x86: i8259A: remove redundant irq_descinitialization
[wrt350n-kernel.git] / drivers / net / e1000e / 82571.c
blob3beace55b58d8c25efe1a04a4a6f7ed4b042529b
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Fiber)
32 * 82572EI Gigabit Ethernet Controller (Copper)
33 * 82572EI Gigabit Ethernet Controller (Fiber)
34 * 82572EI Gigabit Ethernet Controller
35 * 82573V Gigabit Ethernet Controller (Copper)
36 * 82573E Gigabit Ethernet Controller (Copper)
37 * 82573L Gigabit Ethernet Controller
40 #include <linux/netdevice.h>
41 #include <linux/delay.h>
42 #include <linux/pci.h>
44 #include "e1000.h"
46 #define ID_LED_RESERVED_F746 0xF746
47 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
48 (ID_LED_OFF1_ON2 << 8) | \
49 (ID_LED_DEF1_DEF2 << 4) | \
50 (ID_LED_DEF1_DEF2))
52 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
54 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
55 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
56 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
57 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
58 u16 words, u16 *data);
59 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
60 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
61 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
62 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
64 /**
65 * e1000_init_phy_params_82571 - Init PHY func ptrs.
66 * @hw: pointer to the HW structure
68 * This is a function pointer entry point called by the api module.
69 **/
70 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
72 struct e1000_phy_info *phy = &hw->phy;
73 s32 ret_val;
75 if (hw->media_type != e1000_media_type_copper) {
76 phy->type = e1000_phy_none;
77 return 0;
80 phy->addr = 1;
81 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
82 phy->reset_delay_us = 100;
84 switch (hw->mac.type) {
85 case e1000_82571:
86 case e1000_82572:
87 phy->type = e1000_phy_igp_2;
88 break;
89 case e1000_82573:
90 phy->type = e1000_phy_m88;
91 break;
92 default:
93 return -E1000_ERR_PHY;
94 break;
97 /* This can only be done after all function pointers are setup. */
98 ret_val = e1000_get_phy_id_82571(hw);
100 /* Verify phy id */
101 switch (hw->mac.type) {
102 case e1000_82571:
103 case e1000_82572:
104 if (phy->id != IGP01E1000_I_PHY_ID)
105 return -E1000_ERR_PHY;
106 break;
107 case e1000_82573:
108 if (phy->id != M88E1111_I_PHY_ID)
109 return -E1000_ERR_PHY;
110 break;
111 default:
112 return -E1000_ERR_PHY;
113 break;
116 return 0;
120 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
121 * @hw: pointer to the HW structure
123 * This is a function pointer entry point called by the api module.
125 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
127 struct e1000_nvm_info *nvm = &hw->nvm;
128 u32 eecd = er32(EECD);
129 u16 size;
131 nvm->opcode_bits = 8;
132 nvm->delay_usec = 1;
133 switch (nvm->override) {
134 case e1000_nvm_override_spi_large:
135 nvm->page_size = 32;
136 nvm->address_bits = 16;
137 break;
138 case e1000_nvm_override_spi_small:
139 nvm->page_size = 8;
140 nvm->address_bits = 8;
141 break;
142 default:
143 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
144 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
145 break;
148 switch (hw->mac.type) {
149 case e1000_82573:
150 if (((eecd >> 15) & 0x3) == 0x3) {
151 nvm->type = e1000_nvm_flash_hw;
152 nvm->word_size = 2048;
153 /* Autonomous Flash update bit must be cleared due
154 * to Flash update issue.
156 eecd &= ~E1000_EECD_AUPDEN;
157 ew32(EECD, eecd);
158 break;
160 /* Fall Through */
161 default:
162 nvm->type = e1000_nvm_eeprom_spi;
163 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
164 E1000_EECD_SIZE_EX_SHIFT);
165 /* Added to a constant, "size" becomes the left-shift value
166 * for setting word_size.
168 size += NVM_WORD_SIZE_BASE_SHIFT;
169 nvm->word_size = 1 << size;
170 break;
173 return 0;
177 * e1000_init_mac_params_82571 - Init MAC func ptrs.
178 * @hw: pointer to the HW structure
180 * This is a function pointer entry point called by the api module.
