2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
37 unsigned int sysctl_sched_latency
= 20000000ULL;
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
43 unsigned int sysctl_sched_min_granularity
= 4000000ULL;
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
48 static unsigned int sched_nr_latency
= 5;
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
54 const_debug
unsigned int sysctl_sched_child_runs_first
= 1;
57 * sys_sched_yield() compat mode
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
62 unsigned int __read_mostly sysctl_sched_compat_yield
;
65 * SCHED_BATCH wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
72 unsigned int sysctl_sched_batch_wakeup_granularity
= 10000000UL;
75 * SCHED_OTHER wake-up granularity.
76 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
82 unsigned int sysctl_sched_wakeup_granularity
= 10000000UL;
84 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
86 /**************************************************************
87 * CFS operations on generic schedulable entities:
90 #ifdef CONFIG_FAIR_GROUP_SCHED
92 /* cpu runqueue to which this cfs_rq is attached */
93 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
98 /* An entity is a task if it doesn't "own" a runqueue */
99 #define entity_is_task(se) (!se->my_q)
101 #else /* CONFIG_FAIR_GROUP_SCHED */
103 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
105 return container_of(cfs_rq
, struct rq
, cfs
);
108 #define entity_is_task(se) 1
110 #endif /* CONFIG_FAIR_GROUP_SCHED */
112 static inline struct task_struct
*task_of(struct sched_entity
*se
)
114 return container_of(se
, struct task_struct
, se
);
118 /**************************************************************
119 * Scheduling class tree data structure manipulation methods:
122 static inline u64
max_vruntime(u64 min_vruntime
, u64 vruntime
)
124 s64 delta
= (s64
)(vruntime
- min_vruntime
);
126 min_vruntime
= vruntime
;
131 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
133 s64 delta
= (s64
)(vruntime
- min_vruntime
);
135 min_vruntime
= vruntime
;
140 static inline s64
entity_key(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
142 return se
->vruntime
- cfs_rq
->min_vruntime
;
146 * Enqueue an entity into the rb-tree:
148 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
150 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
151 struct rb_node
*parent
= NULL
;
152 struct sched_entity
*entry
;
153 s64 key
= entity_key(cfs_rq
, se
);
157 * Find the right place in the rbtree:
161 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
163 * We dont care about collisions. Nodes with
164 * the same key stay together.
166 if (key
< entity_key(cfs_rq
, entry
)) {
167 link
= &parent
->rb_left
;
169 link
= &parent
->rb_right
;
175 * Maintain a cache of leftmost tree entries (it is frequently
179 cfs_rq
->rb_leftmost
= &se
->run_node
;
181 rb_link_node(&se
->run_node
, parent
, link
);
182 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
185 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
187 if (cfs_rq
->rb_leftmost
== &se
->run_node
)
188 cfs_rq
->rb_leftmost
= rb_next(&se
->run_node
);
190 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
193 static inline struct rb_node
*first_fair(struct cfs_rq
*cfs_rq
)
195 return cfs_rq
->rb_leftmost
;
198 static struct sched_entity
*__pick_next_entity(struct cfs_rq
*cfs_rq
)
200 return rb_entry(first_fair(cfs_rq
), struct sched_entity
, run_node
);
203 static inline struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
205 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
210 return rb_entry(last
, struct sched_entity
, run_node
);
213 /**************************************************************
214 * Scheduling class statistics methods:
217 #ifdef CONFIG_SCHED_DEBUG
218 int sched_nr_latency_handler(struct ctl_table
*table
, int write
,
219 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
222 int ret
= proc_dointvec_minmax(table
, write
, filp
, buffer
, lenp
, ppos
);
227 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
228 sysctl_sched_min_granularity
);
235 * The idea is to set a period in which each task runs once.
237 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
238 * this period because otherwise the slices get too small.
240 * p = (nr <= nl) ? l : l*nr/nl
242 static u64
__sched_period(unsigned long nr_running
)
244 u64 period
= sysctl_sched_latency
;
245 unsigned long nr_latency
= sched_nr_latency
;
247 if (unlikely(nr_running
> nr_latency
)) {
248 period
= sysctl_sched_min_granularity
;
249 period
*= nr_running
;
256 * We calculate the wall-time slice from the period by taking a part
257 * proportional to the weight.
