p
->sched_class
->task_wake_up
)
1999 p
->sched_class
->task_wake_up(rq
, p
);
2001 task_rq_unlock(rq
, &flags
);
2004 #ifdef CONFIG_PREEMPT_NOTIFIERS
2007 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2008 * @notifier: notifier struct to register
2010 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2012 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2014 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2017 * preempt_notifier_unregister - no longer interested in preemption notifications
2018 * @notifier: notifier struct to unregister
2020 * This is safe to call from within a preemption notifier.
2022 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2024 hlist_del(¬ifier
->link
);
2026 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2028 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2030 struct preempt_notifier
*notifier
;
2031 struct hlist_node
*node
;
2033 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2034 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2038 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2039 struct task_struct
*next
)
2041 struct preempt_notifier
*notifier
;
2042 struct hlist_node
*node
;
2044 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2045 notifier
->ops
->sched_out(notifier
, next
);
2050 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2055 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2056 struct task_struct
*next
)
2063 * prepare_task_switch - prepare to switch tasks
2064 * @rq: the runqueue preparing to switch
2065 * @prev: the current task that is being switched out
2066 * @next: the task we are going to switch to.
2068 * This is called with the rq lock held and interrupts off. It must
2069 * be paired with a subsequent finish_task_switch after the context
2072 * prepare_task_switch sets up locking and calls architecture specific
2076 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2077 struct task_struct
*next
)
2079 fire_sched_out_preempt_notifiers(prev
, next
);
2080 prepare_lock_switch(rq
, next
);
2081 prepare_arch_switch(next
);
2085 * finish_task_switch - clean up after a task-switch
2086 * @rq: runqueue associated with task-switch
2087 * @prev: the thread we just switched away from.
2089 * finish_task_switch must be called after the context switch, paired
2090 * with a prepare_task_switch call before the context switch.
2091 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2092 * and do any other architecture-specific cleanup actions.
2094 * Note that we may have delayed dropping an mm in context_switch(). If
2095 * so, we finish that here outside of the runqueue lock. (Doing it
2096 * with the lock held can cause deadlocks; see schedule() for
2099 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2100 __releases(rq
->lock
)
2102 struct mm_struct
*mm
= rq
->prev_mm
;
2108 * A task struct has one reference for the use as "current".
2109 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2110 * schedule one last time. The schedule call will never return, and
2111 * the scheduled task must drop that reference.
2112 * The test for TASK_DEAD must occur while the runqueue locks are
2113 * still held, otherwise prev could be scheduled on another cpu, die
2114 * there before we look at prev->state, and then the reference would
2116 * Manfred Spraul <manfred@colorfullife.com>
2118 prev_state
= prev
->state
;
2119 finish_arch_switch(prev
);
2120 finish_lock_switch(rq
, prev
);
2122 if (current
->sched_class
->post_schedule
)
2123 current
->sched_class
->post_schedule(rq
);
2126 fire_sched_in_preempt_notifiers(current
);
2129 if (unlikely(prev_state
== TASK_DEAD
)) {
2131 * Remove function-return probe instances associated with this
2132 * task and put them back on the free list.
2134 kprobe_flush_task(prev
);
2135 put_task_struct(prev
);
2140 * schedule_tail - first thing a freshly forked thread must call.
2141 * @prev: the thread we just switched away from.
2143 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2144 __releases(rq
->lock
)
2146 struct rq
*rq
= this_rq();
2148 finish_task_switch(rq
, prev
);
2149 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2150 /* In this case, finish_task_switch does not reenable preemption */
2153 if (current
->set_child_tid
)
2154 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2158 * context_switch - switch to the new MM and the new
2159 * thread's register state.
2162 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2163 struct task_struct
*next
)
2165 struct mm_struct
*mm
, *oldmm
;
2167 prepare_task_switch(rq
, prev
, next
);
2169 oldmm
= prev
->active_mm
;
2171 * For paravirt, this is coupled with an exit in switch_to to
2172 * combine the page table reload and the switch backend into
2175 arch_enter_lazy_cpu_mode();
2177 if (unlikely(!mm
)) {
2178 next
->active_mm
= oldmm
;
2179 atomic_inc(&oldmm
->mm_count
);
2180 enter_lazy_tlb(oldmm
, next
);
2182 switch_mm(oldmm
, mm
, next
);
2184 if (unlikely(!prev
->mm
)) {
2185 prev
->active_mm
= NULL
;
2186 rq
->prev_mm
= oldmm
;
2189 * Since the runqueue lock will be released by the next
2190 * task (which is an invalid locking op but in the case
2191 * of the scheduler it's an obvious special-case), so we
2192 * do an early lockdep release here:
2194 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2195 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2198 /* Here we just switch the register state and the stack. */
2199 switch_to(prev
, next
, prev
);
2203 * this_rq must be evaluated again because prev may have moved
2204 * CPUs since it called schedule(), thus the 'rq' on its stack
2205 * frame will be invalid.
2207 finish_task_switch(this_rq(), prev
);
2211 * nr_running, nr_uninterruptible and nr_context_switches:
2213 * externally visible scheduler statistics: current number of runnable
2214 * threads, current number of uninterruptible-sleeping threads, total
2215 * number of context switches performed since bootup.
2217 unsigned long nr_running(void)
2219 unsigned long i
, sum
= 0;
2221 for_each_online_cpu(i
)
2222 sum
+= cpu_rq(i
)->nr_running
;
2227 unsigned long nr_uninterruptible(void)
2229 unsigned long i
, sum
= 0;
2231 for_each_possible_cpu(i
)
2232 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2235 * Since we read the counters lockless, it might be slightly
2236 * inaccurate. Do not allow it to go below zero though:
2238 if (unlikely((long)sum
< 0))
2244 unsigned long long nr_context_switches(void)
2247 unsigned long long sum
= 0;
2249 for_each_possible_cpu(i
)
2250 sum
+= cpu_rq(i
)->nr_switches
;
2255 unsigned long nr_iowait(void)
2257 unsigned long i
, sum
= 0;
2259 for_each_possible_cpu(i
)
2260 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2265 unsigned long nr_active(void)
2267 unsigned long i
, running
= 0, uninterruptible
= 0;
2269 for_each_online_cpu(i
) {
2270 running
+= cpu_rq(i
)->nr_running
;
2271 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2274 if (unlikely((long)uninterruptible
< 0))
2275 uninterruptible
= 0;
2277 return running
+ uninterruptible
;
2281 * Update rq->cpu_load[] statistics. This function is usually called every
2282 * scheduler tick (TICK_NSEC).
2284 static void update_cpu_load(struct rq
*this_rq
)
2286 unsigned long this_load
= this_rq
->load
.weight
;
2289 this_rq
->nr_load_updates
++;
2291 /* Update our load: */
2292 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2293 unsigned long old_load
, new_load
;
2295 /* scale is effectively 1 << i now, and >> i divides by scale */
2297 old_load
= this_rq
->cpu_load
[i
];
2298 new_load
= this_load
;
2300 * Round up the averaging division if load is increasing. This
2301 * prevents us from getting stuck on 9 if the load is 10, for
2304 if (new_load
> old_load
)
2305 new_load
+= scale
-1;
2306 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2313 * double_rq_lock - safely lock two runqueues
2315 * Note this does not disable interrupts like task_rq_lock,
2316 * you need to do so manually before calling.
2318 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2319 __acquires(rq1
->lock
)
2320 __acquires(rq2
->lock
)
2322 BUG_ON(!irqs_disabled());
2324 spin_lock(&rq1
->lock
);
2325 __acquire(rq2
->lock
); /* Fake it out ;) */
2328 spin_lock(&rq1
->lock
);
2329 spin_lock(&rq2
->lock
);
2331 spin_lock(&rq2
->lock
);
2332 spin_lock(&rq1
->lock
);
2335 update_rq_clock(rq1
);
2336 update_rq_clock(rq2
);
2340 * double_rq_unlock - safely unlock two runqueues
2342 * Note this does not restore interrupts like task_rq_unlock,
2343 * you need to do so manually after calling.
2345 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2346 __releases(rq1
->lock
)
2347 __releases(rq2
->lock
)
2349 spin_unlock(&rq1
->lock
);
2351 spin_unlock(&rq2
->lock
);
2353 __release(rq2
->lock
);
2357 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2359 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2360 __releases(this_rq
->lock
)
2361 __acquires(busiest
->lock
)
2362 __acquires(this_rq
->lock
)
2366 if (unlikely(!irqs_disabled())) {
2367 /* printk() doesn't work good under rq->lock */
2368 spin_unlock(&this_rq
->lock
);
2371 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2372 if (busiest
< this_rq
) {
2373 spin_unlock(&this_rq
->lock
);
2374 spin_lock(&busiest
->lock
);
2375 spin_lock(&this_rq
->lock
);
2378 spin_lock(&busiest
->lock
);
2384 * If dest_cpu is allowed for this process, migrate the task to it.
2385 * This is accomplished by forcing the cpu_allowed mask to only
2386 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2387 * the cpu_allowed mask is restored.
2389 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2391 struct migration_req req
;
2392 unsigned long flags
;
2395 rq
= task_rq_lock(p
, &flags
);
2396 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2397 || unlikely(cpu_is_offline(dest_cpu
)))
2400 /* force the process onto the specified CPU */
2401 if (migrate_task(p
, dest_cpu
, &req
)) {
2402 /* Need to wait for migration thread (might exit: take ref). */
2403 struct task_struct
*mt
= rq
->migration_thread
;
2405 get_task_struct(mt
);
2406 task_rq_unlock(rq
, &flags
);
2407 wake_up_process(mt
);
2408 put_task_struct(mt
);
2409 wait_for_completion(&req
.done
);
2414 task_rq_unlock(rq
, &flags
);
2418 * sched_exec - execve() is a valuable balancing opportunity, because at
2419 * this point the task has the smallest effective memory and cache footprint.
2421 void sched_exec(void)
2423 int new_cpu
, this_cpu
= get_cpu();
2424 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2426 if (new_cpu
!= this_cpu
)
2427 sched_migrate_task(current
, new_cpu
);
2431 * pull_task - move a task from a remote runqueue to the local runqueue.
2432 * Both runqueues must be locked.
2434 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2435 struct rq
*this_rq
, int this_cpu
)
2437 deactivate_task(src_rq
, p
, 0);
2438 set_task_cpu(p
, this_cpu
);
2439 activate_task(this_rq
, p
, 0);
2441 * Note that idle threads have a prio of MAX_PRIO, for this test
2442 * to be always true for them.
2444 check_preempt_curr(this_rq
, p
);
2448 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2451 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2452 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2456 * We do not migrate tasks that are:
2457 * 1) running (obviously), or
2458 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2459 * 3) are cache-hot on their current CPU.
2461 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2462 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2467 if (task_running(rq
, p
)) {
2468 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2473 * Aggressive migration if:
2474 * 1) task is cache cold, or
2475 * 2) too many balance attempts have failed.
2478 if (!task_hot(p
, rq
->clock
, sd
) ||
2479 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2480 #ifdef CONFIG_SCHEDSTATS
2481 if (task_hot(p
, rq
->clock
, sd
)) {
2482 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2483 schedstat_inc(p
, se
.nr_forced_migrations
);
2489 if (task_hot(p
, rq
->clock
, sd
)) {
2490 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2496 static unsigned long
2497 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2498 unsigned long max_load_move
, struct sched_domain
*sd
,
2499 enum cpu_idle_type idle
, int *all_pinned
,
2500 int *this_best_prio
, struct rq_iterator
*iterator
)
2502 int loops
= 0, pulled
= 0, pinned
= 0, skip_for_load
;
2503 struct task_struct
*p
;
2504 long rem_load_move
= max_load_move
;
2506 if (max_load_move
== 0)
2512 * Start the load-balancing iterator:
2514 p
= iterator
->start(iterator
->arg
);
2516 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2519 * To help distribute high priority tasks across CPUs we don't
2520 * skip a task if it will be the highest priority task (i.e. smallest
2521 * prio value) on its new queue regardless of its load weight
2523 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2524 SCHED_LOAD_SCALE_FUZZ
;
2525 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2526 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2527 p
= iterator
->next(iterator
->arg
);
2531 pull_task(busiest
, p
, this_rq
, this_cpu
);
2533 rem_load_move
-= p
->se
.load
.weight
;
2536 * We only want to steal up to the prescribed amount of weighted load.
2538 if (rem_load_move
> 0) {
2539 if (p
->prio
< *this_best_prio
)
2540 *this_best_prio
= p
->prio
;
2541 p
= iterator
->next(iterator
->arg
);
2546 * Right now, this is one of only two places pull_task() is called,
2547 * so we can safely collect pull_task() stats here rather than
2548 * inside pull_task().
2550 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2553 *all_pinned
= pinned
;
2555 return max_load_move
- rem_load_move
;
2559 * move_tasks tries to move up to max_load_move weighted load from busiest to
2560 * this_rq, as part of a balancing operation within domain "sd".
2561 * Returns 1 if successful and 0 otherwise.
2563 * Called with both runqueues locked.
2565 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2566 unsigned long max_load_move
,
2567 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2570 const struct sched_class
*class = sched_class_highest
;
2571 unsigned long total_load_moved
= 0;
2572 int this_best_prio
= this_rq
->curr
->prio
;
2576 class->load_balance(this_rq
, this_cpu
, busiest
,
2577 max_load_move
- total_load_moved
,
2578 sd
, idle
, all_pinned
, &this_best_prio
);
2579 class = class->next
;
2580 } while (class && max_load_move
> total_load_moved
);
2582 return total_load_moved
> 0;
2586 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2587 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2588 struct rq_iterator
*iterator
)
2590 struct task_struct
*p
= iterator
->start(iterator
->arg
);
2594 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2595 pull_task(busiest
, p
, this_rq
, this_cpu
);
2597 * Right now, this is only the second place pull_task()
2598 * is called, so we can safely collect pull_task()
2599 * stats here rather than inside pull_task().
2601 schedstat_inc(sd
, lb_gained
[idle
]);
2605 p
= iterator
->next(iterator
->arg
);
2612 * move_one_task tries to move exactly one task from busiest to this_rq, as
2613 * part of active balancing operations within "domain".
2614 * Returns 1 if successful and 0 otherwise.
2616 * Called with both runqueues locked.
2618 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2619 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2621 const struct sched_class
*class;
2623 for (class = sched_class_highest
; class; class = class->next
)
2624 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
2631 * find_busiest_group finds and returns the busiest CPU group within the
2632 * domain. It calculates and returns the amount of weighted load which
2633 * should be moved to restore balance via the imbalance parameter.
2635 static struct sched_group
*
2636 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2637 unsigned long *imbalance
, enum cpu_idle_type idle
,
2638 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2640 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2641 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2642 unsigned long max_pull
;
2643 unsigned long busiest_load_per_task
, busiest_nr_running
;
2644 unsigned long this_load_per_task
, this_nr_running
;
2645 int load_idx
, group_imb
= 0;
2646 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2647 int power_savings_balance
= 1;
2648 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2649 unsigned long min_nr_running
= ULONG_MAX
;
2650 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2653 max_load
= this_load
= total_load
= total_pwr
= 0;
2654 busiest_load_per_task
= busiest_nr_running
= 0;
2655 this_load_per_task
= this_nr_running
= 0;
2656 if (idle
== CPU_NOT_IDLE
)
2657 load_idx
= sd
->busy_idx
;
2658 else if (idle
== CPU_NEWLY_IDLE
)
2659 load_idx
= sd
->newidle_idx
;
2661 load_idx
= sd
->idle_idx
;
2664 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
2667 int __group_imb
= 0;
2668 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2669 unsigned long sum_nr_running
, sum_weighted_load
;
2671 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2674 balance_cpu
= first_cpu(group
->cpumask
);
2676 /* Tally up the load of all CPUs in the group */
2677 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2679 min_cpu_load
= ~0UL;
2681 for_each_cpu_mask(i
, group
->cpumask
) {
2684 if (!cpu_isset(i
, *cpus
))
2689 if (*sd_idle
&& rq
->nr_running
)
2692 /* Bias balancing toward cpus of our domain */
2694 if (idle_cpu(i
) && !first_idle_cpu
) {
2699 load
= target_load(i
, load_idx
);
2701 load
= source_load(i
, load_idx
);
2702 if (load
> max_cpu_load
)
2703 max_cpu_load
= load
;
2704 if (min_cpu_load
> load
)
2705 min_cpu_load
= load
;
2709 sum_nr_running
+= rq
->nr_running
;
2710 sum_weighted_load
+= weighted_cpuload(i
);
2714 * First idle cpu or the first cpu(busiest) in this sched group
2715 * is eligible for doing load balancing at this and above
2716 * domains. In the newly idle case, we will allow all the cpu's
2717 * to do the newly idle load balance.