182 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
184 struct e1000_hw *hw = &adapter->hw;
185 struct e1000_mac_info *mac = &hw->mac;
186 struct e1000_mac_operations *func = &mac->ops;
188 /* Set media type */
189 switch (adapter->pdev->device) {
190 case E1000_DEV_ID_82571EB_FIBER:
191 case E1000_DEV_ID_82572EI_FIBER:
192 case E1000_DEV_ID_82571EB_QUAD_FIBER:
193 hw->media_type = e1000_media_type_fiber;
194 break;
195 case E1000_DEV_ID_82571EB_SERDES:
196 case E1000_DEV_ID_82572EI_SERDES:
197 case E1000_DEV_ID_82571EB_SERDES_DUAL:
198 case E1000_DEV_ID_82571EB_SERDES_QUAD:
199 hw->media_type = e1000_media_type_internal_serdes;
200 break;
201 default:
202 hw->media_type = e1000_media_type_copper;
203 break;
206 /* Set mta register count */
207 mac->mta_reg_count = 128;
208 /* Set rar entry count */
209 mac->rar_entry_count = E1000_RAR_ENTRIES;
210 /* Set if manageability features are enabled. */
211 mac->arc_subsystem_valid =
212 (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
214 /* check for link */
215 switch (hw->media_type) {
216 case e1000_media_type_copper:
217 func->setup_physical_interface = e1000_setup_copper_link_82571;
218 func->check_for_link = e1000e_check_for_copper_link;
219 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
220 break;
221 case e1000_media_type_fiber:
222 func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571;
223 func->check_for_link = e1000e_check_for_fiber_link;
224 func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes;
225 break;
226 case e1000_media_type_internal_serdes:
227 func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571;
228 func->check_for_link = e1000e_check_for_serdes_link;
229 func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes;
230 break;
231 default:
232 return -E1000_ERR_CONFIG;
233 break;
236 return 0;
239 static s32 e1000_get_invariants_82571(struct e1000_adapter *adapter)
241 struct e1000_hw *hw = &adapter->hw;
242 static int global_quad_port_a; /* global port a indication */
243 struct pci_dev *pdev = adapter->pdev;
244 u16 eeprom_data = 0;
245 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
246 s32 rc;
248 rc = e1000_init_mac_params_82571(adapter);
249 if (rc)
250 return rc;
252 rc = e1000_init_nvm_params_82571(hw);
253 if (rc)
254 return rc;
256 rc = e1000_init_phy_params_82571(hw);
257 if (rc)
258 return rc;
260 /* tag quad port adapters first, it's used below */
261 switch (pdev->device) {
262 case E1000_DEV_ID_82571EB_QUAD_COPPER:
263 case E1000_DEV_ID_82571EB_QUAD_FIBER:
264 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
265 case E1000_DEV_ID_82571PT_QUAD_COPPER:
266 adapter->flags |= FLAG_IS_QUAD_PORT;
267 /* mark the first port */
268 if (global_quad_port_a == 0)
269 adapter->flags |= FLAG_IS_QUAD_PORT_A;
270 /* Reset for multiple quad port adapters */
271 global_quad_port_a++;
272 if (global_quad_port_a == 4)
273 global_quad_port_a = 0;
274 break;
275 default:
276 break;
279 switch (adapter->hw.mac.type) {
280 case e1000_82571:
281 /* these dual ports don't have WoL on port B at all */
282 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
283 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
284 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
285 (is_port_b))
286 adapter->flags &= ~FLAG_HAS_WOL;
287 /* quad ports only support WoL on port A */
288 if (adapter->flags & FLAG_IS_QUAD_PORT &&
289 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
290 adapter->flags &= ~FLAG_HAS_WOL;
291 /* Does not support WoL on any port */
292 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
293 adapter->flags &= ~FLAG_HAS_WOL;
294 break;
296 case e1000_82573:
297 if (pdev->device == E1000_DEV_ID_82573L) {
298 e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
299 &eeprom_data);
300 if (eeprom_data & NVM_WORD1A_ASPM_MASK)
301 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
303 break;
304 default:
305 break;
308 return 0;
312 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
313 * @hw: pointer to the HW structure
315 * Reads the PHY registers and stores the PHY ID and possibly the PHY
316 * revision in the hardware structure.
318 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
320 struct e1000_phy_info *phy = &hw->phy;
322 switch (hw->mac.type) {
323 case e1000_82571:
324 case e1000_82572:
325 /* The 82571 firmware may still be configuring the PHY.
326 * In this case, we cannot access the PHY until the
327 * configuration is done. So we explicitly set the
328 * PHY ID. */
329 phy->id = IGP01E1000_I_PHY_ID;
330 break;
331 case e1000_82573:
332 return e1000e_get_phy_id(hw);
333 break;
334 default:
335 return -E1000_ERR_PHY;
336 break;
339 return 0;
343 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
344 * @hw: pointer to the HW structure
346 * Acquire the HW semaphore to access the PHY or NVM
348 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
350 u32 swsm;
351 s32 timeout = hw->nvm.word_size + 1;
352 s32 i = 0;
354 /* Get the FW semaphore. */
355 for (i = 0; i < timeout; i++) {
356 swsm = er32(SWSM);
357 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
359 /* Semaphore acquired if bit latched */
360 if (er32(SWSM) & E1000_SWSM_SWESMBI)
361 break;
363 udelay(50);
366 if (i == timeout) {
367 /* Release semaphores */
368 e1000e_put_hw_semaphore(hw);
369 hw_dbg(hw, "Driver can't access the NVM\n");
370 return -E1000_ERR_NVM;
373 return 0;
377 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
378 * @hw: pointer to the HW structure
380 * Release hardware semaphore used to access the PHY or NVM
382 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
384 u32 swsm;
386 swsm = er32(SWSM);
388 swsm &= ~E1000_SWSM_SWESMBI;
390 ew32(SWSM, swsm);
394 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
395 * @hw: pointer to the HW structure
397 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
398 * Then for non-82573 hardware, set the EEPROM access request bit and wait
399 * for EEPROM access grant bit. If the access grant bit is not set, release
400 * hardware semaphore.