261 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
263 u64 slice
= __sched_period(cfs_rq
->nr_running
);
265 slice
*= se
->load
.weight
;
266 do_div(slice
, cfs_rq
->load
.weight
);
272 * We calculate the vruntime slice.
276 static u64
__sched_vslice(unsigned long rq_weight
, unsigned long nr_running
)
278 u64 vslice
= __sched_period(nr_running
);
280 vslice
*= NICE_0_LOAD
;
281 do_div(vslice
, rq_weight
);
286 static u64
sched_vslice(struct cfs_rq
*cfs_rq
)
288 return __sched_vslice(cfs_rq
->load
.weight
, cfs_rq
->nr_running
);
291 static u64
sched_vslice_add(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
293 return __sched_vslice(cfs_rq
->load
.weight
+ se
->load
.weight
,
294 cfs_rq
->nr_running
+ 1);
298 * Update the current task's runtime statistics. Skip current tasks that
299 * are not in our scheduling class.
302 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
303 unsigned long delta_exec
)
305 unsigned long delta_exec_weighted
;
308 schedstat_set(curr
->exec_max
, max((u64
)delta_exec
, curr
->exec_max
));
310 curr
->sum_exec_runtime
+= delta_exec
;
311 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
312 delta_exec_weighted
= delta_exec
;
313 if (unlikely(curr
->load
.weight
!= NICE_0_LOAD
)) {
314 delta_exec_weighted
= calc_delta_fair(delta_exec_weighted
,
317 curr
->vruntime
+= delta_exec_weighted
;
320 * maintain cfs_rq->min_vruntime to be a monotonic increasing
321 * value tracking the leftmost vruntime in the tree.
323 if (first_fair(cfs_rq
)) {
324 vruntime
= min_vruntime(curr
->vruntime
,
325 __pick_next_entity(cfs_rq
)->vruntime
);
327 vruntime
= curr
->vruntime
;
329 cfs_rq
->min_vruntime
=
330 max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
333 static void update_curr(struct cfs_rq
*cfs_rq
)
335 struct sched_entity
*curr
= cfs_rq
->curr
;
336 u64 now
= rq_of(cfs_rq
)->clock
;
337 unsigned long delta_exec
;
343 * Get the amount of time the current task was running
344 * since the last time we changed load (this cannot
345 * overflow on 32 bits):
347 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
349 __update_curr(cfs_rq
, curr
, delta_exec
);
350 curr
->exec_start
= now
;
352 if (entity_is_task(curr
)) {
353 struct task_struct
*curtask
= task_of(curr
);
355 cpuacct_charge(curtask
, delta_exec
);
360 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
362 schedstat_set(se
->wait_start
, rq_of(cfs_rq
)->clock
);
366 * Task is being enqueued - update stats:
368 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
371 * Are we enqueueing a waiting task? (for current tasks
372 * a dequeue/enqueue event is a NOP)
374 if (se
!= cfs_rq
->curr
)
375 update_stats_wait_start(cfs_rq
, se
);
379 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
381 schedstat_set(se
->wait_max
, max(se
->wait_max
,
382 rq_of(cfs_rq
)->clock
- se
->wait_start
));
383 schedstat_set(se
->wait_count
, se
->wait_count
+ 1);
384 schedstat_set(se
->wait_sum
, se
->wait_sum
+
385 rq_of(cfs_rq
)->clock
- se
->wait_start
);
386 schedstat_set(se
->wait_start
, 0);
390 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
393 * Mark the end of the wait period if dequeueing a
396 if (se
!= cfs_rq
->curr
)
397 update_stats_wait_end(cfs_rq