2719 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2720 balance_cpu
!= this_cpu
&& balance
) {
2725 total_load
+= avg_load
;
2726 total_pwr
+= group
->__cpu_power
;
2728 /* Adjust by relative CPU power of the group */
2729 avg_load
= sg_div_cpu_power(group
,
2730 avg_load
* SCHED_LOAD_SCALE
);
2732 if ((max_cpu_load
- min_cpu_load
) > SCHED_LOAD_SCALE
)
2735 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2738 this_load
= avg_load
;
2740 this_nr_running
= sum_nr_running
;
2741 this_load_per_task
= sum_weighted_load
;
2742 } else if (avg_load
> max_load
&&
2743 (sum_nr_running
> group_capacity
|| __group_imb
)) {
2744 max_load
= avg_load
;
2746 busiest_nr_running
= sum_nr_running
;
2747 busiest_load_per_task
= sum_weighted_load
;
2748 group_imb
= __group_imb
;
2751 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2753 * Busy processors will not participate in power savings
2756 if (idle
== CPU_NOT_IDLE
||
2757 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2761 * If the local group is idle or completely loaded
2762 * no need to do power savings balance at this domain
2764 if (local_group
&& (this_nr_running
>= group_capacity
||
2766 power_savings_balance
= 0;
2769 * If a group is already running at full capacity or idle,
2770 * don't include that group in power savings calculations
2772 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2777 * Calculate the group which has the least non-idle load.
2778 * This is the group from where we need to pick up the load
2781 if ((sum_nr_running
< min_nr_running
) ||
2782 (sum_nr_running
== min_nr_running
&&
2783 first_cpu(group
->cpumask
) <
2784 first_cpu(group_min
->cpumask
))) {
2786 min_nr_running
= sum_nr_running
;
2787 min_load_per_task
= sum_weighted_load
/
2792 * Calculate the group which is almost near its
2793 * capacity but still has some space to pick up some load
2794 * from other group and save more power
2796 if (sum_nr_running
<= group_capacity
- 1) {
2797 if (sum_nr_running
> leader_nr_running
||
2798 (sum_nr_running
== leader_nr_running
&&
2799 first_cpu(group
->cpumask
) >
2800 first_cpu(group_leader
->cpumask
))) {
2801 group_leader
= group
;
2802 leader_nr_running
= sum_nr_running
;
2807 group
= group
->next
;
2808 } while (group
!= sd
->groups
);
2810 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2813 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2815 if (this_load
>= avg_load
||
2816 100*max_load
<= sd
->imbalance_pct
*this_load
)
2819 busiest_load_per_task
/= busiest_nr_running
;
2821 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
2824 * We're trying to get all the cpus to the average_load, so we don't
2825 * want to push ourselves above the average load, nor do we wish to
2826 * reduce the max loaded cpu below the average load, as either of these
2827 * actions would just result in more rebalancing later, and ping-pong
2828 * tasks around. Thus we look for the minimum possible imbalance.
2829 * Negative imbalances (*we* are more loaded than anyone else) will
2830 * be counted as no imbalance for these purposes -- we can't fix that
2831 * by pulling tasks to us. Be careful of negative numbers as they'll
2832 * appear as very large values with unsigned longs.
2834 if (max_load
<= busiest_load_per_task
)
2838 * In the presence of smp nice balancing, certain scenarios can have
2839 * max load less than avg load(as we skip the groups at or below
2840 * its cpu_power, while calculating max_load..)
2842 if (max_load
< avg_load
) {
2844 goto small_imbalance
;
2847 /* Don't want to pull so many tasks that a group would go idle */
2848 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2850 /* How much load to actually move to equalise the imbalance */
2851 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2852 (avg_load
- this_load
) * this->__cpu_power
)
2856 * if *imbalance is less than the average load per runnable task
2857 * there is no gaurantee that any tasks will be moved so we'll have
2858 * a think about bumping its value to force at least one task to be
2861 if (*imbalance
< busiest_load_per_task
) {
2862 unsigned long tmp
, pwr_now
, pwr_move
;
2866 pwr_move
= pwr_now
= 0;
2868 if (this_nr_running
) {
2869 this_load_per_task
/= this_nr_running
;
2870 if (busiest_load_per_task
> this_load_per_task
)
2873 this_load_per_task
= SCHED_LOAD_SCALE
;
2875 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2876 busiest_load_per_task
* imbn
) {
2877 *imbalance
= busiest_load_per_task
;
2882 * OK, we don't have enough imbalance to justify moving tasks,
2883 * however we may be able to increase total CPU power used by
2887 pwr_now
+= busiest
->__cpu_power
*
2888 min(busiest_load_per_task
, max_load
);
2889 pwr_now
+= this->__cpu_power
*
2890 min(this_load_per_task
, this_load
);
2891 pwr_now
/= SCHED_LOAD_SCALE
;
2893 /* Amount of load we'd subtract */
2894 tmp
= sg_div_cpu_power(busiest
,
2895 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2897 pwr_move
+= busiest
->__cpu_power
*
2898 min(busiest_load_per_task
, max_load
- tmp
);
2900 /* Amount of load we'd add */
2901 if (max_load
* busiest
->__cpu_power
<
2902 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2903 tmp
= sg_div_cpu_power(this,
2904 max_load
* busiest
->__cpu_power
);
2906 tmp
= sg_div_cpu_power(this,
2907 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2908 pwr_move
+= this->__cpu_power
*
2909 min(this_load_per_task
, this_load
+ tmp
);
2910 pwr_move
/= SCHED_LOAD_SCALE
;
2912 /* Move if we gain throughput */
2913 if (pwr_move
> pwr_now
)
2914 *imbalance
= busiest_load_per_task
;
2920 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2921 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2924 if (this == group_leader
&& group_leader
!= group_min
) {
2925 *imbalance
= min_load_per_task
;
2935 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2938 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2939 unsigned long imbalance
, cpumask_t
*cpus
)
2941 struct rq
*busiest
= NULL
, *rq
;
2942 unsigned long max_load
= 0;
2945 for_each_cpu_mask(i
, group
->cpumask
) {
2948 if (!cpu_isset(i
, *cpus
))
2952 wl
= weighted_cpuload(i
);
2954 if (rq
->nr_running
== 1 && wl
> imbalance
)
2957 if (wl
> max_load
) {
2967 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2968 * so long as it is large enough.
2970 #define MAX_PINNED_INTERVAL 512
2973 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2974 * tasks if there is an imbalance.
2976 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2977 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2980 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2981 struct sched_group
*group
;
2982 unsigned long imbalance
;
2984 cpumask_t cpus
= CPU_MASK_ALL
;
2985 unsigned long flags
;
2988 * When power savings policy is enabled for the parent domain, idle
2989 * sibling can pick up load irrespective of busy siblings. In this case,
2990 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2991 * portraying it as CPU_NOT_IDLE.
2993 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2994 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2997 schedstat_inc(sd
, lb_count
[idle
]);
3000 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3007 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3011 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
3013 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3017 BUG_ON(busiest
== this_rq
);
3019 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3022 if (busiest
->nr_running
> 1) {
3024 * Attempt to move tasks. If find_busiest_group has found
3025 * an imbalance but busiest->nr_running <= 1, the group is
3026 * still unbalanced. ld_moved simply stays zero, so it is
3027 * correctly treated as an imbalance.
3029 local_irq_save(flags
);
3030 double_rq_lock(this_rq
, busiest
);
3031 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3032 imbalance
, sd
, idle
, &all_pinned
);
3033 double_rq_unlock(this_rq
, busiest
);
3034 local_irq_restore(flags
);
3037 * some other cpu did the load balance for us.
3039 if (ld_moved
&& this_cpu
!= smp_processor_id())
3040 resched_cpu(this_cpu
);
3042 /* All tasks on this runqueue were pinned by CPU affinity */
3043 if (unlikely(all_pinned
)) {
3044 cpu_clear(cpu_of(busiest
), cpus
);
3045 if (!cpus_empty(cpus
))
3052 schedstat_inc(sd
, lb_failed
[idle
]);
3053 sd
->nr_balance_failed
++;
3055 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3057 spin_lock_irqsave(&busiest
->lock
, flags
);
3059 /* don't kick the migration_thread, if the curr
3060 * task on busiest cpu can't be moved to this_cpu
3062 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
3063 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3065 goto out_one_pinned
;
3068 if (!busiest
->active_balance
) {
3069 busiest
->active_balance
= 1;
3070 busiest
->push_cpu
= this_cpu
;
3073 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3075 wake_up_process(busiest
->migration_thread
);
3078 * We've kicked active balancing, reset the failure
3081 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3084 sd
->nr_balance_failed
= 0;
3086 if (likely(!active_balance
)) {
3087 /* We were unbalanced, so reset the balancing interval */
3088 sd
->balance_interval
= sd
->min_interval
;
3091 * If we've begun active balancing, start to back off. This
3092 * case may not be covered by the all_pinned logic if there
3093 * is only 1 task on the busy runqueue (because we don't call
3096 if (sd
->balance_interval
< sd
->max_interval
)
3097 sd
->balance_interval
*= 2;
3100 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3101 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3106 schedstat_inc(sd
, lb_balanced
[idle
]);
3108 sd
->nr_balance_failed
= 0;
3111 /* tune up the balancing interval */
3112 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3113 (sd
->balance_interval
< sd
->max_interval
))
3114 sd
->balance_interval
*= 2;
3116 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3117 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3123 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3124 * tasks if there is an imbalance.
3126 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3127 * this_rq is locked.
3130 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
3132 struct sched_group
*group
;
3133 struct rq
*busiest
= NULL
;
3134 unsigned long imbalance
;
3138 cpumask_t cpus
= CPU_MASK_ALL
;
3141 * When power savings policy is enabled for the parent domain, idle
3142 * sibling can pick up load irrespective of busy siblings. In this case,
3143 * let the state of idle sibling percolate up as IDLE, instead of
3144 * portraying it as CPU_NOT_IDLE.
3146 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3147 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3150 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3152 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3153 &sd_idle
, &cpus
, NULL
);
3155 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3159 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
3162 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3166 BUG_ON(busiest
== this_rq
);
3168 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3171 if (busiest
->nr_running
> 1) {
3172 /* Attempt to move tasks */
3173 double_lock_balance(this_rq
, busiest
);
3174 /* this_rq->clock is already updated */
3175 update_rq_clock(busiest
);
3176 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3177 imbalance
, sd
, CPU_NEWLY_IDLE
,
3179 spin_unlock(&busiest
->lock
);
3181 if (unlikely(all_pinned
)) {
3182 cpu_clear(cpu_of(busiest
), cpus
);
3183 if (!cpus_empty(cpus
))
3189 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3190 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3191 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3194 sd
->nr_balance_failed
= 0;
3199 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3200 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3201 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3203 sd
->nr_balance_failed
= 0;
3209 * idle_balance is called by schedule() if this_cpu is about to become
3210 * idle. Attempts to pull tasks from other CPUs.
3212 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3214 struct sched_domain
*sd
;
3215 int pulled_task
= -1;
3216 unsigned long next_balance
= jiffies
+ HZ
;
3218 for_each_domain(this_cpu
, sd
) {
3219 unsigned long interval
;
3221 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3224 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3225 /* If we've pulled tasks over stop searching: */
3226 pulled_task
= load_balance_newidle(this_cpu
,
3229 interval
= msecs_to_jiffies(sd
->balance_interval
);
3230 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3231 next_balance
= sd
->last_balance
+ interval
;
3235 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3237 * We are going idle. next_balance may be set based on
3238 * a busy processor. So reset next_balance.
3240 this_rq
->next_balance
= next_balance
;
3245 * active_load_balance is run by migration threads. It pushes running tasks
3246 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3247 * running on each physical CPU where possible, and avoids physical /
3248 * logical imbalances.
3250 * Called with busiest_rq locked.
3252 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3254 int target_cpu
= busiest_rq
->push_cpu
;
3255 struct sched_domain
*sd
;
3256 struct rq
*target_rq
;
3258 /* Is there any task to move? */
3259 if (busiest_rq
->nr_running
<= 1)
3262 target_rq
= cpu_rq(target_cpu
);
3265 * This condition is "impossible", if it occurs
3266 * we need to fix it. Originally reported by
3267 * Bjorn Helgaas on a 128-cpu setup.
3269 BUG_ON(busiest_rq
== target_rq
);
3271 /* move a task from busiest_rq to target_rq */
3272 double_lock_balance(busiest_rq
, target_rq
);
3273 update_rq_clock(busiest_rq
);
3274 update_rq_clock(target_rq
);
3276 /* Search for an sd spanning us and the target CPU. */
3277 for_each_domain(target_cpu
, sd
) {
3278 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3279 cpu_isset(busiest_cpu
, sd
->span
))
3284 schedstat_inc(sd
, alb_count
);
3286 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3288 schedstat_inc(sd
, alb_pushed
);
3290 schedstat_inc(sd
, alb_failed
);
3292 spin_unlock(&target_rq
->lock
);
3297 atomic_t load_balancer
;
3299 } nohz ____cacheline_aligned
= {
3300 .load_balancer
= ATOMIC_INIT(-1),
3301 .cpu_mask
= CPU_MASK_NONE
,
3305 * This routine will try to nominate the ilb (idle load balancing)
3306 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3307 * load balancing on behalf of all those cpus. If all the cpus in the system
3308 * go into this tickless mode, then there will be no ilb owner (as there is
3309 * no need for one) and all the cpus will sleep till the next wakeup event
3312 * For the ilb owner, tick is not stopped. And this tick will be used
3313 * for idle load balancing. ilb owner will still be part of
3316 * While stopping the tick, this cpu will become the ilb owner if there
3317 * is no other owner. And will be the owner till that cpu becomes busy
3318 * or if all cpus in the system stop their ticks at which point
3319 * there is no need for ilb owner.
3321 * When the ilb owner becomes busy, it nominates another owner, during the
3322 * next busy scheduler_tick()
3324 int select_nohz_load_balancer(int stop_tick
)
3326 int cpu
= smp_processor_id();
3329 cpu_set(cpu
, nohz
.cpu_mask
);
3330 cpu_rq(cpu
)->in_nohz_recently
= 1;
3333 * If we are going offline and still the leader, give up!
3335 if (cpu_is_offline(cpu
) &&
3336 atomic_read(&nohz
.load_balancer
) == cpu
) {
3337 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3342 /* time for ilb owner also to sleep */
3343 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3344 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3345 atomic_set(&nohz
.load_balancer
, -1);
3349 if (atomic_read(&nohz
.load_balancer
) == -1) {
3350 /* make me the ilb owner */
3351 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3353 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3356 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3359 cpu_clear(cpu
, nohz
.cpu_mask
);
3361 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3362 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3369 static DEFINE_SPINLOCK(balancing
);
3372 * It checks each scheduling domain to see if it is due to be balanced,
3373 * and initiates a balancing operation if so.
3375 * Balancing parameters are set up in arch_init_sched_domains.
3377 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3380 struct rq
*rq
= cpu_rq(cpu
);
3381 unsigned long interval
;
3382 struct sched_domain
*sd
;
3383 /* Earliest time when we have to do rebalance again */
3384 unsigned long next_balance
= jiffies
+ 60*HZ
;
3385 int update_next_balance
= 0;
3387 for_each_domain(cpu
, sd
) {
3388 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3391 interval
= sd
->balance_interval
;
3392 if (idle
!= CPU_IDLE
)
3393 interval
*= sd
->busy_factor
;
3395 /* scale ms to jiffies */
3396 interval
= msecs_to_jiffies(interval
);
3397 if (unlikely(!interval
))
3399 if (interval
> HZ
*NR_CPUS
/10)
3400 interval
= HZ
*NR_CPUS
/10;
3403 if (sd
->flags
& SD_SERIALIZE
) {
3404 if (!spin_trylock(&balancing
))
3408 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3409 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3411 * We've pulled tasks over so either we're no
3412 * longer idle, or one of our SMT siblings is
3415 idle
= CPU_NOT_IDLE
;
3417 sd
->last_balance
= jiffies
;
3419 if (sd
->flags
& SD_SERIALIZE
)
3420 spin_unlock(&balancing
);
3422 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3423 next_balance
= sd
->last_balance
+ interval
;
3424 update_next_balance
= 1;
3428 * Stop the load balance at this level. There is another
3429 * CPU in our sched group which is doing load balancing more
3437 * next_balance will be updated only when there is a need.
3438 * When the cpu is attached to null domain for ex, it will not be
3441 if (likely(update_next_balance
))
3442 rq
->next_balance
= next_balance
;
3446 * run_rebalance_domains is triggered when needed from the scheduler tick.
3447 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3448 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3450 static void run_rebalance_domains(struct softirq_action
*h
)
3452 int this_cpu
= smp_processor_id();
3453 struct rq
*this_rq
= cpu_rq(this_cpu
);
3454 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3455 CPU_IDLE
: CPU_NOT_IDLE
;
3457 rebalance_domains(this_cpu
, idle
);
3461 * If this cpu is the owner for idle load balancing, then do the
3462 * balancing on behalf of the other idle cpus whose ticks are
3465 if (this_rq
->idle_at_tick
&&
3466 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3467 cpumask_t cpus
= nohz
.cpu_mask
;
3471 cpu_clear(this_cpu
, cpus
);
3472 for_each_cpu_mask(balance_cpu
, cpus
) {
3474 * If this cpu gets work to do, stop the load balancing
3475 * work being done for other cpus. Next load
3476 * balancing owner will pick it up.