402 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
404 s32 ret_val;
406 ret_val = e1000_get_hw_semaphore_82571(hw);
407 if (ret_val)
408 return ret_val;
410 if (hw->mac.type != e1000_82573)
411 ret_val = e1000e_acquire_nvm(hw);
413 if (ret_val)
414 e1000_put_hw_semaphore_82571(hw);
416 return ret_val;
420 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
421 * @hw: pointer to the HW structure
423 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
425 static void e1000_release_nvm_82571(struct e1000_hw *hw)
427 e1000e_release_nvm(hw);
428 e1000_put_hw_semaphore_82571(hw);
432 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
433 * @hw: pointer to the HW structure
434 * @offset: offset within the EEPROM to be written to
435 * @words: number of words to write
436 * @data: 16 bit word(s) to be written to the EEPROM
438 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
440 * If e1000e_update_nvm_checksum is not called after this function, the
441 * EEPROM will most likley contain an invalid checksum.
443 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
444 u16 *data)
446 s32 ret_val;
448 switch (hw->mac.type) {
449 case e1000_82573:
450 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
451 break;
452 case e1000_82571:
453 case e1000_82572:
454 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
455 break;
456 default:
457 ret_val = -E1000_ERR_NVM;
458 break;
461 return ret_val;
465 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
466 * @hw: pointer to the HW structure
468 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
469 * up to the checksum. Then calculates the EEPROM checksum and writes the
470 * value to the EEPROM.
472 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
474 u32 eecd;
475 s32 ret_val;
476 u16 i;
478 ret_val = e1000e_update_nvm_checksum_generic(hw);
479 if (ret_val)
480 return ret_val;
482 /* If our nvm is an EEPROM, then we're done
483 * otherwise, commit the checksum to the flash NVM. */
484 if (hw->nvm.type != e1000_nvm_flash_hw)
485 return ret_val;
487 /* Check for pending operations. */
488 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
489 msleep(1);
490 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
491 break;
494 if (i == E1000_FLASH_UPDATES)
495 return -E1000_ERR_NVM;
497 /* Reset the firmware if using STM opcode. */
498 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
499 /* The enabling of and the actual reset must be done
500 * in two write cycles.
502 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
503 e1e_flush();
504 ew32(HICR, E1000_HICR_FW_RESET);
507 /* Commit the write to flash */
508 eecd = er32(EECD) | E1000_EECD_FLUPD;
509 ew32(EECD, eecd);
511 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
512 msleep(1);
513 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
514 break;
517 if (i == E1000_FLASH_UPDATES)
518 return -E1000_ERR_NVM;
520 return 0;
524 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
525 * @hw: pointer to the HW structure
527 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
528 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
530 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
532 if (hw->nvm.type == e1000_nvm_flash_hw)
533 e1000_fix_nvm_checksum_82571(hw);
535 return e1000e_validate_nvm_checksum_generic(hw);
539 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
540 * @hw: pointer to the HW structure
541 * @offset: offset within the EEPROM to be written to
542 * @words: number of words to write
543 * @data: 16 bit word(s) to be written to the EEPROM
545 * After checking for invalid values, poll the EEPROM to ensure the previous
546 * command has completed before trying to write the next word. After write
547 * poll for completion.
549 * If e1000e_update_nvm_checksum is not called after this function, the
550 * EEPROM will most likley contain an invalid checksum.
552 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
553 u16 words, u16 *data)
555 struct e1000_nvm_info *nvm = &hw->nvm;
556 u32 i;
557 u32 eewr = 0;
558 s32 ret_val = 0;
560 /* A check for invalid values: offset too large, too many words,
561 * and not enough words. */
562 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
563 (words == 0)) {
564 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
565 return -E1000_ERR_NVM;
568 for (i = 0; i < words; i++) {
569 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
570 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
571 E1000_NVM_RW_REG_START;
573 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
574 if (ret_val)
575 break;
577 ew32(EEWR, eewr);
579 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
580 if (ret_val)
581 break;
584 return ret_val;
588 * e1000_get_cfg_done_82571 - Poll for configuration done
589 * @hw: pointer to the HW structure
591 * Reads the management control register for the config done bit to be set.