, se
);
401 * We are picking a new current task - update its stats:
404 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
407 * We are starting a new run period:
409 se
->exec_start
= rq_of(cfs_rq
)->clock
;
412 /**************************************************
413 * Scheduling class queueing methods:
417 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
419 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
420 cfs_rq
->nr_running
++;
425 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
427 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
428 cfs_rq
->nr_running
--;
432 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
434 #ifdef CONFIG_SCHEDSTATS
435 if (se
->sleep_start
) {
436 u64 delta
= rq_of(cfs_rq
)->clock
- se
->sleep_start
;
437 struct task_struct
*tsk
= task_of(se
);
442 if (unlikely(delta
> se
->sleep_max
))
443 se
->sleep_max
= delta
;
446 se
->sum_sleep_runtime
+= delta
;
448 account_scheduler_latency(tsk
, delta
>> 10, 1);
450 if (se
->block_start
) {
451 u64 delta
= rq_of(cfs_rq
)->clock
- se
->block_start
;
452 struct task_struct
*tsk
= task_of(se
);
457 if (unlikely(delta
> se
->block_max
))
458 se
->block_max
= delta
;
461 se
->sum_sleep_runtime
+= delta
;
464 * Blocking time is in units of nanosecs, so shift by 20 to
465 * get a milliseconds-range estimation of the amount of
466 * time that the task spent sleeping:
468 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
470 profile_hits(SLEEP_PROFILING
, (void *)get_wchan(tsk
),
473 account_scheduler_latency(tsk
, delta
>> 10, 0);
478 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
480 #ifdef CONFIG_SCHED_DEBUG
481 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
486 if (d
> 3*sysctl_sched_latency
)
487 schedstat_inc(cfs_rq
, nr_spread_over
);
492 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
496 vruntime
= cfs_rq
->min_vruntime
;
498 if (sched_feat(TREE_AVG
)) {
499 struct sched_entity
*last
= __pick_last_entity(cfs_rq
);
501 vruntime
+= last
->vruntime
;
504 } else if (sched_feat(APPROX_AVG
) && cfs_rq
->nr_running
)
505 vruntime
+= sched_vslice(cfs_rq
)/2;
508 * The 'current' period is already promised to the current tasks,
509 * however the extra weight of the new task will slow them down a
510 * little, place the new task so that it fits in the slot that
511 * stays open at the end.
513 if (initial
&& sched_feat(START_DEBIT
))
514 vruntime
+= sched_vslice_add(cfs_rq
, se
);
517 /* sleeps upto a single latency don't count. */
518 if (sched_feat(NEW_FAIR_SLEEPERS
))
519 vruntime
-= sysctl_sched_latency
;
521 /* ensure we never gain time by being placed backwards. */
522 vruntime
= max_vruntime(se
->vruntime
, vruntime
);
525 se
->vruntime
= vruntime
;
529 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int wakeup
)
532 * Update run-time statistics of the 'current'.
537 place_entity(cfs_rq
, se
, 0);
538 enqueue_sleeper(cfs_rq
, se
);
541 update_stats_enqueue(cfs_rq
, se
);
542 check_spread(cfs_rq
, se
);
543 if (se
!= cfs_rq
->curr
)
544 __enqueue_entity(cfs_rq
, se
);
545 account_entity_enqueue(cfs_rq
, se
);
549 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int sleep
)
552 * Update run-time statistics of the 'current'.