3481 rebalance_domains(balance_cpu
, CPU_IDLE
);
3483 rq
= cpu_rq(balance_cpu
);
3484 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3485 this_rq
->next_balance
= rq
->next_balance
;
3492 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3494 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3495 * idle load balancing owner or decide to stop the periodic load balancing,
3496 * if the whole system is idle.
3498 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3502 * If we were in the nohz mode recently and busy at the current
3503 * scheduler tick, then check if we need to nominate new idle
3506 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3507 rq
->in_nohz_recently
= 0;
3509 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3510 cpu_clear(cpu
, nohz
.cpu_mask
);
3511 atomic_set(&nohz
.load_balancer
, -1);
3514 if (atomic_read(&nohz
.load_balancer
) == -1) {
3516 * simple selection for now: Nominate the
3517 * first cpu in the nohz list to be the next
3520 * TBD: Traverse the sched domains and nominate
3521 * the nearest cpu in the nohz.cpu_mask.
3523 int ilb
= first_cpu(nohz
.cpu_mask
);
3531 * If this cpu is idle and doing idle load balancing for all the
3532 * cpus with ticks stopped, is it time for that to stop?
3534 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3535 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3541 * If this cpu is idle and the idle load balancing is done by
3542 * someone else, then no need raise the SCHED_SOFTIRQ
3544 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3545 cpu_isset(cpu
, nohz
.cpu_mask
))
3548 if (time_after_eq(jiffies
, rq
->next_balance
))
3549 raise_softirq(SCHED_SOFTIRQ
);
3552 #else /* CONFIG_SMP */
3555 * on UP we do not need to balance between CPUs:
3557 static inline void idle_balance(int cpu
, struct rq
*rq
)
3563 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3565 EXPORT_PER_CPU_SYMBOL(kstat
);
3568 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3569 * that have not yet been banked in case the task is currently running.
3571 unsigned long long task_sched_runtime(struct task_struct
*p
)
3573 unsigned long flags
;
3577 rq
= task_rq_lock(p
, &flags
);
3578 ns
= p
->se
.sum_exec_runtime
;
3579 if (task_current(rq
, p
)) {
3580 update_rq_clock(rq
);
3581 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3582 if ((s64
)delta_exec
> 0)
3585 task_rq_unlock(rq
, &flags
);
3591 * Account user cpu time to a process.
3592 * @p: the process that the cpu time gets accounted to
3593 * @cputime: the cpu time spent in user space since the last update
3595 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3597 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3600 p
->utime
= cputime_add(p
->utime
, cputime
);
3602 /* Add user time to cpustat. */
3603 tmp
= cputime_to_cputime64(cputime
);
3604 if (TASK_NICE(p
) > 0)
3605 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3607 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3611 * Account guest cpu time to a process.
3612 * @p: the process that the cpu time gets accounted to
3613 * @cputime: the cpu time spent in virtual machine since the last update
3615 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
3618 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3620 tmp
= cputime_to_cputime64(cputime
);
3622 p
->utime
= cputime_add(p
->utime
, cputime
);
3623 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3625 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3626 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3630 * Account scaled user cpu time to a process.
3631 * @p: the process that the cpu time gets accounted to
3632 * @cputime: the cpu time spent in user space since the last update
3634 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3636 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
3640 * Account system cpu time to a process.
3641 * @p: the process that the cpu time gets accounted to
3642 * @hardirq_offset: the offset to subtract from hardirq_count()
3643 * @cputime: the cpu time spent in kernel space since the last update
3645 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3648 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3649 struct rq
*rq
= this_rq();
3652 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0))
3653 return account_guest_time(p
, cputime
);
3655 p
->stime
= cputime_add(p
->stime
, cputime
);
3657 /* Add system time to cpustat. */
3658 tmp
= cputime_to_cputime64(cputime
);
3659 if (hardirq_count() - hardirq_offset
)
3660 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3661 else if (softirq_count())
3662 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3663 else if (p
!= rq
->idle
)
3664 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3665 else if (atomic_read(&rq
->nr_iowait
) > 0)
3666 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3668 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3669 /* Account for system time used */
3670 acct_update_integrals(p
);
3674 * Account scaled system cpu time to a process.
3675 * @p: the process that the cpu time gets accounted to
3676 * @hardirq_offset: the offset to subtract from hardirq_count()
3677 * @cputime: the cpu time spent in kernel space since the last update
3679 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3681 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
3685 * Account for involuntary wait time.
3686 * @p: the process from which the cpu time has been stolen
3687 * @steal: the cpu time spent in involuntary wait
3689 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3691 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3692 cputime64_t tmp
= cputime_to_cputime64(steal
);
3693 struct rq
*rq
= this_rq();
3695 if (p
== rq
->idle
) {
3696 p
->stime
= cputime_add(p
->stime
, steal
);
3697 if (atomic_read(&rq
->nr_iowait
) > 0)
3698 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3700 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3702 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3706 * This function gets called by the timer code, with HZ frequency.
3707 * We call it with interrupts disabled.
3709 * It also gets called by the fork code, when changing the parent's
3712 void scheduler_tick(void)
3714 int cpu
= smp_processor_id();
3715 struct rq
*rq
= cpu_rq(cpu
);
3716 struct task_struct
*curr
= rq
->curr
;
3717 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
3719 spin_lock(&rq
->lock
);
3720 __update_rq_clock(rq
);
3722 * Let rq->clock advance by at least TICK_NSEC:
3724 if (unlikely(rq
->clock
< next_tick
)) {
3725 rq
->clock
= next_tick
;
3726 rq
->clock_underflows
++;
3728 rq
->tick_timestamp
= rq
->clock
;
3729 update_cpu_load(rq
);
3730 curr
->sched_class
->task_tick(rq
, curr
, 0);
3731 update_sched_rt_period(rq
);
3732 spin_unlock(&rq
->lock
);
3735 rq
->idle_at_tick
= idle_cpu(cpu
);
3736 trigger_load_balance(rq
, cpu
);
3740 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3742 void __kprobes
add_preempt_count(int val
)
3747 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3749 preempt_count() += val
;
3751 * Spinlock count overflowing soon?
3753 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3756 EXPORT_SYMBOL(add_preempt_count
);
3758 void __kprobes
sub_preempt_count(int val
)
3763 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3766 * Is the spinlock portion underflowing?
3768 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3769 !(preempt_count() & PREEMPT_MASK
)))
3772 preempt_count() -= val
;
3774 EXPORT_SYMBOL(sub_preempt_count
);
3779 * Print scheduling while atomic bug:
3781 static noinline
void __schedule_bug(struct task_struct
*prev
)
3783 struct pt_regs
*regs
= get_irq_regs();
3785 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3786 prev
->comm
, prev
->pid
, preempt_count());
3788 debug_show_held_locks(prev
);
3789 if (irqs_disabled())
3790 print_irqtrace_events(prev
);
3799 * Various schedule()-time debugging checks and statistics:
3801 static inline void schedule_debug(struct task_struct
*prev
)
3804 * Test if we are atomic. Since do_exit() needs to call into
3805 * schedule() atomically, we ignore that path for now.
3806 * Otherwise, whine if we are scheduling when we should not be.
3808 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3809 __schedule_bug(prev
);
3811 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3813 schedstat_inc(this_rq(), sched_count
);
3814 #ifdef CONFIG_SCHEDSTATS
3815 if (unlikely(prev
->lock_depth
>= 0)) {
3816 schedstat_inc(this_rq(), bkl_count
);
3817 schedstat_inc(prev
, sched_info
.bkl_count
);
3823 * Pick up the highest-prio task:
3825 static inline struct task_struct
*
3826 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
3828 const struct sched_class
*class;
3829 struct task_struct
*p
;
3832 * Optimization: we know that if all tasks are in
3833 * the fair class we can call that function directly:
3835 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3836 p
= fair_sched_class
.pick_next_task(rq
);
3841 class = sched_class_highest
;
3843 p
= class->pick_next_task(rq
);
3847 * Will never be NULL as the idle class always
3848 * returns a non-NULL p:
3850 class = class->next
;
3855 * schedule() is the main scheduler function.
3857 asmlinkage
void __sched
schedule(void)
3859 struct task_struct
*prev
, *next
;
3860 unsigned long *switch_count
;
3866 cpu
= smp_processor_id();
3870 switch_count
= &prev
->nivcsw
;
3872 release_kernel_lock(prev
);
3873 need_resched_nonpreemptible
:
3875 schedule_debug(prev
);
3880 * Do the rq-clock update outside the rq lock:
3882 local_irq_disable();
3883 __update_rq_clock(rq
);
3884 spin_lock(&rq
->lock
);
3885 clear_tsk_need_resched(prev
);
3887 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3888 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3889 unlikely(signal_pending(prev
)))) {
3890 prev
->state
= TASK_RUNNING
;
3892 deactivate_task(rq
, prev
, 1);
3894 switch_count
= &prev
->nvcsw
;
3898 if (prev
->sched_class
->pre_schedule
)
3899 prev
->sched_class
->pre_schedule(rq
, prev
);
3902 if (unlikely(!rq
->nr_running
))
3903 idle_balance(cpu
, rq
);
3905 prev
->sched_class
->put_prev_task(rq
, prev
);
3906 next
= pick_next_task(rq
, prev
);
3908 sched_info_switch(prev
, next
);
3910 if (likely(prev
!= next
)) {
3915 context_switch(rq
, prev
, next
); /* unlocks the rq */
3917 * the context switch might have flipped the stack from under
3918 * us, hence refresh the local variables.
3920 cpu
= smp_processor_id();
3923 spin_unlock_irq(&rq
->lock
);
3927 if (unlikely(reacquire_kernel_lock(current
) < 0))
3928 goto need_resched_nonpreemptible
;
3930 preempt_enable_no_resched();
3931 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3934 EXPORT_SYMBOL(schedule
);
3936 #ifdef CONFIG_PREEMPT
3938 * this is the entry point to schedule() from in-kernel preemption
3939 * off of preempt_enable. Kernel preemptions off return from interrupt
3940 * occur there and call schedule directly.
3942 asmlinkage
void __sched
preempt_schedule(void)
3944 struct thread_info
*ti
= current_thread_info();
3945 struct task_struct
*task
= current
;
3946 int saved_lock_depth
;
3949 * If there is a non-zero preempt_count or interrupts are disabled,
3950 * we do not want to preempt the current task. Just return..
3952 if (likely(ti
->preempt_count
|| irqs_disabled()))
3956 add_preempt_count(PREEMPT_ACTIVE
);
3959 * We keep the big kernel semaphore locked, but we
3960 * clear ->lock_depth so that schedule() doesnt
3961 * auto-release the semaphore:
3963 saved_lock_depth
= task
->lock_depth
;
3964 task
->lock_depth
= -1;
3966 task
->lock_depth
= saved_lock_depth
;
3967 sub_preempt_count(PREEMPT_ACTIVE
);
3970 * Check again in case we missed a preemption opportunity
3971 * between schedule and now.
3974 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
3976 EXPORT_SYMBOL(preempt_schedule
);
3979 * this is the entry point to schedule() from kernel preemption
3980 * off of irq context.
3981 * Note, that this is called and return with irqs disabled. This will
3982 * protect us against recursive calling from irq.
3984 asmlinkage
void __sched
preempt_schedule_irq(void)
3986 struct thread_info
*ti
= current_thread_info();
3987 struct task_struct
*task
= current
;
3988 int saved_lock_depth
;
3990 /* Catch callers which need to be fixed */
3991 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3994 add_preempt_count(PREEMPT_ACTIVE
);
3997 * We keep the big kernel semaphore locked, but we
3998 * clear ->lock_depth so that schedule() doesnt
3999 * auto-release the semaphore:
4001 saved_lock_depth
= task
->lock_depth
;
4002 task
->lock_depth
= -1;
4005 local_irq_disable();
4006 task
->lock_depth
= saved_lock_depth
;
4007 sub_preempt_count(PREEMPT_ACTIVE
);
4010 * Check again in case we missed a preemption opportunity
4011 * between schedule and now.
4014 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4017 #endif /* CONFIG_PREEMPT */
4019 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4022 return try_to_wake_up(curr
->private, mode
, sync
);
4024 EXPORT_SYMBOL(default_wake_function
);
4027 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4028 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4029 * number) then we wake all the non-exclusive tasks and one exclusive task.
4031 * There are circumstances in which we can try to wake a task which has already
4032 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4033 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4035 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4036 int nr_exclusive
, int sync
, void *key
)
4038 wait_queue_t
*curr
, *next
;
4040 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4041 unsigned flags
= curr
->flags
;
4043 if (curr
->func(curr
, mode
, sync
, key
) &&
4044 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4050 * __wake_up - wake up threads blocked on a waitqueue.
4052 * @mode: which threads
4053 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4054 * @key: is directly passed to the wakeup function
4056 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4057 int nr_exclusive
, void *key
)
4059 unsigned long flags
;
4061 spin_lock_irqsave(&q
->lock
, flags
);
4062 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4063 spin_unlock_irqrestore(&q
->lock
, flags
);
4065 EXPORT_SYMBOL(__wake_up
);
4068 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4070 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4072 __wake_up_common(q
, mode
, 1, 0, NULL
);
4076 * __wake_up_sync - wake up threads blocked on a waitqueue.
4078 * @mode: which threads
4079 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4081 * The sync wakeup differs that the waker knows that it will schedule
4082 * away soon, so while the target thread will be woken up, it will not
4083 * be migrated to another CPU - ie. the two threads are 'synchronized'
4084 * with each other. This can prevent needless bouncing between CPUs.
4086 * On UP it can prevent extra preemption.
4089 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4091 unsigned long flags
;
4097 if (unlikely(!nr_exclusive
))
4100 spin_lock_irqsave(&q
->lock
, flags
);
4101 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4102 spin_unlock_irqrestore(&q
->lock
, flags
);
4104 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4106 void complete(struct completion
*x
)
4108 unsigned long flags
;
4110 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4112 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4113 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4115 EXPORT_SYMBOL(complete
);
4117 void complete_all(struct completion
*x
)
4119 unsigned long flags
;
4121 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4122 x
->done
+= UINT_MAX
/2;
4123 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4124 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4126 EXPORT_SYMBOL(complete_all
);
4128 static inline long __sched
4129 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4132 DECLARE_WAITQUEUE(wait
, current
);
4134 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4135 __add_wait_queue_tail(&x
->wait
, &wait
);
4137 if ((state
== TASK_INTERRUPTIBLE
&&
4138 signal_pending(current
)) ||
4139 (state
== TASK_KILLABLE
&&
4140 fatal_signal_pending(current
))) {
4141 __remove_wait_queue(&x
->wait
, &wait
);
4142 return -ERESTARTSYS
;
4144 __set_current_state(state
);
4145 spin_unlock_irq(&x
->wait
.lock
);
4146 timeout
= schedule_timeout(timeout
);
4147 spin_lock_irq(&x
->wait
.lock
);
4149 __remove_wait_queue(&x
->wait
, &wait
);
4153 __remove_wait_queue(&x
->wait
, &wait
);
4160 wait_for_common(struct completion
*x
, long timeout
, int state
)
4164 spin_lock_irq(&x
->wait
.lock
);
4165 timeout
= do_wait_for_common(x
, timeout
, state
);
4166 spin_unlock_irq(&x
->wait
.lock
);
4170 void __sched
wait_for_completion(struct completion
*x
)
4172 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4174 EXPORT_SYMBOL(wait_for_completion
);
4176 unsigned long __sched
4177 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4179 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4181 EXPORT_SYMBOL(wait_for_completion_timeout
);
4183 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4185 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4186 if (t
== -ERESTARTSYS
)
4190 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4192 unsigned long __sched
4193 wait_for_completion_interruptible_timeout(struct completion
*x
,
4194 unsigned long timeout
)
4196 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4198 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4200 int __sched
wait_for_completion_killable(struct completion
*x
)
4202 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4203 if (t
== -ERESTARTSYS
)
4207 EXPORT_SYMBOL(wait_for_completion_killable
);
4210 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4212 unsigned long flags
;
4215 init_waitqueue_entry(&wait
, current
);
4217 __set_current_state(state
);
4219 spin_lock_irqsave(&q
->lock
, flags
);
4220 __add_wait_queue(q
, &wait
);
4221 spin_unlock(&q
->lock
);
4222 timeout
= schedule_timeout(timeout
);
4223 spin_lock_irq(&q
->lock
);
4224 __remove_wait_queue(q
, &wait
);
4225 spin_unlock_irqrestore(&q
->lock
, flags
);
4230 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4232 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4234 EXPORT_SYMBOL(interruptible_sleep_on
);
4237 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4239 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4241 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4243 void __sched
sleep_on(wait_queue_head_t
*q
)
4245 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4247 EXPORT_SYMBOL(sleep_on
);
4249 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4251 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4253 EXPORT_SYMBOL(sleep_on_timeout
);
4255 #ifdef CONFIG_RT_MUTEXES
4258 * rt_mutex_setprio - set the current priority of a task
4260 * @prio: prio value (kernel-internal form)
4262 * This function changes the 'effective' priority of a task. It does
4263 * not touch ->normal_prio like __setscheduler().
4265 * Used by the rt_mutex code to implement priority inheritance logic.