593 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
595 s32 timeout = PHY_CFG_TIMEOUT;
597 while (timeout) {
598 if (er32(EEMNGCTL) &
599 E1000_NVM_CFG_DONE_PORT_0)
600 break;
601 msleep(1);
602 timeout--;
604 if (!timeout) {
605 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
606 return -E1000_ERR_RESET;
609 return 0;
613 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
614 * @hw: pointer to the HW structure
615 * @active: TRUE to enable LPLU, FALSE to disable
617 * Sets the LPLU D0 state according to the active flag. When activating LPLU
618 * this function also disables smart speed and vice versa. LPLU will not be
619 * activated unless the device autonegotiation advertisement meets standards
620 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
621 * pointer entry point only called by PHY setup routines.
623 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
625 struct e1000_phy_info *phy = &hw->phy;
626 s32 ret_val;
627 u16 data;
629 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
630 if (ret_val)
631 return ret_val;
633 if (active) {
634 data |= IGP02E1000_PM_D0_LPLU;
635 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
636 if (ret_val)
637 return ret_val;
639 /* When LPLU is enabled, we should disable SmartSpeed */
640 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
641 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
642 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
643 if (ret_val)
644 return ret_val;
645 } else {
646 data &= ~IGP02E1000_PM_D0_LPLU;
647 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
648 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
649 * during Dx states where the power conservation is most
650 * important. During driver activity we should enable
651 * SmartSpeed, so performance is maintained. */
652 if (phy->smart_speed == e1000_smart_speed_on) {
653 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
654 &data);
655 if (ret_val)
656 return ret_val;
658 data |= IGP01E1000_PSCFR_SMART_SPEED;
659 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
660 data);
661 if (ret_val)
662 return ret_val;
663 } else if (phy->smart_speed == e1000_smart_speed_off) {
664 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
665 &data);
666 if (ret_val)
667 return ret_val;
669 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
670 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
671 data);
672 if (ret_val)
673 return ret_val;
677 return 0;
681 * e1000_reset_hw_82571 - Reset hardware
682 * @hw: pointer to the HW structure
684 * This resets the hardware into a known state. This is a
685 * function pointer entry point called by the api module.
687 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
689 u32 ctrl;
690 u32 extcnf_ctrl;
691 u32 ctrl_ext;
692 u32 icr;
693 s32 ret_val;
694 u16 i = 0;
696 /* Prevent the PCI-E bus from sticking if there is no TLP connection
697 * on the last TLP read/write transaction when MAC is reset.
699 ret_val = e1000e_disable_pcie_master(hw);
700 if (ret_val)
701 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
703 hw_dbg(hw, "Masking off all interrupts\n");
704 ew32(IMC, 0xffffffff);
706 ew32(RCTL, 0);
707 ew32(TCTL, E1000_TCTL_PSP);
708 e1e_flush();
710 msleep(10);
712 /* Must acquire the MDIO ownership before MAC reset.
713 * Ownership defaults to firmware after a reset. */
714 if (hw->mac.type == e1000_82573) {
715 extcnf_ctrl = er32(EXTCNF_CTRL);
716 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
718 do {
719 ew32(EXTCNF_CTRL, extcnf_ctrl);
720 extcnf_ctrl = er32(EXTCNF_CTRL);
722 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
723 break;
725 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
727 msleep(2);
728 i++;
729 } while (i < MDIO_OWNERSHIP_TIMEOUT);
732 ctrl = er32(CTRL);
734 hw_dbg(hw, "Issuing a global reset to MAC\n");
735 ew32(CTRL, ctrl | E1000_CTRL_RST);
737 if (hw->nvm.type == e1000_nvm_flash_hw) {
738 udelay(10);
739 ctrl_ext = er32(CTRL_EXT);
740 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
741 ew32(CTRL_EXT, ctrl_ext);
742 e1e_flush();
745 ret_val = e1000e_get_auto_rd_done(hw);
746 if (ret_val)
747 /* We don't want to continue accessing MAC registers. */
748 return ret_val;
750 /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
751 * Need to wait for Phy configuration completion before accessing
752 * NVM and Phy.
754 if (hw->mac.type == e1000_82573)
755 msleep(25);
757 /* Clear any pending interrupt events. */
758 ew32(IMC, 0xffffffff);
759 icr = er32(ICR);
761 if (hw->mac.type == e1000_82571 &&
762 hw->dev_spec.e82571.alt_mac_addr_is_present)
763 e1000e_set_laa_state_82571(hw, true);
765 return 0;
769 * e1000_init_hw_82571 - Initialize hardware
770 * @hw: pointer to the HW structure
772 * This inits the hardware readying it for operation.