556 update_stats_dequeue(cfs_rq
, se
);
558 #ifdef CONFIG_SCHEDSTATS
559 if (entity_is_task(se
)) {
560 struct task_struct
*tsk
= task_of(se
);
562 if (tsk
->state
& TASK_INTERRUPTIBLE
)
563 se
->sleep_start
= rq_of(cfs_rq
)->clock
;
564 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
565 se
->block_start
= rq_of(cfs_rq
)->clock
;
570 if (se
!= cfs_rq
->curr
)
571 __dequeue_entity(cfs_rq
, se
);
572 account_entity_dequeue(cfs_rq
, se
);
576 * Preempt the current task with a newly woken task if needed:
579 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
581 unsigned long ideal_runtime
, delta_exec
;
583 ideal_runtime
= sched_slice(cfs_rq
, curr
);
584 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
585 if (delta_exec
> ideal_runtime
)
586 resched_task(rq_of(cfs_rq
)->curr
);
590 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
592 /* 'current' is not kept within the tree. */
595 * Any task has to be enqueued before it get to execute on
596 * a CPU. So account for the time it spent waiting on the
599 update_stats_wait_end(cfs_rq
, se
);
600 __dequeue_entity(cfs_rq
, se
);
603 update_stats_curr_start(cfs_rq
, se
);
605 #ifdef CONFIG_SCHEDSTATS
607 * Track our maximum slice length, if the CPU's load is at
608 * least twice that of our own weight (i.e. dont track it
609 * when there are only lesser-weight tasks around):
611 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
612 se
->slice_max
= max(se
->slice_max
,
613 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
616 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
619 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
621 struct sched_entity
*se
= NULL
;
623 if (first_fair(cfs_rq
)) {
624 se
= __pick_next_entity(cfs_rq
);
625 set_next_entity(cfs_rq
, se
);
631 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
634 * If still on the runqueue then deactivate_task()
635 * was not called and update_curr() has to be done:
640 check_spread(cfs_rq
, prev
);
642 update_stats_wait_start(cfs_rq
, prev
);
643 /* Put 'current' back into the tree. */
644 __enqueue_entity(cfs_rq
, prev
);
650 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
653 * Update run-time statistics of the 'current'.
657 #ifdef CONFIG_SCHED_HRTICK
659 * queued ticks are scheduled to match the slice, so don't bother
660 * validating it and just reschedule.
663 return resched_task(rq_of(cfs_rq
)->curr
);
665 * don't let the period tick interfere with the hrtick preemption
667 if (!sched_feat(DOUBLE_TICK
) &&
668 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
672 if (cfs_rq
->nr_running
> 1 || !sched_feat(WAKEUP_PREEMPT
))
673 check_preempt_tick(cfs_rq
, curr
);
676 /**************************************************
677 * CFS operations on tasks:
680 #ifdef CONFIG_FAIR_GROUP_SCHED
682 /* Walk up scheduling entities hierarchy */
683 #define for_each_sched_entity(se) \
684 for (; se; se = se->parent)
686 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
691 /* runqueue on which this entity is (to be) queued */
692 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
697 /* runqueue "owned" by this group */
698 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
703 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
704 * another cpu ('this_cpu')
706 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
708 return cfs_rq
->tg
->cfs_rq
[this_cpu
];
711 /* Iterate thr' all leaf cfs_rq's on a runqueue */
712 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
713 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
715 /* Do the two (enqueued) entities belong to the same group ? */
717 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
719 if (se
->cfs_rq
== pse
->cfs_rq
)
725 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
730 #define GROUP_IMBALANCE_PCT 20
732 #else /* CONFIG_FAIR_GROUP_SCHED */
734 #define for_each_sched_entity(se) \
735 for (; se; se = NULL)
737 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
739 return &task_rq(p
)->cfs
;
742 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
744 struct task_struct
*p
= task_of(se
);
745 struct rq
*rq
= task_rq(p
);
750 /* runqueue "owned" by this group */
751 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
756 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
758 return &cpu_rq(this_cpu
)->cfs
;
761 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
762 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
765 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
770 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
775 #endif /* CONFIG_FAIR_GROUP_SCHED */
777 #ifdef CONFIG_SCHED_HRTICK
778 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
780 int requeue
= rq
->curr
== p
;
781 struct sched_entity
*se
= &p
->se
;
782 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
784 WARN_ON(task_rq(p
) != rq
);
786 if (hrtick_enabled(rq
) && cfs_rq
->nr_running
> 1) {
787 u64 slice
= sched_slice(cfs_rq
, se
);
788 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
789 s64 delta
= slice
- ran
;
798 * Don't schedule slices shorter than 10000ns, that just
799 * doesn't make sense. Rely on vruntime for fairness.
802 delta
= max(10000LL, delta
);
804 hrtick_start(rq
, delta
, requeue
);
809 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
815 * The enqueue_task method is called before nr_running is
816 * increased. Here we update the fair scheduling stats and
817 * then put the task into the rbtree:
819 static void enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
821 struct cfs_rq
*cfs_rq
;
822 struct sched_entity
*se
= &p
->se
,
823 *topse
= NULL
; /* Highest schedulable entity */
826 for_each_sched_entity(se
) {
832 cfs_rq
= cfs_rq_of(se
);
833 enqueue_entity(cfs_rq
, se
, wakeup
);
836 /* Increment cpu load if we just enqueued the first task of a group on
837 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
838 * at the highest grouping level.