4267 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4269 unsigned long flags
;
4270 int oldprio
, on_rq
, running
;
4272 const struct sched_class
*prev_class
= p
->sched_class
;
4274 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4276 rq
= task_rq_lock(p
, &flags
);
4277 update_rq_clock(rq
);
4280 on_rq
= p
->se
.on_rq
;
4281 running
= task_current(rq
, p
);
4283 dequeue_task(rq
, p
, 0);
4285 p
->sched_class
->put_prev_task(rq
, p
);
4288 p
->sched_class
= &rt_sched_class
;
4290 p
->sched_class
= &fair_sched_class
;
4295 p
->sched_class
->set_curr_task(rq
);
4297 enqueue_task(rq
, p
, 0);
4299 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4301 task_rq_unlock(rq
, &flags
);
4306 void set_user_nice(struct task_struct
*p
, long nice
)
4308 int old_prio
, delta
, on_rq
;
4309 unsigned long flags
;
4312 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4315 * We have to be careful, if called from sys_setpriority(),
4316 * the task might be in the middle of scheduling on another CPU.
4318 rq
= task_rq_lock(p
, &flags
);
4319 update_rq_clock(rq
);
4321 * The RT priorities are set via sched_setscheduler(), but we still
4322 * allow the 'normal' nice value to be set - but as expected
4323 * it wont have any effect on scheduling until the task is
4324 * SCHED_FIFO/SCHED_RR:
4326 if (task_has_rt_policy(p
)) {
4327 p
->static_prio
= NICE_TO_PRIO(nice
);
4330 on_rq
= p
->se
.on_rq
;
4332 dequeue_task(rq
, p
, 0);
4336 p
->static_prio
= NICE_TO_PRIO(nice
);
4339 p
->prio
= effective_prio(p
);
4340 delta
= p
->prio
- old_prio
;
4343 enqueue_task(rq
, p
, 0);
4346 * If the task increased its priority or is running and
4347 * lowered its priority, then reschedule its CPU:
4349 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4350 resched_task(rq
->curr
);
4353 task_rq_unlock(rq
, &flags
);
4355 EXPORT_SYMBOL(set_user_nice
);
4358 * can_nice - check if a task can reduce its nice value
4362 int can_nice(const struct task_struct
*p
, const int nice
)
4364 /* convert nice value [19,-20] to rlimit style value [1,40] */
4365 int nice_rlim
= 20 - nice
;
4367 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4368 capable(CAP_SYS_NICE
));
4371 #ifdef __ARCH_WANT_SYS_NICE
4374 * sys_nice - change the priority of the current process.
4375 * @increment: priority increment
4377 * sys_setpriority is a more generic, but much slower function that
4378 * does similar things.
4380 asmlinkage
long sys_nice(int increment
)
4385 * Setpriority might change our priority at the same moment.
4386 * We don't have to worry. Conceptually one call occurs first
4387 * and we have a single winner.
4389 if (increment
< -40)
4394 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4400 if (increment
< 0 && !can_nice(current
, nice
))
4403 retval
= security_task_setnice(current
, nice
);
4407 set_user_nice(current
, nice
);
4414 * task_prio - return the priority value of a given task.
4415 * @p: the task in question.
4417 * This is the priority value as seen by users in /proc.
4418 * RT tasks are offset by -200. Normal tasks are centered
4419 * around 0, value goes from -16 to +15.
4421 int task_prio(const struct task_struct
*p
)
4423 return p
->prio
- MAX_RT_PRIO
;
4427 * task_nice - return the nice value of a given task.
4428 * @p: the task in question.
4430 int task_nice(const struct task_struct
*p
)
4432 return TASK_NICE(p
);
4434 EXPORT_SYMBOL(task_nice
);
4437 * idle_cpu - is a given cpu idle currently?
4438 * @cpu: the processor in question.
4440 int idle_cpu(int cpu
)
4442 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4446 * idle_task - return the idle task for a given cpu.
4447 * @cpu: the processor in question.
4449 struct task_struct
*idle_task(int cpu
)
4451 return cpu_rq(cpu
)->idle
;
4455 * find_process_by_pid - find a process with a matching PID value.
4456 * @pid: the pid in question.
4458 static struct task_struct
*find_process_by_pid(pid_t pid
)
4460 return pid
? find_task_by_vpid(pid
) : current
;
4463 /* Actually do priority change: must hold rq lock. */
4465 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4467 BUG_ON(p
->se
.on_rq
);
4470 switch (p
->policy
) {
4474 p
->sched_class
= &fair_sched_class
;
4478 p
->sched_class
= &rt_sched_class
;
4482 p
->rt_priority
= prio
;
4483 p
->normal_prio
= normal_prio(p
);
4484 /* we are holding p->pi_lock already */
4485 p
->prio
= rt_mutex_getprio(p
);
4490 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4491 * @p: the task in question.
4492 * @policy: new policy.
4493 * @param: structure containing the new RT priority.
4495 * NOTE that the task may be already dead.
4497 int sched_setscheduler(struct task_struct
*p
, int policy
,
4498 struct sched_param
*param
)
4500 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4501 unsigned long flags
;
4502 const struct sched_class
*prev_class
= p
->sched_class
;
4505 /* may grab non-irq protected spin_locks */
4506 BUG_ON(in_interrupt());
4508 /* double check policy once rq lock held */
4510 policy
= oldpolicy
= p
->policy
;
4511 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4512 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4513 policy
!= SCHED_IDLE
)
4516 * Valid priorities for SCHED_FIFO and SCHED_RR are
4517 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4518 * SCHED_BATCH and SCHED_IDLE is 0.
4520 if (param
->sched_priority
< 0 ||
4521 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4522 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4524 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4528 * Allow unprivileged RT tasks to decrease priority:
4530 if (!capable(CAP_SYS_NICE
)) {
4531 if (rt_policy(policy
)) {
4532 unsigned long rlim_rtprio
;
4534 if (!lock_task_sighand(p
, &flags
))
4536 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4537 unlock_task_sighand(p
, &flags
);
4539 /* can't set/change the rt policy */
4540 if (policy
!= p
->policy
&& !rlim_rtprio
)
4543 /* can't increase priority */
4544 if (param
->sched_priority
> p
->rt_priority
&&
4545 param
->sched_priority
> rlim_rtprio
)
4549 * Like positive nice levels, dont allow tasks to
4550 * move out of SCHED_IDLE either:
4552 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4555 /* can't change other user's priorities */
4556 if ((current
->euid
!= p
->euid
) &&
4557 (current
->euid
!= p
->uid
))
4561 #ifdef CONFIG_RT_GROUP_SCHED
4563 * Do not allow realtime tasks into groups that have no runtime
4566 if (rt_policy(policy
) && task_group(p
)->rt_runtime
== 0)
4570 retval
= security_task_setscheduler(p
, policy
, param
);
4574 * make sure no PI-waiters arrive (or leave) while we are
4575 * changing the priority of the task:
4577 spin_lock_irqsave(&p
->pi_lock
, flags
);
4579 * To be able to change p->policy safely, the apropriate
4580 * runqueue lock must be held.
4582 rq
= __task_rq_lock(p
);
4583 /* recheck policy now with rq lock held */
4584 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4585 policy
= oldpolicy
= -1;
4586 __task_rq_unlock(rq
);
4587 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4590 update_rq_clock(rq
);
4591 on_rq
= p
->se
.on_rq
;
4592 running
= task_current(rq
, p
);
4594 deactivate_task(rq
, p
, 0);
4596 p
->sched_class
->put_prev_task(rq
, p
);
4599 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4602 p
->sched_class
->set_curr_task(rq
);
4604 activate_task(rq
, p
, 0);
4606 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4608 __task_rq_unlock(rq
);
4609 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4611 rt_mutex_adjust_pi(p
);
4615 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4618 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4620 struct sched_param lparam
;
4621 struct task_struct
*p
;
4624 if (!param
|| pid
< 0)
4626 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4631 p
= find_process_by_pid(pid
);
4633 retval
= sched_setscheduler(p
, policy
, &lparam
);
4640 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4641 * @pid: the pid in question.
4642 * @policy: new policy.
4643 * @param: structure containing the new RT priority.
4646 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4648 /* negative values for policy are not valid */
4652 return do_sched_setscheduler(pid
, policy
, param
);
4656 * sys_sched_setparam - set/change the RT priority of a thread
4657 * @pid: the pid in question.
4658 * @param: structure containing the new RT priority.
4660 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4662 return do_sched_setscheduler(pid
, -1, param
);
4666 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4667 * @pid: the pid in question.
4669 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4671 struct task_struct
*p
;
4678 read_lock(&tasklist_lock
);
4679 p
= find_process_by_pid(pid
);
4681 retval
= security_task_getscheduler(p
);
4685 read_unlock(&tasklist_lock
);
4690 * sys_sched_getscheduler - get the RT priority of a thread
4691 * @pid: the pid in question.
4692 * @param: structure containing the RT priority.
4694 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4696 struct sched_param lp
;
4697 struct task_struct
*p
;
4700 if (!param
|| pid
< 0)
4703 read_lock(&tasklist_lock
);
4704 p
= find_process_by_pid(pid
);
4709 retval
= security_task_getscheduler(p
);
4713 lp
.sched_priority
= p
->rt_priority
;
4714 read_unlock(&tasklist_lock
);
4717 * This one might sleep, we cannot do it with a spinlock held ...
4719 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4724 read_unlock(&tasklist_lock
);
4728 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4730 cpumask_t cpus_allowed
;
4731 struct task_struct
*p
;
4735 read_lock(&tasklist_lock
);
4737 p
= find_process_by_pid(pid
);
4739 read_unlock(&tasklist_lock
);
4745 * It is not safe to call set_cpus_allowed with the
4746 * tasklist_lock held. We will bump the task_struct's
4747 * usage count and then drop tasklist_lock.
4750 read_unlock(&tasklist_lock
);
4753 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4754 !capable(CAP_SYS_NICE
))
4757 retval
= security_task_setscheduler(p
, 0, NULL
);
4761 cpus_allowed
= cpuset_cpus_allowed(p
);
4762 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4764 retval
= set_cpus_allowed(p
, new_mask
);
4767 cpus_allowed
= cpuset_cpus_allowed(p
);
4768 if (!cpus_subset(new_mask
, cpus_allowed
)) {
4770 * We must have raced with a concurrent cpuset
4771 * update. Just reset the cpus_allowed to the
4772 * cpuset's cpus_allowed
4774 new_mask
= cpus_allowed
;
4784 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4785 cpumask_t
*new_mask
)
4787 if (len
< sizeof(cpumask_t
)) {
4788 memset(new_mask
, 0, sizeof(cpumask_t
));
4789 } else if (len
> sizeof(cpumask_t
)) {
4790 len
= sizeof(cpumask_t
);
4792 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4796 * sys_sched_setaffinity - set the cpu affinity of a process
4797 * @pid: pid of the process
4798 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4799 * @user_mask_ptr: user-space pointer to the new cpu mask
4801 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4802 unsigned long __user
*user_mask_ptr
)
4807 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4811 return sched_setaffinity(pid
, new_mask
);
4815 * Represents all cpu's present in the system
4816 * In systems capable of hotplug, this map could dynamically grow
4817 * as new cpu's are detected in the system via any platform specific
4818 * method, such as ACPI for e.g.
4821 cpumask_t cpu_present_map __read_mostly
;
4822 EXPORT_SYMBOL(cpu_present_map
);
4825 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4826 EXPORT_SYMBOL(cpu_online_map
);
4828 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4829 EXPORT_SYMBOL(cpu_possible_map
);
4832 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4834 struct task_struct
*p
;
4838 read_lock(&tasklist_lock
);
4841 p
= find_process_by_pid(pid
);
4845 retval
= security_task_getscheduler(p
);
4849 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4852 read_unlock(&tasklist_lock
);
4859 * sys_sched_getaffinity - get the cpu affinity of a process
4860 * @pid: pid of the process
4861 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4862 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4864 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4865 unsigned long __user
*user_mask_ptr
)
4870 if (len
< sizeof(cpumask_t
))
4873 ret
= sched_getaffinity(pid
, &mask
);
4877 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4880 return sizeof(cpumask_t
);
4884 * sys_sched_yield - yield the current processor to other threads.
4886 * This function yields the current CPU to other tasks. If there are no
4887 * other threads running on this CPU then this function will return.
4889 asmlinkage
long sys_sched_yield(void)
4891 struct rq
*rq
= this_rq_lock();
4893 schedstat_inc(rq
, yld_count
);
4894 current
->sched_class
->yield_task(rq
);
4897 * Since we are going to call schedule() anyway, there's
4898 * no need to preempt or enable interrupts:
4900 __release(rq
->lock
);
4901 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4902 _raw_spin_unlock(&rq
->lock
);
4903 preempt_enable_no_resched();
4910 static void __cond_resched(void)
4912 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4913 __might_sleep(__FILE__
, __LINE__
);
4916 * The BKS might be reacquired before we have dropped
4917 * PREEMPT_ACTIVE, which could trigger a second
4918 * cond_resched() call.
4921 add_preempt_count(PREEMPT_ACTIVE
);
4923 sub_preempt_count(PREEMPT_ACTIVE
);
4924 } while (need_resched());
4927 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
4928 int __sched
_cond_resched(void)
4930 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4931 system_state
== SYSTEM_RUNNING
) {
4937 EXPORT_SYMBOL(_cond_resched
);
4941 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4942 * call schedule, and on return reacquire the lock.
4944 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4945 * operations here to prevent schedule() from being called twice (once via
4946 * spin_unlock(), once by hand).
4948 int cond_resched_lock(spinlock_t
*lock
)
4950 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
4953 if (spin_needbreak(lock
) || resched
) {
4955 if (resched
&& need_resched())
4964 EXPORT_SYMBOL(cond_resched_lock
);
4966 int __sched
cond_resched_softirq(void)
4968 BUG_ON(!in_softirq());
4970 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4978 EXPORT_SYMBOL(cond_resched_softirq
);
4981 * yield - yield the current processor to other threads.
4983 * This is a shortcut for kernel-space yielding - it marks the
4984 * thread runnable and calls sys_sched_yield().
4986 void __sched
yield(void)
4988 set_current_state(TASK_RUNNING
);
4991 EXPORT_SYMBOL(yield
);
4994 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4995 * that process accounting knows that this is a task in IO wait state.
4997 * But don't do that if it is a deliberate, throttling IO wait (this task
4998 * has set its backing_dev_info: the queue against which it should throttle)
5000 void __sched
io_schedule(void)
5002 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5004 delayacct_blkio_start();
5005 atomic_inc(&rq
->nr_iowait
);
5007 atomic_dec(&rq
->nr_iowait
);
5008 delayacct_blkio_end();
5010 EXPORT_SYMBOL(io_schedule
);
5012 long __sched
io_schedule_timeout(long timeout
)
5014 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5017 delayacct_blkio_start();
5018 atomic_inc(&rq
->nr_iowait
);
5019 ret
= schedule_timeout(timeout
);
5020 atomic_dec(&rq
->nr_iowait
);
5021 delayacct_blkio_end();
5026 * sys_sched_get_priority_max - return maximum RT priority.
5027 * @policy: scheduling class.
5029 * this syscall returns the maximum rt_priority that can be used
5030 * by a given scheduling class.
5032 asmlinkage
long sys_sched_get_priority_max(int policy
)
5039 ret
= MAX_USER_RT_PRIO
-1;
5051 * sys_sched_get_priority_min - return minimum RT priority.
5052 * @policy: scheduling class.
5054 * this syscall returns the minimum rt_priority that can be used
5055 * by a given scheduling class.
5057 asmlinkage
long sys_sched_get_priority_min(int policy
)
5075 * sys_sched_rr_get_interval - return the default timeslice of a process.
5076 * @pid: pid of the process.
5077 * @interval: userspace pointer to the timeslice value.
5079 * this syscall writes the default timeslice value of a given process
5080 * into the user-space timespec buffer. A value of '0' means infinity.