774 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
776 struct e1000_mac_info *mac = &hw->mac;
777 u32 reg_data;
778 s32 ret_val;
779 u16 i;
780 u16 rar_count = mac->rar_entry_count;
782 e1000_initialize_hw_bits_82571(hw);
784 /* Initialize identification LED */
785 ret_val = e1000e_id_led_init(hw);
786 if (ret_val) {
787 hw_dbg(hw, "Error initializing identification LED\n");
788 return ret_val;
791 /* Disabling VLAN filtering */
792 hw_dbg(hw, "Initializing the IEEE VLAN\n");
793 e1000e_clear_vfta(hw);
795 /* Setup the receive address. */
796 /* If, however, a locally administered address was assigned to the
797 * 82571, we must reserve a RAR for it to work around an issue where
798 * resetting one port will reload the MAC on the other port.
800 if (e1000e_get_laa_state_82571(hw))
801 rar_count--;
802 e1000e_init_rx_addrs(hw, rar_count);
804 /* Zero out the Multicast HASH table */
805 hw_dbg(hw, "Zeroing the MTA\n");
806 for (i = 0; i < mac->mta_reg_count; i++)
807 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
809 /* Setup link and flow control */
810 ret_val = e1000_setup_link_82571(hw);
812 /* Set the transmit descriptor write-back policy */
813 reg_data = er32(TXDCTL);
814 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
815 E1000_TXDCTL_FULL_TX_DESC_WB |
816 E1000_TXDCTL_COUNT_DESC;
817 ew32(TXDCTL, reg_data);
819 /* ...for both queues. */
820 if (mac->type != e1000_82573) {
821 reg_data = er32(TXDCTL1);
822 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
823 E1000_TXDCTL_FULL_TX_DESC_WB |
824 E1000_TXDCTL_COUNT_DESC;
825 ew32(TXDCTL1, reg_data);
826 } else {
827 e1000e_enable_tx_pkt_filtering(hw);
828 reg_data = er32(GCR);
829 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
830 ew32(GCR, reg_data);
833 /* Clear all of the statistics registers (clear on read). It is
834 * important that we do this after we have tried to establish link
835 * because the symbol error count will increment wildly if there
836 * is no link.
838 e1000_clear_hw_cntrs_82571(hw);
840 return ret_val;
844 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
845 * @hw: pointer to the HW structure
847 * Initializes required hardware-dependent bits needed for normal operation.
849 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
851 u32 reg;
853 /* Transmit Descriptor Control 0 */
854 reg = er32(TXDCTL);
855 reg |= (1 << 22);
856 ew32(TXDCTL, reg);
858 /* Transmit Descriptor Control 1 */
859 reg = er32(TXDCTL1);
860 reg |= (1 << 22);
861 ew32(TXDCTL1, reg);
863 /* Transmit Arbitration Control 0 */
864 reg = er32(TARC0);
865 reg &= ~(0xF << 27); /* 30:27 */
866 switch (hw->mac.type) {
867 case e1000_82571:
868 case e1000_82572:
869 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
870 break;
871 default:
872 break;
874 ew32(TARC0, reg);
876 /* Transmit Arbitration Control 1 */
877 reg = er32(TARC1);
878 switch (hw->mac.type) {
879 case e1000_82571:
880 case e1000_82572:
881 reg &= ~((1 << 29) | (1 << 30));
882 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
883 if (er32(TCTL) & E1000_TCTL_MULR)
884 reg &= ~(1 << 28);
885 else
886 reg |= (1 << 28);
887 ew32(TARC1, reg);
888 break;
889 default:
890 break;
893 /* Device Control */
894 if (hw->mac.type == e1000_82573) {
895 reg = er32(CTRL);
896 reg &= ~(1 << 29);
897 ew32(CTRL, reg);
900 /* Extended Device Control */
901 if (hw->mac.type == e1000_82573) {
902 reg = er32(CTRL_EXT);
903 reg &= ~(1 << 23);
904 reg |= (1 << 22);
905 ew32(CTRL_EXT, reg);
910 * e1000e_clear_vfta - Clear VLAN filter table
911 * @hw: pointer to the HW structure
913 * Clears the register array which contains the VLAN filter table by
914 * setting all the values to 0.
916 void e1000e_clear_vfta(struct e1000_hw *hw)
918 u32 offset;
919 u32 vfta_value = 0;
920 u32 vfta_offset = 0;
921 u32 vfta_bit_in_reg = 0;
923 if (hw->mac.type == e1000_82573) {
924 if (hw->mng_cookie.vlan_id != 0) {
925 /* The VFTA is a 4096b bit-field, each identifying
926 * a single VLAN ID. The following operations
927 * determine which 32b entry (i.e. offset) into the
928 * array we want to set the VLAN ID (i.e. bit) of
929 * the manageability unit.
931 vfta_offset = (hw->mng_cookie.vlan_id >>
932 E1000_VFTA_ENTRY_SHIFT) &
933 E1000_VFTA_ENTRY_MASK;
934 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
935 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
938 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
939 /* If the offset we want to clear is the same offset of the
940 * manageability VLAN ID, then clear all bits except that of
941 * the manageability unit.