841 inc_cpu_load(rq
, topse
->load
.weight
);
843 hrtick_start_fair(rq
, rq
->curr
);
847 * The dequeue_task method is called before nr_running is
848 * decreased. We remove the task from the rbtree and
849 * update the fair scheduling stats:
851 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int sleep
)
853 struct cfs_rq
*cfs_rq
;
854 struct sched_entity
*se
= &p
->se
,
855 *topse
= NULL
; /* Highest schedulable entity */
858 for_each_sched_entity(se
) {
860 cfs_rq
= cfs_rq_of(se
);
861 dequeue_entity(cfs_rq
, se
, sleep
);
862 /* Don't dequeue parent if it has other entities besides us */
863 if (cfs_rq
->load
.weight
) {
864 if (parent_entity(se
))
870 /* Decrement cpu load if we just dequeued the last task of a group on
871 * 'rq->cpu'. 'topse' represents the group to which task 'p' belongs
872 * at the highest grouping level.
875 dec_cpu_load(rq
, topse
->load
.weight
);
877 hrtick_start_fair(rq
, rq
->curr
);
881 * sched_yield() support is very simple - we dequeue and enqueue.
883 * If compat_yield is turned on then we requeue to the end of the tree.
885 static void yield_task_fair(struct rq
*rq
)
887 struct task_struct
*curr
= rq
->curr
;
888 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
889 struct sched_entity
*rightmost
, *se
= &curr
->se
;
892 * Are we the only task in the tree?
894 if (unlikely(cfs_rq
->nr_running
== 1))
897 if (likely(!sysctl_sched_compat_yield
) && curr
->policy
!= SCHED_BATCH
) {
898 __update_rq_clock(rq
);
900 * Update run-time statistics of the 'current'.
907 * Find the rightmost entry in the rbtree:
909 rightmost
= __pick_last_entity(cfs_rq
);
911 * Already in the rightmost position?
913 if (unlikely(rightmost
->vruntime
< se
->vruntime
))
917 * Minimally necessary key value to be last in the tree:
918 * Upon rescheduling, sched_class::put_prev_task() will place
919 * 'current' within the tree based on its new key value.
921 se
->vruntime
= rightmost
->vruntime
+ 1;
925 * wake_idle() will wake a task on an idle cpu if task->cpu is
926 * not idle and an idle cpu is available. The span of cpus to
927 * search starts with cpus closest then further out as needed,
928 * so we always favor a closer, idle cpu.
930 * Returns the CPU we should wake onto.
932 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
933 static int wake_idle(int cpu
, struct task_struct
*p
)
936 struct sched_domain
*sd
;
940 * If it is idle, then it is the best cpu to run this task.
942 * This cpu is also the best, if it has more than one task already.
943 * Siblings must be also busy(in most cases) as they didn't already
944 * pickup the extra load from this cpu and hence we need not check
945 * sibling runqueue info. This will avoid the checks and cache miss
946 * penalities associated with that.
948 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
951 for_each_domain(cpu
, sd
) {
952 if (sd
->flags
& SD_WAKE_IDLE
) {
953 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
954 for_each_cpu_mask(i
, tmp
) {
956 if (i
!= task_cpu(p
)) {
970 static inline int wake_idle(int cpu
, struct task_struct
*p
)
977 static int select_task_rq_fair(struct task_struct
*p
, int sync
)
981 struct sched_domain
*sd
, *this_sd
= NULL
;
986 this_cpu
= smp_processor_id();
992 for_each_domain(this_cpu
, sd
) {
993 if (cpu_isset(cpu
, sd
->span
)) {
999 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1003 * Check for affine wakeup and passive balancing possibilities.