5083 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
5085 struct task_struct
*p
;
5086 unsigned int time_slice
;
5094 read_lock(&tasklist_lock
);
5095 p
= find_process_by_pid(pid
);
5099 retval
= security_task_getscheduler(p
);
5104 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5105 * tasks that are on an otherwise idle runqueue:
5108 if (p
->policy
== SCHED_RR
) {
5109 time_slice
= DEF_TIMESLICE
;
5110 } else if (p
->policy
!= SCHED_FIFO
) {
5111 struct sched_entity
*se
= &p
->se
;
5112 unsigned long flags
;
5115 rq
= task_rq_lock(p
, &flags
);
5116 if (rq
->cfs
.load
.weight
)
5117 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5118 task_rq_unlock(rq
, &flags
);
5120 read_unlock(&tasklist_lock
);
5121 jiffies_to_timespec(time_slice
, &t
);
5122 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5126 read_unlock(&tasklist_lock
);
5130 static const char stat_nam
[] = "RSDTtZX";
5132 void sched_show_task(struct task_struct
*p
)
5134 unsigned long free
= 0;
5137 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5138 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5139 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5140 #if BITS_PER_LONG == 32
5141 if (state
== TASK_RUNNING
)
5142 printk(KERN_CONT
" running ");
5144 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5146 if (state
== TASK_RUNNING
)
5147 printk(KERN_CONT
" running task ");
5149 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5151 #ifdef CONFIG_DEBUG_STACK_USAGE
5153 unsigned long *n
= end_of_stack(p
);
5156 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
5159 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
5160 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
5162 show_stack(p
, NULL
);
5165 void show_state_filter(unsigned long state_filter
)
5167 struct task_struct
*g
, *p
;
5169 #if BITS_PER_LONG == 32
5171 " task PC stack pid father\n");
5174 " task PC stack pid father\n");
5176 read_lock(&tasklist_lock
);
5177 do_each_thread(g
, p
) {
5179 * reset the NMI-timeout, listing all files on a slow
5180 * console might take alot of time:
5182 touch_nmi_watchdog();
5183 if (!state_filter
|| (p
->state
& state_filter
))
5185 } while_each_thread(g
, p
);
5187 touch_all_softlockup_watchdogs();
5189 #ifdef CONFIG_SCHED_DEBUG
5190 sysrq_sched_debug_show();
5192 read_unlock(&tasklist_lock
);
5194 * Only show locks if all tasks are dumped:
5196 if (state_filter
== -1)
5197 debug_show_all_locks();
5200 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5202 idle
->sched_class
= &idle_sched_class
;
5206 * init_idle - set up an idle thread for a given CPU
5207 * @idle: task in question
5208 * @cpu: cpu the idle task belongs to
5210 * NOTE: this function does not set the idle thread's NEED_RESCHED
5211 * flag, to make booting more robust.
5213 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5215 struct rq
*rq
= cpu_rq(cpu
);
5216 unsigned long flags
;
5219 idle
->se
.exec_start
= sched_clock();
5221 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
5222 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
5223 __set_task_cpu(idle
, cpu
);
5225 spin_lock_irqsave(&rq
->lock
, flags
);
5226 rq
->curr
= rq
->idle
= idle
;
5227 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5230 spin_unlock_irqrestore(&rq
->lock
, flags
);
5232 /* Set the preempt count _outside_ the spinlocks! */
5233 task_thread_info(idle
)->preempt_count
= 0;
5236 * The idle tasks have their own, simple scheduling class:
5238 idle
->sched_class
= &idle_sched_class
;
5242 * In a system that switches off the HZ timer nohz_cpu_mask
5243 * indicates which cpus entered this state. This is used
5244 * in the rcu update to wait only for active cpus. For system
5245 * which do not switch off the HZ timer nohz_cpu_mask should
5246 * always be CPU_MASK_NONE.
5248 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
5251 * Increase the granularity value when there are more CPUs,
5252 * because with more CPUs the 'effective latency' as visible
5253 * to users decreases. But the relationship is not linear,
5254 * so pick a second-best guess by going with the log2 of the
5257 * This idea comes from the SD scheduler of Con Kolivas:
5259 static inline void sched_init_granularity(void)
5261 unsigned int factor
= 1 + ilog2(num_online_cpus());
5262 const unsigned long limit
= 200000000;
5264 sysctl_sched_min_granularity
*= factor
;
5265 if (sysctl_sched_min_granularity
> limit
)
5266 sysctl_sched_min_granularity
= limit
;
5268 sysctl_sched_latency
*= factor
;
5269 if (sysctl_sched_latency
> limit
)
5270 sysctl_sched_latency
= limit
;
5272 sysctl_sched_wakeup_granularity
*= factor
;
5273 sysctl_sched_batch_wakeup_granularity
*= factor
;
5278 * This is how migration works:
5280 * 1) we queue a struct migration_req structure in the source CPU's
5281 * runqueue and wake up that CPU's migration thread.
5282 * 2) we down() the locked semaphore => thread blocks.
5283 * 3) migration thread wakes up (implicitly it forces the migrated
5284 * thread off the CPU)
5285 * 4) it gets the migration request and checks whether the migrated
5286 * task is still in the wrong runqueue.
5287 * 5) if it's in the wrong runqueue then the migration thread removes
5288 * it and puts it into the right queue.
5289 * 6) migration thread up()s the semaphore.
5290 * 7) we wake up and the migration is done.
5294 * Change a given task's CPU affinity. Migrate the thread to a
5295 * proper CPU and schedule it away if the CPU it's executing on
5296 * is removed from the allowed bitmask.
5298 * NOTE: the caller must have a valid reference to the task, the
5299 * task must not exit() & deallocate itself prematurely. The
5300 * call is not atomic; no spinlocks may be held.
5302 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
5304 struct migration_req req
;
5305 unsigned long flags
;
5309 rq
= task_rq_lock(p
, &flags
);
5310 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
5315 if (p
->sched_class
->set_cpus_allowed
)
5316 p
->sched_class
->set_cpus_allowed(p
, &new_mask
);
5318 p
->cpus_allowed
= new_mask
;
5319 p
->rt
.nr_cpus_allowed
= cpus_weight(new_mask
);
5322 /* Can the task run on the task's current CPU? If so, we're done */
5323 if (cpu_isset(task_cpu(p
), new_mask
))
5326 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
5327 /* Need help from migration thread: drop lock and wait. */
5328 task_rq_unlock(rq
, &flags
);
5329 wake_up_process(rq
->migration_thread
);
5330 wait_for_completion(&req
.done
);
5331 tlb_migrate_finish(p
->mm
);
5335 task_rq_unlock(rq
, &flags
);
5339 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
5342 * Move (not current) task off this cpu, onto dest cpu. We're doing
5343 * this because either it can't run here any more (set_cpus_allowed()
5344 * away from this CPU, or CPU going down), or because we're
5345 * attempting to rebalance this task on exec (sched_exec).
5347 * So we race with normal scheduler movements, but that's OK, as long
5348 * as the task is no longer on this CPU.
5350 * Returns non-zero if task was successfully migrated.
5352 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5354 struct rq
*rq_dest
, *rq_src
;
5357 if (unlikely(cpu_is_offline(dest_cpu
)))
5360 rq_src
= cpu_rq(src_cpu
);
5361 rq_dest
= cpu_rq(dest_cpu
);
5363 double_rq_lock(rq_src
, rq_dest
);
5364 /* Already moved. */
5365 if (task_cpu(p
) != src_cpu
)
5367 /* Affinity changed (again). */
5368 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5371 on_rq
= p
->se
.on_rq
;
5373 deactivate_task(rq_src
, p
, 0);
5375 set_task_cpu(p
, dest_cpu
);
5377 activate_task(rq_dest
, p
, 0);
5378 check_preempt_curr(rq_dest
, p
);
5382 double_rq_unlock(rq_src
, rq_dest
);
5387 * migration_thread - this is a highprio system thread that performs
5388 * thread migration by bumping thread off CPU then 'pushing' onto
5391 static int migration_thread(void *data
)
5393 int cpu
= (long)data
;
5397 BUG_ON(rq
->migration_thread
!= current
);
5399 set_current_state(TASK_INTERRUPTIBLE
);
5400 while (!kthread_should_stop()) {
5401 struct migration_req
*req
;
5402 struct list_head
*head
;
5404 spin_lock_irq(&rq
->lock
);
5406 if (cpu_is_offline(cpu
)) {
5407 spin_unlock_irq(&rq
->lock
);
5411 if (rq
->active_balance
) {
5412 active_load_balance(rq
, cpu
);
5413 rq
->active_balance
= 0;
5416 head
= &rq
->migration_queue
;
5418 if (list_empty(head
)) {
5419 spin_unlock_irq(&rq
->lock
);
5421 set_current_state(TASK_INTERRUPTIBLE
);
5424 req
= list_entry(head
->next
, struct migration_req
, list
);
5425 list_del_init(head
->next
);
5427 spin_unlock(&rq
->lock
);
5428 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5431 complete(&req
->done
);
5433 __set_current_state(TASK_RUNNING
);
5437 /* Wait for kthread_stop */
5438 set_current_state(TASK_INTERRUPTIBLE
);
5439 while (!kthread_should_stop()) {
5441 set_current_state(TASK_INTERRUPTIBLE
);
5443 __set_current_state(TASK_RUNNING
);
5447 #ifdef CONFIG_HOTPLUG_CPU
5449 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5453 local_irq_disable();
5454 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
5460 * Figure out where task on dead CPU should go, use force if necessary.
5461 * NOTE: interrupts should be disabled by the caller
5463 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5465 unsigned long flags
;
5472 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5473 cpus_and(mask
, mask
, p
->cpus_allowed
);
5474 dest_cpu
= any_online_cpu(mask
);
5476 /* On any allowed CPU? */
5477 if (dest_cpu
== NR_CPUS
)
5478 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5480 /* No more Mr. Nice Guy. */
5481 if (dest_cpu
== NR_CPUS
) {
5482 cpumask_t cpus_allowed
= cpuset_cpus_allowed_locked(p
);
5484 * Try to stay on the same cpuset, where the
5485 * current cpuset may be a subset of all cpus.
5486 * The cpuset_cpus_allowed_locked() variant of
5487 * cpuset_cpus_allowed() will not block. It must be
5488 * called within calls to cpuset_lock/cpuset_unlock.
5490 rq
= task_rq_lock(p
, &flags
);
5491 p
->cpus_allowed
= cpus_allowed
;
5492 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5493 task_rq_unlock(rq
, &flags
);
5496 * Don't tell them about moving exiting tasks or
5497 * kernel threads (both mm NULL), since they never
5500 if (p
->mm
&& printk_ratelimit()) {
5501 printk(KERN_INFO
"process %d (%s) no "
5502 "longer affine to cpu%d\n",
5503 task_pid_nr(p
), p
->comm
, dead_cpu
);
5506 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
5510 * While a dead CPU has no uninterruptible tasks queued at this point,
5511 * it might still have a nonzero ->nr_uninterruptible counter, because
5512 * for performance reasons the counter is not stricly tracking tasks to
5513 * their home CPUs. So we just add the counter to another CPU's counter,
5514 * to keep the global sum constant after CPU-down:
5516 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5518 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5519 unsigned long flags
;
5521 local_irq_save(flags
);
5522 double_rq_lock(rq_src
, rq_dest
);
5523 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5524 rq_src
->nr_uninterruptible
= 0;
5525 double_rq_unlock(rq_src
, rq_dest
);
5526 local_irq_restore(flags
);
5529 /* Run through task list and migrate tasks from the dead cpu. */
5530 static void migrate_live_tasks(int src_cpu
)
5532 struct task_struct
*p
, *t
;
5534 read_lock(&tasklist_lock
);
5536 do_each_thread(t
, p
) {
5540 if (task_cpu(p
) == src_cpu
)
5541 move_task_off_dead_cpu(src_cpu
, p
);
5542 } while_each_thread(t
, p
);
5544 read_unlock(&tasklist_lock
);
5548 * Schedules idle task to be the next runnable task on current CPU.
5549 * It does so by boosting its priority to highest possible.
5550 * Used by CPU offline code.
5552 void sched_idle_next(void)
5554 int this_cpu
= smp_processor_id();
5555 struct rq
*rq
= cpu_rq(this_cpu
);
5556 struct task_struct
*p
= rq
->idle
;
5557 unsigned long flags
;
5559 /* cpu has to be offline */
5560 BUG_ON(cpu_online(this_cpu
));
5563 * Strictly not necessary since rest of the CPUs are stopped by now
5564 * and interrupts disabled on the current cpu.
5566 spin_lock_irqsave(&rq
->lock
, flags
);
5568 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5570 update_rq_clock(rq
);
5571 activate_task(rq
, p
, 0);
5573 spin_unlock_irqrestore(&rq
->lock
, flags
);
5577 * Ensures that the idle task is using init_mm right before its cpu goes
5580 void idle_task_exit(void)
5582 struct mm_struct
*mm
= current
->active_mm
;
5584 BUG_ON(cpu_online(smp_processor_id()));
5587 switch_mm(mm
, &init_mm
, current
);
5591 /* called under rq->lock with disabled interrupts */
5592 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5594 struct rq
*rq
= cpu_rq(dead_cpu
);
5596 /* Must be exiting, otherwise would be on tasklist. */
5597 BUG_ON(!p
->exit_state
);
5599 /* Cannot have done final schedule yet: would have vanished. */
5600 BUG_ON(p
->state
== TASK_DEAD
);
5605 * Drop lock around migration; if someone else moves it,
5606 * that's OK. No task can be added to this CPU, so iteration is
5609 spin_unlock_irq(&rq
->lock
);
5610 move_task_off_dead_cpu(dead_cpu
, p
);
5611 spin_lock_irq(&rq
->lock
);
5616 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5617 static void migrate_dead_tasks(unsigned int dead_cpu
)
5619 struct rq
*rq
= cpu_rq(dead_cpu
);
5620 struct task_struct
*next
;
5623 if (!rq
->nr_running
)
5625 update_rq_clock(rq
);
5626 next
= pick_next_task(rq
, rq
->curr
);
5629 migrate_dead(dead_cpu
, next
);
5633 #endif /* CONFIG_HOTPLUG_CPU */
5635 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5637 static struct ctl_table sd_ctl_dir
[] = {
5639 .procname
= "sched_domain",
5645 static struct ctl_table sd_ctl_root
[] = {
5647 .ctl_name
= CTL_KERN
,
5648 .procname
= "kernel",
5650 .child
= sd_ctl_dir
,
5655 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5657 struct ctl_table
*entry
=
5658 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5663 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5665 struct ctl_table
*entry
;
5668 * In the intermediate directories, both the child directory and
5669 * procname are dynamically allocated and could fail but the mode
5670 * will always be set. In the lowest directory the names are
5671 * static strings and all have proc handlers.
5673 for (entry
= *tablep
; entry
->mode
; entry
++) {
5675 sd_free_ctl_entry(&entry
->child
);
5676 if (entry
->proc_handler
== NULL
)
5677 kfree(entry
->procname
);
5685 set_table_entry(struct ctl_table
*entry
,
5686 const char *procname
, void *data
, int maxlen
,
5687 mode_t mode
, proc_handler
*proc_handler
)
5689 entry
->procname
= procname
;
5691 entry
->maxlen
= maxlen
;
5693 entry
->proc_handler
= proc_handler
;
5696 static struct ctl_table
*
5697 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5699 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
5704 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5705 sizeof(long), 0644, proc_doulongvec_minmax
);
5706 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5707 sizeof(long), 0644, proc_doulongvec_minmax
);
5708 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5709 sizeof(int), 0644, proc_dointvec_minmax
);
5710 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5711 sizeof(int), 0644, proc_dointvec_minmax
);
5712 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5713 sizeof(int), 0644, proc_dointvec_minmax
);
5714 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5715 sizeof(int), 0644, proc_dointvec_minmax
);
5716 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5717 sizeof(int), 0644, proc_dointvec_minmax
);
5718 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5719 sizeof(int), 0644, proc_dointvec_minmax
);
5720 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5721 sizeof(int), 0644, proc_dointvec_minmax
);
5722 set_table_entry(&table
[9], "cache_nice_tries",
5723 &sd
->cache_nice_tries
,
5724 sizeof(int), 0644, proc_dointvec_minmax
);
5725 set_table_entry(&table
[10], "flags", &sd
->flags
,
5726 sizeof(int), 0644, proc_dointvec_minmax
);
5727 /* &table[11] is terminator */
5732 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5734 struct ctl_table
*entry
, *table
;
5735 struct sched_domain
*sd
;
5736 int domain_num
= 0, i
;
5739 for_each_domain(cpu
, sd
)
5741 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5746 for_each_domain(cpu
, sd
) {
5747 snprintf(buf
, 32, "domain%d", i
);
5748 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5750 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5757 static struct ctl_table_header
*sd_sysctl_header
;
5758 static void register_sched_domain_sysctl(void)
5760 int i
, cpu_num
= num_online_cpus();
5761 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5764 WARN_ON(sd_ctl_dir
[0].child
);
5765 sd_ctl_dir
[0].child
= entry
;
5770 for_each_online_cpu(i
) {
5771 snprintf(buf
, 32, "cpu%d", i
);
5772 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5774 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5778 WARN_ON(sd_sysctl_header
);
5779 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5782 /* may be called multiple times per register */
5783 static void unregister_sched_domain_sysctl(void)
5785 if (sd_sysctl_header
)
5786 unregister_sysctl_table(sd_sysctl_header
);
5787 sd_sysctl_header
= NULL
;
5788 if (sd_ctl_dir
[0].child
)
5789 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5792 static void register_sched_domain_sysctl(void)
5795 static void unregister_sched_domain_sysctl(void)
5801 * migration_call - callback that gets triggered when a CPU is added.
5802 * Here we can start up the necessary migration thread for the new CPU.