943 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
944 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
945 e1e_flush();
950 * e1000_mc_addr_list_update_82571 - Update Multicast addresses
951 * @hw: pointer to the HW structure
952 * @mc_addr_list: array of multicast addresses to program
953 * @mc_addr_count: number of multicast addresses to program
954 * @rar_used_count: the first RAR register free to program
955 * @rar_count: total number of supported Receive Address Registers
957 * Updates the Receive Address Registers and Multicast Table Array.
958 * The caller must have a packed mc_addr_list of multicast addresses.
959 * The parameter rar_count will usually be hw->mac.rar_entry_count
960 * unless there are workarounds that change this.
962 static void e1000_mc_addr_list_update_82571(struct e1000_hw *hw,
963 u8 *mc_addr_list,
964 u32 mc_addr_count,
965 u32 rar_used_count,
966 u32 rar_count)
968 if (e1000e_get_laa_state_82571(hw))
969 rar_count--;
971 e1000e_mc_addr_list_update_generic(hw, mc_addr_list, mc_addr_count,
972 rar_used_count, rar_count);
976 * e1000_setup_link_82571 - Setup flow control and link settings
977 * @hw: pointer to the HW structure
979 * Determines which flow control settings to use, then configures flow
980 * control. Calls the appropriate media-specific link configuration
981 * function. Assuming the adapter has a valid link partner, a valid link
982 * should be established. Assumes the hardware has previously been reset
983 * and the transmitter and receiver are not enabled.
985 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
987 /* 82573 does not have a word in the NVM to determine
988 * the default flow control setting, so we explicitly
989 * set it to full.
991 if (hw->mac.type == e1000_82573)
992 hw->mac.fc = e1000_fc_full;
994 return e1000e_setup_link(hw);
998 * e1000_setup_copper_link_82571 - Configure copper link settings
999 * @hw: pointer to the HW structure
1001 * Configures the link for auto-neg or forced speed and duplex. Then we check
1002 * for link, once link is established calls to configure collision distance
1003 * and flow control are called.
1005 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1007 u32 ctrl;
1008 u32 led_ctrl;
1009 s32 ret_val;
1011 ctrl = er32(CTRL);
1012 ctrl |= E1000_CTRL_SLU;
1013 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1014 ew32(CTRL, ctrl);
1016 switch (hw->phy.type) {
1017 case e1000_phy_m88:
1018 ret_val = e1000e_copper_link_setup_m88(hw);
1019 break;
1020 case e1000_phy_igp_2:
1021 ret_val = e1000e_copper_link_setup_igp(hw);
1022 /* Setup activity LED */
1023 led_ctrl = er32(LEDCTL);
1024 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1025 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1026 ew32(LEDCTL, led_ctrl);
1027 break;
1028 default:
1029 return -E1000_ERR_PHY;
1030 break;
1033 if (ret_val)
1034 return ret_val;
1036 ret_val = e1000e_setup_copper_link(hw);
1038 return ret_val;
1042 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1043 * @hw: pointer to the HW structure
1045 * Configures collision distance and flow control for fiber and serdes links.
1046 * Upon successful setup, poll for link.
1048 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1050 switch (hw->mac.type) {
1051 case e1000_82571:
1052 case e1000_82572:
1053 /* If SerDes loopback mode is entered, there is no form
1054 * of reset to take the adapter out of that mode. So we
1055 * have to explicitly take the adapter out of loopback
1056 * mode. This prevents drivers from twidling their thumbs
1057 * if another tool failed to take it out of loopback mode.
1059 ew32(SCTL,
1060 E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1061 break;
1062 default:
1063 break;
1066 return e1000e_setup_fiber_serdes_link(hw);
1070 * e1000_valid_led_default_82571 - Verify a valid default LED config
1071 * @hw: pointer to the HW structure
1072 * @data: pointer to the NVM (EEPROM)
1074 * Read the EEPROM for the current default LED configuration. If the
1075 * LED configuration is not valid, set to a valid LED configuration.
1077 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1079 s32 ret_val;
1081 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1082 if (ret_val) {
1083 hw_dbg(hw, "NVM Read Error\n");
1084 return ret_val;
1087 if (hw->mac.type == e1000_82573 &&
1088 *data == ID_LED_RESERVED_F746)
1089 *data = ID_LED_DEFAULT_82573;
1090 else if (*data == ID_LED_RESERVED_0000 ||
1091 *data == ID_LED_RESERVED_FFFF)
1092 *data = ID_LED_DEFAULT;
1094 return 0;
1098 * e1000e_get_laa_state_82571 - Get locally administered address state
1099 * @hw: pointer to the HW structure
1101 * Retrieve and return the current locally administed address state.