1006 int idx
= this_sd
->wake_idx
;
1007 unsigned int imbalance
;
1008 unsigned long load
, this_load
;
1010 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1012 load
= source_load(cpu
, idx
);
1013 this_load
= target_load(this_cpu
, idx
);
1015 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1017 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1018 unsigned long tl
= this_load
;
1019 unsigned long tl_per_task
;
1022 * Attract cache-cold tasks on sync wakeups:
1024 if (sync
&& !task_hot(p
, rq
->clock
, this_sd
))
1027 schedstat_inc(p
, se
.nr_wakeups_affine_attempts
);
1028 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1031 * If sync wakeup then subtract the (maximum possible)
1032 * effect of the currently running task from the load
1033 * of the current CPU:
1036 tl
-= current
->se
.load
.weight
;
1039 tl
+ target_load(cpu
, idx
) <= tl_per_task
) ||
1040 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1042 * This domain has SD_WAKE_AFFINE and
1043 * p is cache cold in this domain, and
1044 * there is no bad imbalance.
1046 schedstat_inc(this_sd
, ttwu_move_affine
);
1047 schedstat_inc(p
, se
.nr_wakeups_affine
);
1053 * Start passive balancing when half the imbalance_pct
1056 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1057 if (imbalance
*this_load
<= 100*load
) {
1058 schedstat_inc(this_sd
, ttwu_move_balance
);
1059 schedstat_inc(p
, se
.nr_wakeups_passive
);
1065 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1067 return wake_idle(new_cpu
, p
);
1069 #endif /* CONFIG_SMP */
1073 * Preempt the current task with a newly woken task if needed:
1075 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
)
1077 struct task_struct
*curr
= rq
->curr
;
1078 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1079 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
1082 if (unlikely(rt_prio(p
->prio
))) {
1083 update_rq_clock(rq
);
1084 update_curr(cfs_rq
);
1089 * Batch tasks do not preempt (their preemption is driven by
1092 if (unlikely(p
->policy
== SCHED_BATCH
))
1095 if (!sched_feat(WAKEUP_PREEMPT
))
1098 while (!is_same_group(se
, pse
)) {
1099 se
= parent_entity(se
);
1100 pse
= parent_entity(pse
);
1103 gran
= sysctl_sched_wakeup_granularity
;
1105 * More easily preempt - nice tasks, while not making
1106 * it harder for + nice tasks.
1108 if (unlikely(se
->load
.weight
> NICE_0_LOAD
))
1109 gran
= calc_delta_fair(gran
, &se
->load
);
1111 if (pse
->vruntime
+ gran
< se
->vruntime
)
1115 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
1117 struct task_struct
*p
;
1118 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
1119 struct sched_entity
*se
;
1121 if (unlikely(!cfs_rq
->nr_running
))
1125 se
= pick_next_entity(cfs_rq
);
1126 cfs_rq
= group_cfs_rq(se
);
1130 hrtick_start_fair(rq
, p
);
1136 * Account for a descheduled task:
1138 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
1140 struct sched_entity
*se
= &prev
->se
;
1141 struct cfs_rq
*cfs_rq
;
1143 for_each_sched_entity(se
) {
1144 cfs_rq
= cfs_rq_of(se
);
1145 put_prev_entity(cfs_rq
, se
);
1150 /**************************************************
1151 * Fair scheduling class load-balancing methods:
1155 * Load-balancing iterator. Note: while the runqueue stays locked
1156 * during the whole iteration, the current task might be
1157 * dequeued so the iterator has to be dequeue-safe. Here we
1158 * achieve that by always pre-iterating before returning
1161 static struct task_struct
*
1162 __load_balance_iterator(struct cfs_rq
*cfs_rq
, struct rb_node
*curr
)
1164 struct task_struct
*p
;
1169 p
= rb_entry(curr
, struct task_struct
, se
.run_node
);
1170 cfs_rq
->rb_load_balance_curr
= rb_next(curr
);
1175 static struct task_struct
*load_balance_start_fair(void *arg
)
1177 struct cfs_rq
*cfs_rq
= arg
;
1179 return __load_balance_iterator(cfs_rq
, first_fair(cfs_rq
));
1182 static struct task_struct
*load_balance_next_fair(void *arg
)
1184 struct cfs_rq