5804 static int __cpuinit
5805 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5807 struct task_struct
*p
;
5808 int cpu
= (long)hcpu
;
5809 unsigned long flags
;
5814 case CPU_UP_PREPARE
:
5815 case CPU_UP_PREPARE_FROZEN
:
5816 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5819 kthread_bind(p
, cpu
);
5820 /* Must be high prio: stop_machine expects to yield to it. */
5821 rq
= task_rq_lock(p
, &flags
);
5822 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5823 task_rq_unlock(rq
, &flags
);
5824 cpu_rq(cpu
)->migration_thread
= p
;
5828 case CPU_ONLINE_FROZEN
:
5829 /* Strictly unnecessary, as first user will wake it. */
5830 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5832 /* Update our root-domain */
5834 spin_lock_irqsave(&rq
->lock
, flags
);
5836 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
5837 cpu_set(cpu
, rq
->rd
->online
);
5839 spin_unlock_irqrestore(&rq
->lock
, flags
);
5842 #ifdef CONFIG_HOTPLUG_CPU
5843 case CPU_UP_CANCELED
:
5844 case CPU_UP_CANCELED_FROZEN
:
5845 if (!cpu_rq(cpu
)->migration_thread
)
5847 /* Unbind it from offline cpu so it can run. Fall thru. */
5848 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5849 any_online_cpu(cpu_online_map
));
5850 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5851 cpu_rq(cpu
)->migration_thread
= NULL
;
5855 case CPU_DEAD_FROZEN
:
5856 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5857 migrate_live_tasks(cpu
);
5859 kthread_stop(rq
->migration_thread
);
5860 rq
->migration_thread
= NULL
;
5861 /* Idle task back to normal (off runqueue, low prio) */
5862 spin_lock_irq(&rq
->lock
);
5863 update_rq_clock(rq
);
5864 deactivate_task(rq
, rq
->idle
, 0);
5865 rq
->idle
->static_prio
= MAX_PRIO
;
5866 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5867 rq
->idle
->sched_class
= &idle_sched_class
;
5868 migrate_dead_tasks(cpu
);
5869 spin_unlock_irq(&rq
->lock
);
5871 migrate_nr_uninterruptible(rq
);
5872 BUG_ON(rq
->nr_running
!= 0);
5875 * No need to migrate the tasks: it was best-effort if
5876 * they didn't take sched_hotcpu_mutex. Just wake up
5879 spin_lock_irq(&rq
->lock
);
5880 while (!list_empty(&rq
->migration_queue
)) {
5881 struct migration_req
*req
;
5883 req
= list_entry(rq
->migration_queue
.next
,
5884 struct migration_req
, list
);
5885 list_del_init(&req
->list
);
5886 complete(&req
->done
);
5888 spin_unlock_irq(&rq
->lock
);
5892 case CPU_DYING_FROZEN
:
5893 /* Update our root-domain */
5895 spin_lock_irqsave(&rq
->lock
, flags
);
5897 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
5898 cpu_clear(cpu
, rq
->rd
->online
);
5900 spin_unlock_irqrestore(&rq
->lock
, flags
);
5907 /* Register at highest priority so that task migration (migrate_all_tasks)
5908 * happens before everything else.
5910 static struct notifier_block __cpuinitdata migration_notifier
= {
5911 .notifier_call
= migration_call
,
5915 void __init
migration_init(void)
5917 void *cpu
= (void *)(long)smp_processor_id();
5920 /* Start one for the boot CPU: */
5921 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5922 BUG_ON(err
== NOTIFY_BAD
);
5923 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5924 register_cpu_notifier(&migration_notifier
);
5930 /* Number of possible processor ids */
5931 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5932 EXPORT_SYMBOL(nr_cpu_ids
);
5934 #ifdef CONFIG_SCHED_DEBUG
5936 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
)
5938 struct sched_group
*group
= sd
->groups
;
5939 cpumask_t groupmask
;
5942 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5943 cpus_clear(groupmask
);
5945 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5947 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5948 printk("does not load-balance\n");
5950 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5955 printk(KERN_CONT
"span %s\n", str
);
5957 if (!cpu_isset(cpu
, sd
->span
)) {
5958 printk(KERN_ERR
"ERROR: domain->span does not contain "
5961 if (!cpu_isset(cpu
, group
->cpumask
)) {
5962 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5966 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5970 printk(KERN_ERR
"ERROR: group is NULL\n");
5974 if (!group
->__cpu_power
) {
5975 printk(KERN_CONT
"\n");
5976 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5981 if (!cpus_weight(group
->cpumask
)) {
5982 printk(KERN_CONT
"\n");
5983 printk(KERN_ERR
"ERROR: empty group\n");
5987 if (cpus_intersects(groupmask
, group
->cpumask
)) {
5988 printk(KERN_CONT
"\n");
5989 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5993 cpus_or(groupmask
, groupmask
, group
->cpumask
);
5995 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
5996 printk(KERN_CONT
" %s", str
);
5998 group
= group
->next
;
5999 } while (group
!= sd
->groups
);
6000 printk(KERN_CONT
"\n");
6002 if (!cpus_equal(sd
->span
, groupmask
))
6003 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6005 if (sd
->parent
&& !cpus_subset(groupmask
, sd
->parent
->span
))
6006 printk(KERN_ERR
"ERROR: parent span is not a superset "
6007 "of domain->span\n");
6011 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6016 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6020 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6023 if (sched_domain_debug_one(sd
, cpu
, level
))
6032 # define sched_domain_debug(sd, cpu) do { } while (0)
6035 static int sd_degenerate(struct sched_domain
*sd
)
6037 if (cpus_weight(sd
->span
) == 1)
6040 /* Following flags need at least 2 groups */
6041 if (sd
->flags
& (SD_LOAD_BALANCE
|
6042 SD_BALANCE_NEWIDLE
|
6046 SD_SHARE_PKG_RESOURCES
)) {
6047 if (sd
->groups
!= sd
->groups
->next
)
6051 /* Following flags don't use groups */
6052 if (sd
->flags
& (SD_WAKE_IDLE
|
6061 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6063 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6065 if (sd_degenerate(parent
))
6068 if (!cpus_equal(sd
->span
, parent
->span
))
6071 /* Does parent contain flags not in child? */
6072 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6073 if (cflags
& SD_WAKE_AFFINE
)
6074 pflags
&= ~SD_WAKE_BALANCE
;
6075 /* Flags needing groups don't count if only 1 group in parent */
6076 if (parent
->groups
== parent
->groups
->next
) {
6077 pflags
&= ~(SD_LOAD_BALANCE
|
6078 SD_BALANCE_NEWIDLE
|
6082 SD_SHARE_PKG_RESOURCES
);
6084 if (~cflags
& pflags
)
6090 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6092 unsigned long flags
;
6093 const struct sched_class
*class;
6095 spin_lock_irqsave(&rq
->lock
, flags
);
6098 struct root_domain
*old_rd
= rq
->rd
;
6100 for (class = sched_class_highest
; class; class = class->next
) {
6101 if (class->leave_domain
)
6102 class->leave_domain(rq
);
6105 cpu_clear(rq
->cpu
, old_rd
->span
);
6106 cpu_clear(rq
->cpu
, old_rd
->online
);
6108 if (atomic_dec_and_test(&old_rd
->refcount
))
6112 atomic_inc(&rd
->refcount
);
6115 cpu_set(rq
->cpu
, rd
->span
);
6116 if (cpu_isset(rq
->cpu
, cpu_online_map
))
6117 cpu_set(rq
->cpu
, rd
->online
);
6119 for (class = sched_class_highest
; class; class = class->next
) {
6120 if (class->join_domain
)
6121 class->join_domain(rq
);
6124 spin_unlock_irqrestore(&rq
->lock
, flags
);
6127 static void init_rootdomain(struct root_domain
*rd
)
6129 memset(rd
, 0, sizeof(*rd
));
6131 cpus_clear(rd
->span
);
6132 cpus_clear(rd
->online
);
6135 static void init_defrootdomain(void)
6137 init_rootdomain(&def_root_domain
);
6138 atomic_set(&def_root_domain
.refcount
, 1);
6141 static struct root_domain
*alloc_rootdomain(void)
6143 struct root_domain
*rd
;
6145 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6149 init_rootdomain(rd
);
6155 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6156 * hold the hotplug lock.
6159 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6161 struct rq
*rq
= cpu_rq(cpu
);
6162 struct sched_domain
*tmp
;
6164 /* Remove the sched domains which do not contribute to scheduling. */
6165 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
6166 struct sched_domain
*parent
= tmp
->parent
;
6169 if (sd_parent_degenerate(tmp
, parent
)) {
6170 tmp
->parent
= parent
->parent
;
6172 parent
->parent
->child
= tmp
;
6176 if (sd
&& sd_degenerate(sd
)) {
6182 sched_domain_debug(sd
, cpu
);
6184 rq_attach_root(rq
, rd
);
6185 rcu_assign_pointer(rq
->sd
, sd
);
6188 /* cpus with isolated domains */
6189 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
6191 /* Setup the mask of cpus configured for isolated domains */
6192 static int __init
isolated_cpu_setup(char *str
)
6194 int ints
[NR_CPUS
], i
;
6196 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
6197 cpus_clear(cpu_isolated_map
);
6198 for (i
= 1; i
<= ints
[0]; i
++)
6199 if (ints
[i
] < NR_CPUS
)
6200 cpu_set(ints
[i
], cpu_isolated_map
);
6204 __setup("isolcpus=", isolated_cpu_setup
);
6207 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6208 * to a function which identifies what group(along with sched group) a CPU
6209 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6210 * (due to the fact that we keep track of groups covered with a cpumask_t).
6212 * init_sched_build_groups will build a circular linked list of the groups
6213 * covered by the given span, and will set each group's ->cpumask correctly,
6214 * and ->cpu_power to 0.
6217 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
6218 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
6219 struct sched_group
**sg
))
6221 struct sched_group
*first
= NULL
, *last
= NULL
;
6222 cpumask_t covered
= CPU_MASK_NONE
;
6225 for_each_cpu_mask(i
, span
) {
6226 struct sched_group
*sg
;
6227 int group
= group_fn(i
, cpu_map
, &sg
);
6230 if (cpu_isset(i
, covered
))
6233 sg
->cpumask
= CPU_MASK_NONE
;
6234 sg
->__cpu_power
= 0;
6236 for_each_cpu_mask(j
, span
) {
6237 if (group_fn(j
, cpu_map
, NULL
) != group
)
6240 cpu_set(j
, covered
);
6241 cpu_set(j
, sg
->cpumask
);
6252 #define SD_NODES_PER_DOMAIN 16
6257 * find_next_best_node - find the next node to include in a sched_domain
6258 * @node: node whose sched_domain we're building
6259 * @used_nodes: nodes already in the sched_domain
6261 * Find the next node to include in a given scheduling domain. Simply
6262 * finds the closest node not already in the @used_nodes map.
6264 * Should use nodemask_t.
6266 static int find_next_best_node(int node
, unsigned long *used_nodes
)
6268 int i
, n
, val
, min_val
, best_node
= 0;
6272 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6273 /* Start at @node */
6274 n
= (node
+ i
) % MAX_NUMNODES
;
6276 if (!nr_cpus_node(n
))
6279 /* Skip already used nodes */
6280 if (test_bit(n
, used_nodes
))
6283 /* Simple min distance search */
6284 val
= node_distance(node
, n
);
6286 if (val
< min_val
) {
6292 set_bit(best_node
, used_nodes
);
6297 * sched_domain_node_span - get a cpumask for a node's sched_domain
6298 * @node: node whose cpumask we're constructing
6299 * @size: number of nodes to include in this span
6301 * Given a node, construct a good cpumask for its sched_domain to span. It
6302 * should be one that prevents unnecessary balancing, but also spreads tasks
6305 static cpumask_t
sched_domain_node_span(int node
)
6307 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
6308 cpumask_t span
, nodemask
;
6312 bitmap_zero(used_nodes
, MAX_NUMNODES
);
6314 nodemask
= node_to_cpumask(node
);
6315 cpus_or(span
, span
, nodemask
);
6316 set_bit(node
, used_nodes
);
6318 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6319 int next_node
= find_next_best_node(node
, used_nodes
);
6321 nodemask
= node_to_cpumask(next_node
);
6322 cpus_or(span
, span
, nodemask
);
6329 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6332 * SMT sched-domains:
6334 #ifdef CONFIG_SCHED_SMT
6335 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
6336 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
6339 cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6342 *sg
= &per_cpu(sched_group_cpus
, cpu
);
6348 * multi-core sched-domains:
6350 #ifdef CONFIG_SCHED_MC
6351 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
6352 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
6355 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6357 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6360 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6361 cpus_and(mask
, mask
, *cpu_map
);
6362 group
= first_cpu(mask
);
6364 *sg
= &per_cpu(sched_group_core
, group
);
6367 #elif defined(CONFIG_SCHED_MC)
6369 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6372 *sg
= &per_cpu(sched_group_core
, cpu
);
6377 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
6378 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
6381 cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6384 #ifdef CONFIG_SCHED_MC
6385 cpumask_t mask
= cpu_coregroup_map(cpu
);
6386 cpus_and(mask
, mask
, *cpu_map
);
6387 group
= first_cpu(mask
);
6388 #elif defined(CONFIG_SCHED_SMT)
6389 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6390 cpus_and(mask
, mask
, *cpu_map
);
6391 group
= first_cpu(mask
);
6396 *sg
= &per_cpu(sched_group_phys
, group
);
6402 * The init_sched_build_groups can't handle what we want to do with node
6403 * groups, so roll our own. Now each node has its own list of groups which
6404 * gets dynamically allocated.
6406 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
6407 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
6409 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
6410 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
6412 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
6413 struct sched_group
**sg
)
6415 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
6418 cpus_and(nodemask
, nodemask
, *cpu_map
);
6419 group
= first_cpu(nodemask
);
6422 *sg
= &per_cpu(sched_group_allnodes
, group
);
6426 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6428 struct sched_group
*sg
= group_head
;
6434 for_each_cpu_mask(j
, sg
->cpumask
) {
6435 struct sched_domain
*sd
;
6437 sd
= &per_cpu(phys_domains
, j
);
6438 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
6440 * Only add "power" once for each
6446 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
6449 } while (sg
!= group_head
);
6454 /* Free memory allocated for various sched_group structures */
6455 static void free_sched_groups(const cpumask_t
*cpu_map
)
6459 for_each_cpu_mask(cpu
, *cpu_map
) {
6460 struct sched_group
**sched_group_nodes
6461 = sched_group_nodes_bycpu
[cpu
];
6463 if (!sched_group_nodes
)
6466 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6467 cpumask_t nodemask
= node_to_cpumask(i
);
6468 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6470 cpus_and(nodemask
, nodemask
, *cpu_map
);
6471 if (cpus_empty(nodemask
))
6481 if (oldsg
!= sched_group_nodes
[i
])
6484 kfree(sched_group_nodes
);
6485 sched_group_nodes_bycpu
[cpu
] = NULL
;
6489 static void free_sched_groups(const cpumask_t
*cpu_map
)
6495 * Initialize sched groups cpu_power.
6497 * cpu_power indicates the capacity of sched group, which is used while
6498 * distributing the load between different sched groups in a sched domain.
6499 * Typically cpu_power for all the groups in a sched domain will be same unless
6500 * there are asymmetries in the topology. If there are asymmetries, group
6501 * having more cpu_power will pickup more load compared to the group having
6504 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6505 * the maximum number of tasks a group can handle in the presence of other idle
6506 * or lightly loaded groups in the same sched domain.
6508 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6510 struct sched_domain
*child
;
6511 struct sched_group
*group
;
6513 WARN_ON(!sd
|| !sd
->groups
);
6515 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
6520 sd
->groups
->__cpu_power
= 0;
6523 * For perf policy, if the groups in child domain share resources
6524 * (for example cores sharing some portions of the cache hierarchy
6525 * or SMT), then set this domain groups cpu_power such that each group
6526 * can handle only one task, when there are other idle groups in the
6527 * same sched domain.
6529 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
6531 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6532 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6537 * add cpu_power of each child group to this groups cpu_power
6539 group
= child
->groups
;
6541 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6542 group
= group
->next
;
6543 } while (group
!= child
->groups
);
6547 * Build sched domains for a given set of cpus and attach the sched domains
6548 * to the individual cpus
6550 static int build_sched_domains(const cpumask_t
*cpu_map
)
6553 struct root_domain
*rd
;
6555 struct sched_group
**sched_group_nodes
= NULL
;
6556 int sd_allnodes
= 0;
6559 * Allocate the per-node list of sched groups
6561 sched_group_nodes
= kcalloc(MAX_NUMNODES
, sizeof(struct sched_group
*),
6563 if (!sched_group_nodes
) {
6564 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6567 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6570 rd
= alloc_rootdomain();
6572 printk(KERN_WARNING
"Cannot alloc root domain\n");
6577 * Set up domains for cpus specified by the cpu_map.