1103 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1105 if (hw->mac.type != e1000_82571)
1106 return 0;
1108 return hw->dev_spec.e82571.laa_is_present;
1112 * e1000e_set_laa_state_82571 - Set locally administered address state
1113 * @hw: pointer to the HW structure
1114 * @state: enable/disable locally administered address
1116 * Enable/Disable the current locally administed address state.
1118 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1120 if (hw->mac.type != e1000_82571)
1121 return;
1123 hw->dev_spec.e82571.laa_is_present = state;
1125 /* If workaround is activated... */
1126 if (state)
1127 /* Hold a copy of the LAA in RAR[14] This is done so that
1128 * between the time RAR[0] gets clobbered and the time it
1129 * gets fixed, the actual LAA is in one of the RARs and no
1130 * incoming packets directed to this port are dropped.
1131 * Eventually the LAA will be in RAR[0] and RAR[14].
1133 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1137 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1138 * @hw: pointer to the HW structure
1140 * Verifies that the EEPROM has completed the update. After updating the
1141 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1142 * the checksum fix is not implemented, we need to set the bit and update
1143 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1144 * we need to return bad checksum.
1146 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1148 struct e1000_nvm_info *nvm = &hw->nvm;
1149 s32 ret_val;
1150 u16 data;
1152 if (nvm->type != e1000_nvm_flash_hw)
1153 return 0;
1155 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
1156 * 10h-12h. Checksum may need to be fixed.
1158 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1159 if (ret_val)
1160 return ret_val;
1162 if (!(data & 0x10)) {
1163 /* Read 0x23 and check bit 15. This bit is a 1
1164 * when the checksum has already been fixed. If
1165 * the checksum is still wrong and this bit is a
1166 * 1, we need to return bad checksum. Otherwise,
1167 * we need to set this bit to a 1 and update the
1168 * checksum.
1170 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1171 if (ret_val)
1172 return ret_val;
1174 if (!(data & 0x8000)) {
1175 data |= 0x8000;
1176 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1177 if (ret_val)
1178 return ret_val;
1179 ret_val = e1000e_update_nvm_checksum(hw);
1183 return 0;
1187 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1188 * @hw: pointer to the HW structure
1190 * Clears the hardware counters by reading the counter registers.
1192 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1194 u32 temp;
1196 e1000e_clear_hw_cntrs_base(hw);
1198 temp = er32(PRC64);
1199 temp = er32(PRC127);
1200 temp = er32(PRC255);
1201 temp = er32(PRC511);
1202 temp = er32(PRC1023);
1203 temp = er32(PRC1522);
1204 temp = er32(PTC64);
1205 temp = er32(PTC127);
1206 temp = er32(PTC255);
1207 temp = er32(PTC511);
1208 temp = er32(PTC1023);
1209 temp = er32(PTC1522);
1211 temp = er32(ALGNERRC);
1212 temp = er32(RXERRC);
1213 temp = er32(TNCRS);
1214 temp = er32(CEXTERR);
1215 temp = er32(TSCTC);
1216 temp = er32(TSCTFC);
1218 temp = er32(MGTPRC);
1219 temp = er32(MGTPDC);
1220 temp = er32(MGTPTC);
1222 temp = er32(IAC);
1223 temp = er32(ICRXOC);
1225 temp = er32(ICRXPTC);
1226 temp = er32(ICRXATC);
1227 temp = er32(ICTXPTC);
1228 temp = er32(ICTXATC);
1229 temp = er32(ICTXQEC);
1230 temp = er32(ICTXQMTC);
1231 temp = er32(ICRXDMTC);
1234 static struct e1000_mac_operations e82571_mac_ops = {
1235 .mng_mode_enab = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
1236 /* .check_for_link: media type dependent */
1237 .cleanup_led = e1000e_cleanup_led_generic,
1238 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1239 .get_bus_info = e1000e_get_bus_info_pcie,
1240 /* .get_link_up_info: media type dependent */
1241 .led_on = e1000e_led_on_generic,
1242 .led_off = e1000e_led_off_generic,
1243 .mc_addr_list_update = e1000_mc_addr_list_update_82571,
1244 .reset_hw = e1000_reset_hw_82571,