*cfs_rq
= arg
;
1186 return __load_balance_iterator(cfs_rq
, cfs_rq
->rb_load_balance_curr
);
1189 static unsigned long
1190 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1191 unsigned long max_load_move
,
1192 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1193 int *all_pinned
, int *this_best_prio
)
1195 struct cfs_rq
*busy_cfs_rq
;
1196 long rem_load_move
= max_load_move
;
1197 struct rq_iterator cfs_rq_iterator
;
1198 unsigned long load_moved
;
1200 cfs_rq_iterator
.start
= load_balance_start_fair
;
1201 cfs_rq_iterator
.next
= load_balance_next_fair
;
1203 for_each_leaf_cfs_rq(busiest
, busy_cfs_rq
) {
1204 #ifdef CONFIG_FAIR_GROUP_SCHED
1205 struct cfs_rq
*this_cfs_rq
= busy_cfs_rq
->tg
->cfs_rq
[this_cpu
];
1206 unsigned long maxload
, task_load
, group_weight
;
1207 unsigned long thisload
, per_task_load
;
1208 struct sched_entity
*se
= busy_cfs_rq
->tg
->se
[busiest
->cpu
];
1210 task_load
= busy_cfs_rq
->load
.weight
;
1211 group_weight
= se
->load
.weight
;
1214 * 'group_weight' is contributed by tasks of total weight
1215 * 'task_load'. To move 'rem_load_move' worth of weight only,
1216 * we need to move a maximum task load of:
1218 * maxload = (remload / group_weight) * task_load;
1220 maxload
= (rem_load_move
* task_load
) / group_weight
;
1222 if (!maxload
|| !task_load
)
1225 per_task_load
= task_load
/ busy_cfs_rq
->nr_running
;
1227 * balance_tasks will try to forcibly move atleast one task if
1228 * possible (because of SCHED_LOAD_SCALE_FUZZ). Avoid that if
1229 * maxload is less than GROUP_IMBALANCE_FUZZ% the per_task_load.
1231 if (100 * maxload
< GROUP_IMBALANCE_PCT
* per_task_load
)
1234 /* Disable priority-based load balance */
1235 *this_best_prio
= 0;
1236 thisload
= this_cfs_rq
->load
.weight
;
1238 # define maxload rem_load_move
1241 * pass busy_cfs_rq argument into
1242 * load_balance_[start|next]_fair iterators
1244 cfs_rq_iterator
.arg
= busy_cfs_rq
;
1245 load_moved
= balance_tasks(this_rq
, this_cpu
, busiest
,
1246 maxload
, sd
, idle
, all_pinned
,
1250 #ifdef CONFIG_FAIR_GROUP_SCHED
1252 * load_moved holds the task load that was moved. The
1253 * effective (group) weight moved would be:
1254 * load_moved_eff = load_moved/task_load * group_weight;
1256 load_moved
= (group_weight
* load_moved
) / task_load
;
1258 /* Adjust shares on both cpus to reflect load_moved */
1259 group_weight
-= load_moved
;
1260 set_se_shares(se
, group_weight
);
1262 se
= busy_cfs_rq
->tg
->se
[this_cpu
];
1264 group_weight
= load_moved
;
1266 group_weight
= se
->load
.weight
+ load_moved
;
1267 set_se_shares(se
, group_weight
);
1270 rem_load_move
-= load_moved
;
1272 if (rem_load_move
<= 0)
1276 return max_load_move
- rem_load_move
;
1280 move_one_task_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1281 struct sched_domain
*sd
, enum cpu_idle_type idle
)
1283 struct cfs_rq
*busy_cfs_rq
;
1284 struct rq_iterator cfs_rq_iterator
;
1286 cfs_rq_iterator
.start
= load_balance_start_fair
;
1287 cfs_rq_iterator
.next
= load_balance_next_fair
;
1289 for_each_leaf_cfs_rq(busiest
, busy_cfs_rq
) {
1291 * pass busy_cfs_rq argument into
1292 * load_balance_[start|next]_fair iterators
1294 cfs_rq_iterator
.arg
= busy_cfs_rq
;
1295 if (iter_move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
,
1305 * scheduler tick hitting a task of our scheduling class:
1307 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
1309 struct cfs_rq
*cfs_rq
;
1310 struct sched_entity
*se
= &curr
->se
;
1312 for_each_sched_entity(se
) {
1313 cfs_rq
= cfs_rq_of(se
);
1314 entity_tick(cfs_rq
, se
, queued
);
1318 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1321 * Share the fairness runtime between parent and child, thus the
1322 * total amount of pressure for CPU stays equal - new tasks
1323 * get a chance to run but frequent forkers are not allowed to
1324 * monopolize the CPU. Note: the parent runqueue is locked,
1325 * the child is not running yet.