6579 for_each_cpu_mask(i
, *cpu_map
) {
6580 struct sched_domain
*sd
= NULL
, *p
;
6581 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6583 cpus_and(nodemask
, nodemask
, *cpu_map
);
6586 if (cpus_weight(*cpu_map
) >
6587 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6588 sd
= &per_cpu(allnodes_domains
, i
);
6589 *sd
= SD_ALLNODES_INIT
;
6590 sd
->span
= *cpu_map
;
6591 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6597 sd
= &per_cpu(node_domains
, i
);
6599 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6603 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6607 sd
= &per_cpu(phys_domains
, i
);
6609 sd
->span
= nodemask
;
6613 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6615 #ifdef CONFIG_SCHED_MC
6617 sd
= &per_cpu(core_domains
, i
);
6619 sd
->span
= cpu_coregroup_map(i
);
6620 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6623 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6626 #ifdef CONFIG_SCHED_SMT
6628 sd
= &per_cpu(cpu_domains
, i
);
6629 *sd
= SD_SIBLING_INIT
;
6630 sd
->span
= per_cpu(cpu_sibling_map
, i
);
6631 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6634 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6638 #ifdef CONFIG_SCHED_SMT
6639 /* Set up CPU (sibling) groups */
6640 for_each_cpu_mask(i
, *cpu_map
) {
6641 cpumask_t this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
6642 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6643 if (i
!= first_cpu(this_sibling_map
))
6646 init_sched_build_groups(this_sibling_map
, cpu_map
,
6651 #ifdef CONFIG_SCHED_MC
6652 /* Set up multi-core groups */
6653 for_each_cpu_mask(i
, *cpu_map
) {
6654 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6655 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6656 if (i
!= first_cpu(this_core_map
))
6658 init_sched_build_groups(this_core_map
, cpu_map
,
6659 &cpu_to_core_group
);
6663 /* Set up physical groups */
6664 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6665 cpumask_t nodemask
= node_to_cpumask(i
);
6667 cpus_and(nodemask
, nodemask
, *cpu_map
);
6668 if (cpus_empty(nodemask
))
6671 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6675 /* Set up node groups */
6677 init_sched_build_groups(*cpu_map
, cpu_map
,
6678 &cpu_to_allnodes_group
);
6680 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6681 /* Set up node groups */
6682 struct sched_group
*sg
, *prev
;
6683 cpumask_t nodemask
= node_to_cpumask(i
);
6684 cpumask_t domainspan
;
6685 cpumask_t covered
= CPU_MASK_NONE
;
6688 cpus_and(nodemask
, nodemask
, *cpu_map
);
6689 if (cpus_empty(nodemask
)) {
6690 sched_group_nodes
[i
] = NULL
;
6694 domainspan
= sched_domain_node_span(i
);
6695 cpus_and(domainspan
, domainspan
, *cpu_map
);
6697 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6699 printk(KERN_WARNING
"Can not alloc domain group for "
6703 sched_group_nodes
[i
] = sg
;
6704 for_each_cpu_mask(j
, nodemask
) {
6705 struct sched_domain
*sd
;
6707 sd
= &per_cpu(node_domains
, j
);
6710 sg
->__cpu_power
= 0;
6711 sg
->cpumask
= nodemask
;
6713 cpus_or(covered
, covered
, nodemask
);
6716 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6717 cpumask_t tmp
, notcovered
;
6718 int n
= (i
+ j
) % MAX_NUMNODES
;
6720 cpus_complement(notcovered
, covered
);
6721 cpus_and(tmp
, notcovered
, *cpu_map
);
6722 cpus_and(tmp
, tmp
, domainspan
);
6723 if (cpus_empty(tmp
))
6726 nodemask
= node_to_cpumask(n
);
6727 cpus_and(tmp
, tmp
, nodemask
);
6728 if (cpus_empty(tmp
))
6731 sg
= kmalloc_node(sizeof(struct sched_group
),
6735 "Can not alloc domain group for node %d\n", j
);
6738 sg
->__cpu_power
= 0;
6740 sg
->next
= prev
->next
;
6741 cpus_or(covered
, covered
, tmp
);
6748 /* Calculate CPU power for physical packages and nodes */
6749 #ifdef CONFIG_SCHED_SMT
6750 for_each_cpu_mask(i
, *cpu_map
) {
6751 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6753 init_sched_groups_power(i
, sd
);
6756 #ifdef CONFIG_SCHED_MC
6757 for_each_cpu_mask(i
, *cpu_map
) {
6758 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6760 init_sched_groups_power(i
, sd
);
6764 for_each_cpu_mask(i
, *cpu_map
) {
6765 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6767 init_sched_groups_power(i
, sd
);
6771 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6772 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6775 struct sched_group
*sg
;
6777 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6778 init_numa_sched_groups_power(sg
);
6782 /* Attach the domains */
6783 for_each_cpu_mask(i
, *cpu_map
) {
6784 struct sched_domain
*sd
;
6785 #ifdef CONFIG_SCHED_SMT
6786 sd
= &per_cpu(cpu_domains
, i
);
6787 #elif defined(CONFIG_SCHED_MC)
6788 sd
= &per_cpu(core_domains
, i
);
6790 sd
= &per_cpu(phys_domains
, i
);
6792 cpu_attach_domain(sd
, rd
, i
);
6799 free_sched_groups(cpu_map
);
6804 static cpumask_t
*doms_cur
; /* current sched domains */
6805 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6808 * Special case: If a kmalloc of a doms_cur partition (array of
6809 * cpumask_t) fails, then fallback to a single sched domain,
6810 * as determined by the single cpumask_t fallback_doms.
6812 static cpumask_t fallback_doms
;
6815 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6816 * For now this just excludes isolated cpus, but could be used to
6817 * exclude other special cases in the future.
6819 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6824 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6826 doms_cur
= &fallback_doms
;
6827 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
6828 err
= build_sched_domains(doms_cur
);
6829 register_sched_domain_sysctl();
6834 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6836 free_sched_groups(cpu_map
);
6840 * Detach sched domains from a group of cpus specified in cpu_map
6841 * These cpus will now be attached to the NULL domain
6843 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6847 unregister_sched_domain_sysctl();
6849 for_each_cpu_mask(i
, *cpu_map
)
6850 cpu_attach_domain(NULL
, &def_root_domain
, i
);
6851 synchronize_sched();
6852 arch_destroy_sched_domains(cpu_map
);
6856 * Partition sched domains as specified by the 'ndoms_new'
6857 * cpumasks in the array doms_new[] of cpumasks. This compares
6858 * doms_new[] to the current sched domain partitioning, doms_cur[].
6859 * It destroys each deleted domain and builds each new domain.
6861 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6862 * The masks don't intersect (don't overlap.) We should setup one
6863 * sched domain for each mask. CPUs not in any of the cpumasks will
6864 * not be load balanced. If the same cpumask appears both in the
6865 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6868 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6869 * ownership of it and will kfree it when done with it. If the caller
6870 * failed the kmalloc call, then it can pass in doms_new == NULL,
6871 * and partition_sched_domains() will fallback to the single partition
6874 * Call with hotplug lock held
6876 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
)
6882 /* always unregister in case we don't destroy any domains */
6883 unregister_sched_domain_sysctl();
6885 if (doms_new
== NULL
) {
6887 doms_new
= &fallback_doms
;
6888 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
6891 /* Destroy deleted domains */
6892 for (i
= 0; i
< ndoms_cur
; i
++) {
6893 for (j
= 0; j
< ndoms_new
; j
++) {
6894 if (cpus_equal(doms_cur
[i
], doms_new
[j
]))
6897 /* no match - a current sched domain not in new doms_new[] */
6898 detach_destroy_domains(doms_cur
+ i
);
6903 /* Build new domains */
6904 for (i
= 0; i
< ndoms_new
; i
++) {
6905 for (j
= 0; j
< ndoms_cur
; j
++) {
6906 if (cpus_equal(doms_new
[i
], doms_cur
[j
]))
6909 /* no match - add a new doms_new */
6910 build_sched_domains(doms_new
+ i
);
6915 /* Remember the new sched domains */
6916 if (doms_cur
!= &fallback_doms
)
6918 doms_cur
= doms_new
;
6919 ndoms_cur
= ndoms_new
;
6921 register_sched_domain_sysctl();
6926 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6927 static int arch_reinit_sched_domains(void)
6932 detach_destroy_domains(&cpu_online_map
);
6933 err
= arch_init_sched_domains(&cpu_online_map
);
6939 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6943 if (buf
[0] != '0' && buf
[0] != '1')
6947 sched_smt_power_savings
= (buf
[0] == '1');
6949 sched_mc_power_savings
= (buf
[0] == '1');
6951 ret
= arch_reinit_sched_domains();
6953 return ret
? ret
: count
;
6956 #ifdef CONFIG_SCHED_MC
6957 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6959 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6961 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6962 const char *buf
, size_t count
)
6964 return sched_power_savings_store(buf
, count
, 0);
6966 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6967 sched_mc_power_savings_store
);
6970 #ifdef CONFIG_SCHED_SMT
6971 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
6973 return sprintf(page
, "%u\n", sched_smt_power_savings
);
6975 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
6976 const char *buf
, size_t count
)
6978 return sched_power_savings_store(buf
, count
, 1);
6980 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
6981 sched_smt_power_savings_store
);
6984 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
6988 #ifdef CONFIG_SCHED_SMT
6990 err
= sysfs_create_file(&cls
->kset
.kobj
,
6991 &attr_sched_smt_power_savings
.attr
);
6993 #ifdef CONFIG_SCHED_MC
6994 if (!err
&& mc_capable())
6995 err
= sysfs_create_file(&cls
->kset
.kobj
,
6996 &attr_sched_mc_power_savings
.attr
);
7003 * Force a reinitialization of the sched domains hierarchy. The domains
7004 * and groups cannot be updated in place without racing with the balancing
7005 * code, so we temporarily attach all running cpus to the NULL domain
7006 * which will prevent rebalancing while the sched domains are recalculated.
7008 static int update_sched_domains(struct notifier_block
*nfb
,
7009 unsigned long action
, void *hcpu
)
7012 case CPU_UP_PREPARE
:
7013 case CPU_UP_PREPARE_FROZEN
:
7014 case CPU_DOWN_PREPARE
:
7015 case CPU_DOWN_PREPARE_FROZEN
:
7016 detach_destroy_domains(&cpu_online_map
);
7019 case CPU_UP_CANCELED
:
7020 case CPU_UP_CANCELED_FROZEN
:
7021 case CPU_DOWN_FAILED
:
7022 case CPU_DOWN_FAILED_FROZEN
:
7024 case CPU_ONLINE_FROZEN
:
7026 case CPU_DEAD_FROZEN
:
7028 * Fall through and re-initialise the domains.
7035 /* The hotplug lock is already held by cpu_up/cpu_down */
7036 arch_init_sched_domains(&cpu_online_map
);
7041 void __init
sched_init_smp(void)
7043 cpumask_t non_isolated_cpus
;
7046 arch_init_sched_domains(&cpu_online_map
);
7047 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
7048 if (cpus_empty(non_isolated_cpus
))
7049 cpu_set(smp_processor_id(), non_isolated_cpus
);
7051 /* XXX: Theoretical race here - CPU may be hotplugged now */
7052 hotcpu_notifier(update_sched_domains
, 0);
7054 /* Move init over to a non-isolated CPU */
7055 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
7057 sched_init_granularity();
7060 void __init
sched_init_smp(void)
7062 sched_init_granularity();
7064 #endif /* CONFIG_SMP */
7066 int in_sched_functions(unsigned long addr
)
7068 return in_lock_functions(addr
) ||
7069 (addr
>= (unsigned long)__sched_text_start
7070 && addr
< (unsigned long)__sched_text_end
);
7073 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7075 cfs_rq
->tasks_timeline
= RB_ROOT
;
7076 #ifdef CONFIG_FAIR_GROUP_SCHED
7079 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7082 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7084 struct rt_prio_array
*array
;
7087 array
= &rt_rq
->active
;
7088 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7089 INIT_LIST_HEAD(array
->queue
+ i
);
7090 __clear_bit(i
, array
->bitmap
);
7092 /* delimiter for bitsearch: */
7093 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7095 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7096 rt_rq
->highest_prio
= MAX_RT_PRIO
;
7099 rt_rq
->rt_nr_migratory
= 0;
7100 rt_rq
->overloaded
= 0;
7104 rt_rq
->rt_throttled
= 0;
7106 #ifdef CONFIG_RT_GROUP_SCHED
7107 rt_rq
->rt_nr_boosted
= 0;
7112 #ifdef CONFIG_FAIR_GROUP_SCHED
7113 static void init_tg_cfs_entry(struct rq
*rq
, struct task_group
*tg
,
7114 struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
7117 tg
->cfs_rq
[cpu
] = cfs_rq
;
7118 init_cfs_rq(cfs_rq
, rq
);
7121 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7124 se
->cfs_rq
= &rq
->cfs
;
7126 se
->load
.weight
= tg
->shares
;
7127 se
->load
.inv_weight
= div64_64(1ULL<<32, se
->load
.weight
);
7132 #ifdef CONFIG_RT_GROUP_SCHED
7133 static void init_tg_rt_entry(struct rq
*rq
, struct task_group
*tg
,
7134 struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
,
7137 tg
->rt_rq
[cpu
] = rt_rq
;
7138 init_rt_rq(rt_rq
, rq
);
7140 rt_rq
->rt_se
= rt_se
;
7142 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7144 tg
->rt_se
[cpu
] = rt_se
;
7145 rt_se
->rt_rq
= &rq
->rt
;
7146 rt_se
->my_q
= rt_rq
;
7147 rt_se
->parent
= NULL
;
7148 INIT_LIST_HEAD(&rt_se
->run_list
);
7152 void __init
sched_init(void)
7154 int highest_cpu
= 0;
7158 init_defrootdomain();
7161 #ifdef CONFIG_GROUP_SCHED
7162 list_add(&init_task_group
.list
, &task_groups
);
7165 for_each_possible_cpu(i
) {
7169 spin_lock_init(&rq
->lock
);
7170 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
7173 init_cfs_rq(&rq
->cfs
, rq
);
7174 init_rt_rq(&rq
->rt
, rq
);
7175 #ifdef CONFIG_FAIR_GROUP_SCHED
7176 init_task_group
.shares
= init_task_group_load
;
7177 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7178 init_tg_cfs_entry(rq
, &init_task_group
,
7179 &per_cpu(init_cfs_rq
, i
),
7180 &per_cpu(init_sched_entity
, i
), i
, 1);
7183 #ifdef CONFIG_RT_GROUP_SCHED
7184 init_task_group
.rt_runtime
=
7185 sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
7186 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
7187 init_tg_rt_entry(rq
, &init_task_group
,
7188 &per_cpu(init_rt_rq
, i
),
7189 &per_cpu(init_sched_rt_entity
, i
), i
, 1);
7191 rq
->rt_period_expire
= 0;
7192 rq
->rt_throttled
= 0;
7194 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7195 rq
->cpu_load
[j
] = 0;
7199 rq
->active_balance
= 0;
7200 rq
->next_balance
= jiffies
;
7203 rq
->migration_thread
= NULL
;
7204 INIT_LIST_HEAD(&rq
->migration_queue
);
7205 rq_attach_root(rq
, &def_root_domain
);
7208 atomic_set(&rq
->nr_iowait
, 0);
7212 set_load_weight(&init_task
);
7214 #ifdef CONFIG_PREEMPT_NOTIFIERS
7215 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7219 nr_cpu_ids
= highest_cpu
+ 1;
7220 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
7223 #ifdef CONFIG_RT_MUTEXES
7224 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
7228 * The boot idle thread does lazy MMU switching as well:
7230 atomic_inc(&init_mm
.mm_count
);
7231 enter_lazy_tlb(&init_mm
, current
);
7234 * Make us the idle thread. Technically, schedule() should not be
7235 * called from this thread, however somewhere below it might be,
7236 * but because we are the idle thread, we just pick up running again
7237 * when this runqueue becomes "idle".
7239 init_idle(current
, smp_processor_id());
7241 * During early bootup we pretend to be a normal task:
7243 current
->sched_class
= &fair_sched_class
;
7245 scheduler_running
= 1;
7248 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7249 void __might_sleep(char *file
, int line
)
7252 static unsigned long prev_jiffy
; /* ratelimiting */
7254 if ((in_atomic() || irqs_disabled()) &&
7255 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
7256 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7258 prev_jiffy
= jiffies
;
7259 printk(KERN_ERR
"BUG: sleeping function called from invalid"
7260 " context at %s:%d\n", file
, line
);
7261 printk("in_atomic():%d, irqs_disabled():%d\n",
7262 in_atomic(), irqs_disabled());
7263 debug_show_held_locks(current
);
7264 if (irqs_disabled())
7265 print_irqtrace_events(current
);
7270 EXPORT_SYMBOL(__might_sleep
);
7273 #ifdef CONFIG_MAGIC_SYSRQ
7274 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
7277 update_rq_clock(rq
);
7278 on_rq
= p
->se
.on_rq
;
7280 deactivate_task(rq
, p
, 0);
7281 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
7283 activate_task(rq
, p
, 0);
7284 resched_task(rq
->curr
);
7288 void normalize_rt_tasks(void)
7290 struct task_struct
*g
, *p
;
7291 unsigned long flags
;
7294 read_lock_irqsave(&tasklist_lock
, flags
);
7295 do_each_thread(g
, p
) {
7297 * Only normalize user tasks:
7302 p
->se
.exec_start
= 0;
7303 #ifdef CONFIG_SCHEDSTATS
7304 p
->se
.wait_start
= 0;
7305 p
->se
.sleep_start
= 0;
7306 p
->se
.block_start
= 0;
7308 task_rq(p
)->clock
= 0;
7312 * Renice negative nice level userspace
7315 if (TASK_NICE(p
) < 0 && p
->mm
)
7316 set_user_nice(p
, 0);
7320 spin_lock(&p
->pi_lock
);
7321 rq
= __task_rq_lock(p
);
7323 normalize_task(rq
, p
);
7325 __task_rq_unlock(rq
);
7326 spin_unlock(&p
->pi_lock
);
7327 } while_each_thread(g
, p
);
7329 read_unlock_irqrestore(&tasklist_lock
, flags
);
7332 #endif /* CONFIG_MAGIC_SYSRQ */
7336 * These functions are only useful for the IA64 MCA handling.