1245 .init_hw = e1000_init_hw_82571,
1246 .setup_link = e1000_setup_link_82571,
1247 /* .setup_physical_interface: media type dependent */
1250 static struct e1000_phy_operations e82_phy_ops_igp = {
1251 .acquire_phy = e1000_get_hw_semaphore_82571,
1252 .check_reset_block = e1000e_check_reset_block_generic,
1253 .commit_phy = NULL,
1254 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1255 .get_cfg_done = e1000_get_cfg_done_82571,
1256 .get_cable_length = e1000e_get_cable_length_igp_2,
1257 .get_phy_info = e1000e_get_phy_info_igp,
1258 .read_phy_reg = e1000e_read_phy_reg_igp,
1259 .release_phy = e1000_put_hw_semaphore_82571,
1260 .reset_phy = e1000e_phy_hw_reset_generic,
1261 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1262 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1263 .write_phy_reg = e1000e_write_phy_reg_igp,
1266 static struct e1000_phy_operations e82_phy_ops_m88 = {
1267 .acquire_phy = e1000_get_hw_semaphore_82571,
1268 .check_reset_block = e1000e_check_reset_block_generic,
1269 .commit_phy = e1000e_phy_sw_reset,
1270 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1271 .get_cfg_done = e1000e_get_cfg_done,
1272 .get_cable_length = e1000e_get_cable_length_m88,
1273 .get_phy_info = e1000e_get_phy_info_m88,
1274 .read_phy_reg = e1000e_read_phy_reg_m88,
1275 .release_phy = e1000_put_hw_semaphore_82571,
1276 .reset_phy = e1000e_phy_hw_reset_generic,
1277 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1278 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1279 .write_phy_reg = e1000e_write_phy_reg_m88,
1282 static struct e1000_nvm_operations e82571_nvm_ops = {
1283 .acquire_nvm = e1000_acquire_nvm_82571,
1284 .read_nvm = e1000e_read_nvm_spi,
1285 .release_nvm = e1000_release_nvm_82571,
1286 .update_nvm = e1000_update_nvm_checksum_82571,
1287 .valid_led_default = e1000_valid_led_default_82571,
1288 .validate_nvm = e1000_validate_nvm_checksum_82571,
1289 .write_nvm = e1000_write_nvm_82571,
1292 static struct e1000_nvm_operations e82573_nvm_ops = {
1293 .acquire_nvm = e1000_acquire_nvm_82571,
1294 .read_nvm = e1000e_read_nvm_eerd,
1295 .release_nvm = e1000_release_nvm_82571,
1296 .update_nvm = e1000_update_nvm_checksum_82571,
1297 .valid_led_default = e1000_valid_led_default_82571,
1298 .validate_nvm = e1000_validate_nvm_checksum_82571,
1299 .write_nvm = e1000_write_nvm_82571,
1302 struct e1000_info e1000_82571_info = {
1303 .mac = e1000_82571,
1304 .flags = FLAG_HAS_HW_VLAN_FILTER
1305 | FLAG_HAS_JUMBO_FRAMES
1306 | FLAG_HAS_STATS_PTC_PRC
1307 | FLAG_HAS_WOL
1308 | FLAG_APME_IN_CTRL3
1309 | FLAG_RX_CSUM_ENABLED
1310 | FLAG_HAS_CTRLEXT_ON_LOAD
1311 | FLAG_HAS_STATS_ICR_ICT
1312 | FLAG_HAS_SMART_POWER_DOWN
1313 | FLAG_RESET_OVERWRITES_LAA /* errata */
1314 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1315 | FLAG_APME_CHECK_PORT_B,
1316 .pba = 38,
1317 .get_invariants = e1000_get_invariants_82571,
1318 .mac_ops = &e82571_mac_ops,
1319 .phy_ops = &e82_phy_ops_igp,
1320 .nvm_ops = &e82571_nvm_ops,
1323 struct e1000_info e1000_82572_info = {
1324 .mac = e1000_82572,
1325 .flags = FLAG_HAS_HW_VLAN_FILTER
1326 | FLAG_HAS_JUMBO_FRAMES
1327 | FLAG_HAS_STATS_PTC_PRC
1328 | FLAG_HAS_WOL
1329 | FLAG_APME_IN_CTRL3
1330 | FLAG_RX_CSUM_ENABLED
1331 | FLAG_HAS_CTRLEXT_ON_LOAD
1332 | FLAG_HAS_STATS_ICR_ICT
1333 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1334 .pba = 38,
1335 .get_invariants = e1000_get_invariants_82571,
1336 .mac_ops = &e82571_mac_ops,
1337 .phy_ops = &e82_phy_ops_igp,
1338 .nvm_ops = &e82571_nvm_ops,
1341 struct e1000_info e1000_82573_info = {
1342 .mac = e1000_82573,
1343 .flags = FLAG_HAS_HW_VLAN_FILTER
1344 | FLAG_HAS_JUMBO_FRAMES
1345 | FLAG_HAS_STATS_PTC_PRC
1346 | FLAG_HAS_WOL
1347 | FLAG_APME_IN_CTRL3
1348 | FLAG_RX_CSUM_ENABLED
1349 | FLAG_HAS_STATS_ICR_ICT
1350 | FLAG_HAS_SMART_POWER_DOWN
1351 | FLAG_HAS_AMT
1352 | FLAG_HAS_ERT
1353 | FLAG_HAS_SWSM_ON_LOAD,
1354 .pba = 20,
1355 .get_invariants = e1000_get_invariants_82571,
1356 .mac_ops = &e82571_mac_ops,
1357 .phy_ops = &e82_phy_ops_m88,
1358 .nvm_ops = &e82573_nvm_ops,