1327 static void task_new_fair(struct rq
*rq
, struct task_struct
*p
)
1329 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
1330 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq
->curr
;
1331 int this_cpu
= smp_processor_id();
1333 sched_info_queued(p
);
1335 update_curr(cfs_rq
);
1336 place_entity(cfs_rq
, se
, 1);
1338 /* 'curr' will be NULL if the child belongs to a different group */
1339 if (sysctl_sched_child_runs_first
&& this_cpu
== task_cpu(p
) &&
1340 curr
&& curr
->vruntime
< se
->vruntime
) {
1342 * Upon rescheduling, sched_class::put_prev_task() will place
1343 * 'current' within the tree based on its new key value.
1345 swap(curr
->vruntime
, se
->vruntime
);
1348 enqueue_task_fair(rq
, p
, 0);
1349 resched_task(rq
->curr
);
1353 * Priority of the task has changed. Check to see if we preempt
1356 static void prio_changed_fair(struct rq
*rq
, struct task_struct
*p
,
1357 int oldprio
, int running
)
1360 * Reschedule if we are currently running on this runqueue and
1361 * our priority decreased, or if we are not currently running on
1362 * this runqueue and our priority is higher than the current's
1365 if (p
->prio
> oldprio
)
1366 resched_task(rq
->curr
);
1368 check_preempt_curr(rq
, p
);
1372 * We switched to the sched_fair class.
1374 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
,
1378 * We were most likely switched from sched_rt, so
1379 * kick off the schedule if running, otherwise just see
1380 * if we can still preempt the current task.
1383 resched_task(rq
->curr
);
1385 check_preempt_curr(rq
, p
);
1388 /* Account for a task changing its policy or group.
1390 * This routine is mostly called to set cfs_rq->curr field when a task
1391 * migrates between groups/classes.
1393 static void set_curr_task_fair(struct rq
*rq
)
1395 struct sched_entity
*se
= &rq
->curr
->se
;
1397 for_each_sched_entity(se
)
1398 set_next_entity(cfs_rq_of(se
), se
);
1402 * All the scheduling class methods:
1404 static const struct sched_class fair_sched_class
= {
1405 .next
= &idle_sched_class
,
1406 .enqueue_task
= enqueue_task_fair
,
1407 .dequeue_task
= dequeue_task_fair
,
1408 .yield_task
= yield_task_fair
,
1410 .select_task_rq
= select_task_rq_fair
,
1411 #endif /* CONFIG_SMP */
1413 .check_preempt_curr
= check_preempt_wakeup
,
1415 .pick_next_task
= pick_next_task_fair
,
1416 .put_prev_task
= put_prev_task_fair
,
1419 .load_balance
= load_balance_fair
,
1420 .move_one_task
= move_one_task_fair
,
1423 .set_curr_task
= set_curr_task_fair
,
1424 .task_tick
= task_tick_fair
,
1425 .task_new
= task_new_fair
,
1427 .prio_changed
= prio_changed_fair
,
1428 .switched_to
= switched_to_fair
,
1431 #ifdef CONFIG_SCHED_DEBUG
1432 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
1434 struct cfs_rq
*cfs_rq
;
1436 #ifdef CONFIG_FAIR_GROUP_SCHED
1437 print_cfs_rq(m
, cpu
, &cpu_rq(cpu
)->cfs
);
1440 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
1441 print_cfs_rq(m
, cpu
, cfs_rq
);