7338 * They can only be called when the whole system has been
7339 * stopped - every CPU needs to be quiescent, and no scheduling
7340 * activity can take place. Using them for anything else would
7341 * be a serious bug, and as a result, they aren't even visible
7342 * under any other configuration.
7346 * curr_task - return the current task for a given cpu.
7347 * @cpu: the processor in question.
7349 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7351 struct task_struct
*curr_task(int cpu
)
7353 return cpu_curr(cpu
);
7357 * set_curr_task - set the current task for a given cpu.
7358 * @cpu: the processor in question.
7359 * @p: the task pointer to set.
7361 * Description: This function must only be used when non-maskable interrupts
7362 * are serviced on a separate stack. It allows the architecture to switch the
7363 * notion of the current task on a cpu in a non-blocking manner. This function
7364 * must be called with all CPU's synchronized, and interrupts disabled, the
7365 * and caller must save the original value of the current task (see
7366 * curr_task() above) and restore that value before reenabling interrupts and
7367 * re-starting the system.
7369 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7371 void set_curr_task(int cpu
, struct task_struct
*p
)
7378 #ifdef CONFIG_GROUP_SCHED
7380 #ifdef CONFIG_FAIR_GROUP_SCHED
7381 static void free_fair_sched_group(struct task_group
*tg
)
7385 for_each_possible_cpu(i
) {
7387 kfree(tg
->cfs_rq
[i
]);
7396 static int alloc_fair_sched_group(struct task_group
*tg
)
7398 struct cfs_rq
*cfs_rq
;
7399 struct sched_entity
*se
;
7403 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * NR_CPUS
, GFP_KERNEL
);
7406 tg
->se
= kzalloc(sizeof(se
) * NR_CPUS
, GFP_KERNEL
);
7410 tg
->shares
= NICE_0_LOAD
;
7412 for_each_possible_cpu(i
) {
7415 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
),
7416 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7420 se
= kmalloc_node(sizeof(struct sched_entity
),
7421 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7425 init_tg_cfs_entry(rq
, tg
, cfs_rq
, se
, i
, 0);
7434 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
7436 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
7437 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
7440 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
7442 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
7445 static inline void free_fair_sched_group(struct task_group
*tg
)
7449 static inline int alloc_fair_sched_group(struct task_group
*tg
)
7454 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
7458 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
7463 #ifdef CONFIG_RT_GROUP_SCHED
7464 static void free_rt_sched_group(struct task_group
*tg
)
7468 for_each_possible_cpu(i
) {
7470 kfree(tg
->rt_rq
[i
]);
7472 kfree(tg
->rt_se
[i
]);
7479 static int alloc_rt_sched_group(struct task_group
*tg
)
7481 struct rt_rq
*rt_rq
;
7482 struct sched_rt_entity
*rt_se
;
7486 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * NR_CPUS
, GFP_KERNEL
);
7489 tg
->rt_se
= kzalloc(sizeof(rt_se
) * NR_CPUS
, GFP_KERNEL
);
7495 for_each_possible_cpu(i
) {
7498 rt_rq
= kmalloc_node(sizeof(struct rt_rq
),
7499 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7503 rt_se
= kmalloc_node(sizeof(struct sched_rt_entity
),
7504 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
7508 init_tg_rt_entry(rq
, tg
, rt_rq
, rt_se
, i
, 0);
7517 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
7519 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
7520 &cpu_rq(cpu
)->leaf_rt_rq_list
);
7523 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
7525 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
7528 static inline void free_rt_sched_group(struct task_group
*tg
)
7532 static inline int alloc_rt_sched_group(struct task_group
*tg
)
7537 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
7541 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
7546 static void free_sched_group(struct task_group
*tg
)
7548 free_fair_sched_group(tg
);
7549 free_rt_sched_group(tg
);
7553 /* allocate runqueue etc for a new task group */
7554 struct task_group
*sched_create_group(void)
7556 struct task_group
*tg
;
7557 unsigned long flags
;
7560 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
7562 return ERR_PTR(-ENOMEM
);
7564 if (!alloc_fair_sched_group(tg
))
7567 if (!alloc_rt_sched_group(tg
))
7570 spin_lock_irqsave(&task_group_lock
, flags
);
7571 for_each_possible_cpu(i
) {
7572 register_fair_sched_group(tg
, i
);
7573 register_rt_sched_group(tg
, i
);
7575 list_add_rcu(&tg
->list
, &task_groups
);
7576 spin_unlock_irqrestore(&task_group_lock
, flags
);
7581 free_sched_group(tg
);
7582 return ERR_PTR(-ENOMEM
);
7585 /* rcu callback to free various structures associated with a task group */
7586 static void free_sched_group_rcu(struct rcu_head
*rhp
)
7588 /* now it should be safe to free those cfs_rqs */
7589 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
7592 /* Destroy runqueue etc associated with a task group */
7593 void sched_destroy_group(struct task_group
*tg
)
7595 unsigned long flags
;
7598 spin_lock_irqsave(&task_group_lock
, flags
);
7599 for_each_possible_cpu(i
) {
7600 unregister_fair_sched_group(tg
, i
);
7601 unregister_rt_sched_group(tg
, i
);
7603 list_del_rcu(&tg
->list
);
7604 spin_unlock_irqrestore(&task_group_lock
, flags
);
7606 /* wait for possible concurrent references to cfs_rqs complete */
7607 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
7610 /* change task's runqueue when it moves between groups.
7611 * The caller of this function should have put the task in its new group
7612 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7613 * reflect its new group.
7615 void sched_move_task(struct task_struct
*tsk
)
7618 unsigned long flags
;
7621 rq
= task_rq_lock(tsk
, &flags
);
7623 update_rq_clock(rq
);
7625 running
= task_current(rq
, tsk
);
7626 on_rq
= tsk
->se
.on_rq
;
7629 dequeue_task(rq
, tsk
, 0);
7630 if (unlikely(running
))
7631 tsk
->sched_class
->put_prev_task(rq
, tsk
);
7633 set_task_rq(tsk
, task_cpu(tsk
));
7635 #ifdef CONFIG_FAIR_GROUP_SCHED
7636 if (tsk
->sched_class
->moved_group
)
7637 tsk
->sched_class
->moved_group(tsk
);
7640 if (unlikely(running
))
7641 tsk
->sched_class
->set_curr_task(rq
);
7643 enqueue_task(rq
, tsk
, 0);
7645 task_rq_unlock(rq
, &flags
);
7648 #ifdef CONFIG_FAIR_GROUP_SCHED
7649 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
7651 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
7652 struct rq
*rq
= cfs_rq
->rq
;
7655 spin_lock_irq(&rq
->lock
);
7659 dequeue_entity(cfs_rq
, se
, 0);
7661 se
->load
.weight
= shares
;
7662 se
->load
.inv_weight
= div64_64((1ULL<<32), shares
);
7665 enqueue_entity(cfs_rq
, se
, 0);
7667 spin_unlock_irq(&rq
->lock
);
7670 static DEFINE_MUTEX(shares_mutex
);
7672 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
7675 unsigned long flags
;
7678 * A weight of 0 or 1 can cause arithmetics problems.
7679 * (The default weight is 1024 - so there's no practical
7680 * limitation from this.)
7685 mutex_lock(&shares_mutex
);
7686 if (tg
->shares
== shares
)
7689 spin_lock_irqsave(&task_group_lock
, flags
);
7690 for_each_possible_cpu(i
)
7691 unregister_fair_sched_group(tg
, i
);
7692 spin_unlock_irqrestore(&task_group_lock
, flags
);
7694 /* wait for any ongoing reference to this group to finish */
7695 synchronize_sched();
7698 * Now we are free to modify the group's share on each cpu
7699 * w/o tripping rebalance_share or load_balance_fair.
7701 tg
->shares
= shares
;
7702 for_each_possible_cpu(i
)
7703 set_se_shares(tg
->se
[i
], shares
);
7706 * Enable load balance activity on this group, by inserting it back on
7707 * each cpu's rq->leaf_cfs_rq_list.
7709 spin_lock_irqsave(&task_group_lock
, flags
);
7710 for_each_possible_cpu(i
)
7711 register_fair_sched_group(tg
, i
);
7712 spin_unlock_irqrestore(&task_group_lock
, flags
);
7714 mutex_unlock(&shares_mutex
);
7718 unsigned long sched_group_shares(struct task_group
*tg
)
7724 #ifdef CONFIG_RT_GROUP_SCHED
7726 * Ensure that the real time constraints are schedulable.
7728 static DEFINE_MUTEX(rt_constraints_mutex
);
7730 static unsigned long to_ratio(u64 period
, u64 runtime
)
7732 if (runtime
== RUNTIME_INF
)
7735 return div64_64(runtime
<< 16, period
);
7738 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
7740 struct task_group
*tgi
;
7741 unsigned long total
= 0;
7742 unsigned long global_ratio
=
7743 to_ratio(sysctl_sched_rt_period
,
7744 sysctl_sched_rt_runtime
< 0 ?
7745 RUNTIME_INF
: sysctl_sched_rt_runtime
);
7748 list_for_each_entry_rcu(tgi
, &task_groups
, list
) {
7752 total
+= to_ratio(period
, tgi
->rt_runtime
);
7756 return total
+ to_ratio(period
, runtime
) < global_ratio
;
7759 /* Must be called with tasklist_lock held */
7760 static inline int tg_has_rt_tasks(struct task_group
*tg
)
7762 struct task_struct
*g
, *p
;
7763 do_each_thread(g
, p
) {
7764 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
7766 } while_each_thread(g
, p
);
7770 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
7772 u64 rt_runtime
, rt_period
;
7775 rt_period
= (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
7776 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
7777 if (rt_runtime_us
== -1)
7778 rt_runtime
= RUNTIME_INF
;
7780 mutex_lock(&rt_constraints_mutex
);
7781 read_lock(&tasklist_lock
);
7782 if (rt_runtime_us
== 0 && tg_has_rt_tasks(tg
)) {
7786 if (!__rt_schedulable(tg
, rt_period
, rt_runtime
)) {
7790 tg
->rt_runtime
= rt_runtime
;
7792 read_unlock(&tasklist_lock
);
7793 mutex_unlock(&rt_constraints_mutex
);
7798 long sched_group_rt_runtime(struct task_group
*tg
)
7802 if (tg
->rt_runtime
== RUNTIME_INF
)
7805 rt_runtime_us
= tg
->rt_runtime
;
7806 do_div(rt_runtime_us
, NSEC_PER_USEC
);
7807 return rt_runtime_us
;
7810 #endif /* CONFIG_GROUP_SCHED */
7812 #ifdef CONFIG_CGROUP_SCHED
7814 /* return corresponding task_group object of a cgroup */
7815 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
7817 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
7818 struct task_group
, css
);
7821 static struct cgroup_subsys_state
*
7822 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
7824 struct task_group
*tg
;
7826 if (!cgrp
->parent
) {
7827 /* This is early initialization for the top cgroup */
7828 init_task_group
.css
.cgroup
= cgrp
;
7829 return &init_task_group
.css
;
7832 /* we support only 1-level deep hierarchical scheduler atm */
7833 if (cgrp
->parent
->parent
)
7834 return ERR_PTR(-EINVAL
);
7836 tg
= sched_create_group();
7838 return ERR_PTR(-ENOMEM
);
7840 /* Bind the cgroup to task_group object we just created */
7841 tg
->css
.cgroup
= cgrp
;
7847 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
7849 struct task_group
*tg
= cgroup_tg(cgrp
);
7851 sched_destroy_group(tg
);
7855 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7856 struct task_struct
*tsk
)
7858 #ifdef CONFIG_RT_GROUP_SCHED
7859 /* Don't accept realtime tasks when there is no way for them to run */
7860 if (rt_task(tsk
) && cgroup_tg(cgrp
)->rt_runtime
== 0)
7863 /* We don't support RT-tasks being in separate groups */
7864 if (tsk
->sched_class
!= &fair_sched_class
)
7872 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7873 struct cgroup
*old_cont
, struct task_struct
*tsk
)
7875 sched_move_task(tsk
);
7878 #ifdef CONFIG_FAIR_GROUP_SCHED
7879 static int cpu_shares_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
7882 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
7885 static u64
cpu_shares_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
7887 struct task_group
*tg
= cgroup_tg(cgrp
);
7889 return (u64
) tg
->shares
;
7893 #ifdef CONFIG_RT_GROUP_SCHED
7894 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
7896 const char __user
*userbuf
,
7897 size_t nbytes
, loff_t
*unused_ppos
)
7906 if (nbytes
>= sizeof(buffer
))
7908 if (copy_from_user(buffer
, userbuf
, nbytes
))
7911 buffer
[nbytes
] = 0; /* nul-terminate */
7913 /* strip newline if necessary */
7914 if (nbytes
&& (buffer
[nbytes
-1] == '\n'))
7915 buffer
[nbytes
-1] = 0;
7916 val
= simple_strtoll(buffer
, &end
, 0);
7920 /* Pass to subsystem */
7921 retval
= sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
7927 static ssize_t
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
,
7929 char __user
*buf
, size_t nbytes
,
7933 long val
= sched_group_rt_runtime(cgroup_tg(cgrp
));
7934 int len
= sprintf(tmp
, "%ld\n", val
);
7936 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
7940 static struct cftype cpu_files
[] = {
7941 #ifdef CONFIG_FAIR_GROUP_SCHED
7944 .read_uint
= cpu_shares_read_uint
,
7945 .write_uint
= cpu_shares_write_uint
,
7948 #ifdef CONFIG_RT_GROUP_SCHED
7950 .name
= "rt_runtime_us",
7951 .read
= cpu_rt_runtime_read
,
7952 .write
= cpu_rt_runtime_write
,
7957 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7959 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
7962 struct cgroup_subsys cpu_cgroup_subsys
= {
7964 .create
= cpu_cgroup_create
,
7965 .destroy
= cpu_cgroup_destroy
,
7966 .can_attach
= cpu_cgroup_can_attach
,
7967 .attach
= cpu_cgroup_attach
,
7968 .populate
= cpu_cgroup_populate
,
7969 .subsys_id
= cpu_cgroup_subsys_id
,
7973 #endif /* CONFIG_CGROUP_SCHED */
7975 #ifdef CONFIG_CGROUP_CPUACCT
7978 * CPU accounting code for task groups.
7980 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7981 * (balbir@in.ibm.com).
7984 /* track cpu usage of a group of tasks */
7986 struct cgroup_subsys_state css
;
7987 /* cpuusage holds pointer to a u64-type object on every cpu */
7991 struct cgroup_subsys cpuacct_subsys
;
7993 /* return cpu accounting group corresponding to this container */
7994 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cont
)
7996 return container_of(cgroup_subsys_state(cont
, cpuacct_subsys_id
),
7997 struct cpuacct
, css
);
8000 /* return cpu accounting group to which this task belongs */
8001 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
8003 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
8004 struct cpuacct
, css
);
8007 /* create a new cpu accounting group */
8008 static struct cgroup_subsys_state
*cpuacct_create(
8009 struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8011 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
8014 return ERR_PTR(-ENOMEM
);
8016 ca
->cpuusage
= alloc_percpu(u64
);
8017 if (!ca
->cpuusage
) {
8019 return ERR_PTR(-ENOMEM
);
8025 /* destroy an existing cpu accounting group */
8027 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8029 struct cpuacct
*ca
= cgroup_ca(cont
);
8031 free_percpu(ca
->cpuusage
);
8035 /* return total cpu usage (in nanoseconds) of a group */
8036 static u64
cpuusage_read(struct cgroup
*cont
, struct cftype
*cft
)
8038 struct cpuacct
*ca
= cgroup_ca(cont
);
8039 u64 totalcpuusage
= 0;
8042 for_each_possible_cpu(i
) {
8043 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
8046 * Take rq->lock to make 64-bit addition safe on 32-bit
8049 spin_lock_irq(&cpu_rq(i
)->lock
);
8050 totalcpuusage
+= *cpuusage
;
8051 spin_unlock_irq(&cpu_rq(i
)->lock
);
8054 return totalcpuusage
;
8057 static struct cftype files
[] = {
8060 .read_uint
= cpuusage_read
,
8064 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8066 return cgroup_add_files(cont
, ss
, files
, ARRAY_SIZE(files
));
8070 * charge this task's execution time to its accounting group.
8072 * called with rq->lock held.
8074 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
8078 if (!cpuacct_subsys
.active
)
8083 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, task_cpu(tsk
));
8085 *cpuusage
+= cputime
;
8089 struct cgroup_subsys cpuacct_subsys
= {
8091 .create
= cpuacct_create
,
8092 .destroy
= cpuacct_destroy
,
8093 .populate
= cpuacct_populate
,
8094 .subsys_id
= cpuacct_subsys_id
,
8096 #endif /* CONFIG_CGROUP_CPUACCT */